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Abstract This paper discusses the machine vision
element of a system designed to allow Unmanned
Aerial System (UAS) to perform automated taxiing
around civil aerodromes, with only a monocular cam-
era. The purpose of the computer vision system is to
provide direct sensor data which can be used to vali-
date vehicle position, in addition to detecting potential
collision risks. In practice, untrained clustering is used
to segment the visual feed before descriptors of each
cluster (primarily colour and texture) are used to esti-
mate the class. As the competency of each individual
estimate can vary dependent on multiple factors (num-
ber of pixels, lighting conditions and even surface
type). A Bayesian network is used to perform proba-
bilistic data fusion, in order to improve the classifica-
tion results. This result is shown to perform accurate
image segmentation in real-world conditions, provid-
ing information viable for localisation and obstacle
detection.
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1 Introduction

Over the last few decades, the capabilities of
unmanned aircraft have significantly improved, pri-
marily due to extensive research and development
for military use. Many roles that once required a
manned aircraft are now primarily performed by UAS.
As UAS are becoming increasingly mature, potential
application outside of conventional military use are
being explored, with much research activity focused
on allowing UAS to operate in civil airspace. As mil-
itary and civil aircraft operations differ significantly,
there are many barriers that must first be overcome.

One such barrier is determining how UAS will
make use of ground facilities. The current inability
to operate in non-segregated aerodromes represents
a large barrier to bringing UAS into the National
Airspace System (NAS), with automated taxiing and
aerodrome operations already identified as a research
gap [1]. As it would be both impractical and expen-
sive to construct new aerodromes solely for unmanned
aircraft, this work is based on the prediction that
future civil UAS will operate from existing runways
alongside conventional manned aircraft.
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With the potential risks of having automated vehi-
cles manoeuvring around passenger aircraft, the pri-
mary motivation of this work is to ensure the safety
of the UAS and other aerodrome users. For safe tran-
sit, there are two main requirements; ensuring that
the aircraft is in the correct position and ensuring
that it does not collide with anything during taxi-
ing. Other requirements for automated taxiing, such
as efficient route planning or communication proto-
cols, are already mature areas of research and existing
algorithms are assumed to be already available [2].

The correct sensors must be chosen which can
achieve robust localisation, and obstacle detection.
While autonomous taxing has been achieved previ-
ously on the Global Hawk aircraft using DGPS, IMU,
and highly accurate maps to guide the aircraft around
a segregated air force controlled airport [3], this is
totally inadequate for a civil aerodrome. Such a sys-
tem would need constant supervision by the remote
pilot as it will not react to obstacles, and will not
function without DGPS corrections or in GPS denied
environments.

Other sensors such as LIDAR could also be used
for robust, accurate localisation and obstacle detection
[4]. However the addition of extra sensors is undesir-
able as they add weight, power drain, and certification
difficulties. This is why we also aim to find out if
these functions can be provided by a single monocular
camera, as almost all UASs will have one. As such, a
machine vision approach is the only feasible method
of direct sensing.

This work has been undertaken in conjunction with
BAE Systems, who have provided the practical data
used for testing and validation.

There has been previous work that has similar
objectives in the field of Advance Driver Assistance
Systems (ADAS) and autonomous driving. For exam-
ple a colour-based machine vision approach is used
for tracking unmarked road lanes in [5] and [6]. While
the surface and it’s markings are similar for roads
and aerodromes, they are both have hugely different
environments and vehicles. Which means that they
have very different considerations in the image pro-
cessing meahod used. Aerodromes are more open and
controlled environments than roads, with much fewer
more predictable objects to classify. Here we aim to
use this low number of object classes to more reliably
find not only surface markings but also objects like

the taxiway and potential obstacles. Ground vehicles
can afford the extra weight and power consumption
of extra sensors. The complexity and greater payload
capacity are why road vehicle ADAS use a range of
sensors, and we aim not too.

1.1 Machine Vision Approach

Object detection using 2D cameras is conventionally
achieved by seeking specific objects. As aerodromes
are strictly controlled, most potential hazards (i.e.
large objects) belong to only a few objects types
(e.g. aircraft, ground vehicles, pedestrians, buildings).
Therefore, an approach could be taken in which col-
lision risks are detected by specifically seeking these
object types within the image. However, despite the
low probability of other types of object being present
on a taxiway or runway, any object in front of an UAS
would still pose a collision risk. As such, the machine
vision system must be capable of detecting any kind
of generic obstacle.

As it would be impractical to attempt to identify all
possible objects within an image, a simpler approach
is to identify safe terrain features (such as empty
runway) and infer collision risks from the remaining
regions. Therefore, the aim of this work is to robustly
classify a small number of classes, primarily focussing
on terrain types such as asphalt and concrete. Sub-
sequently, using the probabilistic confidence of that
classification, unknown collision risks can be inferred
from regions of the image which are not perceived to
be a known class.

Unlike active sensing techniques, such as LIDAR,
2D machine vision works with conventional images
which have no inherent depth information. Instead, the
distance to objects must be estimated based on fea-
tures within the image. For techniques which rely on
specific object detection, the pose and size of a known
object within the image can be used to determine it’s
position relative to the camera with reasonable accu-
racy for avoidance. However, for generic risks the size
of the object within the image cannot be used to esti-
mate distance. Instead, as the limits of each object
are defined, the bottom edge can be assumed to be
closest to the camera. As the camera is mounted on
the aircraft at a fixed height, an Inverse Perspecive
Mapping (IPM) can be used to establish the distance
from the camera to the object, a technique which has
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already been explored in [7]. An additional benefit
of this approach is that by identifying and classifying
the terrain, IPM can also be used to determine ground
features relative to the aircraft, such that map match-
ing can also be used to assist in vehicle localisation.
A similar method is performed in [4], using particle
filters.

In order to ensure that all potential collision risks
are identified, every pixel captured by the camera
must undergo classification. This form of total-image
classification is typically referred to as semantic seg-
mentation, in which an image is not only divided into
regions but in which regions are also assigned a class
based on their contents. There have been a number of
previous works in the area of semantic image segmen-
tation, in papers such as [8]. The basis of this work is
a continuation from the initial research conducted in
[9], as well as an extension and a combination of [10]
and [11].

After segmentation is complete, each region within
an image should represent a single object or surface
type. This allows all data within a region to be used for
classification. Classification begins by extracting fea-
tures from each cluster and compare them to known
examples of each class. The best match is taken as
the classification estimate and the degree of similar-
ity provides a confidence in the result. As images
are extremely data-rich, different types of data can
be extracted from each cluster. Some of this data is
extremely simplistic, such as the mean colour data for
each cluster. By contrast, other data is extremely com-
plex, such as texture data which has no standardised
method of simplification. Therefore a final classifica-
tion is formed by combining the results from multiple
feature types together in a meaningful way.

