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Leucine elicits myotube hypertrophy and enhances maximal
contractile force in tissue engineered skeletal muscle in vitro
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The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its

ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist

regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue

engineering approach in order to test whether supplementing culture medium with leucine

could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of

themTORC1 target proteins 4EBP-1 and rpS6 andmyotube hypertrophy appeared to occur in a

dose dependent manner, with 5 and 20mM of leucine inducing similar effects, which were

greater than those seen with 1mM. Maximal contractile force was also elevated with leucine

supplementation; however, although this did not appear to be enhancedwith increasing leucine

doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin,

showing that the augmented force production in the presence of leucine was mTOR sensitive.

Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered

skeletal muscle constructs, we were able to show that the effects of leucine and muscle

contraction are additive, since the two stimuli had cumulative effects on maximal contractile

force production. These results extend our current knowledge of the efficacy of leucine as an

anabolic nutritional aid showing for the first time that leucine supplementation may augment

skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal

muscle for highly-controlled investigations into nutritional regulation of muscle physiology.
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1 | INTRODUCTION

Skeletal muscle growth is regulated primarily by the mammalian target

of rapamycin complex 1 (mTORC1) signaling pathway, which enhances

the capacity for mRNA translation and reduces flux through catabolic

pathways such as the autophagy-lysosome and the ubiquitin

proteasome system (Nicklin et al., 2009). mTORC1 signaling has

consistently shown to be activated in response to both muscle loading

(e.g., resistance exercise), and amino acid consumption/treatment

(Marcotte, West, & Baar, 2015), and as such these stimuli represent

excellent candidates as therapies for attenuating the muscle wasting

associated with a number of disease states and ageing. Indeed, acute

human studies have observed activation of mTORC1 and its

downstream targets (e.g., p70S6K, rpS6, and 4EBP-1) following

ingestion of mixed amino acids, and this is coupled with an increase

in muscle protein synthesis (MPS) in the ensuing 60–120min

(Atherton, Etheridge et al., 2010; Koopman et al., 2006; Paddon-

Jones et al., 2004; Volpi, Kobayashi, Sheffield-Moore, Mittendorfer, &

Wolfe, 2003). Furthermore, when human skeletal muscle undergoes

loading prior to amino acid ingestion this effect on mTORC1 signaling

and MPS is potentiated (Moore, Atherton, Rennie, Tarnopolsky, &

Phillips, 2011; Witard et al., 2014). The necessity for mTOR activation
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inmediating theMPS response to both amino acids andmuscle loading

is evidenced by the fact that in rodents, both stimuli fail to augment the

synthetic response when in the presence of the mTOR inhibitor

rapamycin (Anthony et al., 2000; Kubica, Bolster, Farrell, Kimball, &

Jefferson, 2005).

The anabolic properties of amino acid ingestion have been

largely attributed to the essential amino acids, and in particular the

branched chain amino acid leucine. A number of lines of research

support this notion; first, whey protein, which has a high leucine

content results in superior MPS rates in humans compared to soy or

casein, which have lower leucine contents (Tang, Moore, Kujbida,

Tarnopolsky, & Phillips, 2009). Second, ingestion of small quantities

of leucine rich essential amino acids activate the downstream

mTORC1 target p70S6k and MPS in a comparable manner to

20–25 g of whey protein, and to a greater extent than a bolus of

leucine-deficient essential amino acids (Bukhari et al., 2015;

Churchward-Venne et al., 2012), and removal of leucine from an

essential amino acid supplement following muscle loading attenu-

ates mTORC1 signaling (Moberg et al., 2014). Finally, in C2C12

myotubes in vitro, leucine exhibits the most potent stimulation of

mTORC1 signaling compared to all other amino acids (Atherton,

Smith, Etheridge, Rankin, & Rennie, 2010), and its deprivation

impairs protein synthesis and phosphorylation of p70S6k (Talvas,

Obled, Fafournoux, & Mordier, 2006).

