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Using a metrology system simulation approach, an algorithm is presented to determine the best position for a robot mounted 3D vision system. Point 
cloud data is simulated, taking into account sensor performance, to create a ranked list of the best camera positions. These can be used by a robot to 
autonomously determine the most advantageous camera position for locating a target object. The algorithm is applied to an Ensenso active stereo 3D 
camera. Results show that when used in combination with a RANSAC object recognition algorithm, it increased positional precision by two orders of 
magnitude, from worst to best case.  
 
Metrology, Cognitive Robotics, 3D Image Processing 

 

1. Introduction 

3D vision systems are used in a wide range of manufacturing 
tasks, such as locating tools and parts, inspecting part geometry 
and checking alignment in assemblies. They are also widely used 
to give robots the ability to locate objects in their environment; 
this is useful for pick and place operations, assembly jobs and 
weld path following [1][2][3]. 

When setting up a 3D vision system, selecting the camera pose 
that gives the most useful data is a significant challenge. This is 
because the quality and quantity of captured data is dependent on 
the pose of the vision system relative to the target object. This is 
particularly true for shiny surfaces, which can adversely scatter 
the illumination provided by the vision system such that it cannot 
be detected by cameras in the system [2][4]. To mitigate this 
problem, an expert user might be able to specify viewing position 
that maximises the data captured from an object. However, 
considering only the quantity of measured data is not sufficient to 
select the optimum viewing position; for true optimisation the 
intended use of the data must also be considered. To determine 
how good a pose is, the user is required to setup the vision 
system, collect data, process it and evaluate the performance of 
each pose; continuing to try new configurations until a suitable 
setup is found. Optimising the setup of vision systems can be 
extremely time consuming and heavily reliant on the expertise of 
the human operator [5][6].  

For applications in which the pose of target object relative to 
the vision system are well defined, such as car body parts on an 
assembly line, the optimisation only needs to be competed once;  
so the time taken to optimise the vision system can be easily 
justified. However, for applications that are subject to large 
inherent variation, it might be necessary to undertake the 
optimisation for a wide range of possible situations; this is true in 
challenging pick and place operations that require components, 
presented in a random orientation, to be located and manipulated 
by a robot.  

 In this paper the challenge of accurately locating randomly 
presented parts, using a 3D vision system mounted to the end of a 
robot arm, is considered. This setup might be deployed in 
applications such as robot bin picking or other pick and place 

tasks [7]. The aim of the vision system is to allow the robot to 
locate an object, of known nominal geometry, and determine its 
position and orientation relative to the robot. Mounting the vision 
system on the robot gives the advantage that, in response to 
variation of the target objects, the vision system can be moved by 
the robot to an optimal viewing position. To make this possible 
the robot needs the capability to autonomously select good 
camera positions, removing the need for input from a human 
expert.     

 
Figure 1. Photograph of the 3D vision system mounted to an industrial 
robot and positioned to view a target object.   

 
To give the robot the necessary intelligence to select good 

camera positions, a metrology simulation approach is proposed. 
To demonstrate this approach, a simulation of the physical 
metrology system was created to support the positioning of an 
Ensenso active stereo camera, which is mounted to a robot arm, 
as shown in Figure 1. The approach taken in this work is similar 
in essences to the concepts of virtual metrology, or model based 
metrology, that allow the performance of a metrology system to 
be predicted and optimised prior to undertaking the real 
measurement [8]. It is also compatible with the concept of Cyber-
physical systems which are being increasingly applied to a wide 
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range or manufacturing activities [9]. The aim of the system 
created in this work is to provide a ranked list of viewing angles 
for a given object, from which the 3D vision system is able to 
collect the most information-rich data to give the best estimation 
of the object’s position and orientation. 

 This paper is structured as follows; first, a top level description 
of the metrology system simulation approach is given. This is 
followed by a detailed description covering how the system is 
able to autonomously select optimum camera poses. Finally, to 
demonstrate the performance of the autonomous metrology 
system, the predicted best and worst camera positions for a test 
object are verified by comparison to experimental data. 

