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ABSTRACT 

Carbon dioxide emissions per year have risen exponentially. It is widely known the contribution of 

CO2 to global warming phenomena, so storage/utilisation of carbon dioxide has become a topical 

issue and an emerging research area. Despite the fact that utilization of CO 2 waste would not 

solve the problem of the huge quantities going to the atmosphere every year as only less than 1% 

of it could be reused for the industry, recycled carbon dioxide presents itself as a possible cheap 

and accessible chemical feedstock.  

The challenge on recycling CO2 is to minimize energy and cost efficiency of any suitable reaction. 

On previous investigations the electrochemical synthesis of 5-membered cyclic carbonate from 

epoxides was accomplished under mild conditions and optimized (1 atm CO2 pressure, 60 mA 

constant current and 50 °C heating). In order to understand the mechanism of this 

electrochemical process a deep investigation on the variables of the synthesis of cyclic 

carbonates was carried out and is presented in this thesis. The variables studied include 

electrochemical system conditions (application of current through Cu/Mg electrodes, electrodes 

connected on a closed circuit system with no current, an open circuit system where electrodes 

were there was no connection between them, and reactions without electrodes), temperature of 

reaction, solvent screening, catalysts, epoxide substituents, concentration of species and ratio of 

reactants. As a result of the variables optimization, a new, cheap, simple and relatively fast 

method (5 to 24 hours of reaction time) for cyclic carboxylation of epoxides with CO2 at 

atmospheric pressure in acetonitrile in the presence of ammonium salt (TBAI) at mild 

temperatures (50 - 75 °C) has been developed and improved. The concentration of the reactants, 

especially of the epoxide, was found to be the most important factor on the success of the 

reaction. The new reaction conditions also allow converting epoxides to carbonates without the 

help of any cocatalyst or electrochemical system obtaining excellent yields (50-100%) with the 

important saving on cost and energy of co-catalyst synthesis and recovery. Chlorostyrene oxide (1 

M) reacted almost completely (94%) after 24 hours with TBAI (1 M), in 1 mL of acetonitrile at 75 

°C and 1 atm pressure of CO2. Epoxide carboxylation under neat conditions was feasible, 

producing 44% of chlorostyrene carbonate from chlorostyrene oxide in the presence of TBAI at 75 

°C and 1 atm pressure of CO2.    
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AIMS 

 

The main aim of the project was to optimize the procedure and conditions for the synthesis of 

cyclic carbonates from epoxides and carbon dioxide. The electrochemical carboxylation system 

previously developed by this research group (A. P. Patel, B. Buckley, U. Wijayantha)1 was chosen 

as a starting point to analyse the catalytic processes happening during the electrosynthesis 

(Scheme 1.1). 

 

Scheme 1.1.- Electrosynthesis of carbonates from epoxides under mild conditions.1 

The different epoxides (1a-j) selected for the formation of carbonates (2a-j) are summarized in 

the general reaction Scheme 1.2, all have been previously used for the same purpose and can be 

found in the literature with different reaction conditions and/or catalysts: 

 

Scheme 1.2.-Epoxides selected for the synthesis of cycl ic carbonates in the present project. 

Fortunately, the findings of the research matched extremely well in some of the 12 principles of 

green chemistry,2 as the optimized conditions for the reaction carried the reduction of solvent 

required, mild temperatures, no need of co-catalyst and atmospheric pressure of CO2. 
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1 INTRODUCTION 

The Introduction chapter summarizes the information available in the literature regarding carbon 

dioxide molecule and the role played in the global warming phenomena as one of the major 

contributors as a greenhouse gas.  

A brief description of ways in which carbon dioxide is being fixated in nature (1.3 Carbon fixation), 

and artificially stored (1.4 Carbon dioxide capture and storage (CDCS)) are mentioned and a 

review on carbon dioxide capture and utilisation (CDCU) (1.5) is presented.  

 Carbon dioxide capture and utilisation section covers inorganic mineral carbonation (usually 

magnesium or calcium are transformed into magnesium or calcium carbonates), carbon dioxide 

insertion into different chemicals (producing the corresponding carbonates, cyclic carbonates, 

carbamates, etc.). A relevant selection for this project of the catalysis developed for carbon 

dioxide reactions is covered in more detail from section 1.5.3. 

1.1 THE CARBON DIOXIDE MOLECULE, CO2. 

Carbon dioxide molecule is linear and non-polar with a double bond between the carbon and 

oxygen atoms (O=C=O). CO2 is chemically unreactive under standard conditions of temperature 

and pressure (IUPAC definition of standard reference conditions: 273.15 °K (0 °C) and 100 KPa (1 

bar)3) and therefore persists in the atmosphere.4–6 

The Phase Diagram for CO2 shows its physical state depending on temperature and pressure 

conditions (Figure 1.1).4 For pressures and temperatures such us the ones below the red and blue 

lines, CO2 remains in vapour state. Over this line CO2 can be at solid state (at very low 

temperatures, < -55 °C, over the corresponding sublimation pressure) or liquid state (from -55 °C 

to 40 °C, above the corresponding liquefaction pressure and below the corresponding melting 

pressure). The critical point is at temperature higher than 31 °C and pressure higher than 74 bar, 

where CO2 gas density can be very large, even more than liquid water (important behaviour of 

CO2 and relevant for its storage). 
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Figure 1.1.- Phase diagram for CO2. Copyright © 1999 ChemicaLogic Corporation, 99 South Bedford Street, Sui te 207, 
Burl ington, MA 01803 USA. Al l  rights reserved. 

 

Volumetric concentration of CO2 in the atmosphere is 0.040% (404 parts per million by volume, 

ppmv) as of July 2016 (Figure 1.2).7 CO2 gas was generally thought to be harmless, in fact, CO2 

plays an important role in the earth’s carbon cycle, and it is a necessary ingredient in the life cycle 

of animals and plants.8 Even though CO2 is a non-flammable and chemically a non-toxic gas, there 

are some health and safety issues related to concentration in the atmosphere and storage or 

handling methods. For example: higher concentrations or exposures of longer duration are 

hazardous, either by reducing the concentration of oxygen in the air to below the required 16% 

level to sustain human life or by entering the body (bloodstream), and/or altering the amount of 

air taken in during breathing. When contained under pressure as in a gas cylinder, escape of CO2 

can also present serious hazards, for example asphyxiation, noise level (during pressure relief), 

frostbite, hydrates/ice plugs and high pressures.4,9  

Combustion of most carbon-containing substances produces CO2. Energy utilization in modern 

societies today is based on combustion of carbonaceous fuels, which are dominated by the three 

fossil fuels: coal, petroleum, and natural gas.10  
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1.2 GLOBAL WARMING, GREENHOUSE GASES. 

Carbon dioxide emissions per year by transport and industry have risen exponentially since the 

dawn of the industrial revolution (Figure 1.2). CO2 gas is one of the main contributors to the 

Global warming phenomena11 (Figure 1.3) and is one of the main reasons of why 

storage/utilization of carbon dioxide has become an important global issue. 5 

 

Figure 1.2.- Actual atmospheric CO2 analysis during 1960–2016.7 

Figure 1.3 shows a representation of the different gasses contributing to the greenhouse gas 

effect reported by NOAA Climate.gov in 2014 based on data collected up to 2016. Carbon dioxide 

produced in combustion of fossil fuel represents a 65% of the total of gases released to the 

atmosphere that contribute to this phenomena. An additional 11% of carbon dioxide comes from 

direct human-induced impacts on forestry and other land use (deforestation, degradation of soils 

and land clearing for agriculture). Agricultural activities, waste management, energy use, and 

biomass burning contribute to methane emissions (16% of total greenhouse gases emitted). 

Nitrous Oxide is the third abundant gas (6%) also coming from agricultural activities (like use of 

fertilizers) or biomass burning. Finally, a 2% of fluorinated gases (F-gases) are produced and 

released to the atmosphere from industrial processes, refrigeration, and use of products that 

include hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). 
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Figure 1.3.- Global  greenhouse gas emissions by gas 12 based on global  emissions  from 2010 (Source: Intergovernmental 

panel on cl imate change, IPCC (2014)11,13).  

 

1.3 CARBON FIXATION 

There are natural and artificial ways to capture the carbon to avoid emission into the 

atmosphere14 such as forestation, ocean fertilization, photosynthesis process, 15 mineral 

carbonation16 and in-situ CO2 capture.17  

1.4 CARBON DIOXIDE CAPTURE AND STORAGE (CDCS) 

One solution can be the capture and storage of CO2.6 There exist in the literature several reviews 

about carbon dioxide capture4,14,18–20 and storage18,21,22. In summary, capture of CO2 can be 

carried out by different processes like pulverized coal combustion, gasification or oxy-combustion 

CO2 separation and capture processes.14 Once the gas has been captured it may be stored in a 

geological reservoir (geological storage)21 or in mineral form (mineral carbonation).22 

https://www.ipcc.ch/report/ar5/wg3/
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1.5 CARBON DIOXIDE CAPTURE AND UTILISATION (CDCU) 

There exist in the literature several reviews about carbon dioxide capture and utilisation.22–24 Next 

some of the general methods for utilisation of carbon dioxide in industry, such as mineral 

carbonation or carbon dioxide as chemical feedstock are summarized.  

1.5.1 Mineral carbonation 

Carbon dioxide is a chemical feedstock for the mineral carbonation process where minerals, 

generally calcium or magnesium silicates are transformed with CO2 into calcium or magnesium 

carbonates. Magnesium and calcium carbonates have a lower energy state than CO2 (Figure 1.4). 

Therefore, theoretically the process could produce energy. The magnesium and calcium oxide 

carbonation reaction can be shown by the equations 1.1 and 1.2. Carbonation reaction of 

magnesium or calcium are exothermic and release. For comparison, the heat produced in carbon 

combustion is 400 kJ/mole.  

 

Figure 1.4.- Energy s tates of carbon.25 

 

However, calcium and magnesium cannot be usually found in nature as pure oxides but are 

typically found in silicate minerals.6 The reaction for common calcium and magnesium silicate 

 
Eq.- ( 1.1 ) 

 
Eq.- ( 1.2 ) 
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minerals is still exothermic, but less heat is released compared to the carbonation reaction of 

magnesium or calcium (Equation 1.3). 

(Mg,Ca)
x
Si

y
O

x+2y
 + zH

2z
(s) xCO

2
(g) x(Mg,Ca)CO

3
 + ySiO

2
(s) + zH

2
O

H = -64 to 90 kJ/mole)
 

Eq.- ( 1.3 ) 

 

1.5.2 Carbon Dioxide as a Chemical Feedstock 

CO2 waste from an existing chemical process, previously separated from the stream, could be 

used as a chemical feedstock for the synthesis of other chemicals.6 The energy required for this 

process could be supplied by renewable energy sources (e.g., wind or solar energy).  

CDCU alone cannot remediate all CO2 emissions because they are much higher than the CO2 

volume that could be used as feedstock in chemical industry. It has been suggested from VCI and 

DECHEMA in Germany that chemical industry could convert around 1% of global CO2 emissions in 

the fine and bulk chemicals sector and 10% into synthetic fuels.26 Despite the fact that a very little 

percentage of CO2 waste can be reused, can be a possible cheap and accessible chemical 

feedstock.  

CO2 is already used as an additive in food in countries like EU member countries27 (listed as E290), 

US28, Australia and New Zealand29 (listed by its INS number 290). Examples of carbon dioxide use 

in the food industry are: carbonation of drinks30, meat preservative31 or accelerated production of 

greenhouse tomatoes32. Carbon dioxide is also used as feedstock in commercial processes (i.e., 

synthesis of urea from ammonia and carbon dioxide33) and as solvent in processes such as dry 

fabric cleaning34 and decaffeination35. But, the CO2 is always released back to the atmosphere so 

these are recycling rather than mitigation technologies.  

As a consequence of CO2 low reactivity there has to be an energy trade off or a reduction in the 

activation energy for the reaction through the use of catalyst for CO2 to be converted into 

economically valuable products.  

Utilisation and storage of CO2 closes the ‘carbon cycle’ by storing in a solid form (construction 

materials, polymers or chemical feedstock) the carbon previously released to the atmosphere as 

carbon dioxide. However, if CO2 is converted to fuels, capturing carbon from the atmosphere 

would be necessary to maintain the cycle as shown in Figure 1.5.  
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Figure 1.5.- Carbon dioxide industrial waste cycle. 

Figure 1.6 represents a small sub-set of the important transformations of CO2 of the whole 

chemicals landscape that have been reported.  

 

Figure 1.6.- A brief overview of some of chemicals from carbon dioxide.6 

Gibbs free energy of CO2 and related substances are shown in Figure 5.1 of the Annexe.5 As a 

consequence of CO2 high stability, it is necessary a substantial input of energy, effective activation 

reaction conditions and often active catalysts for chemical conversion of CO 2 (reactions involve 

positive change in enthalpy and thus they are endothermic).  
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The use of CO2 as a single reactant is more energy-demanding than if it is used as a co-reactant 

with another substance with a higher Gibbs free energy, such as CH4, carbon (graphite) or H2.  

1.5.2.1 Fuels 

Both, methanol and formic acid have been targeted as products by hydrogenation of CO2 over a 

wide range of catalysts.23 While methanol synthesis requires three equivalents of hydrogen per 

CO2 molecule (two incorporated into the product and the third consumed in the by-product, 

water), formic acid requires only one equivalent of hydrogen (without the formation of by -

products), so it is a valuable product that can store hydrogen in a more manageable liquid form. 

Decomposition of formic acid releases the hydrogen when required but also the CO2.36 

Sandia laboratories in New Mexico, USA reported the synthesis of synthetic diesel from CO2.37–40 

The project was called “Sunshine to petrol” as energy source was a solar furnace. Air Fuel 

Synthesis Ltd in the UK have used atmospheric CO2 and wind energy to produce aviation fuels 

(rate of 1 litre per day).41  

1.5.2.2 Intermediates 

A part from direct products, intermediates are also a target representing a huge potential 

market.6 Some of them are commented bellow. 

1.5.2.2.1 Urea 

Large quantities of CO2 are already consumed through reaction with ammonia (Figure 1.7) from 

the Haber-Bosch process to produce urea (H2N-(C=O)-NH2), a key ingredient in fertilisers.42  

 

Figure 1.7.- Urea molecule (9). 

The Haber-Bosch process which was developed by Fritz Haber and Carl Bosch, is the most 

economical for the fixation of nitrogen and with modifications continues in use as one of the basic 

processes of the chemical industry in the world.43  
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1.5.2.2.2 Carbamates 

The reaction of a variety of N-nucleophiles (like primary and secondary ammines44,45, metals and 

metal salts46,47, metal complexes46–49, and p-block-amides46–51) with carbon dioxide results in the 

formation of N-carbonyl compounds52, including carbamates which have applications ranging 

from pesticides for agricultural processes53 to polymers for construction and protection54.  

 

Figure 1.8.- Genera l  s tructure of organic carbamates  (11). 

Carbamates (11) differ from ureas (9) in that the central carbon of the C=O group is also bonded 

to a nitrogen and an oxygen, rather than two nitrogens. They are used as a replacement for the 

extremely toxic phosgene in organic synthesis6,55,56 and as a precursor in the synthesis of 

isocyanates which are used in the formation of polyurethanes.55 

1.5.2.3 Polymers 

Cyclic carbonates with six atoms or more can be ring-opened to give a hydroxyl carboxylic acid 

that can polymerise to give polycarbonates.57,58 However, direct synthesis of polymers from 

epoxides and CO2 is being studied as a simpler process.59,60  

Polycarbonates are used in construction materials (in place of glass) 61,62 and in security and 

personal protection products due to their properties (high strength and impact resistance while 

being extremely light and mouldable).63 Polycarbonates have very high impact-resistance and 

optical transparency55,64–66 that gives them applications in the manufacture of CDs, DVDs, 

eyeglasses, aircraft windows, etc. Polymers chemical and mechanical properties can be tuned by 

altering the composition of the side chain group.67  

1.5.2.4 Inorganic complexes 

A diversity of metal cations is used as the molecular template for the production of inorganic 

carbonates which have several applications in construction as well as catalysis. 68 The best known 

examples of inorganic carbonates produced and used throughout history are limestone, for 

construction as “crush rock”, soda, for washing and papermaking activities, and sodium 

bicarbonate (or baking powder) used as a food additive.69 Potassium carbonates have been used 
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as fertilizer and in production of glass or soap. Other bicarbonates much less used compared to 

the calcium, sodium or potassium are the carbonates of magnesium, barium, lithium and 

strontium, that have been used in rubber processing, the production of glass, ceramics, 

photochemicals, cosmetics and medicine, catalysts and batteries. 70 Precipitated calcium 

carbonate is used in paper industry, plastics and rubber, and paint production. 71   

Industrial scale production of sodium bicarbonate proceeds via the Solvay process where CO2 is 

combined with sodium from seawater.72 Production methods of potassium bicarbonate involve 

the carbonation of potassium hydroxide which is produced by electrolysis of aqueous potassium 

chloride solutions.73 Magnesium carbonate (magnesite) can be produced by carbonating a 

magnesium chloride brine.74 Carbonates of barium, strontium and lithium are typically achieved 

by carbonating barium sulfate75 (barite), strontium sulfate76 (celestine) and lithium77 brines.  

1.5.2.5 Reactions 

Two types of reactions involving carbon dioxide addition are described below.  

1.5.2.5.1 Carboxylation reaction 

It consists on the direct addition of CO2 to a receptor molecule by a single bond to the carbon 

atom on CO2 to form a carboxylate group (or a carboxylic acid). This reaction is 100% atom 

efficient in that all atoms are incorporated to the product. An example of this reaction is the 

Kolbé-Schmitt reaction to produce salicylic acid from phenol (Scheme 1.1).78,79 

 

Scheme 1.1.- Kolbé-Schmitt reaction to produce salicylic acid.79 

Linear and cyclic organic carbonates are also formed from CO2.80 When CO2 is inserted into an 

organic epoxide leads to the formation of the cyclic carbonate which will be explai ned in more 

detail in section “1.5.3 Catalytic carboxylation from CO2”. 

A part from the uses previously commented, organic carbonates can also be used as green 

solvents, additives to gasoline,70,81 thickeners for cosmetics65 and electrolytes for lithium 

batteries64–66. Diethyl carbonate is also used as an intermediate for phenobarbital synthesis.82 
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1.5.2.5.2 Cycloaddition or CO2 insertion reaction 

In this reaction two bonds are formed, one to the carbon and a second to one of the heteroatoms 

(i.e. oxygen or nitrogen).83 An example of cycloaddition of CO2 reaction is shown in Scheme 1.2 

where an haloamine reacts with CO2 to give a cyclic carbamate.84 

 

Scheme 1.2.- Cycl i zation of 2-bromoethanamine with carbon dioxide. Reaction conditions: 2 mmol substrate, 1.2 equiv 
KOH, 10 mL EtOH, 65 °C, 35 bar CO2, 1 h. Product obtained >99%. 

1.5.2.5.3 Electrochemical CO2 reduction 

It usually requires the use of an electric current (possibly created from a renewable energy 

source) to produce the required electrons. Some of the products that can be formed by 

electrochemical reduction of carbon dioxide are formic acid, carbon monoxide, methanol, 

methane and other hydrocarbons. Barton Cole and Bocarsly (2010) have reviewed 

electrochemical reduction processes in detail and Silvestri and Scialdone (2010) have reviewed 

some recent advances in electrochemical carboxylation.85,86 

Electrochemical carbon dioxide reduction process will be further discussed in section 1.5.4. 

