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Abstract: In this paper we develop an inverse Bayesian approach tolagalue of the un-
known model parameter vector that supports the real (oy dest, where the data comprises
measurements of a matrix-variate variable. The methoduistiated via the estimation of the
unknown Milky Way feature parameter vector, using avadatest and simulated (training)
stellar velocity data matrices. The data is represented aslkenown function of the model pa-
rameters, where this high-dimensional function is modelising a high-dimensional Gaussian
Process@P). The model for this function is trained using availableritag data and inverted
by Bayesian means, to estimate the sought value of the madsheter vector at which the test
data is realised. We achieve a closed-form expression égpdisterior of the unknown parame-
ter vector and the parameters of the involgdl, given test and training data. We perform model
fitting by comparing the observed data with predictions metd#fferent summaries of the pos-
terior probability of the model parameter vector. As a sappnt, we undertake a leave-one-out
cross validation of our method.

Keywords and phrases:Supervised learning, Inverse problems, Gaussian Probissix-
variate Normal, Transformation-based MCMC.

1. Introduction

Curiosity about the nature of the parameter space of the My that we earthlings live in, is

only natural. In this paper, we discuss the learning of thaipaters characterising those Milky Way
features that bear influence upon the motion of individuaissthat lie in the neighbourhood of the
Sun. Astrophysical modelling indicates that in the solaghleourhood, effects of different features
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of the Milky Way are relevantMinchev et al, 2009 Chakrabarty2007 Antoja et al, 2009. Such
features include an elongated bar-like structure madeao$ §the stellar bar) that rotates, pivoted
at the centre of the Galaxy. In addition, the spiral arms ef @alaxy are also relevant. Thus, the
motions of stars in the solar neighbourhood are affectetibyparameters that define these Galactic
features. Included in these feature parameters are thedosaf the observer of such motions—we
from Earth observe such motions, so that the stellar vééscére recorded to attain the observed
values, given where in the Galaxy we are measuring theseitie®from. On astronomical scales,
the Earth’s location in the Milky Way is equivalent to theddion of the Sun inside the Galaxy. Our
location in the two-dimensional (by assumption) Galactgkdis given by the angular separation
of the Sun from a chosen line (an identified axis of the aford@meed stellar bar) and the distance
from the Sun to the centre of the Galaxy. These two locaticampaters are the components of
the two-dimensional locatios' of the observer. As motivated above, parameters of the paal s
pattern and other Milky Way features, can also affect theionstof stars that are observed. (See
sectionS-1of the supplementary material for details). Given that ¢éhgalactic feature parameters
affect the solar neighbourhood, if motions of a sample afstathis neighbourhood are measured,
such data will harbour information about these feature patars. Then, the inversion of such
measured motions will in principle, allow for the learninigtloee unknown feature parameters. This
approach has been adopted in the modelling of our galaxgstdtrin the estimation of the angular
separation of the Sun from a chosen axis of the bar, and thendes of the Sun from the Galactic
centre Minchev et al, 201Q Fux, 2001, Dehnen 200Q Simone et a.2004). The other relevant
feature parameters are typically held constant in such tiegle

The above inverse problem is then an example applicatidmeafiethod of science that is typified
by attempts at learning the unknown model parameter vesten@bserved data, where the causal
relationship between the observable and the model paramattor S, is not necessarily known.
This unknown relationship or function, can itself be learsing available “training data”. Once this
function is learnt, it can in principle be inverted to predice unknown value of at which the
measured data—i.e. “test data’—is realised. Such testgletatrasted with “training data”, which is
data generated at known or chosen valueS fbr example, via simulations or obtained as archival
data).

The learning of a high-dimensional function from availabigning data, using standard non-
parametric methods (such as spline fitting or wavelet basathing) is expected to be unsatisfac-
tory since modelling high-dimensional functions usingrsgg/wavelets may fail to adequately take
into account the correlation structure between the comgduoeations. Also, the complexity of the
computational task of learning the unknown function frora ttata—and in particular of inverting
it—only increases with dimensionality. Furthermore, tidiaonal worry in the classical approach is
that parameter uncertainty is ignored, though the same eaddressed in a Bayesian framework.
An added advantage of the Bayesian approach is that priotseomknown parameters can bring
in extra information into the model, allowing for a trainidgta set of comparatively smaller size
(than that required in the classical approach), to be adequa

Solving for the value ofS that supports the real or test data requires operating trezse of
the learnt function on the test data. The existence and an&gs of such solution can be ques-
tioned given that the problem may not even be well-posed iadarhard sens&&banikhin 2008
B.Hofmann 2011 Tarantola 2005. The problem may even be ill-conditioned since errors & th
measurement may exist. Such worries about ill-posednetslamnditioning are mitigated in the
Bayesian frameworkQarreira-Perpin2001 Stuart 2013. In this approach, the solution entails
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computation of the posterior probability of the unkno#rfat which the test data is realised), given
all data. Given the inherent inadequacies of learning usphiges/wavelets discussed above, we opt
to model the unknown functional relationship between dathmodel paramete$ with a high-
dimensionalgP. Similarly, in our application of interest, the unknown @tional relation between
the high-dimensional observations on stellar motions aeduhknown observer location vectSr

is modelled as a high-dimensior@P. In this exercise, Galactic feature parameters other than t
observer location are maintained as constants.

Chakrabarty(2007) constructed four different base-astronomical modelfefsolar neighbour-
hood, each at a chosen value of the ratio of the rate of rotafithe spiral patterr({,) to that of the
bar (2,). Non-linear dynamical evolution of each of these four basgenomical models were car-
ried out byChakrabarty(2007), resulting in four independent data sets, each consisfingolocks
of j number ofk-dimensional stellar velocity vectors, where each blocgaserated at a chosen
value of S (aka, a “design point”). At each possible chosen locatiasf the Sun, the dynamical
evolution of a given base-astronomical model of the Galayegates a block representing the
dimensional velocity of each gfstars, where these stars are chosen as neighbours of thersisn.
there aren design points and each training data set consists miimber of; x k-matrices, with
a matrix generated at the corresponding design point. Tdreréour such training data sets gener-
ated, by performing the evolution of each base-astrondmriodel. In addition, there is a measured,
stellar velocity data matrix—of dimensionalifyx & again—available, but this time, we do not know
what is the value o' at which this measured/test data has been realised. Isisittkinown value
of S that we seek to Bayesianly learn, given the test data and amény data set at a time.

It maybe asked that if a stellar velocity matrix can be gemerat a choses, via the evolution
of a base-astronomical model, does this not amount to gt#tat the causal relationship between
the observable (velocity matrix) and model paramefrié already known? Indeed this knowl-
edge must be embedded within the evolutionary scheme ingritad on any base-astronomical
model. Thus, the forward evolution of a base-astronomiaadehis possible (via Newton’s equa-
tions of motion), in order to generate a velocity matrix ahasens. However the inversion of this
evolution—aimed at recovering the soughait which the measured velocity matrix is generated—is
not possible in general, owing to non-linear dynamical&fgor chaos, that impede reversibility
in evolution; se€senguptd2003, Section 6.6 ofChakrabarty(2007), Section 7 ofFux (2001). The
strength of such chaos is different in the different basesastnical models, caused by the different
values of(), /€, (discussed below in Sectid). This difficulty of inversion triggers the need to
learn the inverse of the function that expresses the obdereasba function ofS, independently
from each of the four available training data sets. Thisie@wverse function is then to be operated
upon the measured (test) data to predict the valug of the Milky Way, in each of the four cases
that represent four possible astronomical models of th&yMiNay. We of course, predict this value
of S Bayesianly, by using a high-dimensior@P to model the velocity data. We then achieve a
closed-form posterior probability density of the sougland relevant parameters of tlg$, given
the test and training data. Marginal posterior distribuid the components of the soughtector
are inferred using MCMC, for each base-astronomical model€ach training data set) used. Our
focus in this work is to make inference on all valuesSoat which the test data is realised, in each
of the four astronomical models of the Galaxy—selectiorhefliase-astronomical model is beyond
the scope of this paper (see Sect®n

In the astronomical literature, Milky Way feature parameter the solar neighbourhood have
been explored via simulation based studiesdimaier and Gerhard999 Fux, 1997 while similar
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estimation is performed using other (astronomical) mdideded studiesAumer and Binney2009
Perryman2012 Goluboy, 2012. Chakrabarty(2007) attempted estimation of the sought Galactic
parameters via a test of hypothesis exercise: a non-paiarfrequentist test was designed to test
for the null that the observed stellar velocity data matsxsampled from the estimated density
of a synthetic velocity data matrix generated at the coordimg chosen value of the Milky Way
feature parameter vectdt. The p-value of the used test statistic was recorded for each ehadic
s. The choices o0& at which the highest-values were obtained, were considered better supported
by the observed data. Hence the empirical distribution esép-values in the space &, was
used to provide interval estimates of the Milky Way featueeter. However, this method required
computational effort and is highly data intensive sinceltbet match is sought over a very large
collection of training data points. This shortcoming hadnpelled Chakrabarty(2007) to resort

to an unsatisfactory coarse gridding of the space&ofThis problem gets acute enough for the
method to be rendered useless when the dimensionality ofeber S that we hope to learn,
increases. Moreover, the method of quantification of uagst of the estimate of the location is
also unsatisfactory, dependent crucially on the binnirgitde which in turn is bounded by cost and
memory considerations.

In the method we develop here, we demonstrate the effeetsgeof our Gaussian Process based
method with much smaller data sets than were used in the Hastother major advantage of this
presented method is that it readily allows for the expansfalimensionality of the model parameter
vector and is capable of taking measurement errors intauatco

The rest of the paper is structured as follows. In Seiome present the details of the modelling
strategy that we adopt. The treatment of measurement emithi the modelling is discussed in
Section2.6. In Section3 we discuss the application via which the new method is ilaistl while
details of the inference are discussed in Sec8idnSectiord contains results obtained from using
available real and training data. We compare the obtainadtsewith the estimates available in the
astronomical literature in Sectighl Section5 presents results of model fitting by comparing test
data with predictions made at different summaries of thegrmstof the model parameter vectSr
The paper is rounded up with Sectién

2. Model

In this section we discuss the generic methodology that weaiearn the unknown location vector
of the observer in the Milky Way disk, given the matrix-vag&est and training stellar velocity data.
Once the method is motivated, we implement it in the follayvgection, to perform the learning
relevant to the application at hand.