In vitro cultures of skeletal muscle provide a controlled and

isolated environment in which to understand cellular and molecular

adaptation, and have improved our understanding of the impor-

tance of amino acids, and in particular leucine, for skeletal muscle

growth (Areta, Hawley, Ye, Chan, & Coffey, 2014; Atherton, Smith

et al., 2010; Talvas et al., 2006). However, a limitation of

conventional in vitro methods is the inability of the rigid

2-dimensional substrate to support muscle contraction, and as

such only acute experiments are typically possible. Tissue

engineered skeletal muscle however allows for skeletal muscle

progenitor cells to be cultured on/inside biologically relevant

substrates in 3-dimensions, and are less stiff, in turn supporting

improvements in levels of skeletal muscle maturation (Engler et al.,

2004), and generation of contractile force. Indeed, the ability to

stimulate and measure contractile force within tissue engineered

skeletal muscle is well reported (Cheng, Davis, Madden, Bursac, &

Truskey, 2014), and while we and others (Martin et al., 2015;

Ostrovidov et al., 2017) have made efforts toward increasing the

biological accuracy of such tissues, the removal of interfacing cell

types (e.g., motor neurons) allows for muscle specific effects of a

given intervention to be explored. As such, engineered skeletal

muscle provides an ideal screening platform in which to better

understand the impact of leucine supplementation on muscle size

and function in an in vitro setting that closely replicates native

skeletal muscle architecture and function.

In the present study, we therefore aimed to determine if

leucine supplementation would enhance contractile force and

myotube size in engineered skeletal muscle, and whether this

phenomenon may be dose-dependent. Furthermore, we sought to

determine the role of the mTOR signaling pathway in regulating

muscle function, and finally aimed to investigate the interaction

between chronic (24 hr) electrical stimulation and leucine supple-

mentation in regulating muscle force. We hypothesized that the

addition of leucine would augment muscle size and force

production in an mTOR dependent manner and that leucine and

electrical stimulation would act together to enhance maximal force

in engineered skeletal muscle.

2 | METHODOLOGY

2.1 | Cell culture

C2C12 myoblasts were purchased from ECACC, and cultured in

growth medium (GM) which consisted of high glucose DMEM

(Sigma–Aldrich, Dorset, UK), 20% FBS (FBS Good: PAN Biotech,

Aidenbach, Germany) and 1% Penicillin-Streptomycin solution

(GIBCO/Fisher Scientific, Leicestershire, UK). GM was replenished

every other day until cells were approximately 80% confluent, at

which point they were trypsinized and counted using the trypan blue

exclusion method prior to plating on fibrin hydrogels. All experi-

ments were conducted using cells which had undergone fewer than

10 passages.

2.2 | Tissue engineered skeletal muscle constructs

Fibrin hydrogels were fabricated as previously described (Martin et al.,

2015). In brief, two 6mm silk sutures were pinned into Sylgard coated

35-mm plates (VWR, Leicestershire, UK) 12mm apart using 0.15mm

minutien pins (Entomoravia, Slavkov u Brna, Czech Republic). Plates

were sterilized by ultraviolet light and washing with 70% ethanol and

left to dry for approximately 3 hr. Each plate then received 500 μl of

GM containing 10U/ml thrombin (Sigma–Aldrich) and 80mg/ml

aprotinin (Sigma–Aldrich) which was spread evenly over the surface

of the plate ensuring the sutures were fully covered. 200 μl of

20mg/ml stock fibrinogen (Sigma–Aldrich) solution was then added to

the plate, and was agitated gently to ensure even distribution and then

left to incubate for 10min at room temperature before being

transferred to the incubator (37°C) for 1 hr. Following polymerization

of the hydrogels, 1 × 105 C2C12 myoblasts were seeded on to the

surface of the gel in 2 ml of GM which contained 0.25mg/ml

6-aminocaproic acid (Sigma–Aldrich) to help prevent degradation of

the fibrin gel. GM was replenished daily for 3 days, at which point the

cells were confluent and the media was switched to differentiation

media (DM) consisting of high glucose DMEM containing 2% Horse

serum (Sigma–Aldrich), 1% Penicillin-streptomycin and 0.5 mg/ml

6-aminocaproic acid. Following 48 hr in DM, media was switched to

maintenance media (MM) in accordance with previous reports

(Khodabukus & Baar, 2009) consisting of high glucose DMEM, 7%

FBS, 1% penicillin- streptomycin, and 0.5mg/ml 6-aminocaproic acid.

MM was changed daily for the duration of the experiment (14 days)

and was supplemented with 1, 5, or 20mM of L-leucine

(Sigma–Aldrich) and/or rapamycin (100 nM; Millipore, Hertfordshire,

UK) from day 9 onward for functional, morphological, and mRNA
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analyses. It is of note that DMEM contains ∼800 μM of L-leucine and

therefore the doses shown throughout represent the supplemented

and not total leucine concentration. For acute mTORC1 signaling

analysis, cultures were maintained in MM until day 14, at which point

leucine was supplemented as described below.

