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Abstract 

Developing strategies to cope with increase in the ageing population and age-related chronic 

diseases is one of the societies biggest challenges. The characteristics of the ageing process shows 

significant inter-individual variation. Building genomic signatures that could account for variation 

in health outcomes with age may facilitate early prognosis of individual age-correlated diseases 

(e.g. cancer, coronary artery diseases and dementia) and help in developing better targeted 

treatments provided years in advance of acquiring disabling symptoms for these diseases. The aim 

of this thesis was to explore methods for diagnosing molecular features of human ageing. In 

particular, we utilise multi-platform transcriptomics, independent clinical data and classification 

methods to evaluate which human tissues demonstrate a reproducible molecular signature for age 

and which clinical phenotypes correlated with these new RNA biomarkers.  

Using machine-learning approach (kNN), applied to RNA data derived from muscle tissues 

from healthy donors, we developed a novel and statistically robust neuro-muscular 150 probe-set 

RNA signature and demonstrated its potential as a health-status diagnostic. Validated using 

multiple independent human muscle cohorts and external validation methods, the RNA signature 

was effective at distinguishing between young and old human muscle, brain and skin. In muscle, 

the RNA signature was not correlated with lifestyle regulated phenotypes in muscle or life-style 

diseases in blood (coronary vascular disease and Type 2 diabetes). This 150 probe-set neuro-

muscular signature was related to cognitive status in two independent studies confirming that our 

‘ageing genes’ were consistently regulated in muscle, hippocampus and blood tissue in humans.  

To establish how unique this 150 probe-set neuro-muscular ageing was, we contrasted a 

“random” sampling approach with published genomic signatures of human ageing. This involved 

‘transferring’ DNA and DNA methylation signatures to their equivalent RNA signature, before 

considering their prognostic or diagnostic performance. It was observed that our 150 neuro-

muscular gene-set was the only one related to hippocampus ageing and cognitive health, while 

‘stress’ resistant (selected from DNA analysis) and ‘epidemiologically’ selected linear models 

(RNA derived) were related with vascular disease. We then attempted to develop an RNA vascular 

ageing gene-expression model to complement our neuromuscular ageing diagnostic. While 

statistically significant, the gene-set did not contribute to clinical variance in a sufficient manner 

over and above key clinical variables e.g. blood pressure and chronological age.  

In summary, vascular ageing appears to be distinct from neuro-muscular ageing, at least 

from the stand point of RNA gene-sets. Overall, this research has resulted in identifying a 

predictive diagnostic for human neuro-muscular ageing that could be potentially useful in assisting 

research aimed at finding treatments for and/or management of Alzheimer’s disease. 
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1.1 Introduction to thesis topic 

Advances in infection control, medical diagnosis, and treatment have led to an improved ‘health’ 

span as well as an increase in human longevity. The extended life span has presented new medical 

challenges such as greater number of people with cardiac disease, cancer, and in particular 

neurodegeneration. This consequently is placing huge demands on our medical services. Currently, 

treatment of these age-associated diseases is based on interventions aimed to yield clinical benefits 

in randomized clinical trials (Wiesweg et al. 2013). To revolutionize current approaches in health 

care it is essential to identify effective strategies to substantially improve ‘health span’ in humans.  

Personalized selection of treatment strategies, or health advice, has an increasing impact on the 

planning of modern medical practice (Goldberger & Buxton 2013).  

Personalized approaches to cancer diagnosis and treatment have been substantially 

influenced by molecular diagnostics (Abd El-Rehim et al. 2005; Shedden et al. 2008; Sebastiani et 

al. 2012). For human ageing, global RNA profiling based on linear correlative analysis have been 

utilised to search for consistent molecular events correlating with age across tissues (Willemijn M 

Passtoors et al. 2012; Gheorghe et al. 2014; Phillips et al. 2013; Glass et al. 2013; Peters et al. 

2015). But these attempts failed to find any common gene-sets that could characterise human 

ageing as most of them were based on cohorts that blended in ageing, disease and drug-treatment 

and thus had very low reproducibility. Therefore, there are numerous challenges to both the 

development of, and implementation of personalized strategies for most major age-related diseases 

(Patnaik et al. 2010) such as the time to measure a biological profile that can provide reliable long-

term prognostic information and the technological platform to utilize. Nonetheless, it would be 

interesting to explore if it is possible to find a common gene set for human tissue ageing and if this 

gene set signature has prognostic abilities to predict different types of age related diseases i.e. 

neurodegenerative, vascular etc., and health outcomes. This personalized molecular diagnostic 

approach could potentially not only estimate an individual’s true biological age but will also help in 

developing therapies that could positively impact ageing and postpone related diseases. 

1.2 Thesis Objectives 

Developing a diagnostic tool for healthy ageing and applying that knowledge to precision 

medicine can lead to better therapeutics at an individual level targeted specifically to the genotype. 

To develop such a tool, a very strict set of methodologies and benchmarks, distinguishing them 

from descriptive studies of differential RNA expression should be applied. Therefore, the aim of 

this thesis was to: 
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• Identify ‘healthy ageing genes’ (RNA, gene expression) that could distinguish ‘healthy’ old 

muscle tissue from young sedentary muscle with high accuracy. 

• Use the very same RNA signature to distinguish hundreds of old from young tissue across 

independent cohorts and tissue-types which has never been achieved before. 

• Evaluate whether the validated RNA signature would relate to different human diseases 

thought to be ‘caused’ by ageing such as neurological, vascular etc. 

• To compare if neuromuscular ageing is similar or different from vascular ageing. 

To achieve these objectives, we would implement machine-learning methods on transcriptomics 

data from carefully phenotyped clinical samples to develop the first accurate molecular diagnostic 

that could discriminate between healthy young and healthy older humans. To this end, we 

hypothesized that production of an accurate and sensitive diagnostic, built using muscle tissue from 

young subjects contrasted with humans reaching their older age in good health, would provide the 

platform to produce a prognostic molecular ‘signature’ that could be applied to longitudinal studies 

for the purpose of forecasting health outcomes. To delve into the uniqueness of the discovered gene 

set we would further conduct a comparative analysis of some of existing signatures of human 

ageing. This should potentially provide a well-rounded perspective about relevance of different 

signatures of human ageing and their limitations, if any.  

1.3 Outline 

The research work consists of six chapters. The first chapter is the introduction and review of the 

research that establishes the concept of understanding the importance of biomarkers in ageing and 

describes all the important aspect that is necessary for completing the research. The second chapter 

begins with general methods to process and understand microarray data and discusses method 

development part of research through which the results will be conducted.  

The third chapter is the results section that explains the reader the result and discoveries of the 

research topic. It is dedicated to the validation and application of the transcriptomic signature 

obtained from second chapter and thus provides the outcome of the research. Here, we investigate 

ageing with reference to neurocognitive health with particular emphasis on Alzheimer and 

Dementia. Further to fulfil the research goal and provide a comprehensive evaluation, we compare 

different genomic and transcriptomic signatures of human ageing and longevity in fourth chapter of 

this thesis. This chapter explores the uniqueness of our 150 gene set signature for neuro-muscular 

ageing with respect to the other published genomic signatures of human aging.  In the next chapter 

of this research work we develop a linear model for vascular ageing to explore if vascular ageing is 

distinct from neuro-muscular ageing, from the stand point of RNA gene-sets. The results drawn 
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from this work will highlight the importance of clinical (practical) significance of an effect and the 

pitfalls of formulating inferences solely based on statistical weight. The last chapter is based on 

discussion, and explains in detail the most important factors in the findings. The discussion section 

translates the outcomes in this area and point out any additional findings. The conclusion segment 

in the discussion relates the study discoveries and clarifies and derives the overall outcome of the 

research with recommendations and implications.  

1.4 A review of human ageing  

Ageing is described as the process that influences the human physiological system and its 

performance and increases the chances of death and chronic diseases. It is a genetically complex 

multi-causal biological process that is certain and leads to a decline in adaptive capacities (K. 

Christensen et al. 2009). It unavoidably leads to death as it is accompanied by the development of 

age-related pathologies (Zaidi 2008). The general perception of human ageing includes the reduced 

ability of surviving chronic diseases as well as mobility loss, decline in cognitive or sensory 

functions and increase in health costs.  

Visual examinations, biochemical analyses, physiological, psychological, and functional 

tests are used to examine age-related changes through the methods of conventional evaluation. The 

phenotype of ageing is considered as a complicated interaction of stochastic factors along with the 

genetic, environment and epigenetic variables (Rattan 2006). These variables favour molecular 

fidelity loss and intensify the random damages in the tissues, cells or in the human being as a 

whole. Along with these, the chances of death and disorder also increase (Candore et al. 2006).  

However, it is observed that the processes that influence biological ageing are not apparent. 

This insight can be provided by identifying biomarkers as it can explain the heterogenetic aspect of 

the functional decline related to ageing (Niccoli & Partridge 2012). Thus, biomarkers are in need of 

urgent evaluation for the assessment of health conditions of elderly individuals, which could aid in 

developing therapeutic interventions. 

1.4.1 Population ageing  

The term ‘Population ageing’ is used to define the shift in the distribution of age of a nation 

towards older individuals. It is a concept that challenges gaining lives with longevity and is an 

outcome of decreased fertility and increased expectancy of life (Dobriansky et al. 2007). Older 

individuals and ageing population are considered as the most important demographic and global 

trend of the 21st century. As per UNFPA, every ninth individual in the world is above 60 years 

(UNFPA and HelpAge 2012). Greying of the population is inevitably going to occur in the next 

decades and this transition in demographics is unprecedented in human history, which will have 
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major implications on all aspect of life. It will be a real threat to retirement systems and social 

security systems. Nevertheless, the extent to which it will occur is uncertain and will particularly 

depend on future trends in mortality.  

Population ageing is considered as the rapidly progressing problem worldwide. The 

countries that faced decline in fertility and mortality in the beginning are now facing increased 

proportion of elderly people (Lutz et al. 2008). The global share of older people (aged 60 years or 

over) has swollen from 9.2 in 1990 to 11.7 per cent in 2013 and is projected to reach 21.1 per cent 

by 2050. The demographics of UK and Europe are also dynamically changing. The demographic 

analysis conducted recently predicts that Europe’s average age in 2020 will be 42.2 years in 

comparison to 39.8 years in 2010. Life expectancy rate has also been predicted to increase in 2020 

to 77.84 years compared to 2005-2010 that was 75.34 years (United Nations, Department of 

Economic and Social Affairs 2013). As shown in Figure 1.1 the global median age has moved from 

24 years in 1950 to 29 years in 2010, and will continue to increase to 36 years in 2050. 

Furthermore, within the older population itself the proportion of those aged 80 years or over has 

doubled from 7 per cent in 1950 to 14 per cent in 2013. This rise is occurring at a faster pace in the 

less developed regions than in the more developed regions (United Nations, Department of 

Economic and Social Affairs 2013; UNFPA and HelpAge 2012).    

Thus, world is going through a demographic shift which is a direct consequence of health 

transition occurring globally at different speeds. People around the world are living longer, but 

many are also living sick-lives for long. This transitional period is impacted by different 

interconnected influences which includes the change from high to low fertility rates, a steady rise in 

life expectancy at birth and at advanced ages and a move from mainly infectious diseases to non-

transmitted diseases and chronic conditions (International Conference of Social Security Actuaries 

and Statisticians 2009).  

1.4.2 Social and Economic Effects of Ageing 

The major factor that is connected with the addition of older ageing population is the severe 

challenges it poses on the traditional state of social welfare and economy of a nation (Turner et al. 

1998). In many developed countries, it is observed that ageing increases pressure on social security 

programs. It is now considered that the policies are in need to be addressed in order to maintain and 

manage the retirement programs (Lefebvre & Goomar 2005). The ageing population is now a 

global concept for definite reasons. It not only poses a challenge to the society’s security system, 

but is a great struggle for the health care systems as well. As humans age, the incidence of illness, 

disabilities and likelihood of age-associated diseases such as alzheimer, dementia, or diabetes 
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increases noticeably (Niccoli & Partridge 2012). In addition to this a substantial increase in health 

care expenses occurs, not only because of higher proportion of elderly people in the population, but 

also as a result of increasing costs per person, among others due to new and more expensive 

medical technology. Furthermore, increasing trends in physical and mental functioning may lead to 

an increased demand for formal and informal care, while at the same time sources of support 

decline (Rechel et al. 2013). One approach of addressing this health and social care challenge is by 

maintaining health and reducing disability among the elderly and more importantly ensuring to 

extend the period that older people remain healthy, independent and contributing to society (Figure 

1.2) (Gavrilov & Heuveline 2003). 

       

Figure 1.1 The median age of the population for the world and developed and developing nations. The 

data by Department of Economic and Social Affairs Population Division, United nations across years shows 

that median age of the population is rising across the world in developed as well as developing nations thus 

establishing that population ageing is rapidly progressing problem. 

	

Economically, ageing has an impact on the labour market directly because of the influence 

of life expectancy and health on the way an individual behaves and make the decision of either 

working longer or retiring. The ages of 14-64 years old are considered to positively affect the 

economy and makes productive approaches, however ages 65 and above are considered dependent. 

Thus, in this regard population ageing can prove to be a challenge for the world economy 

(International Conference of Social Security Actuaries and Statisticians 2009). The problem due to 

ageing influences negatively in the growth of economy and in the participation rate of the labour 
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market which forces the researchers to analyse the changing directions through the trends of early 

retirements. In UK, the ratio of working individuals as compared to the ratio of people that are 

above 65 fell from 3.7 to 1 in the year 1999 and could fall from 2.1 to 1 in 2040 (Office for national 

statistics 2012). This estimation suggests that dependency ratio is about to be increased, which 

means more candidates of pension claiming individuals with less working individuals. This is a 

matter of concern for the government as the number of taxpayers will be reduced and dependency 

on government’s funds will rise. The chances are that due to augmented dependency ratio, diseases, 

and human ageing, government will have to increase spending on pensions and healthcare as well. 

This will result in higher tax rates and less people paying it (World of Work 67 2009).  Therefore, it 

is crucial to invest in discovering more successful ways of preventing or treating the major causes 

of illness and disability.  

                
Figure 1.2: Different phases in lifespan of an individual. An individual starts from an initial phase of 

development, followed by a peak in vitality of physical and physiological capacity, followed by a period of 

steady decline ending in morbidity. Instead of simply aspiring to extend the maximum lifespan it is important 

to have interventions that could possibly reduce the morbidity phase and move the curve towards right 

(Larrick & Mendelsohn 2010).  

1.5 Biological and molecular hallmarks of ageing  

A progressive loss in the functional decline of an individual is considered as ageing, which leads to 

functional impairment and susceptibility to death. Throughout the history of humankind, the field 

of ageing has attracted a number of researchers (Zaidi 2008) as it is a basic risk-factor for many 

physiological and psychological human diseases such as diabetes, dementia, etc. (Niccoli & 

Partridge 2012). Many researchers have given their effort in the identification and categorisation of 
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cellular and molecular hallmarks of ageing. Here we discuss nine hallmarks of ageing, which have 

proved their contribution in ageing process, and mutually determine the phenotype of ageing 

(López-Otín et al. 2013).  

1.5.1 Cellular Senescence  

In 1961, Hayflick and Moorehead first described cellular senescence as a process that limited the 

proliferation of somatic human cells in culture. They suggested that this interruption of cell growth 

in culture reflects ageing in-vivo and also limits the lifespan of an organism (Hayflick & Moorhead 

1961). It is understood that senescence is brought about by a variety of inherent and extrinsic 

stimuli including DNA damage, physiological stress, telomere shortening and stimulation of 

cancer-causing genes (Cech 2004). Senescent cells normally experience vivid structural and 

functional changes and are characterised by extremely distinguishable gene and protein expression 

profile. For example, increased adhesion to the extracellular framework and a levelled and highly 

augmented phenotype with a vacuolated morphology (Collado et al. 2007; Narita et al. 2003). 

Progression of ageing with senescence occurs in two ways that is by loss of the beneficial, 

replicative capacity of certain cell types and through the creation of proinflammatory cytokines 

which constitute the senescence-associated secretory phenotype (SASP) (Tchkonia et al. 2013).  

This implies that aggregation of senescent cells with ageing is also associated with the 

production of proinflammatory factors. Chronic inflammation due to progressive accumulation of 

senescent cells is a defining characteristic of mammalian ageing, which promotes several age-

related phenotypes, including neurodegenerative pathologies, such as loss of brain function, as well 

as proliferative diseases such as cancer (Newgard et al. 2013).    

1.5.2 Telomere Attrition  

Age-related DNA damage accumulation results in affecting the genome near-to-random, but some 

chromosomal region such as the telomeres are more prone to age-related deterioration (Blackburn 

et al. 2006). As cells divide repeatedly, small portion of telomeric DNA is lost with each cell 

division because of limitations of the DNA polymerases in completing the replication of the ends of 

the linear molecules, leading to telomere shortening with every replication. When telomere length 

reaches a critical limit, the cell undergoes senescence and/or cellular death. This restricted 

proliferative capacity due to telomere exhaustion is termed as Hayflick limit or replicative 

senescence (Blasco 2007). Thus, telomere length can serve as a sign of a cell's replicative activity                  
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Figure 1.3:  Proposed causes of cellular senescence.	Cellular senescence can be caused by a number of 

cellular stresses including oxidative stress, telomere dysfunction etc. Senescence prevents proliferation of 

potentially damaged cells and is initiated by inherent and extrinsic stimuli. 

 

rather than chronological age. Shorter telomeres have additionally been connected with the genomic 

instability and oncogenesis. Rate of telomere shortening has therefore been considered critical to an 

individual’s health and pace of ageing (although more recently it has been accepted that telomere 

assays have proven insufficient to be prognostic for disease in the clinic). It has likewise been 

embroiled in pulmonary fibrosis, aplastic anemia and congenital dyskeratosis and all other  
premature developmental diseases that include the loss of regenerative capacity in varying tissues 

(Walne et al. 2008; Savage et al. 2008) 

1.5.3 Genomic Instability 

Genomic Instability affects a range of diseases and has been considered as one of the major causes 

behind ageing. Somatic cells are exposed to numerous sources of DNA damage such as 

environmental mutagens, UV radiation and exposure to reactive oxygen species(Nicholson et al. 

2011). An intricate network of genome maintenance system acts to cope with millions of such 

attack on cell genome and restore the genomic base pair sequence that needs to be correct for 

normal functioning. Generally, the reason for epimutations and mutation is the flaw in this self-
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repair phenomenon. However, occasional failures in correct replication of genome during the times 

of cell division is also a contributing factor (Boyette & Tuan 2014).  

Genomic stability is an essential element in all eukaryotes’ ageing but how it is related still 

remains unclear. The free radical theory of ageing hypothesizes that the oxidative damage to DNA 

and other cellular components is the key determinant of ageing (Harman 1955). Most exploratory 

proof for the free radical hypothesis of ageing originates from invertebrate models such as 

transgenic fruit flies. Recent alterations of this hypothesis states mitochondria as being responsible 

for oxygen species generation and oxidative damage (Vijg & Suh 2013). 

1.5.4 Mitochondrial Dysfunction 

Mitochondria are central regulators of various important cellular processes (Tait & Green 2012). 

The decrease in mitochondrial capacity compromises cellular integrity and has been proposed as 

one of the reasons for ageing (Sohal & Weindruch 1996). Mitochondrial DNA (mtDNA) mutations, 

dysfunction of the electron transport chain, oxidative stress, disparity in mitochondrial turnover, 

impaired trafficking and disruption of the fusion/ fission machinery are broadly involved in disease 

pathology and ageing (Wallace 2005).  

Aged cells in post mitotic tissues, such as brain, heart and skeletal muscles, often have poor 

respiratory capacity because of mitochondrial dysfunction. Incidentally, these cells are regularly 

connected with aggregation of mtDNA mutations, surpassing the limit important for supporting 

mitochondrial capacity (Park & Larsson 2011). In spite of the fact that mtDNA just involve around 

1% of the total DNA present in the cell, lots of evidence suggests that its role in cell physiology 

may well be far important than projected by its sum or size (Bratic et al. 2013). Because of the 

oxidative microenvironment of mitochondria and the absence of protecting histones, mtDNA 

becomes responsible for age-related mutations of somatic cells. Comprehending how mtDNA 

mutations proliferate and clonally expand in cells is critical in explaining the development of 

mitochondrial diseases along with the ageing process (Singh 2004). 

1.5.5 Stem Cells Exhaustion 

Adult stem cells dwell in most mammalian tissues, yet the degree to which they add to homeostasis 

and repair varies broadly (Wagers & Weissman 2004). These rare and specialised cells with the 

ability of self-renewal are required for tissue substitution all through the human lifespan. Tissues 

regenerative potential diminishes with age, hence a question emerges whether the attributes of an 

ageing tissue can be understood via declining utility of the adult stem cells that reside in it (Singh 

2004). There are numerous reasons for stem and progenitors cell exhaustion with ageing, one of 

which is genomic instability as discussed before caused due to DNA damage which comes from a 
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variety of sources including the free radicals originating from normal metabolic respiration and 

failures amid DNA replication. Lack of an appropriate preventive response to DNA damage could 

lead to cancer initiation and progression and in order to avoid this regenerative potential is 

decreased. Thus, tumor suppressive response to DNA damage to prevent uncontrolled cell 

proliferation, could cause loss of stem cell function (Ruzankina & Brown 2007). Additionally 

researchers have also connected epigenetic modifications such as changes in DNA methylation, to 

the loss of regenerative capacity of stem cells with age (Vas et al. 2012).	

1.5.6 Dynamic Alterations in gene expression and transcription 

Among the three principle groups of biological macromolecules particularly connected with 

exchange and expression of genetic data i.e. DNA, RNA and proteins, the RNA stage is the least 

studied for conceivable age-related changes. Ageing process is connected with an increment in 

transcriptional noise, and an atypical generation and development of numerous mRNAs. A gradual 

loss of fine-tuning of gene regulatory pathways would presumably lead to a dysregulation of gene 

expression, which could have deleterious effects (Rivas et al. 2014). Some studies have tested the 

effects of ageing on gene expression using microarrays in model organisms and found variation in 

gene expression in some tissues of ageing mice (Weindruch et al. 2001). Microarray-based 

examinations of young and old tissues from a few animal types have recognised age-related 

transcriptional changes which are regulated by a small set of GATA transcription factors. The 

authors hypothesised that this network of GATA factors has evolved to regulate gene expression 

during development but may become unbalanced in old animals, thereby effecting the changes in 

gene expression observed with age (Budovskaya et al. 2008). Another study observed a shared gene 

expression signature for ageing in human, mouse and rat by comparing expression changes in seven 

microarray datasets from these organisms (Wennmalm et al. 2005). Further global RNA profiling 

using differential expression and regression models have been utilised to search for consistent 

molecular events correlating with age (Willemijn M Passtoors et al. 2012; Gheorghe et al. 2014; 

Phillips et al. 2013; Glass et al. 2013; Peters et al. 2015). 

1.5.7 Proteostasis Dysfunction and Loss  

All cells exploit a variety of mechanisms to safeguard the utility of their proteomes e.g. autophagy. 

Proteostasis includes systems for the adjustment of effectively collapsed proteins and proteotoxic 

stress, most distinctly the transcription factors including the heat shock group of proteins, forkhead 

factors and molecular chaperones (Taylor & Dillin 2011). Every one of these frameworks work in a 

facilitated manner to restore the structure of misfolded polypeptides or to evacuate and destroy 

them completely, consequently keeping the aggregation of harmed segments in control and 
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guaranteeing the consistent replenishment of intracellular proteins. Numerous studies have shown 

that this state of proteostasis is modified with ageing (Balch et al. 2008).  In ageing cells over time, 

there is a functional decline in proteostasis machinery, resulting in continuous accumulation of 

damaged and mis-folded proteins, leading to reduced cellular viability and advancement of some 

age-related pathologies, for example, Alzheimer's disease, Parkinson's  etc., (Rodier & Campisi 

2011). 

1.5.8 Altered Intercellular Communication  

Intercellular communication is critical for coordination of physiology in multicellular organisms.	

Along with cellular level modifications, ageing also includes changes at the level of intercellular 

correspondence, impacting on endocrine and hormonal regulation (Downing & Miyan 2000). The 

functions of endocrine organs are linked in a such a way that reduced function in one alters the 

regulation of others. Another distinctive age-related change in intercellular communication relates 

to inflammation, which may come about because of numerous reasons such as aggregation of 

damage in pro-inflammatory tissue, decline in resistance framework’s ability to successfully clear 

pathogens and the affinity of senescent cells towards pro-inflammatory cytokines. These 

modifications bring about an improved actuation of the NLRP3 inflammasome and other pro-

inflammatory pathways which play a direct role in the pathogeneses of atherosclerosis, Type 2 

diabetes and artery disease in the elderly (Baroja-Mazo et al. 2014). Overall, changes in metabolism 

and production of various hormones with age results in alterations in body composition 

characterized by decrease in lean body mass and bone mass and increase in fat mass. Furthermore, 

there is decline in functional status as well, such as reduced immune function, reduced capacity of 

the cardiovascular system, anaemia, insulin resistance and this leads to fatigue, depression and poor 

libido (Chahal & Drake 2007).  

1.5.9 Immunosenescence or loss of immune function 

As stated before, age correlated diseases such as rheumatoid arthritis (autoimmunity), cancer (e.g., 

prostate and lung), Type 2 diabetes(T2DM) and cardiovascular diseases (CVD) are major concerns 

for the elderly. The link between few of these diseases such as T2DM and CVD is immunity. With 

age, there is loss of immune functions known as immunosenescence which may explain the age-

associated incidence of such diseases. Immunosenescence has been associated with an increased 

predisposition to diseases, malignancy, infections,poor response to treatments and impaired wound 

healing (Pawelec 2007).  

The changes affecting the immune system often leads to global dysfunctions in both adaptive and 

innate immune system (Makinodan et al. 1991). An important contributor being impaired B and T 
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cells production in bone marrow and thymus and diminished function of mature lymphocytes 

because of which the elderly individuals do not respond to immune challenge as robustly as their 

younger counterparts (Montecino-Rodriguez et al. 2013). Immunosenescence also causes increased 

CD8+ cytotoxic/suppressor cell numbers, and decreased CD4+ T-cell and CD19+ B-cell numbers  

which has been associated with increased morbidity and mortality (Ferguson et al. 1995). Further, 

in ‘frail individuals’ immunosenescence is often characterised by increased serum IL-6 and TNF-α 

levels causing chronic systemic inflammation, referred to as inflammaging (Franceschi et al. 2007; 

Franceschi & Campisi 2014)(Franceschi & Campisi 2014). 

1.6 Age-Associated Diseases  

Age associated diseases are conditions that generally manifest at advanced age causing disability or 

premature death (Partridge 2010). Physical and psychological disorders such as cancer, 

osteoporosis, cataract, arthritis, dementia, cardiovascular disease, diabetes, Alzheimer's disease, and 

hypertension are few examples of age-associated diseases (Boots et al. 2013; Wu et al. 2014; 

Barzilai et al. 2012). All these diseases and their incidence and severity increases with increase in 

age (World Health Organization 2011). Accumulation of damage and lack of repair mechanism at 

cellular, and molecular levels leading to the gradual decline of body function is considered as a 

starting point of several diseases and their pathogenesis.  Some of these diseases result in change in 

hearing, muscular strength, vision, bone strength, nerve function and immunity (Niccoli & 

Partridge 2012). Ocular problems such as Glaucoma and cataract are also associated with ageing 

(Salvi et al. 2006). Ageing makes an individual more vulnerable to weaknesses and infections 

(Herbig et al. 2006). To comprehend this vulnerability of aged towards these diseases, it is crucial 

to understand the process of ageing and the underlying mechanism of these diseases.  

1.6.1 Cardiovascular disease  
Cardiovascular system pumps and supplies oxygenated blood to all parts of the body and is 

responsible for the health of every single tissue within an organism. Ageing being an inevitable part 

of life significantly affects the heart and arterial system and is the major risk factor for 

cardiovascular disease (CVD) including stroke, atherosclerosis (Coronary artery disease or CAD), 

myocardial infarction, and hypertension which are some of the leading causes of morbidity and 

death in the elderly population (North & Sinclair 2012). Various animal and human models have 

shown mechanisms such as oxidative stress and inflammation to play a central role in age-related 

cardiovascular dysfunction (Lakatta 2000; Judge et al. 2005). Ageing of the vasculature results in 

increased thickening and stiffness of the large blood vessels and also results in impaired endothelial 

function in the smaller blood vessels. Because changes in collagens are reported with ageing (Jani 

& Rajkumar 2006) and because large blood vessels contain high levels of collagens that determine 
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stiffness, it is possible large vessel status can be a biomarker for vascular ageing. Pulse wave 

velocity (PWV) is a widely used clinical measure of arterial stiffness. Alterations in the heart with 

age includes fibrosis, hypertrophy (increase in volume) and calcification. These physiological 

changes lead to increased systolic blood pressure, which increases the vulnerability for developing 

CVD and advances the risk of heart attacks.  

               In addition to non-modifiable risk factors such as gender and age, there are other risk 

factors for CVD, such as smoking, cholesterol, obesity, high blood pressure, lack of physical 

activity and diabetes (Anderson et al. 1991; Ambrose & Barua 2004; Sowers 2013) and these risk 

factors are thought to impact on small and large vessels to different extents. Different scoring 

systems have been developed to assess the risk of suffering from CVD, which work by allocating 

certain scores for each of the individual risk factors and then calculating a cumulative score, with 

higher score associated with higher risk profile. Amongst these, Framingham scoring system is the 

most popular approach that has been successfully applied to a wider population (Benjamin et al. 

1994; Bhopal et al. 2005).  

In terms of genomic knowledge of CVDs and stroke, enormous strides have been made over 

the past century, ranging from understanding cardiovascular physiology to molecular and cellular 

studies exploring the underlying risk factors (Feero et al. 2011). Methods such as whole genome 

sequencing and genome-wide association studies (GWASs) have recognized about twenty five loci 

associated with myocardial infarction and CAD by analyzing a large set of genetic variants by 

comparing case and control subjects from a population to determine which variants are associated 

with the disease in question (Anderson et al. 2010; Yasuno et al. 2010). Further, meta-analysis of 

these different GWAS based studies involving around ~90,000 CAD and control participants in 

addition to confirming the earlier observations have also identified 13 new loci associated with 

CAD (Smith et al. 2010; Feero et al. 2011; Schunkert et al. 2011). While this is a progressive step 

forward, it is important to know that CVD is a complex disease that occurs due to the sum of 

multiple polymorphisms, with each variant having a relatively small effect (<10%) on gene 

expression and disease. Transcriptomic signatures based on differential gene expression have been 

related to prognosis of CVD in humans and has indicated that quantitative differences in gene 

expression have the potential to define a person’s phenotype (Heidecker et al. 2008). Thus 

combining genome-wide gene expression together with genetic variation could yield a far more 

promising approach that could disclose the link between transcriptional regulation and CVD (Dixon 

et al. 2007; Schnabel et al. 2012). Further age-related stiffening of large elastic arteries such as the 

aorta has also been an important predictor of future cardiovascular events. In chapter -5 we explore 

the possibility of building a vascular ageing signature using a skin gene expression data for subjects 

for whom clinical measure of arterial stiffness (Pulse wave velocity measure) were available. We 
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hypothesized that skin gene expression could potentially serve as a surrogate measure of elasticity 

and since with ageing there is a changes in collagen and loss of elastin, a model based on the 

transcriptome and clinical covariates could potentially provide an insight into a person’s vascular 

(or extracellular matrix) ageing.  