If a matrix-variate observable is expressed as an unknowtrixnariate function of the model
parameterS, and this unknown causal relationship between observatileSais modelled by a
matrix-variate Gaussian ProcesgH), it would imply that one realisation from such a matrix-
variateGP would be a set of the observed matrices that will be jointigrahuted as 3-tensor normal,
parametrised by a mean matrix and 3 covariance matrideff,(2011). While applications of the
same are being developed (WafagChakrabarty), here we undertake an alternative and equivale
modelling strategy. We vectorise our intrinsically matveriate data sets to achieve a close-form
expression for the joint posterior probability of the unkmoparameters that we are interested in
learning from the data. This leads to the functional refegiop between the data and model param-
eter vector being rendered vector-valued, modelled by toveariateGP, a set of realisations from
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which is jointly matrix normal, parametrised by matrix-\zie parameters that we intend to learn
from the data, along with the unknowgnat which the measured data is realised.

Let ; number of measurements ofcadimensional variable be available; this vector variakle i
referred to below as the “observable”. Thus the measureswéihis observable constitutejax k-
dimensional matrix. We refer to the measured data as testaatseek the unknown vals@®) of
model paramete$ at which itis realised. Let data be generated khown values ofS: s}, .. ., s7.
Then{sy,..., s} is the design set ang} is the:-th design vector at which theth synthetic data
matrix is generated, = 1, 2, ..., n. Then these: synthetic data matrices comprise a training data
set. Here a data matrix jsx k-dimensional. As motivated in the introductory section,express
the relation between the observabBlfeand unknown model parameter vectSrasV = £(S),
whereg(+) is an unknown function. We train the model #f-) using the training data and invert
the function using Bayesian means to estimate the unkméi#) at which the test data is realised.

As discussed above, we vectorise the intrinsically k-dimensional matrix-variate data sets
as jk-dimensional vectors. In this treatment, as a measurersaendered vector-valued(-) is
vector-valued ang(-) can be modelled by a vector-variafé so that realisations from thigP
are jointly matrix normal. Thus, we consider th@umber of measurements of thedimensional
observable, as @k-dimensional observed vectef*). This test data is realised at the unknown
values"e®) of S. Again, aj x k-dimensional synthetic data matrix is treated gg-alimensional

synthetic data vector;,i = 1,2, ..., n, along the lines of the observed data. Then alltlsgnthetic
data vectors together comprlse the training data= (viivo:. . .: v,.)T wherev, is generated at the
chosen valuesr of S, = 1,...,n. Given our treatment offi as ajk-dimensional vector, the

training data seD, is a matrix withn rows andjk columns.

Thus in this treatment, we have jk-dimensional synthetic data vectors (inputs), each gener-
ated at a chosen value of the model parameter vector (taigetve have the: observations
(vi,8%),..., (v, %), and the aim is to predict the unknown model parameter va€tet) at which
the input is the test data, i.e. the data vestd*). In this paradigm of supervised learning akin to
the discussion iftNeal (1999, a predictive distribution o&("<*) is sought, conditioned on the test

datav(***) and the training dat®, = (viiva, ... v,)".

We begin the discussion on the model by elaborating on trealéetstructure of the usegiP. In
this section we ignore measurement errors and present algloithese: vector-variate functions.
Later in SectiorR.6, we delineate the method used to take measurement untiedain board.

As the data are vectorised gk-dimensional vector(-) is also rendered gk-variate vector
function whose-th component function i&(-). Then we can write; = £(s;) := (&1(si), - - ., &),
Vi = 1,...,n. We model thejk-dimensional functior¢(-) with a jk-dimensionalGP, so that
one realisation{&(sy), &(s2), ..., &(s,)}, from thisGP, is jointly matrix normal, with adequate
parametrisation. We represent this as

{&(s1),&(82), -, &(sn)} ~ MN (1, A, ), (2.1)

where the mean matrix of this matrix normal distributionhis & x jk-dimensional matrixs, the
left covariance matrix is the x n-dimensionalA and the right covariance matrix is thé x jk-
dimensional matriX2. These individual matrix-variate parameters of this distion stem from the
parametrisation of the high-dimensiorg#P that is used to mode(-); we discuss such parametri-
sation below. Before proceeding to that, we note that Eqona&id is the same as saying that the
likelihood is matrix normal.
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2.1. Parameters of the matrix-normal distribution

Assuming&(-) to be continuous, the applicability of a stationary covaz@function is expected
to suffice. We choose to implement the popularly used squgpenential covariance function
(Rasmussen and William8006 Scholkopf and Smol&2002 Santner et al2003. This covariance
function is easy to implement and renders the sampled fumegmooth and infinitely differentiable.
Also, we relax the choice of a zero mean function though thatother popular choice. Instead we
choose to define the mean function in a way that is equivatethid suggestion that the data is
viewed as centred around a linear model with the residuasackerised by a vector-variagsP
(A. O'Hagan 1978 Cressie 1993. We then integrate over all such possible global intecept
arrive at a result that is more general than if the mean is fitegro. An advantage of the non-zero
mean function is that in the limit of the smoothness paramdidraracterising the smoothness of
the functions sampled from th@P) approaching large values, the random function reduces to a
linear regression model. This appears plausible, as digshed from the result that in this limit of
very large smoothness, the random function will concur \hi errors, as in models with a zero
mean function.

The non-zero mean functiqu(-) of theGP is represented as factored into a mafxthat bears
information about its shape and anothB)hat tells us about its amplitude, or the extent to which
this chosen mean function deviates from being zero. Th(s,:= H B, where

HT = [h™(s)),.. B™D(s,)], with
m = d+1
hmD(s) = (1, 51(1)’ s§2), e sgd))T (2.2)
wheres; = (s\V, 5%, ... s'\T fori = 1,...,n and we have recalled the suggestion that such a

non-zero mean function be expressed in terms of a few basiduns Rasmussen and Williams
2006), (prompting us to choose to fix this functional form sucht #aés) := (1, s)* for all values of
S). A similar construct was used Blight and Ott(1975 who performed & P-based polynomial
regression analysis. Thus, in our treatméit,) is a (d + 1)-dimensional vector. The coefficient
matrix B is

B = (B, B0, Bugs - By) (2.3)

where forp = 1,...,5,p' = 1,...,k, B,, is anm-dimensional column vector. As we choose to set
m = d + 1, B is a matrix withd + 1 rows andjk columns.

The covariance function of th@P is again represented as factored into a md®ithat tells us
about the amplitude of the covariance and anotiehat bears information about its shape. The
amplitude matriX? is jk x jk-dimensional and is defined as

Q=%xC (2.4)

whereX is the k x k matrix telling us the amplitude of the covariance amongst;thlifferent
observations, for each of thecomponents of the data vector, at a fixed valu&'ofOn the other
hand,C' is thej x j matrix giving the amplitude of covariance amongstAtdifferent components
of the vector-valued observable, at each of hebservations, at a given value 8f Thus in our
application, an element & is the matrix is the amplitude of the covariance of a givengonent of
the velocity vectors of the different stars that are obsgr¥éis matrix can then tell us about how a
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given component of the velocity vectors of the differentsia the observed sample, correlate with
each other. On the other hand, the ma&informs us about the amplitude of covariance amongst
the different components of the velocity vectors of a giviem s the sample.

We realise that under the assumption of Gaussian errorgimdasurements, the error variance
matrix will be added td2. We discuss this in detail later in Secti@r6.

The shape of the covariance function is borne by the matnxhich isn x n-dimensional. Given
our choice of square exponential covariance function,deined as

A — g(.))], where
a(s,s) = exp{—(s—35)'Q(s— 5}, (2.5)

for any 2 valuess ands’ of S. Here,Q'>*? represents the inverse of the scale length that under-
lies correlation between functions at any two values of threcfion variable. In other word€)
is the matrix of the smoothness parameters. TiRuss a matrix that bears information about the
smoothness of the sampled functions; it is a diagonal matmsisting ofd non-negative smooth-
ness parameters denoted fy. . ., b,. In other words, we assume the same smoothness for each
component function of(-). This smoothness is determined by the paraméters. , b,. We will
learn these smoothness parameters in our work from the @ateourse, though we say that the
smoothness is learnt in the data, the underlying effect @fctivice of the square exponential co-
variance function on the smoothness of the sampled furetgacknowledged. Indeed, 8aelson
(2007 states, one concern about the square exponential funistitivat it renders the functions
sampled from it as artificially smooth. An alternative cogace function, such as the Matern class
of covariancesNlatern 1986 Tilmann Gneiting and William Kleiber and Martin Schlath201Q
Snelson 2007, could give rise to sampled functions that are much rougi@n those obtained
using the square exponential covariance function, for #mesvalues of the hyper-parameters of
amplitude and scale that characterise these covarianceédng(see Chapter 1 of Snelson’s thesis).
Let w,, denote ther, ¢)-th element of(?, ¢,, the (r, ¢)-th element ofC' and leto,, denote the
(r, ¢)-th element of®. Let the/-th component function () be&,(-) with ¢ = mk + m,, where
¢ =1,....,7kandmy = 1,2,...,k, my = 0,1,...,5 — 1. Then the correlation between the
components of(-) yields the following correlation structures:

Omim! .
corr (5m1k+m2(3i)7fm'lk+m2<8i)) = ﬁ Y mo,i and my # m (2.6)
V YmimiYmim)
Crmam!, .
corr (§m1k+m2(si), £m1k+m/2(si)) = ——22 Ymy,i and my # m) (2.7)

v/ Cmame Cmém’2

C 1 0. / .
corr (§m1k+m2(3z‘)7§m3k+m’2(31‘)) = - Vi, my # my,my #my  (2.8)
\/Cmgmggmlmlcm’zmégm’lm’l

corr (54(81), 5((82)) = (1(81, SQ)V ¢ and S1 7& So (29)

The 1st of the above 4 equations shows the correlation bettiheecomponent functions for the
same component of the vector-valued observable at 2 (of)tkléferent measurements, taken at
a given value of theS'. For a given measurement, the correlation between 2 diff@@mponents
of (the k components of) the observable is given by the 2nd equatiomeali~or a given value
of S, if we seek the correlation between the component function® different measurements
of 2 different components of the observables, this is prdioh the 3rd equation. The correlation
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between component functions for 2 different value$'a$ given in the last of the above 4 equation.
Then these 4 correlations give the full correlation strceeamongst components &f).