1.5.3 Catalytic carboxylation from CO2 

Literature reviews about catalytic carboxylation are numerous, some of them focus on metal 

complexes and non-metal catalysts for transformation of carbon dioxide into carbonates55,87–89, 

and others summarize the electrocatalytic reactions of carbon dioxide 90–95 or photoreduction of 

carbon dioxide96. A number of key publications has been selected to be studied due to their 

relevance with the present research project. 

1.5.3.1 Metal and organometallic catalysts 

The first successful attempt on producing carboxylic acids from CO2 and reactive organometallic 

derivatives was accomplished by Victor Grignard and Philippe Barbier in 1980. 97 “Grignard 

reagents” (organomagnesium reagents) are strong nucleophiles that react fast with CO2 to form 

carboxylic acids and related products.98 Organolithium,97 organocopper99 and 
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organomanganese100 reagents are also known to react with CO2. However, the most frequent 

drawback of these standard reactions is that unwanted side products may be produced some of 

which might represent an additional problem for the environment. In order to overcome this 

disadvantage, the development of new methods to achieve versatile carboxylations with CO2 has 

been investigated by many research groups. Some of them are detailed below.  

1.5.3.1.1 Pd/Sn systems. 

One of the first examples of bimetallic catalytic systems that allowed the insertion of CO2 into the 

rather unreactive tin-carbon bond was reported by Shi et al.101 The aim was to combine in the 

same system the ability of a transition metal to catalyse crosscoupling reactions and CO 2 

activation. For example, tributyl(allyl)tin (23a) does not react with CO2, but when palladium(0) 

species (Pd(PPh3)4 or Pd(PBu3)4) are present in the solution the reaction evolves to afford 

carboxylates 24a (90%) and 25a (10%) (Scheme 1.3). The mechanism proposed for this reaction 

was through the transfer of the allylic moiety to the palladium(0) via oxidative coupling, followed 

by an insertion of CO2 into the Pd-C bond.102 

 

Scheme 1.3.- Formation of tin carboxylates with a dual allylstannanes/Pd(PPh3)4 catalytic system.101 

Further improvements to the Pd/Sn bimetallic system have been achieved by different research 

groups.103–106 

1.5.3.1.2 Rh/B and Cu/B systems. 

An alternative with a rhodium(I)-catalyzed carboxylation of aryl- and alkenylboronic esters 

proceeding under mild conditions was proposed by Ukai et al. in 2006.107 The Rh/B system 

permitted the reaction to evolve while leaving ancillary reactive functional groups such as 

carbonyl- and cyano unreacted (Scheme 1.4).  
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Scheme 1.4.- Rhodium-catalyzed carboxylation of alkylboronic es ters  under mild conditions (dppp ligand: 1,3-

Bis (diphenylphosphino)propane).107 

This reaction was particularly useful for the synthesis of functionalized arylcarboxylic acids. 

However, the corresponding alkylboronic esters could not be carboxylated with the Rd(I) catalytic 

system under the conditions detailed in Scheme 1.4. Furthermore it was found that arylboronic 

esters containing a bromide would generate complex mixtures of products, limiting the utility of 

this approach. The same research group studied and reported other metallic systems which could 

also promote this type of carboxylation reaction with a wider functional group compatibility, such 

as the case of a boronic ester/copper(I) salt/CsF catalytic system. 108 The best results were 

obtained when a copper(I) iodide/bisoxazoline system was used giving substituted benzoic acid in 

high yields and purities (up to 95% for para-methoxy-benzoic acid) (Scheme 1.5). 

 

Scheme 1.5.- Optimized copper - catalyzed carboxylation of alkylboronic esters.108  

 

1.5.3.1.3 Ni/Zn catalytic systems. 

Ochiai et al. reported the synthesis of saturated carboxylic acid in good yields under mild 

conditions with a bimetallic Ni/Zn catalytic system (0.1 MPa CO2 , 4 to 8 h reaction time, 

temperatures ranging from room temperature to 323 K).109 An example of the reaction of 

hexylzinc iodide-lithium chloride complex with carbon dioxide in the presence of the Ni(acac) 2 is 

shown in Scheme 1.6. 
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Scheme 1.6.- Ni -catalyzed carboxylation of organozinc iodide reagents under mild conditions.109  

More investigations involving Ni/Zn catalytic system were carried out by different research 

groups. When zero-valent nickel species were used to produce reactive cyclic nickel-carboxylates 

a second organometallic counterpart (ZnR2) was not necessarily required.110–114 

1.5.3.1.4 Bimetallic aluminium complexes 

North’s group has a wide background on research on catalytic synthesis of cyclic carbonates. 115 

They focused on the study of bimetallic catalysts, especially of aluminium (due to its price-

efficiency relationship compared to other metals like platinum) and a range of different ligands 

(Figure 1.9) were tested as catalysts for the carboxylation of epoxides with CO2 in the presence of 

tetrabutylammonium bromide under solvent free conditions. The bimetallic complexes showed a 

high catalytic activity at atmospheric pressure and room temperature. The ammonium salt was 

stable for over 60 reactions, though it was found to decompose in situ by a retro-Menschutkin 

reaction forming tributylamine (also found to be a participant in the reaction mechanism) (see 

Scheme 1.7).  

 

Figure 1.9.- Bimetallic aluminium complexes tested as catalysts for the carboxylation of epoxides.116 

A full analysis of the reaction kinetics with in situ IR scans was carried out over the synthesis of 

styrene carbonate with CO2 catalyzed by 31a and TBABr in propylene carbonate as solvent. The 
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carbonate peak was masked by that of the solvent so the peak selected to follow the reaction was 

the one at 876 cm-1 which corresponds to C-O bond of styrene oxide.  

GC-MS was chosen as a second method to confirm that concentration of epoxide calculated 

through IR measurements were correct. Concentration of styrene oxide along the reaction was 

calculated through calibrations of the IR and the GC-MS previously carried out. The reaction 

kinetics showed that reaction was first order in aluminium complex concentration, first order in 

epoxide concentration, first order in carbon dioxide concentration (except when used in excess, 

that produces saturation of the solvent) and second order in TBABr concentration (Eq.- ( 1.4 )). 

Also, addition of butyl bromide to reconvert tributylamine into TBABr resulted in inhibition of 

the reaction.  

𝑅 = 𝑘[𝑒𝑝𝑜𝑥𝑖𝑑𝑒][𝐶𝑂2][𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡][𝐵𝑢4𝑁𝐵𝑟]2 Eq.- ( 1.4 ) 

Although no kinetic resolution of racemic epoxides was possible, it was shown that if 

enantiomerically pure styrene oxide was used as substrate, then enantiomerically pure styrene 

carbonate was formed.117 The catalytic cycle on Scheme 1.7 was proposed to explain the high 

catalytic activity of the bimetallic complexes. 

 
Scheme 1.7.- Catalytic cycle for the cyclic carbonate synthesis by using complex 31a and Bu 4NBr by North et al. 117 
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North and co-workers also presented a study on the influence of temperature and pressure on 

cyclic carbonate synthesis catalysed by bimetallic aluminium complexes118 where they analysed 

the conversion of styrene oxide to styrene carbonate using TBABr as cocatalyst and two different 

structures of aluminium complexes ([(salen)Al]2O structure 31a from Figure 1.9 and [(acen)Al]2O 

structure 35 from Figure 1.10).  

 

Figure 1.10.- Bimetallic aluminium complex used for the catalysis of cycl ic carbonate synthesis ([(acen)Al] 2O).118 

The study was carried out over a set of reactions in order to compare performances of catalysts 

31a and 35 (varying concentration from 0.1 to 2.5 mol%). Different pressures of CO2 (1 to 10 bar) 

were also tested over a range of temperatures (25 to 100 °C) during 24 hours (Scheme 1.8). 

  

Scheme 1.8.- Conversion of s tyrene oxide into styrene carbonate using catalysts  [(salen)Al]2O (31a) or [(acen)Al ]2O 
(35).118  

In general, both catalysts showed a high efficiency on catalysing the carboxylation of epoxides. 

However, in comparison, catalyst 35 performed usually lower than 31a or in some cases the 

reaction under catalyst 35 did not evolve.  

Table 1.1 shows conversion of styrene oxide at 25 °C during 24 h using catalyst 31a or 35 at 

pressures of CO2 of 1, 5 and 10 bars. The background reactions using only metal catalysts with no 

presence of TBABr led to 0% of conversion (entry 1, Table 1.1). When TBABr was used without 

metal catalyst (entry 2, Table 1.1) the reaction gave as much as 6% of carbonate. When used 

TBABr together with 31a conversions went from 58% (0.5 mol% of TBABr and 0.5 mol% catalyst, 5 

bar , entry 6, Table 1.1) to 100% (2.5 mol% of TBAI and 2.5 mol% of catalyst, 5 and 10 bar CO2, 
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entries 11 and 20, Table 1.1). When catalyst 35 was used instead performance was lower in 

comparisonproducing generally less carbonate than catalyst 31a (see column ‘conv. 35 (%)’ of 

Table 1.1).  

Table 1.1.- Synthesis of s tyrene carbonate 2 using catalyst 31a or 35 at 25 °C.
a, 118

 

Entry 31a or 35 (mol%) Bu4NBr (mol%) CO2 (bar) conv. 31a (%) conv. 35 (%) 

1 2.5 
 

1 0 0 

2 
 

2.5 1 6 6 

3 2.5 2.5 1 98 93 

4 0.5 
 

5 0 0 

5 
 

0.5 5 4 4 

6 0.5 0.5 5 58 21 

7 
 

1.0 5 5 5 

8 1.0 1.0 5 79 49 

9 2.5 
 

5 0 0 

10 
 

2.5 5 6 6 

11 2.5 2.5 5 100 63 

12 0.5 
 

10 0 
 

13 
 

0.5 10 5 5 

14 0.5 0.5 10 69 
 

15 1.0 
 

10 0 
 

16 
 

1.0 10 5 5 

17 1.0 1.0 10 95 
 

18 2.5 
 

10 0 
 

19 
 

2.5 10 6 6 

20 2.5 2.5 10 100 75 
aAl l  reactions carried out for 24 h. 

When reactions were carried out at 60 °C (Table 1.2) with TBABr alone, conversions went from 3% 

at 1 CO2 bar (entry 2) to 28% at 10 CO2 bar (entry 22). Meanwhile conversions of reactions adding 

catalyst 31a went from 32% at 1 bar (entry 3) to 100% at 1, 5 and 10 bar (entries 5, 6, 12, 14, 17 

and 21). Catalyst 35 showed slightly lower performance than catalyst 31a when reactions were 

run under 1 bar pressure of CO2 (entries 3 and 5).  

The reactions were also studied at 100 °C (Table 1.3), TBABr alone produced only 4 to 52% of 

cyclic carbonate (entries 1 and 7), while addition of catalyst 31a gave conversions in the range of 

49 to 98% (entries 2 and 9) and catalyst 35 of the range of 0 to 97% (entries 2 and 5). 
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Table 1.2.- Synthesis of s tyrene carbonate 2 using catalyst 31a or 35 at 60 °C.a, 118 

Entry 31a or 35 (mol%) Bu4NBr (mol%) CO2 (bar) conv. 31a (%) conv. 35 (%) 

1 0.1 
 

1 0 0 

2 
 

0.1 1 3 3 

3 0.1 0.1 1 32 23 

4 
 

0.5 1 7 7 

5 0.5 0.5 1 100 78 
6 

 
1.0 1 10 10 

7 1.0 1.0 1 100 
 

8 
 

0.1 5 3 3 

9 0.1 0.1 5 36 33 

10 0.5 
 

5 0 0 

11 
 

0.5 5 9 9 

12 0.5 0.5 5 100 
 

13 
 

1.0 5 13 13 

14 1.0 1.0 5 100 
 

15 2.5 
 

5 0 0 

16 
 

2.5 5 24 24 

17 2.5 2.5 5 100 100 

18 
 

0.1 10 6 6 

19 0.1 0.1 10 58 47 

20 
 

0.5 10 13 13 
21 0.5 0.5 10 100 

 
22 

 
2.5 10 28 28 

23 2.5 2.5 10 100 100 
aAl l  reactions carried out for 24 h. 

Table 1.3.- Synthesis of s tyrene carbonate 2 using catalyst 31a or 35 at 100 °C.a,118 

Entry 31a or 35 (mol%) Bu4NBr (mol%) CO2 (bar) conv. 31a (%) conv. 35 (%) 

1 
 

0.1 1 4 4 

2 0.1 0.1 1 49 
 

3 0.5 
 

1 0 0 

4 
 

0.5 1 7 7 

5 0.5 0.5 1 75 97 

6 2.5 
 

1 0 0 

7 
 

2.5 1 52 52 

8 0.5 2.5 1 85 
 

9 1.0 2.5 1 98 
 

10 
 

0.1 5 6 6 

11 0.1 0.1 5 65 59 

12 0.1 
 

10 0 0 

13 
 

0.1 10 8 8 

14 0.1 0.1 10 82 73 
aAl l  reactions carried out for 24 h. 
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Conversions of disubstituted epoxides to cyclic carbonates using catalyst 31a were also successful 

(Scheme 1.9).118  

 

Scheme 1.9.- Conversion of disubstituted epoxides 37a−e into cycl ic carbonates 38a−e using catalysts 31a or 35.118 

As shown in Table 1.4, best performances required CO2 pressures of 10 bar, time reaction was 

from 24 to 72 hours, and yields went from 26% of conversion to carbonate 38e at 10 bar of CO 2 

after 24 hours (entry 7) to 100% of conversion to 38a (entry 4) or to 38e carbonate (entry 8), both 

after 72 hours. 

Table 1.4.- Synthesis of disubstituted cyclic carbonates 37a−e using catalyst 31a at 60 °C.a, 118 

Entry epoxide CO2 (bar) time (h) yield (%) 

1 37b 1.0 24 35 

2 37b 10.0 24 65 

3 37a 10.0 24 32 

4 37a 10.0 72 100 

5 37c 10.0 24 71 

6 37d 10.0 24 49 

7 37e 10.0 24 26 

8 37e 10.0 72 100 
aReaction conditions as  in Scheme 1.9: 31a 2.5 mol%, TBABr 2.5 
mol%, 60 °C. 

In this study the viability of using compressed air instead of CO2 for the catalytic carboxylation of 

styrene oxide was checked under different pressures (10 and 25 bar) and temperatures (20 or 50 

°C) (see Table 1.5). Performance of the reaction when using compressed air was of 64% of 

conversion after 24 hours at 10 bar of CO2 and 50 °C (entry 1, Table 1.5), lower than when pure 

CO2 was used (100% of conversion after 24 hours at 10 CO2 bar and 60 °C; entry 23, Table 1.2). 

Even when the reactions were run for longer times or at higher pressures the conversion was not 

complete (78% after 72 hours, entry 2, Table 1.5; 79% after 24 hours at 25 bar of CO2, entry 3, 

Table 1.5). However, the results demonstrate that the synthesis of the cyclic carbonate under 
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compressed air is possible (same reaction exposed to air under atmospheric pressure and low 

temperature did not evolve). 

Table 1.5.- Synthesis of s tyrene oxide with catalyst 31a using compressed air.a, 118 

Entry air (bar) T (°C) t (h) conv. (%) 

1 10.0 50 24 61 
2 10.0 50 72 78 

3 25.0 50 24 79 

4 25.0 20 24 19 
aReaction conditions: 31a catalyst 2.5 mol%, TBABr 2.5 mol%, 24 h. 

As a need to test the carboxylation of epoxides in a realistic industrial CO2 waste flow or flue gas, 

North, Wang and Young (2011) investigated the exposure of an immobilized bimetal lic aluminium 

complex catalyst (Figure 1.11)115 to flue gas for different periods of time and compared their 

catalytic activity for the carboxylation of epoxide.115,119,120 Reactions were carried out with 

presence of TBABr and CO2 obtained from dry ice in a gas-phase reactor previously designed for 

ethylene carbonate synthesis.120 In batch reactions results showed some decrease in catalyst 

activity (Graph 1.1). Samples of catalyst that were exposed to flue gas produced by combustion of 

coal had their catalytic activity more deteriorated than those exposed to flue gas produced by 

combustion of gas. After 7, 15 and 22 cycles TBABr co-catalyst was reactivated by treatment with 

benzyl bromide and conversion of carbonate restore its initial values. They suggested that the loss 

of activity is due to changes to the catalyst morphology resulting in the  reactants not being able 

to access catalyst sites. In contrast, when reactions were carried out in a gas-phase flow reactor, 

there was no apparent loss of catalyst activity when the catalyst was exposed to flue gas formed 

by combustion of coal. Although the reason is unknown, they attribute it to the substrates short 

residence time in the flow reactor resulting in the more easily obstructed catalyst sites not being 

involved in the catalysis and therefore their blocking has no appreciable effect on catalyst  activity.  



Chapter 1 - Introduction to CO2 Utilisation 

41 

 

 

Figure 1.11.-  Immobilised bimetallic aluminium complex catalyst in silica (36).119 

 

Graph 1.1.- Comparison of the catalytic activi ty of bimetallic aluminium complex catalyst 36 in the cyclic carboxylation 
of s tyrene oxide, before and after exposure to flue gas (of gas or coal combustion).119 

Ammonium salts have also been fixed onto a styrene-vinylbenzylchloride-montmorillonite 

support and tested as catalyst for the synthesis of 1,2-phenoxymethyl ethylene carbonate from 

carbon dioxide and phenyl glycidyl ether by Dong-hwan Shin, Jang-joo Kim et al.121 Among other 

experiments, the catalytic activity of different structures of the immobilized ammonium salt was 

studied showing that bulkier structures were less active under these conditions. The kinetic 

experiment confirmed that a pseudo-first order reaction with the concentration of phenyl glycidyl 

ether occurs.   
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1.5.3.2 Other catalysts 

1.5.3.2.1 2,5-(2,6-diisopropylphenyl)iminomethyl pyrrole complexes 

Babu and Muralidharan (2012) published their work on the synthesis of Zn(II), Cd(II) and Cu(II) 

complexes of 2,5-(2,6-diisopropylphenyl)iminomethyl pyrrole ligands and their catalytic activity 

for cyclic carbonate synthesis.122 Figure 1.12, shows the two different structures of the complexes 

studied for cyclic carbonate synthesis catalysis.  

 

Figure 1.12.- 2,5-(2,6-diisopropylphenyl)iminomethyl pyrrole complexes of Zn(II), Cd(II) and Cu(II).122 

Carboxylation reactions were carried out under solvent free conditions,  mild temperatures (from 

30 °C to 105 °C and CO2 atmospheric pressure), and N-tetrabutylammonium bromide as co-

catalyst.  

 

Scheme 1.10.- Synthesis of 1,2-phenoxymethyl oxirane (2e) with catalyst 39 under mild reaction conditions.122 

Synthesis of 2e was carried out in presence of catalysts 39a,b and 40a,b. Table 1.6 shows the 

results of a selection of reactions. When 39a was used, best performance occurred under reaction 

conditions on entry 4 of Table 1.6. Background reactions with no catalyst showed considerably 

high conversions to cyclic carbonate (45%) at 105 °C after 4 hours of reaction (entry 1, Table 1.6). 

Among all four catalysts, the Cu(II) metal complex, 40b, showed to be a better catalyst for the 
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synthesis of 2e, converting 96% of the epoxide and did not produce the diol 3e as a subproduct of 

the reaction (entry 9, Table 1.6). 