2. The metrology system simulation approach 

The metrology system simulation approach combines 
information regarding the configuration of the physical 
measurement task with a computer simulation of the 
measurement process; in this case the measurement process is a 
3D vision sensor that is used to determine the location and 
orientation of an object. The computer simulation gives the 
opportunity to quickly test the expected quality of the data 
collected from multiple camera positions. This could be done 
either in real time, or in advance by considering a large range of 
possible scenarios. The results of the simulation then provide the 
knowledge needed to choose the best camera positions for the 
actual physical measurement process.  

The metrology system simulation created in this work has the 
following key elements: a meshed 3D CAD (computer aided 
design) model of the target object; an empirical model of 
performance for the 3D vision system; and a method to simulate, 
and assess the quality of data generated by the vision system. 
First, the 3D CAD model is analysed to determine the most 
information-rich positions on its surface. Then a simulation of the 
measurement process is undertaken for a set of camera viewing 
positions. The simulation requires the 3D CAD model of the target 
object and the performance model of the 3D vision system. Each 
of the simulated camera viewing positions is then assigned a 
score. The score is based on the probability that each of the 
information-rich surface points, previously identified, can be 
measured by the 3D vision system.       

3. Autonomous camera pose selection 

3.1. Sensor performance simulation  
 
To simulate the data generated by the modelled sensor the 

following procedure is followed. First, a 3D model of the target 
object is created in the form of a triangulated surface mesh. This 
is represented as a set of triangular faces with associated points 
at their vertices. If the target object is highly sculpted, it is 
preferable for the mesh triangles to be of similar size, and to have 
an individual surface area at least smaller than 1% of the total 
surface area. The camera’s field of view is then modelled in 
orientations relative to the target object. To model the field of 
view, a pinhole camera model is used with the focal point of the 
camera, and the associated imaging plane, positioned in a set of 
poses relative to the object. For each camera pose back-face 
culling removes the mesh faces of the 3D model that are obscured 
from the camera's field of view. Ray tracing is then performed to 
determine the surface points imaged by each pixel of the camera. 
The result of this step is a set of surface points that could be 
measured under perfect conditions, with no corruption of the 
data due to noise or loss of data due to imperfect light scattering 
at the target surface. Then to account for measurement 
imperfections, the expected missing data on each triangular 
surface facet is determined using a performance model of the 3D 

vision system. The performance model specifies the probability 
that data is recovered as a function of the orientation and position 
of each facet.  

 
3.2. Empirical model of sensor performance 

 
The ability to model the expected performance of a 3D vision 

system is critical to the metrology system simulation approach. A 
suitable model must provide information about the likelihood of 
obtaining data from all parts on the target object, and it must also 
provide an estimation of the quality of measured data. Currently, 
manufacturers of 3D vision systems generally provide only very 
basic performance data. As there are no standards to cover 
expected performance descriptions of 3D vision systems, on non-
ideal surfaces, the data provided are limited to basic system 
properties, such as the spatial resolution of points or working 
distance. Crucially, there is typically no objective description of 
how an object’s orientation or surface finish will affect 
performance [10].  

Recent work by Hodgson et al. highlighted the inadequacy of 
standard evaluation methods for 3D vision systems, and defined a 
new set of metrics to describe their performance [10]. In addition 
to the new metrics, the work also presents a clear methodology 
for the empirical characterisation of 3D vision systems, with an 
associated performance model. The proposed model is based on 
the empirical evaluation of a vision system when measuring a flat 
target surface over a range of orientations, which includes 
angular position as well as distance from the sensor.  

To set up the metrology system simulation in this work, the 
empirical model of the vision system’s performance was 
established by following the methodology defined by Hodgson et 
al. [10]. To represent the surface finish at the intended target 
object, which was made of a non-glazed white ceramic material, a 
matt white 60 mm x 60 mm square test sample was created.  The 
test sample was then positioned in front of an Ensenso active 
stereo imaging system on a pan tilt stage, at a distance of 500 mm. 
Using the pan tilt stage the sample was moved through a set of 
1008 orientations, covering a range of 360° in pan and 55° tilt. At 
each orientation the test sample was measured using the Ensenso 
vision system. The measured data was then analysed to 
determine the expected quality and quantity of data for each 
orientation. From the collected data a model that predicts the 
surface point density and noise expected for a target surface, as a 
function of the position and orientation of the surface relative to 
the imaging system, was created, again using the method 
described by Hodgson et al. [10].   
 