2.2. Likelihood

The training data is the x jk-dimensional matrixD, = (viivsi...v,)T wherev; is the jk-
dimensional synthetic motion vector generated at desigmove, i = 1,2,...,n. To express
the likelihood, we recall that the distribution of the trimig data{v,,vs,...,v,}, i.e. the joint
distribution of {&(s7),&(s3), ..., &(s))} is matrix normal (Equatior2.1). In order to achieve this
likelihood, we rewrite theS-dependent parameters of this matrix normal distributioine values

of S at which the training dat®; is realised, i.e. in terms of the design vectors. Thus, wedefi

e then x jk-dimensional mean functiol , B, where the linear form of the mean structure
is contained inH™ = [™V(s1), ... R (s*)] (and the coefficient matrisB is
defined in Equatior2.3).

e the square exponential factor in the covariance mamﬁ?(“”) = [exp{—(s* — )T Q(s* —
s")}] (see EquatioR.5).

Then it follows from the matrix normal distribution of Equat 2.1-with mean function defined in
Equation2.2and Equatior2.3, and covariance matrix defined using Equadhand Equatior?.4-
thatD, is distributed as matrix normal with mean matfik, B, left covariance matrixd , and right
covariance matrix?, i.e.

[DS ‘ B70727Q] ~ MNn,jk(HDByAD,Q> (210)

Thus, using known ideas about the matrix normal distrilmtiseeDawid (1981), Carvalho and West
(2007 - we write

1
|Ap| |05

[Ds | B,C,%,Q] =

— exp {—ltr Q@ Y(D, - HpB)" A, (D, — HpB)] }
(2m)%" 2

(2.11)
The interpretation of the above is that th¢h row of [D,|B, X, C, Q] is multivariate normal with
mean corresponding to row of the mean mafid B and with covariance matri&. Rowsr and/
of [D,|B, 3, C, Q] has covariance matrix(s,, s,)2. Similarly, the/-th column of it is distributed
as multivariate normal with mean being the¢h column of H , B and with covariance matrix
weeAp, Wherew, , denotes ther, ¢)-th element ofQ2. The covariance between columnsnd ¢

IS given by the matrix, ,Ap.

2.3. Estimating s(mew)

In order to predict the unknown model parameter vest6f”) when the input is the measured
real data vectox ‘), we would need the posterior predictive distributions6f*), given vt
and the training dat®;. This posterior predictive is usually computed by integigbver all the
matrix-variateG’P parameters realised at the chosen design ves{ors. , s’.

While it is possible to analytically integrate ové& and C, X and Q cannot be analytically
integrated out. In fact, we find it useful to learn tiesmoothing parameters i.e. tlhlediagonal
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elements of), given the data. Thus, one useful advantage of our methddigtie smoothness of
the process does not need to be imposed by hand, but can befiear the data, if desired.

Given that we are then learning ef***), 3 and Q, we rephrase our motivation as seeking to
compute the joint posterior probability af”**), Q and X, conditional on the real data and the
training data, for a choice of the design set. In fact, we eahia closed form expression of this
joint posterior ofs"®), Q and X, by integrating over the other hyper-parameters, namegy, t
amplitude of the mean function5) and the matrixC' that bears information about covariance
between different components of the data vector for eacheof bbservations, at a fixed value of
S. From this closed form expression, the marginal postentiobgbility densities of), 3 and any
of the d components of the™**) vector can be obtained, using the transformation based MCMC
sampling methodQjutta and Bhattachary2013 that we adopt.

Thus, for a given choice?, . . ., s* of the design vectors, the posterior distributighi), 33, Q|v**") D,]
is sought, by marginalising*?, =, Q, B, C|v***) D,] over the process matricé® andC.

2.4. Priorsused

We use uniform prior o and a simple non-informative prior @@, namely,r(C) oc| C |~0+1/2,
As for the priors on the other parameters, we assume unifdongn @ and use the non-informative
prior 7(X) oc| X |~k+1/2, The prior information available in the literature will bersidered to
select the prior os("<*): below we use uniform priors on all components of #f&") vector (see
Sectiond for greater details in regard to the application that weussdater).

2.5. Posterior of s(™e®) given training and test data

Since our interest lies in estimatis***, given the real (test) data and the simulated (training),dat
as well as in learning the smoothness parameter mgtrand the matrixX that bears the covari-
ance amongst thgobservables, we compute the joint posterior probabilitysitg [s**), Q, 3 |
vitest) D,]. As expressed above, we achieve this by wriisg*”), B, C,Q, X | vt D,] and
marginalise oveiB andC.

To construct an expression for this posterior distributie first collate the training and test

data to construct the augmented data2gt = (v{:...ivIi(vl)T) Then the set of values of
the model parameter vectdt that supportsDaug is {s%,...,s%, s} of which only s is
unknown.

We next write theS-dependent matrix-variate parameters at those valugsatfwhich the aug-
mented data set is realised. Thus we define
((n+1)xm) .

o = [R™D(sr),..., ™D (s*) B (sew))] where our choice of the func-
tional form of h(-) has been given in Secti@and we also set = d + 1,
o ANTDXCHD) . — Toxpl—(s], — 8,,)7Q(s] — 8,)}] wheres and s/, are members of the set
{31, .., 8%, snew) )
¢ Moy, = Ay, — Ap, Hp,, [HT ,Ap,,, Hp..,| 'Hp,, Ap,,,.
o (DL, M 4uyDayy) WM = [M;,;t,u = 1,..., k], whereM;, is a matrix with;j rows and
j columns. Givenx, we definem = d + 1 and;,! as the(t,u)-th element ofS ™", so that
(n4+1=m)kCarsaug = Sy Sor_ Yt M7, where(n +1 —m)kCars aug is used in the
closed-form expression fgs(<®), Q, X | vt D] that we seek.

e H
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The priors used oB, C, Q, ¥ ands™™) are listed in Sectio.4. Using these, and recalling
Equation2.11, we get the joint posterior probability density of all unkviro parameters given all
data, i.e.

[S(new)7 Qv 37 27 &) | V(t68t)a Ds] X [Daug | Ba 27 Ca Q7 S(new)][B’ Z)7 C7 Q7 S(new)]j

which we then marginalise ovéB andC to get the joint posteridis™*), Q, X | v(**) D], as

[S(new)’ Q7 » | V(test)’ Ds]

= //[SWM,Q,B, ¥, C | v) D)dBdC

jn+l—m)+k+1 (n+1—m)k

ik _ _ ik _Jntl-m)+k+1 ~ _
2 |{HDaug }T{ADaug} l{HDa,ug| 2 X ‘2| 2 |(n + 1 - m>kCGstaug| 2
(2.12)

X ‘ ADaug

Thus, we obtain a closed-form expression of the joint paster s« Q, X, given training and
test data, for a given choice of the design matrix (Equa?idid), up to a normalising constant. The
GP prior is strengthened by thenumber of samples taken from it at the training stage. We Eamp
from the achieved posterior using MCMC techniques to achieeenarginal posterior probabilities
of Q, ¥ or any component o("<*), given all data. We conduct posterior inference using the
TMCMC methodology Dutta and Bhattachary2013 that works by constructing proposals that
are deterministic bijective transformations of a randomt@edrawn from a chosen distribution.

2.6. Errorsin measurement

In our application, the errors in the measurements are andllwill be ignored for the rest of the
analysis. In general, when errors in the measurements dingprise the training data and the test
data are not negligible, we assume Gaussian measuremergyin v;, witht = 1,2, ..., such
thate, ~ N1 (0,¢), wheres = 3, ® 3,; 34, 33, being positive definite matrices. If bo¥y andX,

are chosen to be diagonal matrices, thes a diagonal matrix; assuming same diagonal elements
would simplify ¢ to be of the formp x I, wherel is thejk x jk-th order identity matrix. This error
variance matrix, must be added t& before proceeding to the subsequent calculations. TMCMC
can be then be used to update

3. Case study

Using the methodology discussed above we attempt an estohtdte unknown Milky Way feature
parameter vecto§ € R¢ using the available stellar velocity data. In our applicatithe dimen-
sionality of S'is 2 as we estimate the coordinates of the radial locatipof the Sun with respect
to the Galactic centre and the angular separatigof the Sun-Galactic centre line from a pre-set
line in the Milky Way disk (see Figure 1 in supplementary g@t8-1). Then for the SunR = r,
and® = ¢, where the variablé? gives radial distance from the Galactic centre of any pomt o
the disk of the Milky Way and the variabke gives the angular separation of this point from this
chosen pre-set line. The reason for restricting our apypicdo the case of=2 is the existence of
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simulated stellar velocity data (aka training data) geteery scanning over chosen guesses for
ando., with all other feature parameters held constant. If sitealaata distinguished by choices
of other Milky Way feature parameters become available; the implementation of such data as
training data will be possible, allowing then for the leagndf Milky way parameters in addition to
re andege. In this method, computational costs are the only conceexiending to cases af > 2;
extending to a higher dimension8lonly linearly scales computational costs (Sec&pn

Also, the stellar velocity vector is 2-dimensional, ke2 in this application. Then the measured
data in this application is @ x 2-dimensional matrix. In our Bayesian approach, a much smaller
(=50) allows for inference on the unknown valsié®) of the Milky Way feature parameter vector,
thanj; ~3000 that is demanded by the aforementioned calibrationoapp used by hakrabarty
(2007).