Table 1.6.- Screening studies for the synthesis of 2e with catalysts 39a and 40b.122 

Entry Catalyst (mol%) TBABr (mol%) T (°C) time (h) 
Conv (%) 

2e 3e 

1 - 5.0 105 4 45 - 

2 39a (2.5) 1.0 30 24 31 - 

3 39a (2.5) 2.5 60 10 72 8 

4 39a (2.5) 5.0 60 10 84 8 

5 39a (2.5) 5.0 60 20 60 35 

6 39a (2.5) 5.0 105 2 59 34 

7 39b (2.5) 5.0 60 10 51 14 

8 40a (2.5) 5.0 60 10 48 10 

9 40b (2.5) 5.0 60 20 96  - 
aReaction condition: CO2 (1 atm, balloon) and solvent free conditions. 

A 1H NMR study of the reaction of 2-phenyloxirane in the presence of TBABr and Zn(II) complex 

catalyst under 1 atmospheric pressure of CO2 at 105 °C after 5 min, 1, 2, 5 and 10 h as 

independent experiments led to conclusion that diol was forming after cyclic carbonate 

degradation. Figure 1.13 shows how diol signals (at 3.7 ppm) start appearing with presence of the 

cyclic carbonate (signals at 4.3, 4.8 and 5.7 ppm) after 1 hour of reaction and keeps forming after 

all epoxide has reacted (signals at 2.8, 3.2 and 3.8 ppm) after 2 hours. All carbonate transformed 

to diol after 10 hours of reaction. 

 

Figure 1.13.- Progress of diol formation monitored by 1H NMR (modified image).122 
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The reaction mechanism proposed for their reaction (Figure 1.14) is the   analogue to the reaction 

mechanism proposed by M. North and R. Pasquale (2009) in their mechanistic study of cyclic 

carbonate synthesis from epoxides and CO2
123 discussed in the present section (Scheme 1.7). 

 

Figure 1.14.- Proposed reaction mechanism for the cycl ic carboxylation of epoxides with Zn catalyst 39a.122 

     

1.5.3.2.2 Selenium-catalysed cyclic carboxylation of diols 

Formation of cyclic carbonate was also accomplished from glycerol and carbon monoxide in a 

basic media with selenium as catalyst by Takumi Mizuno, Takeo Nakai , and Masatoshi Mihara.124  

 

Scheme 1.11.- Stoichiometric synthesis of 2j from 3j, carbon monoxide and Selenium catalyst (45).124 

Conversion to carbonate at different ratios of catalysts, and using different bases are collected in 

Table 1.7. The study of the concentration of base and catalyst (entries 1 to 8) with 10 mmol of 
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glycerol in DMF showed that best performance was achieved when 10 mmol of K 2CO3 and 3 mmol 

of Se were used (entry 3). When other bases were tested (entries 9 to 12) there was production 

of carbonate only in the case of NaH (entry 9) giving 40% of conversion. When THF was used as 

solvent the reaction did not evolve (entry 13).  

Table 1.7.- Influence of various conditions on synthesis of 2j.124 

Entry Base (mmol) Se (mmol) Solvent 
Isolated 
Yield (%)a 

1 K2C03, 10 10 DMF 22 

2 K2C03, 10 5 DMF 55 

3 K2C03, 10 3 DMF 84 
4 K2C03, 10 2 DMF 83 

5 K2C03, 10 1 DMF 61 

6 K2C03, 20 10 DMF 43 

7 K2C03, 20 20 DMF 45b 

8 K2C03, 50 20 DMF 58b 

9 NaH, 10 3 DMF 40 

10 Triethylamine, 10 3 DMF NR 

11 1-Methylpyrrolidine, 10 3 DMF NR 
12 DBU, 10 3 DMF __c 

13 K2C03, 10 3 THF NR 
a Yields based on selenium. Glycerol 10 mmol. b Yields based on glycerol. c Tar was formed. 

 

1.5.4 Electrochemical CO2 reduction 

1.5.4.1 Reduction in Aqueous solution 

The most common carbon dioxide reduction reactions are as follows (The values are estimated 

from thermodynamic data at pH 7 in aqueous solution versus normal hydrogen electrode (NHE), 

at 25 °C, 1 atmosphere pressure for the gases, and 1 M for the other solutes):91,93 

 

Eq.- (1.5) 

The main reduction products are formic acid, methanol, hydrocarbons and oxalic acid.93 

Photosynthesis (biological and artificial), photocatalytic and electrochemical reduction seem to be 

three of the most effective methods for carbon dioxide insertion reactions.  
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The potential for the reduction of CO2 to CO2
-· is -1.9 V vs. NHE, and typical reduction potentials 

required at either Pt or Hg working electrodes are -2.0 V to -2.5 V, depending on the solvents and 

electrolytes used.93 

The products obtained of the electrochemical CO2 reduction depend mainly on three factors: the 

electrocatalytic activity of the cathodic metal, the composition of the supporting electrolyte 

(aqueous or nonaqueous solutions), and the experimental reaction parameters (cathode 

potential, current density, temperature and pressure).93  

1.5.4.2 Thermodynamic considerations 

Despite the fact that chemical reactivity of CO2 is low, the equilibrium potentials of CO2 reduction 

are not very negative as compared with that of the hydrogen evolution reaction (HER) in aqueous 

electrolyte solutions. Equation 1.4 shows the electrochemical reduction pote ntials of CO2 to 

HCOO- in aqueous solution at pH 7.0 at 25 °C with respect to the standard hydrogen electrode 

(SHE). The standard electrode potential of HER at pH 7.0 is -0.414 V vs. SHE at 25 °C.91  

 

E° = - 0.61 V Eq.- ( 1.6 ) 

 
E° = - 0.53 V Eq.- ( 1.7 ) 

 

E° = - 0.38 V Eq.- ( 1.8 ) 

 
E° = - 0.34 V Eq.- ( 1.9 ) 

 
E° = - 0.33 V Eq.- ( 1.10 ) 

 
E° = - 0.33 V Eq.- ( 1.11 ) 

 
E° = - 0.24 V Eq.- ( 1.12 ) 

 
 Eq.- ( 1.13 ) 

 

 

Eq.-(1.14)  
 

Eq.- ( 1.15 ) 
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The CO2 reduction in aqueous solution involves H2O and OH-, and the equilibrium potential 

varies in accordance with the pH of the electrolyte. As an example of formation of HCOOH 

from CO2 at 25 °C, Figure 1.15 represents the equilibrium potential vs. pH relations (Pourbaix 

diagram) constructed on the basis of thermodynamic data. Thermodynamically stable regions 

of related species of CO2 and HCOOH are shown with respect to pH and potential. The 

equilibrium potential of CO2 reduction is in the same range as HER in aqueous media, or, in 

other words, hydrogen formation competes with the electrochemical reduction of CO 2. 

However, CO2 reduction does not take place easily, and the actual electrolysis potentials for 

CO2 reduction are much more negative in most cases than the equilibrium ones. The reason is 

that the intermediate species CO2
· -, formed by an electron transfer to a CO2 molecule, 

proceeds as the first step at highly negative potential, such as -2.21 V (vs. saturated calomel 

electrode (SCE) measured in dimethyl formamide (DMF)).  As is shown in Figure 1.15, HER 

prevails over CO2 reduction in acidic solutions.  

The mechanism for the electrochemical reduction of CO2 in NaHCO3 aqueous solution with 

copper electrode was investigated.125 Based on the experimental results from the literature 

reports, the pathways by which methane, ethylene and formic acid on Cu electrode are formed 

in aqueous solution can be estimated as shown in Figure 1.16.93 However, the large number of 

mechanisms proposed for the electroreduction of carbon dioxide indicates that this topic is 

not understood completely.93  
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Figure 1.15.- pH potential diagram of CO2 and i ts related substances . pH potential relations for water are shown in 

broken lines.126 

 

Figure 1.16.- Pathways  for ethane, ethylene and formate formation on Cu electrode.93 

 

1.5.4.3 Electroreduction in non-aqueous medium 

Organic solvents tend to dissolve CO2 reasonably well as its solubility is usually higher than in 

water (Table 1.8). For example, solubility of CO2 in acetonitrile at 25 °C is eight times compared 

to that in water at ambient temperature.93,127,128 
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Table 1.8.- Solubility of carbon dioxide in some solvents at 25 °C.127,128 

Substance Solvent density 

(g L-1) 
Solubility 

(mg g-1) 
Solubility  

(g L-1) 
Glycerol 1250 13.8 17.2 
Glycerol carbonate 1400 7.9 11.0 
Tetraglyme 1011 4.8 4.9 
PEGDME 150 1089 6.4 6.9 
PEG 200 1124 13.4 15.1 
PEG 300 1124 13.5 15.1 
PEG 600 1124 7.7 8.7 
Poly(ethylenimine) 1030 >3.0 >3.1 
Methanol 788 7.7 6.1 
Acetonitrile128 780 15.1 11.9 

Water 997 1.5 1.5 

In addition, several metals that have been previously found inactive in aqueous CO 2 

electroreductions (like Pt, Mo, Ru, Os)94,128 have shown some electrocatalytic activity in non 

aqueous media.93 Main carbon dioxide electroreduction products in organic solvents were 

found to be carbon monoxide, oxalic acid and formic acid.94 

In aprotic solvents, where there are no protons available to be involved in CO2 reduction, the 

primary products are CO and oxalate, and all reductions must proceed through the CO 2 radical 

anion, •CO2
-.86,129 The relevant reactions in aprotic media are summarized below:  

 
E° = - 2.21 V vs SCE Eq.- ( 1.16 ) 

 
 Eq.- ( 1.17 ) 

 
 Eq.- ( 1.18 ) 

 
 Eq.- ( 1.19 ) 

1.5.4.4 Electrochemical cell coupled to analytical instruments for in-line detection 

of species. 

As it has just been exposed, exists in the literature a wide collection of publications supporting 

the different electrochemically produced species from CO2 reduction detailed above in 

different media and conditions. The analytical techniques utilised for the detection of these 
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products are of different nature (IR130, GC/LC131, GCMS132, MS133) or combinations of 

them134,135.   

Mass spectrometry used as an online detector coupled to an electrochemical cell has been 

widely used before and for the first time by Wolter and Heitbaum in 1984. 136 The technique 

has been called “Differential Electrochemical Mass Spectrometry”. 135–150 

One of the studies on CO2 electroreduction carried out by Mul, Baltrusaitis et al. confirmed 

that CO2 electroreduction produced volatile compounds such us CO, ethylene, methane, 

ethane in aqueous media.141  

In the present project, a GCMS detector has been built on-line to an electrochemical cell in 

order to analyse the species produced in the reduction of CO2 (see section 2.5). Another 

analytical technique on its initial development state called Differential Mobility Spectrometer 

(DMS) has been tested for the detection of species of CO2 reduction in acetonitrile (see section 

2.4).  

 

1.5.5 Electrosynthesis of cyclic carbonates 

1.5.5.1 Electrocarboxylation of epoxides 

Electrocatalytic carboxylation methods are able to efficiently transform epoxides to cyclic 

carbonates generally in few hours, at temperatures below 100 ᵒC and at atmospheric pressure. 

Buckley & Wijayantha studied the effect of different electrodes and electrolytes in the 

electrocarboxylation of epoxides in acetonitrile.1 When different pair of electrodes were tested 

(Table 1.9), Cu and Mg pair performed extremely well (entry 1), followed by Graphite -Mg 

(entry 3) and Steel-Mg (entry 2) or Cu-Al (entry 4). Cu-Sn (entry 5) and Cu-Zn pair (entry 6) had 

the lowest catalytic activity converting only 10 and 5% of epoxide 1a to carbonate 2a. 
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Table 1.9.- Electrode screening a 

 

Entry Cathode Anode Conv. (%)b 

1 Cu Mg >99 

2 Steel Mg 75 
3 Graphite Mg 80 

4 Cu Al 75 

5 Cu Sn 10 

6 Cu Zn 5 
a General conditions: CO2 (1 atm, balloon), Bu4NBr (2.0 eq.), MeCN, single compartment cell, 60 mA, 7 h rt, 12 h 50 °C. b 
Conversion evaluated from the 1H NMR spectrum by integration of epoxide vs. cyclic carbonate peaks. 

Table 1.10 collects the optimization studies regarding electrolyte (Bu4NBr or Bu4NPF6) (entries 

4 and 5), epoxide to electrolyte ratio (0.5 equivalents to 2.0 equivalents in entries 1 to 3), 

temperature (rt, 25 or 50 °C in entries 2, 4 and 5), and reaction time (entries 2, 6 and 8).  

Table 1.10.- Optimization s tudies.a 

 

Entry 
Supporting electrolyte 
(equiv.) T (°C) t (h) Conv. (%)b 

1 Bu4NBr (2.0) 7 h, rt, 12 h 50 °C 19 >99 

2 Bu4NBr (1.0) 7 h, rt, 12 h 50 °C 19 98 

3 Bu4NBr (0.5) 7 h, rt, 12 h 50 °C 19 80 

4 Bu4NBr (1.0) 25 °C 6 77 

5 Bu4NPF6 (1.0) 50 °C 6 17 

6 Bu4NBr (1.0)c 50 °C 6 99 

7 Bu4NBr (1.0) 25 °C 6 77 
8 Bu4NBr (1.0) 50 °C 3.5 76 

a General conditions: Cu cathode, Mg anode, CO2 (1 atm, balloon), MeCN, single compartment cell, 60 mA. b Conversion 
evaluated from the 1H NMR spectrum by integration of epoxide vs. cyclic carbonate peaks. c On average 90-95% of the 
Bu4NBr is recovered after each reaction by precipitation with EtOAc. 

The method optimization resulted in the conditions outlined below in Scheme 1.12, 

corresponding to the reaction on entry 6 of the previous table: 
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Scheme 1.12.- Electrocarboxylation of s tyrene oxide at mild conditions in acetonitrile solution. Copper cathode and 
magnesium anode, 60 mA of current, epoxide, carbon dioxide (1 atm) at 50 ᵒC for 7h in acetonitrile solution and 
TBABr as  electrolyte. 

Buckley & Wijayantha proposed that mechanism of the reaction could be related to that 

proposed by North and co-workers in their catalytic carboxylation reaction as it follows:117 

   

Scheme 1.13.- Reaction mechanism in the cycl ic carbonate synthesis (LA = Lewis Acid).117 

M.North et al. conclusions were founded on a wide range of experiments and tests of different 

epoxides, catalysts, and reaction conditions.117 One of the determining analysis that provided 

kinetic information consisted on monitoring the catalytic carboxylation of styrene oxide by 

FTIR in line. Reaction orders of TBAI (as cocatalyst) and styrene oxide (of reactions with 

bimetallic alluminium-salen complexes as catalyst) were found to be of 2nd order for 

ammonium salt concentration and of 1st order for styrene oxide concentration. This technique 

has been selected in the project that is presented in this thesis to try to elucidate the kinetic 

profile of the carboxylation of epichlorohydrin (discussion of results in section 2.7). 

A nickel complex (Figure 1.17) was used under electrocatalytic conditions for the synthesis of 

cyclic carbonates from epoxides by Hossein Khoshro, Hamid R. Zare, et al.151 showing an 

excellent electrocatalytic activity for the reduction of carbon dioxide by cyclic voltammetry. 
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Figure 1.17.- 2,4,10,12-tetramethyl-1,5,9,13-(14-nitrobenzo) tetraazacyclopentadecinato (2-) nickel (I I) complex.151 

The electrolysis was carried out in a three-electrode electrochemical cell (containing a glassy 

carbon working electrode, a Pt counter electrode wire and an Ag/Ag+ reference electrode (0.01 

M AgNO3 in 0.1 M TBAP acetonitrile solution)) in 50 mL of ACN solution of 0.1 mol/L TBAP, 3.0 

mmol of 1,2-propylene oxide (1e), and 0.3 mmol of the Ni(II) complex catalyst (47). The 

interaction of 1e and CO2 in ACN and TBAP at room temperature in the absence of Ni complex 

did not show redox peaks in the scan region of -0.7 to -2.0 V. When catalyst 47 was added to 

the solution the voltammogram showed a marked increase in the cathodic current and a 

decreased in the anodic current. The results showed the epoxide conversion was about 100% 

after passing 2.0 F/mol of the starting substrates through the cell at room temperature.  

1.5.5.2 Electrocarboxylation of olefins 

Cyclic carbonates can also be synthesized through electrochemistry from olefins. Xiaofang Gao, 

Gaoqing Yuan and co-workers achieved high rates of conversion of olefins to cyclic carbonates 

(95%) using an electrochemical cell that consisted on graphite anode and Ni sheet cathode at 

80 mA with NH4I as supporting electrolyte in DMSO (10 mL) / H2O (1 g) containing olefin (3 

mmol) in a stainless steel undivided cell with Teflon packing. CO2 was flushed at 4.9 atm 

pressure and at room temperature during 3 hours.152  

 

Scheme 1.14.- Synthesis of cycl ic carbonates from olefins and CO2 through electrochemistry.152 

Other reaction conditions also produced the desired cyclic carbonate in lower yields as 

detailed in Table 1.11. Solvent screening study (entries 1 to 7) showed DMSO to be the 

preferred solvent with 78% of conversion to carbonate (entry 2). A study on the anion of the 
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ammonium salt (entries 2, and 8 to 16) showed that when used Iodide (TBAI in entry 8 or NH4I 

in entry 13) results improved to about 95% of conversion. Electrode screening (entries 13, and 

17 to 21) confirmed C-Ni as the most catalytic pair of electrodes for the conversion of styrene 

to styrene carbonate. 

Table 1.11.- Optimization of reaction conditions.a  

Entry Anode-cathode Electrolyte Yield (%)b 

1 C-Ni n-Bu4NBr/DMF 8 
2 C-Ni n-Bu4NBr/DMSO 78 
3 C-Ni n-Bu4NBr/MeCN 63 
4 C-Ni n-Bu4NBr/CH2Cl2 6 
5 C-Ni n-Bu4NBr/dioxane 28 
6 C-Ni n-Bu4NBr/acetone 19 
7 C-Ni n-Bu4NBr/THF 23 
8 C-Ni n-Bu4NI/DMSO 94 (88) 
9 C-Ni n-Bu4NCl/DMSO 40 
10 C-Ni n-Bu4NBF4/DMSO 0 
11 C-Ni NH4Cl/DMSO Trace 
12 C-Ni NH4Br/DMSO 68 
13 C-Ni NH4I/DMSO 95 (90) 
14 C-Ni NaI/DMSO 0 
15 C-Ni NaBr/DMSO 0 
16 C-Ni NaCl/DMSO 0 

17 Al-Ni NH4I/DMSO 0 
18 Zn-Ni NH4I/DMSO 0 
19 C-Cu NH4I/DMSO 85 
20 C-Al NH4I/DMSO 88 
21 C-Zn NH4I/DMSO 91 

a Reaction conditions: styrene (3 mmol), H2O (1 g), solvent (10 mL), supporting electrolyte (1.0 mol/L), CO2 (4.9 atm), 
undivided cell, current density 16 mA/cm2, 3h, electricity 3 F/mol, rt. b Yields were determined by 1H NMR integration. 
Number in parentheses is the isolated yield. 

The reaction mechanism proposed is shown in Scheme 1.15. 
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Scheme 1.15.- Reaction mechanism of electrosynthesis  of cyclic carbonates  from olefins  with NH4I  as supporting 
electrolyte. 

1.5.5.3 Study of the electrocatalytic activity of ammonium salts in the carbon 

dioxide electroreduction. 

In a paper published in 2014 by Timothy C. Berto et al. the electrocatalytic activity of 

tetraalkylammonium ions on CO2 electroreduction was investigated under cyclic voltammetry 

technique.153 Scan rate dependence showed that the process is diffusion-controlled and largely 

independent of working electrode material. Different R groups on NR4
+ showed little effect on 

the reduction potential, meaning that catalysis through NR4
● species is not a viable mechanism 

for electroreduction of CO2. Instead, reduction of CO2 occurs via outer-sphere electron transfer 

according to the mechanism put forth by Savéant and co-workers.154 The full analysis of the 

reaction products which consisted in exclusively of CO and CO3
2-, and solvent decomposition 

products at the counter electrode, supported this view. They also observed no degradation of 

NR4
+ ions which suggests that there is no formation of NR4

● radical species during 

electroredution. 

