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Minimum Distance Estimation of Milky Way Model Parameters and Related
Inference∗
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Chakrabarty§, and Soumendu Sundar Mukherjee¶

Abstract. We propose a method to estimate the location of the Sun in the disk of the Milky Way using a
method based on the Hellinger distance and construct confidence sets on our estimate of the unknown
location using a bootstrap-based method. Assuming the Galactic disk to be two-dimensional, the
sought solar location then reduces to the radial distance separating the Sun from the Galactic center
and the angular separation of the Galactic center to Sun line, from a pre-fixed line on the disk. On
astronomical scales, the unknown solar location is equivalent to the location of us earthlings who
observe the velocities of a sample of stars in the neighborhood of the Sun. This unknown location
is estimated by undertaking pairwise comparisons of the estimated density of the observed set of
velocities of the sampled stars, with the density estimated using synthetic stellar velocity data
sets generated at chosen locations in the Milky Way disk. The synthetic data sets are generated
at a number of locations that we choose from within a constructed grid, at four different base
astrophysical models of the Galaxy. Thus, we work with one observed stellar velocity data and
four distinct sets of simulated data comprising a number of synthetic velocity data vectors, each
generated at a chosen location. For a given base astrophysical model that gives rise to one such
simulated data set, the chosen location within our constructed grid at which the estimated density
of the generated synthetic data best matches the density of the observed data is used as an estimate
for the location at which the observed data was realized. In other words, the chosen location
corresponding to the highest match offers an estimate of the solar coordinates in the Milky Way
disk. The “match” between the pair of estimated densities is parameterized by the affinity measure
based on the familiar Hellinger distance. We perform a novel cross-validation procedure to establish
a desirable “consistency” property of the proposed method.
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1. Introduction and background. The learning of structure in the space of parameters
of a system, using available data, is an exercise that has gained increasing attention in the
recent past. This includes attempts at finding intervariable relationships in large data using
developed methods of scoring the association (Reshef et al., 2011), in graphical model contexts
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(Heckerman, Geiger, and Chickering, 1995; Ghahramani, 2003), by searching for chosen fea-
tures within the data (Lee, Pedersen, and Mumford, 2003; Zomorodian and Carlsson, 2005),
by developing high-dimensional regression models in regression frameworks characterized by
the number of covariates far exceeding the number of responses (Yuan and Lin, 2007; Simon,
Friedman, and Hastie, 2012), and by developing density-based distances within the paradigm
of semisupervised or unsupervised learning (Bijral, Ratliff, and Srebro, 2012; Orlitsky et al.,
2005; Weinberger and Saul, 2006).

Indeed, unsupervised learning is often the relevant framework in real-world problems.
However, within the framework of supervised learning, the aim is to predict values of the
response variable Y corresponding to a given set of predictor variables X, given the training

sample (x1,y
(�)
1 ), (x2,y

(�)
2 ), . . . , (xn,y

(�)
n ). Here y

(�)
i is a known value of Y at a chosen

value xi of X. Here, the ith such chosen xi is the ith design vector. The aim is to learn
the model parameters that minimize the expected loss at each x, where the loss function is
appropriately chosen to embody the error in the estimation of the value of the response variable
(Hastie, Tibshirani, and Friedman, 2001). The probability density of the response variable
Y, conditional on X, is considered with the aim of learning the unknown model parameters.
In contrast, in the framework of unsupervised learning, the joint probability density of the
observations is examined, with the aim of making inference on the model parameters.

In this paper, we present a novel application in which the aim is to perform estimation
of the unknown model parameters by comparing the conditional density of synthetic values
of the response variable given a chosen set of predictor values with that of the measured
values of the response variable given the same predictor set. Though this resonates with the
supervised learning scheme, there are some features of this implementation that mark it as
atypical in terms of a supervised learning scheme. First, here the response variable Y is a
matrix; it is more the case in unsupervised learning that Y is a high-dimensional variable.
Second, in this work, the loss function is itself defined in terms of the distance between the
two aforementioned conditional probability density functions; the x for which this distance is
minimized gives the unknown model parameter. Third, the density functions in question are
not known to begin with but are estimated using kernel density estimation techniques. In fact,
the estimated densities are found to be highly multimodal as well as sparse. The efficiency of
this learning may, however, be compromised if the chosen minimum distance procedure is not
robust against violations of the usual model assumptions (Basu, Shioya, and Park, 2011).

In particular, we invoke an affinity measure based on the Hellinger distance, between the
densities that the observed data and the synthetic data are sampled from. The motivating
idea in this work is that the synthetic data sets are realizations of simulations of the system
under a variety of given values of the model parameter vector. Thus, the particular synthetic
data set that maximizes the affinity between the said densities is the realization obtained from
the model parameter value that corresponds best to the true value; the “true” value of the
model parameter indicates the value which suitably describes the observations. Maximization
of the affinity in this context is equivalent to the minimization of the Hellinger distance.

One fundamentally important aspect of statistical learning is to perform model selection
(Kohavi et al., 1995; Kearns et al., 1997) and importantly to quantify accuracy of a given
model, using available data (Last, 2006). It is in principle possible to extend parameter es-
timation using minimized Hellinger distance to higher dimensions (Tamura and Boos, 1986).
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The accompanying parameter uncertainty estimation is possible by constructing a high di-
mensional confidence set within the region of interest, as distinguished from a product of
confidence intervals of interest along each dimension. In our application we seek a similarly
constructed confidence set on our estimate of the unknown parameters using a bootstrap-
based method. It is also of vital importance to ensure generalization of the learned model
to an independent data set and this is achieved using cross-validation techniques (Efron and
Tibshirani, 1997). We include such validation of our learned model parameters by adopting a
cross-validation technique where assuming a particular location as the true location we verify
whether they are accurately estimated by the proposed method.