Improving segment classification is the main focus
of this paper. In the previous work [9], a naı̈ve data
fusion approach was used to simply combine differ-
ent types of information (such as colour and texture)
in order to estimate the class of a segmented image
region.

In the paper [11], the authors improved classi-
fication performance by probabilistically combining
information in a Bayesian Network (BN). BNs have
been shown highly suitable for data fusion in com-
puter vision applications, allowing contextual infor-
mation to be included to improve performance [12]
[13]. This is further extended in this paper by the

introduction of soft evidence for texture classification.
Previously only the final results of a texture classifier
could be used as an input into the Bayesian Network
(BN). Instead, the probability as determined by the
individual classifier for each class is entered with soft
evidence, with the intention that this extra information
will increase the final classification performance.

The BN framework implemented specificity for
an aerodrome environment is the main contribution
of this work. A BN is easily extendible, so other
inputs can be added without changing the original net-
work. The idea of using uncertainty in classification
to find potential obstacles is an original contribution
not found in any other literature. Finally the addition
of domain knowledge to the network such as hori-
zon intercept, and luminance to improve classification
performance in an aerodrome are also original.

1.2 Paper Contents

The remainder of this paper is organised as follows;
Section 2 discusses image segmentation, and how
untrained segmentation is performed using methods
explored in a previous work [9]. Section 3 discusses
how current texture based methods are used in seman-
tic image classification; both comparing current tech-
niques and assessing their suitability for the proposed
methodology. Section 4 describes how colour can be
used to aid image classification. In Section 5 a tech-
nique is introduced to will aid classification by detect-
ing surface markings using luminance data. Section 6
describes how horizon information can be used to aid
classification. Section 7 introduces the Bayesian Net-
work (BN) data fusion method proposed in this paper,
which is followed by a brief introduction to BNs in
Section 8. Section 9 gives details on the final BN used
for classification, including the network’s structure,
inputs and discretisation. Finally, Section 10 compares
the performance of the current texture-only classifi-
cation method against the proposed BN methodology.
Comparison and results are provided using a test set
of labelled aerodrome images.

2 Image Segmentation

Semantic segmentation can be achieved in differ-
ent ways. Most contemporary techniques perform
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segmentation and classification together, in a single
simultaneous process. This is referred to as classifier-
led-segmentation. By simply classifying pixels at a
low level (either individually or in small groups),
larger regions within an image are formed where many
neighbouring pixels share the same class. As addi-
tional segmentation is not required, data is extracted
from each pixel only once, making such techniques
highly efficient. When the intention is to divide the
image rapidly into expected classes, classifier-led-
segmentation is highly appropriate.

However classifier-led-segmentation can result in
inaccurate region borders and small regions becom-
ing absorbed into larger neighbours. As the aim is
to localise potential obstacles and objects that can
used for navigation, with inaccurate region bound-
aries this will reduce the localisation accuracy. The
methods used in classifier led-segmentation also make
implementation more difficult. Due to the com-
plexity of fusing many different information types,
non-deterministic approaches, such as Artificial Neu-
ral Network (ANN), are commonly used. As non-
deterministic methods are difficult to certify for
aerospace use, this work has avoided using them,
and as such has eliminated the ability to use several
common methodologies.

The alternative to classifier-led-segmentation is to
perform segmentation and classification separately.
Rather than use pixel classification to define regions,
segmentation is instead achieved using basic low-level
image features. As such, these methods are commonly
known as ‘untrained segmentation’. This work contin-
ues to use the ‘superpixel’ based approach, outlined in
[9]. Superpixels are small clusters of pixels, grouped
together based on their colour and spatial distance [14,
15]. Figure 1a is an example of superpixel segmenta-
tion achieved using Simple Linear Iterative Clustering
(SLIC).

As superpixels are limited in how many pixels
they contain, the end result is a significant over-
segmentation, introducing many borders which are not
present in the original image. The over-segmentation
is resolved by a second application of clustering,
grouping superpixels into larger, visually similar
regions. This secondary clustering is achieved using
the method outlined in [16], where it is shows that
the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm is a good solution
for merging superpixels, shown in Fig. 1b.

(a)

(b)

Fig. 1 Untrained segmentation performed on example runway
image

3 Texture Based Classification

A texture based classification technique is presented
in [9] that will be used here to give an estimation of the
class of each cluster, it has been extended to also also
give a certainty about its classification. This is in order
to further improve the classification performance of
the BN.

Texture information is most easily stored by using
a texture descriptor; a consistent function which can
be applied to any image (or image region) to produce
comparable results. As classification is taking place
after segmentation, regions are to be classified indi-
vidually. As such, the texture descriptors must produce
spatially cohesive results, which only sample from
within each region. For this reason, local area based
descriptors are used.

3.1 Texture Extraction

In addition to colour, additional region characterisa-
tion is obtained by extracting texture information. Tex-
ture transforms can be applied by convolving an input
image with a special filter mask. As different masks
extract different information, it is common to use
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multiple masks at once; with this work using the 38
masks of the Maximum Response Filters (MR8) fil-
ter bank [17]. Comparisons are then achieved using a
’Texton’ approach [18] to reduce processing time. Due
to the size of the masks used in the filterbank, texture
data for smaller regions can often be overwhelmed
by neighbouring regions. Therefore, in addition to a
convolution approach, a secondary feature descrip-
tor is used, namely Local Binary Pattern (LBP). This
compares each pixel to its immediate neighbours, pro-
viding a simple numeric response based on which
neighbours have greater intensity levels. Despite this
simplicity, LBP has proven especially capable at small
scale texture classification and has the additional ben-
efit of being strongly invariant to global illumination
changes.

3.2 Texture Comparison

To classify a cluster its descriptor histogram needs to
be compared to typical histograms of of that class.
The texture comparison meahod used here is a Support
Vector Machine (SVM) based approach as it produced
the highest level of accuracy. Rather than use the more
traditional pair-wise voting typical of SVM, a Binary
Decision Tree (BDT) was used in which all classes
are combined into opposing sub-groups based on sim-
ilarity [19]. After a vote, the subgroups within each
group are again split into two groups based on simi-
larity, with voting continuing until only a single class
remains. As such, this reduced the number of votes for
each pixel-cluster from always requiring 42 to a max-
imum of just six, significantly decreasing processing
time with negligible changes in the final result.

To improve classification performance, the inten-
tion is that texture information is entered into the
BN as ’soft evidence’, in which probabilities are used
rather than discrete classifications. A such, if a region
has two potential texture classes which are similar, this
significance is preserved and used to effect the result
within the BN.

