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Abstract

A pattern α is a word consisting of constants and variables and it describes the pattern language L(α)
of all words that can be obtained by uniformly replacing the variables with constant words. In 1982,
Shinohara presents an algorithm that computes a pattern that is descriptive for a finite set S of words,
i. e., its pattern language contains S in the closest possible way among all pattern languages. We generalise
Shinohara’s algorithm to subclasses of patterns and characterise those subclasses for which it is applicable.
Furthermore, within this set of pattern classes, we characterise those for which Shinohara’s algorithm has a
polynomial running time (under the assumption P 6= NP). Moreover, we also investigate the complexity of
the consistency problem of patterns, i. e., finding a pattern that separates two given finite sets of words.
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1. Introduction

The class of pattern languages was introduced by Angluin [1] as a formalism to describe similarities of
words with respect to their repeating factors. For example, the words w1 = abbaabaa, w2 = baabbabaabba

and w3 = abaaaba share the common feature of having a prefix that contains an occurrences of ba that is
surrounded by exactly the same factor. These commonalities can be described by the pattern α = x1bax1x2,5

where x1 and x2 are variables that stand for arbitrary factors. The pattern language defined by α, denoted
by L(α), is the set of all words that can be obtained from α by uniformly substituting the occurrences of
variables x1 and x2 by some non-empty words. For example, the words w1, w2 and w3 can be obtained from
α by the substitutions (x1 7→ ab, x2 7→ aa), (x1 7→ baab, x2 7→ ba) and (x1 7→ a, x2 7→ aba), respectively,
which shows that w1, w2, w3 ∈ L(α). In [2], Shinohara introduces extended or erasing pattern languages,10

where variables can be substituted by the empty word. In this work, we are only concerned with classical
pattern languages; for more informations about erasing pattern languages, the reader is referred to the
survey [3].

Pattern languages are important in the context of learning theory since they constitute a prominent
example of a language class that is inferable from positive data. In fact, their introduction – along with15

Angluin’s characterisation of those language classes that are inferable from positive data (see [4]) – brought
new life to the field of inductive inference. Nowadays there exists an active research field devoted to specific
aspects of the learnability of pattern languages (see, e. g., [5, 6, 7, 8, 9] and, for a survey, [10]).

A useful tool for the inductive inference of pattern languages are so-called descriptive patterns, introduced
in [1]. A pattern α is descriptive of a finite set S of words if S ⊆ L(α) and there is no pattern β that20

describes S more accurately, i. e., S ⊆ L(β) ⊂ L(α). For example, the pattern x1baax2x3a is descriptive of
S = {w1, w2, w3}, where the wi’s are as defined above, while the pattern α introduced at the beginning of
the work is not, since S ⊆ L(x1bax1x2a) ⊂ L(α).

Independent of its application for inductive inference, the task of computing descriptive patterns con-
stitutes an interesting problem in its own right. For example, a descriptive pattern α may serve as a25

representation of the structural commonalities of some set S of textual data (e. g., employee files, entries
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of a bibliographical database, etc.) and in order to check whether a new data element meets this common
structure, it is sufficient to check whether it can be generated by α. The main obstacle of this application of
descriptive patterns is that deciding on whether a given word can be generated by a given pattern, i. e., the
membership problem for pattern languages, is NP-complete [1]. Furthermore, it has been shown in [1] that30

an algorithm computing a descriptive pattern of maximal length necessarily solves the membership problem
and therefore, assuming P 6= NP, it cannot have a polynomial running time.

Descriptive patterns have also been applied in approaches of learning upper-best approximations of other
types of formal languages (see Kobayashi and Yokomori [11], and Freydenberger and Reidenbach [12]).

In [7], Shinohara introduces an exponential time algorithm that computes descriptive patterns by per-35

forming membership queries, and he also provides subclasses of patterns for which the membership problem
can be solved efficiently and for these his algorithm computes descriptive patterns in polynomial time. Note
that the concept of descriptiveness can be easily restricted to an arbitrary subclass Π of patterns; more
precisely, a pattern α is Π-descriptive if α ∈ Π, S ⊆ L(α) and there is no other pattern β ∈ Π with
S ⊆ L(β) ⊂ L(α).40

We unify and further extend both Angluin’s insights with respect to the hardness of computing descriptive
patterns as well as Shinohara’s work on their efficient computation as follows. We show that for every S a
Π-descriptive pattern exists if and only if the pattern x1 is in Π and, furthermore, that a modified version
of Shinohara’s algorithm can be used to compute Π-descriptive patterns (of maximal length) if and only
if Π is a Shinohara-class, i. e., it contains the set {x1x2 · · ·xk | k ∈ N} and, for every α ∈ Π, the pattern45

α′ obtained by substituting some length i suffix of α by a sequence of new variables y1y2 · · · yi is also in
Π. Within the set of Shinohara-classes of patterns, we prove that Π-descriptive patterns can be computed
in polynomial time if and only if the question whether α ∈ Π and the membership problem for Π can be
decided in polynomial time.

We also investigate the consistency problem for classes Π of patterns, which is the problem to decide,50

for two given finite sets P and N of words, whether there exists a pattern α ∈ Π, such that P ⊆ L(α) and
L(α)∩N = ∅. As shall be demonstrated, this problem is much more difficult than the membership problem
for pattern languages or the problem of computing descriptive patterns (under the assumption P 6= NP).

The outline of the paper is as follows. In Section 2, we define the central concepts and present some
preliminary observations. Then, we demonstrate in Section 3 that the hardness of solving the membership55

problem for a class of patterns entails the hardness of computing descriptive patterns for this class. Shino-
hara’s algorithm is extended to Shinohara-classes of patterns in Section 4 and some possible applications
are discussed. In Section 5, we investigate the complexity of the consistency problem.

