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Abstract 
A hypothesis is made that delamination can be driven by pockets of energy concentration 

(PECs) in the form of pockets of tensile stress and shear stress on and around the interface 

between a thin film and a thick substrate, where PECs can be caused by thermal, chemical or 

other processes. Based on this hypothesis, three analytical mechanical models are developed 

to predict several aspects of the spallation failure of elastic brittle thin films including 

nucleation, stable and unstable growth, size of spallation and final kinking off. Both straight-

edged and circular-edged spallations are considered. The three mechanical models are 

established using partition theories for mixed-mode fracture based on classical plate theory, 

first-order shear-deformable plate theory and full 2D elasticity. Experimental results show 

that all three of the models predict the initiation of unstable growth and the size of spallation 

very well; however, only the 2D elasticity-based model predicts final kinking off well. The 

energy for the nucleation and stable growth of a separation bubble comes solely from the 

PEC energy on and around the interface, which is ‘consumed’ by the bubble as it nucleates 

and grows. Unstable growth, however, is driven both by PEC energy and by buckling of the 

separation bubble. Final kinking off is controlled by the fracture toughness of the interface 

and the film and the maximum energy stored in the separation bubble. This work will be 

particularly useful for the study of spallation failure in thermal barrier coating material 

systems. 
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Nomenclature 

A  amplitude of upward deflection of film bubble  
b  width of through-width straight-edged delamination 
h  thickness of film 
E  Young’s modulus of film 
E  effective Young’s modulus of film 
G , IG , IIG  total, mode I and mode II ERRs 

IcG , IIcG  film-substrate pure mode I and II interface fracture toughness 

cG  film-substrate mode-dependent interface fracture toughness 

cG  film-substrate interface fracture toughness averaged over delamination 

cfG  fracture toughness of film material 

xBM , xBeN  crack tip longitudinal bending moment and effective force 

rBM , rBeN  crack tip radial bending moment and effective force 
r , θ  radial and circumferential coordinates of circular film bubble 

BR  half-crack length of straight-edged delamination; radius of circular-edged 
delamination 

0u  residual strain energy density in the film 

aU  ‘bubble energy’; increase in combined strain energy and surface energy due 
to bubble separation 

bU  bending strain energy of film bubble 

iU  in-plane strain energy of film bubble 

sU  surface energy of delaminated surfaces of film bubble 

0U  strain energy of film bubble before separation 
w  upward deflection of film bubble 
x , y  lengthwise and widthwise coordinates of straight-edge film bubble 
z  out-of-plane coordinate 
α  buckling correction factor (e.g. due to initial imperfection) 
β  kink-off angle 

R
xε , R

xσ  averaged axial relaxation strain and stress due to bending deflection 
R
rε , R

rσ  averaged radial relaxation strain and stress due to bending deflection 

0ε , 0σ  uniform residual compressive strain and stress in film 
ν  Poisson’s ratio of film 
ψ  ratio of film-substrate pure mode II and I interface fracture toughness 

1. Introduction 

Thin solid films are found in many different applications fulfilling various roles [1] such 

as confinement of electric charge in integrated electronic circuits, thermal insulation in 

thermal barrier coatings (TBCs), and protection against corrosion, friction and wear in 

surface coatings. Although thin films are not usually expected to have a primary load-
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carrying capability, they often experience residual stresses due to the fabrication process 

and/or working conditions. One typical example is the in-plane compressive stress in TBCs 

caused by the mismatch of thermal expansion coefficient between the coating and alloy 

substrate. Residual stresses are a major cause of film cracks and debonding. Buckling-driven 

delamination is a typical example of film failure under in-plane compressive residual stress, 

which has been extensively studied in the last few decades. Among many others, Refs [2–6] 

report studies on buckling-driven delamination with straight edges [2,4,6], circular edges 

[2,3], elliptical edges [2], and ‘telephone cord’-shaped edges [5]. 

In studies on buckling-driven delamination, it is conventional to assume either a pre-

existing interface crack which is larger than the critical buckling characteristic dimension or a 

pre-existing imperfection [3,7,8]; however, some examples of thin-film delamination show 

no evidence of any pre-existing interface crack or imperfection, but still display buckling 

behavior [9,10]. A new hypothesis was proposed by Wang et al. [11] to explain this behavior. 

According to this hypothesis, delamination can be driven by pockets of energy concentration 

(PECs) in the form of pockets of tensile stress and shear stress, with the former being 

dominant [9,10] on and around the interface between a thin film and a thick substrate, where 

PECs can be caused by a number of different processes, including thermal cooling. Based on 

this hypothesis, Wang et al. [11] developed an analytical mechanical model to predict several 

aspects of thin-film spallation failure including nucleation, stable and unstable growth, size of 

spallation and final kinking off. The predictions agree very well with experimental results in 

Refs. [9,10]. 

The present work aims to extend Wang et al.’s work [11] on delamination driven by PECs 

in two ways: First, to consider straight-edged delamination in addition to circular-edged 

delamination in Ref. [11]. Second, to develop analytical mechanical models for PEC-driven 

delamination based on the classical and the first-order shear-deformable plate mixed-mode-

fracture partition theories [12–14] in addition to the analytical mechanical model [11] which 

was based only on the 2D elasticity mixed-mode-fracture partition theory [15–20]. The 

mechanical model for delamination with straight edges is developed in Section 2 while the 

model for delamination with circular edges is developed in Section 3. Theoretical predictions 

are compared with experimental results [9,10] in Section 4. Conclusions are drawn in Section 

5. 
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2. Analytical mechanical model for delamination with straight edges 

In this section, a mechanical model for delamination with straight edges is developed 

analytically based on the PECs hypothesis to explain several aspects of thin-film spallation 

failure including nucleation, stable and unstable growth, size of spallation and final kinking 

off. Fig. 1 shows a rectangular thin film-substrate composite material system with a through-

width interface delamination of width b  and of length BR2 . The delamination tips or the 

edges of the bubble are denoted by the label ‘B’. The thickness of the film h  is assumed so 

small that only in-plane residual stresses are induced in it before delamination; and the 

thickness of the substrate is assumed so large that it has negligible global deformation, such 

as bending, extension or twisting, due to residual stresses in the film. Both the film and 

substrate materials are assumed to be homogeneous and isotropic. The film material has 

Young’s modulus E  and Poisson’s ratio ν .  