However, moving to soft evidence introduces dif-
ficulties with this approach. The main problem being
that to fit within a Bayesian framework, all prob-
abilities must sum to 1, with each potential class
receiving accurate data. Using a BDT, multiple classes
are grouped together to allow for high speed classi-
fication and as such data for each class is not read-
ily available. As alternative texture methods required

significantly more processing time, the decision was
made to attempt to produce representative probability
data based on the incomplete data set. As the BDT is
a series of successive votes, an initial approach was
to use cumulative probability. Based on the compar-
ative SVM distance between the wining and losing
groups within each vote, a Probability Density Func-
tion (PDF) specific to that vote was used to convert the
distance in a probability. The number of classes within
the losing group was then used to normalise the result
per class. However, as BDT are not uniformly divided,
classes which appear higher within the BDT (i.e. those
which are more distinct compared to other classes)
would always receive an artificially higher probability,
regardless of the actual result.

Instead, the chosen approach was to retain the SVM
distance information as an indicator of confidence,
allowing comparison between all classes once all vot-
ing is complete. Each time a vote occurs, the members
of the losing group are all assigned the same SVM dis-
tance result (i.e. the distance to the hyperplane which
defines the last vote in which the class was eliminated
from contention). After the final vote, the distance
of each class are ’converted’ to likelihood using a
Gaussian PDF [20].

L(Asphalt) = 1

σ
√

2π
e

−(DAsphalt −μ)2

2σ2 (1)

where D is the distance to the hyperplane, calculated
using the SVM.

To ensure compatibility with the soft BN, a normal-
ising constant is then applied to ensure all the results
sum to 1. As such, a representative probability based
on SVM distance is available for each class, which is
highly indicative of the actual probability, but calcu-
lated at a greatly reduced cost. This is then passed to
the BN for integration with the other data.

P(Asphalt) = L(Asphalt)
∑n

i=1 L(n)
(2)

where the denominator is the normalising constant,
which is the sum of all classes likelihoods based on
their nearest hyperplane distance.

Figure 2 demonstrates an example BDT and the
respective SVM domain, including votes. In this
example, the first vote specifies the the texture is either
Asphalt or Paint, with the second vote determines the
winning class to be Asphalt. Despite the texture being
a closer match to Building, both Building and Grass
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Fig. 2 A simplistic
example of BDT, an it’s
corresponding 2D SVM
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receive the same low probability, as the BDT avoids
an additional vote to determine between them. This
has minimal impact on the final result as the early
exclusion of these classes would assign both a low
probability, even if using pair-wise voting.

4 Colour Classification

Colour data is much more simplistic than texture data,
typically being represented as a mean or distribution.
As multiple objects of different types can share the
same colour, which is very common for man-made
objects, colour can rarely be used directly for clas-
sification directly. However, colour data is a suitable
addition to the BN for cases where other data types
are insufficient. For example, although texture data
can usually provide a good indication of class, colour
information can help distinguish classes which have
similar texture, or in regions where texture data is lim-
ited (such as distant objects). Within an aerodrome
environment, a key example is painted surface mark-
ings which can be easily identified due to their distinct
colour, despite all surface markings sharing similar
texture to asphalt.

Colour classification is limited to only the most
common aerodrome features, specifically ones that
remain the same colour across objects of that class.
These are; asphalt (grey), grass (wide-range green),
painted surface markings (red, white and yellow) and
sky (blue through grey/white, assuming midday con-
ditions). As each of these classes have distinct colours,
colour similarity can be used to provide a measure of
confidence which can be handled internally by the BN.

For this work, colour classification is primar-
ily achieved within the Hue-Saturation-Value (HSV)
colourspace, which is commonly used for image clas-
sification [21]. Unlike Red-Green-Blue (RGB), Hue-
Saturation-Value (HSV)is designed to make human

interpretation easier, separating colour data into chan-
nels reflecting how human vision functions. The main
benefit is that the image intensity (Value) is separated
from the colour information. This separation allows
colour information to be more robust to changes in
lighting.

5 Surface Marking Detection

Combining colour and texture information together
can provide a better classification performance over
using either data type alone. However due to weather,
time of day and variable quality of taxiway surfaces,
more inputs are needed to increase robustness. A key
requirement is the ability to accurately classify surface
markings. Not only are surface markings useful terrain
features for localisation through map-matching, but
they are also present along most taxiways. As such,
incorrect classification of taxiway centrelines could
falsely detect an obstacle infront of the UAS at any
point during taxiing.

In order to help classify surface markings, a defin-
ing feature of this class is required. Fortunately, as
surface markings are designed to be visually distinct,
they are not only painted in bright colours but also
with high reflectance paint. This causes surface mark-
ings to have a very high light-intensity, which can
be used to distinguish them from other aerodrome
classes.

The intensity of light is commonly referred to as
Luminance. As image data is used, automatic white-
balancing and aperture effects prevent the actual lumi-
nance value from being used. Instead, relative lumi-
nance of all pixels within the image is more common.
As clusters of sky pixels will always be brighter than
ground pixels [22], the relative luminance within an
image is typically based on the sky. As both asphalt
and surface markings are found on the ground, this



J Intell Robot Syst

work suggests the approach of using a horizon detec-
tion algorithm to redefine the maximum brightness.

The perceived difference between surface mark-
ings and asphalt is increased by re-normalising the
luminance values within the image, relative to the
maximum luminance of any region on the ground.
This new image, which we refer to as Normalised
Relative Luminance (NRL), then represents a fairly
consistent measure of the brightness of pixels on the
ground. A benefit of this approach is that as NRL
strongly emphasises what appears bright to human
eyes, it is also highly effective in detecting yellow
surface markings. Relative luminance can be derived
from RGB colourspace using Eq. 3, where R, G and
B are the respective mean pixel values in each colour
channel per cluster, and Y is the relative luminosity of
each cluster i

Yi = 0.2126Ri + 0.7152Gi + 0.0722Bi (3)

Normalised Relative Luminance (NRL) can then be
calculated below

NRLi = Yi

Ymax

(4)

As relative luminance is highly sensitive to hue,
atmospheric effects can have a large influence in the
effectiveness of NRL over great distance. This can be
mitigated by combining cluster luminance informa-
tion with cluster distance to camera information, and
is explained in greater detail in Section 9.3 .

6 Relative Horizon Position

To increase the robustness further, and provide bet-
ter obstacle class detection, each cluster’s position
relative to the horizon is used as a further input. Clus-
ters which are wholly below the horizon line can be
considered on the ground and will have higher proba-
bility of being a ’terrain’ class. Conversely, any cluster
entirely above the horizon is not considered on the
ground. Either this is because the object is airborne or
the object represents the sky class. In either case, such
clusters are not relevant for ground operations and the
probability of being a collision risk is lowered.