The paper is organized as follows. In section 2 we describe the experimental setup under
which the data are generated. Some discussion of the existing literature related to this problem
is presented in section 3. The method we advocate is described in section 4. Section 5 contains
the results of our analysis. In particular, section 5.4 discusses the bootstrap-based method
that we use to construct a confidence set on our estimation of the Milky Way parameters, and
in section 5.5 we present our implementation of cross-validation. Finally, section 6 provides
some concluding remarks.

2. The experimental setup. In this application, the system under consideration is the
disk of the Milky Way that is assumed to be two-dimensional. The observed data comprise the
N × 2-dimensional matrix Y = (y1 : y2 : . . . : yN )T , where yj is a two-dimensional velocity
vector, j = 1, 2, . . . , N . Thus Y represents the two-component velocity vector measurement of
N stars that were observed close to the Sun in our galaxy (Fux, 2001). For this astronomical
observational data set, we have N = 3500.

Such a matrix of these velocity measurements is realized at location X of the observer
who measures the velocities of these N stars. Nonlinear dynamical simulations of the Milky
Way disk was performed by Chakrabarty (2007) by varying this physical location X. We
place the two-dimensional Milky Way disk on a two-dimensional polar coordinate system such
that the spatial location vector X is given by the radial distance R from the defined center
of this coordinate system (chosen to coincide with the center of the Milky Way disk) and the
azimuthal or angular displacement θ (where θ = 0 is chosen to be along the long axis of a
feature in the Milky Way, namely, the central bar in the Galaxy). Thus, the value of X in
a two-dimensional orthogonal basis is x = (r cos θ, r sin θ)T . In fact, in our work, it is this
physical location X of the observer on the two-dimensional Milky Way disk that we want to
learn. Thus, in this setup, what we referred to as our “unknown model parameters” in the
introductory section concurs with the unknown physical location of the observer. We would
like to emphasize that hereafter, “location” refers to the address of the observer on the Milky
Way disk parameterized by X. According to our model, the observed velocity matrix Y(obsvd)

corresponds to an unknown value of the location, i.e., at X = x� = (r� cos θ�, r� sin θ�)
T .

Thus, the identification of x� is equivalent to identifying the radial location r� of the ob-
server from the center of the Galaxy and the angular location (separation) θ� of the observer
from a chosen axis in the Galaxy, such that if from this location in the model Milky Way, the
observer had tracked the stars in the neighborhood of the Sun for their velocity vectors, the
collected data would have been “closest” to the observed data Y(obsvd); here the aforemen-
tioned “closeness” is in the sense implied by our affinity measure (see section 4.3). Now, the
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Figure 1. Left: Figure showing locations of 3 of the sampled stars from center of circular patch (gray circle
with center at location of the Sun—depicted at point S) within which stars are sampled uniformly. The location
and velocity vectors of these sampled stars are recorded by an observer at the Sun. However, the locations of
these sampled stars with respect to the center of the Galaxy (at O) are unknown. Thus, a measured heliocentric
stellar location vector cannot constrain the unknown location vector of the Sun with respect to the center of the
Galaxy (the vector OS). Neither can the distribution of the measured heliocentric stellar locations constrain
the unknown OS since the sample mean of the measured heliocentric stellar locations is zero. Right: Velocity
V of an example star (at P) along OP is viewed by observer at point S1 to lie entirely along the line that joins
this observer to the star while the observer at point S2 views this stellar velocity to be entirely orthogonal to her
line of sight to the star at P. The velocity vector of a sampled star, as measured by an observer, is expressed
to comprise a radial component that is along the line of sight of the observer to the star, and a transverse
component that is orthogonal to this line of sight. Thus, the observer at S1 records the stellar velocity to be
(V, 0)T , while observer at S2m records the stellar velocity to be (0, V )T . The observer at S3, however, records
the stellar velocity to have nonzero radial and transverse components. Thus, the set of velocities measured by
an observer potentially bears information about the observer’s location in the Galaxy.

location of the observer is really our location as earthlings on the Galactic disk, i.e., seeking
(r� cos θ�, r� sin θ�)

T is the same as trying to estimate the location of the Sun in the Milky
Way disk.1

It may be questioned why the velocity data—observed or synthetic—alone are invoked to
help learn the unknown model parameter vector X. Indeed, the data includes information
on the spatial location of the stars as well as the velocity of the stars, but of these, only the
velocity data can be implemented in the estimation of X. This is understood by consulting
Figure 1. The stars that are tracked for their locations and velocities live in a circular patch in
the neighborhood of the Sun in the two-dimensional Milky Way disk; thus, the center of this
circular patch is at the location of the Sun and the radius of this patch is small (ε) compared to
‖X‖, where ‖ · ‖ is the Euclidean norm of a vector. It is noted that the spatial location vector
pk of the kth star and its velocity vector yk, are as recorded by the observer seated at the Sun;
k = 1, 2, . . . , N , where N stars constitute a data set. Here pk = (sk cosαk, sk sinαk)

T , where
sk is the radial location of the kth sampled star, as recorded by the heliocentric observer and

1On Galactic length scales, the location of us, i.e., the Earth in the Galaxy, is very well approximated by
the location of the Sun in the Galaxy.
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αk is the angular displacement from a chosen line. The sampling of the spatial locations of
the stars is such that sk is uniform in the interval [0, ε] and αk is uniform in [0, 2π]. Then the
mean of sk cosαk over all k is zero, as is the mean of sk sinαk, i.e., the sample mean of the
measured pk is zero.

The left panel of Figure 1 shows the location vectors of three example stars at points
P1,P2, and P3 inside this circular patch (marked in gray) where the location of the observer
(Sun) is at point S and that of the center of the Galaxy is at point O in the Milky Way disk.
Then, in reference to this figure, the heliocentric location to the jth of these example stars
is the vector SPj = OPj − OS, j = 1, 2, 3, in the figure. But the galactocentric location
OPj to the star is unknown, implying that the measured heliocentric location SPj cannot
be used in this equation to constrain the location of the observer with respect to the center
of the Galaxy, i.e., the unknown model parameter vector X that we are after (or OS in
reference to this figure). Again, the uniform distribution of s and α suggests that the mean
of the recorded stellar location vectors is zero so that the unknown X is the mean of the
galactocentric locations of the sampled stars, which, however, is unknown. In other words, no
matter what the galactocentric location of the Sun is, the average of the measured heliocentric
locations of the sampled stars is identically zero; these heliocentric location measurements do
not offer any information about X.