In our application, the available data include the measore@st data and 4 sets of synthetic
(or training) data sets obtained via dynamical simulatiohsach of 4 distinct base-astronomical
models of our galaxy, advanced IBhakrabarty(2007). As the analysis is performed with each
training data set at a time, we do not include reference tactimeesponding base model in the
used notation. The simulated data presente@hakrabarty(2007) that we use here, is generated
at 216 distinct values of, i.e. n=216. Thus, our design set comprises the 216 chosen values of
S: sy,..., 85 For each of the 4 base astrophysical models, at each clpsba 2-dimensional
stellar velocity vectors are generated from dynamical &tmans of that astrophysical model (of
the Milky Way), performed at that value &. These 50 2-dimensional velocity vectors are treated
in our work as a 58 2=100-dimensional motion vectet; i = 1,...,216. Then at the 216 design
vectors,sy, . .., 83,4, 216 motion vectors are generated; . .. , vo145. Then the training data in our
work comprises all such motion vectors and is represente48'%”  The real or test data is
treated in our work as the 100-dimensional motion veetse!).

As said above, there are 4 distinct training data sets daifeom using the 4 base astronomical
models of the Milky Way, as considered 6fakrabartf2007). The choice of the base astrophysical
model is distinguished by the ratio of the rates of rotatibthe spiral to the bar, /2. That this
ratio is relevant to stellar motions in the Galaxy is due @ fict that(2, /2, can crucially control
the degree of chaos in the Galactic mddeThus, the 4 base astrophysical models are differently
chaotic. This results in 4 distinct simulated velocity daeasD!”, D!?, DI¥, DY that bear the
effects of such varying degrees of chaos, each generatéde athbsen design s¢s7, ..., s’ }.
Details of the dynamical simulations performed on the 4optysical models are given in the
supplementary sectid®-2

3.1. Detailsof our implementation of TMCMC

As indicated above, we use the Transformation-based MCMQGWIZ) advanced by
Dutta and Bhattachary@013 to conduct posterior inference. In TMCMC, high-dimensiopat

1For example, it is well known in chaos theory that wheyy (2, is such that one of the radii at which the bar and
the stellar disk resonate, concurs with a radius at whiclspiiral and the stellar disk resonate, global chaos is set up i
the systemG. Walker and J. Fordl969. Chakrabarty and Sider{2008 have corroborated that the degree of chaos is
maximal in the astrophysical Galactic model marked by suettia (2 /€2,=22/55). They report that in models marked
by slightly lower €2 /€2,=18/55) or higherQ, /2, = 25/55) values of this ratio, chaos is still substantiathie Galactic
model that precludes the spiral however, chaos was quatttiifiee minimal. It is these 4 states of chaos - driven by the
4 values ofQ2, /), - that mark the 4 astrophysical models as distinct.
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rameter spaces are explored by constructing bijectivemaiestic transformations of a low-dimensional
random vector. The random vector of which a proposal demsiytransformation of, can be cho-
sen to be of dimensionality between 1 and the dimensionafityye parameters under the target
posterior. The acceptance ratio in TMCMC does not depend tip@wlistribution of the chosen
random vector. In our application we use TMCMC to update theeshlock (s**), Q, X) at the
same time using additive transformations of a one-dimewsi@ndom variable ~ N (0, 1) I{c-03.

In thet-th iteration, the state of the unknown parametersis=t, Q) x1)) .= x®, We update

¢ by setting, with probabilitiesr; and (1 — 7;), gpyﬂ) = gog.t) + c;je (forward transformation)

and go(t“) = cpg-t) — c;e (backward transformation), respectively, where, foe 1,...,d, 7; are
approprlately chosen probabilities andare appropriately chosen scaling factors. Assume that for

J1 €U, cpg-? gets the positive transformation, while fgr € 1/¢, Lp]t gets the backward transfor-

mation. Heré&{ UU° = {1, ...,d*}, whered* = 2d + ==~ k“ . The proposalp**1) is accepted with
acceptance probability given in Supplementary Se(ﬁcm Once the proposal mechanism and the
initial values are decided, we discard the first 100,00@ftens of our final TMCMC run as burn-in
and stored the next 1,000,000 iterations for inferenceeBoh model it took approximately 6 hours
on a laptop to generate 1,100,000 TMCMC iterations.

4. Results using real data

The training data that we use was obtainedGiakrabarty(2007), by choosing the solar radial
location from the intervall.7,2.3] in model units. This explains the motivation for selectihe t
bounds o, to be the edges of this interval. Here, values of distaneee)gressed in the units im-
plemented in the base astrophysical models of the Milky \Mayvever, to make sense of the results
we have obtained, these model units will need to be scaledotode values in real astronomical
units of distances inside galaxies, such as the “kilopar&aafireviated as “kpc”). A distance of 1

R
in model unit scales te—kpc whereR is the solar radius obtained in independent astronomical

studies Binney and Mernfleld 1998 R=8kpc) andr is the estimate of the solar radius in our
work. The ulterior aim in estimating the solar radius is itiraating the rotational frequency,

of the bar, where?, = % with vy=220kms ! andR=8kpc. Then, we gef), = %Okmsrllkpc.

See Sectiors-1 of the a(t)tached supplementary material to see a schempties&tation of the
central bar in the Galaxy and SectiSr2for details of the scaling between the model units and real
astronomical units.

Our other estimate is of the angular separation betweerotitggdxis of the bar and the line that
joins the Sun to the Galactic centre. It is suggested in pasiresnical modelling work to be an
acute angleChakrabarty2007 Englmaier and Gerhard999 Fux, 200)). Indeed, the training data
used here was generated in simulations performe@Hmkrabarty(2007), in which ¢, is chosen
from the interval0, 90°]. This motivates the consideration of the interva[®00°] for the angular
location of the Sun.

Given the bounds on., and ¢, presented above, in our TMCMC algorithm, we reject those
moves that suggest, and¢, values that fall outside these presented intervals.

The 4 astrophysical models of the Galaxy that were used tergenthe 4 training data sets, are
marked by the same choice of the valuépfand the background Galactic model parameters, while
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TABLE 1
Summary of the posterior distributions of the radial comgam, and azimuthal componert, of the unknown
observer location vector for the 4 base astrophysical m®dabl the unknown bar rotational frequeriey computed
using the 95 HPDs on the learnt radial location, in these models.

Model ro (in units ofrgg) Q, (in kms~T/kpc) oo
Mode 95% HPD 95% HPD Mode | 95% HPD
bar6 2.20 [2.04,2.30] [56.1,63.25] 23.50 | [21.20,25.80]
sp3bar3 1.73 | [1.70,2.26] U [2.27,2.28] || [46.75,62.15] U [62.45,62.7] || 18.8 [9.6,61.5]
sp3bar3_18 || 1.76 [1.70,2.29] [46.75, 62.98] 32.5 | [17.60,79.90]
sp3bar3 25 || 1.95 [1.70,2.15] [46.75,59.12] 37.6 | [28.80,40.40]

they are distinguished by the varying choices of the ratio 2,, where the Galactic spiral pattern
rotates with rate,. In fact, the astrophysical modékr_6 is the only one that does not include
the influence of the spiral pattern while the other threeogséiysical models include the influence
of both the bar and the spiral. For the astrophysical mog&igar3_18, sp3bar3 and sp3bar3_25,

Qg : ) is respectively set ta8(2,/55, 22,/55, 250,/55. The physical effect of this choice is
to induce varying levels of chaoticity in the 4 astrophysitaldels. ThusChakrabarty and Sideris
(2008 confirmed that of the 4 models;r_6 manifests very low chaoticity whilep3bar3 manifests
maximal chaos, though botp3bar3_18, sp3bar3_25 are comparably chaotic.

Ancillary real data needs to be brought in to judge the negafit amongst the astrophysical
base models. In facChakrabarty(2007) brought in extra information to perform model selection.
Such information was about the observed variance of the oaeis of stellar velocities and this
was used to rule out the modelr_6 as physically viable, though the other three models were all
acceptable from the point of view of such ancillary obseoret that are available. This led to the
inference thaf), € [18(2,/55, 252, /55].

Itis to be noted that if there was 1 data set and we were traifig4 different models to that same
data, then it is very much possible that for this 1 data setatlerage of 4 models could have been
achieved. However, here we are dealing with 4 base models afavhich is giving rise to a distinct
training data set, in fact under mutually contradicting §ibg. Therefore, such model averaging is
not relevant for this work. Cross-validation of these 4 medeindeed possible and we present this
in SectionS-5of the attached Supplementary Materials.

The marginal posterior densities @f,, ¢) corresponding to the 4 base astrophysical models of
the Milky Way, are shown in Figurels 2, 3 and4. It merits mention that the multi-modality manifest
in the marginal posterior distributions in 3 of the 4 base eteds not an artifact of inadequate
convergence but is a direct fallout of the marked amount abthity in all 3 base models except
in the modelbar_6, (Chakrabarty and Sidetri2008. In SectionS-6 we discuss the connection
between chaos and consistency of multiple observer latatiath available stellar velocity data.

Table1 presents the posterior mode, the 95% highest posterioitd€H$ D) credible region of
ro and ¢, respectively, associated with the four base models. Herne expressed in the model
units of length, i.e. in units of-r. ¢ IS expressed in degrees. The HPDs are computed using the
methodology discussed @arlin and Louig(1996. Disjoint HPD regions, characterise the highly
multi-modal posterior distributions of the unknown loceti Using the 9% HPDs of the estimate
r expressed in model units, and using the independently kastronomical measurement of the
solar radial location as 8kpc, the bar rotational frequefigys computed (see third enumerated
point discussed above) in Talle
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FIG 4. Posteriors ofr in units ofrcr and ¢, (in degrees) for the modap3bar3_25.