2.3 | Immunoblotting

Following 14 days in culture, MM was removed from the

engineered muscle, which was washed twice in PBS prior to

incubation in Hanks balanced salt solution (HBSS, Sigma–Aldrich)

for 60 min. HBSS was then removed before incubation with HBSS

(Control) or leucine dissolved in HBSS for 30 min, after which

treatment solutions were removed and engineered muscle was

blotted dry, frozen in liquid nitrogen and stored at −80°C until

further analysis. Samples were subsequently homogenized in

200 μl of RIPA lysis buffer (Fisher Scientific) containing a protease

and phosphatase inhibitor cocktail (Fisher Scientific) and rotated

for 1 hr at 4°C before being centrifuged at 12,000 × g in order to

remove insoluble material. The supernatant was transferred to a

fresh tube and protein concentrations were determined using the

Pierce 660 protein assay (Fisher Scientific). Protein was mixed with

4X laemmli buffer (Sigma–Aldrich) and boiled at 95°C for 5 min.

Equal volumes of protein (7.5 μg) were loaded in to precast 4–12%

gradient SDS- polyacrylamide gels (TruPAGE, Sigma–Aldrich) and

separated by electrophoresis at 150V. All samples within a single

experiment were loaded on to a single gel and duplicate gels were

run in order to detect phosphorylated and total proteins. Proteins

were transferred on to nitrocellulose membranes (GE healthcare,

Fisher Scientific) at 0.2A for 90 min, and blocked in 5% BSA at

4°C for 90 min. Thereafter, membranes were washed three times in

tris-buffered saline + 0.1% tween (TBST) and incubated in primary

antibody overnight at 4°C as follows: phospho-4EBP-1 (1:1500),

total-4EBP-1 (1:2000), phospho-rpS6 (1:2000), total-rpS6

(1:2000). All antibodies were purchased from Cell Signaling

Technology, Massachusetts. Following three further washes in

TBST, membranes were incubated for 1 hr at room temperature in

HRP-conjugated anti-rabbit IgG secondary antibody (Sigma–

Aldrich) diluted 1:1500 in TBST containing 5% skimmed milk

powder before detection with chemilluminescence. Imaging and

band quantification were conducted on a ChemiDoc imaging

system (Bio-rad, Hertfordshire, UK) using Quantity One image

software (Version 4.6.8, Bio–rad). Phosphorylation levels are

expressed relative to total protein and α-tubulin (1:2000, Cell

Signaling Technology) abundance, and are presented as a fold

change compared to a single control sample in each experiment.

2.4 | RNA extraction and RT-qPCR

Following 5 days of incubationwith Control, 1 mM, 5mM, or 20mMof

Leucine, engineered muscle constructs were washed once in PBS,

blotted dry, snap frozen in liquid nitrogen and stored at −80°C for

further analysis. Engineeredmuscles were subsequently homogenized

in 500 μl of TRI Reagent (Sigma–Aldrich) and RNA was isolated

according to the manufacturer’s instructions, and re-suspended in

50 μl of RNA storage solution (Fisher Scientific). RNA concentration

and quality was assessed by UV spectroscopy at optical densities of

260 and 280 nm using a Nanodrop 2000 spectrophotometer (Thermo

Fisher, Leicestershire, UK).

RT-qPCR reactions were conducted in triplicate in 384 well plates

and consisted of 20 ng of RNA diluted in 5 μl of nuclease free water,

0.1 μl of both forward and reverse primers at a final concentration of

2 μM (see Tables 1 and S1 for primer sequences), 0.1 μl of Quantifast

reverse transcriptase kit (Qiagen, West Sussex, UK) and 4.7 μl of Sybr

Green mix (Qiagen). One-step RT-qPCR was performed on a Viia7™

thermal cycler (Applied Biosystems/Thermo Fisher), which was

programed to perform the following: 10min at 50°C (reverse

transcription), 5 min at 95°C (“Hot Start” Taq polymerase), followed

by 40 cycles of 95°C for 10 s and 60°C for 30 s. Fluorescence was

detected at the end of each cycle and data were analyzed using the

2(−ΔΔCT
) method (Livak & Schmittgen, 2001) using POLR2B as a

reference gene and a single control construct from each experiment as

a calibrator.

2.5 | Immunostaining

Following 5 days of treatment, each engineered muscle was washed

with PBS and fixed using ice cold methanol; acetone solution.