3.3. Ranking algorithm for camera viewing positions 

 
The problem of camera positioning to gain the best coverage of 

a subject was first described by Chvatal [11] in the classic art-
gallery problem. For 3D point cloud data, approaches to the view 
planning problem have typically focused on determining the 
visibility and accessibility of a set of surface points, or region of 
interest on an object [5][12][13]. In this work, the aim of the 
position ranking algorithm is to score each selected viewpoint 
based on the quantity and quality of the data points captured; 
with point quality being dependent on how information-rich the 
point is, and the probability that it can be measured. The 
algorithm [13]first considers the ability to visualise information-
rich surface points, however in contrast to previous work it also 
considers the expected probability that these points will be 
captured. This is achieved due to the use of the 3D vision system 
performance model, and it is a step necessary to ensure optimum 
viewing positions are as robust as possible, especially on 
challenging surfaces.  



 

 
Figure 2. Identification of visible model key points per camera view point.  

 
When locating objects in 3D space, using point cloud data, the 

most common algorithms are based on a key point matching 
approach. Typically, a random sample consensus (RANSAC) type 
algorithm is used to search for, and match, key point pairs that 
are present in both the 3D model of the target part, as well as the 
measured point cloud data. When using a RASAC algorithm it is 
not sensible to consider all measured points, as this can lead to 
unacceptably long computation times. Therefore there have been 
a number of approaches presented to automatically select a sub-
set of the most useful, information-rich, key points. In this work, 
Intrinsic Shape Signatures (ISS) presented by Zhong et al. [14] are 
used to determine these information-rich points.  

To rank a set of viewpoints the following process is followed. 
First, a sphere is tightly fitted to the object scene using Gartner's 
smallest enclosing ball approach [15]. A working distance from 
the object surface to the camera is added to this radius to produce 
another sphere. This larger sphere is uniformly sampled with N 
points which will act as camera origin locations for viewpoint 
optimisation. The smallest enclosing sphere and multiple camera 
positions surrounding the target object are illustrated in Figure 2. 
These camera origin locations position the camera line of sight 
directly at the centre of the tightly fitting sphere.  

For each camera origin location a simulated point cloud is 
generated, following the approach detailed in section 3.1. This 
determines key points that are visible, shown in red on Figure 2, 
and those that are occluded from the vision system shown in 
yellow on Figure 2.   

Upon completion of all iterations, the key points in each view 
are each then analysed. Figure 3 illustrates a key point that is 
surrounded by a set of four triangular surface facets. To 
determine the probability that the key point will be measured, the 
vision system simulation is used to assess the likelihood that 
points will be recovered from each facet. This process is 
represented in Figure 3 by the link from a facet n4 to the graph 
giving the probability that a point is recovered as a function of 
facet orientation. Each facet surrounding the key point is 
considered to see if data points will be recovered from it. Then 
from each facet where data points will be recorded, the maximum 
probability value, λ is found and assigned to the key point. The 
sum of all the key point λ values for each view is then calculated 
and stored against the camera position for that view. This score is 
therefore a function of the number of key points theoretically 
visible, but also as λ itself is the probability of the key point being 
captured by the vision system, a high score is also indicative of a 
set of key points that can be easily measured with the vision 
system. Therefore the combination of these two factors provides 
a scoring system that considers quantity as well as quality of the 
information-rich key points which are visible. 

 
Figure 3. Scoring key points based on the probability of capturing data on 
local faces using an empirically determined sensor model.  