2. Preliminaries

Let N = {1, 2, . . .}, N0 = N ∪ {0}, and A be a finite alphabet of symbols. A word (over A) is any60

sequence of symbols from A. For any word w over A, |w| denotes its length and ε denotes the empty
word, i. e., |ε| = 0. By A+ we denote the set of all non-empty words over A and A∗ = A+ ∪ {ε}. For the
concatenation of two words w1, w2 we write w1 · w2 or simply w1w2. Let w ∈ A∗ be a word. We say that
v ∈ A∗ is a factor of w if w = u1vu2 for some u1, u2 ∈ A∗. If u1 = ε, or u2 = ε, then v is a prefix, or a
suffix, respectively, of w. For any b ∈ A, by |w|b we denote the number of occurrences of b in w. For each65

1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i] · · ·w[j], where w[k] is the letter on position k in w, for 1 ≤ k ≤ |w|, and,
for each 1 ≤ i < j ≤ |w|, let w[j..i] = ε.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies h(vw) = h(v)h(w) for
all v, w ∈ A∗; h is nonerasing if and only if, for every a ∈ A, h(a) 6= ε. Let Σ be a finite alphabet
of so-called terminal symbols and X a countably infinite set of variables with Σ ∩ X = ∅. We normally70

assume X = {x1, x2, . . .}. A pattern (over Σ) is a non-empty word over Σ ∪ X and a (terminal) word
is a string over Σ. We define Σ-Pat = (Σ ∪ X)+ and Pat =

⋃
Σ Σ-Pat. For any pattern α, we refer

to the set of variables as var(α) and to the set of terminal symbols as term(α). If term(α) = ∅, then α
is terminal-free. We also use term(w) and term(S) in order to denote the set of symbols that occur in a
word w ∈ Σ∗ or in a set S of words. A pattern α is in canonical form if and only if, for some k ∈ N,75
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var(α) = {x1, . . . , xk} and, for every i, 1 ≤ i ≤ k − 1, the leftmost occurrence of xi is to the left of the
leftmost occurrence of xi+1. For a pattern α, by cf(α), we denote its canonical form, i. e., cf(α) is obtained
from α by renaming the variables in such a way that a pattern in canonical form is constructed. A morphism
h : (Σ ∪X)

∗ → (Σ ∪X)
∗

is called a substitution if h(a) = a for every a ∈ Σ and a substitution of form
(Σ ∪X)

∗ → Σ∗ is a terminal substitution. For a pattern α ∈ Σ-Pat, the pattern language of α (over Σ) is80

defined by LΣ(α) = {h(α) | h : (Σ ∪X)
∗ → Σ∗ is a nonerasing terminal substitution} (we also write L(α) if

the alphabet is clear from the context). This particularly means that LΣ(α) is only defined if term(α) ⊆ Σ.
For any Π ⊆ Pat, {LΣ(α) | α ∈ Π, term(α) ⊆ Σ} is the set of Π-pattern languages.

Let Π ⊆ Pat. The class Π is natural if, for a given α, the question cf(α) ∈ Π is decidable and the
pattern x1 is in Π. The class Π is called tractable if the question whether cf(α) is in Π can be decided85

in polynomial time and the membership problem for Π-pattern languages can be decided in polynomial
time. For any pattern α and for every i, 0 ≤ i ≤ |α|, we define the i-tail-generalisation of α by tg(α, i) =
cf(α[1..i] · y1y2 · · · y|α|−i), where {y1, y2, . . . , y|α|−i} ⊆ (X \ var(α)) with |{y1, y2, . . . , y|α|−i}| = |α| − i. The
tail-generalisation of α is the set tg(α) = {tg(α, i) | 0 ≤ i ≤ |α|} and this definition is lifted to sets Π of
patterns by tg(Π) =

⋃
α∈Π tg(α). A natural class Π of patterns is a Shinohara-class if, for every k ∈ N,90

Π contains a pattern of length k and tg(Π) = Π. The following proposition follows immediately from the
definition.

Proposition 1. Let Π be a Shinohara-class of patterns. Then {x1x2 · · ·xn | n ∈ N} ⊆ Π and, for every
α ∈ Π, tg(α) ⊆ Π.

As a convention, we shall always assume that classes Π of patterns satisfy Π = {cf(α) | α ∈ Π}, i. e.,95

they only contain patterns in canonical form.
The binary relations v and ≡ on Pat, introduced in [1], are defined as follows. For every α, β ∈ Pat,

α v β if there exists a non-erasing substitution h with h(β) = α and α ≡ β if there exists a non-erasing
renaming of variables h with h(β) = α, i. e., h is a non-erasing substitution with |h(x)| = 1, for all x ∈ var(β),
and h(x) = h(y) if and only if x = y, for all x, y ∈ var(β). Alternatively, as can be easily verified, α ≡ β if100

and only if cf(α) = cf(β).

Lemma 2 (Angluin [1]). Let α, β ∈ Pat. The relation v is transitive. If α v β, then, for every alphabet
Σ with term(α) ⊆ Σ, LΣ(α) ⊆ LΣ(β). We have that α ≡ β if and only if α v β and β v α. If |α| = |β| and
LΣ(α) ⊆ LΣ(β) for some alphabet Σ with |Σ| ≥ 2, then α v β.

Lemma 2 only shows that, for every alphabet Σ, α v β is a sufficient condition for LΣ(α) ⊆ LΣ(β)105

(see [1] for an example that shows that α v β is in fact not a necessary condition). However, for the special
case that |α| = |β|, α v β is characteristic for LΣ(α) ⊆ LΣ(β) if Σ contains at least 2 terminal symbols.
In particular, since patterns describing the same pattern language must have the same length, this implies
that α ≡ β if and only if LΣ(α) = LΣ(β).

Let Π ⊆ Pat. The membership problem for Π-pattern languages asks to decide for a given pattern α ∈ Π110

and a word w, whether w ∈ Lterm(w)∪term(α)(α).

Theorem 3 (Angluin [1]). The membership problem for Pat-pattern languages is NP-complete.

In [1] a stronger result than Theorem 3 is shown, i. e., the membership problem is NP-complete even if
the terminal alphabet Σ is a fixed binary alphabet. Let Σ be an alphabet, S be a finite set of words and
Π ⊆ Pat. A pattern α is Σ-Π-descriptive of S if α ∈ Σ-Pat, cf(α) ∈ Π, S ⊆ LΣ(α) and there does not exist115

a β ∈ Π with S ⊆ LΣ(β) ⊂ LΣ(α).1 In the following, we call a finite set S of words a sample (over Σ).

Example 1 (Angluin [1], Freydenberger and Reidenbach [14]). We define the alphabets Σ1 = {a, b}
and Σ2 = {a, b, c}, and the samples S1 = {aabaa, babab, aabab, babaa}, S2 = {ababa, ababbababbab,

1Descriptive patterns for erasing pattern languages as well as for infinite sets have also been investigated (see Jiang et al. [13]
and Freydenberger and Reidenbach [14]).
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babab} and S3 = {aabcaaa, caacbca, bbcccbbbc}. The patterns x1abax2 and x1x1x2 are both Σ1-Pat-
descriptive of S1. The patterns x1x2x1x2x1 and x1abx2 are both Σ1-Pat-descriptive of S2. For every i ∈ N,120

let Patvar≤i = {α ∈ Pat | | var(α)| ≤ i} denote the set of patterns with at most i variables. The pattern
x1x2cx3x1 is Σ2-Patvar≤3-descriptive of S3 and x1 is Σ2-Patvar≤1-descriptive of S3.