1.6.2 Sarcopenia 

Sarcopenia is the progressive loss of skeletal muscle mass and function with age. It is often a result 

of or leads to decrease in physical activity which leads to functional impairment or disability and 

increases vulnerability towards other chronic ailments such as CVD and insulin resistance 

(Roubenoff & Hughes 2000). With age, there is a decline in mitochondrial biogenesis as well as 

reduction in the ability to promote muscle protein synthesis, which has substantial impact on the 

age-associated loss of muscle mass and strength. Both of which are the two most recognized risk 

phenotypes associated with sarcopenia. Previous work has reported enormous inter-individual 

variability in these phenotypes arising due to interaction of genetic and environmental factors 

(Cesari et al. 2006; Janssen 2006). Linkage and association studies have shown IGF1 (positive) and 

IL-6 (negative) group of genes to be statistically correlated with skeletal muscle strength and/or 

mass (Tan et al. 2012). Other factors that have been linked to the cause of sarcopenia include 

oxidative stress, poor nutrition and impaired regulation of growth hormones and sex steroids 

(McArdle et al. 2002; Rudman et al. 1990; Hickson 2006). 

            There is currently no fully accepted criteria or standardised technique that can diagnose and 

track sarcopenia related muscle decline. In clinical studies, it is commonly diagnosed using the 

appendicular lean mass calculation derived from the dual-energy X-ray absorptiometry (DXA) 

estimate. Though widely used, DXA tends to overestimate skeletal muscle mass as it is unable to 

discriminate muscle from water retention and muscle fat infiltration, thereby under estimating the 

extent of sarcopenia in an individual (Kim et al. 2002). This lack of an accurate and well 

established diagnostic criteria to identify patients with sarcopenia hinders the potential prevention 

and management options. Examining factors that determine skeletal muscle mass can possibly help 

in understanding and treating the age linked sarcopenia. Studies have indicated that resistance 

exercise training can stabilize the progress of sarcopenia as resistance training enhances muscle 

protein synthesis and improves muscle protein quality (Melov et al. 2007; Phillips et al. 2013). 

1.6.3 Dementia and Alzheimer 

Dementia is a loss of cognitive abilities in multiple domains that results in impairment in normal 

activities of daily living and loss of independence. Alzheimer’s disease (AD) is a progressive 

neurodegenerative disease and is the most common form of dementia that accounts for 60–80% of 

all dementia cases (Jessen et al. 2011). The primary risk factor for AD is age. Around 7% of the 
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population above 65 years of age have dementia (at least 65% of these have AD), and with the shift 

in population demographics in the coming decades >150 million Europeans will be aged above 65 

years (>1.2 billion, world-wide) (Harper 2014). 

It is believed that the cellular and molecular alterations causing brain circuitry dysfunction 

in AD have a slow onset and full blown disease may take many years to develop. Alzheimer’s 

disease is characterized by the accumulation of β-amyloid peptide (Aβ) within the brain and hyper-

phosphorylated and cleaved forms of the microtubule-associated protein tau in elderly people 

(Kolarova et al. 2012).	Also, unlike many other disorders and illnesses that can be associated to 

their fundamental cause, AD has been identified to be a result of combination of biological and 

environmental factors. These include mutations in the apo-lipoprotein, presenilin-1 and presenilin-2 

genes, prior head injury, or having the ε4 allele of apo-lipoprotein (Hardy 1997; Kensinger & 

Corkin 2009; Mormino et al. 2014). 

The early symptoms of AD are loss of episodic and working memory, which are due to 

network disconnections caused by oligomeric Aβ (Donohue et al. 2014). Alzheimer’s disease 

causes severe suffering for patients and emotional distress to the family. The gradual disease 

progression is accompanied by cognitive decline related to memory impairment as well as decline 

in motor functions, attention, higher-order functions, personality as a whole and recognition of 

objects (DE Toledo-Morrell et al. 2000). Risk of AD is linked to ageing but also lifestyle diseases, 

such as T2DM and hence also related to physical activity. There has been preliminary evidence 

suggesting that physical activity such as walking and exercise may reduce some of the negative 

characteristics associated with cognitive impairment and reduce the risk of dementia (Ahlskog et al. 

2011) 

1.6.3.1 Diagnostics for Alzheimer’s Disease  

 It is important to understand the early and asymptomatic states of the disease with the aim of 

proposing preventive therapeutic strategies. Around £26 billion is spent on health and social care 

activities for the 850,000 dementia patients in the UK alone and 250,000 new cases are expected 

each year (Dementia UK 2014). There is an urgent need to validate an AD diagnostic for primary 

physicians for a variety of social, medical and economic reasons – including a perceived under-

diagnosis (e.g. Dementia Action Alliance report).  Ultimately a treatment that will prevent or 

dramatically slow the progression of AD will be useful but this will not be possible without 

advances in population screening and robust diagnostics. MMSE scores (Folstein et al. 1983) is  

widely used to characterise cognitive decline in the elderly with scores below 24 commonly used to 

indicate a cognitive deficit. It serves as a neuropathological criterion for the diagnosis of AD. 
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However, the score is known to be affected by age and education and has a potential for 

misclassification or wrong diagnosis if not carefully reviewed by a trained clinician (Crum et al. 

1993; Wind et al. 1997). 

There are currently no drug-treatments for AD that halt or cure the disease (Salloway et al. 

2014). Clinical view is that only the earliest possible intervention is likely to significantly impact on 

the structural features of neurodegeneration (e.g. such as anti-beta-amyloid compounds). However, 

currently available diagnostic techniques are neither scalable for mass population screening nor 

sufficiently cost-effective to be practical (Biasutti et al. 2012). For example, magnetic resonance 

imaging (MRI) combined with contrast agents has less than 5% utility in a ‘screen and medicate’ 

cost-effectiveness analysis. To date advances have been made in medical imaging and bioassays to 

confirm evidence of already extensive neurodegeneration (e.g. cerebral atrophy on MRI or CSF 

levels of beta-amyloid species) but these are expensive, invasive techniques requiring specialist 

medical centers and are technically restricted to specialists. 

1.7 Human brain, ageing and cognition 

Empirical studies of healthy ageing have indicated that older adults while still being mentally fit, 

become slower and gradually start developing cognitive problems evidenced by reduced 

performance on different kinds of memory tests (Folstein et al. 1983; Glisky 2007). The age-related 

decline in memory and performance is believed to be a result of failure to control the cluttering of 

irrelevant information. This loss of functional specialization could be a result of reduced neuronal 

integrity. It is believed that the cognitive functions that are functionally separated in young adults 

show reduced differentiation in older adults (Reuter-Lorenz 2002). Thus, cognitive impairment is 

one of the key determinants of advancing age and a major challenge for healthy ageing (Hanninen 

et al. 1996).  

Cognitive processes are dependent upon the integrity of the brain, with age-related cognitive 

decline being widely associated with changes in the brain structure and function including 

neurochemical changes (Perry et al. 1982; Strong 1998), cerebral atrophy (Raz et al. 2005), 

reduction in brain volume (Walhovd, Fjell, Reinvang, Lundervold, et al. 2005) and reduced blood 

flow (Newberg et al. 2005). Research to understand the complexities of brain anatomy and its 

structure and function has been pursued for long and is still an on-going process. Though each of 

the brain regions have individual processes attributed to it such as cognition, problem solving 

ability, memory and response to sensory, spatial and visual stimuli (Goodale & Milner 1992; West 

1996; Coutlee & Huettel 2012) brain functions as a single unit by interaction between the different 

sections (Spreng & Mar 2012). In spite of the functional interconnectivity, the advent of ageing 
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occurs at different rates and in different manners between these regions.  These differences 

primarily can be observed in neurogenesis restricted to specific brain regions and the distinct 

deterioration in size with age (Raz et al. 2005). Biological changes associated with ageing 

eventually leads to dedifferentiation between cognitive and perceptual functions. Numerous genetic 

and environmental factors impact cognitive abilities (Winocur 1998; Mormino et al. 2014). To 

understand age-related decrease in cognitive functioning, it becomes imperative to study the 

changes in brain morphology and functioning. Deterioration in the brain regions was earlier 

considered to be the result of neuronal loss (Kemper 1994). However, with the advent of techniques 

such as positron emission tomography (PET) and MRI, researchers have found that neuronal loss is 

trivial, and atrophy could possibly be the result of reduced synaptic density, cell shrinkage and 

dendritic regression (Morrison & Hof 1997). Previous studies appear to present conflicting 

findings, especially when the brain is examined as a whole so as to assess the specific effects of 

ageing within each area it is important that each region of the brain is studied independently 

(Scahill et al. 2003).  

1.7.1 Ageing and structural variability among the brain regions  

Impact of the age-related effects are region dependent. Various cross-sectional studies have 

ascertained neuroanatomical age-related volume differences with different age trajectories for 

different brain regions. Some regions degenerate in a linear manner from early in life, whereas for 

some regions age-related volumetric changes are curvilinear where they continue to increase in 

volume, then stay constant (a plateau phase) and eventually begin to deteriorate (Walhovd, Fjell, 

Reinvang & Lundervold 2005). The greatest age-related change occurs in the striatum and frontal 

lobes with decrease in gray matter volume and an increase in white matter lesions. Volume losses 

within this region may contribute to age-related cognitive decline (Meguro et al. 2001; Abe et al. 

2008). Deterioration within the gray matter structures has not been able to predict decline in 

cognitive functions. Presence of lesions in the white matter tracts that interconnects cortical to 

subcortical regions disrupts the neural transmission and might result in cognitive dysfunction (De 

Groot et al. 2000). Ageing is also accompanied with accelerated degeneration of the hippocampus 

and putamen (Jack et al. 1999; Laakso et al. 2000; Walhovd, Fjell, Reinvang & Lundervold 2005).  

1.7.2 Ageing and brain transcriptome  

Brain tissue has a high level of gene expression, with approximately ~45% known protein-coding 

genes expressed across all the different brain regions (Colantuoni et al. 2000; Myers et al. 2007). 

Ageing of the brain is characterized by varied complex events, and studies have shown existence of 

a robust relationship between gene expression levels and brain ageing (Berchtold et al 2008, Kumar 

et al 2013, Kang et al 2011), but only few of these age-related expression changes have been 
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consistently found across datasets. A comparison of global expression patterns across different 

human tissues have shown a distinct gene expression profile for brain than the rest (Saito-

Hisaminato et al. 2002; Roth et al. 2006). Further, studies utilizing microarray and RNA-

sequencing technology have shown higher expression and intricacy in the transcriptome of the 

human brain than other tissues (De La Grange et al. 2010; Ramskold et al. 2009), which could be 

because of extensive changes in the physiology and function of the human brain throughout the 

lifespan (Oldham et al. 2008). Thus, transcriptional profile of brain is always evolving with a brief 

duration of 10-15 years at ~30 to 45 years of age where it stays constant. Thereafter, with the 

advent of old age (>60 years) numerous changes in gene expression are evident impacting its 

mental and cognitive ability and brain plasticity (Somel et al. 2009; Colantuoni et al. 2011). 

The enrichment of the brain transcriptome is accomplished by high level of alternative 

splicing events that enables the brain to express different isoforms of a gene (Wang et al. 2008; De 

La Grange et al. 2010). Aberrant splicing not only occurs in case of neurodegenerative disorders 

(Perez-Tur et al. 1995; Shehadeh et al. 2010), but also happens during normal ageing of the brain. 

Gene expression across brain regions also shows high variability due to anatomical and functional 

differences across regions (Roth et al. 2006). Over all cerebellum has the most distinct profile 

(Khaitovich et al. 2004) and this low concordance of gene expression is also observed within 

different cortical regions and neocortex (Strand et al. 2007). Therefore, it is safe to conclude that 

different brain regions exhibit changes with age, however with different rates and manifestations. 

Thus, to study the impact of ageing it is vital that every area of the brain is reviewed autonomously. 

1.8 Biomarkers of ageing  

It is critical to investigate healthy biomarkers of ageing to develop interventions that not only 

improves the healthy aspects of elderly but also stipulates approaches that monitor aspects of early 

or subclinical disease. It is also important to mention that our primary interest is in identifying 

biomarkers for ‘better’ or ‘worse’ ageing rather than a diagnostic of a disease. Diagnostics for 

diseases, such as Alzheimer’s are very challenging because of the low prevalence in the at risk 

population (e.g. 50-60yr old prevalence <5%) and the imprecise clinical criteria for defining 

Alzheimer’s disease in living individuals (e.g. ~90% correct). These combine, statistically, to make 

a high true-positive rate extremely challenging. Instead, if we could better define ageing, given it's 

the largest risk factor for Alzheimer’s, then we can identify an older population that has a much 

increased risk of Alzheimer’s disease in the future. In 1982, Reff and Schneider published a 

detailed set of criteria for the determination and measurement of a biomarker of ageing as follows 

(Reff & Schneider 1982): 
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a) Highly reproducible in general and in cross-species comparison 

b) Exhibits significant alterations over a relatively short time period 

c) Critical for successful maintenance of health and disease prevention 

d) Reveals a detectable parameter that can be predicted at a later age 

e) Reflects some basic biological process of ageing and metabolism  

 

However, studies investigating into ageing biomarkers are restricted by several challenges. 

Several researchers study ageing with respect to morbidity and disease. However, age and disease 

are not biologically synonymous (Thompson & Voss 2009). These biomarker studies focus on age-

related decline, which is not essentially a descriptor of healthy ageing. Inter-species differences in 

ageing also make this search for biomarkers more challenging. Living organisms are characterized 

by different lifespans, which implies that not all organisms age at the same rate (Piper et al. 2008). 

Genetic variation amongst different organisms have marked inter-species differences in the genes 

and proteins involved in the ageing processes thus implying that these processes are implemented 

and regulated differentially between organisms (Fontana et al. 2010). This restricted cross-species 

reproducibility becomes a greater challenge as most of the ageing studies are on model organisms. 

Many of the molecular mechanisms which extend the lifespan of laboratory animals have been 

reported to also positively impact on disease-free lifespan (Kenyon (2010) Nature 464: 504–512). 

Nevertheless, it has been difficult to establish if any of these are reliably modulated during human 

ageing (Phillips et al. 2013; Bell et al. 2012; Glass et al. 2013). Even if ageing-related molecular 

mechanisms are conserved across species, such molecules still may not represent reliable clinical 

biomarkers. 

Validity of any biomarker with regard to ageing can be assessed by a well-accepted definition 

published by Baker and Sprott in 1988: “a biological parameter of an organism that either alone or 

in some multivariate composite way, in the absence of disease, better predict functional capacity at 

some later age than chronological age” (Baker & Sprott 1988). The molecules that naturally change 

with age are the only potential candidates for the signature of healthy ageing and in this sense a true 

biomarker of healthy ageing is unlike standard biomarkers that help in detecting or examining a 

disease. No single marker can give sufficiently high segregation of cases from controls as a 

diagnostic test for clinical applications. Thus, utilizing numerous markers consolidated in some 

kind of algorithm will be necessary to deliver requisite level of predictive ability. Figure 1.4 

summarizes the characteristics of an ideal biomarker.	
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Figure 1.4 Characteristics of an ideal biomarker. In addition to being an accurate reproducible diagnostic, 

a biomarker should have clinical abilities as well. Further, it should be quick, consistent, economical, and 

quantifiable in an accessible biological fluid or clinical sample. 

 

1.8.1 Approaches for Identifying Biomarkers  

Different approaches are being explored to understand the distinctive physiological and 

pathophysiological processes that drive human ageing and longevity. These approaches can be 

broadly divided into genetic, epigenetic, transcriptomic and proteomic research (Deelen et al. 

2013). In the past, genome-wide association (GWAS) methods, linear models of epigenetic 

regulation and differential gene expression have identified traits associated with ageing and 

exceptional longevity in humans and have attempted to explain factors driving age-associated 

disease risk (Sebastiani et al. 2012; Hannum et al. 2013; Horvath 2013).     

1.8.1.1 Genomic (DNA) Approach  

Identification of genetic variants associated with exceptional longevity in humans, using genome-

wide association (GWAS) methods, is one approach that has been attempted to shed light on factors 

driving disease risk. For example, GWAS have reproducibly identified the APOE/APOC1 gene 

locus (Deelen et al. 2011; Sebastiani et al. 2012; Beekman et al. 2013), a locus associated with a 

rapid-ageing phenotype, Werner's syndrome (Yu et al. 1996) and a number of additional candidate 

Figure	1.4
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regions (Beekman et al. 2013). The largest study identified 281 single nucleotide polymorphisms 

(SNPs) that may explain up to 17% of exceptional longevity in humans (Sebastiani et al. 2012). 

However, long-lived humans share the common risk-alleles for coronary artery and other age-

related diseases (Beekman et al. 2010) with people who have an average life-span, suggesting that 

long-lived humans have beneficial mutations that can compensate for these risk factors. The 

relationship between DNA variation and ageing has been proposed to involve many small-effect 

size variants (Yashin et al. 2010). This means that production of sensitive diagnostics from DNA 

samples alone, for the purpose of personalized medicine, may prove challenging. Indeed, 

establishment of a strong statistical association between a genomic variant does not establish if such 

a measure can be used to accurately diagnose risk, as the information available is unable to 

distinguish between two similar medical conditions with divergent treatment strategies. 

1.8.1.2 Epigenomic Approach  

Research examining animal models and twins has elucidated that individuals or organisms having 

highly similar genetic background can age at varying rates (Fraga et al. 2005). DNA undergoes 

several alterations as we age, some of these modifications occur without changing the genetic 

sequence or code (Holliday 1987). These modifications to DNA are epigenetic in nature and 

constitute DNA methylation, histone modifications and non-coding RNAs. Epigenetic changes at 

the key genomic regions such as transcription start site, promoter regions , etc., can switch on or off 

specific genes. Thus by controlling which genes are active in a particular cell, epigenome governs 

which proteins are transcribed locally within a cell type. The importance of epigenetic changes and 

its influence on longevity has already been established in model organisms such as yeast, worms, 

etc., (Greer et al. 2011; De Lencastre et al. 2010) as well as in humans (Fraga 2009). Epigenome is 

a primary location of gene-environment interactions and exposure to certain environmental stimuli 

can readily alter it (Aguilera et al. 2010). An age-related methylation drift has been observed and 

established, which is not uniform across the genome, and is quite variable between individuals of 

the same age (Rakyan et al. 2010; Hernandez et al. 2011). Thus this epigenetic landscape has been 

hypothesized as a 'biological marker' that reflects cell’s identity, health and age.  

Availability of affordable high-throughput techniques such as sequencing platforms and 

other genome wide technologies has helped to provide better insights of the epigenetic landscape 

specifically DNA methylation. Using an epigenome wide association approach scientists have 

investigated human longevity with methylation data on 172 females between an age-range of 32 y 

to 80 y (Bell et al. 2012). They noticed that the majority of age-related changes in DNA 

methylation were not related with phenotypic measures of healthy ageing such as telomere length, 

systolic blood pressure, etc., However, for small subset of genes they found that DNA methylation 
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mediated environmental and genetic effects on the age-related phenotypes. This implied that either 

DNA methylation has very small individual effect on measures of biological ageing or it may be 

associated with yet unknown ageing phenotypes or pathways.  

Studies have examined the changes in DNA methylation as a potential marker for 

chronological age as well as biological age across species and cell types. These predictors of 

chronological age have been constructed across different tissues (Sinsheimer et al. 2011; Horvath et 

al. 2012; Hannum et al. 2013; Weidner et al. 2014). Hannum et al. built a multi-tissue linear model 

of DNA methylation in which age-related changes with DNA methylation state was closely related 

to chronological age but it could not distinguish between age and age-related disease. Horvath’s 

epigenetic clock examined the relationship between DNA methylation and ageing by using ~8000 

samples from brain, breast, skin, colon, kidney, liver, etc., with age range from newborns to 101 

years. They developed a quasi-linear regression model of chronological age (~ 353 CpG sites) and 

transformed age in a unique manner for ages less than and greater than 20 y (log and linear 

transformation respectively). The divergence from chronological age (±3years only) was explained 

as the biological age of the sample. However, instead of being an actual disparity in ageing rates 

this slight deviation could imply a possible over-fitting of the specific model. Also, for most of the 

tissues the divergence from chronological age was minimal which raises the question on its utility 

to identify healthy ageing because a successful diagnostic of this type should show higher 

variability within a similarly aged population (chronological age).  

For any epigenome-based markers it will be imperative to determine the effect of 

age-related changes in cell composition within tissues since methylation measures for these 

predictive markers are mostly taken on entire tissues (Zou et al. 2014). Even though there are many 

published epigenetic papers that have discovered markers of age and diseases such as cancer but 

very few of these relate the same markers in similar clinical specimens based on same assay 

technology. The consequence of employing diverse assays and varied markers discovered from 

them is that their real performance becomes incomparable. Further, these epigenetic assays are very 

poorly validated and need to be standardized if it have to be used as a diagnostic in clinical 

environment (Laird 2010).  

1.8.1.3 Transcriptomic (RNA) Approach  

Studies in model organisms and across different species have shown that ageing is characterised by 

molecular and physiological changes at cellular and tissue level. Identifying individual factors 

driving this multifaceted process is challenging as it is influenced not only by the genetic but also 

by the environmental factors such as diet, exercise, lifestyle, etc. Transcriptome has the ability to 

provide a better insight into age-related changes as the expression of RNA is under genetic 
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(Schwanhäusser et al. 2011; Westra & Franke 2014), epigenetic (Horvath et al. 2012) and 

environmental control (Keller et al. 2011; Larrouy et al. 2008). Transcriptomic study in skeletal 

muscle has successfully shown heterogeneity in gene expression profile for individuals from the 

age of 30 years, which implies that individuals have different ageing rate as they go through middle 

age and thus have diverse morbidity and mortality rates (Lu et al. 2004). The advent of global 

transcriptomic techniques such as next-generation sequencing and microarrays has helped 

researchers to unravel and understand the expression of whole transcriptome (Rodwell et al. 2004; 

Zahn et al. 2006).  The potential of using RNA based classification approach for another major 

human phenotype i.e. adaptability of the aerobic capacity system in young and middle-aged adults 

has been previously established by our research group (Timmons et al. 2010). Machine learning 

methods applied to global transcriptomic profiles has already yielded sensitive and specific 

diagnostic and prognostic tools for cancer, using sets of gene-expression values of limited size 

(Shedden et al. 2008; Menden et al. 2013).  However, in cancer studies gene expression changes are 

often of higher magnitude, to what can be expected from a study designed to identify healthy 

ageing, meaning it is unclear what size of gene-set would be required. 

Ageing studies are usually carried out on cross-sectional datasets that cover individuals over a 

broad age-range. Several such transcriptomic studies have been designed and investigated across 

different tissue types such as skeletal muscle (Welle et al. 2004), kidney (Rodwell et al. 2004) , 

blood (Peters et al. 2015), brain (Erraji-Benchekroun et al. 2005) , etc. Even though there has been 

similarity in age affected pathways across these studies (partly reflecting inappropriate use of gene 

ontology analysis) but in terms of transcriptional changes with age there has been very limited 

overlap. This might imply that in each tissue different individual genes change their expression with 

age. However, a comparative analysis of transcriptomic data from different studies and different 

tissues such as muscle, kidney and brain found that along with tissue specific changes with age 

there is a possibility to find an underlying common ageing signature across tissues that might reflect 

the true biological age of the organism (Zahn et al. 2006). The Zahn study was limited by the fact 

that the old tissue samples originated largely from a very different type of muscle tissue than the 

young samples and was not possible to replicate in our more recent studies (Phillips et al 2013 PLos 

Genetics). A meta-analysis study performed on cross-sectional RNA data from healthy non-treated 

samples from adult mice, rat and human found that by integrating gene expression profiles from 

several studies it is possible to identify set of genes that are consistently regulated i.e., under or over 

expressed with age (De Magalhães et al. 2009) but without carrying out a formal robust tests as to 

the reliability of these genes to classify unknown samples. 

 

Most of these earlier attempts of modelling the ageing phenotype have involved correlative 
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linear models that adjust for different age related covariates such as gender, blood pressure etc. This 

can be problematic as linear correlative approaches do not dissociate ‘age’ from age-related disease 

or drug treatment (unless the investigators strictly use healthy old subjects) specially when applied 

across a wide age range. For instance, a subject aged 40y can have the same measurement for an 

age related clinical covariate (blood pressure/ cholesterol) as a subject aged 60y. However, for latter 

the measurement could be an effect of a medication then an actual transcription profile reflective of 

its ageing. Therefore, both from a statistical and a clinical perspective linear correlative models for 

ageing are fraught with limitations without properly taking into account chronological age-range, 

concurrent drug-treatments etc. For this research work we have spent significant effort to build a 

good study design that could capture the trends of healthy ageing by taking into consideration strict 

set of benchmarks and established practices and have utilized classification statistical methods to 

evaluate which human tissues demonstrate a reproducible molecular signature for age (discussed in 

chapter-2 of the thesis). Thus, human ageing is characterised by focused changes in gene 

expression. If supported with good study designs and analysis, identifying such gene expression has 

the potential to yield robust biological ageing signature/biomarker. 

1.8.1.4 Proteomics Approach  

Proteome is defined as set of all expressed proteins that characterizes information flow within the cell or an 

organism and is considered as a dynamic reflection of both genes and environment. It is believed to hold a 

promise for biomarker discovery because proteins are ubiquitously affected in disease and disease response 

(Jain & Jain 2010). This is reflected in many protein disease biomarkers already available eg: CA-125 and 

alpha-fetoprotein (Bast Jr et al. 1997; Brock & Sutcliffe 1972). Thus, this approach is actively involved in 

the recognition of human physiology and its complexities. The techniques and procedures involved include 

mass spectrometry, western blot etc. While we gain much information from proteomic investigation it is 

complicated because of its domain size (>100000 proteins) and inability of the current technologies to detect 

low abundance proteins. Further, the quantity of data that is acquired with new techniques places new 

challenges on data processing and analysis (Chandramouli & Qian 2009). 

Probing into the transcriptional range of a particular genome tells us more about the expression 

rather than its protein library (Hegde et al. 2003). This is because of the fact, that in eukaryotes there 

happens to be many regulatory RNAs which do not actively translated into proteins. Further there are long 

non-coding RNA which is mostly an enigma, till now (Kung et al. 2013; Cesana et al. 2011). Although they 

do not seem to be carrying anything out in particular, the sheer numbers by which they are transcribed 

indicate that they serve some purposes.  Protein abundance regulation is much more convoluted then 

transcription regulation(Vogel & Marcotte 2012). In view of all this we believe that gene expression based 

biomarkers can potentially serve as a better proxy for biological activity associated with healthy ageing since 

transcriptomics are much cheaper and easier to do than proteomics.  
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1.9 Summary  

Yielding strategies to cope with increase in the ageing population and age-related chronic diseases 

is important. Since the ageing process demonstrates large inter-individual variation, a sensitive 

diagnostic able to predict these characteristics would be useful. Personalized treatment strategies 

have high impact on modern medical practice and such strategies are essential if we are to achieve a 

greater degree of certainty that a particular treatment will benefit the individual patient. The 

challenge is to identify sets of molecular ‘biomarkers’ that provide sensitive and specific 

information, enabling long-term guidance for personalized treatment. However, there are numerous 

challenges to both the development of, and the implementation of personalized strategies for most 

major age-related diseases including economic constraints. Large experimental groups as well as a 

good study designs are required to enable reproducible conclusions to be made from studies of gene 

expression and ageing. Most studies for biomarkers of human ageing have been based on 

epidemiological cohorts that blend in ageing, disease and drug-treatment. However, a good study 

design and strategy to find candidate biomarkers for human ageing is to compare molecular traits in 

normative and healthy ageing in groups within the human population with no metabolic or chronic 

diseases. Further, there are multiple competing technological platforms that can yield plentiful data, 

but progress in integrating divergent data formats to yield robust and sensitive diagnostics for 

clinical decision making remains slow. Possibly, a pragmatic strategy will be to utilize a single 

technology platform with proven technical features that captures sufficient clinical variance, that it 

can provide a stand-alone and robust diagnostic for healthy human ageing. 
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2.1 Overview of the chapter 

This chapter will describe the machine learning approaches used to develop an RNA expression 

signature of ‘healthy ageing’. We begin by examining the strengths and limitations of technologies 

that provide insight into the human transcriptome including RNA-sequencing and microarrays, 

followed by a discussion of approaches we used to handle microarray data in order to generate the 

most robust signal possible.  Following an overview of general methods relevant to this work, we 

describe in greater detail the development of our molecular diagnostic that was able to discriminate 

between healthy young and healthy older humans using a very strict set of methodologies and 

benchmarks. Thus, the principle goal of this chapter is to explain: 

• Motivation for using the RNA classifier approach to produce the signature. 

• Handling of the microarray data and extracting relevant information. 

• Building the age-diagnostic. 

2.2 Gene expression profiling 

Nearly all individual cells within a multicellular organism contains of the same genome. However, 

within each cell, different genes are transcriptionally active, resulting in cells and tissue displaying 

different gene expression patterns. This results in a myriad of structural, biochemical, functional 

and phenotypic variations amongst cells and tissues that might play a role in the differences 

observed between health and morbidity.  This complete set of transcribed genes expressed as 

mRNA within an individual is known as the transcriptome (Su et al. 2002). Gene expression 

profiles not only have the potential to explain cellular functions, regulation and biochemical 

pathways but when contrasted between cases and controls (e.g. normal vs healthy), the 

transcriptome may reveal insight into disease pathology and identify new therapeutic points of 

intervention, enhancing diagnosis and improving prognosis (Van’t Veer et al. 2002; Xiong et al. 

2013).  

Transcriptomic changes are an important biological aspect of ageing (López-Otín et al. 

2013; Glass et al. 2013). Indeed, variation in the regulation of gene expression, more-so than 

sequence variation, has been long postulated to be a more sensitive approach to studying ageing 

(King & Wilson 1975). The manifestation of profiling technologies and machine learning methods 

applied to global RNA profiles have already proven to yield sensitive and specific diagnostic and 

prognostic tools for cancer using sets of gene expression values of limited size (Patnaik et al. 2010; 

Shedden et al. 2008; Menden et al. 2013). While it is intuitive that a RNA profile obtained from a 

tumor demonstrates prognostic ability, the idea that a global RNA profile obtained from a non-

diseased tissue sample can also produce an accurate and sensitive diagnostic that informs about 
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future disease has not been demonstrated.  

