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Abstract—This paper is aimed at new entrants into the field of 

electrical community energy. It reviews some of the work that is 

underway into community electrical energy projects. This review 

includes a summary of key issues and components which need 

consideration including some or all of the following; demand side 

management, energy storage (including vehicle to grid) and 

renewable generation. The paper looks further into the energy 

management schemes of these projects and summarises 

previously published methodology in the area.  

Keywords—community energy; energy storage; renewable 

generation; energy management; Virtual power plant; Virtual 

Energy District 

I.  INTRODUCTION  

Community Energy schemes have tended to focus on provision 
of thermal energy to increase community efficiency through 
the sharing of heat generating plant and the associated costs. 
Heat from biomass and combined heat and power schemes 
have made effective candidates for community scale district 
heating systems [1] with the business model depending on the 
communities’ longevity of demand to secure finance. Recently 
more advanced community energy systems have attracted 
industrial and academic interest as the number and variety of 
deployments has increased [2] and as the role of decentralized 
and community energy has gained recognition as a method for 
decarbonizing energy systems [3]. It is thought that properly 
integrated local energy systems can provide additional benefits 
to the wider energy system. [4]. The reasons behind 
undertaking a community energy scheme may include 
increased energy supplier profit, reduced customer bills, more 
independence from the grid and reduced emissions (in terms of 
both carbon and air quality). 

Schemes where electrical energy is dealt with at a community 
level are under consideration for several reasons; they offer the 
opportunity for communities to reduce their energy bills and 
there is opportunity to support stakeholders in the wider 
electrical system such as Distribution Network Operators 
(DNO’s) or Transmission Network Operators (TNO’s) by 

reducing peak load to help with Network constraints or assist 
with demand upturn or down turn to contribute to Network 
stability for example. These community schemes offer the 
opportunity to adjust Community Network demand/generation 
through the use of renewable energy resources such as small 
wind turbines or PV panels, demand side management and 
energy storage including Vehicle to Grid schemes. Although at 
a high level such schemes sound straightforward, in practice 
there are a number of issues to be resolved. These include 
technical issues such as; the scheme layout and adaptability and 
scalability, sizing issues, the control strategy, and the energy 
management strategy. While from a financial aspect, there are 
questions around profitability and pay back periods along with 
metering consideration and regulatory issues. There are 
thousands of published papers into “community energy” in the 
last five years. This paper looks at a summary of the main 
points arising from this literature to act as a guide to new 
entrants in the field and provide references from which 
additional information can be gathered. 

II. COMMUNITY ENERGY LAYOUT SCHEMES 

To help define and sort the different published community 

energy schemes into type there are a number of definitions 

that are needed as shown in Table I. This paper concentrates 

on community energy where the community is defined as 

domestic properties which may include small 

industrial/commercial users as opposed to large industrial 

parks or large “lumped” energy schemes. One of the 

advantages of a community network is making sure that the 

community is considered as a unit so that it has greater 

negotiation power over energy contracts. Consequently 

metering arrangements also need to be considered. A number 

of different community based layouts that could be used are 

shown in Fig. 1. These include; a small isolated grid such as 

an island community, with some or all of the community 

energy managed, and a small area of Network, such as 

downstream of an 11kV transformer. This offers a good 

structure for helping with local DNO constraints. The third 
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scheme is a fully distributed scheme over a larger area of the 

Network possibly though a Virtual Power Plant (VPP) styled 

interface which can have DNO and TNO related benefits. 

TABLE I.  TERMINOLOGY 

 Terminology Definition 

VPP Virtual Power 

Plant 

A cluster of dispersed generator units, 

controllable loads and storages systems, 

aggregated in order to operate as a unique 
power plant. [5] 

VED Virtual Energy 

District 

A localised area where different residential 

and/or industrial users coexist, requiring 

or producing energy. [6] 

HEM Home Energy 

Management 

Systems 

System to control energy management in 

domestic properties. 

DSM Demand Side 
Management 

The change in customer energy demand in 
response to a controlling factor.  

DSR/

DR 

Demand Side 

response/demand 
response 

A form of DSM where customer load is shifted 

from key times by means of a financial 
incentive. 

EV/ 

HEV/

PHEV 

Electric vehicle/  

Hybrid Vehicle/ 

Plug in Hybrid 
Vehicle 

In the context of community energy it is 

assumed that these are all connectable to the 

grid and act as an electrical load. 

V2G Vehicle to grid An EV/HEV or PHEV which may act as a 

source of energy to the community as well as a 
load. 