On the other hand, as is depicted in the right panel of Figure 1, the velocity (vector) of
the sampled star at point P as measured by an observer at point S1 is distinct from that
measured by the observer at points S2 and S3 on the Milky Way disk. Here, the velocity of
the star measured by the observer at point Sj is considered to have a radial component along
the line SjP that joins the observer to the star, and the transverse component is orthogonal to
this line; j = 1, 2, 3 in this figure. Thus, we see in this panel that the velocity vector V—that
is, along OP—of an example sampled star at P, will appear to be entirely along the line S1P
and entirely orthogonal to line S2P, so that its velocity as measured by the observer at point
S1 will be recorded as (‖V‖, 0)T while the observer at point S2 will record its velocity as
(0, ‖V‖)T . The observer at point S3 will record the velocity of the star to have nonzero radial
and transverse components. Then, a data set that comprises stellar velocities as recorded by
an observer in the Milky Way disk bears information about the location of this observer, i.e.,
about X. Thus, such a velocity data set can be inverted to help estimate the location of the
observer, i.e., the Sun.

The radial units used by Chakrabarty (2007) are motivated by the physics of interaction
of the stars in the model Milky Way disk and one of the most conspicuous features in the
Galaxy, namely, the elongated stellar bar that rotates with its own rotational frequency Ωb,
pivoted at the center of the Galaxy. The radius at which the (radius-dependent) rotational
frequency of the stars in the Milky Way disk equals Ωb is called the co-rotation radius or RCR

of that model of the Galaxy. The radial unit used in our work is equivalent to 1RCR for the
choices of the Milky Way astrophysical model and Ωb used by Chakrabarty (2007).

Chakrabarty (2007) motivates the observer radial location variable to lie in the interval
[1.7, 2.3] radial units and the observer angular location variable θ to lie in [0◦, 90◦] on the basis
of the relevant physics. These intervals are discretized with NR = 24 different values of the
radial location and Nθ = 9 values of the angular location. The left edge of the radial bin is
r0 = 1.7 radial units, that of the angular bin is θ0 = 0◦, the radial bin width is δr = 0.025
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radial units, and the angular bin width is δθ = 10◦. Thus, the kth radial bin is said to be
centered around 1.7 + (k − 1)δr + δr/2, k = 1, 2, . . . , NR. Similarly, the jth angular bin is
centered around (j − 1)δθ + δθ/2, j = 1, 2, . . . , Nθ. As described above, all radial distances
expressed here are in units of RCR and all angles in units of degrees.

The simulations carried out by Chakrabarty (2007) correspond to variation over the values
of the location vector X, the components of which are the two components of the spatial
location vector of the observer on the Milky Way disk. In these simulations, X is chosen
to take values x1,x2, . . . ,xd such that at X = xi, the simulated synthetic velocity matrix

is Y
(sim)
i ; here i = 1, 2, . . . , d. In these simulations, d was chosen to be 216. Now, xi =

(ri cos θi, ri sin θi)
T , where the ith value of the observer radial location is ri and that of the

observer angular location is θi.
We consider the stellar location and velocity coordinates simulated from a model of the

Milky Way and for each i ∈ {1, 2, . . . , d} identify the Ni stars that have location vectors such
that these stars lie within a neighborhood of the ith proposal for the solar location, i.e., in a
neighborhood of bxi. Here, the size of the neighborhood is chosen to mimic the extent of the
circular patch of radius ε centered at the Sun, from within which the real stars are sampled, to
generate the data set Y(obsvd). The ith such neighborhood then defines the intersection of the
kth radial bin and the jth angular bin; i = Nθ(k− 1)+ j and in the simulations performed by
Chakrabarty (2007), εmotivated δθ and δr via the suggestion that πε2 is roughly approximated
by the area of the intersection of a radial and an angular bin. The velocity vectors of these Ni

stars are then implemented to estimate the density function from which the discrete Y
(sim)
i

are sampled. This is repeated for each i ∈ {1, 2, . . . , d}. A density function is also estimated
from the real velocity data Y(obsvd). Pairwise comparison of this density is undertaken with
the density estimated using Y(sim). The comparison is parametrized by an affinity parameter
(see section 4).

It merits mention that a set of the synthetic velocity data matrices Y
(sim)
i , i = 1, . . . , d,

is obtained with nonlinear dynamical simulations of one of four different base astrophysical
models of the Milky Way. However, we do not include any reference in the notation to the
base astrophysical model that the corresponding synthetic data set is generated from, as we
perform the analysis with each such set of synthetic data, one at a time. Along with the
estimation of the observer, i.e., the solar location in the Milky Way, our investigation aims to
determine which of the four astrophysical models best explains the observed data.

So to summarize, if X = x� represents the location where the estimated density of the
simulated synthetic data has the maximum affinity with the estimated density of the observed
data, our inference chooses the estimate of the unknown model parameter vector to be x�.
We now begin discussion of the details of this inference that is based on distances between the
estimated density of the observed velocity data at the unknown location and the estimated
density of the synthetic velocity data generated at a chosen value of X. Along the way, we
will also develop first the motivation and then the methodology used to implement validation.