2.2.1 Next-Generation sequencing and Microarrays 

The development of transcriptome profiling technologies has allowed us unprecedented access to 

the world of RNA, with an ever-growing number of studies changing our view of its extent and 

complexity. Advances in molecular biology have brought utilization of microarrays and next-

generation sequencing (NGS) technologies to the forefront of transcriptomics. Each of these 

technologies possesses a set of distinct features suitable for different applications and research 

goals. Current sequencing methods depend on the reconstruction of transcripts from sequenced 

fragments that generally do not exceed a few hundred nucleotides. These methods inevitably result 

in uneven coverage across the transcript (due to technical biases in the fragmentation and 

sequencing technologies), with the 5’ and 3’ ends often being the most problematic areas. With 

microarrays, RNA expression is measured through the amount of cDNA that hybridizes to pre-

designed short DNA fragments, known as probes, immobilized on a chip. This limits the 

quantification of expression to areas in the genome that are matched by the probes. In addition to 

the need for having the correct type of probes, the distribution of probes must also be uniform (to an 

appropriate extent) across the transcripts’ untranslated regions. Thus, arrays have a fundamental 

design bias i.e., one can only explore and analyze the transcriptomic regions for which probes have 

been designed. Also, arrays are highly dependent on reference databases from which they are 

designed. On the contrary, with NGS, reads are generated without any a priori knowledge of 

transcriptome, thus permitting analysis of novel transcripts, splice junctions and noncoding RNAs 

and defined based on current genome knowledge. Due to this potential for NGS technologies to 

provide a more detailed look at the transcriptome, researchers have been keen to use it for gene 

expression studies (Mutz et al. 2013). 

Despite the methodological benefits of RNA-Seq, microarrays have several potential 

advantages over sequencing, particularly for detecting lower abundance transcripts. Hybridization 

in microarray typically uses higher concentrations of cDNA than RNA-seq assays, but the detection 

of each unique cDNA (or cRNA) is independent thereby avoiding the competitive detection 

scenario encountered with NGS data.  With sequencing, the inability to detect a large proportion of 

lower abundant transcripts is caused by a few highly abundant RNA transcripts accounting for a 

very large proportion of a cDNA library (Lei et al. 2015). This inability to robustly detect low 

abundance transcripts leads to high variability in the quantitative measurement of transcript 

expression. Microarrays, on the other hand, provide coherent and accurate gene expression 

quantitation irrespective of transcript abundance. Use of microarrays for research remains 

prevalent, as the technology has been proven successful in consistently providing genomics insight 
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for the past two decades (Harrington et al. 2000; Trevino et al. 2006; Yan & Gu 2009). Also, 

microarrays are generally considered easier to use as protocols for sample labeling, array handling 

and data analysis are less intensive. Moreover, general agreement has emerged on the major 

methods for processing the data and a wealth of good tools exist to analyze them, while the same 

cannot be said yet for RNA-seq. Further, despite NGS advancements and a recent drop in the cost 

associated with NGS, expression arrays are still economical and easier when processing large 

numbers of samples (e.g., hundreds to thousands) and yield higher throughput. 

There are pragmatic reasons for using microarray technology in a study such as ours as well. 

The primary research objective within this thesis was to find a biomarker or a diagnostic tool for 

healthy ageing that had prognostic abilities for a clinical outcome. There are many pre-existing 

datasets profiling a variety of tissues in young and old available on a variety of microarray 

platforms. Therefore, from a validation perspective microarray was a sensible choice (Figure 2.1). 

The different datasets used in our study were profiled on various microarray platforms including 

Affymetrix HGU133Plus2, Affymetrix HuEx-1.0 ST, HTA-2.0, Illumina HT-12 V3 beadchip and 

Illumina HT-12 V4 beadchip (for detail of the datasets see Appendix 1). 

2.3 Handling microarray data by updating probe definition and annotation files 

The most popular platform for genome-wide expression profiling is the Affymetrix GeneChip. 

However, the selection of probes to represent the totality of the transcriptome relies on genome and 

transcriptome annotation information available when a particular GeneChip was designed. Over 

time changes in the annotation of genome, leads to inaccuracies in the design time probe definition 

and this can affect the biological interpretation of the derived data (Sandberg & Larsson 2007). In 

this work, we tackled these critical concerns and implemented a solution for these design related 

drawbacks. A similar approach has been successfully implemented and employed in gene 

expression studies in the past (Dai et al. 2005; Greco et al. 2008). 

A Chip Definition File (CDF) is an annotation file for Affymetrix chips that defines probes 

(cells in Affymetrix terminology) mapping to the genomic unit of interest. For instance, a CDF for 

gene expression will specify a sets of probes that maps to the same gene. Thus, different CDFs can 

be utilized to examine different genomic units (i.e. genes, transcripts, exons). Affymetrix provides 

CDFs based on design time annotations, collapsing a group of probes into an Affymetrix defined 

probeset. However, researchers have also developed ‘custom CDFs’ that are optimized for various 

genomic features. Custom CDFs reorganize the oligonucleotide probes on gene chip platforms 

based on the latest genome and transcriptome information allowing one to use the most updated 

annotation when analyzing the data (Dai et al. 2005). Custom CDFs can also be used define the 
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probes in alternative genomic contexts e.g. one could generate a custom CDF specifically targeting 

5’ and 3’UTR regions, noncoding regions etc. In addition, one can also resolve the polymorphism 

problem in the designed probes by removing the probes with SNPs’ or indels (insertion/deletion of 

a nucleotide). Basically comprehensive polymorphism data are used to identify probes which cover 

regions with SNPs since polymorphism could affect signal integrity. These probes can then be 

removed from the CDF (Ramasamy et al. 2013). This can be useful as a genotype filter in case of 

unpaired analysis (see section 2.3.2).  

                

Figure 2.1: Comparison of gene expression profiling technologies. Advantages of RNA-seq and 

Microarrays technology compared to each other. From personalized medicine and clinical perspective 

microarrays outweigh NGS. 

2.3.1 Generating custom CDF files 

To generate these CDFs we start by aligning the probe sequences available in FASTA format (from 

the Affymetrix website) to the reference genome of interest using the bowtie alignment tool 

(Langmead & Salzberg 2012). We then extract the uniquely mapped probes from the alignment 

files i.e., probes that map only once to the reference genome, thus removing cross 

hybridising/multiple genomic loci probes. From the bowtie alignment file we create an annotation 

for each uniquely mapped probe comprising of the chromosome, strand, X and Y coordinate for the 

probe on the gene chip and also the probe start and stop position on reference genome. We 

additionally create a genome boundary file that defines the genomic region of interest for the CDF, 

which can range from a gene, transcript or an exon to 5’ or 3’ UTR. To create this file we first 
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download genome level data defining boundaries for different genomic units (genes, transcripts, 

exons) in General Transfer Format (GTF) from Ensembl. We extract the ensembl ID, chromosome, 

strand and start and stop position from the GTF file (Cunningham et al. 2015). It is important to 

note that we include only the exonic regions of a gene/transcript avoiding the regions spanning the 

introns, as these are unexpressed sections of a gene. So, for a gene level CDF, probes mapping to 

all exons from all transcripts are included in a single unit (gene in this case). Lastly using an in-

house R script, we map the probe annotation file to the genome boundary file to produce a single 

tab-delimited file of all probes and their corresponding assignments to a genomic unit, with each 

row corresponding to a probe to be included in the custom CDF. The tab delimited file is converted 

into a custom CDF using a user defined function in R (Figure 2.2).  

2.3.2 Resolving polymorphism in-probe problem 

Microarray probes are typically designed to match one reference sequence only, based on reference 

genomes present in public databases at the design time. Sequences that depart from this reference, 

either due to the presence of SNPs’ or due to the presence or absence of nucleotides (i.e. indels), 

often show a weaker binding affinity for the probe in question. Ramasamy et al  proposes a solution 

to this problem which we adapted to generate custom CDFs by removing the probes with 

SNPs’/indels’ (Ramasamy et al. 2013). These custom CDFs without SNPs will work as a genotype 

filter in case of unpaired analysis where we cross compare two samples from different subjects. The 

process comprises of three main steps as follows: 

a) Extracting the variant information by identifying and downloading the latest and most 

comprehensive polymorphism set. There are different genetic variation databases 

available for reference in the public domain such as HapMap (The International HapMap 

Consortium 2010), exome variant server, 1000 genomes project (1000 Genomes Project 

Consortium 2010), differing in their completeness as well as diversity of the population 

profiled. For example: if our dataset comprises of subjects of European descent then the 

indels and SNPs information could be extracted from the European panel (n = 381) of 1000 

genomes project. From this we would take into consideration only those SNPs and indels 

which have minor allele frequency (MAF) above a chosen threshold (> 1%) for 

polymorphism identification (threshold of 1% MAF in this case implies that the minor allele 

should exist in ~4 or more people out of the 381 profiled). We avoid being too stringent 

with the threshold because it can result in removing valid probes signals. 

b) Preparing the Probe file for the specific platform with genomic coordinates of each 

probe. Unlike Ramaswamy et al. who used the design time annotations provided by the 

manufacturer to get the genomic coordinates of the probes on the reference genome 
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(GrCh37) we used the latest mappings, by aligning the probe sequences (in FASTA format) 

to reference genome GrCh37 using bowtie alignment tool.  

c) Comparing genomic coordinates of SNPs’ and Indels’ with probe coordinates. Finally 

we used BedTools (Quinlan & Hall 2010) and files from step 1) and 2) to get the list 

of probes that contain these SNPs and Indels. Using the intersectBed functionality from 

BedTools we compare the probe coordinates and SNPs/indel coordinates and identify 

probes that overlap polymorphic sequence. We then remove these probes (as shown in 

Figure 2.2) before generating custom the CDF which collapses probes into gene, transcript 

or exon. 

This ensures that our custom CDF’s overcome the polymorphism problem in probes. One limitation 

of this approach is that it relies on variant databases for SNP/Indel information (currently 

completed for GrCh37 genome assembly) which are not updated along with reference genome 

(current version GrCh38) due to which one is unable to use the most updated genome information. 

2.4 Feature selection from gene expression data 

The goal of classification is to identify the features that can be used to predict class membership for 

new samples. Low reproducibility and the limited biological interpretability of candidate biomarker 

signatures identified from high-throughput data (microarrays, NGS etc.) is one of the key issues 

which impedes the use of discovered biomarker signatures into clinical applications. Under the 

circumstances, gene set analysis that investigates groups of genes instead of individual genes is 

becoming a trend in interpreting gene expression data.  

2.4.1 Criticism of differential expression approach for biomarker discovery 

With microarrays differential expression analysis of genes is key to classify features that relate to a 

phenotype and also helps in recognizing significant biological pathways. This feature selection 

based on differential expression analysis of gene expression data has been a widely used approach 

for identification of biomarkers. The differences in biological characteristics, e.g. genes, expressed 

across different species or conditions are generally investigated and those genes significantly 

changed are considered as differentially expressed. If a differentially expressed gene generally 

correlates very well with the phenotype of interest, then it is considered as a potential biomarker for 

that phenotype e.g.  blood pressure, body mass index etc. The accumulation of wealth of the 

publically available gene expression data in databases such as Gene Expression Omnibus (GEO) 

has further helped in detecting genome-wide genes that are significantly differentially expressed 

between case and control samples or between different disease stages (Lewohl et al. 2000; De la 

Fuente 2010). Earlier approaches based on differential expression identified gene biomarkers by 
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setting arbitrary threshold/cut-offs for fold change and p values (Hibbs et al. 2004; Ginos et al. 

2004). However, the technical noise inherited in the gene expression data and experimental 

variation in measured gene expression levels makes it challenging to detect significant gene 

expression differences that reproduce consistently across studies and contributes to false positive 

results. Indeed different threshold choices for differential expression can result in entirely different 

biological conclusions (Pan et al. 2005). Furthermore, there could potentially be many biologically 

important genes which are not considered because they are not significantly differentially expressed 

but are indeed related to the phenotype under consideration (Ben-Shaul et al. 2005; Goeman & 

Bühlmann 2007). Thus, a standard differential expression approach is unable to give a ‘common’ 

multi-tissue set of discriminatory RNA molecules that could function as a biomarker or a diagnostic 

(Glass et al. 2013) and can thus be inaccurate when used as a classifying tool.  In this respect, 

machine learning approaches could alternatively provide a more useful and robust understanding of 

the large genomic datasets.  

2.4.2 Machine learning approaches in genomics 

Machine learning is a term used to describe a broad range of automated algorithms that learns from 

data. By and large machine learning strategies have two applications i.e. prediction or interpretation 

(Libbrecht & Noble 2015). In genomics, specifically, machine learning has been utilized to predict 

the location and function of genes and regulatory elements, to identify non-coding RNA and to 

model and decipher gene expression data etc. (Aerts et al. 2004; Segal et al. 2003; Carter et al. 

2001).  

Supervised machine learning techniques are frequently used for classification purposes. 

These techniques train an algorithm to recognise features in the data which discriminate classes. 

The classification labels are ‘seen’ by the algorithm in the initial training hence the term supervised 

learning. After training the same algorithm is tested on unlabelled samples but using only the 

features of the data which were most useful for prediction in the initial training phase. From a 

genomics classifier or a diagnostic perspective, this machine learning approach distinguishes which 

features of the data are likely to be relevant on the basis of gene expression estimations. Thus 

supervised learning can be a method to deal with the task of feature selection (Baldi & Brunak 

2001; Ding & Peng 2005) in classification problems.  

Selecting an ensemble of features that can provide high discriminatory power between 

different biological groups or conditions has been successfully achieved before by using algorithms 

like support vector machines (SVM) (Guyon et al. 2002), k nearest neighbours (kNN) and the 

random forest approach (RF) (Diaz-Uriarte & De Andres 2006). A recent in depth review of 
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different supervised classifiers used for microarrays datasets (Statnikov et al. 2005; Saeys et al. 

2007; Boulesteix et al. 2008) identified SVM and kNN as the most effective approaches for 

microarray data classification (Slonim 2002).  The Microarray Quality Control Consortium in the 

second phase (MAQC-II) set out to evaluate different methods used for developing and validating 

microarray-based predictive models and reach consensus on the “best practices” for the use of these 

models in personalized medicine. After assessing the classifiers developed by thirty-six teams for 

thirteen different endpoints (breast cancer, liver toxicity etc.), they concluded that simple data 

analysis methods often perform as well as and sometimes even better then more complicated 

approaches (Shi et al. 2010). Further, the MAQC-II ranked kNN as one of the best performing 

supervised learning algorithms for microarray based predictive models. Briefly, kNN is a non-

parametric method which assigns a label/class to an unknown sample on the basis of class 

membership of its k nearest neighbours, as determined by a Euclidean distance function. It is the 

simplest of all algorithms and has the power to perform well on non-linearly separable datasets, 

often giving better performance than more complex methods in many applications and is thus the 

approach we chose for our project. Therefore, for this research work we adopted the 

computationally inexpensive, relatively simple yet efficient kNN classifier for feature selection and 

classification.  

The number of features(dimensionality) in a feature selection process can range from tens to 

thousands. Certain machine learning algorithms may perform poorly in high-dimensional data and 

this is referred as the curse of dimensionality (Donoho & others 2000; Van Der Laan & Bryan 

2001).  It's hard to know what true distance means when you have so many dimensions and the 

difficulty of searching through the space gets a lot harder. An easier, yet often exceptionally 

powerful, method for managing high-dimensional information is to diminish the feature space by 

eliminating some coordinates that seem irrelevant. With microarrays, this can often be done 

efficiently and simply, by excluding from consideration all those genes whose expression value 

doesn't vary across hybridization experiments (Hu et al. 2012). For our gene expression based 

classifier work we evaded this issue of dimensionality (~54K features) by reducing the feature 

space based on a modified t- statistic (from limma) and using a subset of top 200 features based on 

this statistic (Smyth 2004).  
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Figure 2.2: Workflow for generating the custom CDF file. The figure shows the workflow for updating the 

custom definition file for microarrays. This allows one to get the latest information from microarray probes 

in the biological context of interest (gene, transcript or exon   level) using ENSEMBL annotation data. 

2.5 Building healthy ageing diagnostic 

We took a hypothesis driven approach to study healthy muscle ageing. For this we utilized the kNN 

classification method, embedded within a nested loop for feature selection and classification to 

capture data-features that share non-linear interactions and have robust performance using methods 

consistent with the MAQC-II. We decided against taking the approach of building a simple linear 

model for ageing (Rodwell et al. 2004; Horvath et al. 2012; Hannum et al. 2013) as the validity of 

the linear approach to build a diagnostic of ageing status when applied to the entire adulthood 

chronological age-range is limited. Extensive molecular work has shown that abrupt changes in 

metabolism (i.e. a non-linear event) can occur in the ‘early middle ages’ of model organisms 

(López-Otín et al. 2013). Therefore, our focus was primarily on a binary predictor that could 

discriminate between healthy old and healthy young muscle. 

2.5.1 Training Dataset  

Our goal was to generate a valid molecular classifier of human age using tissue samples from 

healthy individuals, obtained across the decades during which chronic disease begins to emerge, i.e. 

the 3rd to 6th decades. Identification of a molecular pattern would then presumably reflect some 

form of adaptive program in healthy older subjects, since they were free from chronic diseases. 

Most ageing biomarkers or signatures are built on epidemiological cohorts that blend in ageing, 
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disease and drug-treatment and do not primarily reflect ageing. Our healthy-age prototype 

diagnostic was built using 15 young (19-28y, chronological age, VO2max=2.52 L/min) and 15 older 

(59-77y chronological age, VO2max=2.65 L/min)  Scandinavian subjects free from metabolic and 

cardiovascular disease (Timmons et al. 2010; Keller et al. 2011). In humans, aerobic fitness has 

been found to be a powerful biomarker of all-cause mortality (Church et al. 2005; Wei et al. 1999; 

Blair et al. 1989; Myers et al. 2002), reflecting genetics (Timmons et al. 2010), and co-morbidities. 

Since the present aim was to develop a RNA diagnostic that when applied to any RNA tissue 

expression profile, would yield an accurate prediction of healthy physiological age and forecast 

long-term health, the younger and older samples, used in the prototype development, were matched 

for aerobic fitness to minimise the confounding effect of this aerobic fitness. We also constrained 

the gender effect in the study by including only the male subjects (Roth et al. 2002; Berchtold et al. 

2008). The muscle biopsies from the samples were profiled on the Affymetrix HGU133Plus2 

platform (GSE59880). Note that this dataset was solely used for feature selection and was discarded 

thereafter in the downstream steps to avoid over-fitting or bias. 

 

Figure 2.3: Building healthy ageing classifier. A nested loop strategy along with kNN method was used to 

select features that could together discriminate between healthy young and healthy old samples. 

 

2.5.2 Array processing and classifier strategy 

The probeset level intensities of the arrays were normalized using the Robust Multi-array Analysis 

method (RMA) (Irizarry et al. 2003) implemented within the R statistical software environment 

using the ‘affy’ package (Bioconductor project (Gentleman et al. 2004; Gautier et al. 2004)). The 

candidate probeset lists were created via a nested-loop, holding out two arrays at any one time to 

estimate two parameters from the data (Figure 2.3).  
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a. The first parameter was the conventional test set result i.e. is the array correctly 

classified Yes/No. We used this to derive classification success ratios of each of 

the top 200 probeset to classify each sample. 

b. To calculate the second parameter (maximum appearance ratio), we first ranked 

the probesets based on number of times they correctly classified the array. We 

then estimated the maximum appearance ratio as the number of times a probeset 

appears in the top ranked list.  

 

Two-hundred probesets were selected during each of the inner-most computational loops by 

ranking gene expression differences using an empirical Bayesian statistic (implemented as eBayes 

in the ‘limma’ package) (Smyth 2004). Following iterative assessment of all probesets on the gene-

chip, involving ~180,000 permutations during which each one of the 30 samples was held-out of 

the ranking procedure, the best performing ~800 probesets were selected (based on the total number 

of correct sample classifications during the 180,00 iterations). We removed probesets that targeted 

multiple genomic loci (as discussed in section 2.3.1) and selected the top ranked 150 probesets 

(involved in >90% correct decisions) for further study. This reduced list was validated using 

multiple independent data sets using a kNN (n=3) classifier, implemented using the R ‘class’ 

package. To implement independent blind validation, we used both independent training and 

independent test muscle and brain data sets (chapter-3). The R code is included in Appendix 3 of 

the thesis. 

2.6 Summary 

Following a strict set of benchmarks we identified 150 RNA markers of muscle ageing using the 

following gene-chip profiles (GSE59880) from 15 young (19-28y) and 15 older subjects free from 

metabolic and cardiovascular disease (59-77y) (Keller et al. 2011; Gallagher et al. 2010). The RNA 

markers were selected using a nested-loop, holding out two arrays at any one time to estimate two 

parameters from the data. Following iterative assessment of all probesets and all samples, involving 

~180,000 permutations, ~800 probesets were identified as having good performance (>70% correct 

classifications). After removing the probesets that targeted multiple genomic loci the top ranked 

150 probesets for classification of healthy ageing were selected for further work. In the next chapter 

we test and validate the performance of this healthy ageing signature in independent datasets across 

different tissues and platforms and also explore its prognostic abilities (Figure 2.4). 
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Figure 2.4: Molecular diagnostic for healthy ageing. The figure summarizes the steps undertaken in this 

research work to build and validate the healthy ageing RNA signature.  Firstly, we did feature selection 

using a machine learning kNN based approach. The signature was then independently validated to ensure it 

is not biased/over-fitted and its prognostic abilities were tested (explained in chapter-3). 
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3.1 Overview of the chapter 

The previous chapter described the transcriptomic approach used to build the RNA expression 

signature of ‘healthy older tissue’, by gene-chip profiling sedentary normal subjects who reached 

65y in good health. The next step was to demonstrate its reproducibility and test the hypothesis that 

this gene expression pattern may provide reliable genomic predictors for healthy ageing and risk of 

age-related disease.  Thus, the key objectives of this chapter are to: 

• Perform independent validation of the healthy ageing signature on independent cohorts of 

human muscle, skin and brain tissue (n=594) to establish whether it is robust and 

reproducible. 

• Examine the relationship between RNA classifier and confounding life-style factors and 

chronological age. 

• Ascertain its clinical utility by examining its prognostic potential on a longitudinal study 

with 20y-follow up period. 

• Explore the hypothesis that this gene expression pattern may provide reliable genomic 

predictors for risk of age-related disease.  

• Investigate the biological narrative that governs this molecular signature for healthy ageing. 

3.2 External validation across different tissues and technology platforms 

Use of fully independent training and validation data sets allows for genuine external validation 

(EV) to be demonstrated. We implemented fully independent external validation (EV) of the 150-

probeset healthy ageing classifier, a process that requires both independent ‘known samples’ and 

independent test gene-chips (Shao et al. 2013). When combined with LOOCV methods, this 

represents a ‘gold standard’ approach for validation of a classification model. 

3.2.1 Independent validation cohorts and implementation 

A new set of young and old muscle profiles (Selected from data-set ‘Campbell’, n=66 chips 

GSE9419) (Thalacker-Mercer et al. 2010) was used to represent the new ‘expression space’ of 

known samples. We then carried out evaluation of sets of independent gene-chip profiles from 

young and old human muscle (all Affymetrix U133+2) normalised using fRMA (McCall et al. 

2010). The various fully independent samples were obtained from GEO or produced from our own 

clinical samples (Slentz et al. 2011). In each dataset the samples were selected to belong to either 

young (~25y) or old grouping (~65y) from a larger collection of samples. The sets of young and 

older samples were selected from ‘Trappe’ GSE28422(Raue et al. 2012) (n=48), ‘Hoffman’ 

GSE38718(Liu et al. 2013) (n=22), ‘Derby’ GSE47881 (Phillips et al. 2013) (n=26) and ‘Kraus’ 

GSE47969,[n=33). For all datasets, arrays were examined using hierarchical clustering and 
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Normalized Unscaled Standard Error (NUSE). In case we identified a small number of gene-chips 

(~2-3) that had evidence of technical defects and these were removed prior to any analysis. To 

assess if human brain and skin also demonstrated the same 150 age-related gene expression 

signature as healthy older muscle, we used young and old samples brain-bank array source (n=120, 

GSE11882) and the MuTHER cohort skin dataset (n=279, which includes subset of 3 replicates 

(n=131, n=124 and n=24)). The skin data was produced using the Illumina Human HT-12 V3 Bead 

chip (Arrayexpress: E-TABM-1140) and log-2 transformed signals were normalised using quantile 

normalisation. The 150 Affymetrix probesets were mapped to the Illumina platform (giving 129 

probes). Due to differences in gene-chip technology, a leave-one-out cross validation (LOOCV) 

approach was used to classify age of each skin sample, using only the probes selected above. For 

skin, individuals aged < or = 45y were defined as young, and those > or = 70y as old to ensure 

balanced numbers of young and old samples existed to fairly assess the classifier performance. The 

R code for ‘independent validation’ is included in Appendix 3 of the thesis. The information about 

all the datasets used in this chapter is available in Appendix 1. 

3.2.2 Reproducible RNA signature for age of human muscle, brain and skin  

Using the ‘Campbell’ muscle data set (GSE9419) (Thalacker-Mercer et al. 2010) as the samples of 

known identity, we demonstrated that additional young and old muscle samples selected from 4 

additional muscle data sets (‘Trappe’ GSE28422 (Raue et al. 2012), ‘Hoffman’ GSE38718(Liu et 

al. 2013) ‘Kraus’ GSE47969 and ‘Derby’ GSE47881 (Phillips et al. 2013)) could be classified with 

an average ~93% accuracy (70-100%) using only the 150 probesets selected at the start of the 

project. Substitution of Campbell with the other muscle data sets worked equally as well. These 

data shared a common microarray platform (Affymetrix HGU133Plus2) but as we demonstrate 

below, the classifier remains robust in the face of alternative platforms. Receiver operator curves 

(ROC) for kNN=5 demonstrating classifier performance for a number of tissue types are presented 

in Figure 3.1.  

Using data from the HGU133Plus2 microarray platform for old and young samples of 

ectodermal origin (brain, n=120) (Gould et al. 1999) we confirmed that the 150 RNA ‘healthy age’ 

genes selected in muscle, could also distinguish the age of human brain one sample at a time, with a 

classification success rate up to 91% (Figure 3.1). Four brain regions were evaluated (Postcentral 

Gyrus, Entorhinal Cortex, Hippocampus and Superior Frontal Gyrus), GSE11882 and while they 

were confirmed disease-free by histopathology in the original study (Berchtold et al. 2008), unlike 

our muscle cohorts, their true functional status remains unknown. The Postcentral Gyrus samples 

were classified with 86% sensitivity and 89% specificity. Older hippocampal regions were often 

misclassified using the 150-genes (33% sensitivity) as ‘young’. This higher misclassification rate 
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may relate to the substantial neurogenesis known to take place in the adult hippocampus or delays 

in tissue processing. 

      

Table 3.1: Accuracy, sensitivity and specificity of the muscle-derived healthy age classifier when applied 

to multiple independent data sets. The sensitivity and specificity of the top 150-probe-sets from the 672 

probe-set derived from the STOCKHOLM U133+2 Affymetrix gene-chip data, was calculated for the human 

muscle data sets CAMPBELL, DERBY, HOFFMAN, TRAPPE AND KRAUS and the four brain regions 

derived from the Berchtold et al. study (Berchtold et al. 2008) and skin from the MuTHER cohort (Glass et 

al. 2013). The majority of data sets demonstrated both high sensitivity and high specificity using this un-

optimised list. A young sample misclassified as ‘old’ (e.g. in HOFFMAN) is noted as a reduced sensitivity. If 

an old sample was misclassified as being young and healthy, as was the case for some of the Hippocampus 

regions, then this is defined as a reduction in specificity where young is a true-positive in this model. The 

likely contributing factors to these misclassifications include lack of standardisation of a single laboratory 

gene-chip protocol and variation in RNA quality and in some cases examples of older donors that have not 

induced the ‘healthy ageing’ signature to any measurable extent.  

	

Lastly, we evaluated whether the 150 genes could accurately classify tissue age of 

mesodermal origin (skin) using gene expression data in a total of 279 human skin samples of which 

there were up to three technical replicates per clinical sample (Glass et al. 2013). Notably these data 

originated from a different technology platform (Illumina Human HT-12 V3, Arrayexpress: E-

TABM-1140) thus adding variability above that derived from a distinct tissue and potentially 

limiting the classification process. One hundred and twenty-nine genes were common to both gene-

chip technologies, and we observed excellent classification of age of human skin (n=131, 

Table 1 

     

Tissue Sample Size Accuracy % Sensitivity Specificity 

 

Muscle (Campbell) 

 

66 

 

96 

 

0.94 

 

0.97 

Muscle (Derby) 26 100 1.00 1.00 

Muscle (Trappe) 48 96 0.96 0.96 

Muscle (Hoffman) 22 91 0.93 0.88 

Muscle (Kraus) 33 70 1.00 0.60 

Brain (SFG) 33 91 0.71 0.96 

Brain (PCG) 31 88 0.86 0.89 

Brain (Hippocampus) 31 85 0.33 1.00 

Brain (EC) 25 72      0.43 0.94 

Skin (MuTHER Cohort) 279 78 0.59 0.90 

Table 3.1: Accuracy, sensitivity and specificity of the muscle-derived healthy age classifier when applied to multiple independent data 
sets. The sensitivity and specificity of the top 150-probe-sets from the 672 probe-set derived from the STOCKHOLM U133+2 Affymetrix gene-
chip data, was calculated for the human muscle data sets CAMPBELL, DERBY, HOFFMAN, TRAPPE AND KRAUS and the four brain 
regions derived from the Berchtold et al. study [30] and skin from the MuTHER cohort [16]. The majority of data sets demonstrated both high 
sensitivity and high specificity using this un-optimised list. A young sample misclassified as ‘old’ (e.g. in HOFFMAN) is noted as a reduced 
sensitivity. If an old sample was misclassified as being young and healthy, as was the case for some of the Hippocampus regions, then this is 
defined as a reduction in specificity where young is a true-positive in this model. The likely contributing factors to these misclassifications 
include lack of standardisation of a single laboratory gene-chip protocol and variation in RNA quality and in some cases examples of older 
donors that have not induced the ‘healthy ageing’ signature to any measurable extent.  
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AUC=0.85, Figure 3.1). The classification success was similar for all three replicates (71-78 raw 

classification success). Thus the technical performance of the 150-gene multi-tissue age classifier 

was excellent and robust, providing accurate classification despite inter-laboratory technical 

variation, different gene-chip platforms and ante-mortem tissues. We were therefore able to 

conclude that we have identified a reliable multi-tissue RNA signature of healthy tissue ageing in 

humans, something that has not been previously demonstrated (Glass et al. 2013; Phillips et al. 

2013).  

 

Figure 3.1. ROC curve showing predictive performance for tissue age classification using ‘healthy age’ 

biomarkers based on leave-one-out cross-validation (kNN=5) for muscle, brain and skin. Using only the 

150 probesets identified in the first stage of the project, this ‘healthy age classifier’ was able to correctly 

classify young and old samples across independent datasets with an accuracy of ~96%, 91%, 85% and 78%. 

We present two examples of independent muscle data (Raue et al. 2012) [50] and one example each for 

human brain (Berchtold et al. 2008) and skin datasets(Horvath 2013) with AUC of 0.99, 0.94, 0.78 and 0.85 

respectively reflecting excellent separation of the age groups and hence accurate multi-tissue performance. 