Subsequently, engineered muscle constructs were cut away from

the sutures and placed on poly-lysine coated microscope slides

(VWR, Leicestershire, UK) and ringed with PAP pen (DAKO,

Cambridgeshire, UK). Constructs were blocked with 1× Tris buffered

saline (TBS; 0.5 M) containing 5% goat serum (Sigma–Aldrich) and

0.2% Triton-x-100 (Fisher Scientific) for 90 min. Following three

washes with TBS, constructs were incubated overnight in a

humidified staining chamber with rabbit polyclonal anti-desmin

primary antibody (Abcam, Cambridgeshire, UK) diluted 1:200 in TBS.

After overnight incubation, constructs were washed three times in

TBS and incubated for 3 hr with goat anti-rabbit TRITC secondary

antibody (Abcam) diluted 1:200 in TBS, and DAPI (Sigma–Aldrich) in

order to visualize nuclei. Following three further washes in distilled

water, constructs were mounted on glass coverslips using a drop of

Fluoromount™ (Sigma–Aldrich) mounting medium. Engineered

muscle constructs were imaged using a Zeiss LSM-710 confocal

microscope (Zeiss, Cambridgeshire, UK) and were analyzed using

Image J software (NIH).

2.6 | Acute functional testing

Functional testing of engineered muscle was conducted as previously

described (Martin et al., 2015). Briefly, at the end of the culture period

(14 days total/5 days of treatment) engineered muscle constructs

were washed twice in PBS and one anchor from the fibrin construct to

be analyzed was removed from the sylgard and attached to a model

403A force transducer (Aurora Scientific, Dublin, Ireland) using

canning wax, and a micro-manipulator was used in order to precisely

control the position of the engineered muscle. Krebs Ringer Hepes

(KRH; 10mM HEPES, 138mM NaCl, 4.7mM KCl, 1.25mM CaCl2,
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1.25mM MgSO, 5mM Glucose, 0.05% Bovine Serum Albumin in

dH2O) buffer solution was added to the dish containing the construct

and two stainless steel electrodeswere placed in position either side of

the construct and submerged in the KRH buffer prior to functional

testing. Impulses were generated using LABview software (National

Instruments, Berkshire, UK) connected to a custom built amplifier and

maximal tetanic contractions were elicited by stimulating at 100Hz at

3.5 V/mm. Data were acquired using a Powerlab 4/25T unit with

associated software (AD instruments, Oxfordshire, UK) with a

sampling rate of 1 KHz.

2.7 | Electrical stimulation

After 13 days in culture, MM was removed from engineered muscle

constructs and constructs were transferred to a custom built 3-D

printed plate and 4ml of respective MM were replenished. A

modified 6-well plate lid with pairs of stainless steel electrodes 1 cm

apart was then placed on to the constructs, with care taken to

ensure that each set of electrodes were positioned either side of the

muscle constructs in order to deliver electric field stimulation.

Electrical stimulation was delivered to the constructs using LABview

software (National Instruments) connected to a custom built

amplifier and in turn attached to the stainless steel electrodes.

Based on a previously published protocol (Khodabukus & Baar,

2012) with some slight modifications, stimulation consisted of 5

bipolar 1 ms pulses delivered at 1 V/mm and 10 Hz with 3.5 s rest

periods. After 24 hr, stimulation was terminated and constructs were

tested as described above in section 2.6.

2.8 | Statistical analysis

All data are presented as mean ± SEM. Normality of distribution and

homogeneity of variance in all data sets were determined using a

Shapiro–Wilk test and Levene’s tests, respectively. Data were

subsequently analyzed using either One–Way ANOVA with Tukey

HSD post–hoc tests or Kruskall Wallis tests where data were not

normally distributed. All analysis was conducted using SPSS version 22.

3 | RESULTS

3.1 | Leucine induces dose-dependent
phosphorylation of downstream mTORC1 targets,
but does not affect proteolytic mRNA expression in
engineered skeletal muscle

Since, acute supplementation with leucine has been shown to activate

mTORC1, initial experiments aimed to see if this effect was also

apparent in engineered muscle, and if it was dose dependent.

Phosphorylation of 4EBP-1Thr37/46, a regulator of cap-dependent

translation appeared to increase in response to leucine, although this

effect did not reach statistical significance (p = 0.07, Figure 1a).

Ribosomal protein S6 (rpS6Ser235/236) phosphorylation, was also

elevated in response to leucine in a dose dependent manner

(0.88 ± 0.12, 1.25 ± 0.11, 1.76 ± 0.33, 1.84 ± 0.24 in control, 1 mM,

5mM, and 20mM groups, respectively; p < 0.05), whereby only

supplementation with 20mM of leucine was sufficient to induce a

statistically significant increase in phosphorylation above control

(Figure 1b).