Most importantly, if a single cluster extends signif-
icantly across the horizon line it can be assumed to

be an object that extends up from the ground, and has
a greatly increased probability of being an obstacle
class. Therefore, horizon intercept represents a sim-
ple method of detecting collision risks, and removing
errors from misclassification of ground to sky classes
and vice versa.

Due to the flexibility of aircraft undercarriage, the
horizon line will move in images. Therefore, active
detection is required. A dark channel method is used to
differentiate sky pixels from ground pixels as used in
[23], before a regressive least squares estimate is used
to approximate the horizon line. As ground objects
can obscure the actual horizon position, the dark chan-
nel derived horizon line cannot differ from the attitude
derived horizon line too greatly. If it does so, the
assumption is made that the Unmanned Aerial System
(UAS) is facing a large object (such as a building) and
therefore a visually derived horizon line will not be
accurate.

7 Classification Through Data Fusion

This work aims to improve the classification perfor-
mance by using a Bayesian Network (BN) based data
fusion approach. This probabilistic approach allows
for direct comparison between metrics which are
otherwise incomparable (such as colour and texture
similarity). Moreover, the probability of the cluster
being identified as a certain class is not only depen-
dant on the outcomes of the individual classifiers, but
also incorporates knowledge of how successful each
classifier is at identifying each class. For example, a
Bayesian Network (BN) approach should identify that
colour based classification is better at identifying sur-
face markings than texture classification, regardless of
the confidence the texture classifier has.

Additional advantages of BNs include the ability
to work with full, partial, or uncertain information.
If the aircraft camera became defocussed, losing all
texture information, the probabilistic approach is flex-
ible enough to allow a result which is only dependant
on other data sources, albeit with a less accurate
result. The BN approach also gives each cluster a final
probability in addition to an estimated class. As this
probability incorporates all class information, a simple
threshold can be applied to set a level below which all
clusters are simply considered unknowns (and there-
fore potential collision risks). This allows a simplistic
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method of tuning the classifier, should a higher degree
of confidence be required.

8 Bayesian Networks

Bayesian networks are used to represent knowledge
and reasoning under uncertainty. They are built around
a probabilistic graphical model, that represents a set
of random variables and their conditional dependen-
cies. There are three parts to a BN; a Directed Acyclic
Graph (DAG), a set of Conditional Probability Dis-
tributions (CPDs) for each node on the DAG, and
an inference engine used to solve the network. The
input criteria (also known as evidence) are variables
which can be directly observed. The probabilities of
each discrete variable state within the network can be
calculated from the observed variables, based on the
conditional dependencies.

The use of BN is not a new concept in image clas-
sification. For example [24] presents a BN framework
for combining low level features to detect the most sig-
nificant object within an image. Another example is
[25], which uses a simple BN to combine colour and
texture data with camera metadata (focal length, expo-
sure time and flash activation) to ascertain whether the
photo was taken indoors or outdoors.

This paper aims to use a Bayesian network to
perform probabilistic data fusion for classification
of a pre-segmented image. The data sources include
the aforementioned texture classifiers, in addition to
colour, horizon intercept and distance estimation. The
BN should not only improve the classification per-
formance but also provide a solution which is more
robust to changing conditions. The domain knowledge
applied using this technique is unique to this appli-
cation, so is very dissimilar to previous works. The
network parameters are found both manually and from
machine learning techniques.

9 Bayesian Network Structure

The DAG for the proposed BN is shown in the lower
section of Fig. 3. There are four distinctive sub net-
works, which include texture classification, horizon
intercept, colour classification and surface marking
detection. The information from these sub networks is
combined in final class estimate node, which provides
a more accurate result when compared to any of the
individual classifiers alone.

The inputs into the full network are shown in
Table 1. As a discrete BN implementation is used, dis-
cretised data is required. Dist , NRL, Hoz, H , S and

Horizon
Intercept

Line Detection
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Fig. 3 Whole system showing the processing done on raw RBG image, and displaying the Bayesian Network structure
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Table 1 Bayesian network inputs

Input type Abbreviation

Mean HSV colour data [H, S, V ]
Relative horizon position Hoz

Normalised Relative Luminance NRL

Texture classification estimates [MR8, LBP ]
Estimated 3D distance to cluster Dist

V will need to undergo discretisation. How the data is
extracted and discretised is explained in the following
sections.

For each cluster in the original image, the network
is applied based on the cluster’s data. The output is
a probability of the cluster belonging to each class.
The highest probability indicates the most likely class.
Provided that the probability is above a chosen thresh-
old (which separates unknown clusters) the cluster is
designated as belonging to that class. This is sum-
marised in

ci = arg max
Classi

P (Classi |Hi, Si, Vi,MR8i , LBPi,Hozi,

Disti , NRLi) (5)

where ci is the class assigned to cluster i.
In order to complete the network, the CPDs need

to be determined. Parameter estimation techniques are

used to calculate the CPDs of a few key nodes. Where
parameter estimation is found to give poor results,
human expertise is used to manually define others.
In order to minimise complexity, each CPD is trained
within it’s sub-network. This reduces the number of
examples required for each training set.

The final class estimate CPD will be manually
defined, as it fuses the four main sections (colour, tex-
ture, relative horizon position and line detection) using
logic that can be easily applied by an expert. In this
case the CPD for class has 1764 entries which are to
many to display here, so a number of entries are shown
in Table 2 which illustrate how the domain knowledge
and data fusion logic are applied. The main principles
behind the filling out of the CPD are as follows:

– Class probability is mainly based on colour and
texture classification, when they agree probability
it being that class is 1, if they disagree it will be
uniformly distributed between them

– Colour classification performs better than texture
on white yellow and red markings

– Clusters which have a horizon intercept state of
Above has a probability of being Sky with a
probability of 1 regardless of texture or colour
classification.

– Clusters which are above and below the horizon
(Above/Below) have a high probability of being
a building and a low probability of being any other
class.