	

3.3 Prognostic abilities of healthy ageing signature and relation with life-style related risk-

factors 

Ideally, a true diagnostic of ‘healthy ageing’ should not correlate with age associated phenotypes or 

risk factors for chronic disease (Baker & Sprott 1988). The specificity for ‘healthy ageing’ in our 

RNA signature was examined by assessing the relationship between the signature genes, 

chronological age and markers of life-style associated disease in a twenty-year longitudinal cohort 
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(ULSAM, Uppsala Longitudinal Study of Adult Men cohort). To achieve this, the RNA signature 

was transformed into a ranking metric by collapsing the expression pattern of each gene in our 

signature into a single score termed as ‘healthy ageing score’ which was then related to risk factors 

and health outcomes in the ULSAM study. 

3.3.1 ULSAM longitudinal study and gene score calculation 

We used a set of tissue samples from a birth cohort of men, such that the same chronological age 

(~70y) could be contrasted with the variation in ‘healthy age gene score’. The ULSAM (Uppsala 

Longitudinal Study of Adult Men) is a cohort of men born in 1920-24 and living in Uppsala, 

Sweden to compare a constant chronological age (and similar environment) with the healthy muscle 

age gene score for each individual (Dunder et al. 2004). Dual-energy X-ray absorptiometry (DXA) 

scan measurements were performed during the last decade of the study and muscle mass status 

varied between -15% to +10% between age 70y to 88y and was unrelated to physical activity scores 

(recorded at 82y and 88y of age, with 80% being recorded as being moderately active). We had 

access to 129 skeletal muscle biopsies that were taken at age 70y (in 1992) and were processed in 

2012 with the majority having excellent NUSE plot profiles. Total RNA was extracted from frozen 

muscle biopsy samples (vastas lateralis) using TRIzol reagent as previously described (Timmons et 

al. 2005). A total of 113 samples provided sufficient RNA and 50ng total RNA was amplified using 

Ambion’s WT expression kit to produce cDNA. The cDNA was fragmented and labelled with 

GeneChip WT Terminal labelling kit (Affymetrix, Inc.). Unincorporated nucleotides from the IVT 

reaction were removed using the RNeasy column (QIAGEN Inc, USA). Hybridization, washing, 

staining and scanning of the arrays were performed according to the manufacturer’s instructions 

(Affymetrix, Inc., USA).  

     One hundred and eight samples passed gene-chip quality control procedures. A cumulative 

gene-ranking based score was calculated using each of the 150 gene expression values for each of 

the 108 male subjects and the final score was compared in a linear fashion with a number of clinical 

parameters. For an RNA down regulated in the original training classification dataset (i.e. down 

regulated between 25y to 65y) the ULSAM subject with the highest expression was assigned a 

score of 1 and the subject with the lowest expression 108. For genes up regulated in the original age 

classification model, the opposite strategy was used. Thus both feature selection (genes) and 

direction of regulation were taken from the original model. The median sum of these rank scores 

(for all 150 genes) was calculated and that represented the ‘healthy age gene score’ for each 70y 

individual. Median rank ensured each gene provided equal weighting and regression analysis was 

used to study the variation in gene score in these men all of who had approximately the same 

chronological age. The R code for ‘Gene score ranking’ is included in Appendix 3 of the thesis. 
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3.3.2 Healthy ageing gene score is distinct from chronological age and is unrelated to life-style 

factors  

The distribution of scores was examined for 70y old males and the scores were also correlated with 

markers of life-style associated disease (Figure 3.2). We ranked each subject for each of the 150 

genes, taking the direction of gene expression change from the original classifier model into 

account (85% down-regulated). We then converted the individual gene scores into a summed 

median gene-score for each subject. We demonstrated that despite all subjects being ~70y of age at 

the time of the RNA sample, there was a very wide distribution in gene score (Figure 3.2A). Thus 

the ‘healthy age gene-score’ in muscle was very distinct from chronological age.  

The ‘healthy age gene-score’ was regressed against a variety of continuous clinical variables 

(variables listed in Table A3.1 in Appendix 2). The gene-score at chronological age 70y was 

unrelated to conventional life-style regulated biomarkers at baseline e.g. renal function (estimated 

from cystatin-c, r2<0.001), systolic blood pressure (mmHg, r2=0.0013), 2hr glucose concentration 

following a standard oral glucose tolerance test (mmol, r2=0.015) or total cholesterol (mmol, 

r2=0.002). Gene score was also unrelated to resting heart rate or physical activity questionnaire. 

Infact the ‘healthy-ageing’ gene score was not correlated with any conventional risk factors (Figure 

3.2B). This confirmed that the 150 gene expression markers were not reflecting a variety of life-

style factors and diseases (e.g. exercise, diabetes). 

3.3.3 Healthy ageing gene signature as prognostic of long-term health status in the ULSAM 

study 

Our primary hypothesis was that a validated diagnostic of healthy physiological age could be used 

to predict health outcomes in a longitudinal study, where subjects were all the same chronological 

(calendar) age at the point of assessment. The relationship between the gene score at age 70y for 

subjects in ULSAM study and a number of clinical features was carried out using multi-factor 

models. At 70y three subjects had Cystatin C > 1.5 mg/l, while by 82y 36 of the subject studied in 

the present analysis had Cystatin C > 1.5 mg/l Cystatin C. A 1.5 mg/l Cystatin C corresponds to an 

estimated GFR of ~45 ml/min which is borderline for a moderately (30-45 ml/min) elevated risk for 

all-cause mortality. We estimated renal function using Cystatin C to calculate glomerular filtration 

rate (eGFR) as it is a robust marker for early renal impairment (Coll et al. 2000; Laterza et al. 2002) 

and demonstrated that the baseline healthy-age diagnostic ranking score was related to renal 

function 12 years later (age 82, p=0.009). While renal function is not sufficiently powerful to 

predict mortality in disease-free older subjects from the ULSAM cohort (Zethelius et al. 2008), we 

found that the healthy age diagnostic was able to strongly predict 20y survival in a cox-regression 



Chapter-3                                                                              Ageing	diagnostic:	Independent	Validation	and	prognosis	
	

	 51	

model. Over the observation period mortality rate was 18% (19 events) and the relationship 

between mortality and gene-score was analysed as a continuous variable.  

Remarkably, the ‘healthy age gene-score’ in muscle at 70y was independently related to 20-

year survival (p=0.0295, Figure 3.3A) in a logistic regression model. While this observation should 

be interpreted cautiously, to illustrate the temporal relationship between the ‘healthy age gene-

score’ and death, we divided gene-score into quartiles and applied a Cox-regression model (Figure 

3.3B) and found a significant difference between the first versus the fourth quartile (p=0.04). In 

contrast to the ‘healthy age gene-score’, a median gene rank score based on inflammatory gene 

(GO:0006954) or mitochondrial gene (GO:0005739) expression in muscle demonstrated no 

relationship with health or mortality (Appendix 2 Figure A3.1, p=0.173 and p=0.337 respectively). 

For the cox-model we used the latest ‘survival package’ whereas the logistic regression model was 

estimated using the glm (generalized linear model) function and ‘logit’ model which models the log 

odds of the outcome as a linear combination of the predictor variables.  For the Kaplan-Meier plots, 

gene-score was divided into quartiles and the plot was produced using the ‘plot-survfit’ function in 

the survival package. All three approaches yielded consistent results.   

Thus, despite the limited sample size of the ULSAM cohort (n=108), we were able to 

establish that subjects with the highest muscle ‘healthy ageing gene score’ at age 70y had 

significantly better renal function 12 years later (at age 82 years) and a better survival rate 20 years 

later. The prediction of mortality in the ULSAM 20y follow-up study is of course preliminary, 

given the size of this part of our study, but it provides further support that induction of the age 

signature, by the 6th decade of life, represents a positive event since the directional shift in gene-

expression and better ‘health’ was consistent for the renal and mortality analysis i.e. largest gene 

score in the ranking system was associated with better health in ULSAM. 

3.4 Relation between ‘healthy ageing gene signature’ and cognitive health 

Neurocognitive pathology (e.g. Alzheimer’s disease – AD) becomes more pronounced with age and 

is often apparent in individuals who are otherwise healthy. Our analysis of the relationship between 

life-style factors and the ‘healthy age gene score’ in the ULSAM cohort suggested that the gene 

score was robust to confounding effects of life-style disease. We next examined whether the 

‘healthy ageing gene score’ [median rank sum of the 150 RNA markers] was selectively useful in 

relation to identifying neurocognitive disease over life-style disease. To support this analysis, we 

utilised a large publically available gene-chip data-set derived from healthy human brain samples of 

various ages (Ramasamy et al. 2014). The BrainEac.org gene-chip resource (Ramasamy et al. 

2014)(GSE60862) comprises 10 post-mortem brain samples from 134 subjects representing 1,231 
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Figure 3.2. Distribution of healthy age gene score in ULSAM samples and its relation with clinical 

parameters. At the date of assessment (1992), when the muscle biopsy was taken for subsequent gene-chip 

profiling, all subjects would be considered in reasonable health for their age and remained physically 

active. A) Distribution of Gene score based on the median rank for each of the 150 age genes. B) Clinical 

variables were determined as previously reported for ULSAM samples (chronological age=69-70y) (Huang 

et al. 2013)(Zethelius et al. 2008). Linear regression was used to examine the relationship between the 

healthy-ageing gene-score at ~70y and a variety of clinical parameters at age ~70y. No relationship 

between gene score and renal function (estimated from cystatin-c, r2<0.001), systolic blood pressure 

(mmHg, r2=0.0013), 2hr glucose concentration following a standard oral glucose tolerance test (mmol, 

r2=0.015) or total cholesterol (mmol, r2=0.002) was observed. Gene score was also unrelated to resting 

heart rate or physical activity questionnaire.  
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Figure 3.3 A cumulative ranking metric of the healthy ageing metric was prognostic for mortality over a 

20-year follow-up period. One-hundred and eight subjects provided a healthy tissue biopsy in 1992 that was 

suitable for RNA profiling and the fully annotated mortality data, covering 2009–2011, was retrieved from 

the Swedish national health registry. A) The rank score for healthy ageing gene expression was calculated 

from the top 150 genes of the healthy ageing prototype classifier (n = 108, male subjects all ~70 years of 

age). Logistic regression analysis performed using the cumulative ranking metric of the top 150 genes from 

original prototype was prognostic for mortality. It showed that those subjects with the lowest median healthy 

ageing gene score had a much higher probability of death during the 20-year follow-up period (p = 0.0295). 

B) The rank score for healthy ageing gene expression was calculated from the top 150 genes of the healthy 

ageing prototype classifier (n = 108, male subjects all ~70 years of age) and Kaplan–Meier plots were used 

to illustrate the temporal pattern of survival. Gene score was divided into quartiles and the plot was 

produced using the plot-survfit function in the R survival package. The plot allows us to compare overall 

survival rates between the four quartiles for gene score. The third and fourth quartiles differed from the first 

quartile (p < 0.04).  

samples. Using the same ranking approach as applied to the ULSAM cohort, the median sum of the 

rank score was calculated for each anatomical brain region (Figure 3.4). As before, in healthy older 

individuals the ‘age’ signature was ‘switched on’ (yielding a greater ranking score). Regulation of 

the healthy age gene score increased across individual healthy brain regions with chronological age, 

especially in the hippocampus (p=	2 ×10-8), as well as other regions such as putamen, thalamus, 

substantia nigra and the occipital, frontal and temporal cortex regions (all at least p<0.002 by Holm 

adjusted Mann-Whitney test). From this it was ascertained that the healthy ageing gene score was 

clearly evident in neuromuscular tissue, which suggested that it might relate to cognitive health. 
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. 

Figure 3.4 The ‘healthy ageing’ RNA signature was studied across diverse anatomical human brain 

regions in healthy individuals using BrainEac.org gene-chip resource. The healthy Ten brain regions from 

134 subjects representing 1231 samples were individually ranked and the median sum of the ranked scores 

calculated. Regulation of the healthy ageing genes differed across brain regions with age, as determined by 

a Kruskal Wallis Test (hippocampus p = 2 ×10-8, putamen p =4 ×10-7, thalamus p =4 ×10-5, temporal cortex 

p = 0.0001, substantia nigra p = 0.0002, frontal cortex p = 0.001, occipital cortex p = 0.001, white matter p 

= 0.01, medulla p = 0.06 and cerebellar cortex p = 0.51). Post hoc Mann–Whitney test, with correction for 

multiple comparisons (Holm), confirmed a striking ‘increase’ of the healthy ageing score in the healthy 

older samples (hippocampus, putamen, thalamus, substantia nigra, and the occipital, frontal, and temporal 

cortex regions; at least p < 0.002) 

 

3.4.1 Translating healthy ageing gene signature in Alzheimer/MCI cohorts 

Based on the above observation our primary hypothesis was that, compared with control subjects of 

similar chronological age and gender, patients with AD would have a lower median healthy ageing 

gene score but the score would not distinguish diabetes or vascular disease patients from matched 

controls. To test this hypothesis, we used blood RNA profiles from subjects from the 

AddNeuroMed consortium, a large Cross-European AD biomarker study and a follow-on Dementia 

Case Register (DCR) cohort in London. Patient selection, design and clinical data have been 

reported previously (Lovestone et al. 2009; Lunnon et al. 2012). We used two independently 

produced gene-chip datasets from the consortia, one produced in a UK gene-chip facility and 
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another produced in the USA which have been deposited on GEO under GSE63060 and 

GSE63061. A summary of the cohort characteristics can be found in Table 3.2 

Gender & Age matched cohorts Age Gender (F/M) MMSE 

Batch 1    
ControlMCI (n=67) 69.6 (±4.2) 41/26 (61%F) 29.1 (±1.2) 
MCI (n=39)  70.0 (±3.3) 24/15 (62%F) 27.5 (±1.6) 
ControlAD (n=64) 70.2 (±3.7) 41/23(64%F) 29.1(±1.2) 
AD (n=49) 69.8 (±4.4) 34/15 (69%F) 21.8 (±4.5) 
Batch 2    
ControlMCI (n=71) 70.8 (±2.9) 44/27 (62%F) 28.9 (±1.9) 
MCI (n=31)  69.5 (±4.5) 23/8  (74%F) 27.6 (±1.9) 
ControlAD (n=71) 70.8 (±2.9) 44/27(62%F) 28.9(±1.9) 
AD (n=40) 69.9 (±4.3) 23/17 (58%F) 21.0 (±5.6) 

 

Table 3.2: Clinical characteristics of batch 1 and batch 2 AD cohorts. Case-control subjects that 

contributed to the blood gene chip profiles analysed and presented in Figure 3.5 and Figure 3.6 

 

Briefly, subjects were excluded from the study if they had neurological or psychiatric illness other 

than AD, unstable systematic illness or organ failure, or a geriatric depression rating scale score ≥ 

4/5. AD was diagnosed using the National Institute of Neurological and Communicative Disease 

and Stroke and Alzheimer’s disease (NINCDS-ADRDA) and Diagnostic and Statistical Manual of 

Mental Disorders (DSM-IV) criteria for possible or probable AD. All MCI subjects reported 

problems with memory, corroborated by an informant, but had normal activities of daily living as 

specified in the Petersen’s criteria for amnestic MCI (Lovestone et al. 2009; Lunnon et al. 2012). 

All subjects underwent a structured interview and a battery of neuropsychological assessments 

including the Mini Mental State Examination (MMSE).  Control and MCI subjects were further 

assessed using the CERAD battery and detailed information on subject recruitment and assessments 

can be found in other published studies describing the AddNeuroMed consortium (Lovestone et al. 

2009; Snyder et al. 2014). RNA was obtained from whole venous blood and it was collected from 

the subjects who had fasted 2 hours prior to collection into a PAXgene™ Blood RNA tube (Becton 

& Dickenson, Qiagene Inc., Valencia, CA). The tubes were frozen at -20◦C overnight prior to long-

term storage at -80◦C. RNA was extracted using PAXgene™ Blood RNA Kit (Qiagen) according to 

the manufacturer’s instructions. Whole genome expression was produced using Illumina Human 

HT-12 v3 Expression BeadChips for the first case-control study (USA, ‘Batch 1’) and Illumina 

Human HT-12 v4 Expression BeadChips for the second case–control study (UK, ‘Batch 2’). cDNA 

was synthesized from 200ng total RNA using TotalPrep™ RNA Amplification Kit (Ambion) which 
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was followed by amplification and biotinylation of cRNA and hybridization. The expression data 

was first transformed using variance-stabilization and then quantile normalized using the LUMI 

package in R.  

For our primary analysis, control subjects were matched in a manner that created the largest 

possible group with the same chronological age and gender-balance as the AD or MCI groups. Thus 

our analysis was carried out on a sub-set of subjects deposited at GEO, with each case-control 

group having a similar median chronological age as the ULSAM cohort. A total number of 297 

samples were utilised (Batch 1 CTR=67, MCI=39, AD=49 and Batch 2 CTR=72, MCI=30, 

AD=40). Retrospective inclusion of the entire cohort (n=717) did not alter the outcome of our 

analysis. The 150 Probesets were mapped from the Affymetrix platform to the Illumina platform 

yielding 128 genes from the original 150-gene list. For each case-control comparison the ranking 

metric was computed in the exact same manner as for the ULSAM subjects (see section 3.3.1). 

From Batch 1, 113 subjects were ranked for gene score, while 111 subjects were ranked in Batch 2 

(Table 3.1). Wilcoxon rank sum test from the R stats package was used to test if the median gene 

score ranks between groups were significantly different or not. For data presentation, ranking scores 

were scaled to the total number of samples being ranked to ensure each data plot was on the same 

scale.  The relative median rank score for AD patients was significantly lower that the age and 

gender matched controls (p=0.004, Figure 3.5), based on Wilcoxon rank sum test. Blood RNA from 

the second AD case-control cohort was profiled on the Illumina HT-12 V4 platform and in this case 

122 genes were common to the 150-gene healthy ageing gene score.  

As before, the median rank healthy ageing gene-score for AD patients in Batch 2 was significantly 

lower than in the control group (p=0.009, Figure 3.5). Furthermore, for both Batch 1 and Batch 2, 

the age-matched controls had a higher median gene score than subjects diagnosed with mild 

cognitive impairment (MCI, Figure 3.5 p=0.00005 and Figure 3.5 p=0.003).  

It is important to note that the control samples used for comparison with MCI overlapped 

with those used for comparison with AD and that the MCI analysis cannot therefore be considered a 

fully independent observation. We also checked for overlap between the 150 healthy ageing gene 

markers and previous genomic and genetic disease markers of AD. Only three genes were in 

common (SPN, NPEPL1 and PDLIM7) and none were from previously validated AD diagnostics. 

Their inclusion or exclusion did not impact our analysis.  
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Figure 3.5 A cumulative ranking metric of the healthy-age metric could distinguish between control 

subjects with Alzheimer (AD) or Mild Cognitive impairment (MCI). The healthy ageing RNA signature was 

studied in blood samples from two independently processed case–control studies of AD. In cohort 1 the 

control median gene score was greater (p = 0.004) than AD samples and greater (p = 0.00005) than that of 

the MCI samples (Wilcoxon rank sum test). In cohort 2 the median gene score of control samples was 

greater than that of AD samples (p = 0.009) and that of MCI samples (p = 0.003). Data are median gene 

score and standard error. 

	

3.4.2 Healthy ageing signature as AD diagnostic 

We also formally evaluated whether the healthy ageing signature could act as a diagnostic for AD 

case-control cohorts using ROC analysis and found that it had robust independent performance on 

both cohorts that were used in the previous section (AUC=0.66-0.73, Figure 3.6). Our research 

group previously published a whole blood RNA based prototype AD diagnostic, consisting of 48 

genes which was also identified using machine learning methods applied to Cohort 1 samples 

(Lunnon et al. 2013). We demonstrated that this prototype ‘RNA disease signature’ was 

independently validated in Cohort 2 using LOOCV.    

Further, when we combined these two independently produced and validated gene expression 

classifiers (RNA age signature and RNA disease signature) we yielded an improved AD diagnostic 

(AUC=0.73-0.86, Figure 3.6), one which matches best in class (Snyder et al. 2014) for those blood-

based AD diagnostics validated using independent data, but using a technology platform more 

suited to reproducible high-throughput diagnostics.   
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Figure 3.6 Validation of novel blood RNA classifiers as a diagnostic for Alzheimer’s disease. We used the 

independent batch 2 AD data set to test the predictive performance of our healthy ageing classifier and our 

previously published AD prototype diagnostic. The performance of each was evaluated using ROC curves. 

The healthy ageing gene classifier generated independent AUCs of 0.73 and 0.66 for AD in cohorts 1 and 2, 

respectively. For the combined ‘healthy ageing’ plus ‘AD disease’ RNA classifier (150 + 48 probesets) we 

obtained AUCs of 0.86 and 0.73 for AD without any attempt at optimization. The AD disease RNA classifier 

probesets were selected using cohort 1. 

 

3.4.3 Relationship between the healthy age gene score and chronic life-style diseases 

Lastly, we utilised two additional large gene-chip clinical studies; one comparing blood RNA in 

Type II diabetes with control (Tabassum et al. 2014) and the other from our laboratory, comparing 

blood RNA in people with and without coronary artery disease (Sinnaeve et al. 2009).  The main 

purpose of this analysis was to further establish that the 150 gene expression markers were not 

reflecting a variety of lifestyle-regulated diseases.  

The diabetes data was profiled on Illumina Human HT.12.V4 arrays and comprised of 94 

controls versus 50 cases (group mean age = 66 y) and the vascular disease data had 112 controls 

and 110 cases (group age = 53.3 y) on Affymetrix HG-U133A arrays.  The case control analysis 

was done in same manner as for AD cohorts (section 3.3.1). Applying a Wilcoxon rank sum test, 

neither diabetes nor vascular disease (p=0.588 and p=0.430 respectively) was related to the healthy 

ageing gene score (Figure 3.7). This is consistent with our original hypothesis, and methods, that 
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the healthy ageing gene score is not related to lifestyle factors and it is also consistent with the 

results observed in the ULSAM cohort (Figure 3.2B). 

 

 

Figure 3.7 The healthy ageing signature activation was studied in blood samples from two independent 

large case–control studies of diabetes and vascular disease. Applying a Wilcoxon rank sum test, neither 

diabetes nor vascular disease was related to the healthy ageing gene score. This is consistent with our 

original hypothesis, and methods, that the healthy ageing gene score is not related to lifestyle factors and it 

is also consistent with the results observed in the ULSAM cohort (Figure 3.2B). A) The diabetes data (94 

controls versus 50 cases, group mean age = 66 y) originates from Tabassum et al. using Illumina Human 

HT.12.V4 arrays. (Tabassum et al. 2014). B) The vascular disease data (112 controls and 110 cases, group 

age = 53.3 y) originates from Sinnaeve et al.(Sinnaeve et al. 2009) (using Affymetrix HG-U133A arrays). 

 

3.5 Biological features of the healthy age diagnostic 

We were interested in whether the healthy-ageing diagnostic revealed any particular biological 

processes that might be open to therapeutic targeting. The bioinformatics tool, Ingenuity Pathway 

Analysis (IPA, http://www.ingenuity.com) was used to explore the biology of the age classifier 

genes. HUGO gene name identifiers were uploaded into IPA and queried against the verified IPA 

knowledge database. Out of the 150-gene list, a total of 127 genes were annotated in the database 

and revealed a few marginal functional associations (e.g. Nervous system development genes) but 

these did not remain significant following Benjamini and Hochberg correction. The top ranked 

database network (genes with published interactions) was defined as ‘cell death and survival’ and 

contained 31 molecules. 

  Then to establish the Gene ontology profile of the 150 genes (Appendix 1), we generated a 

null distribution of GO enrichment p-values by randomly sampling 10,000 lists of 150 probesets 
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from the HGU133Plus2 chip and testing each list for Molecular Function GO using the GOstats 

package in R. The entire population of probesets on the HGU133Plus2 microarray was used as the 

background population for these tests. We observed that the profile of ontological enrichment in the 

healthy-ageing diagnostic was not different from a random sample of 150 genes from the gene-chip, 

of which >99% of those 54,000 probesets had no ability to discriminate tissue age in our training 

model. In Figure 3.8 the density curves of p-values for each one of 10,000 hyper-geometric tests 

using randomly sampled gene-sets (n=150 in size) are plotted (black), along with the density curve 

of the p-values from the 150 healthy-ageing gene set (red). 

Manual searching of PubMed and OMIM yielded some plausible connections with age-

related and disease processes (Appendix 1), but such analysis is subjective. We did note that the 

150 genes included some previously identified ‘ageing’ genes; LMNA (linked with Hutchinson-

Gilford Progeria Syndrome), Unc-13 homolog (UNC13C) which is linked with beta-amyloid 

biology, as well as COL1A1 (thought to change in skin-ageing). Finally, positional gene enrichment 

analysis (PGE) was used to identify whether the classification genes (or the classifier network 

genes) were significantly enriched within given chromosomal regions (De Preter et al. 2008) as 

previously implemented (Phillips et al. 2013). When we examined if the 150 age-related genes were 

over represented at genomic loci we found no significant associations. However, on using the top 

670 genes from the first stage of the project (>70% success in training model) there were a number 

of significant findings with 3 genes originating from the top 150. In this analysis, 11q made a 

significantly greater contribution (adjusted p-value=0.005-0.007) to the enlarged prototype 

classifier than would be expected by chance (Figure 3.8 B), and there was a total of 15 genes from 

the 11q13 and 11q23 over-represented genomic locations (11q13 (ALDH3B1, CAPN1, CDC42EP2, 

CORO1B, LTBP3, NRXN2, PPP1R14B, RCE1, RCOR2, SART1, SYT12 and ZDHHC24, P=0.0005) 

and 11q23 (FXYD2, SCN2B and TMPRSS13, P=0.0009)). Interestingly, 11q23 is the location for 

age-related genetic interactions, namely the apolipoprotein A family (Garasto et al. 2003; Feitosa et 

al. 2014) as well as a region containing genetic association single nucleotide variants (SNP) which 

modify the age of onset of colorectal cancer (Talseth-Palmer et al. 2013; Lubbe et al. 2012). 

Further, 11q13 harbours SNP’s associated with age of onset of renal cell carcinoma and prostate 

cancer and modulating age-related disease emergence by 5 years (Audenet et al. 2014; Lange et al. 

2012; Jin et al. 2012). 
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Figure 3.8. GO profile and chromosomal positional enrichment analysis for the healthy ageing RNA 

signature. Pathway analysis and GO analysis indicate that the 150 healthy ageing genes are not related to a 

few specific biological processes but rather originate from across many biological processes. A) Density 

curves of raw p values for each of the 10,000 hypergeometric tests using randomly sampled probesets from 

the U133Plus2 gene-chip (n = 150 each time; black) and the density curve of the raw p values from a 

hypergeometric test using the 150 healthy ageing gene classifier probesets (red). B) Positional gene 

enrichment analysis for found over-representation at 7q22, 11q13 and 11q23. Those for 11q13 and 11q23 in 

particular were most significant, and contained genetic variants that influence the age of onset of various 

cancers. 

3.6 Discussion 

Use of fully independent training and validation data sets allows for genuine external validation to 

be demonstrated and overcomes the over-fitting/bias caveat. The ‘healthy ageing’ signature fulfilled 

the first main criteria by providing independent and accurate tissue classification despite inter-

laboratory technical variation and different gene-chip platforms. For being a novel diagnostic of  

‘healthy’ ageing it was also important to consider whether the 150 RNAs were related to any likely 

confounding factors (e.g. life-style or metabolic disease). To test this, we profiled RNA from 

healthy members of the ULSAM cohort at age 70 years and analysed follow-up data over two 

decades. In 1992, these 70y old Swedish men had normal levels of physical activity “for their age” 

and most demonstrated longevity to 90y which is not exceptional in the Swedish population 

(Danielsson & Talbäck 2012). The healthy age score demonstrated a four-fold range (Figure 3.2 A) 

while chronological age varied by no more than one year across the group. Further the score did not 

correlate with any life-style related risk factors.  We also illustrated the ageing signature’s potential 

clinical utility in three different studies including ULSAM and two AD/MCI cohorts. In ULSAM 

greater induction of the RNA signature at baseline (~70y) was associated with improved survival 

over the ensuing 20y period and better renal function at 82y. Similarly, in AD cohorts higher gene 
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score was indicative of a better cognitive function. Both, renal function and cognition are important 

determinants of all-cause mortality (Zethelius et al. 2008; Raichlen & Alexander 2014). This 

concurrent reduction in clinically observed cognitive and renal function suggests both are subject to 

a general age-related decline in organ function (Romijn et al. 2014).  

Neurological decline is predicted to contribute substantially to the economic burden of 

healthcare in the coming decades. AD is a multi-factorial disease (Hampel et al. 2014) with around 

22 genetic loci potentially associated with disease risk or progression of symptoms. The strongest 

and most reproducible genomic association, APOE-ε4, is a modifier of risk, contributing to the age 

of onset of the disease by 3.7% (Naj et al. 2014). The remaining ~9 reproducible risk loci for late-

onset AD (the most common form) contribute a further 2.2% of the variance in age of onset (Naj et 

al. 2014). In short, these DNA sequence variants will not be clinically useful for diagnosing or 

managing AD or even assessing risk, in the majority of people. Differential gene expression 

analysis and molecular classification have found disease related RNA markers of AD, using patient 

materials to build the model (Fehlbaum-Beurdeley et al. 2012). However, unknown features of the 

training dataset can bias such diagnostics. In contrast our ‘healthy age genes’ were selected via a 

hypothesis driven strategy that then relied on a validation process that included seven independent 

tissue cohorts involving multiple RNA detection technologies (so ruling out some unknown 

technical bias). Thus our healthy age gene expression signature has the key advantage of being a 

signature built using a paradigm and samples entirely distinct from Alzheimer’s case-control 

samples. The healthy age gene score allowed us to demonstrate that patients diagnosed with AD 

have an altered healthy ageing RNA expression signature in blood that demonstrates significant 

association with disease.  

Further, the muscle or blood gene score was unrelated to life-style diseases such as Type II 

diabetes and thus may be more clinically specific than earlier AD biomarkers (Laske et al. 2014; 

Lotz et al. 2013; Ray et al. 2007; Hye et al. 2014; O’Bryant et al. 2011; Hu et al. 2012; Sattlecker et 

al. 2014; Lunnon et al. 2013), most of which have already failed to replicate in independent clinical 

studies. We were able to provide independent validation for our earlier AD related ‘disease’ 

diagnostic (Lunnon et al. 2013), however, like many AD disease biomarkers (Fehlbaum-Beurdeley 

et al. 2012), it includes pro-inflammatory markers and oxidative stress, features that can be 

common to several diseases and thus it may not be specific in clinical practice. Nevertheless, when 

we combined the Lunnon et al AD biomarker (even after removing the 8 genes we found to be 

regulated in blood by diabetes or vascular disease) with the ‘healthy age genes’ we yielded an 

improved diagnostic for AD over and above either diagnostic alone (Figure 3.6). Ultimately, formal 

diagnosis of AD will continue to rely on a combination of diagnostics including invasive CSF 
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sampling, PET imaging and MRI. However, given the scale of screening required (e.g. > 1 million 

people in 2015/16) to deliver sufficient numbers of at risk subjects for AD clinical trials 

(www.iadrp.nia.nih.gov) a blood-based diagnostic will be extremely useful for pre-screening ahead 

of invasive and costly follow-up analysis. Enrichment of prevention trials with asymptomatic 

people most at risk for AD is required to ensure that event rates are sufficiently high to evaluate the 

multitude of drug-trials being considered for AD (Laske et al. 2014). Finally, while the lack of an 

apparent specific biological dialogue may be considered disappointing, the extensive independent 

clinical results strongly support that the novel 150 gene healthy ageing ‘signature’ is an important 

marker of healthy ageing in humans. Therefore regulation of this gene expression programme may 

in time reveal itself to be an important mechanism for maintaining human health and thereby a new 

opportunity for target development.  

