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ABSTRACT. In this work we present an accurate mapping of the structural order of Laser 

Induced Periodic Surface Structures (LIPSS) in spin-coated thin polymer films, via a 

microfocus beam Grazing Incidence Small Angle X-Ray Scattering (µGISAXS) scan, 

GISAXS modelling and Atomic Force Microscopy imaging all along the scanned area. This 

combined study has allowed evaluating the effects on LIPSS formation due to non-

homogeneous spatial distribution of the laser pulse energy, mapping with micrometric 

resolution the evolution of the period and degree of structural order of LIPSS across the laser 

beam diameter in a direction perpendicular to the polarization vector. The experiments 
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presented go one step further towards controlling nanostructure formation in LIPSS through a 

deep understanding of the parameters that influence this process. 

INTRODUCTION 

Controlling nanostructure formation in thin polymer films is a key aspect for the development 

of several applications in nanotechnology, including  photovoltaic devices,
1
 biosensors

2
 and 

phase change memories.
3
 Among other interesting structuration techniques such as solution-

based methods
4, 5

 or nanoimprint lithography,
6, 7

 laser irradiation plays a key role in the 

development of nanostructures for a broad variety of purposes.
8
 Achieving control over the 

formation process of these nanostructures requires an appropriate selection of 

characterization techniques as well as an accurate and exhaustive study of the influence of 

laser irradiation parameters on the nanostructure formation processes. One of the leading 

techniques for the assessment of nanostructures is Grazing Incidence Small Angle X-Ray 

Scattering (GISAXS), whose reflection geometry is extremely sensitive to the surface 

characteristics of the sample.
9
 This, together with the possibility of probing different depths 

in the sample by changing the angle of incidence, makes GISAXS a powerful tool that has 

been used for the characterization of many surface and interface morphologies.
10-12

 In recent 

times, the introduction of microbeams for GISAXS characterization has improved the spatial 

resolution of the technique.
13

 Moreover, modelling of the experimental GISAXS diagrams 

has been accomplished using different software packages,
14, 15

 providing valuable information 

to interpret the experimental results.
16, 17

  

Laser induced periodic surface structures (LIPSS) are generated by irradiation of solid 

surfaces by linearly polarized laser pulses of nanosecond (ns) to femtosecond (fs) duration. In 

the ns regime the LIPSS period (L) is close to the laser irradiation wavelength,
18

 and is 

described by the expression L = λ/(n − sin θ).
19

 Here λ is the laser wavelength illuminating the 
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surface of a material of refraction index n at an incidence angle θ with respect to the normal 

to the sample plane. LIPSS formation is explained on the basis of the interference between 

the incoming and the surface-scattered waves together with a feedback mechanism.
20, 21

 In the 

case of LIPSS in thin polymer films, using irradiation fluences well below the ablation 

threshold of the material, recent studies combining experimental GISAXS and modelling 

with Atomic Force Microscopy (AFM) have proved that it is possible to correlate the degree 

of structural order with the laser irradiation parameters, namely number of pulses and 

fluence, using both ns
22

 and fs laser pulses.
23

 In these studies, where the generated LIPSS 

were parallel to the laser polarization vector, the laser beam was delimitated by an iris, and it 

was assumed that the fluence was constant in the whole irradiated area. However, the non-

homogeneous spatial distribution of the laser pulse energy over the irradiated spot may play 

an important role on the generation of LIPSS and this effect has not been studied up to now. 

Such a study can provide an in depth knowledge of the formation of these structures, 

allowing optimization for singular applications as functional substrates.
24

  

In this work we present an accurate mapping of the structural order of LIPSS in thin polymer 

films, via GISAXS with a microfocus beam, along a diameter of the laser irradiated area in 

steps of 25 µm. AFM imaging and GISAXS modelling have been performed as well, all 

along the scanned diameter in a direction perpendicular to the laser polarization vector and 

thus orthogonal to the LIPSS alignment axis. The results and conclusions derived are of high 

importance in order to control nanostructure formation and in all the applications where 

LIPSS are involved. 