Table 2 Example entries from Class CPD P(Class|ColourClass, T ex,Hoz, Line)

Description of CPD entry ColourClass Tex Hoz Line Asphalt Grass Sky White Yellow Red Building

Ground non-line cluster Asphalt Asphalt Below F 1 0 0 0 0 0 0

Classifiers in agreement/ Asphalt Grass Below F 0.5 0.5 0 0 0 0 0
non-agreement
Colour classifier preference Red Asphalt Below F 0.3 0 0 0 0 0.7 0

Above horizon Sky Sky Above F 0 0 1 0 0 0 0

Asphalt Asphalt Above F 0.2 0 0.8 0 0 0 0

Asphalt Grass Above F 0.1 0.1 0.8 0 0 0 0

Ground Line cluster White White Below T 0 0 0 1 0 0 0

White Yellow Below T 0 0 0 0.5 0.5 0 0

White Red Below T 0 0 0 0.8 0 0.2 0

Asphalt Grass Below T 0.1 0.1 0 0.4 0.4 0 0

Collision risk Cluster Yellow Building Above/Below F 0 0 0 0 0 0 1

Yellow Yellow Above/Below F 0 0 0 0 0.1 0 0.9
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– Clusters which have a T rue Line state have high
probability of being a White or Yellow line and a
low probability of being any other class

Parameter estimation is commonly encountered when
designing Bayesian networks. Unlike the intuitive net-
work structure, numerical parameters are harder to
elicit from human experts. To this end, a number of
methods have been developed to estimate the parame-
ters for both complete and non-complete data.

It is possible to provide manual classification for
every cluster in the training set. This allows Maxi-
mum Likelihood Estimation (MLE) to be used. MLE
selects the set of values of the model parameters that
maximizes its likelihood function. MLE parameter
estimation is already used for image classification, and
has been demonstrated to improve performance in skin
detection [26]. The application of MLE to Bayesian
networks is explained in detail in [27].

9.1 Texture Sub-Network

The two independent texture classifiers (i.e. based on
the MR8 and Local LBP descriptors) are combined
into a single texture classifier node using the simple
sub-network structure seen in Fig. 3. This not only
simplifies the network, but also allows sub-networks
to be assessed and trained separately. Each node has
seven states, which represent each of the seven dif-
ferent aerodrome object classes, and an unknown
collision risk class.

As stated in Section 3, the two different texture
descriptors are used to capture texture information
across different scales. As such, the classification per-
formance of these methods differs between classes.
As LBP descriptors are small (3 × 3 pixels) they will
typical perform better on clusters with a small area,
whilst the larger MR8 descriptors (49 × 49 pixels)
will make classification on the larger clusters more
accurate. This has been confirmed through observa-
tion, where the LBP classifier has produced better
results for surface markings (which are small in the
full image), whereas MR8 performs better on classes
such as asphalt and grass (which make up the majority
of the terrain).

This correlation could be manually included in
the CPD of the combined texture class node T ex;
biasing the probability that LBP surface-marking

classification is better than MR8, and vice-versa with
classifications of asphalt and grass. However, deter-
mining how to bias the results would also require
much manual effort. Instead, the differences in perfor-
mance can be captured more accurately by using auto-
mated parameter learning techniques. Using MLE,
a set of 100 manually classified images is used as
training data to learn the CPD P(T ex|MR8, LBP ).

As previously described, the intention of this work
is to enable the use of soft evidence within the BN.
Using the probabilistic approximation techniques out-
lined in Section 3 the texture classifiers provide a
probabilistic confidence for each class, rather than a
discrete result. As such, this data is simply entered
into the BN allowing, the MR8 and LBP nodes to
function using soft evidence.

Figure 4 shows examples of classification using the
independent LBP and MR8 classifiers. Each cluster is
coloured to represent the winning class, i.e. the class
with highest probability. For comparison, Fig. 5 shows
the results from the entire texture sub-network, in
which the LBP and MR8 results have been combined.
The winning T ex class for each cluster is determined
by arg max

T ex
P (T ex|MR8i , LBPi).

(a)

(b)

Fig. 4 Example of an aerodrome taxiway image, texture
classifications



J Intell Robot Syst

Fig. 5 Combined texture
classification on example
image

9.2 Bayesian Colour Classification Sub-Network

The sub-network of the BN that handles the colour-
based cluster classification is shown in Fig. 3. Each of
the six classes for colour is a suitable metric are repre-
sented by individual nodes, all of which only have two
discrete states: true (T ) and false (F ). This arrange-
ment is used as a full HSV approach is not applicable
to all classes (e.g. there is little use trying to iden-
tify asphalt based on hue) and therefore only relevant
information is passed through the sub-network.

To allow discrete states, each of the colour channels
is discretised into bands. Hue is modelled as a repeat-
ing circular distribution, and is discretised into 24
discrete states for 0–360◦ in 15◦ increments. Satura-
tion and value are both discretised into 10 states from
0–1 in increments of 0.1. This produces a colourspace
with 2161 discrete colours in total. As this would be
difficult for even an expert to manually complete, the
CPD is created through training.

The node ColourClass is a hidden node which
simply combines the individual true/false probabili-
ties into a single node. This simplifies the network,
making it easier to observe the output of the colour
classifier, as all classes can be compared in a single
node. In addition, this also makes the CPD of the final
Class estimate node much simpler, as it will have only
a single parent.

An example of the classifier output is shown in
Fig. 6. In this figure, the top image shows a typical
aerodrome scene which has undergone discretisation
in HSV, the lower half depicts the classifier output..
The class probabilities of each cluster are calculated
from P (ColourClass|H, S, V ). This is the marginal

probability distribution of ColourClass with H, S, V

entered as evidence. The equation below shows how
the colour class estimate is make for each cluster i

ci = argmax
ColourClassi

P (ColourClassi |Hi, Si, Vi) (6)

Using only the HSV colour classifier, the per-
centage of correctly classified pixels for the example
image is 95.6%. From Fig. 6 it can be clearly seen
that the largest source of error is the misclassifica-
tion of white surface markings as sky. This is due
to the two classes sharing the same discrete colour

Fig. 6 Discretised HSV colour image and subsequent Bayesian
network colour classifier output
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and performing classification without any additional
context.

9.3 Surface Marking Detection Sub-Network

The second sub-network is specifically intended to
provide an additional probability of a cluster being
either a white or yellow surface marking. This sub net-
work is shown on the right side of Fig. 3, with the
variable Line representing this probability. As with
the discrete classes within the HSV sub-network Line

has two states, true (T ) and false (F ).
As mentioned in Section 5, atmospheric effect can

affect NRL over distance. On clear days, Rayleigh
scattering scatters blue light more than red, lowering
the NRL values of objects in the distance. Conversely,
on overcast/rainy days, the presence of water droplets
in the air scatters all light wavelengths equally. As
such, all colour channels increase, with objects in the
distance tending to have a higher NRL value. As the
test footage used for this paper was taken on a wet,
overcast day, NRL values increase at extreme distance.
As a result, classes which would have Low NRL states
in the foreground gain Medium or High states when
far from the camera.