1.5.5.4 Ionic liquids as solvent and catalyst for carboxylation of epoxides 

Recent studies of the carboxylation of styrene oxide reaction in ionic liquids look promising. 

Stephanie Foltran & colleagues compared the catalytic activity of several ionic salts like 

tetraalkylammonium salts (TBABr, TBAI…), Imidazolium salts (EMImBr, BMImBr…) and 

guanidinium salts (TBDHBr…) among others in a closed system with supercritical carbon 

dioxide at T = 80 °C and P = 8 MPa. Although TBABr and TBAI show good results on the 
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conversion of styrene oxide to styrene carbonate (76 and 79%, Figure 1.18), ionic liquids such 

as MImI, BMImI and BMImBr yield higher conversion after 20 h of reaction (95, 85 and 90%, 

Figure 1.18).155  

 

 

PVPhEtIm.Br = polyvinyl phenyl ethyl imidazolium bromide; PVPrIm.Br = polyvinyl propyl imidazolium bromide; 
PVBuIM.Br = polyvinyl butyl imidazolium bromide; EMImSCN = ethyl methyl imidazolium thiocyanate; MMImI = methyl 
methyl imidazolium iodide; BMImI = butyl methyl imidazolium iodide; BMImBr = butyl methyl imidazolium bromide; 
EMImBr = ethyl methyl imidazolium bromide; TBD.C2F3O2H = (1,5,7-triaza-bicyclo[4.4.0]dec-5-enium.1,1,1-trifluoro-2-
hydroperoxyethane); TBD.C12O2H24 = (1,5,7-triaza-bicyclo[4.4.0]dec-5-enium.dodecanoic acid); TBD.C2O2H4 = (1,5,7-
triaza-bicyclo[4.4.0]dec-5-enium.acetic acid); TBD.HCl = (1,5,7-triaza-bicyclo[4.4.0]dec-5-enium.hydrochloric acid); 
TBD.HBr = (1,5,7-triaza-bicyclo[4.4.0]dec-5-enium.hydrobromic acid); TEAPFOSA = tetraethylammonium 
heptadecafluorooctane sulphonate; TBAMDA = malondialdehyde tetrabutylammonium salt; THAI = 
tetrahexylammonium iodide; TBASCN = tetrabutylammonium thiocyanate; TBAN3 = tetrabutylammonium azide; 
TBANCO = tetrabutylammonium cyanate; TBAI = tetrabutylammonium iodide; TBABr = tetrabutylammonium bromide. 

Figure 1.18.- Styrene carbonate conversion at T = 80 ᵒC and P = 8 MPa with s tyrene oxide (1a) and 1 mol% of 
cata lyst after 20 h of reaction.155 

The proposed mechanism was as follows: 
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Scheme 1.16.- Proposed mechanism of the cycloaddition of propylene oxide with CO2 by TBD·HBr.155  

 

1.6 INTRODUCTION TO THE INVESTIGATION 

In order to understand the electrochemical synthesis of carbonates previously carried out and 

reported in 2011 by A. P. Patel, B. Buckley and W. Wijayantha1 (section 1.5.5.1), the cyclic 

voltammetry technique was chosen to help explain the catalytic activity of the components of 

the reaction system. A common analytical technique used in-line with electrochemical cells 

found in the literature (and presented in the introduction in section 1.5.4.4) is the gas 

chromatography mass spectrometry.132 In the present project, a GCMS detector has been built 

on-line to an electrochemical cell in order to analyse the species produced in the reduction of 

CO2.  

Another analytical technique on its initial development state called Differential Mobility 

Spectrometer (DMS) has been tested for the detection of species of CO2 reduction in 

acetonitrile. 
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The study of the reaction variables in the present research, involved background reactions 

with different electrode set ups, temperatures, catalysts, concentration of species, and 

methodology. The result is an optimization of all variables to achieve the most efficient 

method for the synthesis of carbonates from a range of epoxides.  

Kinetics calculations to determine the reaction order with respect to TBAI were carried out 

using a ReactIR to on-line monitoring the conversion of epichlorohydrine to carbonate. 
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2 RESULTS AND DISCUSSION 

2.1 CYCLIC VOLTAMMETRY 

Electrochemical reduction of carbon dioxide in acetonitrile solution has been studied by cyclic 

voltammetry technique. Different electrodes have been tested and compared to identify the best 

performance system conditions. As previously discussed, electrode material is crucial in the 

mechanism of carbon dioxide reduction and the product of the reaction depends on the 

electrocatalytic activity of the cathodic metal and on other factors like the composition of the 

supporting electrolyte (aqueous or nonaqueous solutions), and the experimental reaction 

parameters (cathode potential, current density, temperature and pressure).  

Platinum, Glassy-carbon, gold and copper electrodes were tested for carbon dioxide 

electrochemical reduction in acetonitrile with Bu4NPF6 or Bu4NBr as electrolyte. See more details 

of the experimental procedure on section 4.1.2. 

 

2.1.1 Electrode screening 

Different working electrodes have been tested versus platinum wire counter electrode, 

Reversible Hydrogen Electrode (RHE) as reference electrode in an acetonitrile solution of tetra-

butylammonium hexafluorophosphate as electrolyte (1%).  

2.1.1.1 Platinum disk working electrode. 

Platinum disk working electrode was tested for carbon dioxide reduction in acetonitrile in the 

presence of Bu4NPF6 electrolyte vs. RHE and Platinum wire as counter electrode. Graph 2.1 shows 

the overlapped spectra for the blank and the CO2 saturated solution measures. 
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Graph 2.1.-Cyclic vol tammogram of Pt disk working electrode in 0.1% w/v Bu 4NPF6 acetonitrile solution, Pt wire as 

counter electrode, RHE, under N2 atmosphere (red line) and in CO2 saturated solution (blue line). 

 

It is clearly shown on the cyclic voltammogram that platinum electrode in CO2 saturated 

acetonitrile solution (blue line) is catalyzing a reaction as a later peak appears in comparison with 

the blank (N2 atmosphere, red line). In the blank decomposition of the solvent starts at -0.6V 

while in carbon dioxide saturated solution decomposition takes place at a higher reduction 

potential and a new peak appears at -1.4V. 

  

2.1.1.2 Glassy-Carbon disk working electrode. 

Glassy-Carbon disk working electrode was tested for carbon dioxide reduction in acetonitrile in 

the presence of Bu4NPF6 electrolyte vs. RHE and Platinum wire as counter electrode. Graph 2.2 

shows the overlapped spectra for the blank and the CO2 saturated solution measures. 
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Graph 2.2.- Cyclic vol tammogram of GC disk working electrode in 0.1% w/v Bu 4NPF6 acetonitrile solution, Pt wire as 
counter electrode, RHE, under N2 atmosphere (red line) and in CO2 saturated solution (blue line). 

 

Differences between the blank (N2 atmosphere, red line) and CO2 saturated solution (blue line) 

can be appreciated at -0.8V, reduction potential at which a broad peak probably due to CO2 

reduction appears, and a slightly later decomposition of the solvent takes place. 

2.1.1.3 Gold disk working electrode. 

Performance of gold disk working electrode for carbon dioxide electroreduction in acetonitrile, in 

the presence of Bu4NPF6 electrolyte vs. RHE and Platinum wire as counter electrode is shown in 

Graph 2.3.  
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Graph 2.3.- Cyclic vol tammogram of Gold disk working electrode in 0.1% w/v Bu4NPF6 acetonitrile solution, Pt wire as 
counter electrode, RHE, under N2 atmosphere (red line) and in CO2 saturated solution (blue line). 

 

A high peak appears at -0.9V for CO2 saturated solution (blue line), showing that carbon dioxide 

reduction is happening. It was visible that bubbles were forming on the gold electrode surface 

while scanning down -0.9V and that has been reported to be the formation of carbon monoxide 

by Hori,Y.91 

 

2.1.1.4 Copper rod working electrode. 

Copper rod working electrode was tested for carbon dioxide electroreduction in acetonitrile, in 

the presence of Bu4NPF6 electrolyte vs. RHE and Platinum wire as counter electrode. Graph 2.4 

shows the overlapped spectra for the blank and the carbon dioxide saturated solution measures. 
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Graph 2.4.- Cyclic vol tammogram of Copper rod working electrode in 0.1% w/v Bu 4NPF6 acetonitrile solution, Pt wire as 

counter electrode, RHE, under N2 atmosphere (red line) and in CO2 saturated solution (blue line). 

Copper dissolves in higher concentration when solution is saturated in CO2 (blue line) possibly 

due to a slightly acidification of the solution because of the presence of water in the CO2 stream.  

2.1.1.5 Electrode behaviour comparison for CO2 electroreduction in Bu4NPF6/ACN 

electrolyte 

All voltammograms of carbon dioxide saturated solution are shown together in Graph 2.5.  

 
Graph 2.5.- Comparison of performance of Pt, GC, Au and Cu electrodes  in CO2 acetonitrile solution, Bu4NPF6 

electrolyte, Pt wire as counter electrodes, vs . RHE. 
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When comparing voltammograms it can be seen that CO2 reduction peaks appear at lower 

reduction potentials when gold or copper electrodes were used. This means that less energy is 

required in the reduction process in comparison with the GC or Pt working electrodes.  

It can be concluded from this experiment that gold and copper electrodes had better 

performance for carbon dioxide reduction when Bu4NPF6 electrolyte was used. 

2.1.2 Magnesium counter electrode test 

The electrocarboxylation reaction conditions with best results used by Anish P. Patel 1 for the 

cyclic carboxylation of styrene oxide involved the use of Cu and Mg as electrodes, under 60 mA of 

current flow and ammonium salt as catalyst. Magnesium electrode is therefore a target of study 

under cyclic voltammetry.  

Cyclic voltammograms of copper working electrode vs Platinum wire; and copper vs magnesium 

ribbon in 1% Bu4NBr solution in acetonitrile were recorded and are shown below.  However, due 

to its sacrificial nature (magnesium irreversibly dissolves during the reaction), the cv obtained 

does not provide more information. 

2.1.2.1 Copper rod working electrode (Platinum wire, RHE, Acetonitrile, Bu4NBr) 

Copper rod working electrode was tested for carbon dioxide electroreduction in acetonitrile, in 

the presence of Bu4NBr electrolyte vs. RHE and platinum wire as counter electrode. Graph 2.6 

shows the overlapped spectra for the blank and the carbon dioxide saturated solution measures. 

A variation on the CV happens when solution is saturated with CO2 (blue line) showing that 

carbon dioxide reduction occurs at -1.2V.  
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Graph 2.6.- Cyclic vol tammogram of Copper rod working electrode in 0.1M Bu 4NBr acetonitrile solution, Pt wire as 
counter electrode, RHE, under N2 atmosphere (red line) and in CO2 saturated solution (blue line). 

 

It is worth noting that the solution went to clear purple color after several scans. The change in 

color suggests that a Cu (I) coordination complex ([CuBr4][(Bu4N)3]) could be forming. As found in 

literature this complex could thermally degrade to produce [Et4N][CuBr3] (s) + EtBr (g) + Et3N 

(g).156  

2.1.2.2 Copper rod and Magnesium ribbon. 

Copper rod working electrode was tested for carbon dioxide electroreduction in acetonitrile, in 

the presence of Bu4NBr electrolyte vs. RHE and Magnesium ribbon as counter electrode. Graph 

2.7 shows the overlapped spectra for the blank and the carbon dioxide saturated solution 

measures. As in the previous experiment, it is clear that carbon dioxide reduction is taking place 

at -1.2V.  
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Graph 2.7.- Cyclic vol tammogram of Copper rod working electrode in 0.1M Bu 4NBr acetonitrile solution, Mg ribbon as 
counter electrode, RHE, under N2 atmosphere (red line) and in CO2 saturated solution (blue line). 

 

2.1.2.3 Comparison of Cu/Pt and Cu/Mg electrodes in Bu4NBr/ ACN electrolyte 

 

Graph 2.8.- Comparison of performance of Cu/Pt and Cu/Mg electrodes  in CO2 acetonitrile solution, Bu4NPF6 
electrolyte, Pt wire as counter electrodes, vs . RHE. 
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When comparing both pair of electrodes, Cu/Pt is the one with higher electrocatalytic activity for 

carbon dioxide reduction. However, the cheaper cost of Magnesium make Cu/Mg pair of 

electrodes more desirable. 

2.1.3 Electrode behaviour comparison for CO2 electroreduction in Bu4NPF6 and 

Bu4NBr electrolytes 

 

 

Graph 2.9.- Comparison of Pt, GC, Au and Cu electrodes in CO2 saturated acetonitrile solution, Bu 4NPF6 or Bu4NBr 

electrolyte, Pt wire or Mg ribbon as counter electrode, vs . RHE. 

 

An overview of the comparative Graph 2.9 tell us that when used Bu4NBr electrolyte better 

carbon dioxide electroreduction response was obtained. This fact matches with the experimental 

method optimization results of “electrocarboxylation of styrene oxide”1 that indicate that Bu4NBr 

is a better catalyst for the reaction. 

GC/Pt-Bu4NPF6 Pt/Pt-Bu4NPF6

Au/Pt-Bu4NPF6

Cu/Pt-Bu4NBr

Cu/Pt-Bu4NBrCu/Pt-Bu4NPF6
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2.1.4 Epoxide study under Cyclic voltammetry 

2.1.4.1  Styrene oxide analysed by CV with copper rod and platinum wire electrodes 

Copper rod working electrode was tested for carbon dioxide electroreduction in acetonitrile, in 

the presence of styrene oxide and Bu4NBr electrolyte vs. RHE and Platinum wire as counter 

electrode. Graph 2.10 shows the overlapped spectra for the blank and the carbon dioxide 

saturated solution measures. 

 

Graph 2.10.- Cyclic vol tammogram of Copper rod working electrode in 0.1M Bu 4NBr acetonitrile solution, Pt wire as 
counter electrode, RHE, and 0.06M styrene oxide, under N2 atmosphere (red line) and in CO2 saturated solution (blue 
l ine). 

 

When solution was saturated in carbon dioxide (blue line), the current dropped slightly. Possible 

styrene oxide-CO2 reduction is taking place below -0.6V. 

2.1.4.2 Styrene oxide analysed by CV with copper rod and magnesium ribbon 

electrodes 

Copper rod working electrode was tested for carbon dioxide electroreduction in acetonitrile, in 

the presence of styrene oxide and Bu4NBr electrolyte vs. RHE and Magnesium wire as counter 

electrode. Graph 2.11 shows the overlapped spectra for the blank and the carbon dioxide 

saturated solution measures. 
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Graph 2.11.- Cyclic vol tammogram of Copper rod working electrode in 0.1M Bu 4NBr acetonitrile solution, Mg ribbon as 

counter electrode, RHE, and 0.06M styrene oxide, under N2 atmosphere (red line) and in CO2 saturated solution (blue 
l ine). 

 

When styrene oxide was added to the solution using Cu/Mg pair of electrodes, differences 

between blank and carbon dioxide saturated solution were noticeable. The whole curve shape 

changed and four peaks appeared at -0.4, -0.6, -0.8 and -1.1V.   

2.1.4.3 Electrode behaviour comparison for CO2 electroreduction in Bu4NBr/ACN + 

Styrene oxide. 

Graph 2.12 shows together Cu/Pt and Cu/Mg pair of electrodes in carbon dioxide saturated 

acetonitrile solution in the presence of styrene oxide and Bu4NBr as electrolyte vs. RHE. 

Comparison between pair of electrodes show that Cu/Pt needs less energy to reduce CO 2 than 

Cu/Mg, but again Cu/Mg is a cheaper option. 
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Graph 2.12.- Comparison of Cu rod electrodes in CO2 saturated acetonitrile solution, in the presence of s tyrene oxide 
and Bu4NBr electrolyte, Pt wire or Mg ribbon as counter electrode, vs . RHE. 

 

2.1.4.4 Electrode behaviour comparison for CO2 electroreduction in Bu4NBr/ACN and 

Bu4NBr/ACN + Styrene Oxide. 

Graph 2.13 shows together Cu/Pt and Cu/Mg pair of electrodes in carbon dioxide saturated 

acetonitrile solution with Bu4NBr as electrolyte vs. RHE. Orange (Cu/Pt) and green (Cu/Mg) curves 

are in the presence of styrene oxide. 

Comparison shows that Cu/Pt is in both cases more catalytic than Cu/Mg. However, the 

advantage of Cu/Mg is the low cost of those metals. 
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Graph 2.13.- Comparison of Cu rod electrodes  in CO2 saturated acetonitrile solution, Bu4NBr electrolyte, Pt wire or Mg 

ribbon as counter electrode, vs. RHE. Green and orange lines are in the presence of Styrene oxide. 

 

In order to know more about the mechanism of the reactions behind the electrochemistry, a 

series of non-electrochemical experiments regarding carboxylation of styrene oxide in the 

presence (or not) of the metal electrodes will be carried out. Some of them are explained in next 

section, Organic synthesis & Control reactions. 

2.1.5 Conclusions 

Comparison of the different working electrodes CVs showed that their ability for CO2 reduction 

when Bu4NPF6 catalyst was used can be ranked from higher to lower as follows: Cu > Au > Pt > GC 

From comparing the two different electrolytes used and the pairs of electrodes, a classification of 

performance can be listed as follows (working/counter electrodes-electrolyte 1%): 

GC/Pt-Bu4NPF6  <  Pt/Pt-Bu4NPF6  <  Au/Pt-Bu4NPF6  < Cu/Pt-Bu4NPF6  < Cu/Pt-Bu4NBr  < Pt/Pt-

Bu4NBr 

This sequence would be consistent with the experimental results obtained previously on catalyst 

screening for carboxylation of epoxides, being Bu4NBr a better catalyst than Bu4NPF6. 
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The addition of styrene oxide to the system of Cu/Pt electrodes with Bu4NBr showed a CV looking 

as an irreversible process. However, when the electrode pair used was Cu/Mg, a very different 

curve was acquired with at least three processes going on when CO2 was flushed. Due to the 

complexity of the system more experiments should be carried out in order to determine the 

processes taking place.  

A 2015 January publication by Berto, T. C., Zhang, L., Hamers, R. J. & Berry, J. F. reported a deeper 

analysis on this matter concluding that “the “catalytic” role of NR4
+ salts in CO2 electroreduction is 

non-existent.153 None of the current data supports a strong electrostatic interaction between 

either NR4
+ and CO2 or NR4

+ and the electrode surface, and the diffusion-controlled 

electroreduction best fits a simple direct outer-sphere reduction of dissolved CO2, the mechanism 

which was originally put forth by Savéant and co-workers.154 

Experiments using no current were designed to further understand the me chanism of the 

reaction.  
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2.2 ICP ANALYSIS OF CU AND MG CONTENT ON ELECTROCATALYTIC CYCLIC 

CARBOXYLATION OF EPOXIDES 

In order to find a correlation between the copper and magnesium content in solution and the 

production of cyclic carbonate both ions were measured by Atomic Absorption Spectrometry 

(Experimental specifications in section 4.2). 

2.2.1 Styrene oxide electrochemical carboxylation 

It was found by ICP analysis that Cu and Mg electrodes were degrading to the solution. Cu and 

Mg content in solution during the electrocarboxylation of styrene oxide (1a) in acetonitrile (1 atm 

pressure of CO2, at 75 °C with the presence of TBAI) were stable through reaction time as shown 

in Graph 2.14 for 48 and 72 hours of reaction times.  