Summaries of the posteriors (mean, variance and 95% ceetfitdrval) of the smoothness pa-
rameterd,, b, andX are presented in Tabl@s3. Notable in all these tables are the small posterior
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TABLE 2
Summary of the posterior distributions of the smoothnessrpetershy, b, for the 4 models.

Model by b2
Mean Var 95% ClI Mean Var 95% CI
bar_6 0.9598155 3.15 x 107 0.959703,0.959879] || 1.005078 2.85 x 10~  [1.004985,1.005142
sp3bar3 0.8739616  6.72 x 1077 0.872347,0.875052] || 1.003729 8.98 x 10~7  [1.002500, 1.005500
sp3bar3_18 || 0.9410686 1.46 x 107> 0.938852,0.955264] || 0.999010 4.08 x 1076 [0.997219, 1.004945
sp3bar3_25 || 0.7597931 5.64 x 10710 [0.759743,0.759833] || 0.992174 2.89 x 10~2  [0.992067, 0.992246

TABLE 3
Summary of the posterior distribution of the diagonal ané ann-diagonal element &f, from the 4 base
astrophysical models.

Model o11 0929 012
95% CI 95% CI 95% CI
bar_6 [5.40 x 107°,4.0 x 10~%] [[ [6.20 x 107°,4.76 x 10~7] [0,1.30 x 10~7]
sp3bar3 [3.66 x 1073,1.03 x 1072] || [6.53 x 1073,1.83 x 1072] || [~6.40 x 1077,2.68 x 10~4]
sp3bar3_18 | [1.45 x 1073,1.68 x 1071] || [1.29 x 1073,1.50 x 10~'] || [-1.19 x 1074,2.16 x 1073]
sp3bar325 || [1.21 x 107%,5.69 x 1074] || [1.13 x 107%,5.21 x 1074] || [~1.00 x 107°,1.50 x 1077

variances of the quantities in question; this is indicatif/the fact that the data sets we used, in spite
of the relatively smaller size compared to the astrononyi¢atge data sets used in the previous ap-
proaches in the literature, are very much informative, igioar vector-variat€ P-based Bayesian
approach. Owing to our Gaussian Process approach, theipostieX: should be close to the null
matrix a posterioriif the choice of the design set and the number of design paisadequate.
Quite encouragingly, Tablg shows that indeell is close to the null matria posteriori for all the
four models, signifying that the unknown velocity functibas been learned well in all the cases.

4.1. Comparison with resultsin astrophysical literature

The estimates of the anglar separation of the long axis dbaénérom the Sun-Galactic centre line
and the rotation rate of the bar compare favourably withltesabtained byChakrabarty(2007),
Englmaier and Gerhard 999, Debattista et al2002, Benjamin et al(2009,Antoja et al.(2011).

A salient feature of our implementation is the vastly smaliata set that we needed to invoke than
any of the methods reported in the astronomical literatireyder to achieve the learning of the
two-dimensional vectoS - in fact while in the calibration approach @hakrabarty(2007), the
required sample size is of the order of 3,500, in our worls thimber is 50. Thus, data sufficiency
issues, when a concern, are well tackled by our method.

Upon the analyses of the viable astrophysical models of tlaxg, Chakrabartyf2007) reported
the result that, € [1.9375,2.21] in model units whilep., € [0°,30°], where these ranges corre-
spond to the presented uncertainties on the estimates, wieighhowever, rather unsatisfactorally
achieved (see Sectid). The values of the components.§f learnt in our work, overlap well with
these results. As mentioned above, the modgdar3_18, sp3bar3 and sp3bar3_25 are distin-
guished by distinct values of the ratios of the rotationagsaif the spiral patterf2, to that of the
bar (2,) in the Galaxy. Then the derived estimate fiar(Table1) suggests values 6f, of the Milky
Way spiral.

Another point that merits mentions is that the estimates,cdnd¢., presented by hakrabarty
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(2007 exclude the modetp3bar3 which could not be used to yield estimates given the highly
scattered nature of the correspondjrgalue distribution. Likewise, in our work, the same model
manifests maximal multi-modality amongst the others, buypartantly, our approach allows for
the representation of the full posterior density using Whitbhe computation of the 95 HPDs is
performed.

That the new method is able to work with smaller velocity dseés, is an important benefit,
particularly in extending the application to galaxies otti&n our own, in which small numbers
of individual stars are going to be tracked in the very ne&urifor their velocities, under obser-
vational programmes such as PANStadshnston et al2009 and GAIA (Lindegren et al.2007,
Kucinskas et /2005 htt p: / / ww. r ssd. esa. i nt/i ndex. php?pr o] ect =GAl A&page=i ndex);
the sample sizes of measured stellar velocity vectors isetpeogrammes will be much smaller in
external galaxies than what has been possible in our owme¢ame time, our method is advanced
as a template for the analysis of the stellar velocity das& ihavailable for the Milky Way, with
the aim of learning a high-dimensional Galactic parametetor; by extending the scope of the dy-
namical simulations of the Galaxy, performed on differestt@hysical models of the Milky Way,
the Milky Way models will be better constrained. The miss@@AlA - a mission of the European
Space Agency - is set to provide large sets of stellar velatdta all over the Milky Way. Our
method, in conjunction with astrophysical models, canvallor fast learning of local and global
model parameters of the Galaxy.

5. Model fitting

In this section we compare the test data with predictionstHer observable that we make at a
summarys of the posterior of the model parameter vec§oiTo achieve this, we first need to provide

a suitable estimator of the functidi-) that defines the relatioship between the observable and the
model paramete§. We attempt to write the conditional distribution &fs) given the augmented
dataD, that comprises training daf@,, augmented by test dat&°*"). Here we consider the test
datav**s! realised atS = 5, where we use different candidates forn particular, we choos to

be (1) the medias(™<%e» of the posterior ofS givenD,, (2) the modes™*?) of this posterior, (3)

or s, 4=1,2,3,4-the end points of the disjoint 95% HPD region ofptbsterior ofS (see Tabldl).

Since{&(s1),...,&(s,), &€(8)} is jointly matrix-normal,[£(38)[€(s1),...,&(sn))] = [€(8)|D4],
is jk-variate normal. The mean function of this multivariatemal, at differents, is then compared
to the test data. Thus, the estimate of the function that we& &E[£(S)|Ds, S, Q], given the
dependence d§(-) on the smoothness parameters (elemen@)ahat we anticipate.

However, we only know the conditional gf-) on all theGP parameters, including the ones that
we do not learn from the data, namdB/andC'. So we need to marginalis¢(-) | X, B, C, Q, D]
over B andC. To achieve this, we need to invoke the conditional distrdsuof B and C' with
respect to the othay’P parameters an®,. We recall the priors on th P parameterdB, ¥, C
(from Section2.4) to write 7(B, X, C) oc| 3 |~k+1/2| C |~U+D/2_ |t then follows that

[B | 27 C7 Q> DS] ~ Nka(BGLSa (HgABIHD)_ly Q)v (51)

where, we recall from Sectio®.1 that we had setn = d + 1, with S € R?. Here, Berg =
(HLAL, Hp) ' (H,AL'D,). Marginalising thejk-variate normal that is the conditiong(-) |
B.X, C,Q, D,] over B (using Equatiorb.1), it can be shown that

[E() | 2707Q7DS] ~ '/V‘jk’(IJ’Q(')va2('7 )Q)v (52)


http://www.rssd.esa.int/index.php?project=GAIA&page=index
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where
po() = Beysh() + (Dy— HpBers) Ap'op(): (5.3)
CLQ(Sl, 82) = Cll(Sl, 82) + [h(Sl) — HgABISD(Sl)]T(HgABIHD)_l
[h(sy) — Hp AL sp(s2)]. (5.4)

We define(n—m)QGLS = (DS—HDBGLS)TA51<DS—HDBGLS>, i.e. (n—m)QGLS = DZMDS,
with M = A — A Hp(HL AL Hp) ' HLALY.

We consider the meam, (-) of the conditional posterior given b¥% () as a suitable estimator of
the velocity function in our case. Note thaj involves the unknown smoothness parameters; we
plug-in the corresponding posterior medi@n$r4254, 1.003545 for these.

It is important to mention that though the mean and variandeguations.3 and Equatiorb.4
were developed usin®, in our construction of the velocity function estimages, D, is imple-
mented, wheré®, is obtained by augmentiriB, with v that is realised a$ = 3. The underly-
ing theory remains the same as above.

It is important to note thaf,(S), whereS' is the unknown location, is a random variable, and
even though the posterior &f is concentrated around the null matrix, the variancggfS) is not
0, thanks to the fact thaf does not hav@ variance. Consequently, the posterior variancg(¢f)
does not have variance. To see this formally, note that

Var [€(8)|Da] = Var [E{€(S)[Z,C, Q, 8, D.}] + E [Var {£(S)|%,C, Q, S, D,}]
— Var [u,(S)|D,] +E [as(S, $)QD,) (5.5)

Since the posteriofX|D,| is concentrated around thex k-dimensional null matrix, it follows
that the posterioj2| D, ] is also concentrated around tffex jk-dimensional null matrix. Hence, in
(5.5, E[ay(S, S)QD,] =~ 0U**7%) However, the first part oB(5), Var [u,(S)|D,], is strictly (and
significantly) positive, showing that the variance of theteoior of£(S) is significantly positive.

The above result shows that it should not be expected thattiberved test velocity dats!cs")
will be predicted accurately by, (s), for any givens. This is in contrast with the usual Gaussian
process emulators, where the argument of the unknown iaminon-random, so that if the pos-
terior of the function variance is concentrated aroOnthen the posterior variance of the emulator
would be close t®.