 

Fig. 1. A delamination bubble with straight edges. 

In general, a uniaxial uniform residual stress (i.e. 0σσ =x , 0=yσ , 0=xyτ ) is achieved 

for a long film strip with the width of the film less than twice the thickness, and a plane stress 

model is suitable. Conversely, a biaxial uniform residual stress (i.e. 0σσ =x , 0σσ =y , 0=xyτ

) is achieved when both the width and length of the film are larger than twenty times the 

thickness [21,22], and a plane strain model is suitable. 

2.1. Nucleation of a delamination bubble, bubble energy and total energy release rate 

According to the PECs hypothesis, the nucleation of PEC-driven delamination is caused 

by pockets of tensile stress and shear stress, with the former being dominant [9,10], on and 

around the interface. The details are unclear and are not considered in the present work. Once 

a delamination has nucleated, the strain energy of the stresses is freed and becomes the 

bottom surface energy of the delamination, the surface energy of the substrate underneath the 
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bubble, and part of the strain energy in the delaminated bubble. Note that the term 

‘delamination bubble’ is used here to differentiate it from ‘delamination buckle’ as the length 

of the bubble BR2  at this stage is far shorter than the critical buckling length. In order to 

calculate the strain energy in the bubble, its shape is approximated to be sinusoidal and 

represented by 

 ( ) 















+=

BR
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2
 (1) 

with w  representing the upward deflection and A  the amplitude, as shown in Fig. 2. 

Clamped edge conditions at BRx ±=  are assumed because the thickness ratio between the 

film and the substrate is assumed very small in the present work. It is also because the local 

deformation of the substrate near the interface is insignificant if the Young’s modulus of 

substrate material is greater than a third of the film’s Young’s modulus [21], which applies to 

the present case. The elastic bending strain energy can then be readily calculated using 

classical beam theory as 
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where EE =  for plane stress conditions and ( )21 ν−= EE  for plane strain conditions. The 

elastic in-plane strain energy is calculated using Hooke’s law as 
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where 0u  in Eq. (3) is the residual strain energy density in the film given by 
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As mentioned earlier, plane stress and plane strain models are suitable for uniaxial and 

biaxial stress cases respectively. The averaged axial relaxation strain in the bubble is 

calculated by using the conventional von Kármán geometric nonlinearity assumption. 
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The averaged axial relaxation stress is then given by 
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For brittle materials, the surface energy is 
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where ( )xGc  is the interface fracture toughness which is position-dependent as crack tip 

loading conditions vary with propagation. The fracture toughness averaged over the 

delaminated surface is denoted by cG . Note that when 1<<hA , ( )xGc  is constant, as 

shown later. This is the case considered in the present study. Collecting together bU , iU  and 

sU  gives 

 aUUU += 0  (8) 

where 00 2 bhuRU B=  is the elastic strain energy only before any separation, and aU  is 
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which is the increase in the combined elastic strain energy and surface energy due to 

separation, with E00 σε =  and cGh 00 σϕ = . It can be shown that aU  is always positive 

and monotonically increases with respect to the relaxation strain R
xε  or the bubble amplitude 

A  when ( ) ( )0
22 12επ<hRB . It is seen, therefore, that a separation bubble represents 

another type of PEC. Its energy comes from the PEC energy ‘consumed’ by the bubble as it 

nucleates and grows. Although there is this close relationship between aU  and the PEC 

energy, there are subtle differences between them. Here, aU  is called ‘bubble energy’. When 

the PEC energy is able to provide the bubble energy aU  for nucleation, nucleation of a 

separation bubble will occur. It is expected that the bubble energy aU  governs the growth 

behavior of a bubble. According to this understanding, the described bubble separation 

behavior is an effect of positive bubble energy; therefore, this work only considers 0≥aU . 

Obviously, when the bubble energy disappears, that is, 0=aU , a bubble will stop growing. 
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Details about aU  are given during the following development, for bubble nucleation, stable 

growth, unstable growth, spallation and kinking off. 

After nucleation the delamination bubble bends away from the substrate, growing in 

height and producing a driving force for axial growth, that is, it produces energy release rate 

(ERR) at the bubble edge. When the ERR exceeds the interface fracture toughness, the 

bubble length grows. From Refs. [15,23] the total ERR G  is 
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where xBM  and xBeN  are the crack tip longitudinal bending moment and effective axial force 

per unit width respectively, as shown in Fig. 2. They can be readily calculated in terms of R
xε  

by using classical beam theory and Eq. (5), as follows: 
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Fig. 2. Free-body diagram of a delamination bubble’s oxide film. 

Substituting xBM  from Eq. (11) and xBeN  from Eq. (12) into Eq. (10) gives 
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It is well known that interface fracture toughness is fracture mode mixity-dependent. 

Predictions of fracture toughness therefore vary with different partition theories. Refs. [23–

25] show, using data from extensive fracture testing [26–31], that the partition theory based 

on Euler beam or classical plate partition theory [12–14] gives very accurate predictions of 

interface fracture toughness for macroscopic mixed-mode fracture while the partition theories 
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based on Timoshenko beam theory or the first-order shear-deformable plate theory [12–14] 

and 2D elasticity [15–20] give poor predictions. The very latest studies [11,32], however, 

show that the 2D elasticity partition theory gives accurate predictions for the delamination 

behavior of micro-scale and nano-scale thin films. This work therefore aims to develop three 

analytical models to predict the PEC-driven spallation behavior of thin films and to examine 

their respective performances. The three mechanical models are established based on these 

three partition theories: Euler beam or classical plate partition theory, Timoshenko beam or 

first-order shear-deformable plate partition theory, and 2D elasticity partition theory. After 

the total ERR G  in Eq. (13) has been partitioned into the mode I and mode II ERRs, IG  and 

IIG , a failure criterion is used to check if the delamination grows or not. In general a growth 

criterion can be expressed in the following form [33]: 

 ( ) 0=IIcIcIII G,G,G,Gf  (14) 

where IcG  and IIcG  are the respective mode I and II critical ERRs or fracture toughnesses. 