 

Graph 2.14.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion (green 
line) to the corresponding carbonate of s tyrene oxide at different reaction times (h). At a  concentration of 0.02M, 

Ratio: 1:1, temperature of 75 °C, and Bu 4NI as electrolyte. 

 

2.2.2 Fluorostyrene oxide electrochemical carboxylation 

In the case of electrochemical carboxylation of fluorostyrene oxide, Mg ions slowly increase with 

time and Cu ions decrease while carbonate production highly increases (Graph 2.15).  
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Graph 2.15.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion (green 
line) to the corresponding carbonate of fluorostyrene oxide at di fferent reaction times  (h). At a concentration of 0.02M, 
Ratio: 1:1, temperature of 75 °C, and Bu4NI as electrolyte. 

 

2.2.3 Bromostyrene oxide electrochemical carboxylation 

In the reaction with bromostyrene oxide as starting material, Magnesium ions increase with time, 

Copper ions increase first but decrease after, and a slower conversion to carbonate takes place 

compared to the previous reactions (Graph 2.16). 

 

Graph 2.16.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion (green 

line) to the corresponding carbonate of bromostyrene oxide at di fferent reaction times  (h). At a  concentration of 0.4M, 
Ratio: 1:1, temperature of 75 °C, and Bu4NI as electrolyte. 
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2.2.4 1,2-Phenoxymethyl oxirane electrochemical carboxylation 

When the reaction was concentrated more, Mg highly dissolves and performance improves by 

achieving almost the same conversion in half the time: when 1 mmol of starting material reacted 

after 48 hours, 67% of carbonate was produced. However, when 10 mmol of starting material 

reacted, 60% of conversion was accomplished in only 19 hours (Graph 2.17).  

 

Graph 2.17.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion  (green 
line) to the corresponding carbonate of 1,2-phenoxymethyl oxi rane at di fferent reaction times (h). At two different 
concentrations: 1 mmol or 10 mmol of starting material, Ratio: 1:1, temperature of 75 °C, and Bu4NI as electrolyte. 

 

2.2.5 1,2-Epoxyhexane   

In this case both Cu and Mg ions increased with time but a highest difference is seen on 

magnesium ions in solution.  % of conversions for 1,2-epoxy-hexane is also slower (as in the case 

of bromostyrene oxide). 
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Graph 2.18.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion  (green 
line) to the corresponding carbonate of 1,2- epoxyhexane at di fferent reaction times (h). At a concentration of 0.2M, 

Ratio: 1:1, temperature of 75 °C, and Bu4NI as electrolyte. 

 

2.2.6 Allyl Glycidyl Ether  

Cu and Mg content in solution was very low for the allyl glycidyl ether reaction. Conversion was 

also slow and not higher than 56% after 72 hours. 

 

Graph 2.19.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion  (green 

line) to the corresponding carbonate of allyl  glycidyl  ether at different reaction times (h). At a  concentration of 0.31M, 
Ratio: 1:1, temperature of 75 °C, and Bu4NI as electrolyte. 
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2.2.7 Comparison 

The plotting of all starting materials together shows that no comparison between different 

chemical species can be achieved (Graph 2.20). Copper and Magnesium content in solution is 

independent of concentration between different starting materials but it is dependent on time 

within the same reactant. Some reactions at higher concentration showed more Mg ions than 

others but reaction rates were slower (roughly based on the difference on slopes of data 

representation) (e.g. starting material 1,2-epoxyhexane).  

 

 

Graph 2.20.- Cu and Mg content in solution in mg/L (blue and red columns respectively) and % of conversion (green 

line) to the corresponding carbonate of all different s tarting materials (1 = s tyrene oxide (1a); 3 = fluorostyrene oxide 
(1c); 4 = bromostyrene oxide (1d); 5 = 1,2-phenoxymethyl oxi rane (1e); 6 = 1,2-epoxyhexane (1f); 7 = allyl  glycidyl  ether 
(1g)) reaction at different reaction times (h). 

Due to the difference on the chemical behaviour some starting materials such as styrene oxide 

(number 1 in Graph 2.20) has higher % of conversion to carbonate (87%) at low concentrations 

(0.02 M) after 48 hours while others like 1,2- epoxyhexane (number 6 in Graph 2.20) had less 

conversion rate (60%) at higher concentration (0.2 M) after the same period of time (48 hours).  

2.2.8 Conclusions 

Cu and Mg content usually rose with time and so did the carbonate within the same reaction, 

however when comparing different starting materials, trends were not consistent. For example, 

after 48 hours of reaction of styrene oxide (with TBAI in ACN at 75 °C and 1 atm of CO 2) at a 

concentration of 0.02 M conversion to carbonate was of 87% containing less than 10 mg/L in Cu 
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and Mg ions. In contrast, after the same time of reaction, 1,2-epoxyhexane conversion to 

carbonate was of 60% while Cu and Mg ions content was more than 45 mg/L. It can be concluded 

that a straight relation cannot be identified between Cu and Mg in solution and concentrations 

and conversion when comparing different starting materials.  

2.3 MEASURE OF THE ONSET POTENTIAL OF THE CELL 

Some Short Circuit reactions were monitored looking at the onset potential of the cell. This was 

simply measured by connecting a multimeter to the Cu and Mg electrodes on the voltmeter 

mode. The usual response was in a range from 0.8 to 1 volt which is the potential at which CO2 

has been found to start to reduce at different electrodes.91,157,158 If this occurs, the products of 

the reduction could be determined by analysing the system by LCMS coupled to the 

electrochemical cell. An attempt to do so with a GCMS is reported on section 2.5. The 

experimental procedure of the reaction set up is the same as explained on section 4.6.2.4.  

The current response of a short circuit mode reaction with styrene oxide as starting material is 

shown in Graph 2.21. 

 
Graph 2.21.- Measures of current (μA in blue) and temperature (°C in red) of a short ci rcuit mode reaction of s tyrene 

oxide and Bu4NI, up to 75 °C. 

Differences in the current may indicate reactions taking place on the electrodes surfaces. It would 

be convenient to monitor the current flowing in the reaction for longer time (as long as the 

reaction takes place) together with periodical analysis of the solution by LCMS and 1H-NMR 

spectroscopy. With the present equipment this was not possible but a new handmade 
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multimeter with a range of channels and connected to a computer has been built for this purpose 

by A. Sertap Kavasoglu, a colleague from Hacettepe University, Engineering Faculty in Beytepe 

/Ankara, TURKEY during his visit to the Energy Research Lab in Loughborough University carrying 

on a collaborative project. The device will need to be set up and calibrated before its use.  

2.4 DMS ANALYTICAL TECHNIQUE TO MONITOR IN-SITU ELECTROCATALYTIC 

CYCLIC CARBOXYLATION OF EPOXIDES. 

The electrochemical cell was successfully coupled to the differential mobility spectrometer and a 

change in response with respect to background experiments was detected by the instrument and 

recorded in a computer for its analysis. However, a first analysis of the data did not expose 

significant information about the system due to saturation of acetonitrile response. Acetonitrile 

sequesters the positive charge because of its high proton affinity saturating the signal.  

Further investigation would require changing the solvent to one whose proton affinity is less than 

that of methanol in order for resolving the signal response. However, this change should be 

previously studied in terms of the viability of the electrochemical reaction under the new 

conditions since it would affect the performance. Table 2.1 shows proton affinities for acetonitrile 

and methanol both used in this experiment, and some proposed solvents to be tested in future 

research. 

Table 2.1.- Proton affinities of solvents 

Solvent (neutral molecules) Proton affinity (kJ/mol) 

Acetonitrile 788 
Methanol 761 
Benzene 759 
Formaldehyde 718 
Water 697 
Hydrogen peroxide 678 
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2.5 CONSTRUCTION OF A GC/MS FOR ANALYSIS OF IN-SITU 

ELECTROCHEMICALLY ASSISTED CARBOXYLATION REACTIONS 

As explained in the introduction research groups have used MS (usually LCMS ref) as an analytical 

method to identify subproducts and/or intermediates in the electrocarboxylation of epoxides. 

A similar system consisting of a MS or GC-MS coupled to the electrochemical cell will be 

developed in order to detect volatile products produced during the electrochemical carboxylation 

of styrene oxide with CO2. 

An attempt of determining all compounds produced in the electrocarboxylation of epoxides was 

made by building a mass spectrometer in the laboratory next to a fumehood in where a 

electrochemical cell was placed to run the reaction. More details about the instrument 

specifications can be found on section 4.5. Experimental procedure of this reaction set up is as 

explained on the experimental section 4.6.2.4.  

2.5.1 Results 

Some of the mass spectra patterns of molecules of interest (such us CO2, CO, Acetonitrile…) are 

collected in the Annexe. 

First blank (Figure 2.1) shows an injection of CO2 gas at room temperature (top spectrum green 

colour), the background spectrum where only carrier gas should be present (middle spectrum red 

colour) and the TIC (bottom, sum of all spectra recorded, purple colour).  

Second blank, Figure 2.2, shows an injection of CO2 gas flushed through the cell containing 

acetonitrile (top spectrum green colour) at room temperature, the background spectrum when 

only carrier gas should be present, (middle spectrum red colour),  and the TIC (bottom, sum of all 

spectra recorded, black colour).  
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Figure 2.1.- TIC (bottom), background (middle) and CO2 (top) mass spectra signals at room temperature. 

 

Figure 2.2.- TIC (bottom), background (middle) and CO2 flushed through a flask containing acetonitrile (top) mass 

spectra signals at room temperature. 
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The same experiment at 75 °C was carried out. Figure 2.2 shows the chromatograms for the two 

injections of CO2 flushed through a flask containing 50 mL of ACN at 75 °C. On the bottom, on red, 

there is the TIC chromatogram that shows one first peak corresponding to a first injection and a 

second and broad peak corresponding to the second injection. This broad peak is due to the 

condensation of ACN vapour along the glass capillary which is about 2 m long and is currently at 

room temperature. To avoid condensation in the system which can highly damage the detector 

the length of the inlet tube and capillary must be shortened to the minimum possible. The length 

of the second peak plateau shows that a minimum of 4 minutes was needed to “clean” the 

system. 

The chromatogram in the middle shows the times at which all signals for the peak of ACN (41 

m/z) appear along the analysis. As it can be spotted, it has the same shape than the TIC, meaning 

that every time an injection is taken, ACN is present in the sample.  

The top chromatogram, on black colour, shows the times at which all signals for CO2 peak (44 

m/z) appear. In this case it is clear that both injections contained CO2, but the second one it did 

only at the first stage and did not last until the end of the plateau.  

 

Figure 2.3.- Chromatograms of two injections containing CO2 flushed through a  flask filled with 50 mL of acetonitrile at 
75 °C. TIC chromatogram (bottom on red colour); Acetonitrile chromatogram (middle on pourple colour) shows times 

of peaks at 41 m/z; CO2 chromatogram (top on black colour) shows times of peaks at 44 m/z. 
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The same conclusion can be drawn from the Mass spectra (Figure 2.4). Image number 1, shows 

the TIC spectrum where all recorded spectra are collected. Signals corresponding to CO2 at 44 

m/z, ACN and its pattern from 38-41 m/z, N2 at 28 and 18 m/z, and He at 4 m/z can be 

distinguished. If a spectrum corresponding to the background is isolated, then only He and N2 

signals appear (Figure 2.4, number 2). When a spectrum selectred from the first peak of the TIC 

chromatogram in Figure 2.3 is isolated, ACN and CO2 peaks are the most intense signals (shown in 

Figure 2.4, number 3). The same pattern is shown when the isolated spectrum corresponded to 

the first minute of the second peak (second injection) of the TIC chromatogram on Figure 2.3 

before the signal becomes flat. However, on a spectrum from the flat signal of the second peak of 

the chromatogram, only ACN is present, corresponding to the condensated ACN in the capillary 

(Figure 2.4, number 4). 

 

Figure 2.4.- Mass spectrum of two injections containing CO2 flushed through a flask filled with 50 mL of acetonitrile at 

75 °C. TIC spectrum (1, on red colour); background spectrum (2, on green colour); 1st injection spectrum (3, on pourple 
colour); Plateau spectrum (4, on black colour). 
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Figure 2.5 compares the spectra of injections of CO2 at room temperature (bottom, on red 

colour), CO2 flushed through a flask containing ACN at room temperature (middle, on green 

colour) and at 75 °C (top, on purple colour). The difference in temperature can be spotted due to 

the higher amount of ACN present in the CO2 flow going into the detector.  

 

Figure 2.5.- Mass spectra  comparison. CO2 at room temperature (bottom on red colour), CO2 and ACN vapours at room 

temperature (middle on green colour), CO2 and ACN vapours at 75 °C (top on purple colour). 

In summary, the system is working properly, efficiently identifying every compound and 

apparently responding with the correct intensities. However, if the intention is to identify other 

compounds products or subproducts coming from the CO2 electroreduction in the cell such us 

CO, which m/z peak overlaps with the 2nd main peak of CO2 pattern (at 28 m/z), prior separation 

of the gases is required. A gas chromatography device was purchased and installed in conjunction 

with the MS detector. A calibration of the detector with CO2 as calibrant is desired in order to 

compare accurately intensities of its pattern peaks. The ideal set up would consist of a Liquid 

Chromatography – Mass Spectrometry system coupled with the electrochemical cell. The 

disadvantages of a GCMS vs LCMS are that only compounds in their gas state can be measured, 

so the possibility of finding any other key compound produced in the electro-reduction of CO2 

and dissolved in the ACN (e.g. formic acid) is lost. 
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2.6 BACKGROUND REACTIONS 

A wide research on the electrocarboxylation of epoxides was carried out by Anish P. Patel and is 

presented in his PhD thesis and publication1. As was suspected after the cyclic voltammetry study 

of the carboxylation of epoxides in the present investigation and supported by a recent 

publication153, the activity of the ammonium salt is not electrocatalytic, therefore further 

research on the reaction mechanism is needed. The best performance conditions of these 

reactions were chosen as starting point for the following background reaction experiments.  

Due to the finding that electrocatalysis does not take place, and to the influence of numerous 

variables in the reaction, the following experiments were designed only focusing on the 

electrochemical system.  First, current was not applied, but the electrodes were connected with a 

wire to close the circuit system and allow electrons to travel (short circuit reactions); Second, the 

same electrodes system with no current, and without any wire connection (Open circuit); Finally, 

reactions with no electrodes were carried out (No electrodes reactions). The results of these 

experiments are discussed below.  

 

2.6.1 Electrocarboxylation of epoxides 

The following reactions were reproduced from Anish P. Patel work in this research group.  1  

Procedure of reaction on entry 1 of Table 2.2: 

The epoxide (1b, 2 mmol) was added to a solution of supporting electrolyte (Bu4NBr) in 

acetonitrile (60 mL) in a ratio of (1:1), the resulting solution was flushed with CO2 for 1h, followed 

by heated electrolysis for 5h at 75 °C and constant current (60mA) with constant stirring and 

constant CO2 flow, in a single compartment cell containing a magnesium anode (30 cm of Mg 

ribbon) and copper cathode (60 cm of Cu rod) previously sanded (to remove the oxide layer).  

On completion the reaction mixture was filtered if any precipitate was formed and later 

concentrated under reduced pressure (in ice bath if required). EtOAc (5 mL) was added to 

precipitate Bu4NI. After precipitation the solid was removed by filtration and the solvent 

evaporated to afford the corresponding carbonate (88% of 2b evaluated from 1H NMR spectrum).  
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Table 2.2.- Electrochemical carboxylation of chlorostyrene oxide. 

Entry Starting material Time (h) Carbonate (%)a 

1 Chlorostyrene oxide 5 88 
aGeneral reaction conditions: copper rod, magnesium ribbon, 60 mA of current, Bu4NI as supporting electrolyte, CO2 
constant flow, CH3CN, 75 °C; aEvaluated from 1H NMR spectrum. 

Electrochemical carboxylation of styrene oxide was also reproduced performing as follows:  

 

Table 2.3.- Electrochemical carboxylation of s tyrene oxide. 

Entry Starting material Time (h) Carbonate (%)a 

1 Styrene Oxide 19 73 
aGeneral reaction conditions: copper rod, magnesium ribbon, 60 mA of current, Bu4NBr as supporting electrolyte, CO2 
constant flow, CH3CN, 50 °C; aEvaluated from 1H NMR spectrum. 

 

2.6.2 Short Circuit reactions 

Procedure of reaction on entry 10 of Table 2.4:  

The epoxide (1a, 2 mmol) was added to a solution of supporting electrolyte (Bu4NI) in acetonitrile 

(50 mL), the resulting solution was flushed with CO2 for 1h, followed by heating at 50 °C with 

constant stirring for 48 hours under constant CO2 flow, in a single compartment cell containing a 

magnesium anode (15 cm of Mg ribbon) and copper cathode (30 cm of Cu rod) previously 

sanded. A wire connection between Cu and Mg electrodes was used to close the system,  but no 

current was applied.  
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On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate (97% of 

2a evaluated from 1H NMR spectrum).  

 

Table 2.4.- Short Ci rcuit reaction conditions and results of s tyrene oxide carboxylation with TBAI.a 

 

Entry 
Ratio 

(1a:TBAI) 
CO2 Temp (°C) time (h) Carbonate (%)b Diol (%)b 

 

            

1c 1:1 X 0 96 0 100 

2 1:1 √ 0 96 2 98 

3 1:1 √ 30 0 0 0 

4 1:1 √ 30 5 4 0 

5 1:1 √ 30 24 67 0 

6 1:1 √ 30 48 89 0 

7 1:1 √ 50 0 0 0 

8 1:1 √ 50 5 7 0 

9 1:1 √ 50 24 65 0 

10 1:1 √ 50 48 97 0 

11 1:1 √ 75 0 0 0 

12 1:1 √ 75 19 56 16 

13 1:1 √ 75 48 83 13 

14 1:1 √ 75 19 76 14 

15 1:1 √ 75 19 74 3 

16 1:1 √ 100 0 0 0 

17 1:1 √ 100 19 2 0 

18d 1:10 √ 0 19 3 3 

19d 1:10 √ 75 19 74 3 
aGeneral reaction conditions: copper rod, magnesium ribbon, wire connection between electrodes, Bu4NI as supporting 
electrolyte, CO2 constant flow, CH3CN, 0 to 100 °C; bEvaluated from 1H NMR spectrum. Mg ribbon was replaced for a freshly 
sanded if consumed after 48 hours. cA background reaction without CO2 after 96 h gave as only product the corresponding 
diol (29). dCatalyst concentration was increased by ten times to compare the performance at 1:10 ratio (entries 16 and 17) 
at two different temperatures. 
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Regarding the formation of diol, it was suspected that it was produced directly from the epoxide 

remaining in solution as it is widely reported in the literature.118,159–162 However, the possibility of 

the diol coming from the cyclic carbonate was also considered as a degradation of the carbonate 

in presence of some organometallic complexes used for its synthesis from epoxides was 

previously reported by Muralidharan & Heeralal.122  

The investigation of formation of diol as product led to the modification of the work up 

conditions as explained in 184. It was found that diol proceeds from the remaining epoxide when 

solution was treated with dilute HCl in the initial method. The first experiment to investigate this 

issue consisted on subjecting the cyclic carbonate to the electrocarboxylation conditions in 

presence of 0.5 mL of H2O followed by addition of 0.5 mL of 0.1 M HCl. Results of this test 

showed that the carbonate was not degrading (see Table 2.5). Styrene epoxide and carbonate 

were washed separately with dilute HCl, extracted with EtOAc and rota evaporated the product. 