3.7 Summary 

Our approach to develop the healthy age RNA signature was novel because we first sought to 

define a set of genes associated with ‘healthy ageing’ in ‘normal’ 65y subjects rather than with 

disease or extreme longevity. Indeed, we were able to demonstrate that the 150 ‘healthy ageing’ 

genes are consistently modulated in several tissue types, but to very differing degrees in people of 

the same chronological age. Including the ULSAM analysis (males only), we have demonstrated in 

three independent clinical cohorts that greater ‘healthy age gene score’ associates with better health 

in men and women, suggesting that promotion of this gene expression profile may be beneficial 

and/or an adaptive compensatory response. Thus, we have identified a novel and statistically robust 

multi-tissue RNA signature of human healthy ageing that can act as a diagnostic of future health, 

using only a peripheral blood sample. This RNA signature has great potential to assist research 

aimed at finding treatments for and/or management of AD and other ageing-related conditions. In 

the next chapters we will be exploring tissue ageing specifically with respect to neuro-muscular and 

vascular ageing by using our healthy ageing signature and other external models for ageing/age 

associated diseases in literature and inferring how and where they might be useful. 
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4.1 Overview of the chapter 

Approaches such as genome-wide association methods, linear models of epigenetic regulation and 

differential gene expression (transcriptomics) have identified genomic associations with ageing and 

exceptional longevity and have attempted to explain factors driving age-associated disease risk.  As 

discussed in the previous chapters, using transcriptomics and machine-learning methods we have 

developed a robust diagnostic tool that successfully discriminates between healthy young and older 

humans and effectively predicts clinical outcomes.  In this chapter, we present the first comparative 

analysis of some of the existing signatures of human ageing and longevity. We first established a 

representative RNA signature for each genomic signature and then evaluated the ability of these 

RNA signatures to classify neuro-muscular tissue age. We also examined how these multiple 

signatures relate to tissue ageing and health, clinical outcomes and each other. Together these 

assorted genomic signatures account for ~2% of the genes available on the gene-chip technology 

we used. We examined if ‘random sampling’ of the remaining ~98% of genes on the gene-chip 

could create any n=150 gene-set could replicate or exceed the performance of our RNA signature in 

age classification (Sood et al 2015). Thus, the principle goals of this chapter are: 

• To establish if existing DNA, DNAm and/or non-muscle RNA ‘age’ signatures could be 

converted to a ‘gene expression signature’ that works as a binary classifier of healthy old 

versus healthy young human muscle and human brain tissue. 

• To examine if these RNA versions of other ‘age’ signatures relate to cognitive health or age-

correlated life-style diseases (diabetes and coronary artery disease). 

• To examine whether there was any common biological context across different ‘age’ 

signatures. 

• To investigate a random sampling approach to benchmark our ageing signature. 

4.2 Different genomic signatures for ageing and longevity 

We have generated a robust binary RNA diagnostic (150 genes) of healthy older human muscle 

tissue using transcriptomics and machine-learning methods in independent studies (chapter-2 and 

3). Different studies have attempted to identify molecular associations with ageing/longevity, age-

associated disease or survival by following different approaches. Healthy ageing per se has not yet 

been investigated. After generating and validating our RNA signature we set out to establish if the 

existing DNA, DNAm and/or non-muscle RNA ‘age’ signatures could be converted to a ‘gene 

expression signature’ that worked as a binary classifier for neuro-muscular age and Alzheimer’s 

disease. Further, we were also interested in exploring a random sampling approach to examine the 
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robustness of our healthy ageing signature not only to establish the effectiveness of our machine 

learning approach but also to demonstrate that the performance of our particular set of 150 

probesets was better than that of randomly sampled sets of 150 probesets from the same platform.  

In Table 4.1 we summarize the methods used to identify the different ageing and longevity 

signatures used in our comparison study. 

Sood binary muscle Age RNA 

(Sood et al. 2015) 

Muscle from healthy but sedentary 65y+ subjects was 

used to discover potential markers of healthy ageing 

Peters linear blood Age RNA 

(Peters et al. 2015) 

Blood expression and linear modelling used to  

determine a correlative profile of ageing in human 

blood 

Wennmalm senescence RNA 

(Wennmalm et al. 2005) 

Regression based meta analysis across several 

platforms to discover consistent in vitro senescence 

genes 

Levine DNA SNP smoking-

survival (Levine & Crimmins 2016) 

Genome wide association study (GWAS) and 

network analysis used to discover DNA markers 

enriched in long-lived smokers (n=90) 

Perl DNA SNP Longevity 

(Sebastiani et al. 2012) 

Genome-wide association analysis linked with 

exceptional longevity 

Hannum DNAmethylation 

(Hannum et al. 2013) 

CpG sites correlated with age (penalized multivariate 

regression method) 

Horvath DNAmethylation 

(Horvath 2013) 

Quasilinear regression model using CpG sites across 

multiple human tissues and disease samples 

  

Table 4.1: Ageing and longevity signatures. Different Methods such as regression models and GWAS were 

used to identify the different ageing/longevity genomic signature. 

4.2.1 Producing representative RNA signature 

A representative RNA signature for each ageing signature required the genomic features of the 

signature first to be mapped to equivalent gene symbols and then to the corresponding Affymetrix 

probeset ID. We used the BioMart tool and the Ensembl database to achieve the mapping. For all of 

the six ageing signatures used in this study (Table 4.1) the gene lists were provided by the authors 

in their respective publications. The authors of the smoking resistance DNA signature (Levine & 

Crimmins 2016) used PLINK, a whole genome analysis tool to map SNPs that fell within the 

designated GRCh37/hg19 coordinates of the gene instead of assigning upstream or downstream 

SNPs to a gene. Similarly, for the Horvath DNAm signature (Horvath 2013) the CpG sites located 
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in the promoter of a gene were assigned the corresponding gene symbol. Table 4.2 shows the 

number of genomic features in each individual signature and corresponding number of genes they 

mapped to respectively. 

Existing genomic ‘age’ signature No of Genes 

Sood muscle Age RNA (150ps) 150 

Peters blood Age RNA  (1497 genes) 1497 

Larsson cell senescence RNA  (309 Genes) 309 

Levine SNP-smoking (215 SNPs) 215 

Perl Longevity DNA (281 SNPs) 130 

Hannum DNAm (71 CpG sites) 83 

Horvath DNAm (353 CpG sites) 353 

 

Table 4.2: Mapping of genomic features identified in ageing studies to gene symbols. Each of the different 

ageing and longevity signatures consisted of different genomic features which were transformed to a 

representative RNA signature for a comparative analysis. 

4.2.2 Overlap with the healthy ageing signature 

After mapping genomic features to gene symbols we noted that the overlap in gene symbols 

between the different studies was very low. We also checked the overlap of the different ageing 

signatures with our RNA signature (both n=150 and the n=670 probeset lists with success rate 

>70%) in particular and tested if the overlap was significant or not based on Fisher’s exact test. The 

only statistically significant results were for the study of DNA markers enriched in long-lived 

smokers (Levine & Crimmins 2016) and the correlative RNA signature profile of ageing in human 

blood (Peters et al. 2015). These had had overlaps of 11 and 48 genes respectively with our 670 

probeset list (p-value<0.05).  

4.3 Random sampling 

Our original study took a hypothesis driven approach to study a physiological phenomenon, namely 

healthy muscle ageing and selected a single high performing gene-set to represent the hypothesis to 

be tested in thousands of independent samples. A consistent reliable signature had never been 

achieved before for healthy ageing. Recently a pre-print study based on our microarray data that 

stated that our healthy-ageing marker genes can be replaced by essentially any random set of 150 

genes, with essentially equivalent performance (Jacob et al - 

http://biorxiv.org/content/biorxiv/early/2016/04/05/047050.full.pdf). However, the ‘random 

sampling’ strategy used had the major caveat in that it did not address our primary aim of finding a 
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single gene-set that works across all data-sets. Instead Jacob et al generated a separate gene-set each 

time and hence demonstrated low reliability. Further the idea that one can select a ‘random’ gene-

set is,  from a biological perspective, flawed as there are many genes regulated with human ageing 

(Sood et al. 2015; Peters et al. 2015; De Magalhães et al. 2009; Wennmalm et al. 2005) and none of 

these age-correlated gene-sets are random in a true sense. For a genuine test of a random sampling 

approach such age correlated genes should be excluded from the sampling. This was not done by 

Jacob et al.  

To truly demonstrate the performance of random gene-sets as tissue age classifiers we first 

removed the genes we had originally identified with classification ability in ageing (n=670) (Sood 

et al. 2015) from the starting pool of genes to be sampled. We then evaluated the ability to classify, 

with statistical significance (Fisher’s exact test), age or disease in 10,000 ‘random gene-sets’ of 

n=150 genes in multiple tissues. Importantly, unlike the Jacob et al we used the same set of 10,000 

different n=150 gene-set lists across all tissues examined. Classification performance was assessed 

using accepted methods (Speed 2003) with external validation and LOOCV so that each gene-set is 

judged in an independent data set (see section 4.5). In order to compare the performance of the 

random gene-sets across each muscle dataset we ranked the area under the curve (AUC) values 

generated from receiver-operator characteristic (ROC) curves of the random gene-sets along with 

AUC of our gene-set and six other literature derived ageing signatures (Table 4.1). We then 

calculated the cumulative median rank for each of the 10,000 random gene-sets and each of the age 

signature gene-sets (Figure 4.1). The performance of our published 150 probeset (red dot) exceeded 

the performance of all 10,000 random selections of 150 probesets (boxplot; median and quartiles) 

and previously published ageing/longevity signatures as shown (various coloured dots in Figure 

4.1).  

We then selected the top 764 performing (AUC >0.8) random gene-sets and inspected the 

genes in each of these.  From the redundant pool of ~114,600 genes we found only a subset of 131 

genes that occurred in more than one percent of the gene-sets. We created a new gene-set from 

these frequently appearing genes and tested classifier performance in muscle and brain age (Figure 

2) and in the Alzheimer cohorts(Lovestone et al. 2009; Sood et al. 2015) . We also repeated the 

same analysis by using the random n=150 genes list that had a median rank order of ~5000 

(AUC=0.73). These two random sets of n=131 genes and n=150 genes respectively were then 

compared to our RNA signature and other ageing gene-sets.  

4.4 Neuro-muscular tissue age classification 

We evaluated the ability of the different ageing signatures and each of the 10,000 probeset lists to 

distinguish neuro-muscular tissue age (young vs old) using fully independent external validation a  
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Figure 4.1. The rank order for area under curve for ROC analysis on 10,000 ‘random’ samples of 150 

probesets. Following removal of our previously identified ‘healthy age’ genes (with AUC >0.7, 670 genes) 

we produced 10,000 random sets of n=150 probesets from the gene-chip (‘Stockholm’ healthy age samples). 

We assessed each set of 150 probesets for its ability to classify muscle tissue age, using gold-standard 

external validation methods and 5 independent gene-chip studies (5 nearest neighbor KNN classifier as 

implemented by Speed and Jacob). We compared the performance of these 10,000 probesets with our 

published 150 probeset and 6 additional published ‘ageing’ related gene-sets. The performance of our 

published 150 probeset (red dot) exceeded the performance of all 10,000 random selections of 150 probesets 

(boxplot; median and quartiles). Each previously published ageing/longevity is shown by a different colored 

dot. The median AUC from random sampling was 0.73 

	

process that requires both independent ‘known samples’ to define the expression space and 

independent test gene-chips (Shao et al. 2013). We used Frozen Robust Multi-array Analysis 

(fRMA) (McCall et al. 2010) for normalization and CoMBAT for batch adjustment (Johnson et al. 

2007) to account for technical variance due to different laboratories and operators. Then, kNN was 

used on 4 independent muscle data-sets (the 5th was the CAMPBELL dataset for external 

validation) and on four distinct human brain regions (120 samples) from brain-bank array source 

(Berchtold et al. 2008). We tested for statistical significance in classifier performance using 
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Fisher’s exact test. The resulting p values were then corrected for multiple testing using Benjamini-

Hochberg correction method(Yoav Benjamini 1995).	

The AUC for classification of muscle by these different signatures (row-wise Figure 4.2) 

was 0.92, 0.83, 0.76, 0.69, 0.85, 0.73, 0.76, 0.91 and 0.67 respectively. For brain the AUC were 

0.67,0.79,0.61,0.64,0.69,0.59,0.75,0.6 and 0.58 respectively. The absolute log10 of the adjusted p-

values are shown in the form of a heat map (Figure 4.2). Muscle tissue age was successfully 

determined with RNA signatures selected from various genomic signatures. However, in the case of 

brain tissue only our healthy ageing RNA signature, Peters RNA blood signature and Horvath 

DNAm signature performed with statistical significance (p<0.05). One of the interesting 

observation from our analysis was that relation between AUC and p-value was not necessarily 1:1 

that is a higher AUC didn’t correspond to a lower p value and vice versa. A possible explanation for 

this could be uneven class distribution (more samples in young and less samples in old or 

conversely) which could have impacted the AUC values (Daskalaki et al. 2006).  

We also studied the different gene lists ability to classify tissue age across 3 brain regions, 

hippocampus, putamen and cerebellar cortex with healthy samples from BrainEac.org gene-chip 

resource study (Ramasamy et al. 2014).  The hippocampus and putamen are both associated with 

neurodegeneration whereas cerebellar cortex is not subject to substantial age-related anatomical 

changes and thus serves as a control in this analysis (Ramasamy et al. 2014; Horvath et al. 2015). 

Using the cumulative gene score ranking approach (explained in the section 4.6) each brain region 

from each of the 134 subjects were individually ranked and the median sum of the ranked scores 

was calculated. The Wilcoxon rank sum test was used to evaluate if the expression of the different 

gene lists differed across the brain regions with age.  As already mentioned in chapter 3, across the 

3 human brain regions the RNA signature derived from healthy old muscle (Sood et al. 2015) was 

highly regulated in regions associated with neurodegeneration (hippocampus and putamen, 

Appendix 2 Figure A4.1A). The Peters blood RNA signature also tracked human brain age, albeit 

to much lesser extent (Appendix 2 Figure A4.1B). Consistent with multiple published observations 

(Ramasamy et al. 2014; Horvath et al. 2015), human cerebellar cortex did not appear to be subject 

to substantial age-related changes (Appendix 2 Figure A4.1). 

4.5 Testing prognostic abilities of signatures in clinical studies 

For clinical case-control analysis, each RNA signature was converted to a cumulative gene-ranking 

score based on individual RNA expression in the muscle classification dataset i.e. if the gene was  
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Figure 4.2: Heatmap representation of p-values for the application of each gene-set in multiple tissues 

and clinical disease samples (as per Sood et al 2015). Each row of the heat map is one gene-set 

representing one RNA signature. Columns represent the human muscle, brain, brain regions and clinical 

data-sets. The statistical analysis from Sood et al 2015 is contrasted with the adjusted p-values for the 8 

additional gene-sets (absolute log10). Grey to dark grey is non-significant, near-white being marginally 

significant (p=0.05) with red towards blue representing an increasing order of significance. Interestingly, 

when the overlapping age genes (~48) from peters signature (section 4.2.2) were excluded  it was no longer 

able to classify human brain age (second column and second row in the figure). 

	

down regulated in human muscle, from 25y to 65y, the sample with the highest expression was 

assigned a rank score of 1 and the subject with the lowest expression value was assigned the highest 

rank value. For genes up-regulated with age, the opposite ranking strategy was used. The median 

sum of these rank scores was calculated for each clinical sample (each gene provided equal 

weighting) (Sood et al. 2015). For the case-control analysis, feature selection (genes) was therefore 

independent of the clinical studies, while the direction of regulation reflected regulation of that gene 

in healthy old muscle versus healthy young muscle. To test if the cumulative gene score differed 

significantly between case and control we used Wilcoxon rank sum test. 
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Figure 2: Heatmap presentation of p-values for the application of each gene-set in multiple tissues and clinical disease
samples (as per Sood et al 2015). Each row of the heat map is one gene-set representing one RNA signature. Columns
represent the human muscle, brain, brain regions and clinical data-sets. The statistical analysis from Sood et al 2015 is
contrasted with the adjusted p-values for the 8 additional gene-sets (absolute log10). Grey to dark grey is non-significant, near-
white being marginally significant (p=0.05) with red towards blue representing an increasing order of significance. The area
under the curve for muscle classification for these different signatures (row-wise) was 0.92, 0.83, 0.76, 0.69, 0.85, 0.73, 0.76,
0.91 and 0.67 respectively. Classification of Alzheimer’s samples vs age and gender match controls was carried out as
described by Sood et al. Briefly, two cohorts of independently produced Illumina gene-chips (and different gene-chip
generations) were analyzed by matching the 150 gene-set to the available markers on the Illumina gene-chips and running
classification using LOOCV in each data-set. The average p-value for these two analysis is reproduced from Sood et al and
contracted with the adjusted p values for the additional 8 gene-sets.
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As previously discussed, consistent with the substantial modulation of our RNA signature in 

human hippocampus (p=0.00005, Appendix 2 Figure A4.1A), expression of these RNA could also 

uniquely distinguish between Alzheimer’s disease cases and controls. None of the other RNA 

representative signatures including Peters RNA signature (modulated in hippocampus to some 

extent) could predict cognitive health status in either of two independent Alzheimer cohorts (Figure 

4.2) (Lovestone et al. 2009). We also used the clinical studies on blood RNA in type II diabetes 

(Tabassum et al. 2014) and blood RNA in people with and without coronary artery disease (CAD) 

(Sinnaeve et al. 2009) to test if any of the age related RNA signatures could capture some aspect of 

these age related diseases.  None of the signatures could distinguish diabetics from controls. Two 

RNA signatures (Cell senescence (Wennmalm et al. 2005)  & blood age (Peters et al. 2015)) and 

one DNA SNP (survival in smokers (Levine & Crimmins 2016)) derived RNA signature were 

diagnostic for coronary artery disease (CAD) versus control (n=222, adjusted p<0.05, Figure 4.2 

and Figure 4.3).  

 

 

Figure 4.3 Vascular disease plot. RNA rank-score in blood samples from a case-control study of middle-

aged coronary vascular disease (112 controls and 110 cases, group age=53.3y, Affymetrix HG-U133A) was 

studied in the different ageing/longevity signatures. A Wilcoxon rank-sum test tested if cumulative gene 

ranking score for controls was significantly different from patients (CAD). Peters RNA signature included 

48 of our 150 age signature genes, removing which didn’t alter its ability  to distingusih CAD from controls. 

	

Smoking is a major risk-factor for CAD and the Levine et al SNP results appear to translate 

to an RNA signature (survival to 85y despite smoking), while cellular senescence has been shown 

to play a role in vascular disease (Levine & Crimmins 2016; Wennmalm et al. 2005). The Peters 

RNA signature (Peters et al. 2015) was derived using samples with cardiovascular disease (e.g. 

hypertension) rather than age per se (Figure 4.2) and thus it comes as no surprise that it could 

discriminate CAD from controls. In all three signatures CAD had a higher gene score implying that 
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genes most regulated with age are more regulated in CAD then controls which could indicate 

response to damage. We lastly investigated if the three signatures were enriched for common 

biological process and/or molecular function gene ontologies. No overlapping ontologies were 

found across these three gene-lists.  

4.6 Discussion 

Population ageing and the shift from infectious to chronic diseases as major causes of death have 

together created an urgent need for the discovery of ageing and age related biomarkers/signatures. 
Targeting ageing is theoretically better than treating individual chronic diseases, however up to this 

point, translational routes to accomplish this objective have been purely speculative (Kaeberlein et 

al. 2015). While this subject has received considerable recent attention, there are numerous 

challenges to both the development and the implementation of diagnostics for ageing (Goldberger 

& Buxton 2013), including economic considerations.  

Given the fact that the choice of method and cohorts used for developing biomarkers has a 

great influence on the subsequent statistical analysis and biological answer, the quality and 

credibility of these methods need to be assessed fairly. There are multiple competing technological 

platforms that yield plentiful data adding to the challenge for scientists to find a way to integrate 

information across different studies. So far progress in integrating different data formats to yield 

robust and sensitive diagnostics for clinical decision making remains slow (Goldberger & Buxton 

2013). To this end, our comparison study in this chapter deals with seven representative RNA 

signatures (including our healthy ageing RNA signature) compared on healthy neuro-muscular 

ageing datasets and on clinical datasets representing various age related morbidities.  

The utility of DNA sequence variation to guide treatment of cardiovascular disease or 

neurodegeneration is just being explored (Sawhney et al. 2012). However, this approach is severely 

limited by the total contribution that DNA variants make to the heterogeneity of these types of 

diseases. A study of exceptional longevity using Genome-wide association analysis linked 281 

DNA variants with exceptional longevity (Sebastiani et al. 2012) and collectively explained only 

17% of the variance in humans with an average AUC value of 0.65.  However, long-lived humans 

appear to have a similar genetic burden for common DNA disease variants, suggesting the human 

exceptional longevity model may not be reflective of the processes that determine average 

longevity (Gierman et al. 2014).  

In their work on the transcriptional profile of ageing in peripheral blood, Peters et al found 

1497 genes to be associated with age. From this they identified only 163 genes (~11%) in cerebellar 

cortex to be significantly associated (p<0.05) with age in same direction as in whole blood.  This  



Chapter-4                                                                                      Comparative analysis of different ageing signatures	

	 73	

not only highlights the caveat of correlative models being highly tissue specific but is also primarily 

at odds with studies of the human cerebellar cortex (Horvath et al. 2015; Sood et al. 2015) as this 

brain region typically does not show a genomic signature of ageing nor demonstrate typical 

morphological changes with age (Ramasamy et al. 2014). This suggest that the Peters signature is 

not age, or not only age, but may reflect a number of other biological phenomena. For example, the 

Peters et al gene set is strongly correlated with hypertension but not with neuromuscular measures 

of ageing like MMSE scores (muscle function or cognitive status). A number of other published 

datasets seem to have this characteristic. Gene-sets like Peters et al are generated from 

epidemiological cohorts, validated in a single tissue type, and this type of linear covariate analysis 

can introduce statistical artefacts and requires validation in multiple cohorts. We produced a robust 

multi-tissue binary age classifier, using a single machine learning model (Chapter 2). Nonetheless it 

is always plausible that a number of other genes, in combination, could classify muscle age and 

indeed using literature ‘age’ signatures we have shown that other combinations were significant 

classifiers of muscle age (first column in Figure 4.2). Thus we demonstrate that human muscle 

tissue age can be determined with RNA signatures selected from diverse genomic signatures (e.g. 

derived from DNA sequence or methylation).   As observed in the comparative analysis, only the 

Peters and Horvath gene-sets were able to classify both human muscle and brain but performance of 

these RNA signatures was modest.  In clinical analysis, the RNA signature derived from genes 

selected to provide protection from environmental stress (survival to 85y despite smoking) was 

diagnostic for coronary artery disease (CAD) versus control (n=215, adjusted p<0.05) (Ambrose & 

Barua 2004). Cellular senescence has been shown to play a role in vascular ageing (Erusalimsky & 

Kurz 2005; Fyhrquist et al. 2013) and the senescence RNA signature could also distinguish between 

CAD versus control (n=309, adjusted p<0.05). Similarly, the Peters RNA signature derived in 

blood could distinguish between CAD versus control (number of genes=1497, adjusted p=0.03). In 

this case the cohorts used in the study contained older participants with age-associated diseases and 

thus the ability to classify CAD was not surprising.  

Activation of different ageing signatures was studied in blood samples from two 

independent large case-control studies of Alzheimer’s disease. Except for our RNA signature none 

demonstrated significant results for cognitive health status. This could be explained by increased 

regulation of the healthy age gene score with chronological age in the hippocampus (p=0.00005), as 

well as putamen (p=0.000005) both regions associated with neurodegeneration (Laakso et al. 2000; 

Erickson et al. 2011; Taupin 2006; Sekar et al. 2014; Lunnon et al. 2013). Additionally, we noticed 

that a small subset of genes could drive the overall performance of the literature gene-sets. For 

example, the large Peters et al gene-set (n=1497) has 48 genes in common with our healthy ageing 

signature and when our 48 genes were removed, the remaining Peters et al gene-set was no longer 
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able to classify human brain age (p-value =0.08), but its relationship to CAD remained unchanged. 

This implies that the ability of the age signature of Peters et al to classify brain age is driven to 

some extent by the 48 overlapping genes from our RNA signature.  

4.7 Summary 

This chapter provides an important perspective on both the utility and limitations of different 

genomic signatures of ageing when transformed to equivalent RNA (gene expression) signatures. In 

this analysis we observed that our muscle derived gene-set was the only one related to hippocampus 

ageing and cognitive health while ‘stress’ resistant and ‘epidemiologically’ selected linear models 

related with vascular disease (CAD) Analysis of the global transcriptome (RNA), using machine 

learning methods, has produced sensitive tools for cancer diagnosis and prognosis in the past (Abd 

El-Rehim et al. 2005; Shedden et al. 2008; Patnaik et al. 2010; Menden et al. 2013). Further, it has 

been possible to select features from a tumour global RNA profile that predicts drug sensitivity 

(Knudsen et al. 2014). Given the superior technical reproducibility and throughput of the 

Affymetrix gene-expression platform over DNA-methylation assays, the study shows that RNA 

signatures may represent an ideal approach for optimizing ‘age’ diagnostics as well. Also, in this 

analysis we have shown that a hypothesis driven approach based on machine learning methods is 

more reliable than the random sampling approach detailed by Jacob et al. The latter approach fails 

to produce a single gene-set capable of acting as a multi-tissue classifier of age and with 

discriminatory power in Alzheimer’s disease. We originally identified one gene-set that works in all 

our data-sets, and in this chapter showed that after excluding our gene-set, 10,000 random samples 

cannot replicate the exceptional performance of our ‘healthy ageing gene-set. This highlights the 

limitations of ‘big data’ analysis strategies when applied in the absence of clinical or biological 

insight. 
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5.1 Overview of the chapter 

One of the earliest signs of vascular ageing is arterial stiffness, a process that is thought to be 

accelerated by arterial hypertension, resulting in an increased risk of cardiovascular morbidity and 

mortality. Arterial stiffness can be categorized by estimating vessel compliance, and decreased 

arterial compliance is one of the earliest indications of adverse structural and functional changes 

within the vessel wall. It is defined in the clinic by a parameter called pulse wave velocity (PWV), a 

measurement that is influenced by the end-user (technician) and the technology being used. In this 

chapter we investigate the possibility of developing a model for vascular ageing using gene 

expression data and clinical parameters (as dependent variables) known to co-vary with PWV 

measurements such as blood pressure and chronological age. Through this analysis we show the 

importance of understanding the difference between statistical and quantitative significance in 

diagnostics or biomarker development. Thus, the principle goals of this chapter are: 

•  To identify number of genes across the pre-existing skin tissue expression data, whose 

baseline expression correlate with PWV in vivo and transform them to a feature score 

metric. 

• To evaluate a regression model of the resulting feature score combined with BP and/or age. 

• To test the robustness of the model in validation datasets by comparing the predicted 

clinical response (PWV) with the actual observed PWV measure. 

• Lastly, to test if our healthy neuro-muscular age signature of 150 genes (derived from a non-

linear, binary approach) could be converted to a linear regression model for vascular 

stiffness (which we expected to be negative). 

5.2 Over-view of vascular ageing and arterial stiffness 

Ageing being an inevitable part of life significantly affects the heart and arterial system and is 

accompanied by decline in various physiological capacities – such as vasodilation and aerobic 

fitness. Vascular ageing is associated with changes in the structural and mechanical properties of 

the vascular wall that leads to the loss of arterial elasticity and impaired endothelial function (North 

& Sinclair 2012; Laurent 2012). Breakdown of elastic components mainly elastin and collagen in 

the aortic wall, results in its parallel stiffening and dilation (Jani & Rajkumar 2006). Thus, vascular 

changes contribute to the age dependent risk in developing vessel disease (e.g. tissue remodeling 

and atherosclerosis). In addition to non-modifiable risk factors such as chronological age and 

gender, there are other important life-style influenced risk factors such as hypertension and diabetes 

mellitus that also accelerates arterial stiffening increasing vulnerability for developing cardio 

vascular disease (Benetos et al. 2002). 
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Arterial stiffness has independent prognostic value for coronary and cardiovascular 

morbidity and mortality (Zieman et al. 2005; Nilsson et al. 2009). It  can be measured by different 

non-invasive parameters like pulse wave velocity (PWV), augmentation index, pulse contour 

analysis etc. (Kelly et al. 1989). PWV measures the velocity of the propagation of the forward and 

backward pressure waves between two points of the artery and it is a reproducible and technically 

demanding parameter for estimating blood vessel function (Yamashina et al. 2002; Hansen et al. 

2006; Laurent 2012), which is often considered as a clinical gold standard of measuring arterial 

stiffness. PWV varies greatly by blood pressure and is thus often adjusted for this variable 

(Ruitenbeek et al. 2008; Reference Values for Arterial Stiffness’ Collaboration 2010) while our 

model was adjusted for chronological age as well to establish if there was also an underlying RNA 

signature that could contribute to accurately estimating vascular ‘health’. 

In terms of genomic knowledge of vascular age, methods such as whole genome sequencing 

and genome wide association studies (GWAS) have identified different genes and chromosomal 

regions potentially involved in arterial stiffness (Medley et al. 2002; Turner et al. 2006). SNP 

association studies have recognized various population specific variant that relate to age related 

vasculature stiffness (Lajemi et al. 2001; Ye 2006). While this is a progressive step forward, it is 

important to note that arterial stiffness is a polygenic condition that occurs due to the sum of 

multiple polymorphisms, with each variant having a relatively small effect (<5%) on the phenotype 

(Lacolley et al. 2009). Moreover, GWAS studies often lack the knowledge about which gene a 

SNP/variant impacts on, as it could be a gene far removed from the SNP location. This gets more 

complicated in polygenic conditions like arterial stiffness where each SNP could potentially be 

associated with more than one gene and modelling such data is still considerable very challenging. 