By definition, it is possible that a pattern is Σ-Π-descriptive of a sample S ⊆ Γ∗, where Γ ⊂ Σ. However,
as pointed out by the following proposition, this aspect is negligible as long as the sample contains at least
one non-unary word.125

Proposition 4. Let Σ be an alphabet, S ⊆ Σ∗ a sample that contains a non-unary word, Γ = term(S) and
Π ⊆ Pat. A pattern is Γ-Π-descriptive of S if and only if it is Σ-Π-descriptive of S.

Proof. We first note that Γ ⊆ Σ. If α is not Γ-Π-descriptive of S, then α /∈ Γ-Pat, cf(α) /∈ Π or S * LΓ(α),
which directly implies that α is not Σ-Π-descriptive of S; or these three conditions are satisfied, but there
exists a β ∈ Π with S ⊆ LΓ(β) ⊂ LΓ(α), which also means that S ⊆ LΣ(β) ⊂ LΣ(α) and therefore α is not130

Σ-Π-descriptive of S.
On the other hand, if α is Γ-Π-descriptive of S, then cf(α) ∈ Π and, since Γ ⊆ Σ, LΓ(α) ⊆ LΣ(α)

is implied and therefore S ⊆ LΣ(α) holds. If there is a β ∈ Π with S ⊆ LΣ(β) ⊂ LΣ(α), then α 6≡ β
and LΓ(β) 6= LΓ(α) (since |Γ| ≥ 2). From Γ ⊆ Σ and LΣ(β) ⊂ LΣ(α), we can conclude LΓ(β) ⊆ LΣ(α).
Since all words in LΓ(β) are defined over Γ and are images of α, it follows that LΓ(β) ⊆ LΓ(α). Thus,135

S ⊆ LΓ(β) ⊂ LΓ(α), which is a contradiction to the assumption that α is Γ-Π-descriptive of S. �

As justified by Proposition 4, in the following we are only concerned with Σ-Π-descriptive patterns, where
Σ = term(S). For the sake of convenience, we say that a pattern is Π-descriptive of S if it is Σ-Π-descriptive
for Σ = term(S).

The consistency problem (for patterns) is to decide for given finite sets P,N ⊆ Σ∗, whether there exists140

a pattern α that is consistent with P and N , i. e., P ⊆ LΣ(α) and N ∩ LΣ(α) = ∅. For any class Π of
patterns, the Π-consistency problem is to find a pattern of Π that is consistent with P and N .

A Brief Discussion of The Role of the Terminal Alphabet

By definition, the terminal alphabet over which a pattern is defined is implicitly given by the pattern
itself. On the other hand, it is important to explicitly state the underlying terminal alphabet for the pattern145

language of a pattern (i. e., LΣ(α) 6= LΣ′(α) if Σ 6= Σ′). Furthermore, in accordance with the existing
literature, we always assume that in a pattern language all terminal symbols that occur in the pattern are also
available as symbols in the terminal alphabet (e. g., L{a,b}(xaxcyya) is undefined). For descriptive patterns,
as pointed out by Proposition 4, the terminal alphabet under consideration is determined by the sample.
For the membership problem, we ask for a given word w and a pattern α whether w ∈ Lterm(w)∪term(α)(α).150

This makes sense, since term(w) * Σ implies w /∈ LΣ(α) and if term(α) * Σ, then LΣ(α) is not defined. As
mentioned before, in the literature, a stronger version of the membership problem is also considered, where
the input word and the pattern language (and therefore also the pattern) are required to be defined over a
fixed alphabet Σ. For the consistency problem, the underlying terminal alphabet is given by the sets P and
N , i. e., Σ = term(P ) ∪ term(N).155

Consequently, for all our complexity results regarding these computational problems, the terminal al-
phabet is not fixed, but rather a part of the input (implicitly given by the terminal words). We emphasise
that analogous statements with respect to fixed alphabets would be stronger and must not be confused with
the results of this work.

3. The Hardness of Computing Π-Descriptive Patterns160

We now investigate the problem of computing a Π-descriptive pattern for a sample S. Since, by definition,
S ⊆ LΣ(α) implies |α| ≤ m = min{|w| | w ∈ S}, an obvious approach to find a descriptive pattern is to search
all patterns that describe S for one that is minimal with respect to the subset relation of the corresponding
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pattern languages. Unfortunately, this approach cannot be carried out by an algorithm, since the inclusion
problem for pattern languages is undecidable (see [15]). However, as shown in [1], in order to compute Pat-165

descriptive patterns, it is sufficient to only search the patterns of maximal length, for which the inclusion
is characterised by the relation v (Lemma 2). In the following, we extend this idea to natural classes of
patterns and show that if it is possible to compute a Π-descriptive pattern for any sample, then Π must be
natural.

Theorem 5. Let Π ⊆ Pat. There is an effective procedure that, for a sample S, computes a Π-descriptive170

pattern of S if and only if Π is natural.

Proof. In order to prove the if direction, we assume that Π is natural. Let Σ = term(S). We compute
the set Q of all patterns α in canonical form that satisfy α ∈ Π and S ⊆ LΣ(α) by enumerating all patterns
α ∈ (Σ ∪ X)∗ in canonical form up to length m = min{|w| | w ∈ S} and checking whether α ∈ Π (this is
possible since Π is natural) and S ⊆ LΣ(α) (this is possible since S is finite and the membership problem for175

Π-pattern languages is decidable). For any pattern α, if |α| > m, then S * LΣ(α); thus, the construction of
Q from above is correct. By definition, Q is finite and, since x1 ∈ Π and S ⊆ LΣ(x1), Q is non-empty. Now
let Qmax ⊆ Q contain all elements of Q with maximum length. Next, we compute a pattern β ∈ Qmax that
is minimal for the set Qmax with respect to v, which can be done by computing the relation v for the whole
set Qmax. We note that if β is not Π-descriptive of S, then there exists an α ∈ Q with S ⊆ LΣ(α) ⊂ LΣ(β).180

If α ∈ Qmax, then, since |α| = |β|, α v β is implied, which contradicts the fact that β is minimal with respect
to Qmax and v. On the other hand, if α /∈ Qmax, then |α| < |β|, which contradicts to LΣ(α) ⊂ LΣ(β).
Thus, β is Π-descriptive of S.