EXPERIMENTAL SECTION 

The model polymer chosen for this work was poly (bisphenol A carbonate) (PBAC), Lexan 

ML3021A, SABIC I-P (Innovative Plastics). Thin polymer films were prepared by spin 
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coating on silicon wafers (100) (Wafer World Inc.). The wafers were previously cleaned with 

acetone and isopropanol. PBAC was dissolved in chloroform (Riedel-de Haën, 99%) with a 

concentration of 30 g/L. A fixed amount of 0.1 mL of polymer solution was instantly dropped 

by a syringe on a square (typically 2 × 2 cm
2
) silicon substrate placed in the center of a 

rotating metallic horizontal plate. A rotation speed of 2380 rpm was kept during 30 s, 

obtaining spin-coated polymer films with a thickness of about 150 nm. Laser irradiation was 

carried out in ambient air under normal incidence, with the linearly polarized output of a Q-

switched Nd:YAG laser (Quantel Brilliant B, pulse duration τ = 5 ns full width half-

maximum) at a repetition rate of 10 Hz. The fourth harmonic at 266 nm was used for the 

experiments, since at this wavelength PBAC absorbs efficiently.
25, 26

 The average fluences of 

irradiation were determined by measuring the laser energy in front of the sample with a 

joulemeter (Gentec-E, QE25SP-H-MB-D0), and considering 9 mm as the diameter of the 

laser spot. The spin-coated polymer films were irradiated with 1200 pulses at an average 

fluence of 14 mJ/cm
2
. The irradiated area was characterized using atomic force microscopy 

(AFM, Nanoscope V, Bruker) in tapping mode. AFM images were analyzed using the 

software Nanoscope Analysis 1.40. Irradiated areas were also characterized by microfocus 

beam grazing incidence X-ray scattering at small angle, µGISAXS, using the facilities of the 

P03 beamline at PETRA III [Deutsches Elektronen Synchrotron (DESY), Hamburg, 

Germany].
27

 The experimental setup for µGISAXS is presented in Fig. 1. The sample is 

positioned horizontal and the incoming and reflected beams define the vertical scattering 

plane. Both scattering and sample planes intersect the detector along the meridian and the 

horizon lines, respectively, which are the reference to measure the out of scattering plane (ω) 

and exit (αf) angles. The information can be interpreted on the basis of the two orthogonal 

scattering vectors qz = (2π/λ) (sin αi + sin αf) and qy = (2π/λ) sin ω cosαf, with λ being the 

wavelength of the X ray beam and αi and αf the incidence and exit angles. These vectors 
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provide information about structural correlations perpendicular and parallel to the film plane, 

respectively. µGISAXS images were analyzed by using the software Fit2D.
28

 An X-ray 

wavelength of λ = 0.09764 nm, with a beam size (h x v) of 20 × 13 μm
2
, was used in our 

experiments. The scattered intensity was recorded by a Pilatus detector of 487 × 619 pixels 

with a resolution of 172 μm per pixel, and a sample-to-detector distance of 4.175 m. Samples 

were positioned to ensure that the beam was parallel to the LIPSS main axis. A step scan (25 

μm resolution) was performed along a diameter of the irradiated area, in a direction 

perpendicular to the laser polarization vector and thus orthogonal to the LIPSS axis. 

Acquisition times of 3 s were used in order to minimize the X-ray radiation damage inflicted 

on the sample. 

 

Figure 1. Schematic view of a GISAXS experiment. The scattering plane, containing both 

the direct and the specular beams, intersects the 2D detector along the meridian, m_m’ line, 

of the GISAXS pattern. The horizon, h_h’ line, is the intersection between the sample plane 
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and the plane of the 2D detector, which are perpendicular to each other. Each point on the 

GISAXS pattern can be characterized by the exit angle, αf, and the out of scattering plane 

angle, ω. αi represents the angle of incidence of the X-ray beam on the sample. 