Therefore, rather than individual gene variants it will be more interesting to inspect whether 

vascular ageing phenotype may relate more closely to gene expression. In the past transcriptomic 

signatures based on differential gene expression have been studied as biomarker of arterial stiffness 

in humans and have indicated that quantitative differences in gene expression have the potential to 

define a person’s phenotype (Durier et al. 2003; Heidecker et al. 2008). Thus, combining gene 

expression together with machine learning methods and clinical covariates we could yield a more 

promising approach that could also disclose the link between transcriptional regulation and vascular 

ageing.  
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5.3 Methods 

5.3.1 Dataset and participants 

Gene expression data from SKIN tissue from female Caucasian twins (~340 samples) from the 

Twins UK cohort was available on arrayExpress (Illumina Human HT-12 V3, E-TABM-1140), a 

cohort with characteristics similar to the general U.K. population (Andrew et al. 2001). The 

baseline age ranged from 39 to 85 years with a mean age of 59 years. All women underwent 

assessment of arterial stiffness by measurement of carotid-femoral pulse wave velocity (cfPWV). 

Gene expression levels were measured using Illumina Human HT-12 V3 BeadChip from skin 

tissue. From these 340 participants with gene expression data, 84 women had repeated vascular 

measures at a 4.3 ± 1.4 year follow-up.  

5.3.2 Mean Arterial Blood pressure and PWV Measurements 

Vascular measurements were performed in a temperature-controlled vascular laboratory (~ 24ºC). 

Brachial blood pressure was measured using a validated oscillometric device (Omron 705CP, 

Omron, Tokyo, Japan) after subjects had been supine for at least 10 minutes. SphygmoCor system 

(Atcor Medical, Sydney, Australia) was used to measure cfPWV by sequentially recording the 

carotid and femoral artery pulse by applanation tonometry (Nelson et al. 2010) with a high-fidelity 

transducer (Miller Instruments, Houston, Texas). Difference in time of pulse arrival from the R-

wave of the electrocardiogram between the two sites was taken as the transit and difference in 

distance was estimated from the distance between the sternal notch and femoral artery at the point 

of applanation (Cecelja et al. 2009). Measurements were made in triplicate and mean values were 

used for analysis.  

5.3.3 RNA extraction and expression profiling 

For expression analysis, punch biopsies (8mm) were taken from relatively photo-protected infra-

umbilical skin. RNA was extracted from homogenized tissue samples using Trizol Reagent 

(Invitrogen) according to manufacturer’s protocol. RNA quality was assessed with the Agilent 2100 

BioAnalyzer (Agilent technologies) and the concentrations were determined using NanoDrop ND-

1000 (NanoDrop Technologies) and samples were stored in -80°C until ready to use. Expression 

profiling was performed using the Illumina Human HT – 12 V3 BeadChips (Illumina Inc) where 

200 ng of total RNA was processed according to the protocol supplied by Illumina. For quality 

control, expression profiling was repeated two to three times on different beadchips.	The expression 

data were first transformed using variance stabilization and then quantile normalized using the 

LUMI package in R as it is neither too strict nor too negligent while normalizing the data (Du et al. 

2008; Ritchie et al. 2011). 
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.  

 

Figure 5.1 Workflow for developing a linear signature of vascular ageing using machine learning 

methodology.  We developed a pipeline for selecting the features from the transcriptomic data that linearly 

correlates with the clinical endpoint, PWV in this case. The workflow gives user the flexibility to subset the 

features based on different criterions (orange boxes shows the different options). 

5.3.4 Machine learning approach for predictor development 

The aim of this analysis was to build a linear regression model that incorporates gene expression 

data along with clinical covariates such as age and blood pressure (variables that have been reported 

to relate to vascular health) to determine the PWV measure for a subject which in turn could 

provide insight into a subject’s vasculature health or age. In order to determine the set of genomic 

features for this vascular age model, we developed a pipeline (Figure 5.1) that gives a list of 

features that correlates with the clinical endpoint (PWV in this case) but is able to select the 

features based on a variety of selection criteria when applied to a second data-set. When we 

explored the development of this prototype method, we considered both the direction of association 

with the clinical phenotype and the slope 
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5.3.4.1 Data pre-processing for linear classifier pipeline 

To begin with we split the dataset into three groups, two splits/subsets were used as training 

datasets in the pipeline and one subset was used for validation (not part of the pipeline). For the 

training datasets, split 1 (~141 samples) was used for ‘feature selection’ and split 2 (~116 samples) 

was used for ‘model selection’ i.e., to combine the selected genomic features into a model that 

correlates with PWV. We ensured that distribution of the clinical variables is similar between the 

splits by plotting their distributions. While blind validation is far more robust, we did not have a 

validation set generated in a different laboratory and so relied on splitting the cohort with the third 

group being used for the statistical validation step.  

We processed the RNA expression data using a standard deviation filter to remove probes 

from the study that had both a low and invariant expression signal. To select a suitable SD filter 

value, we plotted the distribution of SD values and the peak SD in the distribution was chosen as 

the threshold for detection (in this case features with SD >8 intensity values were considered as 

detected). For the detected features (~25,107 probes) expression measurements from LUMI were 

logit normalized i.e. log transformed and scaled to mean zero and SD 1 (Chen et al. 2012; Knudsen 

et al. 2014). The expression values ranged over several orders of magnitude and transformation 

ensured that when we got to the model selection phase each gene would be equally weighted when 

considering arithmetic combinations. Further, since PWV intrinsically varies with chronological 

age and mean arterial pressure (Figure 5.2), we adjusted the transformed gene expression data, by 

the residuals extracted from the linear model fitted through the response variable (PWV) as a 

function of these two clinical covariates (age and Mean arterial pressure). These steps correspond to 

the first main block (in yellow) of Figure 5.1. 

5.3.4.2 Selection of features using feature selection dataset 

To calculate the ‘final’ correlation between PWV and RNA expression for a given probe, in the 

‘feature selection’ phase, one sample was left out of the calculation and Pearson correlation was 

calculated along with p-values, adjusted p-values and slope of the best fit line, and the median 

values for these parameters were retained. Features were taken forward if they had a median 

adjusted p-value <0.05 (option 1 in Figure 5.1) and these were ranked by the median correlation 

coefficient (CC) values. Next, from this rank ordered list the number of features to be carried 

forward downstream into the model selection run were selected (option 2 in Figure 5.1). The 

number of features selected for this prototype was arbitrary, however we tended to select a larger 

than optimal list as we wished to attempt to get a robust gene ontology profile to help interpret the 

underlying biology.  
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Figure 5.2 Relation of PWV with covariates. Pulse wave velocity, the measure of arterial stiffness is known 

to intrinsically vary with chronological age and mean arterial pressure which holds true in our data as well. 

5.3.4.3 Selecting gene sets using model selection dataset 

From the feature selection dataset, we obtained a number of interesting genes that may or may not 

combine together to produce a statistically significant linear model. Thus, the gene list obtained was 

not the end point of the analysis but the beginning of a multi-step process that includes arbitrary 

decisions according to the the pipeline shown in Figure 5.1.  Our aim was to search for genes which 

when combined together could potentially work as predictor of vascular age and inform us about 

the underlying biology. The ‘model selection’ dataset is used in a two-step selection process, where 

the first step, is an assessment of all statistically significant individual features (selected from the 

feature selection step) and all samples in model selection dataset. The impact of sequentially adding 

(i.e. 1,1+2,1+2+3, …, 1+2+…+ n) each feature at a time is calculated and the model plotted (Figure 

5.3A).  

In order to combine features together to form a model we use features scores where are 

determined by collapsing the expression values of the chosen genes into a single metric for each 

sample. Two different ways of estimating the feature score were investigated. Either as sum of the 

logit RNA expression or it could be computed as mean of logit expression values of positively 

correlated features minus the mean of logit expression values of negatively correlated features. A 

linear model of a resulting feature score versus the clinical phenotype (PWV) is created. In the 

second selection step the recorded effect (e.g. Figure 5.3B) of each feature being added to this 

model is used to decide which individual features combine together to generate the best model (in 

this case based on the final correlation coefficient). The potential effect of each feature on the 
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model are list in Table 5.1 which summarizes selection criterions used. In the pipeline this 

corresponds to option 3 of Figure 5.1. 

                                         Description 

Nosubset no refined subset selected 
Poscor selects features that are positively correlated with the clinical variable in 

the ‘feature-selection’ dataset. 
Negcor selects features are negatively correlated with the clinical variable in the 

‘feature-selection’ dataset 
UpPlus selects features that increase the correlation in an already positively 

correlated model 
Up selects features that drive either a positively or negatively correlated 

model in a positive direction. 
DownMinus selects features that drive a negative model correlation towards more 

negative values. 
Down selects features that drive either a positively or negatively correlated 

model in a negative direction. 
 
UpPlus|DownMinus 

selects features that drive the model in a negative direction if the model is 
already negative or in a positive direction if the model is already positive. 
Unlike the Up or Down options the direction and the strength of the 
association are considered. 

 

Table 5.1:  The different selection criterions for the ‘model selection’ dataset that takes into account the 

effect each feature has on the model. 

5.3.5 Final regression model for vascular ageing and validation 

The present linear classifier approach allowed us to explore the transcriptomic search space to find 

a set of features (genes) that together correlate with vascular age/stiffness. Once we have the 

knowledge about features relating with PWV, we built a final multiple regression model which was 

then used to establish if we could predict PWV values from gene expression (with or without 

covariates like chronological and blood pressure). The lm function in stats package from R(R Core 

Team 2015) was used for this purpose. The transformed feature scores (explained in section 

5.3.4.3) were combined with mean arterial pressure and chronological age to predict the PWV for 

an unknown sample.  

To validate each model 84 ‘new’ subjects from the same cohort (the third split which was not used 

in training pipeline) along with baseline clinical and PWV values measured were used. For a subset 

of the aforementioned 84 subjects (n=75), PWV value and mean arterial pressures measures from a 

4yr follow-up period (±4.3yr) were available and these were used to explore if there was a 

relationship between gene score and progression of aortic stiffness. The robustness of the model in 

these validation samples was tested by visualizing the results using Bland-Altman plots which 
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allows the comparison between the actual and predicted values. In these plots in general, if the 

plotted data clusters around the mean of the differences (called the bias), and is within ±1.95 

standard deviations of the mean known as ‘limit of agreement’ then the observed and predicted 

values are considered to be in agreement with each other.  

 

 Figure 5.3 Selection criteria in ‘model-selection’ dataset that takes into account the effect each feature 

has on the model. A) We iteratively add one feature at a time and compute the correlation coefficient of the 

gene set with PWV values. Then we record if adding the feature make the model better or worse and select 

one of the criteria from Table 5.2 B) Using the sub selection criteria we get the best model which in this case 

is a set of 124 features. 

 

5.3.6 Transforming healthy neuro-muscular age signature into a linear model  

Using KNN method of binary classification we have found a healthy neuro-muscular signature 

effective at distinguishing between young and old human muscle and brain while in human blood, it 

was related to cognitive status in two independent studies (Chapter 3). We were interested in testing 

if this multi-tissue healthy age signature of 150 genes (~128 Illumina probes) could be potentially 

converted to a linear model for vascular stiffness. Since the age signature was developed as a non-

linear model, it was necessary to find subset of genes from the 150 genes that followed a linear 

pattern of change with chronological age. Using correlative analysis and classification modeling we 

identified genes in the nonlinear model that had some linear features using a set of human muscle 

samples from the STRRIDE II cohort, a pre-clinical sedentary cohort of adults (age range of 25 to 

68 years). From these linear genes we use only those that were expressed in both blood and skin as 

if we obtained a positive outcome we would have progressed the validation using blood-based 
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gene-expression cohorts. We combined the subset of expressed linear genes following the same 

approach as for model 1 and 2 described below i.e., adjusted the gene expression values for age and 

blood pressure and collapsed it into a feature score metric and subsequently analyse its potential as 

a model of vascular ageing. 

5.4 Results and discussion 

The linear classifier pipeline provided the flexibility of choosing different selection thresholds and 

criteria first for individual features and then for model selection as explained in the methods section 

above. Based on this pipeline we selected and validated two different PWV prediction models. 

5.4.1 Predictor genes from machine learning approach  

Using the detected Illumina probes the correlation between PWV and probe RNA expression were 

calculated. The features with a median adjusted p-value <0.05 were selected (~1135 

features/probes) and ranked by the median correlation coefficient (CC). We then added each feature 

score metric (summation of logit expression values) in model selection dataset with 116 samples. In 

first instance the ‘UP’ selection criteria (Table 5.1, option 3 in Figure 5.1) gave us the best model of 

124 features (Figure 5.3B) with CC value 0.51 (Figure 5.4A) and 0.82 (Figure 5.4B) in the model 

selection and feature selection datasets respectively (p-value < 10-9). Using an alternative feature 

score calculation method (difference between the mean of logit expression values of positively 

correlated features and negatively correlated features) and UP+ criteria (Table 5.1) in ‘model-

selection’ dataset we obtained a different set of 431 features (Appendix 2 Figure A5.1) that when 

combined together gave us a prototype model with CC of 0.56 (Figure 5.4 C) and 0.66 (Figure 5.4 

D) in the model selection and feature selection datasets respectively (p-value < 10-11 ). None of the 

gene sets were enriched for any significant gene ontologies when corrected for background bias. 

5.4.2 Linear regression models for PWV prediction and validation  

Thus, the linear feature selection pipeline gave two different gene sets that correlated with PWV 

and comprised of 124 and 431 features. By collapsing the gene sets into a feature score metric 

(explained in methods section) and combining it with age and blood pressure as additional 

explanatory variables two final regression models for PWV (the dependent variable) were attained. 

Model 1 had an adjusted R2 =0.53 (p-value < 10-15) and Model 2 had adjusted R2 =0.46 (p-value < 

10-12).  

PWV= 9.532 + 0.233* feature_Score + 0.072* MeanArterialPressure + 0.104* Age    [1] 

            PWV= -5.347+ 17.459*feature_Score + 0.063* MeanArterialPressure + 0.109*Age    [2] 
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Figure 5.4 Relation between PWV values and feature score. The figure shows the correlation between the 

the PWV values and feature score calculated by summation of expression estimates from the two different 

prototype models obtained from the machine learning linear classifier comprising of gene sets of 124 

features (A and B) and 431 features (C and D) in model selection and feature selection datasets respectively. 

	

To verify that the models developed were able to predict the PWV values for vascular ageing, we 

predicted PWV measure based on the baseline gene expression and clinical data and compared it 

with the observed measures of PWV in the third data-set. Similarly, we also investigated if based 

on baseline gene expression data we could predict the PWV values ±4.3yr baseline.  

For each model, the Pearson correlation between predicted and observed values were 0.6 

and 0.65 (Figure 5.5) in the two validations datasets and with Model 2 they were 0.58 and 0.61 

respectively. However, correlation coefficient is not the only parameter to judge the value of a 

model and we used Bland Altman plots to visually check the robustness of these models. Majority 

of observations for both model 1(Figure 5.5) and model 2 values (Appendix 2 Figure A5.2) were 

within the limit of agreement (±1.95 SD), thus implying that the difference between actual and 
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predicted PWV values were trivial. These were robust if not extremely strong models, capturing 

over 50% of the variance. However, inspection of the components of model 1 and 2 indicates that 

gene expression feature score (i.e. information from gene expression) was making a very modest 

contribution to the models. To establish this, we derived another regression model (Model 3) solely 

based on mean arterial pressure and age and without the gene expression data (adjusted R2 =0.44, p-

value<10-15).  

                            PWV= -3.123+0.065*MeanArterialPressure + 0.106*Age               [3] 

On validation datasets 1 and 2, Model 3 had a CC value of 0.64 and 0.67 respectively (Appendix 2 

Figure A5.3) and Bland-Altman plots revealed that its performance on validation datasets was at 

par with models that included the gene expression data thus implying that for a reasonable model 

for vascular “stiffness” can rely on chronological age and blood pressure. 

5.4.3 Healthy neuro-muscular age signature as a model for vascular ageing 

Examination of the 150 neuro-muscular gene signature (Chapter 3) we found a subset of ~20 genes 

expressed in skin and blood and showing a linear correlation with chronological age. We then tried 

to build a linear regression model by combining these linear features with the same covariates as 

above (age and mean arterial pressure) and observed that feature score (gene expression data from 

20 linear age genes) didn’t significantly added to a linear model (p value= 0.503) while age and 

MAP did.  

Thus, a simple regression model using a subset of neuro-muscular healthy ‘age’ genes did 

not relate these features to vascular age. Indeed, we previously found neuro-muscular healthy ‘age’ 

signature did not relate to coronary vascular disease (Figure 3.7) and this additional analysis further 

ascertained the original interpretation that the ‘healthy ageing gene’ score was selectively useful in 

identifying neuro-muscular ageing and not vascular ageing (or that the vascular phenotypes are not 

directly related to biological ageing). Interestingly, in Chapter-4 of this thesis we had discussed 

Peters RNA signature and showed through our analysis that it captures the differences between 

CAD patients and controls (Figure 4.3A). Also in the original paper (Peters et al. 2015), the 

signature was strongly linked to blood pressure (p-value<10-5). Since vascular ageing is coherently 

related to both blood pressure and CAD (Lakatta & Levy 2003; Laurent 2012), therefore there is a 

strong possibility that the Peters RNA signature represents vascular ageing  instead of a general 

model of ageing as reported by the authors. 
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Figure 5.5 Validation of gene expression based vascular ageing signature. Bland Altman plots (on the 

RHS) showing robustness of Model 1 in Validation datasets 1 (A) and 2 (B) respectively. Majority of 

observations for both model 1 and model 2 values were within the limit of agreement (dashed lines), thus 

implying that the difference between actual and predicted PWV values were small.  

5.5 Summary 

We aimed to find an RNA signature for ‘vascular’ ageing (assuming ‘stiffness’ = ageing) using the 

gene expression data from skin from a TWIN cohort as skin is structurally similar to one of the 

large arteries (Nilsson et al. 2015). In order to do this, we developed a new machine learning linear 

classifier strategy which gives control over feature selection. We developed two different RNA 

models both of which statistically validated on independent set of 84 samples with baseline PWV 

measure and 75 samples with PWV measure, MAP and age measure at a different time point 

(~±4.3yr from baseline). On careful inspection we observed that feature score i.e. gene expression 

was making only a very modest contribution and it is possible to obtain a good model for vascular 

“ageing” that relies only on age and blood pressure. This is in accordance with the literature (Najjar 

et al. 2008; Kim et al. 2007) which shows that blood pressure  is one of the strongest factors 
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influencing PWV followed by age and gender (Vermeersch et al. 2008). This also shows that 

having a statistically significant model (determined by p value) does not always translate to a model 

that has clinical significance as well.   

Nonetheless, we cannot completely dismiss a genomic aspect to vascular ageing (as Peters 

RNA signature seems to grab some aspect of vascular ageing) or that changes in vascular function 

are causally related to life-style – which is also a covariate of chronological age and blood pressure 

(e.g. we become inactive and over-weight). It is also possible that our experimental design 

comprising of skin RNA does not best capture the effect of vascular age and blood RNA or vascular 

tissue might encompass more information. Another caveat of our approach could be that we built a 

linear model to explore the transcriptome search space purpose however it is possible that a non-

linear model might be more suitable, nonetheless these are unlikely to surpass BP and chronological 

age but may add further information.  
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6.1 Overview of the chapter 

This chapter aims to give a summary of the overall conclusions of this research in relation to the 

objectives set at the beginning of this thesis and how it contributes to existing knowledge. I further 

discuss potential future research directions related to this project with recommendations and 

implications. We had five key observations in our analysis which were as following: 

1. We found a signature or gene-set of 150 genes >90% accurate in classifying ‘healthy’ old muscle 

tissue samples from young muscle samples. 

2. Using hundreds of new muscle gene-chip profiles from independent human cohorts we found the 

same 150 signature was ~93% accurate in muscle. Further, this same signature could distinguish 

old from young human brain and skin tissue 

3. We produced new muscle gene-chip profiles from a 20yr longitudinal tissue cohort (ULSAM) 

and we gained access two independently produced case-control gene-chip datasets for AD. We 

found that a greater gene score in a person with given birth year (e.g. 70yrs) correlated with better 

long term renal function, mortality or better cognitive status (using the same 150 genes). 

4. In all three independent clinical cohorts there was a consistent directional pattern of gene 

expression in muscle and blood, associated with good health.  

5. The existing ‘stress’ resistant and ‘epidemiologically’ selected linear models when transformed 

to equivalent RNA signatures related with vascular disease whereas our 150 healthy age signature 

worked specifically for neuromuscular ageing. Thus, we have revealed that vascular ageing had a 

distinct profile from neuro-muscular ageing (Zahn et al. 2007). 

6.2 Discussion 

As the number of people routinely living into their eighth decade and beyond rises, the prevalence 

of age-related diseases has significantly increased and at differing rates across the various countries. 

An example of age-related disease (i.e. very low prevalence in young and middle-aged adults) 

include skeletal muscle atrophy and dysfunction (‘sarcopenia’) and neurological disorders such as 

dementia. These age-related health problems have massive economic and social consequences 

(Janssen et al. 2004; Gustavsson et al. 2011). To maintain long term effective performance in any 

job role attainment of healthy ageing would be ideal.  Furthermore, age is a routine parameter in 

most clinical decision making trees e.g. decision to screen or not for age related disease. Identifying 

the molecular processes governing healthy human ageing (and longevity) is of great medical 

importance, but there have been few human based discoveries, mainly due to the inability to 

effectively account for influential physiological and environmental factors and lack of large well-
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funded multigenerational studies.  

In the recent years, there has been a surge in the use of machine learning methods which has 

facilitated researchers to develop classifiers for identification or diagnosis of diseases. These 

computational methods accompanied by a good study design promises to aid clinicians in 

identifying patients at high-risk for poor outcomes, and in general improve patients' health while 

minimizing costs and improving overall patient management. Cancer diagnosis and treatment have 

been influenced by these machine learning approaches (Tokuda et al. 2009; Patnaik et al. 2010), 

and this arguably represents where the greatest progress has been made in terms of personalized 

medicine.  

There is a generous amount of proof that gene expression changes with ageing in different 

tissue types and in the organism as a whole (Zahn et al. 2007; Glass et al. 2013). Global RNA (W 

M Passtoors et al. 2012; Phillips et al. 2013; Glass et al. 2013; Gheorghe et al. 2014) and DNA 

methylation profiling (B. C. Christensen et al. 2009; Horvath 2013; Bell et al. 2012) has been 

utilised to search for consistent molecular events correlating with age, where samples come from 

cross-sectional studies spanning 5-8 decades. Such correlation analyses yield highly significant 

linear associations, yet by design, such models must be influenced by disease as much as the ageing 

process per se. Further, each study identified a distinct list of genes or pathways. For example, 

Hannum et al built a multi-tissue linear model of DNA methylation age-related changes that 

correlated with chronological age over seven decades (Hannum et al. 2013). However, this type 

molecular profile is not, for example, very useful for distinguishing how successful a person was 

ageing among a group with the same birth-year (Horvath 2013; Hannum et al. 2013) as 

chronological age and methylation status tends to co-vary tightly and in epidemiological cohorts, 

these DNAm models only added ~6% to models examining rates of mortality (Marioni et al. 2015).  

Further, studies exploring the genetics of human ageing most commonly consider 

exceptional longevity (e.g. 100 years or more) as phenotype of interest for human ageing. While 

longevity is driven by a strong genetic contribution (Sebastiani et al. 2012) being fit and healthy at 

age 65 year is a more common occurrence and likely to reflect complex molecular factors (Kenyon 

2010; Sabia et al. 2012). Discovery of these molecular factors could help screen for drugs that help 

people age ‘better’. In the present body of work, a novel tool has been provided that should enable 

the future translation of basic science into clinical advances, namely a robust diagnostic of healthy 

neuromuscular ageing. For our work, human skeletal muscle provided the ideal starting tissue from 

which to generate a 'clean' ageing molecular classifier, as skeletal muscle RNA is easily accessible 

(with a relatively uniform cell content e.g. >90% myocytes) and its functional status can be studied 
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in great detail prior to tissue sampling in all age groups (Gallagher et al. 2010; Timmons et al. 

2005). This lies in very distinct contrast to using post-mortem brain samples, hard to access 

myocardium tissue or any one of a number of other potential human tissue sources. In addition, it 

was possible to discover this robust set of marker genes for healthy physiological age as the 

research strategy involved tissue samples obtained from 65 year subjects who had demonstrated 

successful ageing i.e. they were selected to have good metabolic and cardiovascular health despite 

having behaviour that was sedentary (Gallagher et al. 2010; Keller et al. 2011). At this stage we do 

not know if other aspects of their life-style was unique (they were non-smokers), for example diet 

but the impact on selected nutrients on human disease and ageing has not proven to yield a 

plausible biological affect (Timmerman 2013). So the ‘healthy ageing’ component constitutes a 

novel aspect of our study that has not been used in previous studies.  

The usefulness of supervised machine learning approach in developing clinically useful 

biomarkers and diagnostic is often limited by access to multiple data-sets as the methods are 

generally prone to over-fitting (single data set bias) which do not appear evident straightaway to 

many researchers (Ambroise & McLachlan 2002; Simon et al. 2003). Without independent 

validation, these computational methods give spurious associations by developing 

classifiers/predictors that perform impressively well on the original training study but then fail 

miserably when applied to new dataset. 

In our work the discovered gene-set signature that was then extensively validated by using 

samples from different cohorts, generated in different laboratories and profiled on different gene 

detection technologies. In the absence of independent validation datasets validation methods such 

as bootstrapping and cross validation which combines training and validation of classifiers in one 

process are often used (Kohavi 1995; Steyerberg et al. 2003). Unfortunately, a large number of 

studies employing such computationally intensive approaches are not descriptive enough about 

their validation strategy which makes it difficult to assess the validity of their results. Thus, 

validating a diagnostic on subjects independent of the training set is of prime importance. However, 

researchers are often limited by the availability of publically accessible data sets that fits their study 

design and the relevant biological question. 

Hence, it is useful to have the raw data from developmental prediction/diagnostic studies in 

public domain as well as the computational methods employed (including code). This would not 

only ensure the reproducibility of the original studies but would also potentially provide a bigger 

pool of datasets to scientists for external validation and meta-analysis (Simon 2005; Kattan 2004). 

All of the datasets used in this study were made freely accessible at GEO. Our signature was 
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consistently modulated in several tissue types (muscle, brain and skin), but to very differing degrees 

in people of the same chronological age (Figure 3.2A), clearly illustrating that biological age is 

indeed different from chronological age. By this it fulfilled the first main criteria for being a novel 

diagnostic of healthy (or biological) ageing.	 Hence had more likelihood for predicting of an 

individual having an age-related clinical adverse event or developing an ageing-related disease such 

as Alzheimer’s, CAD etc. 

Neurocognitive pathology (e.g. Alzheimer’s disease) becomes more pronounced with age 

and is often apparent in individuals who are otherwise healthy. On examining the ‘healthy ageing’ 

signature in relation to identifying neurocognitive disease we found that it could distinguish AD 

samples from age-matched controls. Further the healthy ageing signature was regulated in a distinct 

manner across individual healthy brain regions with chronological age, especially in the 

hippocampus (Figure 3.4), a region associated with neurogenesis (Gould et al. 1999; Taupin 2006). 

Our analysis of the relationship between lifestyle factors and the ‘healthy age gene score’ 

(longitudinal study ULSAM) suggested that the gene score was robust to confounding effects of 

these factors. The lack of association with lifestyle modulated diseases such as diabetes, CAD 

further ascertained this. 

Therefore, our ‘healthy ageing’ signature appears ‘selectively’ useful in relation to 

identifying risk for neurocognitive disease over and above lifestyle or vascular diseases. This is not 

surprising since ageing is thought to be a continuous physiological process that could be expected 

to have a gene expression signature distinct from lifestyle related (e.g. Type II diabetes) or mutation 

driven (e.g. cancer) pathologies. Further, as discussed  before, ageing is a multifaceted process that 

has different levels of complexity and variability across cells, organs, organ systems, organism and 

species (Cevenini et al. 2008; Cevenini et al. 2010) nevertheless some aspects of ageing do appear 

consistent across tissue types based on our analysis. 

In mouse, based on the pattern of age-related transcriptional changes researchers have 

categorised tissues into three different ageing processes, that is a pattern common to neural tissues, 

a pattern for vascular tissues, and a pattern for glandular tissues (Zahn et al. 2007). Mouse studies 

are challenging to interpret because of the use of inbred strains and very controlled environments – 

a situation very different from humans. Another study replicated these findings and through tissue 

co-expression network analysis, claimed that the distinct gene expression changes with age are 

potentially synchronized at different levels with an individual (Fu et al. 2006; Huang et al. 2011). A 

similar study in humans observed tissues like heart, lung, and whole blood sharing a stronger co-

ageing pattern in comparison to tissues like muscle. This inter tissue synchronization could be a 
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reflection of their functional connectivity in the early developmental stage which probably extends 

into the late stage of their lifespan (Yang et al. 2015). In contrast, you might expect that muscle use 

and cardiac use would share a strong link to the same environmental factor like exercise while lung 

tissue remodels in the face of pollution and factors like smoking. Thus, neuromuscular ageing may 

have a distinct gene expression profile than vascular or lung ageing, with latter being more 

susceptible to lifestyle or environmental related perturbations. 

The endeavor to discover biomarkers for the ageing process has prompted the development 

of large ageing cohort studies and different ageing signatures. However, if the research question is 

ageing par se it is critical to have thoughtful use of study design, to avoid confounding the studies 

with subjects with age associated diseases and drugs. In chapter-4 we have effectively shown that 

our muscle derived gene-set was the only one related to hippocampus ageing and cognitive health 

while ‘stress’ resistant and ‘epidemiologically’ selected linear models related with vascular 

diseases. By transforming the different genomic signatures of ageing to representative RNA 

signatures we have shown that it is possible to utilize a single technology platform 

(Transcriptomic/RNA profiling) to capture sufficient clinical variance of different aspects of ageing 

such as neuromuscular, vascular etc. (Figure 4.2). We have also successfully exhibited that a 

hypothesis driven machine learning method is different and reliable then the random sampling 

approach which fails to produce a single ageing ‘gene-set’ which works as a multi-tissue age-

classifier or a discriminator for Alzheimer’s disease. This provides the first RNA risk-factor for 

Alzheimer’s disease that was not built/selected using Alzheimer’s disease clinical samples and thus 

is the most independent. However, because Alzheimer’s disease has low prevalence until the 80th 

decade and is a complex clinical diagnosis, an RNA diagnostic is going to be very challenging to 

develop.  

Vascular ageing is related to ageing of vessels or arteries that helps in circulation of blood. 

Age-related pathologies generally effect the large elastic arteries which are rich in elastin and 

collagen with latter providing the strength to vasculature at higher blood pressures (Jani & 

Rajkumar 2006). Loss of elasticity damages coronary flow and results in coronary artery disease or 

atherosclerosis (McCullagh & Balian 1975). In chapter-5, we investigated if using gene expression 

data from skin tissue, as skin structure is close to one of the large arteries (Nilsson et al. 2015), 

along with PWV measures to gauge vasculature health, we can build a model for vascular ageing. 

Since PWV is known to strongly co-vary with both blood pressure and chronological age 

(Ruitenbeek et al. 2008; Vermeersch et al. 2008; Elias et al. 2009) we decided to use a machine 

learning linear modeling/regression strategy instead of the binary approach used for our 

neuromuscular signature as in the former we could adjust for the two covariates i.e. blood pressure 
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and age. We built three distinct regression models based on different criteria from our feature 

selection pipeline. We observed that gene expression made only a very modest contribution to the 

model when compared to blood pressure and chronological age. It is crucial to understand that this 

particular analysis was based on the hypothesis that skin mRNA could capture the effect of vascular 

ageing which could have been one of the limitations of our approach and possibly blood mRNA 

encompasses more information about vascular health and age.  