To determine if leucine had any impact on proteolytic pathways,

mRNA expression of markers of the autophagy-lysosome (Map1lc3a

and Gabarap) and ubiquitin-proteasome (Trim63 and Fbxo32) systems

were measured (Table 2). Five days of leucine supplementation at

increasing doses had no impact on Trim63 (p = 0.88) or Fbxo32

(p = 0.47) mRNA expression, or the levels of Gabarap (p = 0.88) or

Map1lc3a (p = 0.07), although, the latter approached significance

through the observed increase in expression seen with 20mM leucine

supplementation.

3.2 | Leucine supplementation augments myotube
size and contractile force in tissue engineered
skeletal muscle

Leucine had a hypertrophic effect on engineered muscle, as evidenced

by the increase inmyotubewidth in supplementedconstructscompared

with controls. All doses of leucine appeared to result inmyotube growth

TABLE 1 Primer sequences used to investigate proteolytic mRNA expression in the present study

mRNA of interest Primer sequence 5′-3′ Reference number Product length

Trim63 F: CCAAGGAGAATAGCCACCAG NM_001039048.2 84

R: CGCTCTTCTTCTCGTCCAG

Fbxo32 F: CTGAAAGTTCTTGAAGACCAG NM_026346.3 79

R: GTGTGCATAAGGATGTGTAG

Map1lc3a F: AGTTGGTCAAGATCATCCG NM_025735.3 130

R: TCATCCTTCTCCTGTTCATAG

Gabarap F: AATCCGAAAGAAATACCCAG NM_019749.4 175

R: GAAAAACAAGGCATCTTCAG

Polr2b F: GGTCAGAAGGGAACTTGTGGTAT NM_153798.2 197

R: GCATCATTAAATGGAGTAGCGTC

Trim63, Muscle Ring Finger-1; Fbxo32, Muscle Atrophy F-box; Gabarap, Gamma-aminobutyric acid receptor-associated protein; Map1lc3a,
Microtubule-associated protein 1A/1B-light chain 3. Polr2b, RNA polymerase II polypeptide B.
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(Figure 2), with myotube width in constructs supplemented for 5 days

with 1mM leucine measured at 16.3 ± 1.2μm, 5mM at 17.3 ± 2.3μm,

and 20mM at 17.4 ± 1.8μm, compared to control constructs where

myotubewidthwasmeasured at 13.9 ± 1.4μmafter 14days in culture. In

this instance, while the mean increase in myotube width was apparent

compared to controls even with 1mM leucine supplementation, this was

not significant (p = 0.15), and therefore more than 1mM leucine was

required to inducedsignificanthypertrophy inengineeredskeletalmuscle.

C2C12 engineered muscles predominantly expressed type I myosin

heavy chain isoforms and exhibited positive force frequency when

stimulated (Figure S1), thus confirming engineered muscle as a suitable

model of adult skeletal muscle; and thus the effects of leucine on in vitro

muscle functionweredetermined.Theadditionof leucinetothecell culture

media significantly enhanced relative force production (p<0.05), with all

three concentrations associated with elevated tetanic force production

compared to the control constructs (Figure 3). Interestingly, although the

addition of leucine augmented force production, this did not appear to be

dose-dependent,with1, 5, and20mMleucine concentrations augmenting

mean maximal force by 63.5%, 44.5%, and 86.3%, respectively in

comparison to control constructs, with the difference between 5mM

and 20mM reaching statistical significance (p<0.05).

3.3 | Enhanced contractile force with leucine
supplementation is mTOR dependent

To test whether the increase in force associated with leucine

supplementation was mTOR dependent, leucine was next

co-incubated with the mTOR inhibitor rapamycin (see

supplementary Figure S2). We tested engineered skeletal muscle

under five conditions, namely; day 9 control (the time at which

leucine was added), day 14 control, rapamycin alone, leucine

alone, and leucine + rapamycin. Engineered muscle supplemented

with leucine again produced greater contractile force relative to

14 day old control constructs (204.8 ± 9.4 μN vs. 114.8 ± 13.5 μN,

p < 0.05). When leucine was supplemented in combination with

100 nM rapamycin however, the increase in force was completely

blunted. Indeed, the addition of rapamycin either alone

(16.7 ± 1.4 μN) or in combination with leucine (21.6 ± 1.1 μN)

resulted in maximal contractile force lower than that of 14 day

old controls but similar to that of day 9 controls (27.5 ± 1.9 μN,

Figure 4a).