It is important to mention that some imprecisions in the correlation between AFM, µGISAXS 

and local energy measurement positions might be possible. The experimental error is not only 

present in the local energy profile determination, but also in the position of the x-ray beam on 

the sample and in the AFM image position.  In addition to this, the fact that the in the 

GISAXS experiments we are averaging over a strip rather than a line implies that we are 

probing regions with different local laser energy at the same time in the direction of the x-ray 

beam. However, the agreement is quite good as we will prove throughout the manuscript. 

EXPERIMENTAL RESULTS 

Fig. 2a shows an optical image of the irradiated polymer thin film after carrying out the 

µGISAXS experiments. Two vertical blue stripes are visible at positions -4.5 mm and 5 mm, 

corresponding to beginning and end of the µGISAXS scan performed. These marks were 

intentionally produced by letting the X-ray beam shutter open for 200 s after the experiments 

were over. It is also possible to see a weaker blue stripe around 2 mm, which is due to 

radiation damage inflicted to the sample while aligning it for the X-ray measurements. To 

characterize the energy profile of the laser beam, the energy was measured using a straight 

knife-edge which was translated through the beam in steps of 250 m using a translation 

stage, and subsequent first derivative calculation of the dependence obtained. The spatial 

energy distribution of the laser spot along the direction of the µGISAXS scan is presented in 

Fig. 2b. As one can see, the local energy is not completely uniform and depends on the 

position on the sample. The local laser energy profile in the direction perpendicular to the 

GISAXS scan (parallel to the X-ray beam) reveals as well an inhomogeneous spatial energy 
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distribution, as it is shown in Fig. 2c. These differences between local energies may result in 

inhomogeneity in the LIPSS formation, thus creating regions with different period, height and 

degree of structural order.
22

  

 

Figure 2. (a) Optical microscopy image of the laser-irradiated area (red circle) on the thin 

polymer film, showing the lateral marks (vertical dashed lines) that define the beginning and 

end of the scan performed along the direction of the horizontal dashed arrow in the µGISAXS 

experiments. The X-ray beam is in the vertical direction. The red spots, labeled a-f, indicate 

selected scan positions where µGISAXS diagrams shown in Fig. 3 were acquired. (b) Local 

energy profile of the laser beam used for irradiation  along the direction of the µGISAXS 

scan (horizontal dashed arrow), which is perpendicular to the laser polarization vector and to 

the axis of the generated LIPSS. (c) Local energy profile of the laser beam used for 

irradiation along the direction perpendicular to the GISAXS scan direction at x = 0. 
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The µGISAXS experiments reveal significant differences in the surface structuring of the 

thin polymer film depending on the position along the scan. Fig. 3 presents µGISAXS 

diagrams acquired at selected regions of the sample. These regions are identified as labelled 

red spots in Fig. 2a. At the beginning of the scan corresponding to a low local energy range 

(Fig. 2b) the µGISAXS diagrams (position a, Fig. 3a) do not show any sign of LIPSS 

formation. This fact can be also visualized by representing a cut at an exit angle of αf = 0.13º 

(marked by a dashed black line in Fig. 3a), close to the critical angle of the polymer, as 

represented in Fig. 4a. When inspected by AFM, this area corresponds to a region where no 

LIPSS have been formed, as it is observed in Fig. 5a and further demonstrated by the depth 

profile shown below. Moving forward, to position b, there is a narrow area located at around 

-3.9 mm where clear rods are detected out of the meridian (Fig. 3b), indicating the existence 

of a strong structural correlation in the direction parallel to the scan direction. In a first 

approach, the period L of the ripples can be determined from the µGISAXS cut (Fig. 4b) 

using the expression L = 2π/qy
max

 , where qy
max

 is the reciprocal scattering vector 

corresponding to the first intensity maximum next to ω = 0. In this case the value obtained is 

significantly shorter than the laser wavelength used, Lb 
GISAXS

 = 182 ± 9 nm. AFM images 

taken in this area (Fig. 5b) confirm that polymer ripples have been generated on the surface 

of the film, having a period in agreement with the value obtained from the µGISAXS 

measurement (see Table 1). 
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Figure 3. Selected µGISAXS diagrams of PBAC irradiated at 266 nm with 1200 pulses at 

different positions on the irradiated polymer surface as shown in Fig. 2a: (a) -4.5 mm, (b) -3.9 

mm, (c) -0.5 mm, (d) -0.4 mm, (e) 0.8 mm and (f) 2.4 mm. The dashed black line in (a) 

represents the exit angle of αf = 0.13º where the cuts in Fig. 4 where obtained from. 
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Figure 4. Intensity profiles at an exit angle αf = 0.13º (black dashed line in Fig. 3a) 

corresponding to the GISAXS diagrams shown in Figure 3, according with the labelling of 