3. Literature review. The squared Hellinger distance is one of the most popular mea-
sures used in robust minimum distance inference and has a one-to-one relationship with the
Bhattacharyya distance (Bhattacharyya, 1943); the Hellinger affinity is also referred to as the
Bhattacharyya coefficient. The technical definitions of the distance measures, affinities, and



MINIMUM DISTANCE ESTIMATION OF MILKY WAY MODEL PARAMETERS 7

coefficients are given in the subsequent sections. Although it does not satisfy the triangle
inequality, the Bhattacharyya distance is nonnegative and equals zero if and only if the com-
ponent densities are identically equal. See Kailath (1967), Djouadi, Snorrason, and Garber
(1990), and Aherne, Thacker, and Rockett (1998), among others, for some useful applications
of the Bhattacharyya distance in real-life problems. The Hellinger distance is also referred to
as the Matusita distance (Matusita, 1953; Kirmani, 1971) or the Jeffreys–Matusita distance in
the literature. Both the Bhattacharyya distance and the Matusita (Hellinger) distance (or the
corresponding affinities) are extensively used as measures of separation between probability
densities in many practical problems such as remote sensing (Landgrebe, 2003; Canty, 2007).

A method for estimating the solar location in the Milky Way disk, as proposed by
Chakrabarty (2007) involved performing a d number of tests to test for the null that the

observed data is sampled from the density estimated using the ith synthetic data set Y
(sim)
i

which is generated at the ith value of the chosen location, i.e., at xi, where i = 1, 2, . . . , d. The
chosen location at which the p-value of the test statistic (employed by Chakrabarty (2007))
is maximized is considered an estimate of the unknown location at which the observed data
is realized, i.e., the solar location. In this work, however, our approach is different as we

attempt a direct comparison of the density estimated using the synthetic data Y
(sim)
i and

that estimated using the observed data Y(obsvd), i = 1, 2, . . . , d. Then xi is our estimated
solar location where the closeness of the comparison is quantified by the Hellinger distance.
Thus, our work represents an application of the Hellinger distance measure.

4. Proposed method.

4.1. Motivation. Since simulated velocity data at each of the d different chosen locations
are available, the velocity densities at each such point can be estimated. This we have achieved
by fitting a standard bivariate Gaussian kernel. Subsequently, we have calculated affinity
measures of each of these densities with the estimated density of the observed velocity data.
The affinity measures so obtained have then been maximized over the (ri, θi) grid points to
derive the estimate of the true location from which the observed data may have been generated.

Many choices of density-based distances (more generally divergences) are available in the
literature. Depending on their choice, the distances can exhibit very different characteristics.
See Basu, Shioya, and Park (2011) for a comprehensive description of the topic of density-
based distances and their use in statistical theory. In this particular work we have chosen to
use the affinity measure based on the Hellinger distance. This affinity measure, also linked to
the Bhattacharya distance, takes the value 1 when the densities coincide and takes the value
0 when they are singular (i.e., their supports are nonoverlapping). We will give a very brief
introduction to density-based distances in section 4.3.

4.2. Novelty of the density-based method. The approach that we adopt in this paper
has, in our opinion, the following advantages to distinguish itself. First of all, we feel that
this is a more natural approach to identifying the unknown location compared to the p-value
approach (Chakrabarty, 2007). The p-value approach for finding the location depends on
repeated generation of data from the physical system or the estimated velocity distribution for
the particular location to create estimates of the Kullback–Leibler divergence (KLD) necessary
for the generation of the estimated quantiles for the construction of the p-value. We take the
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view that since the estimated density for the location is already available, this is unnecessary.
This also greatly reduces the computational burden of the procedure.

Another issue, which has not been sufficiently addressed in the previous approaches dealing
with this problem, is the issue of revalidation of the procedure. Would this method of finding
the maximum of the affinity over the different grid points be “consistent” in the sense that
should the optimal data generating location be removed from the data, would the maximum
of the affinity be obtained at one of its immediate neighbors? Essentially we are demanding
a continuity property for the affinity surface over the grids in question. We will observe later
in the article that in most situations this is indeed the case for the affinity measure based on
the Hellinger distance, giving us the confidence that the determination of the location based
on the affinity measure is doing the appropriate thing.

There is another point in favor of the particular approach chosen here. The different models
used for the description of the velocity data set are, after all, only abstractions of reality. While
we expect that these models will satisfactorily explain the pattern of the majority of the data,
there is always the chance (in fact it is practically expected) that there could be small subsets
of the data which would not follow the pattern dictated by the bigger majority. In such
situations, the Hellinger distance is a more dependable measure for identifying the model
which fits the large majority of the data, sacrificing a small group of outlying observations
(see, e.g., Basu, Shioya, and Park (2011)). The same is not true for the version of the KL
divergence which generates the p-values for the likelihood-based method.

Another approach that has been advanced to learn x� is independent of density estimation
(Chakrabarty, Biswas, and Bhattacharya, 2013). In this method, the velocity data is expressed
as a function of the solar location vector X and this unknown function is modeled with a
Gaussian process. The posterior probability density of x� given the simulated and observed
data is computed in this Bayesian approach. We compare our results to those obtained by
Chakrabarty, Biswas, and Bhattacharya (2013).

4.3. Distance methods.

4.3.1. Affinity measure based on the Hellinger distance. Let f and g be two probability
density functions with respect to the Lebesgue measure (or any other appropriate measure).
Then the squared Hellinger distance HD(g, f) between the densities g and f is defined as

(4.1) HD(g, f) =

∫ (
g

1
2 (x)− f

1
2 (x)

)2
dx.

The Hellinger distance is one of the few genuine metrics in the large class of density-based
divergences widely used in statistics. The measure HD is bounded from above by 2, a value
which is attained when the densities are singular. Similarly, the lower bound of the measure
is 0, obtained when the densities are identically equal. Notice that the measure in (4.1) may
be represented as

HD(g, f) =

∫
g(x)dx +

∫
f(x)dx− 2

∫
g

1
2 (x)f

1
2 (x)dx

= 2

(
1−

∫
g

1
2 (x)f

1
2 (x)dx

)
.(4.2)
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Thus the minimization of the Hellinger distance is equivalent to the maximization of the
affinity measure

(4.3) ρ(g, f) =

∫
g

1
2 (x)f

1
2 (x)dx

which varies between 0 and 1; the end points are obtained when the densities are singular
and identical, respectively. The quantity in (4.3) is linked to the Bhattacharyya distance
(Bhattacharyya, 1943)

(4.4) B(g, f) = − log

(∫
g

1
2 (x)f

1
2 (x)dx

)

and is widely used as a measure of closeness between two probability densities.