A different example image in Fig. 8a shows the
NRL values for each cluster, clearly indicating the
NRL for surface marking detection. This figure also
shows the atmospheric effects created by rain, as the
areas highlighted with red circles have high NRL val-
ues despite being grass and asphalt. To mitigate these
atmospheric effects, clusters in the distance that have
a higher NRL values need to be given a much lower
probability of being a line. This is easily achieved
using the BN structure shown in Fig. 3, where clus-
ter NRL and cluster distance from camera (Dist) are
combined together.

As only distant clusters are affected significantly,
precise distance estimation is not required. Therefore,
for simplicity of concept, distance to cluster is approx-
imated using the pinhole camera model. For any point
captured by a pinhole camera, similar triangles can
be used to map between the 3D position of the point
P(X, Y,Z), and the position of the point within the
image Pc(u, v) as shown in Fig. 7. Given the focal
length f and the height of the camera above the
ground Ycamera . The ground position X and Z to the
base of the cluster is calculated below. Using simple

u

v

Ground level

X

Z

Y

P(X,Y,Z)

Pc(u,v)

Ycamera

Principal Axis

Projected Cluster

Cluster

Fig. 7 Pinhole camera model used for depth estimation

trigonometry the ground distance Dc to the cluster can
be calculated.

Z = f.Ycamera

v

X = u.Ycamera

v

(7)

To be used within the BN, cluster distance must
also be discretised. This is achieved in a similar way to
NRL, with Dist discretised in to three states: Close,
Mid and Far , representing distances of less than
20m, between 20m and 55m, and more than 55m
respectively.

For the same example image as in Fig. 8a the dis-
crete states for each cluster are displayed in Fig. 8b.
In ellipse 1, there are several distant clusters which

(a)

(b)

Fig. 8 Example of an aerodrome taxiway image, processed for
NRL and distance
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Table 3 Line CPD P(Line|NRL,Dist)

NRL state Dist state True False

Low Close 0 1

Medium Close 0.75 0.25

High Close 0.9 0.1

Low Mid 0 1

Medium Mid 0.55 0.45

High Mid 0.8 0.2

Low Far 0 1

Medium Far 0.2 0.8

High Far 0.6 0.4

have high NRL values due to the weather. By intro-
ducing distance, these clusters are in the Far state,
and therefore will no longer have any chance of being
misclassified as a line.

Ellipse 2 demonstrates a more difficult result, as
the clusters have similar NRL values to actual sur-
face markings at the same distance. Therefore, a Mid

state simply reduces the probability of being a line. As
actual lines generally have far higher NRL values, this
is seen as an effective solution. The CPD of the Line

node is compiled to represent these relationships and
is shown in Table 3.

Figure 9 depicts the final probabilities of clusters
being considered surface markings, based on the sub-
network alone. Actual surface markings are clearly
well defined. Although some non-surface marking
clusters have non-zero probabilities of being a line, the
actual probability remains low at 0.25 which will not
affect the final classification unduly.

Table 4 Horizon intersect discrete states

Hoz states

Above

Below

Above/Below

9.4 Relative Horizon Position Sub-Network

The three states for horizon intercept are listed in
Table 4. The horizon line is calculated and clusters
with 100% of their pixels below or above this line
are defined appropriately if the pixels are distributed
above and below they get assigned to this state.

The horizon intercept logic is applied to the net-
work in the final class estimate Class node’s CPD.

Using the example image, the horizon line is cal-
culated and the clusters assigned horizon intercept
states, which is shown in Fig. 10. All the sky clus-
ters have been shown to be above the horizon, and the
ground below which will easily stop misclassifications
between the two. The building in the image is in the
Above/Below state which will give it a much higher
probability of being classified as a building.

9.5 Unknown Classes From Uncertainty

As stated in Section 1, a key motivator of this work
is that the system is capable of detecting generic col-
lision risks (i.e. objects) within the image. As the BN
must assign every cluster a known class, objects which
are of an unknown class will get misclassified. How-
ever, based on the input probabilities the final result
will include a low certainty of being that misclassified

Fig. 9 Example of an
aerodrome taxiway image
white or yellow line
probability
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Fig. 10 Example image
cluster horizon intersect
states

class. If a threshold for certainty is set that if the win-
ning class probability arg maxClassi P (Classi) < U

for a cluster is below this threshold it will be classi-
fied as unknown and could be an obstacle. As such,
the detection of ‘unknown’ objects is simply achieved
through the final confidence.
{

ci = unknown for maxClassi P (Classi) < U

ci �= unknown for otherwise
(8)

where unknown is an unknown collision risk state,
and U is the probability threshold.

Figure 11b shows the results of classification using
the full BN, including the addition of an ‘unknown’
class where U is 0.5. Clusters depicted in orange are
those classified as unknown. From this figure it can

(a)

(b)

Fig. 11 Example aerodrome image with vehicle obstacle

be seen that a significant portion of an obstacle (i.e.
a ground-vehicle) is classified as unknown and would
be considered an obstacle. The marking boards are
also unknown classes so would rightly be considered
an obstacle. There are however some other clusters of
grass around the edge of the taxi way that have a low
enough certainty to be classified as unknown. This
is due to the inconsistent colour of the grass around
the edges, in addition to imprecise cluster borders. As
grass is not a navigable surface, this result would have
minimal impact on the performance during taxiing.

10 Results

Test footage was captured using a monocular cam-
era mounted on a test vehicle so as to represent the
view from a UAS camera system shown in Fig. 12a.
The vehicle was driven around an aerodrome in the
UK, driving multiple typical taxiing paths around
the aerodrome, an example path shown in Fig. 12b.
Obstacles, such as other vehicles, were positioned at
various places to enable the testing of the obstacle
detection algorithm. This scenario provides a visually
realistic scene, both in terms of lighting and surface
conditions. For most of the footage the weather is
overcast, limiting the colour range available. In addi-
tion, the aerodrome asphalt surface is aged and worn,
with inconsistent surface textures where repairs have
been made. This makes this a highly challenging and
realistic data set.

As this experiment was to generate results in post
process, the code is not optimised. It runs at around 0.1
Hz on an I7 desktop PC. However the BN can be ran at
2 Hz on the same computer, it is the texture classifier,
and the pre-segmentation that increases computational
time. However as each classification is performed on
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(a)

(b)

Fig. 12 Example aerodrome image with vehicle obstacle

each cluster individually, this lends itself to parel-
lelisation using multi-core CPU, or CUDA to enable
GPU acceleration. These would enable it to run in real
time.

For illustration all clusters in the example image
used previously in Section 9.1 have been classified
using the full BN classification method and displayed
in Fig. 13. This single image shows the results to be
good with the misclassified clusters shown in Purple.