 

Fig. 1 Community energy scheme layouts 

A. Community Projects 

Community energy project numbers have increased in recent 
years due to an increased element of research funding. In the 
UK this is largely through Technology strategy Board (TSB) 
Innovate UK projects, Low Carbon Network (LCNF) and 
Department of Energy and Climate change (DECC) funding. In 
the EU there exists Horizon Framework grants. Community 
energy schemes currently in different stages of development in 
the UK include but are not limited to field trials and/or reported 
developments from small startup companies through to bigger 

well established players in the energy field. Examples include; 
Community Energy Services Company [7], Exergy Devices 
[8], Upside Energy [9], CENEX [10], Moixa [11], Tempus 
Energy [12], Kudos Energy [13] and OpenUtility [14]. Some of 
the technical solutions currently being reported are more 
geared to small industry rather than community energy at 
domestic properties for example Kiwi Power [15], Open Energi 
[16] and Cisco [17].  

Examples of more Utility driven projects which include field 
trials include; Scottish and southern Energy projects; My 
electric avenue [18] looking at EV charging; Thames Valley 
Vision [19] looking to understand consumption and anticipate 
and support changes to Network management and SAVE [20] 
looking at DSM. Others include Western Power Distribution 
projects; FALCON [21] and project SYNC [22] which focus 
on industrial and commercial scale demand. UKPN projects 
include Low carbon London [23] which also focused on 
industrial and commercial customers, Smarter Network Storage 
[24] which includes energy storage and Vulnerable customers 
and energy efficiency [25] looking at DSM. These projects are 
very focused on Network issues and would require third party 
companies to deal with the commercial side. 

Through EU funding there has been a number of larger and 
more involved projects with multiple consortia. A number of 
such projects in recent years typically include some form of 
VPP. Some examples of projects in this area include:  

Ecogrid [26] is a large-scale field test on the Danish island of 
Bornholm (with follow on EU funding) to investigate how 
varying real-time price signals can influence the demand of 
electricity customers under fully automated, semi-automated 
and manual control. The trial included 1,900 electricity 
customers and up to 100 industry/commercial buildings with 
electric heating and heat pumps being the key managed loads. 
Solarserve [27] which is a VPP based project with generation 
and storage. The Combined Power Plant consists of three wind 
parks (12,6 MW), 20 solar power plants (5,5 MW), four biogas 
systems (4,0 MW) and the pump storage Goldisthal (Output: 
1.060 MW; Storage: 80 hours, i.e. 8480 MWh). Project FENIX 
[28] which is another VPP based project with generation in the 
form of large scale and small domestic CHP. Project 
ADDRESS [29] included demand side management (mostly 
washing machines and water and electric heaters) of 263 
consumers in Spain. Project PowerMatching City [30] looked 
at control of a number of households with a combination of 
PV, EV, hybrid heat pump, micro CHP plus energy storage.  

There are also a significant number of schemes that are not 
directly community based but focus around an individual entity 
such as a single house looking into management of one or more 
combinations of load, PV, energy storage, heating or hot water, 
with the potential for scale up to community level. Examples 
include, but not limited to, passivsystems[31], British Gas[32], 
Geo Systems[33], Simtricity [34], PowerVault [35], Honeywell 
[36], Sneider [37], Eltako [38], Apple [39] and Wink [40]. 

B. Components in Community Energy 

A community energy scheme with electrical energy control 
needs to be focused on controlling generation, storage and load 
at a number of residential properties. To this end, Fig. 2 shows 
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community 
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Distributed around the Network  

Unmanaged property 

Managed property 

LV transformer 

 



an image of a house with a summary of those components 
which could be deemed controllable in some manner under a 
DSM scheme. There is also scope to consider common 
community loads such as street lights within a scheme. 

The appliances may be controlled through plug sockets or by 
direct control through communication with the appliance. 
Control may be complicated by the operational constraints of 
the appliance and/or customer requirements [41]. In addition 
devices may be classified as shiftable and/or throttleable 
resulting in implicit constraints [42]. Examples of these are 
shown in Table II. Other electrical appliances such as lighting, 
TV and computers are typically defined as critical and turned 
on when required and so are unavailable for management. 

 

Fig. 2 Controllable DSM elements at a house 

TABLE II.  DSM CONSTRAINT 

Device Constraint Time 

period 

Constraint 

Heat pump Up to 10 minutes Minimum operating time [18] 

Appliances on 
uninterruptible  

cycles 

Cycle time 
around an hour 

Cycle completion to avoid issues such 
as damp clothing sitting in a washing 

machine. Typically shiftable with 

fixed energy. 

Appliances on 
at all time 

Cooling/heating 
cycle of device, 

(12-24 minutes 

[42]) 

For example refrigeration units 
reaching temperature thresholds. 

These devices may be throttable i.e. 

can operate at reduced power. 