1H NMR showed that carbonate remained pure, while epoxide transformed to the corresponding 

diol (Scheme 2.1).  

 

Table 2.5.- Degradation s tudy of 4-phenyl-1,3-dioxolan-2-one under short ci rcuit mode. 

Time (h) Carbonate (%)a diol (%)a 

19 100 0 
48 100 0 

General reaction conditions: 4-phenyl-1,3-dioxolan-2-one as starting material, copper rod and magnesium ribbon (Short 
circuit mode), Bu4NI as supporting electrolyte, CO2 constant flow, CH3CN, 75 °C; aEvaluated from 1H NMR spectrum. Ri refers 
to the code given to each reaction. 

 

Scheme 2.1.- Evolution of styrene oxide carboxylation reaction. 
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Graph 2.22 shows the synthesis of styrene carbonate from styrene oxide under short circuit 

conditions of Cu and Mg electrodes in acetonitrile, at different temperatures (Entries 1 to 17 of 

Table 2.4). Reactions run at 0 °C or at 100 °C or higher temperature gave very low or no 

conversion to carbonate. Note that boiling point of acetonitrile is reached at 82 °C at atmospheric 

pressure, so reactions over that temperature experience degasification of the solution and no 

CO2 is left to react. Reactions carried out at 30, 50 and 75 °C under short circuit conditions 

performed very similarly. Temperature profile of the reaction after 19 hours is represented in 

Graph 2.23. 

 

Graph 2.22.- Styrene oxide carboxylation under SC conditions at different temperatures. 

 

Graph 2.23.- Profile of s tyrene carbonate conversion at di fferent temperatures after 19 hours of reaction under SC 

conditions. 
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Reproducibility of the reaction was within a range of at least 20% range of  difference in 

performance. Three replicates of the synthesis of styrene carbonate at 75 °C in acetonitrile under 

short circuit conditions (Entries 12, 14 and 15 of Table 2.4) are shown in Graph 2.24. This wide 

range of different conversions could be due to weaknesses in the experimental procedure, like 

the fact that CO2 flow usually stopped overnight probably due to the change of room 

temperature and had to be restarted in the morning. This leads to an uncertainty on the actual 

time of the reaction because of the intermittent absence of one of the reactants.  

 

Graph 2.24.- Three replicates of s tyrene carbonate synthesis under short ci rcui t conditions (Cu and Mg electrodes), 

ACN, TBAI (1:1), a fter 19 hours of reaction. 

Entries 18 and 19 of Table 2.4 correspond to experiments increasing the proportion of the 

ammonium salt catalyst (ratios epoxide:catalyst 1:10), at two different temperatures after 19 

hours of reaction. The comparison to the analogue experiments at 1:1 ratio is shown in Graph 

2.25. Only a 1% more of carbonate was achieved at 0 °C when TBAI was 10 times higher, and 24% 

less carbonate when the reaction was held at 75 °C. There is no significant difference among the 

data of reactions with ratios 1 to 1 or reactions with ratios 1 to 10 as the variability study led to a 

wide range of conversion % under the same conditions. 
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Graph 2.25.- Effect of escalation of TBAI to 10 mmol  in the synthesis of styrene carbonate in acetonitrile at two 
di fferent temperatures after 19 hours of reaction under short ci rcuit conditions (Cu and Mg electrodes).  

 

Synthesis of carbonates from epoxides 1b to 1g under short circuit conditions (Cu-Mg electrodes) 

in acetonitrile was successfully achieved and results are listed in Table 2.6. Graphical 

representation of the data of Table 2.6 is shown on Graph 2.26 to Graph 2.31. All reactions were 

run at 0.04 M concentration except one of 1,2-phenoxymethyloxirane (entries 10 and 11) that 

was run at a 0.14 M concentration and the allyl glycidyl ether reactions of 0.31 M (entries 18 to 

24). Temperature of reactions was maintained at 75 °C, ratio of epoxide regarding TBAI was 1:1, 

and carbon dioxide supplied from a cylinder. 
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Table 2.6.- Synthesis of cycl ic carbonates from epoxides under short ci rcuit conditions (Cu -Mg) in acetonitrile.a 

Entry Epoxide time (h) epoxide (M) Carbonate (%)b 

 

2. Chlorostyrene oxide (1b) 

   
1 SC2_11.2a 19 0.04 49 

2 SC2_11.2b 48 0.04 80 

3 SC2_11.2C 72 0.04 86 

 

3. Fluorostyrene oxide (1c) 

   
4 SC3_14a 19 0.04 47 

5 SC3_14b 48 0.04 87 

 

4. Bromostyrene oxide (1d) 

   
6 SC4_19a 5 0.04 0 

7 SC4_19b 24 0.04 28 

8 SC4_19c 48 0.04 59 

9 SC4_19d 72 0.04 85 

 

5. 1,2-Phenoxymethyloxiranec (1e) 

   
10 SC5_16b 19 0.14 59 

11 SC5_16c 48 0.14 96 

12 SC5_9 19 0.04 28 

13 SC5_9.2a 48 0.04 68 

14 SC5_9.2b 96 0.04 70 

 

6. 1,2-Epoxyhexane (1f) 

   
15 SC6_12a 19 0.04 30 

16 SC6_12b 48 0.04 60 

17 SC6_12c 72 0.04 100 

 

7. Allyl Glycidyl etherd (1g) 

   
18 SC7_13 19 0.04 0 

19 SC7_13.1 48 0.31 56 

20 SC7_13.2a 19 0.31 13 

21 SC7_13.2b 48 0.31 26 

22 SC7_13.2c 120e 0.31 76 

23 SC7_13.3a 19 0.31 11 

24 SC7_13.3b 48 0.31 42 

25 SC7_13.3c 72 0.31 56 
aGeneral reaction conditions: copper rod, magnesium ribbon, wire connection between electrodes, Bu4NI as supporting 
electrolyte (1:1), CO2 constant flow, CH3CN, 75 °C; bEvaluated from 1H NMR spectrum. Mg ribbon was replaced for a freshly 
sanded if consumed after 48 hours. cConcentration of 1,2-phenoxymethyloxirane was increased to 0.14 M (Entries 10 and 
11). dThree replicates of allyl glycidyl ether were run at 0.31 M. eReaction was left overweekend with a balloon of CO2.  
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Carboxylation of epoxides (1b to 1g) under short circuit conditions: Cu-Mg, ACN, TBAI (1:1). 

Data from Table 2.6. 

  

Graph 2.26.- Chlorostyrene oxide carboxylation 

 

Graph 2.27.- Fluorostyrene oxide carboxylation. 

  

Graph 2.28.- Bromostyrene oxide carboxylation. 

  

Graph 2.29.- 1,2- Phenoxymethyl oxirane carboxylation. 

  

Graph 2.30.- 1,2-Epoxyhexane carboxylation. 

  

Graph 2.31.- Allylglycidyl ether carboxylation. 

 

As it is noticeable reactions develop at different rates depending on the R group bonded to the 

epoxide.  



Chapter 2 – Results and Discussion 

96 

 

One reaction of 1,2-phenoxymethyl oxirane was carried out at a concentration of 0.14 M (orange 

line in Graph 2.29) to compare the result with the dilute reaction (0.04 M, black line of the same 

graph). The reaction developed at a higher speed rate as expected when rising the concentration 

of any of the reactants. 

A first reaction at 0.04 M of allyl glycidyl ether was attempted and no carbonate was produced. 

The concentration of epoxide was raised up to 0.3 M to double check the no conversion to 

carbonate surprisingly achieving conversions from 11% after 19 h of reaction to 72 after 120 

hours. Three replicates of allyl glycidyl ether (Graph 2.31) after 48 hours of reaction showed a 

high dispersion of results in conversion (from 26 to 55%). This could be, as spotted previously, 

due to a weak set up (like the fact that CO2 supply was failing overnight). 

Graph 2.32  collects the previous reactions under short circuit conditions in order to better 

visualize the differences between them. 

 

Graph 2.32.- Comparison of synthesis of cycl ic carbonates from epoxides under short ci rcuit conditions. 

The classification on reaction rate depending on the epoxide under these conditions can be 

extracted from data represented in Graph 2.32:  

1,2-Phenoxymethyloxirane > fluorostyrene oxide > styrene oxide > chlorostyrene oxide > 1,2-

epoxyhexane > bromosthyrene oxide > allyl glycidyl ether. 
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2.6.3 Open circuit reaction 

Procedure of reaction on entry 1 of Table 2.7: 

Epoxide (1a, 2 mmol) was added to a solution of supporting electrolyte (Bu4NBr) in acetonitrile 

(1:1), the resulting solution was flushed with CO2 for 1h, followed by heating at 50 °C, constant 

stirring and constant CO2 flow, for 19 hours in a single compartment cell containing a magnesium 

ribbon (15 cm of Mg ribbon) and copper rod (30 cm of Cu rod) previously sanded. No connection 

was made between the electrodes or current applied. 

On completion the reaction mixture was concentrated under reduced pressure  (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate ( 46% of 

2a evaluated from 1H NMR spectrum).  

 

Table 2.7.- Open circuit reaction conditions of three different starting materials, with and without electrolyte.a  

Entry Epoxide Catalyst 
time 
(h) 

epoxide 
(M) 

Carbonateb 
(%) 

1 Styrene Oxide TBABr 19 0.04 46 

2 Styrene Oxide c x 19 0.04 0 

3 Chlorostyrene oxide TBAI 19 0.04 20 

4 1,2-Phenoxymethyloxirane TBAI 5 0.15 10 

5 1,2-Phenoxymethyloxirane TBAI 5 0.15 12 

aGeneral reaction conditions : copper rod, magnesium ribbon, supporting electrolyte (1:1), CO 2 constant flow, no 

connection between electrodes, CH3CN; bEvaluated from 1H NMR spectrum. cNo supporting electrolyte. 

Reaction of styrene oxide (1a) in acetonitrile at a concentration of 0.04 M containing TBABr and 

in the presence of Cu and Mg electrodes without any connection between them (open circuit 

conditions) was heated up to 75 °C and flushed with CO2 (entry 1 of Table 2.7) producing 46% of 

carbonate (2a). This reaction showed that carboxylation takes place even without electrode 

connection. Same conditions without TBABr did not produce styrene carbonate (entry 2, Table 

2.7). The solution of TBABr would be doing the job of transferring electrons from one electrode to 
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another although with a lot more resistance than would present the wire connection between 

electrodes. 

Chlorostyrene oxide was also used as starting material under the same conditions to confirm that 

cyclic carboxylation can be extrapolated to other epoxides under open circuit conditions, using 

TBAI as catalyst at a concentration of 0.04 M. Reaction produced only 20% of carbonate after 19 

hours (entry 3, Table 2.7). 

Two replicates of 1,2-phenoxymethyl oxirane carboxylation under open circuit conditions after 5 

hours (entries 4 and 5, Table 2.7) were examined in order to compare with other condition 

reactions of the same starting material.  

The urge of attempting carboxylation of epoxides without electrodes was even stronger after 

these results, so a series of experiments at low concentration were carried out and are explained 

below. 

2.6.4 Carboxylation of epoxides (No Electrodes) 

Three different ranges of concentrations of reactants were studied under No Electrodes 

conditions (dilute reactions from 0.02 to 0.26 M, concentrated reactions from 1 to 20 M, and 

neat conditions). The general procedures are described in section 4.6.2.6. 

2.6.4.1 Dilute reactions 

Procedure of reaction on entry 16 of Table 2.8: 

Epoxide (1f, 0.17 M) was added to a solution of supporting electrolyte (Bu4NI) (1:1) in acetonitrile 

and heated to 75 °C. Constant CO2 flow (1 atm pressure). No electrodes were placed in the 

solution. 

On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate (42% of 

2f evaluated from 1H NMR spectrum).  
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Table 2.8.- Carboxylation of epoxides no electrocatalytic.a 

Entry Catalyst/Epoxide 
Temp 
(ºC) 

Epoxide 
(mol/L) 

Time 
(h) 

Carbonateb 
(%) 

 

TBABr/ Styrene Oxide (1a) 
    1 NE1_3 50 0.02 19 3 

2 NE1_3.2 50 0.02 19 1 

 
TBAI/ 

     Styrene oxide (1a)     

3 NE1_3.3a 75 0.02 5 1 

4 NE1_3.3b 75 0.02 19 5 

 
Chlorostyrene oxide (1b) 

    5 NE2_15a 75 0.04 5 0 

6 NE2_15b 75 0.04 24 7 

7 NE2_15c 75 ** 48 70 

 Fluorostyrene oxide (1c) 
    8 NE3_14a 75 0.05 5 0 

9 NE3_14b 75 0.05 24 4 

10 NE3_14c 75 ** 48 92 

 1,2-Phenoxymethyloxirane (1e) 
    11 NE5_6 50 0.02 19 0 

 Allyl Glycidyl ether (1g) 
    12 NE7_13a 75 0.04 24 5 

13 NE7_13b 75 0.04 48 7 

 1,2-Epoxyhexane (1f)     

14 NE6_9a 75 0.17 19 12 

15 NE6_9b 75 0.17 24 30 

16 NE6_9c 75 0.17 48 42 

17 NE6_9d 75 0.17 120 42 
aGeneral reaction conditions: Bu4NI supporting electrolyte, starting material (1:1), in Acetonitrile, at 75 °C. bConversion 
calculated from 1H NMR. ** Solution dried off during overnight CO2 gas flow. 

A series of experiments carried out without electrodes is presented in Table 2.8. Styrene oxide 

was dilute in acetonitrile in the presence of TBABr (entries 1 and 2), or TBAI (entries 3 and 4), 

heated up to 50 or 75 °C at a concentration of 0.02 M and CO2 was supplied from a cylinder for 19 

hours. Low conversion to styrene carbonate took place under these conditions (less than 4.7%).  
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Allyl glycidyl ether at 0.04 M, 75 °C was transformed to its corresponding cyclic carbonate only in 

7.4% after 48 hours (entry 13). 1,2-Phenoxymethyloxirane did not produce any carbonate after 

19 hours (entry 11). 

1,2-Epoxyhexane was used as starting material under these conditions, at 0.17 M concentration 

at 75 °C (entries 14 to 17, Table 2.8). Graph 2.33 shows the carboxylation conversion trend of this 

epoxide during 120 hours of reaction which reached a maximum of 42% after 48 hours of 

reaction. 

 

Graph 2.33.- 1,2- Epoxyhexane carboxylation under no electrodes conditions. 

 

In the case of chlorostyrene oxide and fluorostyrene oxide reactions (entries 5 to 10, Table 2.8)  

very low conversion (< 7%) was observed after 24 h of reaction at a concentration of 0.04 M, 

however, when the solvent was accidentally evaporated overnight the conversion rose to 70% 

and 92% respectively (Graph 2.34). This accidental evaporation took place due to the instability of 

the CO2 supply system when room temperature dropped overnight and gas pressure changed 

allowing a lot more gas flow passing through the cell and dragging the solvent vapours. 
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Graph 2.34.- Synthesis of chlorostyrene and fluorostyrene carbonate when accidental evaporation of solvent 
happened. 

When the determination of the percentage conversion was made on the 1H-NMR spectrum of the 

crude reaction mixture, signals from the Bu4NI and the epoxide and carbonate were compared to 

confirm that no starting material was evaporated with the solvent (unlike styrene oxide which is 

volatile under reduced pressure and ambient temperature), so ratios were still (1:1) : ([epoxide + 

carbonate] : Bu4NI). See example on Figure 2.6.  

The integration for the methyl groups in Bu4NI is set at 12 (3 protons x 4 methyl groups = 12 

protons in 1 molecule) and the sum of the integral values of one proton corresponding to the 

starting material and one proton corresponding to the product gives a total  value of 1 (0.70 + 

0.30 = 1).  
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In a controlled experiment previously carried out in order to elucidate the implications of the 

variables of concentration and ratio between epoxide and ammonium salt, the importance of 

concentration over the ratio was clear. Table 2.9 presents the results of this experiment and 

Graph 2.35 shows its representation. 

Table 2.9.- Study of concentration and catalyst ratio in bromostyrene oxid e carboxylation. 

Entry Epoxide 
Ratio 

(1d:TBAI) 
Epoxide 
(mol/L) 

Time 
(h) 

Carbonate 
(%) 

 

Bromostyrene oxide  
   1 NE4_11a 1:1 0.04 24 9.3 

2 NE4_11b 1:1 0.04 48 17.8 

3 NE4_10a 1:1.6 0.26 24 20.5 

4 NE4_10b 1:1.6 0.26 48 41.5 

5 NE4_10c 1:1.6 0.26 72 61.5 

6 NE4_12a 1:2 0.04 24 15.7 

7 NE4_12b 1:2 0.04 48 25.7 
aGeneral reaction conditions: bromostyrene oxide as starting material, Bu4NI supporting electrolyte, (1a:TBAI) ratio, in 
Acetonitrile, at 75 °C. 

 

Graph 2.35.- Bromostyrene oxide carboxylation in acetonitrile in the presence of TBAI at different ratios and 
concentrations. 

In this set of experiments, two different ratio (1:1 and 1:2) of the same concentration of 

bromostyrene oxide reaction and TBAI catalyst were carried out (Table 2.9, entries 1 and 2 

(orange line in Graph 2.35); entries 6 and 7 (yellow line in Graph 2.35)) showing better 

performance when TBAI was double than bromostyrene oxide. The slope of the reaction 

(reaction rate) did not vary noticeable though.  
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However, a third experiment of a ratio equal to 1:1.6, which results were expected to fall 

between the 1:1 and 1:2 reaction results, performed a lot better due to the higher concentration 

of the reactants that was 5 times more concentrated. 

These promising results on rising the concentration of bromostyrene oxide (and the posterior 

accidentally evaporation of the solvent of chlorostyrene oxide and fluorostyrene oxide 

carboxylation reactions) led to the experimental design of a highly improved experimental 

method for carboxylation of epoxides without involving electrodes or any other catalyst than the 

ammonium salt.   

2.6.4.2 MgCO3 and MgBr2 as cocatalyst for cyclic carboxylation of epoxides 

If the reaction with no electrocatalyst does not evolve or performs very poorly at low 

concentrations as it has been discussed in the previous section of background reactions, one 

might wonder what the mechanism involved in the reaction is that activates the carboxylation of 

epoxides (even at low concentrations) when electrodes are used. Some experiments trying to 

elucidate this mechanism were carried out and are explained below. 

From the observation of the Magnesium electrode being a sacrificial anode and the formation of 

an inorganic solid (not soluble in any of the usual solvents) in solution, one of the reaction 

catalysts hypothesis of the electrocarboxylation of epoxides with Mg and Cu as el ectrodes was 

that Mg metal reduced to Mg2+ and formed MgCO3 (with CO2 in solution) and/or MgBr2 (with free 

bromide in solution coming from the N-tetrabutylammonium bromide). In order to confirm the 

catalytic activity of this specie in the carboxylation of epoxides, MgCO3 and MgBr2  were added to 

a solution of styrene oxide.  

All attempts to produce the cyclic carbonate through these added Mg2+ to solution failed as seen 

in Table 2.10. One of the main obstacles for these reactions to take place was the low solubility of 

the inorganic cocatalysts (MgCO3 and MgBr2) in acetonitrile.  