From the multiple taxiing paths through the aero-
drome, 100 images were selected at random. For each
image, every pixel underwent manual classification;
being labelled as a known class or left as an unknown.

80 of the images were then used to train the texture and
BN classifiers, whilst the remaining 20 images were
used for testing. Comparison between the manual clas-
sification and BN output were then used to determine
the accuracy of the approach. Further results for indi-
vidual BN sub-networks and the previous ‘texture
only’ approach were also created for comparison. To
aid in discussion, a particular cluster has been selected
from the example image seen throughout this paper,
with the classification results reviewed below.

To aid in discussion, a particular cluster has been
selected from the example image seen throughout this
paper and it’s classification is reviewed below.

10.1 Example Cluster

The selected example cluster is labelled as ‘Cluster
288’ and is shown in both Figs. 5 and 13. In both MR8,
LBP and the combined texture classifier, this cluster
has been misclassified as asphalt whereas it should be
classified as ‘red-surface marking’. Table 5 shows the
posterior marginal distributions for the ColourClass,
T extureClass, and the final Class nodes. For this
aerodrome, the red surface markings are very old and
worn so have a very similar texture to asphalt, result-
ing in the texture misclassification. Despite this, the
colour for this cluster remains distinct, with the colour
classifier estimating a red surface marking with a very
high probability of 0.9592.

As the CPD for Class gives a greater weighting
on the colour classifier for surface markings, the com-
bined result of both colour and texture alters the result
such that the overall winning class is Red. Seen in the
marginal for Class, red has a now winning probabil-
ity of 0.7604, whereas asphalt is only 0.1905. As this
is a ground cluster (i.e. a Hoz state of Below), there
is a zero probability of it being the Sky class. It has
marginal Line probability for the state F of 1 which
means that is has a also has a near zero probability of
being a yellow or white line.

The benefit of using soft evidence from the texture
classifiers can clearly be seen. Relying on hard evi-
dence alone (as in [11]), asphalt would have received
a texture probability of 1, whilst all other classes
would have received zero probability based on texture.
By comparison, using soft evidence the confidence in
asphalt was only 0.5292. This raises the final proba-
bility for a red line estimate from 0.6714 to 0.7604,
correctly identifying the class.
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Fig. 13 Final classification of test image showing segmentation, misclassifications and unknown clusters

10.2 Classification Accuracy

For this work, there are effectively two different types
of error: misclassification and segmentation error.
Segmentation error is when a cluster has erroneously
grown to include pixels from two or more classes. This
can be due to low image quality, or more commonly
superpixels being close to the boundary between two
visually similar classes. Using the example image
used previously, the clusters which have not been
segmented correctly are shown as black clusters in
Fig. 13.

By comparison, misclassification is when a classi-
fier incorrectly identifies a cluster. Examples of mis-
classification are shown in purple, in Fig. 13. There are
two ways to statistically represent misclassification
error percentages; per cluster or per pixel. Although
classification is performed on a per-cluster basis, as
clusters can be drastically different in size, large errors

Table 5 Marginal posterior distribution for Class,
ColourClass and T ex for cluster 288

Class Colour Class Tex Class

Asphalt 0.0408 0.5292 0.1905

Grass 0 0.0271 0.0008

Sky 0 0.0225 0

White Line 0 0.1043 0.0204

Yellow Line 0 0.1036 0.0203

Red Line 0.9592 0.0932 0.7604

Building N/A 0.1202 0

in the final result can be lost if only the cluster based
result is reviewed. (e.g. if the entire sky is a single
cluster, but is misclassified as an obstacle).

The previous texture classification methods have
been shown to have reasonable performance but were
not considered adequate or robust enough for naviga-
tion or obstacle detection. For the test set, the average
percentage error for the classification of each pixel
and cluster are shown in Table 6, with results for both
previous texture classifiers as well as the complete BN.

From the table it can be seen that the BN has a
significant performance increase when compared to
individual texture classifiers alone. When comparing
correct cluster classification, the BN shows a signifi-
cant improvement of 41.8% fewer incorrect clusters.
For perspective, as the relative improvement in pixel
accuracy is only 5.5%, it is clear that this primarily
relates to improvements in the classification of small
clusters. This is to be expected, as larger clusters have
more data to form the texture information used for
comparison, which is clearly shown in Fig. 4. Instead,
the additional information provided through the BN

Table 6 Percentage error for Bayesian network classifier com-
pared to texture only classifiers of test set

Classifier % Pixel error % Cluster error

BN soft evidence 0.7241% 13.4%

BN hard evidence 1.48% 19.82%

LBP 6.29% 52.81%

MR8 5.12% 57.67%
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Table 7 Percentage
breakdown of LBP Texture
only classier of test set

Asphalt Grass Sky White Yellow Red Building

Asphalt 95.5 2.7 1.3 0.4 0.1 .003 0.1

Grass 3.5 94.5 0.0 1.8 0.3 0.0 0.03

Sky 0.4 0.6 98.9 0.01 0.01 0.0 0.1

White 4.2 1.7 0.0 86.5 7.6 0.0 0.02

Yellow 5.4 1.7 0.0 17.0 76.0 0.0 0.0

Red 86.5 11.2 0.0 2.0 0.1 0.1 0.1

Building 2.2 0.08 0.0 0.3 0.4 0.0 97.1

and the reduced dominance of texture data through
the use of soft evidence are the key reasons for the
improved result. As important surface markings are
typically smaller clusters, this improvement should
significantly improve the ability to identify taxiing
markings.

It is also useful to compare the classification
for individual classes. The breakdown for the LBP,
MR8 and BN classifiers are shown in Tables 7, 8
and 9 respectively. Each row represents the percentage
breakdown of the original manually classified class,
in terms of the automated segmentation and classi-
fication results. The highlighted diagonals represent
correct classifications.

As previously stated, texture data for surface mark-
ings and asphalt is very similar, leading to poor clas-
sification results for both MR8 and LBP approaches.
Red surface markings can be especially difficult to
identify as they are typically far less bright, more
closely resembling aspahlt when compared to yellow
or white paint.

It can be seen that MR8 has misclassified red paint
pixels as asphalt 86.5% and LBP 86.4% of the time.
Both also have poor performance for yellow and white
lines, most likely due to the many of the surface mark-
ing clusters being very small in size. As the painted
line textures are also similar between classes, LBP

misclassified yellow lines as white markings 16% of
the time, and for MR8 white markings were mis-
classified as yellow markings for 19% of the pixels.
Looking at Table 9 it can be seen by adding other
inputs, this is dramatically improved. Increasing cor-
rect classification for white, yellow and red surface
markings to 95.32, 93.65 and 97.38% respectively.
Red surface markings are still misclassified as asphalt
for 2.49% of the pixels. This error is likely due to red
markings lacking the high NRL values required for
this additional data to be useful within the BN. How-
ever as NRL can not distinguish between yellow and
white lines, yellow lines are still being miss-classified
as white lines for 2.05% of their pixels.