Fig. 2: (a) -4.5 mm, (b) -3.9 mm, (c) -0.5 mm, (d) -0.4 mm, (e) 0.8 mm and (f) 2.4 mm. 
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Figure 5. AFM topography images (5 x 5 µm
2
) of PBAC irradiated with 1200 pulses at 

selected regions of the laser irradiated spot according with the labelling of Fig. 2: (a) -4.5 

mm, (b) -3.9 mm, (c) -0.5 mm, (d) -0.4 mm, (e) 0.8 mm and (f) 2.4 mm. Height profiles along 

a 2 μm line perpendicular to the ripples are shown below every image. Black and red lines 

below (c) correspond, respectively to cuts in regions with short and large period. 

 

Table 1. Geometric parameters of the LIPSS generated on PBAC films and values used for 

the simulations of GISAXS patterns: width (2R), height (H), and length (W) of the box 

considered as scatterer, period (L) and paracrystalline disorder parameter (g). Gaussian 

distributions were assumed for R and H with σR/R and σH/H ca. 0.1. 
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Label Position 

(mm) 

LGISAXS 

(nm) 

LAFM  

(nm) 

2R  

(nm) 

H  

(nm) 

W  

(nm) 

g 

a -4.5 - - - - - - 

b -3.9 182 ± 9 191 ± 16 104 30 1000 0.0235 

c -0.5 169 ± 10 

263 ± 8 

179 ± 10 

278 ± 9 

- - - - 

d -0.4 263 ± 8 276 ± 11 136 38 1000 0.0114 

e 0.8 263 ± 8 270 ± 18 180 45 900 0.0456 

f 2.4 263 ± 8 274 ± 10 122 67 1000 0.0114 

 

Moving further along the scan direction towards the center of the laser spot, after an 

unstructured region i.e. showing GISAXS without any defined rods, clear signs of structure 

formation are again revealed in the µGISAXS diagrams at scan positions between -1.5 mm 

and 0.5 mm (Fig. 3c). In this case the diagrams indicate the presence of structures with two 

different periods. This is confirmed when inspecting the corresponding angular cut in Fig. 4c, 

which evidences the presence of both structures with a period close to the laser wavelength 

Lc,large
GISAXS

 = 263 ± 8 nm and a shorter one Lc,short
GISAXS

 = 169 ± 10 nm. AFM 

characterization supports as well the presence of two LIPSS populations (Fig. 5c). The 

topography profiles perpendicular to the structures in a region with short small period (black 

cut below Fig. 5c) and in another region with large period (red cut below Fig. 5c) evidence 

the difference between the two populations. The specific values of the two periods obtained 

by AFM are again in agreement with the ones obtained by GISAXS (Table 1).  

Following the region where two different ripple periods coexist, the scan inspects the central 

region of the laser spot, between 0.5 and 3 mm, (positions d, e, f in Fig. 2a), where the laser 

energy reaches maximum values (see Fig. 2b). Here the µGISAXS patterns show well 

defined correlation peaks (Figs. 3d, 3e and 3f) and a single and constant period as determined 
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by the cuts at α = 0.13
0
 (Figs. 4d, 4e, and 4f) with value Ld,e,f

GISAXS
 = 263 ± 8 nm. However, 

the AFM images suggest that the degree of structural order changes spatially in this region. 