In order to prove the only if direction, we assume that there is an effective procedure χ that, for
a given sample S, computes a pattern that is Π-descriptive of S. If x1 /∈ Π, then there is no α ∈ Π185

with {a, b} ⊆ L{a,b}(α); thus χ does not compute a Π-descriptive pattern on input {a, b}. It remains
to show that, for every α ∈ Pat, the question cf(α) ∈ Π is decidable. Let α be obtained from α by
substituting each occurrence of a variable x ∈ var(α) by a distinct terminal symbol ax /∈ term(α) and,
likewise, let α̂ be obtained by substituting each occurrence of an x ∈ var(α) by a distinct terminal symbol
âx /∈ (term(α) ∪ term(α)). Furthermore, let γ be the pattern computed by χ on input {α, α̂}. In the190

following, we shall show that cf(α) ∈ Π if and only if α ≡ γ, which concludes the proof.
We first observe that since γ ∈ Π, γ ≡ α implies cf(α) ∈ Π. Next, we assume that γ 6≡ α. Since

γ is Π-descriptive of {α, α̂}, {α, α̂} ⊆ Lterm(α)∪term(α̂)(γ) holds, which implies α v γ and α̂ v γ. This
means that there is a non-erasing substitution h with h(γ) = α and, furthermore, all occurrences of terminal
symbols ax with x ∈ var(α) in α are generated by some variable of γ, since otherwise some of these terminal195

symbols must occur in γ and this is a contradiction to α̂ v γ. Hence, the substitution h′ that is obtained
from h by replacing, in the images of h, each occurrence of a terminal symbol ax by the variable x satisfies
h′(γ) = α and therefore α v γ. We conclude that {α, α̂} ⊆ Lterm(α)∪term(α̂)(α) ⊂ Lterm(α)∪term(α̂)(γ), where
the second inclusion follows from α v γ and it is proper due to the assumption γ 6≡ α. In particular, this
implies cf(α) /∈ Π, as otherwise γ would not be Π-descriptive. �200

The procedure of the proof of Theorem 5 is obviously not efficient. Furthermore, we note that it computes
a descriptive pattern of maximal length. In [1], it is shown that, if P 6= NP and Π = Pat, then computing
a Π-descriptive pattern of maximal length cannot be done in polynomial time. By modifying the proof
technique of [1], we can show a similar result with respect to natural classes Π of patterns without the
maximality condition. Furthermore, while for the result from [1] the terminal alphabet is fixed and binary,205

but the size of the sample is unbounded, in our result, we need an unbounded alphabet, but samples of size
only 2.

Lemma 6. Let Π be a natural class of patterns. If there exists a polynomial time algorithm that, for a
given sample S of size 2, computes a pattern that is Π-descriptive of S, then the membership problem for
Π-pattern languages is decidable in polynomial time.210

Proof. Let w be a word over some alphabet Σ and α ∈ Π. Without loss of generality, we can also
assume that α ∈ Σ-Pat, since otherwise term(α) * Σ and therefore, by definition, w /∈ LΣ(α). For every
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x ∈ var(α), let ax be a distinct terminal symbol with ax /∈ Σ and let α′ be obtained from α by substituting
every occurrence of every variable x by ax. We define Σ′ = Σ ∪ {ax | x ∈ var(α)}.

Claim: Let γ be Π-descriptive of {α′, w}. Then γ ≡ α if and only if w ∈ LΣ(α).215

Proof of Claim: The only if direction follows trivially, since if γ ≡ α and γ is Π-descriptive of {w,α′},
then w ∈ LΣ(γ) = LΣ(α). We prove the if direction by contraposition. To this end, we assume that
γ 6≡ α. Since γ is Π-descriptive of {α′, w}, α′ ∈ LΣ′(γ) and therefore α′ v γ. Moreover, since α′ is
obtained from α by injectively replacing variables by terminal symbols, we can conclude that α v γ,
which implies LΣ′(α) ⊆ LΣ′(γ). Furthermore, since α 6≡ γ, LΣ′(α) 6= LΣ′(γ) and, thus, it follows that220

LΣ′(α) ⊂ LΣ′(γ). Now if w ∈ LΣ(α), then w ∈ LΣ′(α), which implies {α′, w} ⊆ LΣ′(α). Consequently,
{α′, w} ⊆ LΣ′(α) ⊂ LΣ′(γ), which leads to the contradiction that γ is not Π-descriptive of {α′, w} and
therefore w /∈ LΣ′(α). (Claim) �

We conclude the proof by observing that if there is a polynomial time algorithm χ that, for a given sample
S of size 2, computes a pattern that is Π-descriptive of S, then we can decide, in polynomial time, whether225

w ∈ LΣ(α) by computing a pattern γ that is Π-descriptive of {α′, w} and checking whether or not γ ≡ α
holds, which can obviously be done in polynomial time. �

The next lemma shows a similar result, but with respect to the question whether a pattern α is a member
of a class Π of patterns.

Lemma 7. Let Π be a natural class of patterns. If there exists a polynomial time algorithm that, for a given230

sample S, computes a pattern that is Π-descriptive of S, then there exists a polynomial time algorithm that,
for a given pattern α, decides whether cf(α) ∈ Π.

Proof. Let χ be a polynomial time algorithm that, for a given sample S, computes a pattern that is Π-
descriptive of S and let α be a pattern. We construct patterns α and α̂ just like in the proof of Theorem 5
and let γ be the pattern that is Π-descriptive of {α, α̂} computed by χ. In the same way as in the proof235

of Theorem 5, we can now show that cf(α) ∈ Π if and only if α ≡ γ. Since, by assumption, γ can be
computed in polynomial time and α ≡ γ can be checked in polynomial time, the observations from above
yield a polynomial time algorithm for deciding whether or not cf(α) ∈ Π. �

Hence, under the assumption P 6= NP, for the polynomial time computation of descriptive patterns for
natural classes Π of patterns (i. e., for classes for which descriptive patterns exist) it is necessary that Π is240

tractable. In the following we show that for Shinohara-classes of patterns this condition is also sufficient.

4. Computing Descriptive Patterns for Shinohara-Classes

The procedure of the proof of Theorem 5 is inefficient in two regards: there might be an exponential
number of patterns to enumerate and for each such pattern we need to solve the membership problem,
which, at least in the general case, is NP-complete. In [7], Shinohara presents an algorithm for computing245

Pat-descriptive patterns in which the only non-efficient element is the necessity of membership queries. We
generalise this algorithm so that it computes Π-descriptive patterns for an arbitrary Shinohara-class Π of
patterns (see Algorithm 1). We denote by α[x 7→ π] the pattern obtained from α by substituting x with π.