4.3.2. The KLD. The KLD (also known as information divergence, information gain,
or relative entropy) is a nonsymmetric measure of the difference between two probability
distributions G and F (Kullback and Leibler, 1951). The distribution G typically represents
the “true” distribution of the data, while the distribution F represents a theory, model,
description, or approximation of G.

Although it is often intuited as a metric or distance, the KLD is not a true metric. In
particular it is not a symmetric measure; the KLD between G and F is generally not the same
as that between F and G. The divergence is computed between the corresponding densities
g and f and is defined as

(4.5) δ(g, f) =

∫
g(x) log

(
g(x)

f(x)

)
dx.

This divergence measure is not bounded above; however, a zero value of this measure indicates
zero distance between f and g, i.e., the densities are identically equal. In spirit, the divergence
measure can be considered to be similar to the inverse of the affinity measure. Both the KL
and HD measures are special cases of the Cressie–Read family of power-divergences (Cressie
and Read, 1984).

4.3.3. Relative Pearson divergence. The Pearson (PE) divergence is a squared-loss vari-
ant of the KLD. It is basically an extension of the Pearson’s χ2 divergence and is defined as

(4.6) PE(g, f) =

∫
g(x)

(
f(x)

g(x)
− 1

)2

dx.

It also belongs to the family of f -divergences and shares many theoretical properties of the
KLD. This divergence measure is also not bounded above; a zero value of this measure indicates
zero distance between f and g, i.e., the densities are identically equal.

The relative Pearson (rPE) divergence is a variant of the PE divergence (see, e.g., Sugiyama
et al. (2013)). It is defined as

(4.7) rPE(g, f) = PE(hα, f) =

∫
hα(x)

(
f(x)

hα(x)
− 1

)2

dx,
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where

(4.8) hα(x) = αf(x) + (1− α)g(x) for 0 � α < 1.

For α = 0, the rPE divergence reduces to the normal PE divergence. However, the relative
density ratio in this case, i.e., f/hα, is bounded above by 1/α for α > 0:

f(x)

hα(x)
=

1

α+ (1− α) g(x)f(x)

<
1

α
.

Thus it overcomes the problem of the unboundedness of the density ratio f/g in the PE
divergence. The tuning parameter α is chosen by cross-validation.

5. Results. The four astrophysical models will henceforth be referred to as 18sp3bar3,
25sp3bar3, sp3bar3, and bar6. This nomenclature involves the values of the bar and the spiral
parameters which specify the models.

5.1. Density estimation. We use the bivariate kernel density estimation with the kernel
K(·, ·) being the standard two-dimensional Gaussian kernel with covariance matrix I2, the
two-dimensional identity matrix, i.e., the kernel function is given by

(5.1) K(x, y) =
1

2π
exp

(
−x2 + y2

2

)
.

Based on a set of n independent and identically distributed observations (X1, Y1), . . . ,
(Xn, Yn) from the data generating density, our density estimate is given by

(5.2) f̂(x, y) =
1

nh2

n∑
i=1

K

(
x−Xi

h
,
y − Yi

h

)
,

where h is the smoothing parameter. We have chosen the smoothing parameter h as

(5.3) h = σn− 1
6 ,

where

σ2 =
s2X + s2Y

2
.

Here s2X and s2Y are the sample variances of the X and the Y observations, respectively. See,
e.g., Silverman (1986) for a discussion on the choice of the smoothing parameter.

For a fixed model, let us denote the true density at the location (r, θ) under this model
by g(r,θ)(x, y) and its kernel density estimate by ĝ(r,θ)(x, y). Also we shall denote the true

density of the observed velocity data by f(x, y) and its kernel density estimate by f̂(x, y). As
the analysis for the simulated data generated at the d = 216 chosen locations each for each
of the base astrophysical models is done separately, we do not attach another index for this
base model to the density g(·, ·).

Here the observed velocity vectors are assumed to be independent and identically dis-
tributed. Such assumptions are generally reasonable and frequently employed in astronomical
studies. See, e.g., Feigelson and Babu (2012) and Way et al. (2012).
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5.2. Maximum affinity estimation of the location parameter. Here we present the re-
sults of the proposed method for each of the four simulation models. For a given model, let
us define

(5.4) ρ(r,θ) := ρ(g(r,θ), f),

where ρ(·, ·) is the Hellinger affinity defined in (4.3). We compute the density estimate f̂
for the observed data Y(obsvd). We also compute the density ĝ(ri,θi) for the synthetic data

Y
(sim)
i that is simulated at the ith chosen location (ri cos θi, ri sin θi)

T of the d = 216 such
chosen locations. We use the former and latter density estimates as surrogates for f and g(r,θ),
respectively. Thus for each base astrophysical model, we have 216 affinity values corresponding
to each i; for brevity’s sake, we use the notation

(5.5) ρ̂(ri,θi) = ρ(ĝ(ri,θi), f̂).

In Figure 2, we show the affinity surfaces generated over the chosen locations at which the
simulated velocity data are generated in each of the base astrophysical models, i.e., the surface
plot of ρ̂(ri,θi) against (ri, θi) for i = 1, 2, . . . , d, d = 216, for each base model. The plot provides
visualization of where the surfaces attain their maxima.

To avoid the dependency on perspective while viewing a surface plot, it sometimes helps
to look at a more mundane contour plot. Figure 3 shows a contour plot of the affinity surface
in grayscale. It is clear from these contour plots that in the bar6 model there is a single mode,
while in the sp3bar3 model there are at least two pronounced modes. The other two models
fall somewhere in between. This is in concert with the results obtained earlier by Chakrabarty
and Sideris (2008) and by Chakrabarty, Biswas, and Bhattacharya (2013).