To determine if the blunting of contractile force was driven by

attenuated myotube hypertrophy, engineered muscles were stained

for desmin and myotube widths determined. As expected, co-

incubation of leucine with rapamycin completely blocked hypertro-

phy, with average myotube widths in leucine supplemented

constructs measuring 16.5 ± 3.0 μm compared to 10.5 ± 1.0 μm in

the leucine + rapamycin engineered muscles (p < 0.05), while no

difference existed in myotube width between either day 9 and 14

controls or rapamycin alone or in combination with leucine

(Figure 4b). In addition, there was no difference in the number of

myotubes between conditions (supplementary Figure S2). This

suggests that rapamycin completely attenuates leucine associated

myotube hypertrophy, and furthermore shows that the increase in

contractile force from day 9 to 14 in control constructs is not related

to increased myotube width.

FIGURE 1 Induction of mTORC1 signaling following incubation of tissue engineered skeletal muscle with increasing doses of leucine. (a)
4EBP-1Thr37/47 phosphorylation is increased as the leucine concentration in elevated, although this effect did not reach statistical significance.
(b) rpS6Ser235/236 phosphorylation increased in a dose dependent manner and was only significantly elevated above control with the addition
of 20mM of leucine. Data are mean ± SEM for a minimum of n = 4 engineered muscles. * indicates statistically greater than control (p < 0.05)

TABLE 2 Proteolytic mRNA expression following 5 days of incubation of tissue engineered skeletal muscle with increasing doses of leucine

Control 1 mM Leu 5mM Leu 20mM Leu p-value

Trim63 0.94 ± 0.11 0.87 ± 0.13 0.90 ± 0.12 0.93 ± 0.14 0.81

Fbxo32 1.10 ± 0.07 1.19 ± 0.06 1.07 ± 0.03 1.10 ± 0.05 0.47

Map1lc3a 1.22 ± 0.18 1.11 ± 0.02 1.09 ± 0.07 1.60 ± 0.28 0.07

Gabarap 1.07 ± 0.06 1.08 ± 0.03 1.05 ± 0.01 1.09 ± 0.04 0.88

Data are expressed as mean ± SEM for n = 4 engineered muscles.
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3.4 | Leucine in combination with contractile activity
cumulatively improve muscle function

Since, both muscle loading and amino acids have the capability to

enhancemuscle size in vivo, it was next askedwhether a combination of

leucine supplementation andmuscle contraction canadditively increase

muscle function in vitro. Maximal contractile force was significantly

enhanced by leucine supplementation (383.8 ± 27.6 μN), electrical

stimulation (392.6 ± 38.5 μN) and a combination of leucine and

electrical stimulation (502.4 ± 69.3 μN) compared to control engineered

skeletal muscle (240.8 ± 8.7 μN, p < 0.05). Moreover, while the effects

of leucine (59.4% increase) and electrical stimulation (63.0% increase)

augmented force to a similar extent), the effects of the two stimuli in

combination resulted in maximal contractile force higher than either

stimulus in isolation (108.6% increase, Figure 5a), although this did not

reach statistical significance (leucine vs. leucine + Stimulation, p = 0.06).

Interestingly, subsequent immunocytochemical analysis revealed

that myotubewidthwas increased in response to electrical stimulation

(13.3 ± 0.7 μm), leucine (14.7 ± 0.6 μm) and stimulation plus leucine in

combination (15.4 ± 0.9 μm) compared to control (10.6 ± 0.2 μm,

p < 0.05). Myotube width was significantly greater in leucine

supplemented engineered constructs and leucine plus electrical

stimulation constructs compared to electrical stimulation alone

(p < 0.05), however no difference was apparent between leucine

alone and in combination with electrical stimulation (p = 0.484,

Figure 5b).

4 | DISCUSSION

Ingestion of amino acids and particularly the branched chain amino

acid leucine has been shown to be capable of activating acute anabolic

intracellular signaling and MPS (Apro et al., 2015; Churchward-Venne

et al., 2012; Moberg et al., 2014), however there are little data which

have examined the more chronic effects of leucine on skeletal muscle

FIGURE 3 Leucine supplementation increases contractile force in engineered skeletal muscle independent of dose. Maximal contractile
force was enhanced in engineered constructs supplemented with leucine for 5 days at the end of the culture period. Data are expressed as
mean ± SEM for n = 5 engineered muscles. * indicates statistically greater than control (p < 0.05), # indicates statistically greater than 5mM
(p < 0.05)