With NRL used to improve the classification of sur-
face markings, much of the former misclassification of
classes as surface markings has been eliminated. For
example, LBP and MR8 texture classifiers incorrectly
classified grass as a white line 1.784 and 0.971%
respectively. By comparison, using the full BN lowers
this misclassification to just 0.01%.

Excluding surface markings, texture was already
shown to be sufficient to separate asphalt from other
classes, due to asphalt’s consistent and mostly uni-
form texture. As such, using texture classifiers alone
LBP is shown to achieve 95.5% accuracy whilst MR8
achieves 99.0% independent of other data. As minimal

Table 8 Percentage
breakdown of Maximum
Response Filters (MR8)
Texture only classier of test
set

Asphalt Grass Sky White Yellow Red Building

Asphalt 99.0 0.5 0.0 0.2 0.3 .01 .03

Grass 10.1 87.9 0.0 1.0 0.9 0.0 0.2

Sky 0.0 0.0 98.9 1.1 0.0 0.0 0.0

White 3.5 .03 0.0 77.3 19.2 0.0 0.0

Yellow 2.5 0.0 0.0 2.1 95.3 0.0 0.0

Red 86.5 0.0 0.0 0.8 0.9 9.4 2.4

Building 2.2 0.0 0.0 0.0 0.2 0.0 97.6
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Table 9 Percentage
breakdown of Bayesian
network classier of test set

Asphalt Grass Sky White Yellow Red Building Unknown

Asphalt 99.0 0.54 0.00 0.04 0.01 0.00 0.00 0.41

Grass 1.60 98.33 0.00 0.00 0.01 0.00 0.00 0.06

Sky 0.04 0.00 99.55 0.00 0.00 0.00 0.00 0.40

White 0.90 0.00 0.01 95.32 0.77 0.23 0.00 2.78

Yellow 0.06 1.26 0.00 2.05 93.65 0.00 0.00 2.98

Red 2.49 0.10 0.00 0.01 0.00 97.38 0.00 0.01

Building 3.95 0.00 0.00 0.00 0.00 0.00 96.05 0.00

Unknown 53.57 37.71 2.78 1.04 0.54 0.57 0.00 3.80

additional information is provided through the intro-
duction of colour, the final BN result does not sig-
nificantly increase in accuracy. However, as multiple
sources of data combined together provide the same
result as the best indicator of class, it is hoped that
this approach has made the end result more robust for
scenarios where texture data is limited.

Focusing on the classification of grass, the lack of
a consistent texture makes texture based classifica-
tion less successful. Grass clusters will have differing
densities throughout due to patchiness and possibly
different grass breeds. Therefore the texture only per-
formance is not as favourable at 94.4% for LBP
and 87.9% for MR8. This is improved by using the
BN classifier to 98.33%. Grass has a distinct colour
(which is why hue is included for its classification)
so data fusion with the colour classifier has lead to
improved results.

As the training and test data sets were created
using footage from the same aerodrome, it is likely
that an element of over-training has been introduced
within the texture classifiers. This is evident in the
very high classification performance results of the tex-
ture only classifiers when classifying buildings. As
there are typically very few buildings along taxiways,
the entire class has been trained to identify these spe-
cific buildings. As such, when additional information
is introduced within the BN, there is around a 1%
decrease in accuracy compared to texture alone.

The loss of accuracy is mainly the result of over-
segmentation, with parts of the building isolated fully
above the horizon and therefore discarded as not being
a potential risk. An example of this can be seen in
Fig. 10, which lead to the misclassification of that
cluster shown in Fig. 13. However, the relative reduc-
tion in classification accuracy is the result of such a
small training set. Had more buildings and material

types been used to create the building texture class,
the accuracy of the texture classifiers would have been
somewhat decreased. In this case, the inclusion of
the horizon information would have been an improve-
ment, rather than a detriment. Further testing at an
airfield with more buildings is therefore required to
validate this hypothesis.

As nearly all of the test images are around 50%
sky pixels, the extremely large cluster size benefits
both training and classification. As such, the sky class
has the best classification result, with around 98.9%
accuracy for both MR8 and LBP. However some mis-
classification still occurs when using texture alone.
From Table 9, nearly all misclassification of sky clus-
ters has been rectified by applying horizon logic. Only
around 0.04% of sky pixels are incorrectly classified
as asphalt, again primarily due to errors in the initial
segmentation.

The largest misclassification introduced by seg-
mentation error occurs between grass and asphalt,
as shown in Table 9 where 53.5% of all segmenta-
tion errors are asphalt and 37% are grass. This is
due to the most common boundary within taxiway
images being the taxiway edge, with these segmenta-
tion errors accounting for an average of 2.5% of the
pixels across the whole test set. Although this appears
significant, as both classes represent terrain types and
the clusters are typically very small, there should be
minimal effect on the actual taxiing process.

11 Conclusions

In this paper we have presented a method for segment-
ing images and semantically classifying the resulting
regions, using domain knowledge of aerodrome envi-
ronments. This is to enable automated taxiing of UAS
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at non-segregated aerodromes. The accurately seg-
mented and classified images are intended to allow
both improved localisation though map-matching, as
well as generic obstacle detection.

A probabilistic BN framework is used for fusing
multiple sources of information with domain knowl-
edge. This method has been shown to improve clas-
sification performance compared to the individual
classifiers by 5.5% per pixel and by a large 41.8%
per cluster. By entering probabilistic confidence of the
texture classification into the network using soft evi-
dence, the classification performance has improved,
with a per-pixel performance increase of 0.75% and
per cluster of 6.42%.

We have been constrained by only using a single
sensor, but have shown if the BN is developed and
tuned for a particular environment, promising clas-
sification performance can be achieved with only a
monocular camera. The intuitive graph structure of the
BN allows for extending the network to include other
sources of information in the future, such as cluster
adjacency.

As the BN process is deterministic and as any node
can be marginalised, it can easily be monitored and
verified, making this much more appropriate for safety
critical aircraft systems. This is in comparison to non-
deterministic classification methods such as neural
networks, which would not be appropriate.

The data set is limited to the same taxiway, with
training and testing videos only being taken a few
hours apart, meaning that different weather and light-
ing conditions where not tested. In future work we
aim to extended the BN to take account image illumi-
nation, and conduct tests under different lighting and
weather conditions.
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