Procedure of reaction on entry 1 of Table 2.10: 

Styrene oxide (0.1 mmol) was dissolved in acetonitrile  (60 mL) and heated to 50 °C. One 

equivalent of different catalyst/cocatalyst were tested as detailed in the table below. One 

reaction contained 0.1 mmol of MgBr2 and CO2 was supplied with a balloon at atmospheric 

pressure. Another reaction was carried out with N-tetrabutylammonium bromide (0.1 mmol) and 

MgCO3 (0.1 mmol) that were added to the reaction mixture, however no CO2 was supplied during 



Chapter 2 – Results and Discussion 

104 

 

the reaction. Entry 3 contained all three catalysts under study, N-tetrabutylammonium bromide 

(0.1 mmol), MgBr2 (0.1 mmol) and MgCO3 (0.1 mmol), but no CO2 was supplied. And entry 4 

contained MgBr2 (0.1 mmol) and MgCO3 (0.1 mmol), no CO2 was supplied to the reaction. 1H NMR 

analysis were carried out after 19 hours of reaction. 0% of conversion to carbonate 2a for all 

attempts. 

 

Table 2.10.- MgCO3 and MgBr2 presumed catalytic activity test.a 

Entry Catalyst / Epoxide Cocatalyst 
Temp 
(ºC) 

Epoxide 
(mol/L) 

Time 
(h) 

Carbonateb 
(%) 

 
TBABr  

    1 Styrene Oxide MgBr2 50 0.02 19 0 

2 Styrene Oxide MgCO3 50 0.02 19 0 

3 Styrene Oxidec MgCO3/MgBr2 50 0.02 19 0 

4 Styrene Oxide MgCO3/MgBr2 50 0.02 19 0 

 
TBAI  

    5 Styrene Oxide MgBr2 75 0.02 19 0 

6 Styrene Oxided MgBr2 75 0.02 19 0 

7 1,2-Phenoxymethyloxirane MgBr2 50 0.02 19 0 

8 1,2-Epoxyhexane MgBr2 75 0.02 168 0 
aGeneral reaction conditions: Epoxide starting material and N-tetrabutylammonium bromide or iodide catalyst (ratio 1:1), in 
Acetonitrile (0.02 M). When MgBr2 was used as catalyst (entry 1) CO2 was supplied with a balloon at 1 atm pressure. All 
reactions were carried out at 50 °C (entries 1-4 and 7) or at 75 °C (entries 5, 6 and 8). bEvaluated from 1H NMR spectrum. 
cRatio of cocatalysts is 1 mmol of MgCO3 to 0.5 mmol of MgBr2. dThis reaction is a replicate of entry 5. 

 

2.6.4.3 Concentration Study 

A study on the influence of the concentration of epoxide on the performance of the cyclic 

carboxylation was carried out using 1,2-phenoxymethyl oxirane as starting material.   

Procedure of reaction of Table 2.11: 

1,2-Phenoxymethyloxirane (1e, 0.1M) was added to a solution of the catalyst (Bu4NI) in 

acetonitrile at a 1 to 1 ratio previously heated to 75 °C. Reactions were run at concentrations of 

0.1, 0.5, 1.0 and 2.0 M. CO2 atmosphere (1 atm pressure) was maintained with balloons. No 
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electrodes were placed in the solution. 1H NMR analysis of the aliquots were made at 5 hours and 

24 hours of reaction.  

Table 2.11 and Graph 2.36 show the results of this study. It is important to notice that the 

reaction carried out at 2.0 M concentration of epoxide (entry 4, Table 2.11; yellow square in 

Graph 2.36) had completed the conversion to carbonate when the sample was analysed under 1H 

NMR after 24 hours, but the reaction time to reach 100% carbonate is probably less than 24 

hours. However, at this concentration, TBAI was not completely soluble in acetonitrile at 75 °C so 

the final ratio is 1 of epoxide to < 1 of catalyst. It can be appreciated that for the rest of the series 

(entries 2 to 4) the reaction rate increases with increasing concentration of epoxide.  

 

Table 2.11.- Molarity study of the cyclic carboxylation of 1,2-phenoxymethyl oxirane reaction.a  

Entry 
1,2-Phenoxymethyloxirane Carbonateb (%) 

Concentration (mol/L) 5 h 24 h 

1 0.1 3.8 12.7 
2 0.5 33.3 85.0 

3 1.0 32.7 93.5 

4 2.0c 54.3 100.0 
aGeneral reaction conditions: Bu4NI catalyst, 1 mmol of 1,2-phenoxymethyloxirane starting material (1:1), in Acetonitrile, 1 
atm pressure of CO2, at 75 °C. bEvaluated from 1H NMR spectrum. cCatalyst did not dissolve completely. 

 

Graph 2.36.- Molarity study of 1,2-phenoxymethyl oxirane carboxylation. Data from Table 2.11. 
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2.6.4.4 High concentrate cyclic carboxylation reactions 

As a result of the initial concentration screening experiments, i t was confirmed that higher 

concentration led to increasing the rate of the reaction and a ratio 1:1 was preferred among 

other ratios. In the process it was also found that 1 M was the concentration at which acetonitrile 

gets saturated of N-tetrabutylammonium iodide at 75 °C. Due to this limitation the concentration 

chosen to be to improve the cyclic carboxylation experimental procedure was 1 M and the ratio 

of epoxide to ammonium salt of 1 to 1. The general procedure of this set of reactions can be 

found on section 4.6.2.8.3 and the results are presented below. 

Procedure of reaction on entry 2 of Table 2.12: 

Epoxide (1a, 10 M) was added to a concentrate solution of supporting electrolyte (Bu4NI, 1 M) in 

acetonitrile and heated to 75 °C. No electrodes were placed in the solution. 

On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate ( 28% of 

2a after 24 hours, evaluated from 1H NMR spectrum).  

 

Table 2.12.- Cyclic carboxylation at high concentration of s tyrene oxide and N-tetrabutylammonium iodide in 
acetonitrile.a 

Entry 
Styrene oxide TBAI  Carbonateb (%) 

(mol/L) (mol/L) 5 h 24 h 

1 1.0 1.0 15.8 58 

2 10.0 1.0 3.6 28 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and s tyrene oxide as s tarting material at ratio 1:1 (entry 1); ratio 10:1 

(entry 2) in Acetonitrile, 1 atm pressure of CO2 supplied with balloon, at 75 °C. bEvaluated from 1H NMR spectrum. 
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Graph 2.37.- Styrene carbonate synthesis with TBAI in acetonitrile at 1 M concentration. 

Chlorostyrene carbonate synthesis among others was carried out using two different sources of 

carbon dioxide. A gas flow was used in the reaction in entry 1 of Table 2.13 and a balloon was 

used in entries 2 and 3 in order to compare performances. It was confirmed, with a similar 

calculation than the one explained in page 190 on the 1H NMR integrals that no chlorostyrene 

oxide had been evaporated while gas flow was used.   

 

Table 2.13.- Cyclic carboxylation at high concentration of chlorostyrene oxide and N-tetrabutylammonium iodide in 

acetonitrile.a 

Entry 
Chlorostyrene oxide Carbonateb (%) 

CO2 
(mol/L) 5 h 24 h 

 

  

   

1 d 1.0 76 100 flow 

2 1.0 26 95 Balloon 

3 1.0 24 91 Balloon 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and cholostyrene oxide (1 M) as s tarting material in acetonitrile, 1 

atm pressure of CO2, at 75 °C. bEvaluated from 1H NMR spectrum. dEntry 1 was carried out using a  source of CO2 gas 

flow to the reaction. 
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Graph 2.38.- Chlorostyrene carbonate synthesis with TBAI in acetonitrile at 1 M concentration. 

Fluorostyrene oxide carboxylation was also selected to compare performances of the reaction 

with CO2 gas flow and CO2 balloon. Table 2.14 and Graph 2.39 show the results of the two 

replicates of each technique.  

 

Table 2.14.- Cyclic carboxylation at high concentration of fluorostyrene oxide and N-tetrabutylammonium iodide in 
acetonitrile.a 

Entry 
Fluorostyrene oxide Carbonateb (%) 

CO2 
(mol/L) 5 h 24 h 

1 1.0 29 82 flow 

2 1.0 32 82 flow 

3 1.0 6 52 Balloon 

4 1.0 6 57 Balloon 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and fluorostyrene oxide (1M) as s tarting material in acetonitrile, 1 

atm pressure of CO2 (CO2 flow in reactions  on entries 1 and 2 and CO2 balloon in reactions on entries 3 and 4), at 75 °C. 

bEvaluated from 1H NMR spectrum. 
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Graph 2.39.- Fluorostyrene carbonate synthesis with TBAI in acetonitrile at 1 M concentration. 

Bromostyrene oxide carboxylation reaction is next to be analysed. Table 2.15 and Graph 2.40 

collect the data obtained in this experiment. It’s important to notice that when gas flow was used 

to supply CO2 (entry 1 of Table 2.15, blue square in Graph 2.40), the reaction probably finished 

before the sample was taken after 24 hours. 

 

Table 2.15.- Cyclic carboxylation at high concentration of bromostyrene oxide and N-tetrabutylammonium iodide in 
acetonitrile.a 

Entry 
Bromostyrene oxide Carbonateb (%) 

CO2 
(mol/L) 5 h 24 h 

1 1.0 52 100 flow 

2 1.0 39 97 Balloon 

3 1.0 38 94 Balloon 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and bromostyrene oxide (1M) as s tarting material in acetonitrile, 1 

atm pressure of CO2 (CO2 flow in reactions on entry 1 and CO2 balloon in reactions on entries 2 and 3), at 75 °C. 

bEvaluated from 1H NMR spectrum. 
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Graph 2.40.- Bromostyrene carbonate synthesis with TBAI in acetonitrile at 1 M concentration. 

1,2-Phenoxymethyl oxirane was selected among the rest of the chemicals to be the reactant of a 

series of experiments designed in order to study different variables of the cyclic carboxylation 

reaction of epoxides. This chemical was chosen due to its considerably lower toxicity and price 

and the easy purification of the corresponding carbonate (4-(phenoxymethyl)-1,3-dioxolan-2-

one).  

 

Table 2.16.- Cyclic carboxylation at high concentration of 1,2-phenoxymethyl oxi rane and N-tetrabutylammonium 

iodide in acetonitrile at ratio 1:1.0 

Entry T (°C) 
Epoxide 
(mol/L) 

TBAI 
(mol/L) 

Carbonateb (%) 
CO2 

5 h 24 h 

1 30 1.0 1.0 8 18 balloon 

2 30 1.0 1.0 18 39 flow 

3 30 2.5 2.5c 0.2 9 flow 

4 75 1.0 0.0 1 18 flow 

5 75 1.0 1.0 82 100 flow 

6 75 2.5 2.5c 70 100 flow 

7 75 1.0 1.0 14 47 balloon 

aGeneral  reaction conditions : Bu4NI catalyst and fluorostyrene oxide as  starting material  in Acetonitrile, 1 atm pressure 

of CO2, at 75 °C. bEvaluated from 1H NMR spectrum. 
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Graph 2.41.- 1,2-Phenoxymethyl  oxi rane carboxylation 

at 30 °C at different concentrations and with different 
CO2 supplies. 

 

Graph 2.42.- 1,2-Phenoxymethyl  oxi rane carboxylation 
at 75 °C at different concentrations and with different 
CO2 supplies. 

 

Graph 2.43.- 1,2-Phenoxymethyl oxirane carboxylation at 30 and 75 °C at di fferent concentrations. 

Reactions at 30 °C are represented in Graph 2.41, showing a better performance when CO2 gas 

flow was used at 1 M concentration. The fact that 2.5 M reaction produces less carbonate in 

comparison is again due to the low solubility of TBAI in acetonitrile. This affect directly to the 

proportion of epoxide and ammonium salt in solution, increasing the first in relation to the 

second.  

Reactions at 75 °C are plotted in Graph 2.42 showing the same behaviour regarding CO2 source 

and concentration. A background reaction with no ammonium salt was carried out (entry 4, Table 

2.16) producing a total of 18% of carbonate after 24 hours of reaction.  

Performance increases considerably in comparison with the reactions carried out at 30 °C (up to 

82% more after 5 hours) as seen in Graph 2.43. 
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Next, 1,2-epoxyhexane carboxylation with TBAI in acetonitrile at 1 M concentration is 

summarized in Table 2.17 and Graph 2.44. Similar trends than the ones previously explained 

happen. 

 

Table 2.17.- Cyclic carboxylation at high concentration of 1,2-epoxyhexane and N-tetrabutylammonium iodide in 
acetonitrile. 0 

Entry T (°C) 
Epoxide 
(mol/L) 

TBAI 
(mol/L) 

Carbonateb (%) 
CO2 

5 h 24 h 

1 75 1.0 1.0 29 75 flow 

2 70 1.0 1.0 3 27 balloon 

3 70 1.0 1.0 7 23 balloon 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and fluorostyrene oxide (1M) as s tarting material in Acetonitrile, 1 
atm pressure of CO2 (CO2 flow in reaction on entry 1 and CO2 balloon in reactions on entries 2 and 3), at 75 °C. 
bEvaluated from 1H NMR spectrum. 

 

Graph 2.44.- 1,2-Epoxyhexane cycl ic carboxylation with TBAI in acetonitrile (1 M) at 70 and 75 °C. 

Reactions at higher concentrations (1 M or higher) were carried out with different CO2 source. 

When a direct flow from the CO2 cylinder was flushed through the cell reaction rates always 

performed better, especially after 5 hours of reaction, than when CO2 was supplied by a balloon 

that was refilled as needed (expect overnight, when the balloon was left until the next day). This 

could be due to the fact that when heating at 75 °C the pressure in the cell is positive towards 

outside due to partial evaporation of the solvent. That means that the CO 2 contained in the 
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balloon is coming to the cell at a lower rate. If instead the CO2 is flushed with a constant flow 

rate, the concentration of CO2 will be maintained. The fact that some solvent can evaporate out 

of the cell with the CO2 flow, means that the actual concentration of species in solution when CO2 

flow is used could be higher than the initial one (usually 1 M). This could be improving the yields 

as compared to the balloon source. Also, the balloon needle got sometimes solvent condensed 

inside and had to be emptied in order for the CO2 to keep flowing (that was accomplished only by 

applying pressure on the balloon so the solvent would drop back to the reaction mixture). 

However, due to the high volatility of styrene oxide the balloon source was chosen to avoid the 

loss of the starting material and maintained in order to compare with the rest of epoxides 

performance.  

Allyl glycidyl ether (1g) carboxylation produced 100% of carbonate (2g) in less than 24 hours 

under reaction conditions showed in Table 2.18.  

 

 

Table 2.18.- Cyclic carboxylation at high concentration of allyl  glycidyl  ether and N-tetrabutylammonium iodide in 
acetonitrile. 0 

Entry T (°C) Epoxide (mol/L) TBAI (mol/L) 
Carbonate (%)a 

5 h 24 h 

1 75 1.0 1.0 65 100 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and fluorostyrene oxide (1M) as s tarting material in Acetonitrile, 1 

atm pressure of CO2 flow, at 75 °C. bEvaluated from 1H NMR spectrum. 
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Graph 2.45.- Al lyl glycidyl ether cycl ic carboxylation with TBAI in acetonitrile (1 M) at 75 °C. 

 

Propylene oxide carboxylation with TBAI at 30 °C in acetonitrile was attempted and results are 

shown next. The high volatility of the epoxide caused the loss of most of the starting material 

even with a CO2 balloon and so the rate of produced carbonate is less than what was initially 

calculated. The more accurate percentage of conversion presented in Table 2.19 (in the column 

called *Corrected (%)) was obtained by comparing the integral value of the carbonate to the TBAI 

integral (used for the calculation as internal standard) in the final 1H NMR spectrum.   

 

Table 2.19.- Cyclic carboxylation at high concentration of propylene oxide and N-tetrabutylammonium iodide in 

acetonitrile. 0 

Entry 
Epoxide 
(mol/L) 

TBAI 
(mol/L) 

Carbonateb (%) *Correctedb (%) 

5 h 24 h 5 h 24 h 

1 0.5 1.0 3 19 2 8 

2 1.0 1.0 16 81 9 18 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and propylene oxide (0.5M or 1M) as s tarting material in 

Acetonitrile, 1 atm pressure of CO2 (balloon, as s tarting material is highly volatile), at 30 °C. bEvaluated from 1H NMR 
spectrum. 
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Epichlorohydrin carboxylation with TBAI in acetonitrile at 75 °C developed in a record time 

producing 90% of carbonate in only 5 hours of reaction (Table 2.20). 

 

Table 2.20.- Cyclic carboxylation at high concentration of epichlorohydrin and N-tetrabutylammonium iodide in 
acetonitrile. 0 

Entry Epoxide (mol/L) TBAI (mol/L) 
Carbonateb (%) 

5 h 24 h 

1 1.0 1.0 90 100 

aGeneral reaction conditions : Bu4NI catalyst (1 M) and epichlorohydrin (1M) as starting material in Acetonitrile, 1 atm 
pressure of CO2, at 75 °C. bEvaluated from 1H NMR spectrum. 

In the case of glycidol carboxylation, the reaction finished even earlier than 5 hours (Table 2.21).  

 

Table 2.21.- Cycl ic carboxylation at high concentration of glycidol and N-tetrabutylammonium iodide in acetonitrile. 0 

Entry Epoxide (mol/L) TBAI (mol/L) 
Carbonateb (%) 

5 h 24 h 

1 1.0 1.0 100 100 

aGeneral  reaction conditions : Bu4NI catalyst (1 M) and glycidol (1M) as  starting material in Acetonitrile, 1 atm pressure 

of CO2, at 75 °C. bEvaluated from 1H NMR spectrum. 

 

In order to accurately know the reaction time for glycidol (and for epichlorohydrin) extra 

experiments were carried out sampling every hour and are detailed in the next section. 
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2.6.4.5 Glycidol and epichlorohydrin cyclic carboxylation 

As seen in the previously, in Table 2.20 and Table 2.21 epichlorohydrin and glycidol had been 

completely converted to carbonate after 5 hours of reaction. In order to accurately know the 

time on completion of the reaction for these two epoxides, further reactions with sampling every 

hour were carried out.  

Procedure of reaction on entry 1 of Table 2.22: 

Epoxide (1j, 1 M) was added to a 1 M solution of supporting electrolyte (Bu4NI) in acetonitrile and 

heated to 75 °C. CO2 was supplied with balloons. No electrodes were placed in the solution. On 

completion the reaction mixture was concentrated under reduced pressure and EtOAc (5 mL) was 

added to precipitate Bu4NI. After precipitation the solid was removed by filtration and the solvent 

evaporated to afford the corresponding carbonate (100% of 2j after less than 5 hours, evaluated 

from 1H NMR spectrum). 

Table 2.22 shows the results for glycidol cyclic carboxylation reaction with TBAI catalyst in ACN, 

75 °C, at different ratios (1:1; 10:1 and 100:1) and reaction times. Graphical representation of the 

data is shown in Graph 2.46.  After 1.5 hours of reaction conversion to carbonate was 78% when 

ratio epoxide to TBAI was 1:1 (entry 2 of Table 2.22; blue square of Graph 2.46). As it was 

expected, reaction rate reduced as the ratio increased, although performance was still high 

obtaining 73% of carbonate after 5 hours of a reaction with a ratio epoxide to catalyst 100:1 

(entry 4 of Table 2.22, black circles in Graph 2.46). 
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Table 2.22.- Glycidol cycl ic carboxylation with Bu4NI.a 

Entry 
Glycidol TBAI Conversionb (%) 

(mol/L) (mol/L)     5 h 

1 1 1     100 

   0 h 1.5 h 2.5 h 3.5 h 4.5 h 

2 1 1 3 78 93 98 100 

 
 

 1 h 2 h 3 h 4 h 5 h 

3 10 1 33 58 65 84 95 

4 100 1 22 44 55 64 73 

aGeneral reaction conditions : Bu4NI catalyst (at 1 M concentration) and glycidol as s tarting material at different ratios, 

in Acetonitrile, 1 atm pressure of CO2, at 75 °C. bEvaluated from 1H NMR spectrum.  