Figs. 5d, 5e and 5f and the corresponding topographic profiles show polymer ripples with a 

period in agreement with the one calculated from the µGISAXS diagrams (see Table 1), but 

with different degrees of structural order. These observations will be discussed further in the 

following section. After reaching the local laser energy maximum and moving further along 

the irradiated area, the µGISAXS patterns are similar to those shown in Fig. 3c presenting 

again two different periods and indicating certain symmetry in the formation of structures 

with respect to the center of the laser beam.  

MODELLING AND DISCUSSION 

Mapping the formation of LIPSS in our experiments can be carried out by considering the 

structural information obtained by µGISAXS and AFM and establishing a correlation with 

the laser energy profile (see Fig. 2b and Fig. 6a). In order to achieve this goal, the spatial 

evolution of the LIPSS period along the µGISAXS scan has been represented in Fig. 6b. In 

the low local energy region, at the beginning of the scan, no ripples are observed. This is in 

agreement with the known fact of the existence of a threshold in fluence needed to make 

LIPSS formation effective.
25

 After this initial region, LIPSS formation with a period smaller 

than the laser wavelength is detected in a narrow area around position -3.9 mm (Fig. 6a). This 

region coincides with a secondary peak in the local laser energy (Fig. 2b). It has been 

previously reported that LIPSS period in polymers increases with increasing fluence until a 

certain value, above which the LIPSS period reaches the laser wavelength. Thus, it can be 

concluded that in this area the local laser energy is above the threshold for PBAC, but not 

high enough to generate structures with a period close to the laser irradiation wavelength. 

Following the scan, the local energy seems to go below the threshold and there are no signs 
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of uniform LIPSS formation. Moving towards the center, another structured area is reached 

coinciding with an increase in the local laser pulse energy (Fig. 6a and b). In this case we find 

a region where two different LIPSS periods coexist, being the larger one close to the laser 

wavelength. We consider that this coexistence is an intermediate step in the formation of the 

final LIPSS, with period close to the laser wavelength. In Fig. 5c it is possible to see how the 

structures with small period converge in pairs into another type of ripple with larger period, 

closer to the laser wavelength. At this point it is important to remember that the local laser 

intensity is not only inhomogeneous in the GISAXS scan direction (Fig. 2b) but also in the 

perpendicular direction as it is shown in Fig. 2c. As a consequence, LIPSS with different 

periods can be formed along the x-ray beam direction for an x position fixed value. The 

µGISAXS footprint, although is micrometric in the scan direction (20 m), due to the small 

incidence angle (0.4º) is in the order of mm in size in the direction perpendicular to the scan. 

Thus in the direction of the X-ray beam, a fairly long stripe is averaged in the µGISAXS 

measurements, including regions with different periodicities which contribute to the 

scattering intensity. In the zone of highest local energy, close to the beam center (see Fig. 6a), 

LIPSS with a single period are formed. In this region the period reaches a plateau value that 

remains close to that of the laser wavelength (see Fig. 6b). However, AFM images taken in 

this area reveal structural changes. As an example, in Fig. 5e the ripples appear remarkably 

distorted and droplets of material start to form, as an indication of too high local laser energy. 
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Figure 6. (a) Local energy profile of the laser beam along a diameter, perpendicular to the 

polarization vector and parallel to the scanning direction of the µGISAXS experiments. This 

plot has been shown before in Fig. 2b. (b) LIPSS period as determined by GISAXS, with the 

red squares corresponding to the small period and the black squares corresponding to the 

large period close to the laser wavelength of 266 nm. (c) Paracrystalline disorder parameter g 

as determined by modelling of the GISAXS patterns. 

In order to quantify the structural changes along the µGISAXS scan we carried out 

modelling of the experimental diagrams by using the IsGISAXS software.
14

 The distorted 

wave Born approximation (DWBA) was applied, considering an array of polymer boxes 

standing on the polymer film. The values of the refraction indexes (n = 1 – δ + iβ) for both 

box and polymer substrate were considered to be similar, δ = 3.3 × 10
−6

 and β = 5.1 × 10
−9

. 
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The dimensions of the boxes used to model the nanostructures are those determined by AFM, 

i.e., width (2R), height (H), length (W) and period (L). 2R was determined by measuring the 

full width at half height of the ripples, obtained from height profiles perpendicular to their 

main axis. Up to 20 measurements are averaged for each geometric value given, and their 

typical deviation is used to calculate the statistical error.  