FIGURE 2 Myotube hypertrophy following 5 days of supplementation of engineered skeletal muscle with increasing doses of leucine.
Desmin staining (red) of myotubes was significantly (p < 0.05) increased with 5 and 20mM of leucine supplementation. Myotubes are
counterstained with DAPI (blue) and scale bar indicates 50 µm. Data are expressed as mean ± SEM for n = 5 engineered muscles. * indicates
statistically greater than control (p < 0.05)
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mass and function, largely due the lack of appropriately controlled

experimental model. In the present study, we used tissue engineered

skeletal muscle to determine if leucine could enhance contractile

function and drive muscle hypertrophy in vitro. Our data suggest that

leucine activates mTORC1 signaling, and augments muscle size and

function in engineered muscle and that this improvement in maximal

force production is mTOR sensitive. We also found that both leucine

and chronic muscle contraction are capable of increasingmuscle force,

and together result in greater functional enhancement than either

stimulus in isolation.

It is well recognized that mTORC1 activation leads to elevations in

translation initiation and ribosome biogenesis, in turn enhancing MPS

and capacity for cellular growth. We show here in engineered skeletal

muscle, that leucine activates the downstream effectors of mTORC1,

namely 4EBP-1 and rpS6, confirming previous studies conducted both

in conventional in vitro culture and in vivo (Anthony et al., 2000;

Areta et al., 2014; Atherton, Smith et al., 2010; Churchward-Venne

et al., 2012), and thus providing strong validation for the use of

engineeredmuscle for investigations in this area. Interestingly, we also

found that this effect on mTORC1 signaling appears to be dose

dependent, with higher doses (5–20mM) required in order to

maximize the response. This is somewhat in agreement with Areta

et al. (2014) who found a dose dependent increase in p70S6 kinase

phosphorylation with leucine supplementation, although, this was not

mirrored in other mTORC1 related protein kinases tested. Further-

more, in the present study we found that 5 days of leucine

supplementation had no effect on the expression of markers of the

ubiquitin-proteasome or autophagy-lysosome system. This was

slightly surprising since mTORC1 activation is associated with

inhibition of autophagy (Sandri, 2013), and there is evidence that

amino acid ingestion can also prevent elevations in MuRF-1 (Trim63)

and MAFbx (Fbxo32) expression at rest and following exercise

FIGURE 5 Combination effects of leucine and electrical
stimulation on engineered skeletal muscle function and myotube
size. (a) Leucine and electrical stimulation augment maximal force
production independently, and in combination further increase force
production above control. (b) myotube growth is enhanced by both
electrical stimulation and leucine above control, while leucine
appears to have the greater effect on myotube size overall. Data
are mean ± SEM from a minimum of n = 4 engineered muscles.
* indicates statistically greater than control (p < 0.05), # indicates
statistically greater than stimulation alone (p < 0.05)

FIGURE 4 Leucine associated increases in contractile force and
myotube size are mTOR dependent. (a) Addition of the mTOR
inhibitor rapamycin (100 nM) for the final 5 days of culture either
alone or in combination with leucine (20mM) resulted in blunted
maximal force production which was similar to that seen at day 9 of
culture and lower than that observed after 14 days of culture. (b)
Rapamycin prevented the leucine induced myotube hypertrophy,
but did not induce significant atrophy of the myotubes. Data are
mean ± SEM for a minimum of n = 4 engineered muscles. * indicates
statistically greater than 9 day Control (p < 0.05), # indicates
significantly greater than 14 day control (p < 0.05)
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(Borgenvik, Apro, & Blomstrand, 2012; Herningtyas et al., 2008). Our

in vitro data support in vivo human data reporting no alterations in

proteolytic gene expression following ingestion of leucine or its

metabolite β-Hydroxy-β-methylbutyrate in healthy young men

(Wilkinson et al., 2013), although, since we measured changes in

mRNA expression, we cannot discount the possibility that differences

may have been observed at an earlier time point.

Myotube growth following chronic leucine supplementation

followed a similar dose-dependent trend to that of the mTORC1

signaling induction. Indeed, although myotube hypertrophy was

observed with 1mM leucine supplementation, this effect was not

statistically significant until higher doses were supplemented.

Furthermore, this concordance between the anabolic signaling

response and the alteration in myotube hypertrophy supports the

work of (Mitchell et al., 2014), which showed a positive relationship

between 4EBP-1 phosphorylation and changes in muscle volume with

resistance training in men, suggesting that the responses observed in

vivo are closely mirrored in engineered skeletal muscle in vitro.