The form of Eq. (14) is not unique but is crack interface-dependent and is determined from 

experimental testing for a given interface. Many previous studies, such as those in Refs. [23–

25,32], have shown that the following linear propagation criterion [33] agrees with 

experimental results very well for brittle interfaces: 
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where IcIIc GG=ψ . 

2.2. Mechanical model based on Euler beam or classical plate partition theory 

2.2.1. Stable growth of the delamination bubble driven by bubble energy 

Based on Euler beam or classical plate partition theory [12–14] the mode I and II ERRs 

for brittle interfacial fracture are 
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where the subscript E denotes Euler beam or classical plate partition theory. By substituting 

the ERRs from Eqs. (13) and (16) into Eq. (15) with the use of Eqs. (5) and (11), the 

propagation criterion becomes 
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where cEE Gh 00 σ=ϕ . Note that, consistent with the notation described above, cEG  is the 

film-substrate mode-dependent interface fracture toughness cG  based on Euler beam 

partition theory. It is seen from Eqs. (13) and (16) that when 1<<hA  then 1≈GGI , that is, 

the delamination is pure mode I. Therefore, IccE GG =  and IcE Gh 00 σϕ = . The amplitude 

for crack growth is therefore obtained from Eq. (17) as 
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where the subscript GR denotes growth. (Here and throughout this paper, subscripts are 

combined so that, for instance, GRE denotes growth based on Euler beam or classical plate 

partition theory.) Substituting Eq. (18) into Eqs. (4) and (5) gives the relaxation strain and 

stress as 

 ( )
2

0
2

06








ϕπ
ε

=ε
h

RB

E
GRE

R
x  (19) 

 ( )
2

2

6








π
=σ

h
R

h
G BcE

GRE
R
x  (20) 

Note that these three quantities, ( )GREhA , ( )GRE
R
xε  and ( )GRE

R
xσ , are independent of the 

residual stress 0σ . The bubble energy aU  at growth can be obtained by substituting Eq. (19) 

into Eq. (9). 
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The first term in Eq. (21) is the sum of the bending strain energy and surface energy while the 

rest is the relaxed in-plane strain energy, which is negligible if BR  is small due to the high 

powers of BR  in these terms. The first term is therefore regarded as the nucleation energy or 

PEC energy required for nucleation, that is, ( ) cEBNUEa bGRU 3=  where BR  is very small. It is 

seen that one third of the nucleation energy is used to bend the separation outwards after 

nucleating the interface delamination using two thirds of its energy. When the PEC energy is 
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able to provide the bubble energy ( )GREaU , it will drive the nucleation and growth of a 

separation bubble. Two scenarios can occur: One scenario is slow and stable growth which 

occurs when BR  is smaller than the critical buckling characteristic length. The other is 

unstable growth when BR  reaches the critical value of the buckling characteristic length. The 

stable bubble becomes an unstable buckle. The initiation of unstable growth is considered 

next. 

2.2.2. Initiation of unstable growth by buckling 

During slow and stable growth, the in-plane compressive stress in the bubble R
xσσ −0  

reduces as its length BR  increases. At a certain point the following condition for the buckling 

of thin circular plates [34] is met: 
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where α  is a correction factor because the buckling occurs at an amplitude A  which can be 

considered an initial imperfection; alternatively, α  can be considered an effect of boundary 

conditions. The range of α  is 0150 .. ≤α≤  with the two limits corresponding to simply-

supported and clamped edge conditions respectively. A good approximation may be the 

average of the extreme values, that is, 750.=α . This value is used in the present study. By 

using Eqs. (20) and (22), the initiation of unstable growth, which is assumed to coincide with 

the buckling condition, is found at 
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with the subscript UG denoting the initiation of unstable growth and 
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There is no unstable growth when 2α<ΩE . Binomial expansion of the expression in the 

square bracket in Eq. (23) for 2α>>ΩE , leads to 
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Substituting Eq. (25) into Eqs. (18), (19) and (20), and use of Eq. (24) where appropriate, 

results in Eqs. (26), (27) and (28), respectively. 
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The bubble energy at the initiation of unstable growth when 2α>>ΩE  is obtained by 

substituting Eq. (25) into Eq. (21) and using Eq. (24). 
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2.2.3. Unstable growth and spallation of the buckle driven by buckling and bubble energy 

The developments in the section are generally approximate due to neglect of the dynamic 

effect of abrupt unstable growth and the effect of large amplitude A. Some more detailed 

discussions on this will be given later in this section and in Section 4. Since the bubble 

energy aU  governs the growth behavior of the separation, the variation of bubble energy at 

growth ( )GRaU  in Eq. (25) is considered. By differentiating ( )GRaU  in Eq. (21) with respect to 

hRB , its maximum is found to occur at 
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with the subscript MU denoting the maximum ( )GREaU . When 65 /E <Ω  there is no solution. 