The chosen locations at which the synthetic data are simulated from the base astrophysical
model in question are in fact arranged over a uniform rectangular grid. Thus, the ith point
in this grid would represent the ith such chosen location, i = 1, 2, . . . , d, d = 216, as per
the nonlinear dynamical simulations of the Milky Way disk reported in Chakrabarty (2007).
Taking advantage of the uniform nature of this grid, any grid point could have an alternative,
two-dimensional representation, (k, j), k = 1, 2, . . . , 24, j = 1, . . . , 9, so that there are 24×9 =
216 such chosen locations. In this treatment, let the (k, j)th grid point be the physical location
(rk, θj).

For the base astrophysical model in question, we define max(k, j) as the indices for the
particular chosen location where the affinity measure is maximized. Let the corresponding
radial and angular coordinates of this location be

(5.6) (rmax, θmax) := argmax
(k,j)

ρ(g(rk ,θj), f).

That is, (rmax, θmax) is the actual physical location where the true distribution of the synthetic
data is closest to the true distribution of the observed data in the sense of having highest
affinity, while max(k, j) represents the indices for this location. We have estimated (rmax, θmax)
by

(5.7) (r̂max, θ̂max) = argmax
(k,j)

ρ̂(rk,θj),
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Figure 2. Hellinger affinity surfaces under the four different base astrophysical models.

and the corresponding indices provide an estimate of max(k, j). We refer to this estimate of

max(k, j) as ̂max(k, j).

Of the chosen 216 grid points, the location (r̂max, θ̂max) corresponding to the ̂max(k, j)th
grid point is the one that maximizes the affinity of the density of the observed data to that
of the simulated data. In other words, of the 216 chosen locations in our work, this location
best represents the value of the unknown model parameter vector X at which the observed
data Y(obsvd) are realized. Since X is the unknown location of the observer who observes data
Y(obsvd), r̂max and θ̂max best represent the values of the unknown radial and angular location
of the observer, respectively, of the set of chosen locations that we use in our work, following
the astrophysically motivated choice of such parameters by Chakrabarty (2007).

In Table 1 we present the estimated locations (and their indices) where the affinities are
maximized for the four base astrophysical models.

Thus the location of the maximum affinities is quite different for the four models. Note
that these point estimates are not going to be very precise owing to the multimodal and flat
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Figure 3. Contour plots of the Hellinger affinity surfaces under the four different base astrophysical models.

Table 1
Location of maximum affinities for the four base astrophysical models.

Model ̂max(i, j) (r̂max, θ̂max)

18sp3bar3 (20, 2) (2.1875, 15◦)
25sp3bar3 (22, 9) (2.2325, 85◦)
sp3bar3 (10, 1) (1.9375, 5◦)
bar6 (21, 7) (2.2125, 65◦)

character of the affinity surfaces. The contour plots in Figure 3 provide more meaningful
information. In section 5.4 we shall provide confidence sets around these point estimates
and, in light of those results, will carry out a comparison of our results to those reported by
Chakrabarty (2007) and Chakrabarty, Biswas, and Bhattacharya (2013).

5.3. Maximum entropy estimation of the location parameter. For a given base model,
we define

(5.8) δ(r,θ) := δ(g(r,θ), f),

where δ(·, ·) is the KLD defined in (4.5). Let the density estimate for the observed data

Y(obsvd) be abbreviated as f̂ and the estimated density of the data Y
(sim)
i simulated at the

chosen location (ri cos θi, ri sin θi)
T be ĝ(ri,θi), i = 1, 2, . . . , d, d = 216. Thus for each base
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Figure 4. KLD surfaces under the four different base astrophysical models.

astrophysical model we have 216 KLD values at each of the 216 chosen locations at which the
synthetic data sets are generated. For simplicity of notation we again denote

(5.9) δ̂(ri,θi) = δ(ĝ(ri,θi), f̂).

In Figure 4, we show the KLD surface generated at the 216 chosen locations for each of the
base astrophysical models, i.e., the surface plot of δ̂(ri,θi) against (ri, θi). The plot helps to
visually detect where the surfaces attain their minima.

As with the affinity plots, here too we display KLD contours in grayscale; see Figure 5.
Note that the overall appearance of these contour plots is in agreement with Figure 3. Again,
as in the discussion of section 5.2, here too we invoke the construct that the d (=216) chosen
locations are placed on a uniform two-dimensional rectangular grid. Then each grid point can
be represented by a pair of indices such as (k, j), k = 1, 2, . . . , 24, j = 1, 2, . . . , 9. The location
of the (k, j)th grid point is (rk, θj). Let min(k, j) represent the indices for the particular



MINIMUM DISTANCE ESTIMATION OF MILKY WAY MODEL PARAMETERS 15

Figure 5. Contour plots of KLD surfaces under the four different astrophysical models.

grid point where the KLD values are minimized with the physical location of this grid point
represented by

(5.10) (rmin, θmin) = argmin
(k,j)

δ(g(rk ,θj), f).

Thus, (rmin, θmin) is the actual physical location where the true distribution of the simulated
data is closest to the true distribution of the observed data in the sense of having lowest KLD,
while min(k, j) represents the indices for this location. We estimate this location (rmin, θmin)
by

(5.11) (r̂min, θ̂min) = argmin
(k,j)

δ̂(rk,θj),

and the corresponding indices provide an estimate of min(k, j).
In Table 2 we present the coordinates of the location where the KLD values are minimized

for the four base astrophysical models. Figure 6 shows level-plots of the affinity surface along
with the KLD estimates. A corresponding KLD version is shown in Figure 7. Note that the
estimates provided by these two approaches are quite close.