A key finding of our study was that supplementing the culture

media of engineered skeletal muscle constructs with leucine for the

final 5 days of experimentation augmented maximal contractile force

by up to ∼80%. Indeed, while other investigations have observed an

augmented functionality of engineered muscles following chronic

treatment with pharmacological agents (Madden, Juhas, Kraus,

Truskey, & Bursac, 2015; Syverud, VanDusen, & Larkin, 2016; Weist

et al., 2013), this represents the first report of how amino acids can

enhance skeletal muscle contractile function in vitro, thus providing

novel data regarding leucine’s anabolic properties. Furthermore, the

present data show that the enhancement in maximal force production

in the presence of leucine was not dose-dependent, which is in

contrast to our findings for signaling through mTORC1 and myotube

size, and perhaps suggests that the additional muscle growth at higher

leucine doses is partially a result of accretion of non-contractile

proteins.

Rapamycin completely blunted the increase in force which was

found to occur over the final 5 days of culture (day 9–14) in the

absence of leucine, suggesting that this adaptation is mTOR

dependent. Moreover, since neither myotube size or total number

were reduced with rapamycin treatment, and were not different over

the final 5 days of culture, the increase in force is likely due to other

mTOR dependent processes leading to maturation of the myotubes.

Indeed, in mice where mTOR is specifically knocked out in skeletal

muscle maximal force production was reduced even when accounting

for the loss of muscle size, and this force decrement was associated

with reduced expression of components of the dystrophin-dystrogly-

can complex (Risson et al., 2009). While this was not a primary

outcome of the present study, it would be interesting in the future to

determine the reasons for blunted force production in engineered

skeletal muscle treated with rapamycin.

When rapamycin was incubated alongside leucine the measured

contractile force was equivalent to that measured at 9 days of culture

(i.e., less than that observed at day 14 in the absence of leucine), clearly

showing that leucine augments contractile force in an mTOR sensitive

manner.Rapamycinalsocompletelyblunted leucineassociatedmyotube

growth, similar to previous findings in rodents following compensatory

hypertrophy (Bodine et al., 2001), suggesting that the impact on muscle

force was at least partially due to lack of muscle growth.

Since, muscle loading (e.g., resistance exercise) and amino acids

can stimulate mTORC1 and protein synthesis through diverse

mechanisms (Marcotte et al., 2015), and as such implement an

additive effect on muscle growth, we conducted a final set of

experiments to determine if this effect could be modelled in vitro, and

whether the two stimuli would act together to increase maximal

muscle force production. It was found that both leucine and electrical

stimulation alone resulted in an approximately 60% increase in

maximal force production, while combining the two stimuli resulted in

an approximately 110% increase in contractile force compared to

control muscles. The augmentation of maximal contractile force of

engineered skeletal muscle described here is pertinent for the tissue

engineering community, since a considerable limitation in the use of

engineeredmuscle constructs for regenerativemedicine lies in the fact

that force production is far less than that of native muscle (Bian &

Bursac, 2008). As such, the present data reveals that the use of

electrical stimulation in combination with leucine may help to

overcome this limitation, and when used in combination with other

factors such as TGF-β or agrin, which have previously been shown to

enhance contractile force (Bian & Bursac, 2012; Weist et al., 2013)

may allow the use of engineered muscle for regenerative medicine to

become a reality.

While electrical stimulation alone also resulted in myotube

hypertrophy, in our system, and with the variables tested, leucine

appears to be a greater driver of muscle growth since leucine alone

resulted in greater hypertrophy than stimulation alone and was not

different to leucine and stimulation in combination. This may be a

result of the discrepancy between respective intervention times (i.e.,

24 hr stimulation vs. 5 days leucine), and it is of note that the

stimulation regime was chosen based on a protocol known to enhance

contractile force. Khodabukus & Baar (2012) have previously

established that the augmentation in force as a consequence of the

same 24 hr electrical stimulation as used in the present study can only

be ablated by approximately 40% in the presence of rapamycin,

suggesting that the additional increase in force is driven through

alternative mechanisms and not myotube hypertrophy. In the future it

would be interesting to see if longer periods of contractile activity

result in increased myotube growth, and whether the effect of leucine

remains additive.

In conclusion, the present work shows that the amino acid leucine

can activatemTORC1 signaling andmuscle growth in tissue engineered

skeletal muscle and that this response appears to be somewhat dose

dependent. Importantly, we show for the first time that leucine can

enhance maximal contractile force in an mTOR-sensitive manner and

that leucine and electrical stimulation can be used together to augment

this response. These data provide strong validation for the use of

engineered skeletal muscle as a tool in biomedical research concerned

with nutrition and skeletal muscle physiology and function, and

highlights the potential for leucine supplementation as a clinical

therapy in conditions associated with impaired muscle strength and

reduced size.
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