In Figure5 we illustrate, in the case ep3bar3 (the most chaotic model), the degree of agreement
of u,(s) with v**s*) for different choices of. We compare with(***) the predictiongu, (s(mod)),
y(3) andp,(s™);u = 1,2, 3,4, Here ,s(m%) = (1.73,18.8°) is the (component-wise) posterior
mode ands = (2.2,35°) is a point somewhat close to the (component-wise) posteniaian
stmedian) — (1 994478, 33.59429°) (grid-point closest tg(median),

As observed in Figurs the best fit ofv***) has been provided by, (3) wheres is close to the
medians(™edian); as the poin{s(™median) y(test)) s in the training data constituting,, this is to be
expected. The estimatogs, (s°%)) andu,(s™")) perform somewhat reasonably, but the remaining
estimatorsu, (s™); u = 2, 3, 4 do not perform adequately, signifying the effect of varighdf our
estimator due the posterior 6F

While it is the randomness of the argume$itof the unknown functior¢(-) that causes the
variability of our estimator, such variability is highestthe most chaotic of the 4 base astrophysical
models ép3bar3), and least in the only non-chaotic base astrophysical im@de 6). A similar
exercise of predicting et using the training data simulated from this non-chaoticeba®del
gives excellent fits at all the aforementioned used values, gke Figures.
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FIG 5. Prediction ofv(*sY) for modelsp3bar3: plots of 2 components gf,(s) againstv(t*Y) for s = 5 (2 left hand

sided panels on the top row)s = s("2%€) (2 right panels on the top)s = s(!) (2 left panels in the middle row),
s = s5(2) (2 left panels in the middle row}, = s (2 left panels in the lowest row}, = s(4) (2 right panels in the
lowest row).

6. Discussions

Computational complexity scales only linearly with the dimienality of the unknown model
parametesS. Thus, porting a training data comprisedahdependent values &, s;, i =1, ..., n,
wheres; is ad-dimensional vector] > 2, is not going to render the computational times infeasible.
This allows for the learning of high-dimensional model pagten vectors in our method.

In contrast to the situation with increasing the dimensiiyalf the unknown model parameter,
increasing the dimensionality of the measurable will byplyrsubstantial increase in the run time,
since the relevant computational complexity then scaleslinearly, as abou®(%?), (in addition
to the cost oft square roots), wherk is the dimensionality of the observed variable. This is be-
cause of the dimensionality of the aforementiod&dhatrix isk x k, and the inverse of this enters
the computation of the posterior via the definitiﬁta;LS,aug. Thus, for example, increasing the di-
mensions of the measurable from 2 to 4 increases the run tifokel Swhich is a large jump in the
required run time. However, for most applications, we ergeshie expansion of the dimensionality
of the unknown model parameter, i& rather than that of the measurable, keThus, the method
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is expected to yield results within acceptable time frarf@snost practical applications.

The other major benefit of our work is that it allows for orgafearning of the smoothness
parameters, rather than results being subjeatitbocchoices of the same.

As more Galactic simulations spanning a greater range ofehymatameters become available,
the rigorous learning of such Milky Way parameters usingraathod will become possible, given
the available stellar velocity data. This will enhance thldy of our knowledge about our own
galaxy. That our method allows for such learning even foraurabundant systems, is encouraging
for application of a similar analysis to galaxies other tlvam own, in which system parameters
may be learnt using the much smaller available velocity data, compared to the situation in our
galaxy.

Supplementary material

Some background details on the application to the Milky Wasydiscussed in Sectids-1 of the
attached supplementary material. SecteRdiscusses the details of the dynamical simulations that
lead to the training data set used in our supervised leawfitige Milky Way feature parameters.
In SectionS-3we present details of the TMCMC methodology that we use I&#rkdiscusses the
cross-validation of our model and methodology, on simdae well the real stellar velocity data.
The effect of chaos on the modality of the posterior distidns of our unknowns is discussed in
SectionS-5
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vector of theu-th star ag X, X{"))T, and the velocity vector a&/(®, VV(®)T. Let such locations
and velocities ofj stars be measured. It is to be emphasised(tkfé‘t), XQ(“))T Is the measurement
taken from the Sun (i.e. from or location in he Galaxy), (%", X{”)7 is the heliocentric location
of thea-th star. Thus, if the Solar location with respect to the Gidecentre is(r, ¢ )?, then the
value of the Galactocentric location of theth star is(rq), ¢o)? + (x§“>, xé“))T. To put this in the
context of the lower panel in Figurk the general location vector to a star at paihinside the
sampled region centred &t is along line-segmenDC' and is given by the sum of the location
vectors along)S and SC. However, the Galactocentric stellar location is unknowmsathe Solar
location(rs, ¢ )7. Thus, using the measured valag” , z{*)7, the unknown(r,, ¢,)” cannot be
estimated. Furthermore, the spatial locations of the saahjpstars lie inside a circle with radius
centred at the Surk-(1x, 2001), and are assumed to be distributed uniformly within thislei Then
the summary of the distribution of the measured Iocati{n(mé“), xé“))T J_ will always coincide
with the centre of this circle - which is the Sun - irrespeetof what the galactocentric location
of this centre is. Thus, these measured spatial locatiamsotaonstrain the sought galactocentric
location of the Sun.

Similarly, the recorded values of stellar velociti¢s!”), v(*)”, a = 1,..., 4, are as measured
from the Sun and are therefore with respect to the solar igldhese measured heliocentric stellar
velocities are however affected by the choice of the locatibthe observer, i.e. the location of the
Sun, i.e.(re, ¢o)T. This is because, a given star, if observed from differeatiaplocations in the
Galaxy, would appear to move in different ways. For examageindicated in Figurd, if a star
appears to have a velocity vector directed along the lingjtivas itself to the observer at point
on the Milky Way disc, this observer will register its veltycio be entirely radial, with zero angular
component of the velocity vector. Here “radial” componeinthe velocity vector is the component
along the line-of-sight joining the observer to the star tr@lcomponent orthogonal to the line-of-
sight is referred to as the “angular” component. On the espthad the observer been at a different
point B, the velocity vector of this star would have registered teehhad a radial as well as an
angular component, in general. Thus, the observed stalacities will bear information about the
location of the observer, i.e. the Sun. Then the availablecity dataV can be considered to bear
the signature of the unknowsi. In principle, beyond just the galactocentric solar lomatiif there

are Milky Way feature parameters that physically affeciatenotions, observed velocity data will
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FiG 1. Top: schematic diagram of the Milky Way disk centred at jpoiarkedO with the Sun at the point marked The
long axis of the central rotating stellar bar (marked in bevklines) is chosen to defide= 0, where® is the variable
that measures the angular separation of a point on the disk fthis axis. The variabl& measures the distance of a
point on the disk from the Galactic centfe Thus, at a general poin®, R = r and® = ¢. At the Sun af, R = re,

® = ¢. The 2-dimensional velocity vectors of a sample of stargylyithin a circle centred at, are observed by
us from Earth, i.e. from the Sun. The Galactic spiral arms sthematically shown in red. The bar and spiral rotate
with angular speeds df;, and (2, respectively. Bottom: one of the sampled stars (marked &y #ymbol within the
circle centred at the Sun) at poinit, would appear to have velocity:, v)” with respect to the Galactic centre é
This means that an observer @would register a “radial” componentw, 0)” along her line-of-sight to the star, i.e.
along the lineOC, and a “angular’ component0, v)? orthogonal to the line-of-sight. However, if another obasr

at the pointA viewed this star - where the line segmeitt' lies along vectofu, v)” - she will regard the projection of
the (u, v)” vector onto a line orthogonal to the line segmeit®, to be zero, i.e. will view the velocity of the star to be
entirely along her line of sight. The radial component (camgnt along line of sight) of this star’s velocity according
to her would bey/u? + v2 while the angular component (orthogonal to line of sightdjso that she will observe this
star to move with velocityy/u2 + v2,0)”. Another viewer at poinB will however infer different values of the radial
and transverse components of the velocity of this starngive orientation of the locatio® with respect to the vector
(u,v)T.

bear the signature of such Milky Way parameters.

2. Details of dynamical simulations of astrophysical modsl

In Chakrabarty(2007), the simulations involve the following. A sample of stelkadimensional lo-
cation and 2-dimensional velocity coordinate$”, ¢, u(®, »(®}/_,  is drawn from a chosen (to

mimic real disc galaxies’) density functigitR, ¢, U, V) atT = 0, and is evolved in a (chosen) para-

metric Galactic gravitational potentié( R, ¢, 7') where we recall that the strength and shape of the
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gravitational influence of the system is given by the grawntedl potential. Herd" is time variable.

In fact, the gravitational influence of the system is moakfs mostly due to the Milky Way disk,
but perturbed by the gravitational potential of the certtealin the Galaxy (see Fig 1 above) as well
as that of the Galaxy’s spiral arms. The potential of the disklssumed to be stationary and chosen
to emulate a realistic, time-independent background @alpotentialV, (R, ®). The contribution

of the potential of the rotating (and therefore time-deany Galactic bar is,(T)WV,(R, ®,T)
where the scalar,(T") represents the strength of the disturbance that the barsiespan the disk’s
gravitational influence at timé&. Again,s,(T) is chosen to emulate the growth of the bar inside the
Galaxy. We recall that the bar is chosen to rotate about theecefthe disk at a rate é1,. Similarly,

the potential of the rotating spiral patternsi§7)V (R, ®,T). Again, €2, defines the rotation rate
of the spiral pattern. Thus at any time and at any locatiorherdisk, the net gravitational potential
in the ¢-th base astronomical modellg? (R, @) + &,(T) U\ (R, ®,T) + £,(T) V" (R, ®,T), for
eachqg = 1,...,4. The sampled stellar location and velocity coordinatestade to evolve using
Newtonian equations of motion under the influence of theesth@ntioned net gravitational poten-
tial. At the end of a chosen period of time, whHén= t,;,,, evolved orbits are sampled and recorded
in the rotating frame of the bar at times whn, — Q,)¢=0.

The relevant subset of the space of the design vectorsliosen solar location vector) is discre-
tised and the recorded orbits are sorted by their final lonatinto the discretised bins; thus stars
with final locations in the neighbourhood of the centroid loé i-th discretised bin were slotted
into thei-th bin. The interpretation of this is that stars in thi bin share a similar galactocentric
locations?, and their; number oft-dimensional velocity vectors comprise thth synthetic veloc-
ity data set, (which we treat as thié-dimensional vector). Here= 1,2, ...,n andChakrabarty
(2007 usedn=216. Then synthetic velocity vectors, each thus generated atthed points, form
the training data se®,. The grid that the design vectors are grid points of is deflmethe ranges
of r € [1.7,2.3] in model units and < [0, 90] in degrees. The same 2-D grid is used for each of the
base astrophysical models.