W was estimated as an average measure of the length along which the ripples maintain a 

certain direction before changing it, as measured from AFM images. Box dimensions used to 

simulate the GISAXS patterns shown in Figure 7 are listed in Table 1. The next assumption 

was to consider that the boxes were in a one-dimensional paracrystalline lattice, where the 

long-range order disappears gradually in a probabilistic way.
29

 The probability of finding a 

particle at a distance L is defined by a Gaussian function p(x):  

𝑝(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑥 − 𝐿)2

2𝜎2
]   

As the paracrystalline disorder parameter g = σ/L increases the lattice disorder increases, 

while for very small g values, a 1D crystalline lattice is obtained. Fig. 7a and c show the 

experimental and modelled GISAXS diagrams for regions b, e and f in the sample (defined in 

Fig. 2a). For the sake of comparison, the corresponding GISAXS intensity profiles at an exit 

angle of αf = 0.13⁰, normalized to the first correlation peak have been included in Fig. 7b. 

The modelling confirms that LIPSS can be well-described considering a one dimensional 

paracrystalline lattice and that the local laser energy has an influence on their structural order. 

It is worth remarking that the simulations show crystal truncation rods (CDR) whereas in the 

experimental data the intensity in the qz direction is modulated. This fact could be explained 

assuming that the LIPSS height distribution in the small region probed by the beam is very 

narrow, and will be investigated in future studies.  By plotting the paracrystalline disorder 
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parameter g in terms of the scan position it is possible to map the structural order of the 

sample, as it is shown in Fig. 6c. Even in the very narrow region, where only short period 

LIPSS are present (around -3.9 mm), it is possible to detect variations of structural order 

depending on the local laser energy. Here the g values are low, indicating that the degree of 

structural order of the short period LIPSS is high. Modelling was restricted to the GISAXS 

patterns with single periodicity. In the centre of the laser irradiated spot, where LIPSS period 

is fairly constant, it was possible to accurately determine the spatial dependence of the LIPSS 

structural order. As it can be seen in Fig. 6c, the differences in structural order observed by 

AFM in the high energy region are indeed related to regions with changing paracrystalline 

disorder parameter. At the beginning of this region (-0.5 mm) g is very low, denoting high 

structural order, and then increases smoothly until it reaches a maximum around 1 mm. 

Subsequently, g decreases again to stabilize at the same value calculated at the beginning of 

the high energy region. We associate this middle region, where the LIPSS display lower 

degree of structural order, to a region where the local laser energy is too high, as we already 

mentioned in the experimental results section when discussing the corresponding AFM 

images. This implies that combining µGISAXS scan and modelling, together with the AFM 

characterization, we are able to map the structural order of LIPSS at a very fine level.  
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Figure 7. (a) Experimental GISAXS patterns of PBAC films irradiated at 266 nm with 1200 

pulses at different regions of the laser irradiated spot, as labeled according to Fig. 2a. (b) 

Experimental (black lines) and simulated (red lines) GISAXS intensity profiles taken at a 

fixed exit angle αf = 0.13⁰. (c) Corresponding simulated GISAXS patterns. 

 

CONCLUSIONS 

An accurate mapping of the structural order of LIPSS in polymer thin films has been carried 

out by accomplishing a microfocus beam GISAXS scan, Atomic Force Microscopy imaging 

and GISAXS modelling across the diameter of the laser beam perpendicular to the laser 
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polarization vector. This combined study has allowed evaluating the effects on structure 

formation of the non-homogeneous local laser pulse energy, mapping with micrometric 

resolution the evolution of the period and degree of structural order of LIPSS. Regions of 

LIPSS with different period and degree of structural order have been identified and 

associated with their respective local laser energies. The experiments presented here go one 

step further towards controlling LIPSS formation through a deep understanding of the 

parameters that influence the nanostructure formation process. 
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