Binomial expansion of the expression in the square bracket in Eq. (30) for 65 /E >>Ω , leads 

to 
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Substituting Eq. (31) into Eqs. (18), (19) and (20), and use of Eq. (24) where appropriate, 

results in Eqs. (32), (33) and (34), respectively. 
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Note that ( )MUEBR  in Eq. (31) is equal to ( )UGEBR  in Eq. (25) with 01.=α  for a clamped edge 

condition. Substituting Eq. (31) into Eq. (21) gives the bubble energy when 6/5>>ΩE  as 
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More importantly, ( )GREaU  becomes zero at 
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When 23 /E <Ω  there is no solution. Binomial expansion of the expression in the square 

bracket in Eq. (40) for 23 /E >>Ω , leads to 
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Substituting Eq. (37) into Eqs. (18), (19) and (20), and use of Eq. (24) where appropriate, 

results in Eqs. (38), (39) and (40), respectively. 
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At this moment the unstable growth stops as there is no driving energy; however, if the 

kinetic energy due to fast unstable growth of the buckle is large enough to break the film at 

its edge, the buckle spalls. The subscript SP in the equations above denotes spallation. 
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A sketch of the variation of ( )GREaU  in Eq. (21) is now given in Fig. 3, based on the 

preceding analysis. Note that the sketch of the variation of ( )GREaU  for a delamination with a 

circular edge is based on Eq. (53) and the analysis in Section 3. The bubble energy ( )GREaU , 

given by Eq. (21), increases with growth up to ( )MUEBR , given by Eq. (30) and approximately 

by Eq. (31). This increase comes from the PEC. Because of the increasing nature of the 

bubble energy ( )GREaU  in this region, the growth is expected to be generally slow and steady, 

even in the first range of unstable growth, that is, in the range ( ) ( )MUEBBUGEB RRR ≤≤ . 

Unstable growth starts at ( )UGEBR , given by Eq. (23) and approximately by Eq. (25). In the 

first region of unstable growth, the bubble length grows by a factor of about 333.1/1 =α , 

and the amplitude by a factor of about 778.1/1 2 =α . When the PEC is too weak to provide 

the bubble energy, the bubble will stop growing, even in the first unstable growth range. 

 

Fig. 3. Sketch of the variation of ( )GREaU  with respect to ( )2/ hRB  using Eq. (21) for a 

delamination with straight edges and Eq. (53) for a delamination with a circular edge. 

The bubble energy ( )GREaU  decreases with growth after ( )MUEBR  and reduces to zero at 

( )SPEBR , given by Eq. (36) and approximately by Eq. (37). This decreasing nature has two 

meanings. The first is that the bubble is no longer able to store any further bubble energy 

from the PEC. The second is that the bubble energy ( )MUEaU , cumulated in the range 

( )MUEBB RR ≤≤0 , is being transformed into kinetic energy. This is consistent with the fact 

that the bifurcation-type buckling occurs at around ( )MUEBR , resulting in more ‘violent’ 

growth after ( )MUEBR . In this second region of unstable growth, that is, in the range 

( ) ( )SPEBBMUEB RRR ≤≤ , the bubble length grows by a factor of about 1.732, and the 
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amplitude by a factor of about 3. Obviously, the bubble will stop growth at ( )SPEBR  as the 

bubble energy becomes zero. The minimum kinetic energy can be estimated as ( )MUEaU  in 

Eq. (35) by assuming that the PEC boundary ends at ( )MUEBR  resulting in no further 

contribution to the kinetic energy. When ( )MUEaU  is large enough to break the film, then 

spallation occurs, that is, the interface crack kinks into the film. The kink-off angle β  is 

measured from the interface as shown in Fig. 4. 

 

Fig. 4. The kink-off angle of a straight-edged film spall. 

The kink-off angle can be determined using 

 ( ) ( ) cfcEMUEB GbhbGR
bsin

22 =  (41) 

where cfG  is the fracture toughness of the film material, which is generally different to the 

fracture toughness of the film-substrate interface cEG . Note that the left-hand side of Eq. (41) 

comes from Eq. (35) and the right-hand side is the breaking surface energy of the oxide film 

as shown in Fig. 4. The kink-off angle is then obtained from Eq. (41) as follows, after 

substituting ( )MUEBR  and ( )SPEBR  from Eqs. (31) and (37) respectively: 

 









=

cE
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E G

G
π
ε

β 032
arcsin  (42) 

2.3. Mechanical model based on Timoshenko beam or first-order shear-deformable plate 

partition theory 

Since the development in this section closely follows that in Section 2.2, only several key 

equations are recorded here. Based on Timoshenko beam theory or first-order shear-

deformable plate theory [12–14] the mode I and II ERRs are 
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where the subscript T denotes Timoshenko beam or first-order shear-deformable plate 

partition theory. It is seen from Eqs. (13) and (43) that when 1<<hA  then 25.0≈GGI , 

that is, the delamination is mode-II-dominant. The total critical ERR cTG  is then found by 

using Eqs. (13), (15) and (43) as 

 cETIcTIccT GGGG λ=λ=
ψ+
ψ

=
3
4  (44) 

where 
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This gives 
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The mechanical model can be readily obtained by replacing cEG , E0ϕ  and EΩ  in the 

mechanical model based on the Euler beam or classical plate partition theories with cTG , T0ϕ  

and TΩ  respectively. Since cTG  is usually larger than cEG  (since usually IcIIc GG > ) then T0ϕ  

and TΩ  are usually smaller than E0ϕ  and EΩ  respectively. These differences result in larger 

values for hA , R
xε  and R

xσ ; however, it is interesting to note that when TΩ  is large enough, 

the values of hRB  at the initiation of unstable growth, the maximum of PEC energy and 

final spallation are the same as those from the mechanical model based on Euler beam or 

classical plate partition theory. 

2.4. Mechanical model based on 2D elasticity partition theory 

Similarly, 2D elasticity partition theory [15–20] gives the mode I and II ERRs as 
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where the subscript 2D denotes 2D elasticity partition theory. It is seen from Eqs. (13) and 

(47) that when 1<<hA  then 6227.0≈GGI , that is, the delamination is mixed-mode. The 

total critical ERR DcG 2  is then found by using Eqs. (13), (15) and (47) as 

 cEDIcDIcDc GGG
..