4. Experimental evaluation procedure 

To verify the output of the position optimisation algorithm an 
experiment was designed to capture point clouds from a range of 
sensor orientations relative to the object. The viewpoint position 
ranking algorithm was run sampling a set of 200 evenly 
distributed viewpoints. Using the output of the algorithm, a set of 
eight viewpoints was selected; these included the four highest, 
and four lowest scoring viewpoints. The Ensenso active stereo 
camera was then positioned at a stand-off distance of 0.5 m, 
which is equal to the stand-off distance of the considered 
viewpoints, from the target object. The pose of the Ensenso vision 
system with the target object were manipulated to allow each of 
the eight selected viewing positions to be achieved. During 
measurements, ambient lighting conditions were controlled, with 
no direct lighting above or surrounding the experimental setup.  

 
Figure 4. The best and worst viewpoints are shown on the left and right 
respectively. 

 
The target object, a matt white sculpture of a stack of frogs, was 

chosen so the performance of the algorithm can be demonstrated 
on an object with significant geometric complexity, which makes 
it hard for a human expert to judge which viewpoints are best. A 
3D mesh model representative of this object is required to run 
the position optimisation simulation. As a pre-existing CAD model 
was not available for the chosen target object, an approximated 
3D model was reverse engineered using a Roland LPX-250 3D 
laser scanner to produce the 3D mesh file required. The 3D mesh 
model can be seen in Figure 2. Figure 1 shows the Ensenso 
camera mounted on an industrial robot to, and Figure 4 shows 
the best and worst ranked views of the target object. 

To assess the usefulness of the point clouds captured from each 
view point, the data was processed using a RANSAC algorithm 
designed to determine object location in the sensors coordinate 
system. The RANSAC variant object recognition algorithm used 
was created by Papazov and Burschka [16]. This algorithm takes 
a mesh model of the target part, selects key points and tries to 
match these to the sensor data. The output from the algorithm is a 
homogeneous rigid transformation matrix giving the position of 
the measured object in the Ensenso camera’s coordinate system. 

 



 
 
Figure 5. Standard deviation of the transform axis rotations 
 

 
Figure 6. Standard deviation of the transform axis translations 

5. Results and discussion 

To verify the performance of the viewpoint position ranking 
algorithm, errors in the absolute position of the object were not 
considered. This is because these errors are a function of the 
uncertainty generated by both the 3D vision system and the 
RANSAC algorithm; instead errors generated by the RANSAC 
algorithm as a function of the quality of the measured data were 
the main concern. The random sampling component of the 
RANSAC algorithm means that it is provides a different result 
each time it is run. Therefore to assess how good the data 
collected for each viewpoint was, the repeatability of the 
algorithm for a single set of data from each viewpoint was tested; 
based on the assumption that viewing positions with a large 
quantity of information-rich points lead to a more repeatable 
result from the RANSAC algorithm. For each data set collected 
from the eight viewing positions, the RANSAC algorithm was run 
50 times. In this way the variation of the target object’s position 
estimation, due to the quality of the measured data, was 
considered. Variation was assessed in terms of both spatial 
translations and rotations. Spatial translations were considered 
in three orthogonal axes (x, y and z), and rotations were 
considered about these three axes. The standard deviation of 
rotations and translations are shown on the charts in Figure 5 
and Figure 6 respectively; these charts illustrate the large 
positional variations that can be expected with data that is 
collected from the least optimal viewing positions, ranked 197 to 
200. For the worst ranked positions, translation standard 
deviations up to as much as 14 mm were found, and rotational 
standard deviations up to 12 degrees were found. In contrast, for 
the best ranked viewpoints all the translation standard deviations 
were less than 0.15 mm and all the rotational standard deviations 

were less than 0.14 degrees; therefore, by selecting the best 
ranked viewing positions, it is possible to increase the precision 
of object location by a factor of 85 for rotational errors and 93 for 
translational errors.    

6. Conclusion 

This work has demonstrated the benefits of using a metrology 
system simulation approach. A viewpoint selection algorithm was 
created to support the process of using a 3D vision system 
mounted to a robot to locate target objects using point cloud data. 
The algorithm creates a ranked list of useful viewpoints for 
locating a given object, and therefore provides the means for 
autonomous positioning of the camera by the robot. This results 
in a worst to best case increase in measurement precision of 
almost two orders of magnitude.   
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