In fact, in any base astrophysical model of the Milky Way,daditances are in units of the “co-
rotation radius™r¢cy of the central bar in the Milky Way disc. This is the radius dtiet the ro-
tational rate), of the rotating bar, equals the radius-dependent rotdtrata(( R) of the stars at

distanceR from the centre of the Galaxy, which in turn is determined Iy thoice of inputs in
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the base astrophysical models. In all 4 of the base astragatysodels, this stellar rotational rate
Q(R) is defined as%o, whereu, is a constant that is set to unity in the base astrophysicedketady
Chakrabarty2007); €, is also set to unity. Then co-rotation occurs wkEmR) = , i.e. ;;—OR =
which implies that'«r = 1 in each of the 4 base astrophysical models.

To connect any distance in these base models to a physiealiged distance measured in units

of kilo parsec—or kpc—one needs to

— scale the constant, to its real astronomical value of 220 kmis(Binney and Merrifield
1998 and

— scale the bar rotational rafg, to its real astronomical value so thatp = %

b

in real physical units. However it is the value(@f in astronomical units that remains elusive

is computed

and is sought. So, we

— scale our estimate of the solar radial location to the Gialaentre,r, to the distance
R measured in kpc, as cited in astronomical literature (abthiusing ancillary informa-
tion in independent astronomical modelling). This gives #taling between model units

and astronomical units (kpc) so that a distance of 1 in modgs$ when follows as—kpc,
o

i.e. rcp in real units is—
o
(Binney and Merrifield 1998. We then use this real value ofr in - Q, to get
TCR
an estimate of the sought,. Thus,, = % Using v,=220kms! and R=8kpc, we get

o)

kpc. Independent astronomical studies have suggéstegkpc

220 . . . . .
Qp = Tkmsrllkpc. Learning the rotational rafe, of the bar is the ulterior benefit of learn-

. 7o . . :
ing the solar radial location as in our approach.

3. TMCMC algorithm

Motivated by the fact that the performance of traditional MChethods - including the Metropolis-
Hastings algorithm - can be less than satisfactory in highedisions, both in terms of convergence
and computational tim&utta and Bhattachary013 proposed the Transformation based MCMC
or TMCMC. Dutta and Bhattachary@013 show that for additive transformations, the TMCMC-
based acceptance rate decreases at a slower rate comphlecktcandom walk Metropolis algo-

rithms. Furthermore, TMCMC includes the hybrid Monte CarldEl) algorithm as a special case
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and in one-dimensional situations while it boils down to khetropolis-Hastings algorithm with a
specialised proposal mechanism.

For our purpose, we shall consider TMCMC based on additivestormations, sincButta and Bhattacharya
(2013 show that these transformations require far less numb@novbe types” compared to non-
additive transformations.

TMCMC allows updating the entire blogls"**), Q, X) at the same time. The algorithm is as
follows.

(i) Initialise the unknown quantities by fixing arbitrarilgitial values (s("e”“’ﬁo), QY. E(°)>. In

(sime0 L slren®) Q) is characterised by the initial values of the

our cases(w0) =
d smoothness parameters, which we denoté by- <b§°>, e ,b&o))T and 2 denotes the
initial choice of thek x k& matrix 2. X is decomposed int& L, whereL is the appropriate
lower-triangular matrix

(i) Let o = ((s"N)T b" (L*)")T, whereL* denotes the column vector consisting of the non-
zero elements aoL.

(iif) Next we propose ~ g(-)I(~0}, Whereg(-) is some arbitrary distribution, anddenotes the
indicator function. In our applications, we shall chogég = N(0, 1), so thate > 0 is drawn
from a truncated normal distribution.

(iv) Assume that at iteratiof the state of the unknown parametergsigct), Q) 1)) .= 1),

Updatey® by setting, with probabilitiesr; and (1 — =), g[);m) _ gpg.t) + cje (forward

transformation) andoﬁ”” = <,o§” c;je (backward transformation), respectively, where, for
j=1,...,d,m;are approprlately chosen probabilities andre appropriately chosen scaling
factors. Assume that foi, € U, go gets the positive transformation, while f@re /¢, goD)
gets the backward transformation. HéfeJ U/¢ = {1,...,d*}, whered* = 2d + k“)

(v) We accept the new proposal’™!) with acceptance probability

) 1— e - erge Ty
Qp =min< 1, Hﬁeu( d )H”eu 2 % o (3.1)
Hjleu Ty HjQEZ,IC(l - ﬂ-jz)

wherer,, denotes the ratio o[ﬂADwg (Saug) |** \HDW (saug)AB}wy (8aug)Hp, ., (saug)\*%} X
(n+1 m)k
2] [(n+1 = m)kCers.augl™

the current valueg®) of ¢ respectively. We only need to bear in mind that the acceptance

k(n+1— m)+k+1

, evaluated at the new valug((+) and

probability is zero ifb; < 0 for anyj or if any diagonal element df is negative.
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For proper choices of the scale parameters of the addiawstormation and the initial values of
the parameters we conducted several initial “pilot” TMCM@swf length around 100,000, starting
with arbitrary initial values and guesses of the scale patara such that all the runs converged to
the same distribution as indicated by informal diagnostigsh as trace plots. For the final TMCMC
run, we chose those scale parameters that yielded the be&trgence (with respect to empirical
diagnostics such as trace plots) among the pilot runs, ardtsélthe final values of the parameters
obtained in this best pilot run as the initial values for timafrun of TMCMC. The pilot runs yielded

the proposal mechanism that we worked with.

4. Cross-validation

We employ leave-one-out cross-validation to assess thdityabf our model and methodology.
We leave out the-th value s; of the model parameter vectd& and predict thiss; using the
data that comprises motion vectoy, along with the remaining training data set from which
is omitted. Then for this prediction, the test data is reallyto emphasise this form of the test
data in notation similar to what we have used above, we dethetg¢est data as(‘*’") where
vitestd) .— v.. The training data set relevant to this exercise is obtaimedmitting thei-th row
from D,, i.e. the training datD{ ™ is constructed a®, bereft of thejk-dimensional motion
vector v;. The aim is to compute the posterior probability densitysgfgiven the relevant test
and training data sets. We perform such leave-one-out-sa&tation for eachi = 1,2,...,n.
To perform inference withy; omitted, a TMCMC run is required, implying that the full cress
validation would then demand many TMCMC runs. Such is however computationally burden-
some.Bhattacharya and Haslé2007) have shown that the usual importance sampling/resampling
methods suggested IBelfand, Dey and Chand 992 andGelfand(1996, which may be effective
in the case of forward problems, are not appropriate forrsegroblems because of the tech-
nical intricacies of the latteBhattacharya and Haslef2007) suggested a fast methodology for
implementing cross-validation in inverse problems, by bonmg importance resampling (IR) and
low-dimensional MCMC runs in an effective manner. We adojs thethodology, which the above
authors termed IRMCMC, but replace the MCMC part with the moreatife TMCMC methodol-
ogy.

In the following we discuss the procedure for model valiokati
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1. Choose an initial* wheren(S,Q, X | Dg_i*),v(festvi*)) as the importance sampling den-
sity. Bhattacharya and Hasl¢2007) demonstrate that an appropriatenay be obtained by
minimising the following distance function with respectito

ai)=3 {i (o ") _QS’W)z + i i iy — )" } , (4.1)

u=1 Vsu =1 VUZ
wherev? andv? are the data-based standard deviations correspondingdetthcoordinate
of s andv, respectively.

2. From this importance sampling density, following Set8puse TMCMC to samplés®, Q1) x(9),
{=1,...,N forlargeN.

3. Forie{l,...,¢* = 1,i*+1,...,n},

a. foreach sample valys¥, Q\”, =9), compute importance Weightéf?i:wi*,i(s“), QY. xO),
where the importance weight function is given by

L(S, Q.x ‘ 'Dgii), V(test,i))
L(s,Q.% | Dg—z‘*)’v(test,i*))’

wi(8,Q, %) = (4.2)

whereL(s, Q,% | D!, v(testi)) is proportional to the posterigs, Q, X | DL, v{test:)]
which is given in Equation 2.13 of CBB.
b. Forj e {1,...,Ji}
() sample(@”, =) from {(QW,=M),. .. (Q™), =™} without replacement
where the probability of samplingQ®, £)) is proportional taw,"’;.
(i) For fixed (Q.%) = (QY, =), draw s .J, times from posterior densitjs |
Q, 3, DL, v(testd] using TMCMC, where for this choice @ and,

S| Q, Z’Dg*i)’v(test,i)] x[5,Q,3 | Dg—z’)7v(test,i)]

In this way,.J, samples ok are obtained at each.

c. Store the/; xJ; draws ofs as the/; J, number of posterior samples fsulraségl), - 295‘71‘]2).

4.1. Simulation study

In order to perform the cross-validation discussed abavejmulated data, we contrive a situation

where there arg¢ = 3 stars, each having = 2 velocity components where velocity = £(s) =
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(&1(s),...,&(s))T, with the model paramete§ being of dimension = 2, s = (s, 5)) (the two
coordinates of the solar position). We assign the followorgns to the component functions of the
6-dimensional vector-valued functigt-).

52

)

&1(s) = as) + Bm + v cos(1.25?) 4.3)

— s s 4.4
§a(s) = as +5m (4.4)
&4(s) = a + s (4.5)
£4(8) = v cos(1.2s?) (4.6)
¢5(s) = as'™) 4 vy cos(1.25) 4.7)
£6(8) = vy cos(s® +sin(s?)), (4.8)

wherea, 8 and~y are chosen constants. Most of these above forms are modédrmstnrs of the
functional forms used iCarlin, Polson and Stoffd1992 andBhattacharyg2007 in connection
with dynamic models; see al€ghosh et al(2013.