6.3 Conclusion 

In conclusion, we have discovered a novel and statistically robust multi-tissue RNA signature of 

‘biological ageing’ that has potential as a health diagnostic. In particular, it was prognostic for long-

term health in older humans, remotely informing about organ function (including cognitive 

functioning) using only a peripheral blood sample. Thus, we believe that our diagnostic represents a 

reliable proxy of ‘biological’ age that could be used in clinical decision-making, currently reliant on 

calendar age. Notably, ours is the first genomic signature able to identify AD from controls based 

entirely on an independently developed research hypothesis that does not include feature selection 

using disease cohorts. We believe that when combined with clinical data, our healthy age diagnostic 

could aid identification of at-risk late middle-aged non-symptomatic people.  

6.4 Future directions 

Novel easy to administer diagnostics that accurately and sensitively predict future health risk or 

help guide preventative measures would enable the evaluation of tailored treatment strategies for 

the individual. The biomarkers discovered in this thesis provides a novel way to assess whether an 

individual has a higher or lower probability, or risk, of developing an ageing-related disease, 

depending on the expression levels of these marker genes. It is advantageous to be able to assess an 

individual’s biological age accurately, so that if an individual is identified to have a high risk of 

developing an ageing-related disease they can act accordingly to reduce their risk, such as through 

lifestyle changes or prophylactic treatment. The link between induction of the signature, renal 

decline, mortality and cognitive function suggests our signature transcends tissue specificity and 

also that it may be possible to facilitate healthier ageing e.g. to evaluate anti-ageing treatments 

using cell-based screening or to predict long-term safety in drug development. The signature could 

potentially be also used in predicting the quality of an organ based on the biological age and thus 

estimating the likelihood from a person over > 50 years of age being successfully used for 

transplantation into a donor patient by estimating the biological age of the organ. 

We also believe that it will be informative to replace age with our healthy ageing gene 

diagnostic for many conditions. For example: In diabetes patients, where age is by far the more 
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powerful predictor of future dementia rather than severity of the diabetes measured using 

glycosylated hemoglobin A1 (HbA1) (Exalto et al. 2013) and in these cases replacing chronological 

age by biological age would potentially provide a better prognosis. This highlights that, clinically, 

various decision trees exist and our healthy ageing score could be integrated to help decide which 

middle-aged subjects could be offered entry into a preventative clinical trial many years before the 

clinical expression of AD. However, like many genomic diagnostics, the full clinical utility of ours 

will only emerge when combined with additional data and clinical insight. 
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Top 150 probeset from healthy ageing RNA signature Appendix 1

104

Probeset_ID Gene	Symbol Ratio	of	Y:0	muscle Gene	Title Biology	notes

236278_at HIST1H3E down Histone	cluster	1,	H3e
Replication-dependent	histone;	core	
component	of	nucleosome;	reduced	gene	
expression	in	aged	mice	in	hippocampus

204974_at RAB3A down RAB3A,	member	RAS	
oncogene	family

GTPase/Ca+	signalling;	age-related	changes	
in	human	brain;	Alzheimer's	Disease	link;

205050_s_at MAPK8IP2 down mitogen-activated	protein	
kinase	8	interacting	protein	2

AKA	JIP2;	scaffold	protein	that	binds	many	
JNK	isoforms;	regulates	MAPK8;	APP	and	
Glucose	-	biochem	of	'ageing	diseases'

206416_at ZNF205 down zinc	finger	protein	205 DNA	binding	protein;	regulates	human	M-
LPH	-	potentially	oxidative	stress	related

229730_at SMTNL2 down smoothelin-like	2 JNK	substrate

226674_at SHISA4 down shisa	homolog	4	(Xenopus	
laevis)

Secreted	and	transmembrane	protein;	in	
Xenopus	Shisa	proteins	may	inhibit	Wnt	and	
FGF	signaling

234495_at KLK15 down kallikrein-related	peptidase	15
Serine	protease;	upregulated	in	advanced	
tumours;	snp	associated	with	cancer	risk;	
androgen	regulated

240686_x_at TFRC down transferrin	receptor	(p90,	
CD71)

Iron	delivery	to	cells;	previously	identified	as	
underexpressed	with	age	(in	meta-analysis)

234536_at SARDH down sarcosine	dehydrogenase Mitochondrial	matrix	protein,	catalyses	
oxidative	demethylation	of	sarcosine

239446_x_at DCBLD2 down discoidin,	CUB	and	LCCL	
domain	containing	2 Cancer-linked

222197_s_at LOC100128008 down Similar	to	RIKEN	4933439F11 ---

227738_s_at ARMC5 down armadillo	repeat	containing	5

Armadillo/beta-catenin-like	repeats.	A	
tandemly	repeated	sequence	motif	first	
identified	in	the	Drosophila	segment	polarity	
gene	armadillo;	repeats	also	found	in	the	
mammalian	armadillo	homolog	beta-catenin,	
the	junctional	plaque	protein	plakoglobin,	
the	adenomatous	polyposis	coli	(APC)	tumor	
suppressor	protein,	and	a	number	of	other	
proteins

228876_at BAIAP2L2 down BAI1-associated	protein	2-like	
2 Binds	phosphoinositides

234694_at CNTROB down centrobin,	centrosomal	BRCA2	
interacting	protein

Cell	division	-	centriole	associated;	cancer-
related

203842_s_at MAPRE3 down
microtubule-associated	
protein,	RP/EB	family,	
member	3

Microtubule-associated

217079_at 217079_at down q12.13	Homo	sapiens	
unknown	protein	mRNA ---

217696_at FUT7 down fucosyltransferase	7	(alpha	
(1,3)	fucosyltransferase) Involved	in	creation	of	sialyl-Lewis	X	antigen

217700_at CNPY4 down Canopy	4	homolog	(zebrafish)
AKA	Prat4b;	secreted;	negative	regulator	of	
Toll-like	receptor	trafficking/cell	surface	
expression

221309_at RBM17 down RNA	binding	motif	protein	17 Part	of	spliceosome	complex

230044_at PCYT2 down phosphate	cytidylyltransferase	
2,	ethanolamine

Enzyme	involved	in	phospholipid	
biosynthesis;	mice	with	PCYT2	accumulate	
more	DAG	and	TG	with	age

236091_at HMGB2 down high-mobility	group	box	2 Chromatin-associated;	linked	to	
osteoarthritis

212512_s_at CARM1 down coactivator-associated	
arginine	methyltransferase	1

Transcription;	methylates	proteins	including	
histones	&	chromatin-associated	proteins;	in	
skeletal	muscle,	linked	to	glycogen	gene	
expression	and		differentiation

244707_at HCN4 down
hyperpolarization	activated	
cyclic	nucleotide-gated	
potassium	channel	4	(HCN4)

Potassium	channel

215488_at 215488_at down Vitelliform	macular	dystrophy	
2	(Best	disease,	bestrophin)

Bestrophins	may	form	chloride	channels	or	
regulate	voltage-gated	L-type	calcium	
channels;	linked	to	Vitelliform	macular	
dystrophy

202588_at AK1 down adenylate	kinase	1 Cytosolic;	energy	metabolism

215844_at TNPO2 down transportin	2 RanGTP-binding	nuclear	transport	receptors;	
HuR	is	TRN2	export	substrate;	RNA	binding
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228279_s_at TNK2 down Homo	sapiens	tyrosine	kinase,	
non-receptor,	2 RAC	related;	tumour	motility;	cdc42hs?

238006_at SIN3A down SIN3	transcription	regulator	
homolog	A	(yeast)

Transcriptional	corepressor	activity;	HDAC	
regulation/chromatin	remodelling

240147_at C7orf50 down chromosome	7	open	reading	
frame	50 Includes	a	pro-survival	human	ageing	SNP

243906_at 243906_at down Organic	solute	transporter	
alpha ---

244504_x_at ARF1 down ADP-ribosylation	factor	1	
(microRNA	3620	within?)

Modulates	cell	surface	Cdc42	dynamics;	GTP-
binding	protein	involved	in	protein	
trafficking;	modulates	vesicle	
budding/uncoating	within	Golgi	complex

210483_at TNFRSF10C down

tumor	necrosis	factor	receptor	
superfamily,	member	10c,	
decoy	without	an	intracellular	
domain

AKA	DCR1/TRAILR3;	cytokine	related,	
tumour	related;	receptor	has	extracellular	
TRAIL-binding	domain	+	TM	domain	but	no	
cytoplasmic	death	domain	-	not	able	to	
induce	apoptosis	but	thought	to	be	
antagonistic	receptor	that	protects	cells	from	
TRAIL-induced	apoptosis

216327_s_at SIGLEC8 down sialic	acid	binding	Ig-like	lectin	
8

Adhesion	molecule	that	mediates	sialic-acid	
dependent	binding	to	cells;	mostly	expressed	
in	eosinophils	and	mast	cells

217046_s_at AGER down advanced	glycosylation	end	
product-specific	receptor

AKA	RAGE;	transmembrane	receptor	of	Ig	
superfamily;	binds	advanced	glycation	
endproducts;	linked	to	pro-inflammatory	
gene	activation;	alternatively	spliced	with	6	
isoforms	-	some	lack	TM	domain	and	thought	
to	be	secreted;	linked	to	impaired	skeletal	
muscle	insulin	action	via	AGEs;	increased	in	
Alzheimer's	Disease;	Diabetes	linked

222080_s_at SIRT5 down Sirtuin	5

NAD-dependent	protein	acetylase	associated	
with	the	mitochondria;	involved	in	ammonia	
detoxification;	deactivated	by	suramin;	
sirtuins	linked	to	lifespan	extension	in	
rodents	-	resveratrol	(possible	SIRT	activator)	
inhibits	gene	exp	profile	associated	with	
muscle	ageing;	linked	to	brain	ageing

227456_s_at C6orf136 down chromosome	6	open	reading	
frame	136 ---

227781_x_at FAM57B down family	with	sequence	similarity	
57,	member	B

Transmembrane	protein;	PPARg	responsive	
and	linked	to	ceramides/adipogenesis	
regulation

229508_at U2AF2 down U2	(RNU2)	small	nuclear	RNA	
auxiliary	factor	2 Pre-mRNA	splicing	factor

211180_x_at RUNX1 down runt-related	transcription	
factor	1

AKA	AML1;	transcription	factor	that	binds	to	
core	elements	of	enhancers	&	promoters;	
regulates	differentiation	of	hemopoietic	
stem	cells	into	mature	blood	cells;	leukemia	
link

213690_s_at 213690_s_at down ---

213987_s_at CDK13 down cyclin-dependent	kinase	13
Family	members	have	roles	as	master	
switches	in	cell	cycle	control;	impact	on	RNA	
processing/splicing

218063_s_at CDC42EP4 down CDC42	effector	protein	(Rho	
GTPase	binding)	4

May	be	GTPase	related;	GTP	Rho	binding;	
organisation	of	actin	cytoskeleton

219150_s_at ADAP1 down centaurin,	alpha	1 Phospholipid	binding	protein;	linked	to	
Alzheimer's	Disease

229607_at LOC100652912 down uncharacterized	
LOC100652912 ---

236269_at ZNF628 down zinc	finger	protein	628 ---

239125_at SLC25A5-AS1 down SLC25A5	antisense	RNA	1	(non-
protein	coding)

Antisense	RNA	to	mitochondrial	ANT2;	
SLC25A5	is	an	inner	mitochondrial	
membrane	transport	protein	that	
translocates	ADP
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239422_at GPC2 down glypican	2	(cerebroglycan)

Cell	surface	proteoglycan;	found	in	

developing	nervous	system;	role	in	cell	

adhesion

239837_at ADAM11 down
ADAM	metallopeptidase	

domain	11
Metalloprotease-like	protein

240098_at RIF1 down
RAP1	interacting	factor	

homolog	(yeast)

Maybe	involved	in	DNA	repair;	telomere-

associated	(may	regulate	telomere	length)

244182_at 244182_at down
Homo	sapiens,	clone	

IMAGE:5756056,	mRNA
---

89476_r_at NPEPL1 down aminopeptidase-like	1
May	catalyze	removal	of	unsusbstituted	N-

terminal	AA	from	various	peptides

202312_s_at COL1A1 down collagen,	type	I,	alpha	1
Reduced	in	aging	skin	and	bone;	

osteoporosis	linked

208232_x_at NRG1 down neuregulin	1
Repairs	nerve	damage	in	the	adult;	high	

levels	linked	to	longevity	in	rodents

209280_at MRC2 down mannose	receptor,	C	type	2
Role	in	ECM	remodelling;	linked	to	

tumourigenesis	and	metastasis

220482_s_at SERGEF down
secretion	regulating	guanine	

nucleotide	exchange	factor

Guanyl-nucleotide	exchange	factor	activity	-	

may	be	involved	in	secretion	process;	

deafness-related

226871_s_at ATG4D down
autophagy	related	4D,	

cysteine	peptidase

Cysteine-type	endopeptidase	involved	in	

autophagy	

244164_at FAM223B down

Homo	sapiens	family	with	

sequence	similarity	223,	

member	B	(non-protein	

coding)	(FAM223B),	non-

coding	RNA

Non-protein	coding

244591_x_at RNF207 down Ring	finger	protein	207 Variation	in	QT	interval	SNPS

211837_s_at PTCRA down
pre	T-cell	antigen	receptor	

alpha
T	cell	development

214213_x_at LMNA down lamin	A/C

Linked	to	Hutchinson-Gilford	Progeria	

Syndrome	(HGPS),	caused	by	a	spontaneous	

mutation	(truncated	version),	and	

characterized	by	premature	aging.	Nuclear	

membrane	structural	component-	roles	in	

cell	cycle	control,	DNA	Replication	&	

chromatin	organisation;	cleaved	during	

apoptosis;	mice	deficient	have	enhanced	

mTORC1	signaling	linked	to	dystrophic	

pathology

214316_x_at CALR down Calreticulin

Calcium	binding/regulation;	protein	folding	

in	ER;	possible	nuclear	receptor	modulation;	

reduced	protein	expression	during	aging	in	

mouse	skeletal	muscle

223415_at RPP25 down ribonuclease	P	25kDa	subunit

Component	of	ribonuclease	P,	a	protein	

complex	that	generates	mature	tRNA	by	

cleaving	their	5'	ends;	linked	to	

developmental	brain	disorders

228677_s_at RASAL3 down RAS	protein	activator	like	3 Ras	GTPase	activator	activity

228684_at ZNF503 down zinc	finger	protein	503 AKA	Nolz1;	RAR	signalling

236845_at TRIM62 down tripartite	motif	containing	62 E3	ubiquitin	ligase;	potential	immune	role

238046_x_at PWWP2B down PWWP	domain	containing	2B Histone	modification	biochemistry

207883_s_at TFR2 down transferrin	receptor	2 iron	homeostasis

209983_s_at NRXN2 down neurexin	2

Neurological	role;	loss	of	function	disorders	-	

neuronal	cell	surface	protein	with	role	in	cell	

recognition	and	adhesion	molecule	binding

210364_at SCN2B down
sodium	channel,	voltage-

gated,	type	II,	beta	subunit

Subunit	of	voltage-gated	sodium	channel;	

may	be	regulated	by	BACE1

219967_at MRM1 down

mitochondrial	rRNA	

methyltransferase	1	homolog	

(S.	cerevisiae)

Mitochondrial	ribosome	complex;	RNA	

methylation

220989_s_at AMN down
amnion	associated	

transmembrane	protein

Developmental		gene;	transmembrane	

protein	thought	to	regulate	bone	

morphogenetic	protein	(BMP)	receptor	

function

231764_at CHRAC1 down
chromatin	accessibility	

complex	1
Histone-fold	protein	that	binds	DNA
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233894_x_at EMID2 down EMI	domain	containing	2 AKA	COL26A1

234003_at ENOX2 down
ecto-NOX	disulfide-thiol	
exchanger	2

Cell	surface	protein;	two	enzyme	activities	-	
catalysis	of	hydroquinone	or	NADH	oxidation	
and	protein	disulfide	interchange	-	may	
control	physical	membrane	displacement	for	
vesicle	budding	or	cell	enlargement;	pro-
growth	in	tumour	cells

235671_at 235671_at down
Homo	sapiens	BAC	clone	RP11-
489G24

---

236746_at GALNT1 down

UDP-N-acetyl-alpha-D-
galactosamine:polypeptide	N-
acetylgalactosaminyltransferas
e	1	(GalNAc-T1)

O-linked	oligosaccharide	biosynthesis;	
reduced	with	age	of	bone	cell	donor

206080_at PLCH2 down phospholipase	C,	eta	2
G-coupled	protein	receptor	modulation;	lipid	
catabolic	processes

213433_at ARL3 down ADP-ribosylation	factor-like	3
Member	of	ribosylation	factor	family	of	GTP-
binding	proteins;	RP2	is	a	GTPase-activating	
protein	(GAP)	for	ARL3

214209_s_at ABCB9 down
ATP-binding	cassette,	sub-
family	B	(MDR/TAP),	member	
9

Membrane-associated	ATP-binding	cassette	
transporter;	may	transport	peptides	from	
cytosol	into	lysosomal	lumen;	associated	
with	antigen	processing

215649_s_at MVK down mevalonate	kinase

Mevanolate	kinase	activity	-	key	enzyme	in	
isoprenoid	and	sterol	biosynthesis;	substrate	
for	Geranylgeranylpyrophosphate	leads	to	
aberrant	activation	of	the	small	GTPase	Rac1

230693_at ATP2A1 down
ATPase,	Ca++	transporting,	
cardiac	muscle,	fast	twitch	1

Catalyzes	ATP	hydrolysis	coupled	with	Ca++	
translocation,	&	is	involved	in	muscle	
excitation	and	contraction

231520_at SLC35F3 down
Solute	carrier	family	35,	
member	F3

---

239523_at TUSC5 down tumor	suppressor	candidate	5

Expressed	abundantly	in	WAT,	BAT	and	
peripheral	afferent	neurons;	may	be	
involved	in	fat	metabolism	-	increased	
expression	in	response	to	PPARgamma	
agonist	in	3T3-L1	cells

240116_at 240116_at down
AT	rich	interactive	domain	1B	
(SWI1-like)

---

241427_x_at FBXW7 down

Homo	sapiens	F-box	and	WD	
repeat	domain	containing	7,	
E3	ubiquitin	protein	ligase	
(FBXW7)

Substrate	recognition	component	of	SCF	
(SKP1-CUL1-F-box	protein)	E3	ubiquitin-
protein	ligase	complex	-	mediates		
ubiquitination	of	cyclin	E;	mutations	linked	
to	cancer

208129_x_at RUNX1 down
runt-related	transcription	
factor	1	(acute	myeloid	
leukemia	1;	aml1	oncogene)

AKA	AML1;	transcription	factor	that	binds	to	
core	elements	of	enhancers	&	promoters;	
regulates	differentiation	of	hemopoietic	
stem	cells	into	mature	blood	cells;	leukemia	
link

216980_s_at SPN down
sialophorin	(gpL115,	
leukosialin,	CD43)

Transmembrane	protein	found	on	surface	of	
immune	cells;	Wiskott-Aldrich	syndrome

218762_at ZNF574 down zinc	finger	protein	574 ---
219756_s_at POF1B down premature	ovarian	failure,	1B Associated	with	premature	ovarian	failure

226141_at CCDC149 down
coiled-coil	domain	containing	
149

---

229047_at PLEKHB1 down
Pleckstrin	homology	domain	
containing,	family	B	(evectins)	
member	1

developmental;	membrane-associated	signal	
transduction	activity

229343_at GTSE1 down G-2	and	S-phase	expressed	1
Expressed	in	S	&	G2	phase	of	cell	cycle;	
microtubule-associated	protein	important	in	
cell	migration

237046_x_at IL34 down interleukin	34

Alternative	ligand	for	Csf-1	receptor;	vitD	
regulated	in	skeletal	cells;	increased	in	serum	
and	synovial	fluid	from	rheumatoid	arthritis	
patients

239060_at 239060_at down
Homo	sapiens	Chromosome	
11q13	BAC	Clone	b79g17

---
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240241_at 240241_at down RP11-269P11	on	chromosome	
9 ---

207914_x_at EVX1 down even-skipped	homeobox	1 Developmental;	altered	methylation	in	
cancers

213052_at PRKAR2A down
protein	kinase,	cAMP-
dependent,	regulatory,	type	II,	
alpha

Subunit	of	cAMP-dependent	protein	kinase;	
age-dependent	changes	reported	in	rats

217410_at AGRN down agrin

Large	proteoglycan;	Induces	aggregation	of	
signaling	proteins	in	immune	and	nervous	
systems	through	a	common	lipid	raft	
pathway;	role	in	development	of	NMJ	during	
embryogenesis;	binds	several	proteins	on	
skeletal	muscle	surface	like	MuSK	receptor,	
laminin	&	dystroglycan	-	stabilise	NMJ

225072_at ZCCHC3 down zinc	finger,	CCHC	domain	
containing	3 ---

234400_at 234400_at down ---

203055_s_at ARHGEF1 down Rho	guanine	nucleotide	
exchange	factor	(GEF)	1 Rho	guanine	nucleotide	exchange	factor

206906_at ICAM5 down intercellular	adhesion	
molecule	5,	telencephalin

Transmembrane	glycoprotein	involved	in	
adhesion

220529_at FLJ11710 down uncharacterized	protein	
FLJ11710 ---

231242_at BHLHE41 down basic	helix-loop-helix	family,	
member	e41

AKA	DEC2	or	Sharp-1;	regulator	of	aggressive	
breast	cancer;	antitumour	promotes	HIF1	
deg.;	negative	regulator	of	transcription	
from	RNA	Pol	II	promoter;	regulator	of	
molecular	clock

234342_at FAM20C down family	with	sequence	similarity	
20,	member	C

Calcium-binding	kinase	that	phosphorylates	
the	caseins	and	several	secreted	proteins	
implicated	in	biomineralization;	loss	relates	
to	bone	disorders

234748_x_at KIF20B down kinesin	family	member	20B Plus-end-directed	motor	enzyme	that	is	
required	for	completion	of	cytokinesis

240325_x_at SOX30P1 down
Homo	sapiens	SRY	(sex	
determining	region	Y)-box	30	
pseudogene	1	(SOX30P1)	

Transcriptional	activator;	developmental

201592_at EIF3H down
eukaryotic	translation	
initiation	factor	3,	subunit	3	
gamma,	40kDa

Important	in	initiation	of	protein	translation;	
cancer-linked

203876_s_at MMP11 down matrix	metallopeptidase	11	
(stromelysin	3)

AKA	stromelysin	3;		overexpressed	in	human	
tumours

223137_at ZDHHC4 down zinc	finger,	DHHC-type	
containing	4 ---

223426_s_at EPB41L4B down erythrocyte	membrane	
protein	band	4.1	like	4B

Cytoskeletal	binding	protein;	highly	
expressed	in	melanoma	cells;	progression	in	
breast	cancer

227563_at FAM27E3 down family	with	sequence	similarity	
27,	member	E3 ---

231402_at 231402_at down Homo	sapiens	BAC	clone	RP11-
563K23	from	7 ---

238125_at ADAMTS16 down
ADAM	metallopeptidase	with	
thrombospondin	type	1	motif,	
16

Expressed	in	human	cartilage	and	synovium;	
increased	expression	in	tissues	from	
osteoarthritis	patients;	increased	by	TGFbeta	
in	chondrocytes;	linked	to	hypertension

209097_s_at JAG1 down jagged	1

rs2273061	of	JAG1	gene		associated	with	
high	BMD;	lower	fracture	risk;	G	allele	
rs2273061	higher	JAG1	mRNA;	ligand	for	
Notch	receptors;	reduced	expression	in	
skeletal	muscle	from	older	men	compared	to	
young

214125_s_at NENF down Neuron	derived	neurotrophic	
factor Neuron	differentiation	and	development

215026_x_at SCNN1A down sodium	channel,	non-voltage-
gated	1	alpha	subunit

Subunit	of	non-voltage-gated,	amiloride-
sensitive,	sodium	channel;	lung	fluid	
homeostasis	role
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217074_at SMOX down spermine	oxidase
	Polyamine	oxidase;	some	link	to	SMAD	

signalling

220096_at RNASET2 down
Homo	sapiens	ribonuclease	T2	

(RNASET2)

Ribonuclease;	appears	to	suppress	

tumorigenicity

222323_at CRYGEP down
crystallin,	gamma	E,	

pseudogene
---

227211_at PHF19 down PHD	finger	protein	19

Polycomb	repressive	complex	2;	Phf19	binds	

with	H3K36me2	and	H3K36me3;	zinc	bindng;	

transcriptional	repressor;	overexpressed	in	

many	types	of	cancer

227720_at ANKRD13B down ankyrin	repeat	domain	13B Related	to	EGF	signalling

230345_at SEMA7A down

semaphorin	7A,	GPI	

membrane	anchor	(John	

Milton	Hagen	blood	group)

Axonal	growth;	t-cell	function;	binds	to	cell	

surfaces	via	GPI	linkage;	role	in	integrin-

mediated	signaling	-	promotes	formation	of	

focal	adhesion	complexes;	promotes	pro-

inflammatory	cytokine	production	by	

monocytes	&	macrophages

205224_at SURF2 down surfeit	2 ---

212114_at ATXN7L3B down hypothetical	LOC552889 Linked	to	neurological	disease

220849_at LOC79999 down uncharacterized	LOC79999 ---

223153_x_at TMUB1 down
transmembrane	and	ubiquitin-

like	domain	containing	1

Cell	cycle	progression,	DNA	repair,	apoptosis;	

mouse	wakefulness

230576_at BLOC1S3 down

Biogenesis	of	lysosome-

related	organelles	complex-1,	

subunit	3

Biogenesis	of	organelles	of	the	endosomal-

lysosomal	system

238406_x_at SEZ6L2 down
seizure	related	6	homolog	

(mouse)-like	2

Cell	surface	protein;	link	to	autism	spectrum	

disorders	&	increased	in	lung	cancers

224886_at JMJD8 down jumonji	domain	containing	8 Possibly	epigenetic-related

225693_s_at CAMTA1 down
calmodulin	binding	

transcription	activator	1

Tumour	suppressor;	transcriptional	

activator;	cancer-related

226706_at FAM20C down ---

227287_at CITED2 down

Cbp/p300-interacting	

transactivator,	with	Glu/Asp-

rich	carboxy-terminal	domain,	

2

Regulates	PPARg/PGC1a,	HIF1;	increased	by	

fasting;	downregulated	in	ageing	rat	tendon;	

transcriptional	coactivator	of	p300/CBP-

mediated	transcriptional	coactivator	

complex;	positive	regulator	of	TGFbeta	

signaling

239522_at IL12RB1 down interleukin	12	receptor,	beta	1
Innate	immunity;	forms	part	of	the	IL-12R	

complex	for	high	affinity	binding	of	IL-12

244193_at DNAJC22 down
DnaJ	(Hsp40)	homolog,	

subfamily	C,	member	22

Heat-shock	family	member;	protein	folding;	

wurst	protein;	endocytosis

220024_s_at PRX down periaxin

Nerve	development;	interacts	with	

dystroglycan	complex;	early	onset	Charcot-

Marie-Tooth	neuropathy	

241563_at 241563_at down
Homo	sapiens	chromosome	3	

clone	RP11-384L8
---

240550_at OTUB2 down
OTU	domain,	ubiquitin	

aldehyde	binding	2
De-ubiquitinating	enzyme

235879_at MBNL1 up muscle	blind	like	1

RNA	binding;	regulates	splicing;	regulates	

insulin	receptor	splicing	-	affecting	binding	

kinetics

239629_at CFLAR up
CASP8	and	FADD-like	

apoptosis	regulator

anti-apoptotic;	inhibits	TNFRSF6-mediated	

apoptosis;	lacks	caspase	acivity;	c-FLIP	may	

be	related	to	muscle	ageing	in	mouse	model	-	

overexpression	in	TG	mice	affected	satellite	

cell	prolif	&	promoted	SM	ageing

241789_at RBMS3 up
RNA	binding	motif,	single	

stranded	interacting	protein	3

TGFbeta-related;	links	to	bone	mineral	

density	and	tumours

212649_at DHX29 up
DEAH	(Asp-Glu-Ala-His)	box	

polypeptide	29

RNA	helicase	involved	in	translation	

initiation

219737_s_at PCDH9 up protocadherin	9
Calcium-dependent	cell-cell	adhesion	and	

recognition	protein;	neural

230375_at PNISR up
PNN-interacting	

serine/arginine-rich	protein

AKA	splicing	factor,	arginine/serine-rich	18;	

regulated	by	ageing	in	mouse	(PMID:	

19968875)
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204362_at SKAP2 up
src	kinase	associated	
phosphoprotein	2

Adapter	protein;	linked	to	actin	assembly	&	
stress	fibre	formation	-	regulates	HSF4b	
(linked	to	cataracts);		increased	with	age	in	
mice	hearts	-	reversed	by	caloric	restriction	

231199_at RP11-271C24.3 up Mak3	homolog	(S.	cerevisiae) ---

221589_s_at ALDH6A1 up
aldehyde	dehydrogenase	6	
family,	member	A1

AKA	MMSDH;	targeted	in	ageing	rat	heart;	
mitochondrial	tetramer	expressed	at	high	
levels	in	the	liver,	kidney	and	heart	and	at	
lower	levels	in	muscle	and	brain;	
mitochondrial	enzyme	with	role	in	valine	and	
pyrimidine	catabolic	pathways

204731_at TGFBR3 up
transforming	growth	factor,	
beta	receptor	III	(betaglycan,	
300kDa)

AKA	betaglycan;	cell	surface	proteoglycan	
that	acts	as	co-receptor	with	other	TGFB	
receptor	superfamily	members;	reduced	
expression	in	various	cancers

1556095_at UNC13C up unc-13	homolog	C	(C.	elegans)

Link	to	processing	of	phorbol	esters	
processing:	APP,	receptor	activation	may	
reduce	Beta-A:	Learning?;	unc13	genes	in	
c.elegans	linked	to	aging	and	longevity

242197_x_at CD36 up
CD36	molecule	
(thrombospondin	receptor)

Receptor	for	oxidised	lipids;	increases	with	
age;	contributes	to	obesity-related	cardiac	
hypertrophy	in	mice
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Dataset Tissue GEO	Accession	
ID Platform Number	of	

Samples	 Gender Description Included	in

Stockholm Skeletal	Muscle GSE59880 HGU133Plus2 30 30M;0F

Training	dataset	for	our		healthy	ageing	
prototype	classifier.		All	the	samples	are	
disease	free	and	matched	for	aerobic	

fitness.