Π-DescPat works as follows. We start with a pattern α = x1x2 · · ·xm, where m is the length of a
shortest word w in the sample S. Then we move over α from left to right and at every position i, we try to250

refine α by first replacing xi by the ith symbol of w (Line 4) and then consecutively by all the variables that
occur in the prefix α[1..i− 1] (Line 7). As soon as one of these refinements yields a pattern that describes
the sample S (and that is still in Π), we move on to the next position and if all refinements fail, then we
keep variable xi at position i (which means that xi occurs in the final pattern that is computed). Since
this algorithm always computes a descriptive pattern of the length of a shortest word in the sample, it will255

always produce a descriptive pattern of maximal length.
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Algorithm 1: Π-DescPat

Input : A sample S ∈ Σ∗, a shortest word w of S.
Output: A Π-descriptive pattern

1 m := |w|, α1 := x1x2 · · ·xm;
2 for i := 1 to m do
3 q := true, j := 1;
4 if cf(αi[xi 7→ w[i]]) ∈ Π and S ⊆ LΣ(αi[xi 7→ w[i]]) then
5 αi+1 := αi[xi 7→ w[i]] and q := false;
6 while q and j < i do
7 if xj ∈ var(αi[1, i− 1]), cf(αi[xi 7→ xj ]) ∈ Π, S ⊆ LΣ(αi[xi 7→ xj ]) then
8 αi+1 := αi[xi 7→ xj ] and q := false;
9 else

10 j := j + 1;

11 if q = true then
12 αi+1 := αi;

13 return cf(αm+1)

Lemma 8. Let Π be a Shinohara-class and let S be a sample with shortest word w. On input (S,w), Π-
DescPat computes a Π-descriptive pattern of S. If Π is tractable, then Π-DescPat can be implemented so
that it has polynomial running time.

Proof. Let α be the output of Π-DescPat on input (S,w). We first prove that α is Π-descriptive of S. To260

this end, let m = |w| and, for every i, 1 ≤ i ≤ m+1, let αi be the pattern at the beginning of the ith iteration
of the main loop of Π-DescPat, i. e., αi ≡ tg(α, i − 1), 1 ≤ i ≤ m + 1; in particular, α1 = x1x2 · · ·xm
and αm+1 = α. We note that if both S ⊆ LΣ(αi) and cf(αi) ∈ Π are satisfied at the beginning of the ith

iteration of the main loop, then αi is changed into αi+1 with S ⊆ LΣ(αi+1) and cf(αi+1) ∈ Π. This is due
to the fact that if αi is changed into αi+1 by Lines 5 or 8, then the conditions of Lines 4 or 7, respectively,265

are satisfied, and if Lines 5 or 8 are never executed, then Line 12 is executed, which sets αi+1 to αi and,
by assumption, S ⊆ LΣ(αi) and cf(αi) ∈ Π. Hence, since S ⊆ LΣ(α1) and cf(α1) ∈ Π is satisfied (see
Proposition 1), S ⊆ LΣ(α) and α ∈ Π follows. It remains to show that there is no pattern β ∈ Π with
S ⊆ LΣ(β) ⊂ LΣ(α). For the sake of contradiction, we assume that there exists such a pattern β ∈ Π with
S ⊆ LΣ(β) ⊂ LΣ(α).270

We first note that |α| = |β|, which follows from the observation that |α| < |β| implies w /∈ LΣ(β) and
|β| < |α| implies LΣ(β) * LΣ(α). Hence, we have LΣ(β) ⊂ LΣ(α) and |α| = |β|, which, by Lemma 2,
implies β v α. Without loss of generality, we can assume that, for every i, 1 ≤ i ≤ m, if β[i] = xj and
|β[1..i − 1]|xj

= 0, then i = j (note that all αi have this property, too). Since LΣ(β) ⊂ LΣ(α), α 6≡ β and
therefore α 6= β is implied; thus, there exists a p, 1 ≤ p ≤ |α|, with α[p] 6= β[p] and α[1..p− 1] = β[1..p− 1].275

As shown above, β v α, which implies that α[p] = xq (for some xq ∈ var(α)) and β[p] = z (for some
z ∈ var(β) ∪ Σ), i. e., β v α[xq 7→ z]. Since xq ∈ var(α), position q is the first occurrence of xq in α and
since β[q] = z 6= xq and α[1..p− 1] = β[1..p− 1], it follows that p = q. In particular, since αq ≡ tg(α, q− 1),
this also means that α[xq 7→ z] v αq[xq 7→ z] and, since v is transitive (see Lemma 2), β v αq[xq 7→ z]
follows, which implies S ⊆ LΣ(αq[xq 7→ z]). Moreover, cf(αq[xq 7→ z]) = tg(β, q) and β ∈ Π; thus, with280

Proposition 1, cf(αq[xq 7→ z]) ∈ Π is implied. If z ∈ var(β), then z ∈ {x1, x2, . . . , xq−1}. This is due to
the fact that, by our assumption from above, the first occurrence of any variable xj , j ≥ q + 1, is to the
right of position q. If, on the other hand, z ∈ Σ, then clearly z = w[q]. Consequently, in iteration q of the
main loop, either cf(αq[xq 7→ w[q]]) ∈ Π and S ⊆ LΣ(αq[xq 7→ w[q]]) is satisfied or cf(αq[xq 7→ xj ]) ∈ Π and
S ⊆ LΣ(αq[xq 7→ xj ]) with 1 ≤ j ≤ q− 1 is satisfied. This implies that Line 5 or 8 is executed, which means285

that in α there is no occurrence of variable xq. Since this is clearly a contradiction, we conclude that α is
in fact Π-descriptive of S.

It remains to prove that if, for any pattern β, the question cf(β) ∈ Π and the membership problem for
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Π-pattern languages is decidable in polynomial time, then Π-DescPat is a polynomial time algorithm. To
this end, note that the for-loop has m iterations and the while-loop has at most m iterations. Therefore290

Lines 4 and 7 are executed O(m2) times, and for each execution we have to check, for a pattern αi, whether
cf(αi) ∈ Π and S ⊆ LΣ(αi). Hence, by first checking cf(αi) ∈ Π in polynomial time and then checking
S ⊆ LΣ(αi) only in the case that cf(αi) ∈ Π, Lines 4 and 7 can be executed in polynomial time. �

From Lemmas 6, 7 and 8 we can conclude the following meta-theorem:

Theorem 9. Let Π be a Shinohara-class of patterns. There exists a polynomial time algorithm that, for a295

given sample S, computes a pattern that is Π-descriptive of S if and only if Π is tractable.