G 222 6227037730
λ=λ=

ψ+
ψ

=  (48) 

where 

 
ψ+

ψ
=λ

62270377302 ..D  (49) 

This gives 
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ϕε
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The mechanical model can be readily obtained by replacing cEG , E0ϕ  and EΩ  in the 

mechanical model based on the Euler beam or classical plate partition theories with DcG 2 , 

D02ϕ  and D2Ω  respectively. Similar to in Section 2.3, DcG 2  is usually larger than cEG  (since 

usually IcIIc GG > ) and therefore D02ϕ  and D2Ω  are usually smaller than E0ϕ  and EΩ  

respectively, resulting in larger values for hA , R
xε  and R

xσ . If D2Ω  is large enough, 

however, the values of hRB  at the initiation of unstable growth, the maximum of PEC 

energy and final spallation are the same as those from the mechanical model based on Euler 

beam or classical plate partition theory. 

3. Analytical mechanical model for delamination with a circular edge 

The mechanical development in this section closely follows that in Section 2 for 

delamination with straight edges. Only the key developments are therefore recorded here. 

Fig. 5 shows circular separation bubble of radius BR . The delamination tips or the edge of the 

bubble are denoted by the label ‘B’. The model is developed in a polar coordinate system. 

Biaxial compressive residual stress is assumed (i.e. 0σ=σ=σ θr ) so the model is effectively 

plane strain with ( )21 ν−= EE . 
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Fig. 5. A delamination bubble with a circular edge. 

3.1. Nucleation of a delamination bubble, bubble energy and total energy release rate 

The bubble shape is approximated to be axisymmetric and in the form, 
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The bubble energy is calculated as 
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Note the similarity between the bubble energy in Eq. (9) for a straight-edged bubble and in 

Eq. (52) for a circular-edged bubble. The equations for total ERR are identical to those in 

Eqs. (10) to (13), except with the x -coordinate swapped for the r -coordinate. The linear 

failure criterion in Eq. (15) is used again. The following development is based on classical 

plate partition theory [12–14]. The mechanical models based on the first-order shear-

deformable plate and the 2D elasticity partition theories can be readily obtained by using the 

same parameter replacements as for the straight-edged case, as described in Sections 2.3 and 

2.4 respectively. 

3.2. Stable growth of the delamination bubble driven by bubble energy 

There are no changes to ( )GREhA , ( )GRE
R
rε  and ( )GRE

R
rσ  in Eqs. (16) to (20) except for 

swapping the subscript x -coordinate for the r -coordinate. The bubble energy at growth in 

Eq. (21) changes to be 
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A sketch of the variation of ( )GREaU  for a delamination with a circular edge is also given in 

Fig. 3. 

3.3. Initiation of unstable growth by buckling 

There are no changes to ( )UGEB hR , ( )UGEhA , ( )UGE
R
rε  and ( )UGE

R
rσ  in Eqs. (23) and (25) 

to (28) except for swapping the subscript x -coordinate for the r -coordinate. Also, now the 

range of α  is 2216520 .. ≤α≤  with the two limits corresponding to simply-supported and 

clamped edge conditions respectively. The average value 9360.=α  is used in the present 

study. The bubble energy at the initiation of unstable growth when 2α>>ΩE  is 
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3.4. Unstable growth and spallation of the buckle driven by buckling and bubble energy 

The maximum bubble energy occurs at 
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When 89 /E <Ω  there is no solution. Binomial expansion of the expression in the square 

bracket in Eq. (55) for 89 /E >>Ω , leads to 
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Substituting Eq. (56) into Eqs. (18), (19) and (20) with the subscript x -coordinate swapped 

for the r -coordinate, and use of Eq. (24) where appropriate, results in Eqs. (57), (58) and 

(59), respectively. 
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Note that ( )MUEBR  in Eq. (56) is equal to ( )UGEBR  in Eq. (25) with 2201.=α  for a circular 

buckle with a clamped edge condition. Substituting Eq. (56) into Eq. (52) gives the maximum 

bubble energy when 8/9>>ΩE  as 

 ( ) ( ) ( )
0

23
22

32
3

4
3

64
9

4
3

ε
π
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Eqs. (36) to (40) for spallation remain the same except for swapping the subscript x -

coordinate for the r -coordinate. The kink-off angle is measured from the interface as shown 

in Fig. 6. 

 

Fig. 6. The kink-off angle of a circular-edged film spall. 

The kink-off angle can be determined using 

 ( ) ( ) cf
BSP

cEMUEB GhRGR
β

ππ
sin

2
4
3 2 =  (61) 

where cfG  is the fracture toughness of the oxide film. Note that the left-hand side of Eq. (61) 

comes from Eq. (60) and the right-hand side is the breaking surface energy of the oxide film 

as shown in Fig. 6. The kink-off angle is then obtained from Eq. (61) as follows, after 

substituting ( )MUEBR  and ( )SPEBR  from Eqs. (56) and (37) respectively: 
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The mechanical models based on first-order shear-deformable plate partition theory and 

2D elasticity partition theory can be readily obtained by replacing cEG , E0ϕ  and EΩ  in the 
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mechanical model based on classical plate partition theory with cTG , T0ϕ  and TΩ , and DcG 2 , 

D02ϕ  and D2Ω  respectively. 

Some salient points are now summarized. When using classical plate partition theory and 

assuming 1<<hA , the whole delamination process (i.e. the nucleation, stable and unstable 

growth, and final spallation) for both straight-edged and circular-edged delaminations is a 

pure mode I fracture. Both also have the same nucleation bubble energy intensity, that is, 

cEG.51 , from Eqs. (21) and (53). Unstable growth for both starts at ( ) ( ) ( )0
22 12εαπ=hRB  

from Eq. (25) with a bubble energy intensity of ( ) 23 2
cEGα−  from Eqs. (29) and (54). (With 

the buckling correction factor 750.=α  for straight-edged delamination and 9360.=α  for 

circular-edged.) The maximum bubble energy occurs at ( ) ( )0
22 12επ=hRB  for straight 

edges with the bubble energy intensity cEG  from Eq. (35); and at ( ) ( )0
22 8επ=hRB  for a 

circular edge with the bubble energy intensity cEG.750  from Eq. (61). Spallation occurs at 

( ) ( )0
22 4επ=hRB  for both straight- and circular-edged delaminations when the bubble 

energy is zero. Note that the bubble energy intensity decreases during delamination growth as 

expected; however, it is interesting to note that at the start of unstable growth and at the 

maximum bubble energy radius, the bubble energy intensities for straight-edged delamination 

are larger than those for a circular-edged delamination. This suggests that circular spallation 

occurs more easily than straight-edged spallation, as usually expected. When first-order 

shear-deformable plate or 2D elasticity partition theory is used, the whole delamination 

process is a mixed-mode fracture. In the next section, the mechanical development in this 

section will be assessed by comparing its predictions with experimental results [9,10]. 