Heaters/ air 

conditioning 

Cooling/heating 

cycle of house 

Customer comfort threshold may also 

be a function of external temperature 

and insulation 

PV daily Uncontrolled and subject to weather  

Energy storage 10 minutes Some battery chemistries require a 

settling time after full charge 

 

If it assumed that the generation sources (PV, wind) are 

uncontrollable, a community energy scheme typically has to 

have the following control over the appliances within a 

property subject to their constraints; 

 Shifting the start time and hence load profile  

 Reducing the input power (if possible)  

 Importing/exporting power to energy storage devices 

 Micro CHP electricity export 

This local control (switching on and off devices) is typically 
reported as being achieved through the use of a local house 
controller as shown in Fig 3.  

 

Fig. 3 Typical control hierarchy 

The role of this controller may include any combination of the 
following functionality; 

 User interface and intervention. This may be through a 
number of media However, WiFi based lap tops, tablets and 
smart phones are looking to be the popular choice. All 
information from tariff, through to sensor data, to appliance 
state, to metering could be made accessible. 

 Control of devices. This may be manual through the user 
interface, fully automatic including fixed and flexible 
scheduling or any combination in between.  

 Sensors that can record and monitor any combination of; 
load demand, generation, battery monitoring, temperatures 
such as hot water, room temperature, freezer temperature, 
weather conditions that may affect generation such as solar 
radiation and wind speed measurements. 

 Metering,  

 Feedback to a central controller.  
 
To co-ordinate properties for a community scheme, an overall 
controller is needed to look at information from all sources. 
Information fed back to this could include any combination of 
the data above and also include probabilistic loading, weather 
forecast based generation patterns. The difference between a 
community scheme and just an individual domestic property 
energy system is that large scale oversight and control is 
required to ensure that the community as a whole delivers on 
promises which may include helping with TNO or DNO 
services. The central controller requires to communicate with 
local controllers (possibly through Radio/3G/4G/Internet) 
Roles of a central control from Fig 3 could include; 

Refrigeration units, washing 

machines, dishwashers, 
tumble dryers 

Heat 

pumps 

Air conditioning 

Generation eg PV, micro chp with and 

without storage or UPS 

Immersion heater 

Plug sockets 

EV or HEV 

Electric or storage  

heater 

Local controller 

Central controller 

TNO/DNO Forecast services 

HMI 

Wholesale electricity 

market/ Suppliers 



 Coordination with the energy market including obtaining 
and analyzing pricing and incentive info e.g. day ahead 
markets, time of use prices, one way price signal [18], 
giving customers access to multiple suppliers or different 
markets e.g. Enhanced Frequency Response (EFR) or Load 
Upturn services for the TNO. 

 Analyzing information from the local controller e.g. 
customer data and other information such as weather 
forecast and generation patterns to look at prediction. 

 Undertaking the calculations required to determine the 
load/energy storage switching patterns/schedules required 
and reporting this down to the local house controller. 

 Delivering metering functionality (this may be over 
different time slots, ½ hour, five minutes, every second) 
plus detailing and reporting customer benefits (fixed tariff, 
reduced costs).  

The ability of the central controller is limited by the amount of 
load that can be controlled, the generation and any energy 
storage. Energy storage is in itself expensive to purchase and 
therefore the customer requires clear financial reward for 
installing this and allowing it to be operated. There exists a 
tradeoff therefore between the cost of purchasing extra storage 
against the additional benefits that this brings and how well it 
can be managed to get maximum benefits. 

III. ENERGY STORAGE SIZING 

Within literature there are a number of methodologies used to 
size and place large scale battery energy storage systems 
around the grid. The majority of these studies are either 
concerned with wind farm generation for both grid and non-
grid connected systems [43,44], with micro grids [45,46] or 
with sizing and costing of systems for offsetting grid 
reinforcement costs [47,48,49]. The published work is split into 
theoretical studies and those with minimal real world validation 
typically on a microgrid. This work is further sub-divided into 
how life cycle and capacity fade are included within the sizing 
calculation. The capacity fade and life span can be ignore if the 
battery chemistry chosen has a low capacity fade and high life 
span not likely to be reached over the course of the life of the 
system.  

For smaller properties such as those at domestic level, batteries 
were previously sized based on what is available in the market 
or sized to match a PV panel output. However, there is a 
growing interest in community energy and in particular the 
Virtual Energy District and Virtual power plants which include 
community schemes. There have been well over 1000 journal 
papers published in the last five years on how to size energy 
storage. These can be summarised as those that deal with 
remote island communities which may have no grid supply, for 
example those in references [50,51,52], and those which use 
complex optimisation techniques with and without both tariff 
and load information and with and without renewable 
generation. In some cases this ties around a building with a 
large load [53] whereas other schemes look at homes on an 
individual basis with and without solar generation [54,55,56]. 
What is clear is that the load and generation change with time 
and therefore the management of the energy storage and the 
algorithm behind this is key to obtain the maximum theoretical 
benefit that is available with hindsight using retrospectively 
fitted data. Different sizes which have turned up within 

literature include [55] 1000 homes with 5kW battery (or 2MW 
per community) and [59] 1.3MW per community. Indications 
are within literature that there is diminishing return with larger 
batteries and that energy management control is key to getting 
the best response from the system. 