4.1. Applications of the Meta-Theorem

The significance of Theorem 9 is brought out by the observation that many classes of patterns that are
known to be tractable are in fact Shinohara-classes. We shall now give a brief overview of such classes of
patterns.300

The class Patreg of regular patterns, where every variable has only one occurrence (e. g., x1abx2x3ax4),
and the class Patnc of non-cross patterns, where the occurrences of variables are sorted by their index
(e. g., x1ax1x1x2bx2x3abx3x3), are the classes for which Shinohara originally formulated his algorithm
in [7]. However, these classes have the disadvantage of being rather strongly restricted, which means that
descriptive regular or non-cross patterns do not very accurately represent the common structure of the words305

in a sample S.
In [16], an infinite hierarchy of classes of patterns has been introduced, where every level of the hierarchy

is a tractable Shinohara-class. We recall the definition of this hierarchy. For every y ∈ var(α), the scope of y
in α is defined by scα(y) = {i, i+1, . . . , j}, where i is the leftmost and j the rightmost position of y in α. The
scopes of some variables y1, y2, . . . , yk ∈ var(α) coincide in α if

⋂
1≤i≤k scα(yi) 6= ∅. The scope coincidence310

degree of α (scd(α) for short) is the maximum number of variables in α such that their scopes coincide. For
every k ∈ N, let Patscd≤k = {α ∈ Pat | scd(α) ≤ k}. Since, for every k ∈ N, the membership problem for
Patscd≤k-pattern languages is solvable in polynomial time [16] and Patscd≤k is a Shinohara-class, we can
compute Patscd≤k-descriptive patterns in polynomial time. Furthermore, by increasing the bound on the
scope coincidence degree, we can boost the accuracy of the computed descriptive patterns at the expense of315

a slower running time and, conversely, by decreasing this bound, we improve on the running time, but lose
accuracy of the computed descriptive patterns.

The algorithm Π-DescPat seems to be of no use, if Π is not a Shinohara-class, e. g., the well-known
classes Patvar≤k = {α | | var(α)| ≤ k}, k ∈ N, of k-variable patterns (briefly mentioned in Example 1). The
membership problem for these classes can obviously be solved in polynomial time and Angluin shows in [1]320

that it is possible to compute Patvar≤1-descriptive patterns in polynomial time. However, to the knowledge
of the authors, it is still an open question whether or not Patvar≤k-descriptive patterns can be computed in
polynomial time, for k ≥ 2 (see also [17, 6, 18]). In contrast to the classes Patvar≤k, the classes Patrvar≤k =
{α | |{x ∈ var(α) | |α|x ≥ 2}| ≤ k}, k ∈ N, of patterns with at most k repeated variables are Shinohara-
classes. The algorithm Patrvar≤k-DescPat can therefore be used in order to compute Patrvar≤k-descriptive325

patterns and this even in polynomial time since the conditions of Theorem 9 are satisfied.2 Of course, a
Patrvar≤k-descriptive pattern α is not necessarily Patvar≤k-descriptive, but, since Patvar≤k ⊆ Patrvar≤k, α
covers S at least as closely as a Patvar≤k-descriptive one, i. e., it is impossible that a Patvar≤k-descriptive
pattern β exists with S ⊆ L(β) ⊂ L(α). So if we are interested in Patvar≤k-descriptive patterns it seems
that computing Patrvar≤k-descriptive patterns instead is a good alternative.330

For the classes of pattern languages mentioned above, fast algorithms for the membership problem have
been presented recently in [19], e. g., the membership problem for patterns with at most one repeated variable
(note that this is a proper superclass of regular patterns) can be solved in time O(|w|(|w| + |α|)), whereas
for non-cross patterns it can be solved in time O(|w|m log(|w|)) (here, m is the number of factors (xi)

k of
maximum length in the pattern).335

2Note that Patrvar≤k has a scope coincidence degree bounded by k + 1 and, thus, is tractable.
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We shall now exhibit in more detail the connections between descriptive patterns and inductive inference
of pattern languages. To this end, we first recall the definition of inductive inference from positive data (for
the case of pattern languages, see [10] for a more general treatment). A positive representation of a pattern
language L is an infinite sequence w1, w2, w3, . . ., such that L = {wi | 1 ≤ i}. An inference machine M
is an effective procedure that, given a positive representation of a pattern language, produces a sequence340

α1, α2, α3, . . . of hypothesis patterns. We say that M converges to α if the sequence of hypothesis patterns
is finite and ends with α or if there exists an integer k, such that αi = α, for every i, i ≥ k. If, for a class Π
of patterns, M always converges to an α′ with L(α′) = L(α) on any given positive representation of L(α),
then M infers Π-pattern languages from positive data.

It has been shown in [4] that, for a class Π of patterns, the following procedure describes an inference345

machine for Π-pattern languages: for every new word w that is not described by the current hypothesis,
we output as new hypothesis a pattern that is Π-descriptive of all formerly received words and w. If Π-
descriptive patterns can be computed in polynomial time, then this inference machine infers the Π-pattern
languages in polynomial time.3 Thus, we obtain the following corollary of Theorem 9:

Corollary 10. Let Π be a tractable Shinohara-class of patterns. Then the class of Π-pattern languages is350

polynomial time inferable from positive data.

Consequently, Shinohara’s algorithm is very useful for the polynomial time inference of Π-pattern lan-
guages if Π is a Shinohara-class.

The classes of k-variable patterns were also the first for which polynomial time inference was investigated.
Since these classes are no Shinohara-classes, we can not use the approach from above to obtain a polynomial355

time inference machine for Patvar≤k-pattern languages. If instead we use the algorithm Patrvar≤k-DescPat,
we get an inference machine for Patrvar≤k-pattern languages rather than for Patvar≤k-pattern language.
Since Patvar≤k ⊂ Patrvar≤k, this inference machine could also be used for inferring Patvar≤k-pattern lan-
guages, but then it produces hypotheses that are not in Patvar≤k and therefore, in the strict sense, it is
not an inference machine for Patvar≤k-pattern languages. It can nevertheless be transformed into an in-360

consistent inference machine (i. e., one that may output hypotheses that do not describe all the received
words) for Patvar≤k-pattern languages by simply keeping the current hypothesis if the new hypothesis would
be in Patrvar≤k \Patvar≤k or, alternatively, even into a consistent one by replacing every hypothesis from
Patrvar≤k \Patvar≤k by the hypothesis x1. This provides an alternative proof for the result first shown by
Lange [21] that Patvar≤k-pattern languages are consistently polynomial time inferable (in fact, the inference365

machine of [21] also produces the overly general hypothesis x1 from time to time).