4. Experimental comparison 

In this section, predictions from the mechanical models above are compared against the 

remarkable and thought-provoking experimental results from the excellent studies by 

Tolpygo and Clarke [9,10] on the room temperature spallation of α-alumina films grown by 

oxidation. Wang et al.’s work [11] and the present study were both triggered by the Tolpygo 

and Clarke’s studies [9,10]. Ref. [11] examined the model above in Section 3 for circular-

edged delamination based on 2D elasticity partition theory and found excellent agreement 

between the model’s predictions and experimental results. This work extends this comparison 
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to the mechanical models based on the classical plate and the first-order shear-deformable 

plate partition theories. 

It is believed that an introduction to the studies by Tolpygo and Clarke [9,10] is helpful to 

understand the present work. In these studies, α-Al2O3 films of different thicknesses were 

formed on the surface of Fe-Cr-Al heat-resistant alloy substrates of different thicknesses by 

oxidizing them at 1200°C for different time periods. Then, the film-substrate material 

systems were cooled to room temperature at different cooling rates. Interestingly, no 

spallation failure was observed during cooling at any rate, during which compressive residual 

stress gradually increases due to thermal expansion mismatch. Surprisingly, however, for 

some cooling rates, it was observed that circular interfacial separations between the film and 

the substrate nucleate, grow in separation distance and propagate radially, all after reaching 

room temperature, at a constant compressive residual stress far below the critical buckling 

stress, and apparently spontaneously. After a period of slow and stable growth, some of these 

separations then grow abruptly and the oxide spalls off. 

Various explanations for the phenomenon were proposed and thoroughly and insightfully 

examined by Tolpygo and Clarke [9,10]. One category of these explanations was the flaw or 

imperfection hypothesis, which attempted to explain the nucleation and growth of the 

separations. The hypothesized flaw included pre-existing separations, cavities and other large 

defects, and impurity segregations at the oxide-substrate interface due to the slow cooling 

rates. Optical microscopy studies, however, showed that no discernible interfacial separations 

or spallation existed in any of the specimens when examined immediately after cooling to 

room temperature. Also, when examining the exposed metal surface after spallation, scanning 

electron microscopy studies did not reveal any interfacial cavities or voids except for areas 

near sharp edges at the periphery of the specimens. This flaw hypothesis was therefore 

invalidated. In their second hypothesis, the time-dependent growth behavior of the 

separations was explained by stress corrosion due to moisture. To have a convincing 

invalidation of this hypothesis, some slowly-cooled specimens were placed in a sealed 

container in a purified nitrogen atmosphere with zero humidity. Spallation was still as 

prevalent as during regular exposure in ambient atmosphere. In addition, several other 

hypotheses were also considered, such as condensation of equilibrium thermal vacancies at 

the interface during cooling, diffusion of hydrogen or carbon monoxide from the metal to the 

film causing disruption to the film at room temperature, and metal embrittlement or 

hardening near the interface. Tolpygo and Clarke, however, stated that none of these 

hypotheses was consistent with all the experimental results. Readers are strongly 
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recommended to read their work [9,10] for a thorough understanding of the above 

descriptions. 

Wang et al.’s work [11] and the present study both hypothesize that PECs in the film-

metal material system may be the cause of film separation and spallation at constant in-plane 

compressive stress after cooling to room temperature. Pockets of tensile stress and shear 

stress on and around the interface are formed during cooling and are randomly distributed. 

Pockets of interface stresses result in PECs and these PECs cause interface separation 

nucleation, growth and spallation of the film. 

Fig. 7 shows a sequence of optical images from Ref. [10] illustrating the nucleation, 

growth and spallation of one typical separation from a specimen where the oxide thickness is 

8 μm after 100-h oxidation at 1200°C and the residual compressive stress measured far away 

from spalls is 4.3 GPa due to cooling at 50°C min-1. Figs. 6a–e show the nucleation and 

stable growth stages which took 120 min. The time values were counted from when the 

specimen just reached room temperature from cooling. In Figs. 6a–d the radius of the nearly 

circular separation is far below the critical value for buckling. In Ref. [10], this type of 

separation is called an ‘incipient buckle’. Here it is called a ‘separation bubble’ because its 

radius is far too small to cause buckling, particularly in Figs. 6a–c. The abrupt growth starts 

after Fig. 7e and spallation failure has occurred by Fig. 7f, taking less than 4 min. The 

following aims to test the mechanical models developed in Sections 2 and 3 to explain some 

aspects of the above observations. 
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Fig. 7. A sequence of optical images showing the nucleation and growth of a separation 

bubble with time at room temperature leading to sudden spallation after 124 min. Reprinted 

with permission from Tolpygo, V.K., Clarke, D.R., 2000. Mater. Sci. Eng. A278, 151–161. 

Copyright 2000 Elsevier. 

In the following comparisons, the material properties of the oxide film are taken from the 

Tolpygo and Clarke’s studies [9,10], and are as follows: The Young’s modulus is 

GPa 400=E  and the Poisson’s ratio is 25.0=ν . The mode I critical ERR of the interface is 

mN 6.8=IcG  and the critical mode I ERR of the oxide film is mN 20=cfG . The ratio 

5== IcIIc GGψ  is used, which, based on Ref. [35], is considered by the authors to be a 

representative value. 

First, Eq. (25) is used to predict the initiation of unstable growth, and Eq. (37) is used to 

predict the size of spallation. The solid dots in Fig. 8 represent a series of measurements of 

the size of individual separations as a function of time at room temperature. The time of 

0 min corresponds to the moment when the specimen was placed under the microscope and 

its temperature was close to ambient. 
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Fig. 8. Separation bubble radius versus time at room temperature for three different samples 

[10]. 