It is interesting to note that the surfaces are quite flat (particularly in the case of the base
models 18sp3bar3 and bar6) near the peaks. Therefore, estimation of the location for which
the affinity attains the maximum becomes difficult. One needs to investigate further to see
whether this method will produce the right location consistently.
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Table 2
Location of minimum KLD for the four models.

Model ̂min(k, j) (r̂min, θ̂min)

18sp3bar3 (24, 9) (2.2875, 85◦)
25sp3bar3 (24, 8) (2.2875, 75◦)
sp3bar3 (17, 7) (2.1125, 65◦)
bar6 (22, 7) (2.2375, 65◦)

In particular, we are concerned that the method of estimation used in our work abides by
the undertaken assumptions. To this effect, we seek validation of our results.

At the same time, we are interested in quantifying uncertainties in the estimated locations
of the chosen d locations at which the density of the synthetic data approaches the density
of the observed data most closely, in the sense that the affinity measure between this pair of
densities is the highest. In order to perform parameter uncertainty estimation, we undertake
the construction of confidence sets using a bootstrap-based method.

5.4. Confidence sets. We are interested in quantifying uncertainties in the estimation
of the locations (inside the grid of our choice) at which the affinity measure in maximized.
We recall that (rmax, θmax) is the location at which the true distribution under the model is
closest to the true distribution of the observed data in the sense of having the highest affinity
among densities. We generated 300 bootstrap samples from the density of the synthetic data
generated at (rmax, θmax). We then computed the affinity measures between the true density
of the observed data and the bootstrap samples. This gave rise to a sampling distribution
of the affinity measures between the density of the observed data and the bootstrap samples
from the (rmax, θmax) location. Locations at which the values of the affinity measures (i.e.,
ρ̂(ri, θi)) are above the cutoff point were included in the confidence set. For a 95% confidence
set, we chose the lower fifth percentile of the empirical affinity distribution obtained through
the above described bootstrap exercise as the cutoff point. However, we acknowledge that the
suggested confidence sets will be valid under the assumption that the contours of constant
affinity are shift invariant as (rmax, θmax) is varied.

In Figure 8 we show the confidence sets. The actual point where the affinity is maximized
is indicated in gray, while the other points in the confidence set are indicated in light gray.
It is interesting that the confidence sets for all the models are fairly small, and for the last
two models the sets have just two members each. This shows that the estimation procedure
is quite precise.

These estimates overlap moderately well with those reported by Chakrabarty (2007) as well
as those by Chakrabarty, Biswas, and Bhattacharya (2013). For the base astrophysical model
bar6, Chakrabarty (2007) reports that the angular location of the Sun lies between 0◦ and 49◦

with a median at 22◦, while the radial location ∈ [1.9625, 2.1975]. For this model, Chakrabarty,
Biswas, and Bhattacharya (2013) suggests that the mode of the marginal posterior probability
density of r� occurs at 2.2 and of θ� at 23.5

◦. In this Bayesian estimate of Chakrabarty, Biswas,
and Bhattacharya (2013), the estimates lie in 95% highest probability density (HPD) credible
regions that are, respectively [2.04, 2.3] and about [21◦, 26◦]. As evident in Table 1, our point
estimate for this base model is too high to fit into this interval. However, the confidence
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Figure 6. A discrete representation of the level-plots of the affinity measure recovered in the two-dimensional
grid of our chosen locations. Locations at which values of the recovered affinity measure lie in the same band
are displayed in the same grayscale level. The grayscale coding of the affinity measure values is presented in
the key adjoining each panel.
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Figure 7. Level-plots of the KLD surface, the analogous plot to Figure 6.

set estimated for this base model includes locations at lower values of the radial location
as well as lower angular location values (shown in light gray in Figure 8), such that these
values are in conformity with the findings of Chakrabarty (2007) and Chakrabarty, Biswas,
and Bhattacharya (2013).
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Figure 8. 95% confidence set for (rmax, θmax) under each model. The elements of the confidence sets are
depicted as light gray dots, the gray dots representing the point-estimates obtained earlier.

For the base astrophysical model 18sp3bar3, the radial and angular location estimates of
Chakrabarty (2007) are [1.95, 2.21] and [0◦, 30◦], respectively. The estimates of Chakrabarty,
Biswas, and Bhattacharya (2013) are similar, with the 95% HPD credible region given by [1.7,
2.29] and about [10◦, 62◦] for the solar radial and angular coordinates, respectively. Our point
estimate of (2.1875, 15◦) for this base model then lies comfortably within these intervals; the
confidence set recovered for this base model suggests that the observed data are consistent
with radial location values lower than 2.1875 at the angular location value of 15◦ as well as
at a higher angular value of 25◦. In fact, a slightly higher radial location value of 2.2125 at
an angular value of 25◦ is also included in our constructed confidence set for this base model.

This example helps to bring to the fore a salient advantage of the uncertainty estimation
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in our work, compared to that in Chakrabarty (2007). Given that we are performing a joint
(radial and angular) parameter uncertainty estimation, we present our results as confidence
sets on the tow-dimensional grid of our chosen locations. This allows for identification of the
interval estimate of the solar location more clearly than in Chakrabarty (2007), in which the
intervals represent uncertainties on the radial or angular values obtained using the marginal
distribution of the radial or angular location values. Thus, it needs to be emphasized that the
interval estimation of Chakrabarty (2007) are not to be directly compared to our estimated
uncertainties. Additionally, the 95% HPD credible regions that Chakrabarty, Biswas, and
Bhattacharya (2013) report are fundamentally different from our uncertainty estimates. We
merely explore the possibility of an overall overlap between the results obtained using our
methodology here with what exists in the literature.