5. The Consistency Problem for Patterns

The consistency problem (sometimes also called separation problem), which is formally defined in Sec-
tion 2, is a formalisation of the natural task to find a rule that separates one set of examples from another
and it arises in various contexts, e. g., learning theory, artificial intelligence and model checking. It is also370

crucial for probably approximately correct (PAC ) learning, introduced by Valiant [23], since its polynomial
time solvability is necessary for polynomial time PAC learning (see, Blumer et al. [24]). Furthermore, the
computational hardness of the consistency problem for pattern languages has been used in [22], in order to
demonstrate that polynomial time learnability of pattern languages (with informant) can only be achieved
by ignoring data, i. e., by inconsistent learning strategies (as defined at the end of Section 4.1).375

For arbitrary classes Π of patterns, the Π-consistency problem is in ΣP2 , the second level of the polynomial-
time hierarchy (see, e. g., [25]), since it can be solved by first guessing a pattern α and then checking by
membership queries whether α is consistent (note that this directly implies containment in NP if the
membership problem for Π-pattern languages can be solved in polynomial time) and Ko and Tzeng show

3Here, polynomial time inference means that the time to compute a new hypothesis can be bounded by a polynomial in the
total length of the words received so far. It should be pointed out that this notion of polynomial time inference is controversial
(see [20] for a discussion)
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in [26] that the Pat-consistency problem is even ΣP2 -complete (an NP-hardness result is given in [27]).380

This result suggests that, unlike for the problem of computing descriptive patterns, the hardness of the
membership problem is not solely responsible for the hardness of the Pat-consistency problem and this
intuition is supported by the fact that the consistency problem is even NP-hard for regular patterns (see
Miyano et al. [28]), for which the membership problem can be easily solved in polynomial time. It turns
out that, by modifying the construction and the proof given in [28], this result can be strengthened in the385

following way:

Theorem 11. Let Π ⊆ Pat, c be a terminal symbol and Γ = {β1 · · ·βn | n ∈ N, βi ∈ {xic, cxi}, 1 ≤ i ≤ n}.
If Γ ⊆ Π, then the Π-consistency problem is NP-hard.

Proof. In [28, Theorem 3.1], Miyano et al. show, by a reduction from 3Sat, that the consistency problem
of regular patterns is NP-complete. By a minor modification of the construction and the argument, this390

result also holds for all classes Π that contain the class Γ.
We shall now recall the construction from [28]. Let F = {C1, C2, . . . , Cm} be a 3-CNF formula with

clauses Ci, 1 ≤ i ≤ m, and Boolean variables y1, y2, . . . , yn. We assume that no clause contains both yi and
yi, the variable yi in negated form. The sets P and N of words over {a, b} are defined in the following way:

s0 = (aa)n,

t̂j = aj , 1 ≤ j ≤ 2n− 1.

si = (aa)i−1 aba (aa)n−i, 1 ≤ i ≤ n,
ti = (aa)i−1 bb (aa)n−i, 1 ≤ i ≤ n,

dk = r1r2 · · · rn, 1 ≤ k ≤ m, with r` =


ab if y` ∈ Ck,
ba if y` ∈ Ck,
aa else.

1 ≤ ` ≤ n,

P = {si | 0 ≤ i ≤ n},
N = {t̂j , ti, dk | 1 ≤ j ≤ 2n− 1, 1 ≤ i ≤ n, 1 ≤ k ≤ m}.

The only difference compared to the reduction from [28] is that we add the words t̂j , 1 ≤ j < 2n− 1, to N .
It can be verified in the same way as done in [28] that there exists α ∈ Γ that is consistent with P and N if
and only if F is satisfiable (more precisely, let σ : {yi | 1 ≤ i ≤ n} → {true, false} and α = β1β2 · · ·βn ∈ Γ
such that σ(yi) = true if and only if βi = xia and σ(yi) = false if and only if βi = axi, then σ satisfies F if395

and only if α is consistent with P and N).
It remains to show that there exists a pattern that is consistent with P and N if and only if there exists

a pattern in Γ that is consistent with P and N . Since the if direction is obviously true, we shall now assume
that there exists a pattern α that is consistent with P and N . Since s0 ∈ P , we can conclude that α is a
pattern over (X ∪{a})∗ of length at most |s0|. If |α| = j < |s0| = 2n, then α can generate t̂j ; thus, |α| = 2n400

follows. The words si have length 2n+ 1 with si[2i] = b. This means that it must be possible to map α to
si in such a way that si[2i] is generated by either α[2i− 1] or α[2i], which implies that α[2i− 1] or α[2i] is
a variable. Furthermore, since si[2i] is the only occurrence of b in si, this variable has only one occurrence
in α. Hence, α = β1β2 · · ·βn with βi = zixi or βi = xizi, where |α|xi

= 1 and zi ∈ (X ∪ {a}). If, for some i,
1 ≤ i ≤ n, zi ∈ X and |α|zi = 1, then ti can be generated by α, which is a contradiction; thus, for every i,405

1 ≤ i ≤ n, either zi = a or zi ∈ X with |α|zi ≥ 2. We assume now that, for some i′ with 1 ≤ i′ ≤ n, zi′ ∈ X
with |α|zi′ ≥ 2. Since α is consistent, it can generate every si, 0 ≤ i ≤ n, and since |α| = 2n, |si| ≤ 2n+ 1,
|si|b ≤ 1, 1 ≤ i ≤ n, this can only be done by substituting zi′ with the single letter a. This implies that we
can substitute every occurrence of zi′ in α by a and obtain a pattern that is still consistent with P and N
(note that the impossibility of generating words from N is not affected). Consequently, by replacing all zi410

with |α|zi ≥ 2 in α by a, we can transform α into a pattern α′ ∈ Γ that is consistent with P and N . �
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Theorem 11 is a strong negative result, since it implies the NP-hardness of the consistency problem for
all the classes Patreg, Patnc, Patr

var≤k and Patscd≤k, k ∈ N, for which the membership problem is known
to be solvable in polynomial time. As the set Γ from Theorem 11 is not a subset of Patvar≤k, the question
arises whether the Patvar≤k-consistency problem can be solved in polynomial time, for some k ∈ N.415

These observations point out that the Π-consistency problem can be intractable even though the mem-
bership problem for Π-pattern languages can be solved efficiently. As reported in the previous sections, this
contrasts with the problem of computing descriptive patterns. Nevertheless, we are able to prove a result
about the consistency problem that is similar to Lemma 6, i. e., if the membership problem for Π-pattern
languages is NP-hard, then the Π-consistency problem is NP-hard as well (at least for classes Π of patterns420

with a bounded number of occurrences of terminal symbols). Before we state this result, we first cite the
following two lemmas.