Fig. 8a shows data from four different separation bubbles on a single specimen after 

isothermal oxidation for 25 h at 1200°C and cooling at 20°C min-1. The bubbles were 

successively monitored using optical microscopy. All of the bubbles grew at a constant 

compressive stress of GPa 4.046.40 ±=σ , which was measured in the adherent oxide far 

away from the separations. The whole process includes nucleation, stable growth, unstable 

growth, and final spallation. The nucleation of separation bubbles was not recorded due to the 

difficulty of making timely observations of nucleating bubbles using this monitoring 

technique. Stable growth, however, with a radius far smaller than the critical buckling value, 

was readily observed. At a certain critical radius, which is again far smaller than the critical 

buckling radius, unstable growth abruptly occurs and final spallation takes place. It is 

pertinent that all four separations start unstable growth at approximately the same radius, and 
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then all eventually spall off also at approximately the same radius. Two specimens with 

thicker oxide layers were produced with 50 h and 100 h of oxidation and are shown in Figs. 

7b and c respectively. The growth behaviors of two separation bubbles are shown in Fig. 8b. 

Again, the two separations start unstable growth at approximately the same radius, and then 

both eventually spall off also at approximately the same radius. Fig. 8c shows the growth 

behavior of one separation bubble. The horizontal lines in Figs. 7a–c represent the predictions 

from Eq. (25) for the initiation of unstable growth and Eq. (37) for final spallation. It is very 

impressive to see that the predictions from Eqs. (25) and (37) have excellent agreement with 

the test results. It is worth noting that Eqs. (25) and (37) are common to all three mechanical 

models (based on the classical plate, first-order shear-deformable plate and 2D elasticity 

partition theories) as long as the value of the parameter Ω  meets the requirements of Eqs. 

(25) and (37). 

To examine the accuracy of the approximate Eqs. (25) and (37), Table 1 compares their 

predictions with those from Eqs. (23) and Eq. (36) respectively. SP, 2D and CP represent the 

mechanical models based on first-order shear-deformable plate partition theory, the 2D 

elasticity partition theory and the classical plate partition theory respectively. It is seen that 

they agree with each other very well. The ratio 5== IcIIc GGψ  is used to calculate SP and 

2D predictions. 

Table 1. Comparison of the present mechanical model with test data [10] for the initiation of 

unstable growth, the size of spallation and kinking off. 

 

( ) ( )μm UGBR   ( ) ( )μm SPBR   ( ) ( )μm tan βh  

Eq. (23) Eq. 

(25) 

Test 

data 

 Eq. (36) Eq. 

(37) 

Test 

data 

 Eq. (62) Test 

data SP 2D CP  TB 2D CP  SP 2D CP 

Fig. 8a 41.6 41.2 41.0 40.7 40.0  78.3 76.9 76.4 75.3 75.0  15.0 7.5 3.8 9.1 

Fig. 8b 52.4 52.0 51.9 51.5 47.5  98.3 97.0 96.5 95.4 97.5  18.2 9.1 4.5 - 

Fig. 8c 68.5 68.1 67.9 67.6 67.5  128.2 126.8 126.2 125.0 122.5  23.9 12.0 6.1 13.5 

 

To examine the accuracy of Eqs. (25) and (37) further, an extended study on Figs. 7a–c is 

also carried out by varying the mode I critical ERR of the interface IcG  while keeping all 

other parameters unchanged. Figs. 8a–c shows the variation of ( )UGBR  with respect to IcG  for 

the specimens in Figs. 7a–c respectively, using the three mechanical models. The values of 

( )UGBR  in all the three models converge to the value given by Eq. (25) as IcG  decreases. At 
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the value mN 6.8=IcG , the predictions of Eq. (23) and Eq. (25) are very close to each other, 

as also shown in Table 1. 

 

Fig. 9. Variation of the unstable growth bubble radius ( )UGBR  with respect to the interface 

mode I fracture toughness IcG  according to (i) Euler beam or classical plate partition theory, 

(ii) Timoshenko beam or the first-order shear-deformable plate theory, and (iii) 2D elasticity 

partition theory. 

Fig. 10 shows a similar study on the variation of ( )SPBR  with respect to IcG . Again, the 

values of ( )SPBR  in all the three models converge to the value in Eq. (37) as IcG  decreases. At 

the value mN 6.8=IcG , the predictions of Eq. (36) and Eq. (37) are very close to each other, 

as also shown in Table 1. Again, the ratio 5== IcIIc GGψ  is used to calculate the SP and 2D 

predictions in Figs. 8 and 9. 
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Fig. 10. Variation of the spall radius ( )SPBR  with respect to the interface mode I fracture 

toughness IcG  according to (i) Euler beam or classical plate partition theory, (ii) Timoshenko 

beam or the first-order shear-deformable plate theory, and (iii) 2D elasticity partition theory. 

It is desirable to give some explanation for why the three mechanical models give nearly 

the same predictions for the unstable growth bubble radius and the spall radius. The three 

mechanical models are all developed based on the assumption of small amplitude-to-

thickness ratio, that is, 1<<hA . One consequence of this assumption is that the crack tip 

radial force rBeN  in Eq. (12) makes no contribution to the total ERR in Eq. (10) and (13). The 

total ERR is instead solely due to the crack tip bending moment rBM  in Eq. (11). This results 

in a constant fracture mode mixity throughout the whole delamination process. The first-

order shear-deformable plate model predicts a mixed-mode fracture with 25.0=GGI ; the 

2D elasticity model also predicts a mixed-mode fracture with 6227.0=GGI ; the classical 

plate model predicts a pure mode I fracture with 0.1=GGI . The mode mixity does not have 
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much effect on the predictions of the unstable growth bubble radius and the spall radius when 

IcG  is small, that is, all three models give nearly the same predictions, as shown in Figs. 8 

and 9 and Table 1. 