Chapter-2

Campbell Skeletal	Muscle GSE9419 HGU133Plus2 66 66M;0F Dataset	used	as	training	for	Independent	
Validation

Chapter-3	and	
Chapter-4

Trappe Skeletal	Muscle GSE28422 HGU133Plus2 48 24M;24F Test	dataset	used	for	Independent	
Validation

Chapter-3	and	
Chapter-4

Kraus Skeletal	Muscle GSE47969 HGU133Plus2 33 16M;17F Test	dataset	used	for	Independent	
Validation

Chapter-3	and	
Chapter-4

Hoffman Skeletal	Muscle GSE38718 HGU133Plus2 22 11M;11F Test	dataset	used	for	Independent	
Validation

Chapter-3	and	
Chapter-4

Derby Skeletal	Muscle GSE47881 HGU133Plus2 26 15M;11F Test	dataset	used	for	Independent	
Validation

Chapter-3	and	
Chapter-4

Berchtold Brain GSE11882 HGU133Plus2 120 97M;23F Test	dataset	used	for	Independent	
Validation	(tests	robustness	across	tissue)

Chapter-3	and	
Chapter-4

Muther Skin E-TABM-1140* Illumina	HT-12	V3	
Beadchip 279 0M;279F

Test	dataset	used	for	Independent	
Validation	(tests	robustness	across	tissue	

and	platform)

Chapter-3	and	
Chapter-5

Ulsam Skeletal	Muscle GSE48264 HuExonST 108 108M;0F Longitudinal	study		of	~70y	old	swedish	men	
with	20	year	follow	up	period Chapter-3

BrainEac Brain GSE60862 HuExonST 1231 905F;326F

Dataset	used	to	study	the	'healthy	ageing	
gene	score'		in	ten	post-mortem	brain	

regions	from	134	subjects	representing	1231	
samples	(free	from	neurological	diseases)

Chapter-3	and	
Chapter-4

AddNeuromed	Cohort	
1	(AD	vs	CTL) Blood GSE63060 Illumina	HT-12	V3	

Beadchip 113 48M:75F Dataset	used	to		study	the	'healthy	ageing	
gene	score'	in	AD	patients		vs	controls.

Chapter-3	and	
Chapter-4

AddNeuromed	Cohort	
1	(MCI	vs	CTL) Blood GSE63060 Illumina	HT-12	V3	

Beadchip 106 41M;65F Dataset	used	to		study	the	'healthy	ageing	
gene	score'	in	MCI	patients		vs	controls.

Chapter-3	and	
Chapter-4

AddNeuromed	Cohort	
2	(AD	vs	CTL) Blood GSE63061 Illumina	HT-12	V4	

Beadchip 111 44M;67F Dataset	used	to		study	the	'healthy	ageing	
gene	score'	in	AD	patients		vs	controls.

Chapter-3	and	
Chapter-4

AddNeuromed	Cohort	
2	(MCI	vs	CTL) Blood GSE63061 Illumina	HT-12	V4	

Beadchip 102 35M;67F Dataset	used	to		study	the	'healthy	ageing	
gene	score'	in	MCI	patients		vs	controls.

Chapter-3	and	
Chapter-4

CAD	study Blood GSE12288 HG-U133A 222 172M;50F
Gene-chip	clinical	study	used	for		comparing	

blood	RNA	in	people	with	and	without	
coronary	artery	disease	

Chapter-3	and	
Chapter-4

Diabetes	Study Blood GSE49925 Illumina	HT-12	V4	
Beadchip 144 93M:51F Gene-chip	clinical	study	used	to	compare	

blood	RNA	in	type	II	diabetes	with	control	
Chapter-3	and	
Chapter-4

*	Dataset		available	in	arrayExpress
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Table A3.1: Univariate linear regression on baseline characteristics in ULSAM at 70 years of 

age versus healthy age gene score. Number of obs. denotes the number of complete observations 

available for each variable. Mean and SD denote mean and standard deviation respectively, 

variables marked with * are categorical and hence reported using median. R denotes the 

regression-coefficient of the variable. R2 and P-value denote r-squared and p-value of the 

univariate analysis. 

Variable Number of obs. Mean@70y SD R R2 P-value 

Cystatin C calculated GFR (ml/min) 123 64 12 0.48 0.110 0.0006 

BMI (kg/m2) 128 25.8 2.8 -1.43 0.052 0.0172 

s-Albumin (g/l) 126 59.9 32.1 -0.12 0.045 0.0221 

Weight (kg) 128 78.9 9.9 -0.37 0.042 0.0338 

OGTT p-gluc 60 min (mmol/l) 128 9.6 2.6 -1.14 0.028 0.0834 

s-Phosphate (mmol/l) 127 43.0 2.3 1.26 0.025 0.1036 

OGTT p-insulin AUC 128 1.4 0.8 -3.38 0.023 0.1195 

OGTT p-gluc 120 min (mmol/l) 128 7.2 2.7 -0.78 0.015 0.2164 

Free fatty acids (mmol/l) 128 4,0 1,0 2.14 0.014 0.2270 

OGTT p-gluc 30 min (mmol/l) 128 9.1 1.6 -1.26 0.013 0.2400 

Interleukin-6 (ng/l) 122 3.9 4.9 0.40 0.014 0.2432 

HDL cholesterol (mmol/l) 125 0.5 0.2 -8.25 0.015 0.2558 

s-Cholesterol (mmol/l) 128 1.3 0.3 6.07 0.012 0.2577 

Systolic blood pressure supine (mmHg) 128 145 19 -0.10 0.010 0.2969 

Leisure time physical activity 125 3*  2.99 0.010 0.3221 

u-Albumin excretion rate (µg/min) 122 11.8 37.1 -0.05 0.009 0.3393 

s-Triglycerides (mmol/l) 128 6.0 1.1 1.43 0.008 0.3648 

s-Insulin (pmol/l) 124 45.3 20.7 -0.08 0.008 0.3673 

OGTT p-gluc 0 min (mmol/l) 128 5.5 1.0 1.20 0.004 0.5099 

Diastolic blood pressure supine (mmHg) 128 84 9 -0.13 0.004 0.5143 

Pulse rate (beats/min) 128 65 9 -0.13 0.004 0.5149 

Mini Mental State examination 121 28*  0.07 0.002 0.6276 

s-Creatinine (mol/l) 127 340 64 0.01 0.002 0.6474 

s-Uric acid (mol/l) 125 1.0 0.3 2.04 0.001 0.7157 

C-reactive protein (mg/l) 124 2.6 2.7 0.16 0.001 0.7972 

LDL cholesterol (mmol/l) 126 80.2 30.8 0.01 0.0005 0.8272 
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Figure A3.1 Logistic regression using genes involved in inflammatory response and 

mitochondrial ontologies respectively for ULSAM study with a 20 y follow-up period. One-

hundred and eight subjects provide a healthy tissue biopsy in 1992 that was suitable for RNA 

profiling and the fully annotated mortality-data, covering 2009-2011, was retrieved from the 

Swedish national health registry. Based on the literature premise that increased inflammation was 

bad for health and decreased mitochondrial gene expression was also bad for long term health, 

members of the Inflammatory response (GO:0006954) and Mitochondrion (GO:0005739) gene 

ontology families were selected from ENSEMBL (BioMart) and used to rank baseline samples by 

calculating gene expression score for these samples. A) A Logistic regression analysis performed 

using the genes involved in inflammation response showed no significant relationship between the 

median gene score and probability of death in the 20 y follow-up period (p=0.173). Here a high 

gene score implies higher value of expression for the members of inflammation response and vice-

versa.  B) Logistic regression analysis performed using the genes involved in mitochondrial biology 

showed no significant relationship between the median gene score and probability of death in the 

20 y follow-up period (p=0.337). Here a high gene score implies higher value of expression for the 

members of mitochondrion ontology and vice-versa.  However, using the cumulative ranking metric 

of top 150 genes from our original prototype was a good prognostic for mortality (Figure 3.3A).  
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Figure A4.1 RNA signatures were studied across three anatomical human brain regions using 

BrainEac.org resource. One hundred and thirty-four subjects were ranked for each brain region 

using the gene score method as discussed in section 4.5 and the median sum of the rank score was 

calculated for young and old brain regions. A) The RNA signature derived from healthy old muscle 

was highly regulated in regions associated with neurodegeneration. B) The Peters blood RNA 

signature also tracked human brain age, albeit to much lesser extent. Consistent with multiple 

published observations, human cerebellar cortex does not appear to be subject to substantial age-

related changes. 
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Figure A5.1 Selection criteria in ‘model-selection’ dataset that takes into account the effect each 

feature has on the model. A) We iteratively add one feature at a time and compute the correlation 

coefficient of the gene set with PWV values. Then we record if adding the feature make the model 

better or worse and select one of the criteria from Table 5.2 B) Using the sub selection criteria we 

get the best model which in this case is a set of 431 features. 
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Figure A5.2 Validation of model 2 for vascular ageing. Bland Altman plots (on the RHS) showing 

robustness of Model 2 in Validation datasets 1 (A) and 2 (B) respectively. Majority of observations 

for the model 2 were within the limit of agreement (dashed lines), thus implying that the difference 

between actual and predicted PWV values were marginal.  
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Figure A5.3 Validation of model 3 for vascular ageing. Bland Altman plots (on the RHS) showing 

robustness of Model 3 in Validation datasets 1 (A) and 2 (B) respectively. Majority of observations 

for the model 3, like the previous two models, were within the limit of agreement (dashed lines), 

thus implying that the difference between actual and predicted PWV values were trivial. Model 3 

was a regression model based solely on clinical data i.e. blood pressure and age and didn’t take 

into consideration the gene expression data. 
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 3.1 Binary classifier reverse entry prototype 
 
 
   We first clear the workspace and  load required libraries. 
 

rm(list=ls()) 

 
library(affy) 
library(class) 
library(limma) 

 

 
The  data is loaded  into R and  the .CEL  su   x stripped from each of the cel file names. 

 

dataIn <- ReadAffy(celfile.path= CEL_files_path  ) 

# remove .CEL from file names 
sampleNames(dataIn) <- sub( \\.CEL$ ,   , sampleNames(dataIn)) 

 
 

The phenotype data  is loaded from an external file. This file contains the array  identifiers as well as phenotype 

information such  as group  membership. We use the array name  to ensure  that the rows of the phenotype 

data match the order  of the arrays. 
 

phenoTable <- read.table( Phenodata/dataset.csv , sep= , , header=T) 

rownames(phenoTable) <- phenoTable$array 
 

#make a vector that matches the cel names of the arrays to the row names of the pheno data 

mt<-match(sampleNames(dataIn), rownames(phenoTable)) 
 

# attach the pheno data 

phenoData(dataIn)  = new( AnnotatedDataFrame , data = phenoTable[mt,]) 
 

# create the exp.group vector in the correct order. 

exp.group <- factor(as.numeric(phenoData(dataIn)$group)) 
 
 

We  next set up  parameters for the Leave  One  Out Cross  Validation (LOOCV) procedure. These  are  the 

smallest and  greatest number of genes  to use  in the K-nearest neighbour (KNN) classifier  as well as the 

number of neighbours used. 
 

# largest number of genes used to classify 
max.gene <- 200 

# lower bound of genes used to classify 
min.gene <- 2 

# number of KNN neighbours to consider 
knn.k <- 3 

 

 
The  gene expression  is normalised using the RMA algorithm and  then centered and  scaled  prior  to KNN. 

 

eset.data <- rma(dataIn) 

expr.data <- scale(exprs(eset.data), center=TRUE) 
 
 

We’ll be collecting data as a result of the classification. In this code below we set up the data structures we 

will use to collect this data. 
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#Initialise results vector 
summary.vector  <- vector(length=max.gene-min.gene+1) 

names(summary.vector) <- min.gene:max.gene 
 

# Initialise the scorematrix 
scorematrix <- matrix(rep(0,nrow(expr.data)*2), nrow=nrow(expr.data), ncol=2) 

rownames(scorematrix) <- rownames(expr.data) 

 
# Score for each gene list (of n=200-2+1=199) 
list.score <- vector(length=max.gene-min.gene + 1) 
list.score[] <- 0 

 
# Score for each PS used in list.opt(initilaised in the loop) classification  list.scorePS 
<-  matrix(rep(0,nrow(expr.data)*2), nrow=nrow(expr.data), ncol=3) colnames(list.scorePS) 
<- c("Appearance Count","Successful Predictions", "Success Ratio" ) rownames(list.scorePS) 
<- rownames(expr.data) 

 
 

We now begin the selection of probesets for classification.  This is a nested loop procedure. In the outer loop 

we hold out each array in turn. The middle loop uses KNN  to examine  the ability of selected probesets to 

classify the array. The innermost loop is used to select the probesets used in the middle loop. 
 

The inner loop is used to select potentially useful probesets. Within the innermost loop an array is held out 

and limma is used  to rank  probesets in the remaining arrays by t-value. The top 200 probesets are taken 

forward in reverse  order  so that probesets with lower t-values are used for classification first.  The ability of 

the selected probesets to classify the held out array is then tested using KNN.  The results of the prediction 

and whether an individual probeset was used in that prediction are  recorded. Each probeset is positively 

scored  if it contributes to a correct classification. 
 

This information is then used to select the top 150 performing probesets and these in turn go forward into a 

second KNN classification  step on a second held out sample  in the middle  loop.  Once again the classification 

performance of each probeset is recorded. 
 

for (test.array in 1:ncol(expr.data)){ 

#Loop 2 
for (list.opt in c(1:ncol(expr.data))[-test.array]){ 

 

#Loop 3. Testing predictive power of 2-200 genes 
for (ngenes in min.gene:max.gene){ 

 

#If first time through loop for any holdout array get sig genes first 
if (ngenes == min.gene){ 

 

# set design matrix 
design <- cbind(1,exp.group[-c(test.array,list.opt)]) 

 

# fit models 

fit <- lmFit(exprs(eset.data)[,-c(test.array, list.opt)], design = design) 
 

# do empirical Bayes 

fit2 <- eBayes(fit) 
 

# get t stats, abs value 

sig.genes <- abs(fit2$t[,2]) 

# sorted in order of abs t-value, decreasing
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sig.genes <- sort(sig.genes,  d=TRUE) 

} # end eBayes here 
 

# get top 200 sig probesets 
top.200 <- sig.genes[c(1:max.gene)] 

 

# REVERSE this list so lowest probesets go in first 
top.200 <- rev(top.200) 

 

# get the probesets to test this will vary with ngenes. 
test.probes <- top.200[1:ngenes] 

 

# get scaled expression data for ngenes (2 to 200), transpose for knn 

candidate.genes  <- expr.data[rownames(expr.data) %in% names(test.probes), ] 
 

# transpose for knn (row-wise) 

candidate.genes  <- t(candidate.genes) 
 

# take out the test.array and list.opt for training 

training.data <- candidate.genes[-c(test.array, list.opt),] 
 

# select test list.opt for testing 

test.sample <- candidate.genes[list.opt, ] 
 

# Prepare training, test and class data for knn 
training.groups  <- exp.group[-c(test.array, list.opt)] 

 

# predict list.opt 
predict  <- knn(train=training.data, test=test.sample,  cl=training.groups, k=knn.k) 

# which probesets were used in this prediction 
list.score.index  <- which(rownames(list.scorePS) %in% names(test.probes)) 

# record the use (appearance) of that probeset 
list.scorePS[list.score.index , 1] <- list.scorePS[list.score.index , 1] + 1 

 

# print some details on classification 
cat(paste("Predicting sample ", list.opt, "which is ", exp.group[list.opt], 

" and leaving out sample", test.array,"\tusing", 
ngenes, "genes \t"), sep="") 

 

# so now we check result for list.opt for each ngenes 
# if the prediction is right then add +1 to list.score position for ngenes 
# this gives the list.size for a positive prediction 
# if the prediction is right 
# add +1 to the probe.performance  position for included probes 
if (predict==exp.group[list.opt]){ 

cat ("CORRECT\n") 

list.score[ngenes-min.gene+1] <- list.score[ngenes-min.gene+1] + 1 
list.scorePS[list.score.index,2] <- list.scorePS[list.score.index,2]+1 

} 
 

else { 

cat ("Incorrect\n") 

}
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} 

# END LOOP 3 - INNER LIST OPTIMISATION PREDICTIONS 
 

# Select the first 150 genes from sig.genes for kNN prediction 
test.length <- 150 

# get the scaled expression data for the genes that correctly predicted 
# test.array in loop 3 
candidate.genes.testing <- expr.data[rownames(expr.data) %in% 

names(sig.genes[1:test.length]),] 

# transpose for knn 
candidate.genes.testing <- t(candidate.genes.testing) 

# take out the test.array for training data 
training.data <- candidate.genes.testing[c(1:nrow(candidate.genes.testing)) 

[-c(test.array)],] 
# get data for test.array only 
test.sample <- candidate.genes.testing[test.array,] 

# the true classes for training data only 
training.groups  <- as.factor(exp.group[-c(test.array)]) 

# do the prediction for the test.array 
predict.testing  <- knn(train=training.data, test=test.sample, 

cl=training.groups, k=knn.k) 
#print progress 
cat ("Predicting TEST ARRAY with ", test.length," genes\t") 

# if the prediction for test.array is right with ngenes 
if (predict.testing==exp.group[test.array]){ 

cat ("CORRECT\n") 

# and add +1 to those contributing genes in 1st column of the scorematrix 
scorematrix[colnames(candidate.genes.testing),1] <- 

scorematrix[colnames(candidate.genes.testing),1] + 1 
} 
else { 

cat ("Incorrect\n") 

} 
 

# add +1 to the second column of score matrix for each candidate gene tested 
# to count the number of times that gene is used in a prediction attempt 
scorematrix[colnames(candidate.genes.testing),2] <- 

scorematrix[colnames(candidate.genes.testing), 2] + 1 
} 
# END LOOP 2 (predicting test.array 1 with all poss list.opt) 

} 

# END LOOP 1 
 

 
We record  the probesets used  in classification and  the number of appearances each  probeset makes  in the 

classification  step above.  For each probeset the ratio  of correct predictions to total appearances is calculated 

and  finally the data is written out. 
 

# keep only probesets used in predictions 
# i.e. column 2 on scorematrix does not equal 0 
scorematrix <- scorematrix[which(scorematrix[,2]!=0),] 
colnames(scorematrix) <- c("Correct Preds", "Appearances") 

 

# Sort according to scoring first column (correct classifications);  best predictors first
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scorematrix_App_Sorted <- scorematrix[order(scorematrix[,2], decreasing=TRUE),] 

scorematrix_Appearance_data <- scorematrix_App_Sorted[,2] 
 

# keep only probesets which appeared in top.200 lists 
# i.e. column 1 on list.scorePS does not equal 0 
list.scorePS  <- list.scorePS[which(list.scorePS[,1]!=0),] 

 

#calculates success ratio i.e correct predictions/ total appearance, for list.scorePS 
list.scorePS[,3]  <- list.scorePS[,2]/list.scorePS[,1] 

 

#Sort list.scorePS according to first column (appearance count); 
list.scorePS_Sorted <- list.scorePS[order(list.scorePS[,1], decreasing=TRUE),] 

 

# write out data 

write.table(scorematrix, "scorematrix_appearances_reverse_entry_prototype.txt", 
sep="\t", quote=FALSE) 

 
write.table(list.scorePS_Sorted, 

"FinallistofclassifiyingPS_individualPS_appearances_successrate_ 
REVERSE_ENTRY_PROTOTYPE.txt", 
sep="\t", quote=FALSE
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  3.2 Independent Validation 
 
 

Having previously identified a set of genes able to classify tissues as having a young or old profile we now 

examine the ability of this ‘geneset’ to classify independent datasets of young vs old tissue samples (samples 

not  used  in generating the classification model). The original data used to select the genes is not used at ANY 

stage of this subsequent process 
 

We first clear the workspace, load required  libraries  and  set some pointers to directories containing the data 

required. 
 

rm(list=ls()) 

 
library(inSilicoDb) 
library(inSilicoMerging) 
library(affy) 
library(class) 
library(limma) 
library(frma) 
library(ROCR) 
#Set pathway to CEL files 
pathC =  Path/training_set 
pathM =  Path/test_set 
#Set names 
Training_data<-  training_set_name 

Test_data<- test_set_name 
 

 
The  data to be classified is loaded.  These  are microarray cel files. 

 

dataC <- ReadAffy(celfile.path=pathC) 

dataM <- ReadAffy(celfile.path=pathM) 
 
 

The phenotype data  is loaded from an external file. This file contains the array  identifiers as well as phenotype 

information such  as group  membership. We use the array name  to ensure  that the rows of the phenotype 

data match the order  of the arrays. 
 

sampleNames(dataM)  <- sub( \\.CEL$ ,   , sampleNames(dataM)) 

phenoTableM <- read.table( Phenodata/training_set.csv , sep= , , header=T) 

rownames(phenoTableM) <- phenoTableM$array 

mtM <- match(sampleNames(dataM), rownames(phenoTableM)) 

 
sampleNames(dataC)  <- sub( \\.CEL$ ,   , sampleNames(dataC)) 
phenoTableC <- read.table( Phenodata/test_set.csv , sep= , , header=T) 
rownames(phenoTableC)<-phenoTableC$array 
mtC<-match(sampleNames(dataC), rownames(phenoTableC)) 

 

# attach the pheno data 
phenoData(dataM)  = new( AnnotatedDataFrame , data = phenoTableM[mtM,]) 

phenoData(dataC)  = new( AnnotatedDataFrame , data = phenoTableC[mtC,]) 
 
 

The  microarray data  we will use to validate our classifier were generated in di  erent laboratories at  di  erent 

times and  are independent biologically  and  from a technical perspective (including gene-chip  format). The 

di  erent sources of data  can introduce technical variance  that does not reflect the biological experiment.  Below
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we use the fRMA algorithm to limit the influence  of technical variance e.g. di  erent batches of microarrays. 

The  technical manual for fRMA is here. 
 

esetC <- frma(dataC) 

esetM <- frma(dataM) 
 

 

The  fRMA datasets are adjusted using the COMBAT method which also corrects for batch  e  ects across the the 

separate microarray datasets. After this treatment the adjusted datasets are prepared for the assessment of 

classification performance. 
 

esets <- list(esetC, esetM) 

esetMerge1 <- merge(esets, method = "COMBAT") 

mtC <- which(esetMerge1$dataset=="training_set") 

mtM <- which(esetMerge1$dataset=="test_set") 
 
 

We  use  the knn  classifier  with a constant k=5 to examine the performance of our  classifying  geneset on 

independent microarray datasets. The  strategy here is to use a NEW  microarray dataset as the ‘expression 

space’ (named  ‘train’ in the code) for predicting one sample at a time from the new ‘test’ batch  of microarray 

data. 
 

In this section we also create  the data  structures required  for later  receiver operator curve (ROC)  analysis  of 

the results.  Specifically  we set up a two column  matrix with columns for the actual class (label) of each 

case and  the prediction made  by the knn  classifier  (predict). Label  ‘1’ is assigned  to a case if it is ‘young’ 

and  ‘-1’ if it is ‘old’. 
 

Using  the training  and  testing  data we first  extract only  expression data for the previously selected  age 

classifier geneset (which  remains  a fixed variable). 
 

knn.k <- 5 

 
#Load previously identified classification  genes 
scoreMatrix<-read.table("genes.txt",sep= \t , header=T) 
rownames(scoreMatrix) <- scoreMatrix[,1] 

 

#train data 

expr.train <- exprs(esetMerge1[,mtC]) 

train.genes <- expr.train[rownames(expr.train) %in% rownames(scoreMatrix), ] 

training.groups  <- factor(as.numeric(pData(esetMerge1[,mtC])$group)) 
 

#test data 

expr.test<- exprs(esetMerge1[,mtM]) 

test.genes <- expr.test[rownames(expr.test) %in% rownames(scoreMatrix), ] 

testing.groups  <-factor(as.numeric(pData(esetMerge1[,mtM])$group)) 
 

validation.score  <- matrix(ncol=2,nrow=ncol(expr.test)) # create object to collect results 
 

#Transpose for knn 

training.data <- t(train.genes) 
 

## set up matrix for ROC analysis 

rocScore <- matrix(ncol=2,nrow=ncol(expr.test)) 

colnames(rocScore)  <- c("label","predict") 
 

labels <- testing.groups
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for(i in 1:ncol(expr.test)){ 

if(labels[i] == 1) 

rocScore[i,1] <- -1 
else if(labels[i] == 2) 

rocScore[i,1] <- 1 
} 

 

 
Predictions rely on one ‘test’ sample  at a time and  in this scenario  the ‘training data’ to examine which  5 

members of the data are  closest to a given member of the test data. The  predictions made  in this process 

are  recorded in the predict column  of the rocScore matrix we set up  above.   In addition we record  the 

specific array  tested and  whether the prediction was correct or not  for each that array  (these are recorded  in 

columns1  & 2 of the validation.score matrix respectively). If the prediction is correct we increment the 

record variable by 1 and  use this to calculate the percentage of correct classifications. 
 

record <- 0 
 

for (validation.array  in 1:ncol(expr.test)){ 

test.data <-t(test.genes[,validation.array]) 

predict  <- knn(train=training.data, test=test.data,cl=training.groups, k=knn.k) 
 

if(predict==1){ 

rocScore[validation.array,2] <- -1 

} 

else if(predict==2){ 

rocScore[validation.array,2] <- 1 

} 

 
if (predict==testing.groups[validation.array]){ 

validation.score[validation.array,1] <- colnames(expr.test)[validation.array] 
validation.score[validation.array,2] <- "Correct Prediction" 
record <- record+1 

} 

else  { 

validation.score[validation.array,1] <- colnames(expr.test)[validation.array] 

validation.score[validation.array,2] <- "Incorrect Prediction" 

} 

} 
 
percentage <- 0 

percentage <- ceiling((record/validation.array)*100) 
 
 

We  assess  the results  of the classification by  ROC  analysis in the code  below.   We  classify  the young  as 

‘positive’ and  the old as ‘negative’  (these are arbitrary). To calculate the true positive rate  (young  classified 

as young)  we first create a binary vector of true young.  We then sum the predict values  after filtering the 

rocScore dataframe by the binary vector. 
 

Sensitivity  is then calculated as the true positives  divided by  the actual  number of young  in the sample 

(i.e. the sum of the binary.values vector. 
 

We  calculate the false positives and  false positive rate in a similar  way  to above,  by inverting the binary 

labels.  Finally  we calculate the specificity.
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threshold <- 0 

# boolean vector of classes (young=TRUE; old=FALSE) 
binary.labels <- rocScore[,1] == 1 

# calculates total number of True Positives, i.e young classified as young 
tp <- sum((rocScore[,2]  > threshold) & binary.labels) 

# calculates sensitivity i.e TP/total Positives from class labels 
sensitivity <- tp/sum(binary.labels) 

 

# calculates false positives  for FPR/ 1-specificity 

fp <- sum((rocScore[,2]   > threshold ) & (!binary.labels)) 

# 1-specificity 
fpRate <- fp/sum(!binary.labels) 

 
sens <- round(sensitivity, digits = 3) 
FPR <- round(fpRate, digits = 3) 
spec <- 1-FPR 

 

# Calculate area under the curve by using ROCR package 

pred<-prediction(rocScore[,2], rocScore[,1]) 

auc<-attributes(performance(pred,  auc ))$y.values[[1]] 
 
 

Finally  we write out a text file containing data on sensitivity and  specificity. 
 

write.table(validation.score,paste(Test_data,"_test_",Training_data, 

"_Train   BatchAdj_150PS_",percentage,"SR_Sens=",sens, 
"_Spec=",spec,".csv",sep=""),sep= , ,quote=
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 3.3 Gene ranking score calculation 
 

 
This  code calculates the tissue ageing  Gene Score for each sample,  as an median  of all of the selected genes 

(the classification  gene-set).  It is applied  in one of two scenarios.  1) to samples  where all individuals  have the 

same  chronological age (birth year)  or 2) to contrast cases versus  controls where  the chronological age and 

gender  is equal in both  groups.  The  ranking  score can be standardised to the total number  of samples  being 

ranked to compare  across  studies. 
 

Thus, if a gene  was  downregulated with  age  in  the discovery data set,  then the sample  with  the lowest 

expression  in this new data  set will be marked  youngest and if upregulated the sample with highest score will 

be the youngest 
 

Setting up preliminaries like clearing  workspace  and  setting study names 
 

rm(list=ls()) 
name_of_study<-"Study" 
signature<-"study_signature" 

 

 
Loading  data - normalised intensities matrix 

 

expr.data <- read.table("Expression_matrix.txt",sep="\t",header=TRUE,row.names=1) 
 

 
Loading the list of genes with annoteted directionality calculated in training dataset: downregulated with 
‘down’ sign and  upregulated genes with ‘up’ values 

 

genesUD <- read.delim("list_of_genes.txt",sep= \t , header=T) 
 

 
Select only the geneID  and  directionality column  from the file 

 

genesUD<- subset(genesUD,select=c("geneID","Directionality")) 
 

 
Select genes that are present on a paltform 

 

genesUD<-genesUD[genesUD$geneID %in% rownames(expr.data),] 
 

 
Seperate up and  down regulated genes 

 

down <- subset(genesUD,genesUD$Directionality=="down") 

dReg<-down$geneID 

 
up <- subset(genesUD,genesUD$Directionality=="up") 

uReg<-up$geneID 
 

 
Calculates score of each gene for all samples 

 

geneRank <- matrix(nrow=ncol(expr.data), ncol=length(genesUD[,1]) ) 

rownames(geneRank)  <- colnames(expr.data) 

colnames(geneRank)  <- c(as.character(dReg), as.character(uReg)) 
 

 
DownRegulated genes with aging:  Scores the sample  with highest expression  value as youngest and  values it 

1, then the next sample  maximum/higher value  as 2 and  so on
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for(i in 1: length(dReg)){ 

record <- 0 

PS <-  as.matrix(expr.data[which(rownames(expr.data)==dReg[i]),]) 
PS <- t(PS) 
for(j in 1: ncol(expr.data))  { 

maxIn <-which.max(PS) 

maxIndex <- rownames(PS)[maxIn] 
PS   <- as.matrix(PS[-maxIn,]) 
sample <- which(maxIndex==rownames(geneRank)) 
geneRank[sample,which(colnames(geneRank)==dReg[i])] <- record 

} 

} 
 

 

Upregulated genes with aging:  Scores the sample  with lowest expression value  as youngest and  values  it 1, 

then the next sample  minimum/lower value  as 2 and  so on. 
 

for(i in 1: length(uReg)){ 

record <- 0 

PS <-  as.matrix(expr.data[which(rownames(expr.data)==uReg[i]),]) 
PS <- t(PS) 
for(j in 1: ncol(expr.data))  { 

minIn <-which.min(PS) 

minIndex <- rownames(PS)[minIn] 
PS  <- as.matrix(PS[-minIn,]) 
sample <- which(minIndex==rownames(geneRank)) record <- 
record + 1 
geneRank[sample,which(colnames(geneRank)==uReg[i])] <- record 

} 
} 

 

 

Calculate median  value  for each sample  based  on their individual genes score 
 

cumulative_geneRank<- apply(geneRank,1,median) 

geneRank <- cbind(geneRank,cumulative_geneRank) 
 
 

Write out the ranking matrix 
 

write.table(geneRank, paste(name_of_study,"_genescore_ranking_basedon_",signature, 
".csv",sep=""),sep= , ,quote=F) 