We generated 00 data points by first simulating; = (s\",s”);i = 1,...,100 indepen-
dently fromUniform(—1,1) x Uniform(—1,1), and then evaluating(-) at eachs;, using the
component-wise functional forms given above3}—(4.8). Here we setv = 0.05, 5 = 0.1 and
v = 0.2. We thus obtained 100 data poirits, V;);i = 1,. .., 100.

We leave out each data point in turn, predicting the cornedpg location using the remain-
ing data points and the corresponding velocity matrix. gdime distance minimisation method
discussed in the last sub-section we obtéin= 43; hence the importance sampling density is

[87 Q? 2 | V437 E(tGSt’i)}'

4.2. Details of IRMCMC implementation to smulated data

We implemented TMCMC following the details provided in SentB.1 of CBB in order to simulate
from the importance sampling density:at= 43. Specifically, for updating using TMCMC, the
parameter—a scaled value of which the proposed state is an additimsfyemation—is chosen to be

€ ~ N(0,1)I0y While the scale factors, andc, are chosen to be 0.1 and 50. For the smoothness
parameters, i.e. the elements of the diagonal m#&jxve simulatect from a zero mean normal

distribution with variance).005, restricted taR,, and selected 0.1 and 1 as the scale factors. For
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FiG 2. Simulation study: Trace plots of; and s, corresponding ta* = 43.

updatingX, we simulated the transformation parametétom the positively restricted zero mean
normal distribution with varianc& 005 and set the scale factors to be 0.07 for the non-zero elements
These choices are arrived at after assessing TMCMC conwegerseveral pilot runs.

We discarded the first 100,000 TMCMC runs corresponding tootitained:* as burn-in and
stored the next 100,000 runs for IR purposes. Informal cgarece diagnostics indicated reasonable
convergence; see, for example, the trace plots ahds, in Figure2. From these 100,000 samples
we simulated 100 realisations @, X) using IR without replacement. For each IR-realisgd X)
we simulated 1000 realisations #lusing TMCMC; In this implementation of TMCMC we used a
burn-in of 100,000 iterations af, starting from an initial value generated uniformly oyet, 1] x
[—1, 1]. Thereafter, for the remaining 99 IR-realisations, we ubeddst realisation of as the initial
value for the first realisation of, without discarding any iteration as burn-in. This was danhthe
previous IR-realisation of@, ). That this is a valid and efficient strategy, has been estadydi by
Bhattacharya and Hasl€®007). Thus, we obtain 1091000=100,000 IRMCMC realisations ef
Each such set of 100,000 realisations was generated forosaitied data point.

This entire exercise took around 49 hours on a laptop; post&mulation corresponding t&
took around one hour, while the remaining exercise tookthéuperiod of 48 hours approximately.
Itis to be noted that brute-force cross-validation in tixiaraple would have taken 100 hours. Hence

IRMCMC lives up to the expectation of reducing the computatiore.
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4.3. Resaults of cross-validation on simulated data

In all of the 100% simulated cases, the true locations fethiwithe 95% highest posterior den-
sity credible intervals of the corresponding leave-onelBMCMC-based posteriors. Some of the
leave-one-out cross-validation posteriors, along with ¢brresponding true values are shown in
Figures3 and4. The results indicate a good fit to the data and are therefareugaging as far as

the application of our high-dimensional Gaussian protessed method is concerned.

4.4. IRMCMC-based cross-validation using data generated from base astrophysical models

For each of the four base astrophysical modeis ¢, sp3bar3, sp3bar3_18 andsp3bar3_25), we
have a training data set consisting of 216 observations Ordifiensional motion vectors, each
generated at a distinct value of the design vector. In omlealidate our Gaussian process based
methodology we perform leave-one-out cross-validatiorefxh of the four training data sets using
IRMCMC in conjunction with TMCMC.

4.5. Prior on location in the context of cross-validation

For the cross-validation purpose, we assume a somewhah@xggparameter space for the loca-
tions: (R, ®o) € (1,3) x [0,7), instead of the parameter spdter, 2.3] x [0, 7/2], which was
assumed for actually predicting the unknown location assed with the real, test data set. The
reason for expanding the parameter space is that the tadldta sets consist of many observa-
tions that lie almost on the boundary [@f7, 2.3] x [0, 7/2] and our initial cross-validation showed
that many boundary values were excluded from the 95% credégjions of their respective cross-
validation posteriors. Indeed, for both classical and Baeasymptotics the important regularity
condition that is typically assumed is that the true valuthefparameter lies within the interior of
the parameter space (page 43@chervish(1999).

Note that the aforementioned expansion of the parametee sga&.,, ¢, ) for cross-validation
purpose is not in conflict with the uniform prior dm.7,2.3] x [0, /2], which we assumed for
predicting the unknown location corresponding to the reaining data set. Indeed, guided by the
astrophysics literature we belieegpriori that the true location lies in the interior ¢f.7,2.3] x

[0, 7/2], not on the boundary.
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IRMCMC has an inbuilt strategy of handling multimodality bycorporating re-starts in Step
b (ii) of the IRMCMC algorithm provided in Sectiof.1 To clarify, given a(@", "), we can
useindependent starting points af and a subsequent burn-in for evefye {1,...,J;}, while

! D, vltesti)] The independent initialising values can

drawing from the posterios | @, %V
be drawn uniformly from the parameter spacesof his multiple re-start strategy ensures that for
adequately largd;, all the modes of the multimodal posterior are explored by GWC; that is,
the IRMCMC sample{égl), ce é(J1J2)} will then adequately represent the multimoddh cross-

validation posteriorBhattacharya and Hasle®007).

4.6. Results of cross-validation on real stellar velocity data

For our implementation of the above-discussed re-stagbEMCMC, we chooseéV = 20, 000,

J1 = 50, a burn-in of sizd, 000 for every re-start, and, = 4, 000. Thus, IRMCMC for every cross-
validation posterior yieldd; .J, = 50 x4, 000 = 20, 000 samples. For each of the four models, 100%
observed-, fell within the 95% credible regions of their respectivesgevalidation posteriors. In
the case ofy., all but the minimum observed value ¢f in the training data sets, which is about
0.08, are captured by the respective 95% credible regions.

Figure5 displays the cross-validation posteriors correspondirthe50-th data point of each of
the four training data sets. The true or held out valueB 9tind® ., as inferred using our Bayesian
method and TMCMC, are denoted by vertical lines in the panelsgire5. The cross-validation
posteriors corresponding to the different models are vienjlar, even though the posteriors of the
unknown location associated with the real test data setwate djfferent (recall Figures 1, 2, 3, 4 of
CBB. However, there is no conflict between these two issuesrésdl 2, 3, 4 of CBB correspond
to different training data sets, but all these have a commshdata set. On the other hand, in
the cross-validation scenario, while predicting a patéicobserved location, the held out test data
sets are also different for the four different cross-vdlaastudies. Thus for example, the test data
employed in predicting thé-th held out data point is*>**) .= v,. The cross-validation results
suggest that the four different model-specific test dasmsstd to predict a location common to all
the four models (that is, the original four training datss}y@rrovide similar information regarding

the held out location, in conjunction with the remaining rebspecific training data set.
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FIG 5. Real data: Leave-one-out cross-validation posteriors of the modehpeeter 60-th data point of the training
data sets left out); the vertical line indicates the truel¢heut) value ofS.
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5. Effects of chaos

The concurrence of our results with the results reportedgirophysical literature (see Setion 4 of
CBB) goes beyond just the summaries of the posteriors of the pokition vector; remarkable
correlation can be noticed between the measure of chaogse #h astrophysical models - as es-
timated by Chakrabarty and Sideri2008 - and the multi-modality of the posterior distribution
of S that we advanceChakrabarty and Sideri008 report minimum chaos in th&:r_6 model
compared to the other three, while we notice the posteridisth ., and¢, in this model to be the
unimodal. In fact the posteriors of, and¢., are unimodal only for this model, out of the 4 astro-
physical models that we use to illustrate the efficacy of oathod. Perhaps more importantly, the
sp3bar3 model is noticed to manifest maximum (even global) chatytion theoretical grounds by
Chakrabarty2007), backed by the chaos quantification at higher ener@esakrabarty and Sideris
2008. Likewise, in our work, the posterior distributions fos and¢., are most multi-modal in this
model, compared to the other three. The modgidar3_18 andsp3bar3_25 are considered to be
of intermediate chaoticity and we find these to correspombsterior distributions (o)) that
are multi-modal, though less so, than that for the megdabar3.

The exact physical reason for the correlation between cimathee base astrophysical model of
the Milky Way and the multi-modality of the posterior diswiion of S is understood if we begin
with the premise that increased chaos is responsible foeased scatter in the distribution of the
stellar velocity vector values that are generated at a chdssign vector. While for zero chaos, a
distinct set of data vectors is generated at a given set adrgrpntal conditions (a value &),
increased scatter implies that the same data set can resultniultiple experimental conditions
(multiple values ofS). In fact, a necessary condition for chaos to occur is theemsing non-
injectivity of £(-) (Sengupta2003 where data vector = £(s). Thus in a base model that has
zero chaoticity—eg. theur_6 model whichChakrabarty and Sider{2008 found to have near zero
chaos—the velocity vectors generated at different valti€sare distinct in general. However in the
other 3 base models that were reported to bear a very higldinasftchaotic orbits, similar velocity
vectors can be generated at different valueS of

In summary, the functiog(-) that is learnt from the training data will be rendered insnegly

more non-injective with increasing chaoticity in the basedel from which the training data is
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generated. Thus, with increased chaotidty: (-) becomes multivalued, i.e. the same observed ve-
locity is predicted to be realised at multiple valuesSfThe increase in the non-uniqueness of our
achieved solution is thus physically motivated by the défé amounts of chaos in the base astro-
physical models. While this non-uniqueness can only bevediéy invoking further information—if
and when such become available—our inference allows foidénatification of alls"**) that are

consistent with the data.
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