In the context of our uncertainty estimation, we would also like to emphasis that it has
been discussed in the literature that the underlying chaos in the base astrophysical model
drives the estimated locations to be scattered over the constructed grid of the chosen locations
(Chakrabarty, 2007; Chakrabarty and Sideris, 2008). In fact, a necessary condition for chaos
to occur is the increasing noninjectivity of stellar velocity as a function of the unknown
solar location X (Sengupta, 2003). In the results presented by Chakrabarty, Biswas, and
Bhattacharya (2013), the models that manifest such chaos are those for which the posterior
probability density of the location parameters are rendered multimodal. In other words, the
distribution of the locations that are compatible with the observed data (i.e., the locations
at which the affinity measure is high in our work) may be multimodal. This further suggests
that a visual representation of the confidence sets (as in Figure 8) allows for easy reading of
the interval estimation of the unknown solar location.

Of all the base models, Chakrabarty (2007) had found the distribution of locations com-
patible with the observed data to be most scattered over the grid of chosen locations for
sp3bar3. This scatter disallowed the interval estimation of the unknown solar location in this
earlier work. Chakrabarty, Biswas, and Bhattacharya (2013) agree with this trend in that the
posterior densities of the location parameters are most multimodal for this model. We confirm
a similar trend in our recovery of the affinity surfaces (Figure 6). However, our method of
estimating uncertainties works for this base model and we recover a very small confidence set
adjoining the point estimate at (1.9375, 5◦); see Figure 8.

For the base model 25sp3bar3, our point estimate equals (2.2325, 85◦) (see Table 1), while
the recovered confidence set suggests that at a slightly lower angular location value of 75◦,
radial location values in [2.1875, 2.2875] are also compatible with the observed data as they
are within the 95% confidence interval; the situation is the same for the location 2.2875 at
the higher angle of 85◦. While these radial location values overlap with the estimate from
Chakrabarty (2007), our estimate of the angular locations are slightly in excess of the earlier
estimate of angular location value.

5.5. Cross-validation. In this context it is recalled that the estimation procedure is based
on the assumption that the velocities observed from nearby locations and hence their corre-
sponding densities will be more similar to each other than those observed from distant loca-
tions. It is important to verify that the affinity values obtained by this method show such
desirable property. For this purpose, we used a cross-validation approach where one of the grid
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Table 3
Results of cross-validation.

Model 1st nbhood 2nd nbhood

18sp3bar3 24 0

25sp3bar3 24 0

sp3bar3 24 0

bar6 22 1

points was chosen as the “true” location, and the corresponding kernel density estimate was
chosen as the “true” density. The affinity values between this density and the density estimates
at all the other grid points are obtained. Under the aforementioned assumption it is expected
that the maximum of these affinity values should occur at one of the nearest neighbors of the
“true” locations. For this analysis, the 24× 9-sized grid (rk, θj), k = 1, . . . , NR, j = 1, . . . , Nθ,
was broken into 24 blocks of size 3×3 each. The midpoint of each block was chosen as the rep-
resentative for that block for the purpose of cross-validation; thus for each base astrophysical
model, we had 24 points implemented in cross-validation.

When the midpoint (rkm , θjn) is chosen as the true location, we define its first neighborhood
points as the set of points (rk, θj) such that max(|k−km|, |j−jn|) = 1, its second neighborhood
points as the set of points (rk, θj) such that max(|k − km|, |j − jn|) = 2, and so on. In
Table 3, the first column gives the number of times the maximum occurred within the first
neighborhood, and the second column gives the number of times the maximum occurred
outside the first but within the second neighborhood. It is quite clear from the table that the
maximum did occur closest to the true locations in a overwhelmingly large majority of cases,
underscoring the effectiveness of the proposed method. These results give us the required
confidence in our estimation. See Figure 9 for a visual idea about the locations of the maxima
during cross-validation. The points which are chosen for the implementation of the cross-
validation algorithm are indicated in gray; light gray lines join them to the point where the
corresponding maximum of the affinity was observed.

In addition to performing cross-validation to check against internal inconsistencies, we
have successfully compared our results with those reported by Chakrabarty, Biswas, and
Bhattacharya (2013) on the basis of their Bayesian method that is independent of density
estimation (see section 5.4).

5.6. Direct divergence estimation. On the suggestion of one of the reviewers, we explored
some methods of construction of divergences avoiding density estimation. In particular we
considered the construction of the rPE divergence (introduced in section 4.3.3) using the direct
method of estimating the density ratio. The surfaces of the new divergence (Figure 10) have
reasonable similarity with the KLD surfaces (Figure 4), and general conclusions based on
the new surfaces are largely compatible with our previous findings. Thus it appears that the
methods that bypass the issue of density estimation can have some real utility in practice. We
note, however, that at present theoretical consistency results about the direct density ratio
method are limited in number as well as scope.

6. Concluding remarks. In this paper we have developed a new method for estimating
the location of the Sun with respect to the center of the Milky Way. Observed two-dimensional
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Figure 9. Graph depicting the locations where the maxima occurred during cross-validation. The gray
stars represent the coordinates chosen for cross-validation and light gray lines connect these coordinates to their
corresponding maxima (represented by light gray stars).

velocity vectors of stars were used to estimate the distribution of the observed stellar motion
where the location of the observer, i.e., the location of the Sun, with respect to the center
of the Galaxy is unknown. This distribution was compared to distributions estimated using
synthetic stellar velocities generated at known locations in the Milky Way disk, where such
synthetic data were taken from the astronomical literature. The comparison was performed
by considering affinity measures based on the Hellinger distance. In doing so we have made
a direct determination of the compatibility of the location from which the observed stellar
velocities were recorded with these synthetic data sets. Our procedure allows us to estimate
the observer location directly as a point on the (radial, angular) plane, rather than estimating
the components of the location vector individually. Indeed, the confidence set of the estimated
positions that we develop, based on the bootstrap technique, is a set of locations on the two-
dimensional plane rather than a product of intervals. As a final test we run a consistency check
on the estimates through a cross-validation experiment which indicates that the estimation
procedure has some desirable continuity properties. The method provides a new perspective on
the problem under consideration without contradicting the general belief about the behavior
of the astronomical models under study.
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Figure 10. Direct rPE divergence surfaces.
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