Lemma 12 (Angluin [1]). Let Σ be an alphabet with |Σ| ≥ 2 and let α ∈ Σ-Pat. There exists a set
Sα ⊆ LΣ(α) such that, for every pattern β with |α| = |β|, Sα ⊆ LΣ(β) implies LΣ(α) ⊆ LΣ(β). Furthermore,
Sα can be computed in polynomial time.425

Lemma 13 (Ko and Tzeng [26]). Let Σ be an alphabet, let α ∈ Σ-Pat be a pattern. There exist finite
sets Pα, Nα ⊆ Σ∗ with Pα ⊆ LΣ(α) and Nα ∩LΣ(α) = ∅ with the following properties. For every P,N ⊆ Σ∗

with Pα ⊆ P and Nα ⊆ N , if β is consistent with P and N , then |β| = |α|. The sets Pα and Nα can be
constructed in time O(2k(|α|+ 1)k+1), where k =

∑
a∈term(α) |α|a.

We are now ready to state and prove the result mentioned above.430

Theorem 14. Let Π ⊆ Pat with
∑
a∈term(α) |α|a ≤ k for all α ∈ Π and a constant k. If the Π-consistency

problem is solvable in polynomial time, then the membership problem for Π-pattern languages is solvable in
polynomial time.

Proof. Let α be a pattern, let w be a word and let Σ = term(α)∪ term(w) with |Σ| ≥ 2. Furthermore, let
P = Sα∪Pα ⊆ Σ∗ and N = Nα∪{w} ⊆ Σ∗ (where Sα, Pα and Nα are the sets given by Lemmas 12 and 13).435

Claim: There exists a pattern that is consistent with P and N if and only if w /∈ LΣ(α).

Proof of Claim: We first prove the only if direction and assume that β is a pattern that is consistent with P
and N . By Lemma 13, Pα ⊆ P and Nα ∩ LΣ(β) = ∅ implies |α| = |β|. Furthermore, since Sα ⊆ LΣ(β), we
conclude with Lemma 12 that LΣ(α) ⊆ LΣ(β). Now if w ∈ LΣ(α), then w ∈ LΣ(β), which is a contradiction
to the assumption that β is consistent with P and N ; thus, w /∈ LΣ(α) follows. In order to prove the if440

direction, we assume that there does not exist a pattern that is consistent with P and N . In particular,
this means that α is not consistent with P and N . By Lemmas 12 and 13, we know that P ⊆ LΣ(α) and
Nα ∩ LΣ(α) = ∅, which implies that w ∈ LΣ(α), since otherwise α would be consistent with P and N .
(Claim) �

Now let Π ⊆ Pat and
∑
a∈term(α) |α|a ≤ k for all α ∈ Π and some constant k. We assume that there exists445

a polynomial time algorithm χ that solves the Π-consistency problem. We can now solve the membership
problem for Π-pattern languages for an instance α and w in the following way. We first construct the sets
P = Sα ∪ Pα and N = Nα ∪ {w}. Since

∑
a∈term(α) |α|a ≤ k for all α ∈ Π, this can be done in polynomial

time (see Lemma 13). Then we use χ in order to decide whether or not there exists a pattern in Π that
is consistent with P and S in polynomial time, which, as stated by the Claim, answers whether or not450

w ∈ LΣ(α). �

The requirement in Theorem 14 that the patterns have a bounded number of constants seems to be a
strong restriction. However, the set Pattf of terminal-free patterns is a prominent class of patterns that has
been studied in the context of learning theory and language theory; moreover, terminal-free patterns are
generally used in order to describe combinatorial properties in words.455

Next, we try to answer the question whether there are non-trivial classes Π of patterns for which the
consistency problem can be solved in polynomial time. To this end, we note that if, for some Π ⊆ Pat and
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for every word w, all α ∈ Π with w ∈ LΣ(α) can be enumerated in polynomial time, then the Π-consistency
problem is solvable in polynomial time. The same holds for the situation that all β ∈ Π with w /∈ LΣ(β)
can be enumerated in polynomial time.460

While this is an obvious sufficient condition, it turns out that it is satisfied by structurally different
examples of classes of patterns, e. g., the class (Patnc ∩Patvar≤k ∩Pattf). Other structurally simple,
yet interesting examples of classes of patterns satisfying the condition from above are given by the class
{x1x

k
2x3 | k ≥ 2} of patterns that describe words that contain repetitions of exponent at least 2 and the class

{x1x2x3x2(x3x2)kx4 | k ≥ 1} describing words that contain overlaps. While these are fairly special classes of465

patterns that have no applications in learning or language theory, for them the consistency problem can be
solved in polynomial time and they are relevant in other parts of discrete mathematics, e. g., combinatorics
and algorithmics on words. Indeed, solving the Π-consistency problem for the class Π = {x1x

k
2x3 | k ≥ 2}

(respectively, Π = {x1x2x3x2(x3x2)kx4 | k ≥ 1}) and the input sets of words P and N means essentially
finding the exponent k of a repetition such that each word of P contains a factor of the form tk, while the470

pattern xk is avoided (in the combinatorics on words sense) by all words of N , i.e., the repetitions occurring
in the words of N have exponent strictly less than k.

Finally, observe that one might find Π-consistent patterns, for certain classes of patterns Π, more effi-
ciently than enumerating all the patterns α of Π such that P ⊆ L(α) and testing for each of them whether
N ∩L(α) = ∅, or, alternatively, enumerating all the patterns α of Π such that N ∩L(α) = ∅ and testing for475

each of them whether P ⊆ L(α). As an example, we consider again the class Π = {x1x
k
2x3 | k ≥ 2}, and as-

sume that we are given two sets of words P and N . For each w ∈ P ∪N we define the value kw = max{k | w
has a factor tk with t 6= ε, which is neither a prefix nor a suffix}; let now kP = min{kw | w ∈ P} and
kN = max{kw | w ∈ N}. Let α = x1x

k
2x3 be a pattern from Π. It is not hard to see that P ⊆ L(α) if and

only if k ≤ kP ; similarly, L(α) ∩ N = ∅ if and only if k > kN . Now, clearly, there exists α = x1x
k
2x3 such480

that P ⊆ L(α) and L(α) ∩ N = ∅ if and only if kN < kP . We only have to note that we can compute for
each w ∈ P ∪N the value kw by computing the runs of w, i.e., the maximal periodic factors of w, and this
can be done in O(|w|) time (see [29]); so kP and kN can be computed in O(

∑
w∈P |w| +

∑
w∈N |w|) time.

Therefore, we can solve the Π-consistency problem, in this case, in linear time. A similar argument shows
that for Π = {x1x2x3x2(x3x2)kx4 | k ≥ 1} we can also find Π-consistent patterns in linear time.485
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