IV. CONTROL SYSTEM 

The community energy system is looking to achieve a target 
(such as lowest customer electricity cost) through the 
optimisation of the controllable components in the community 
subject to technical and customer constraints. There may be 
more than one objective aim (e.g. reducing electricity export 
while aiming for lowest cost). In addition due to the 
changeable nature of the loads in the community the system 
must be flexible, adaptable and expandable to meet any number 
of properties. The communication between the central 
controller and the local controllers may therefore be limited in 
very large networks and may constrain the type of control and 
energy management available. For example, the simplest form 
of communication could be a one-way price signal to the local 
controller which the user has the chance to act upon. 

A. Energy Management Algorithm 

 

There are three main categories of energy management 

solution as shown in Table III. 

TABLE III.  MANAGEMENT TYPES 

Type A Type B Type C 

Management of 
multiple buildings, 

assets or appliances 

(aggregated) where 
assets and buildings 

are connected and 

affect the 

management of one 

another 

Separate 
management/control of 

individual appliances, 

assets or buildings with no 
connection between 

multiple appliances or 

buildings / no overall 

management system  

Basic provision of 
information with no 

direct management / 

control of buildings, 
assets or appliances 

and reliance on user 

behaviour to take 

action / manual 

control of assets and 

appliances 

 
Reference [14] undertook a project with 654 semi-

automated households, 444 fully automated households, 500 
manually controlled and a 350 reference group with load 
primarily based around electric heating. They determined that 
there was very little benefit from manual control type C. There 
are a significant number of control schemes described in 
literature around Type A and Type B control with any 
combination of generation, DSM and storage. Due to the 
control complexity involved in the former and the possible 
need for day ahead pricing strategies, it is most common to find 
control solutions based on Artificial Intelligence techniques. 
The most common of these is using multi-agent systems 
(MAS), where typically each property is an agent [60][61]. For 
systems which aim to optimise cost this may take the form of 
an auction between agents. Game theory has been more 
recently used as extensions of optimal control problems. An 
optimal control problem treats the situation where there is a 
single player with one objective function, whereas a game 
theory deals with the situation where multiple players interact 
with each other for their own purpose. These types of energy 



management strategy published in literature can be loosely split 
according to methodology as shown in Fig 4. There are many 
references available in each area associated with the 
methodologies – only a few example ones are given. 

 

 

Fig. 4 Different Energy management strategies 

V. CONCLUSIONS 

 

There has been an increase in community energy projects over 

the last 10 years developed on the ability to control electrical 

and/or heat through the use of demand side, generation and 

energy storage management. However, there is still some way 

to go before these types of schemes can be made commercial.  

  

TSB funded Project ORCSEN looked in detail at a prototype 

community-level demand control algorithm based on 

controlling DSM, generation and energy storage on all 

properties downstream of a local UK 11kV substation, both 

with and without perceived connection constraints, using the 

types of system described in this review paper and identified 

that: 

 On a target network analysed, smart controls across multiple 

buildings coupled with appropriately deployed local 

generation and battery storage can reduce maximum load on 

substations by around 35% in winter and reduce minimum 

load (export) from -36% to -6% in summer. 

 This level of load reduction could feed through to reduced 

network reinforcement costs if appropriate and hence 

support a business case for investment. 

 In addition, this kind of technical solution has the potential 

to save end customers up to 9% on electricity bills via 

demand shifting and tariff optimisation (in addition to any 

direct benefits of microgeneration in the forms of avoided 

electricity purchase and feed-in tariffs). 

 These benefits will vary significantly depending on the load 

and network configuration below the sub-station, and in 

some cases the impact may be negligible. This means the 

value of smart grid control technologies and community 

management algorithms is likely to vary significantly across 

the network and makes overall potential market size difficult 

to validate. 

 The calculated benefits are highly dependent on the 

effectiveness of the control and optimisation algorithm along 

with associated predictive techniques. 

 Energy storage sizing may impact the business case as over 

sized storage could prove too expensive and undersized 

storage will not meet required aims especially within a 

constrained Network. 

In principle there should also be benefits in providing greater 

resilience to large scale solar PV deployment due to the 

positive impact demonstrated in this study in reducing overall 

electricity exports in summer. The next stages in energy 

management should be thorough testing of control solutions to 

prove that it is safe to deploy on a constrained network and 

that business case assumptions are validated. 
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