The mode mixity does, however, affect the amplitude in Eq. (18) of a delamination 

bubble, the relaxation strain in Eq. (19) and relaxation stress in Eq. (20). These three models 

therefore give different predictions of these quantities. Due to lack of accurate measurements 

of these quantities, no comparisons could be made in the present work. Comparison can, 

however, be made between measurements of the kink-off angle and predictions from Eq. 

(62). Values of ( )βtanh  are also recorded in Table 1. The critical mode I ERR of the oxide 

film is mN 20=cfG . For Fig. 8a, ( ) μm 10.9tan =βh  was measured approximately from 

Fig. 3 in Ref. [10], which is a similar case. No test value for Fig. 8b was found in Tolpygo 

and Clarke’s studies [9,10]. For Fig. 8c, ( ) μm 46.13tan =βh  was measured approximately 

from Fig. 7f in this work (reprinted from Tolpygo and Clarke’s work [10]), which is a similar 

case. The averages of the measurements of the four diameters at 0°, 90° and ±45° were used 

to obtain the test values. It is seen that the 2D elasticity model gives good predictions but the 

other two models do not. 

It can be concluded at this point that the 2D elasticity model predicts the whole 

delamination process very well, including the initiation of unstable growth, size of spallation 

and kink-off angle. The other two models, however, only give good predictions of the 

initiation of unstable growth and the size of spallation. 

As mentioned earlier, Refs. [23–25] show, using data from extensive fracture testing [26–

31], that the partition theory based on Euler beam or classical plate theory [12–14] gives very 

accurate predictions of interface fracture toughness for macroscopic mixed-mode fracture 

while the partition theories based on Timoshenko beam theory or the first-order shear-

deformable plate theory [12–14] and 2D elasticity [15–20] give poor predictions. The very 

latest studies [11,32], however, show that the 2D elasticity partition theory gives accurate 

predictions for the delamination behavior of micro-scale and nano-scale thin films. This may 

be expected since the partition theory based on Euler beam or classical plate theory is a 

‘global’ partition theory (that is, cracks develop over finite-size length scales) which governs 

macroscopic fracture whereas the 2D elasticity partition theory is a ‘local’ partition theory 

(that is, infinitesimal crack growth is assumed) which governs micro- or nano-scale fracture. 
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At this point, it is worth noting the following again: All three mechanical models are 

developed based on the assumption of a small amplitude-to-thickness ratio (i.e. 1<<hA ). 

For Figs. 7a–c, by using Eq. (26) for the three mechanical models, the ratios at the initiation 

of unstable growth radii are ( ) 3470.0=UGThA , 0.3093 and 0.2810; ( ) 1988.02 =DUGhA , 

0.1772 and 0.1610; and ( ) 1388.0=UGEhA , 0.1237 and 0.1124. They are very small for the 

classical plate model, but are not particularly small for the first-order shear-deformable plate 

and 2D elasticity models. Then, the ratios at the respective spall radii are ( ) 188.1=SPThA , 

1.059 and 0.9623; ( ) 6808.02 =DSPhA , 0.6066 and 0.5513; and ( ) 4753.0=SPEhA , 0.4235 

and 0.3849. Clearly, these are not particularly small for any of the three models. Since the 

models predict the spallation behavior very well, they must capture some of key physics of 

the mechanical process. As mentioned earlier, the direct consequence of the assumption that 

1<<hA  is that the crack tip radial effective force rBeN  in Eq. (12) makes no contribution to 

the total ERR in Eqs. (10) and (13). Measurements of residual stress in some stationary 

buckles (see Figs. 8 and 9 in Tolpygo’s and Clarke’s work [10]) do indeed show that 

0=rBeN  at the crack tip for large values of hA . The total ERR is solely from the crack tip 

bending moment rBM  in Eq. (11). The assumption 1<<hA  is therefore no longer required. 

The only restriction is that the maximum value of hA is around 1, which is the usual 

condition of the von Kármán geometric nonlinearity assumption used in Eq. (5). The above 

values of hA  are obviously within the limitation. 

Finally, more comparisons are performed using samples with oxide films of various 

thicknesses and residual stresses. The samples had oxide thicknesses in the range 8.0=h –

8.0 μm (after oxidation for 0.5–100 h) and the measured residual compressive stresses were 

in the range 4–5 GPa. The results are shown in Fig. 11. The solid dots represent 

measurements on the oxides. The solid line is from Eq. (37). Again, the present mechanical 

models predict the experimental results very well. Due to absence of experimental results, no 

comparison is carried out on for spallation with straight edges. 
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Fig. 11. The spallation parameter ( ) 0σSPBR  as a function of the oxide thickness with test 

data from Tolpygo and Clarke’s work [10]. 

5. Conclusions 

PECs can be formed by pockets of tensile stress and shear stress on and around the 

interface between a thin film and a thick substrate, which can be caused by a number of 

different processes, including thermal effects and chemical effects. PECs can cause the 

interface spallation failure of thin films. Three mechanical models have been developed to 

predict several aspects of the spallation failure of elastic brittle thin films by using partition 

theories for mixed-mode fracture based on classical plate theory, first-order shear-deformable 

plate theory and full 2D elasticity. Based on experimental results from Tolpygo and Clarke 

[9,10] for circular-edged delaminations, the three models all give accurate predictions of the 

initiation of unstable growth of separation bubbles and the size of spallation. The 2D 

elasticity model also gives accurate predictions of the final kink-off angle but the classical 

plate and first-order shear-deformable plate models are unable to. The nucleation and stable 

growth of a separation bubble are solely driven by the bubble energy but unstable growth is 

driven by both bubble energy and buckling. Final kinking off is controlled by the toughness 

of the interface and the film and the maximum bubble energy. Note that further experiments 

would be required in order test the mechanical models for delamination with straight edges. 

The present mechanical models reveal a new failure mechanism of thin films under 

compressive residual stress and will be particularly useful to study the spallation failure of 

thermal barrier coating material systems. 
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