 

Graph 2.46.- Glycidol cyclic carboxylation with TBAI in ACN at different ratios. 

 

Table 2.23 shows the results for the reactions carried out of epichlorohydrin cyclic carboxylation 

and graphical representation is presented in Graph 2.47. The behaviour of epichlorohydrin is 

similar to the glycidol’s.  
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Table 2.23.- Epichlorohydrin cycl ic carboxylation with Bu 4NI.a 

Entry 
Epichlorohydrin TBAI Carbonateb (%) 

(mol/L) (mol/L) 1 h 2 h 3 h 4 h 5 h 24 h 

1 1 1 
    

90 100 

2 6 1 54 84 92 97 99 
 

3 60 1 44 74 84 89 93 
 

aGeneral reaction conditions : epichlorohydrin as s tarting material at ratios 1:1, 6:1 and 60:1, being Bu 4NI catalyst 1 M 

concentrated, in Acetonitrile, 1 atm pressure of CO2, at 75 °C.bEvaluated from 1H NMR spectrum. 

 

Graph 2.47.- Epichlorostyrene oxide cycl ic carboxylation with TBAI in ACN at different ratios. 

 

Carboxylation of glycidol and epochlorohydrin were analysed at 5 hours and 20 or 24 hours by 

sampling and running 1H NMR of the crude. For all starting materials that got 100% of conversion 

at 24 hours the time at which the reaction finished was uncertain as it probably finished 

overnight but was not tested until the next morning. This was the case of epichlorohydrin and 

glycidol at 1 M in acetonitrile with TBAI (1:1) that got 100% of conversion to the corresponding 

carbonate after only 5 hours. Further experiments sampling hourly were carried out at different 

epoxide:TBAI ratios (1:1 ; 10:1 and 100:1). Again, ratio 1:1 presented a higher conversion rate 

particularly differenciated for the glycidol carboxylation. 
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2.6.4.6 Cyclic carboxylation of 3-hydroxyoxetane 

3-Hydroxyoxetane was chosen to undergo the improved cyclic carboxylation reaction conditions 

under four membered rings to produce six membered cyclic carbonates with no success.  

Procedure of reaction in Table 2.24: 

3-Hydroxyoxetane (1k, 1 M) was added to a 1 M solution of supporting electrolyte (Bu4NI) in 

acetonitrile and heated to 75 °C. CO2 was supplied with balloons. No electrodes were placed in 

the solution. 1H NMR analysis were carried out after 5 and 24 hours of reaction with no success.  

 

Table 2.24.- 3-hydroxyoxetane cyclic carboxylation with Bu4NI.a  

Entry Epoxide 
Carbonateb (%) 

5 h 24 h 

1 3-hydroxyoxetane 0 0 

 aGeneral reaction conditions: Bu4NI catalyst and 3-hydroxyoxetane as s tarting material at ratios  1:1, 1 M concentration 

in Acetonitrile, 1 atm pressure of CO2, at 75 °C. aEvaluated from 1H NMR spectrum. 

 

2.6.4.7 NH4I catalyst for cyclic carboxylation of 1,2-phenoxymethyloxirane 

As reported in the literature and previously discussed in the introduction chapter synthesis of 

cyclic carbonates from olefins  was achieved using an electrochemical system with NH3/I2 (NH4+/I- 

electrochemically reduced/oxidized species) as catalyst152. The aim of this experiment was to test 

NH4I as a viable catalyst under the improved cyclic carboxylation reaction conditions.  

Procedure of reaction on entry 1 of Table 2.25: 

Epoxide (1e, 1 M) was added to a concentrate suspension of catalyst (NH4I, 1 M) in acetonitrile in 

a flask that has been previously flushed with CO2 and heated to 75 °C. CO2 1 atm pressure was 

maintained with balloons. No electrodes were placed in the solution. 1H NMR analysis was carried 

out after 5 and 24 hours of reaction. (18% of 2e after 24 hours, evaluated from 1H NMR 

spectrum). 
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A second product (1-iodo-3-phenoxypropan-2-ol) was obtained as main product when NH4I was 

used together with TBAI in acetonitrile at 75 °C. The halogenated alcohol is probably formed by 

ring opening of the epoxide with the proton of the ammonium iodide and the subsequent 

halogenation leaving a molecule of NH3 free. Background reactions under neat conditions did not 

produce alcohol and only 1.5% of carbonate after 24 hours of reaction was achieved (entry 5, 

Table 2.25). When no TBAI was added (entries 3 and 4) the reaction did not produce any 

carbonate or alcohol.  

 

Table 2.25.- NH4I catalyst for cycl ic carboxylation of 1,2-phenoxymethyloxirane.a 

Entry 
Epoxide 
(mmol) 

NH4I 
(mmol) 

Epoxide 
(mol/L) 

Carbonateb (%) Alcoholb (%) 

5 h 24 h 5 h 24 h 

1 1.0 1.0 1.0 1 18 69 78 

2 10.0 1.0 10.0 1 30 10 11 

3 1.0 0.0 Neat 0 0 0 0 

4 10.0 0.0 Neat 0 0 0 0 

5 10.0 0.1 Neat 0 2 0 0 
aGeneral reaction conditions: 1,2-Phenoxymethyloxirane starting material and NH4I catalyst (ratios 1:1; 10:1 and 100:1), in 
Acetonitrile (except entries 5 and 6 which are neat reactions), 1 atm pressure of CO2 balloon, at 75 °C. bEvaluated from 1H 
NMR spectrum. 

 

Graph 2.48.- 1,2-Phenoxy methyl oxirane carboxylation with NH4I and TBAI in acetonitrile at 75 °C. 
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Graph 2.49 shows the comparison of carbonate conversions using ammonium iodide results (red-

circle and pink-triangle) against the carboxylation of 1,2-phenoxy methyl oxirane with TBAI (blue-

square). 

 

Graph 2.49.- Comparison of two catalysts for carboxylation of 1,2-phenoxymethyl  oxirane. 

 

2.6.4.8 Study of enantioselectivity of cyclic carboxylation of (S)-1,2-

phenoxymethyloxirane 

An interesting aspect of the reaction to be studied is the stereogenic centre of the molecule 

located in the carbon number 2 to which the epoxide and the R group are bonded. One of the 

questions to be answered about the mechanism of the reaction is if the epoxide opens by 

breaking the bond to the chiral or to the non-chiral carbon.  

An experiment using (S)-1,2-phenoxymethyl oxirane was carried out (Table 2.26) in order to 

analyse the reaction products by chiral HPLC. The analysis showed that an enantiomerically pure 

carbonate was produced from enantiomerically pure epoxide ( Image 2.1 and Image 2.2). The 

racemic 1,2-phenoxymethyl oxirane form was previously used as a reactant (entry 5 of Table 

2.16) and chiral HPLC analysis of the starting material and the product  (Image 2.3 and Image 2.4)  

show the two peaks corresponding to the R and S forms. HPLC analysis of a mixture of (S) and (±)-

4-(phenoxymethyl)-1,3-dioxolan-2-one was also carried out in order to confirm the origin of the 

peaks (Image 2.5). 

Procedure of reaction on entry 1 of Table 2.26: 



Chapter 2 – Results and Discussion 

122 

 

Epoxide (1l, 3.6 M) was added to a 1 M solution catalyst (Bu4NI) in acetonitrile in a flask that has 

been previously flushed with CO2 and heated to 75 °C. CO2 1 atm pressure was maintained with 

balloons. No electrodes were placed in the solution.  

On completion the reaction mixture was concentrated under reduced pressure and EtOAc (5 mL) 

was added to precipitate Bu4NI. After precipitation the solid was removed by filtration and the 

solvent evaporated to afford the corresponding carbonate (100% of conversion of 2l after 24 

hours, evaluated from 1H NMR spectrum). 

 

Table 2.26.- Enantiomeric study of the cycl ic carboxylation reaction of (S)-1,2-phenoxymethyloxirane.a 

Entry Epoxide (mol/L) TBAI (mol/L) 
Carbonateb (%) 

5 h 24 h 

1 3.6 1.0 31 100 
aGeneral reaction conditions: (S)-1,2-phenoxymethyl oxirane and 1M Bu4NI catalyst in acetonitrile, 1 atm pressure of CO2 

(flow), at 75 °C. bEvaluated from 1H NMR spectrum. 

 

By adding the product of the carboxylation of (S)-phenoxymethyl oxirane to the product obtained 

from the reaction of the form (±) and analysing the mixture (Image 2.5) it is confirmed that the 

second peak appearing at 49 min in the mixture corresponds to the product formed from epoxide 

(S). Nevertheless, the enantiomeric form (R or S) of the carbonate cannot be known from this 

experiment. In order to find it out through this technique, a commercial pattern of one of the 

enantiomers of 4-(phenoxymethyl)-1,3-dioxolan-2-one should be analysed and the retention time 

compared with the sample’s at the same chromatographic conditions. A usually more accessible 

way to test the chirality of the product is to determine its specific rotation of light and compare it 

with the reported data for the pure product in literature ([α]D
25= + 5.46° ; c= 0.39 in EtOH)163.  

When considering the mechanism of the reaction, two possible routes exist. One would take 

place if the iodide bonds the chiral carbon (Scheme 2.2) and the other one if bonds the non-chiral 

carbon (Scheme 2.3).  
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If the chiral carbon plays an active role in the reaction mechanism, then two different outcomes 

can happen depending on the mechanism of CO2 insertion. This is, if the reaction mechanism is 

stepwise (SN1), and the new bond takes place between the chiral carbon and the oxygen of the 

CO2, then racemization could occur when the carbocation is formed on the first step of breaking 

bonds and the final product could be a mixture of enantiomeric carbonates, (R) and (S). If the 

reaction goes through one transition state where old bonds break and new bonds form 

simultaneously (SN2), then the stereochemistry would be maintained (as it would be 100% 

inverted twice, first due to the insertion of the iodide and ring opening, and second due to the 

insertion of carbonate). However, the final carbonate becomes (R) in this case (2k) due to 

reorganization of the preference in nomenclature of the Cahn–Ingold–Prelog priority rules to 

determining the stereo configuration. 

 

Scheme 2.2.- Mechanism of insertion of CO2 in the chiral carbon of 1k. 

If, on the other hand, the new bond is formed between the oxygen of CO 2 and the non-chiral 

carbon, despite that the reaction could also undergo SN1 or SN2, there would be only one possible 

product since the chiral carbon will remain intact. Also in this case, as previously explained, the 

carbonate (2k) becomes (R). 

 

Scheme 2.3.- Mechanism of insertion of CO2 in the non-chiral carbon of 1k.  
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Image 2.1.- HPLC analysis of pure (S)-1,2-phenoxymethyl oxirane.a 

 
aCarrier solvent mixture of hexane:isopropanol 99:1, flow rate of 0.5 mL/min. 

Image 2.2.- HPLC analysis of (S)-4-(phenoxymethyl)-1,3-dioxolan-2-one. a 

 
aCarrier solvent mixture of hexane:isopropanol 85:15, flow rate of 0.5 mL/min. 

Image 2.3.- HPLC analysis of pure (±)-1,2-phenoxymethyl oxirane.a 
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aCarrier solvent mixture of hexane:isopropanol 99:1, flow rate of 0.5 mL/min.  

Image 2.4.- HPLC analysis of (±)- 4-(phenoxymethyl)-1,3-dioxolan-2-one. a 

 
aCarrier solvent mixture of hexane:isopropanol 85:15, flow rate of 0.5 mL/min. 
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Image 2.5.- HPLC analysis of a  mixture of (±)- 4-(phenoxymethyl )-1,3-dioxolan-2-one and (S)- 4-(phenoxymethyl )-1,3-
dioxolan-2-one.a 

 
aCarrier solvent mixture of hexane:isopropanol 85:15, flow rate of 0.5 mL/min. 

2.6.4.9 Solvent free reactions or neat reactions 

Carboxylation of epoxides under neat conditions was successfully achieved and the results are 

presented in Table 2.27.  

Procedure of reaction on entry 7 of Table 2.27: 

The catalyst (Bu4NI, 0.1 mmol) was added to the epoxide (1e, 10 mmol) in absence of solvent and 

heated to 75 °C. The catalyst (Bu4NI) dissolved in the epoxide when temperature increased up to 

70 °C (only if ratio epoxide:salt was equal to or lower than 100:1 regarding the catalyst). No 

electrodes were placed in the solution. 

On completion the reaction mixture usually became an amalgam due to slow precipitation of the 

carbonate mixed with the non-reacted epoxide and the ammonium salt. Due to rigidity of the 

mixture the reaction stopped at a lower percentage of conversion compared to when the 

reaction took place using a solvent, as shown by NMR analysis. The mixture was homogenised by 

grindering it with a morter and analysed by 1H NMR to calculate the conversion % and further 

dissolved in 1 mL of EtOAc to be purified by flash chromatography (solvent petroleum ether : 
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ethyl acetate, 1:1) to completely remove salt traces from the product and to afford the pure 

carbonate (2a to 2j).  

In general, the reaction stopped when the mixture got saturated on carbonate and became solid, 

meaning that final conversions were usually lower than in high concentrate dissolved form.  

 

Table 2.27.- Cycl ic carboxylation of epoxides (1a  to 1h) under neat condition reactions.a 

Entry Epoxide 
Epoxide 
(mmol) 

Catalyst 
(mmol) 

Carbonateb 
(%) 

5 h 24 h 

1 Styrene Oxide (1a) 10.0 0.10 11 44 

2 Chlorostyrene oxide (1b) 1.0 0.01 39 49 

3 Fluorostyrene oxide (1c) 1.0 0.01 5 31 

4 Bromostyrene oxide (1d) 1.0 0.01 43 68 

5 1,2-Phenoxymethyloxirane (1e) 1.0 0.00 0 0 

6 1,2-Phenoxymethyloxirane (1e) 10.0 0.00 0 2 

7 1,2-Phenoxymethyloxirane (1e) 10.0 0.10 54 79 

8 1,2-Epoxyhexane (1f) 10.0 0.10 14 24 

9 Allyl Glycidyl ether (1g) 10.0 0.10 52 94 

10 Propylene oxidec (1h) 10.0 0.10 0 3 
aGeneral reaction conditions: Epoxides from a1 to a8 and Bu4NI catalyst, (100:1), under neat conditions, 1 atm pressure of 
CO2 (balloon), at 75 °C. bEvaluated from 1H NMR spectrum. c Room temperature (24 °C) was used in this case due to high 
volatility of the starting material.  

Graphical representation of the data in Table 2.27 is shown below.  

 

Graph 2.50.- Synthesis of cycl ic carbonates from different epoxides under neat conditions. 
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2.6.4.10 Solvent screening study of the cyclic carboxylation reaction of 1,2-

phenoxymethyloxirane 

A study on the influence of the solvent on the cyclic carboxylation of epoxides was carried out. 

Table 2.28 and Graph 2.51 show the results of these experiments.  

Procedure of reaction on entry 4 of Table 2.28: 

A study on the influence of the solvent on the cyclic carboxylation of epoxides was carried out. 

1,2-Phenoxymethyloxirane (1e, 1 M) was added to a 1 M solution of catalyst (Bu4NI) in 

acetonitrile while heating up to 75 °C. CO2 at 1 atm pressure was maintained with balloons. 1H 

NMR analysis of the aliquots were made at 5 hours and 24 hours of reaction.  

 

Table 2.28.- Solvent screening of cycl ic carboxylation of 1,2-phenoxymethyloxirane.a 

Entry Solvent 
Temp 
(°C) 

Epoxide 
(mol/L) 

Catalyst 
(mol/L) 

Carbonateb (%) 

5 h 24 h 

1 Ethylene Carbonate 75 1.00 1.00 17 68 

2 Propylene Carbonate 75 1.00 1.00 21 76 

3 ACN 75 1.00 1.00 33 94 

4 EtOH 75 1.00 1.00 100 100 

5 H2O 75 1.00 1.00 100 100 

6 H2Oc 75 1.00 0.01 9 49 

7 H2Od 0 1.00 1.00 0 63 
aGeneral reaction conditions: Bu4NI catalyst, 1,2-phenoxymethyloxirane starting material (at 1M concentration, and ratio 
1:1 in reactions on entries 1 to 5), in different solvents, 1 atm pressure of CO2, at 75 °C. bEvaluated from 1H NMR spectrum. 
cRatio 1:0.01 in water. dTemperature of 0 °C in water. 
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Graph 2.51.- Solvent screening for the cycl ic carboxylation of 1,2-phenoxymethyl oxirane. From data in Table 2.28. 

Ethylene carbonate and propylene carbonate as solvents (entries 1 and 2, Table 2.28) for the 

carboxylation reaction of 1e, produced 26 and 18% less carbonate (2e) after 24 hours than 

acetonitrile (entry 3, Table 2.28) that produced 94% of conversion after the same time. When 

ethanol and water were used as solvents (entries 4 and 5), reaction performance was the highest, 

achieving 100% of conversion in less than 5 hours. Reduction of the catalyst to 1% in water at 75 

°C (entry 6) gave a conversion rate of only 49% after 24 hours. When the reaction was held at 0 °C 

in water (entry 7) conversion after 24 hours rose up to 63%. 

The solvent screening study revealed that the more polar the solvent the higher the yield of 

carbonate conversion. Also protic solvents showed excellent conversions with 100% achieved 

after 5 hours. Conditions were 1:1 at 75 °C. Reaction in H2O went by two phases. Presence of 

hydrogen bonds from solvents –OH to carbon dioxide could be the answer to the good 

performance of these solvents. Also, that could be the explanation as well for the exceptional 

conversion rates for the glycidol compared to other starting materials. 

2.6.4.11 Phosphonium salts as catalysts.  

In collaboration with Professor Martin Smith from Inorganic Chemistry department in 

Loughborough University, Matias Gimenez Toledo (Erasmus student from The University of 

Valencia, Spain) synthesized a series of Phosphonium salts that were tested as catalysts for the 

reaction of cyclic carboxylation of epoxides. Procedure of the synthesis can be found in the 

literature.164,165 The structures of the phosphonium salts tested as catalysts for the carboxylation 

of epoxides are listed in Table 2.29. 
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Table 2.29.- Phosphonium salts s tructure and molecular data. 

 
Molecular data  of Phosphonium sal t catalysts . Synthesis of Phosphonium sal ts can be found in li terature. 164,165 1H-
NMR, 13C-NMR, 31P-NMR, IRs, X-Ray and MS analysis of samples  were carried out as part of the compound 
characterization.166 

An initial screening study regarding catalyst performance of different anions of the phosphonium 

salts (PS1) over 1,2-phenoxymethyl oxirane (1e) was conducted producing the results shown in 

Table 2.30 and Graph 2.52. It is important to notice that because the reactions are run under neat 

conditions, again most of the reactions ended as a solid mixture, so conversion stopped when 

solution was not fluid any more. 

Procedure of reaction on entry 5 of Table 2.30: 

The PS1I phosphonium catalyst was added to the epoxide (1e) on a ration epoxide:salt of 100:1, 

under neat conditions and heated to 75 °C. The catalyst did not dissolve in the epoxide at low 

temperatures, but it did when reaction temperature was reached.  
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On completion, the reaction mixture became an amalgam due to slow precipitation of the 

carbonate (2e) mixed with the non-reacted epoxide and the phosphonium salt. The mixture was 

homogenised by grinding it with a mortar and analysed by 1H NMR to calculate the conversion %.  

An initial screening study regarding catalyst performance of different anions of the phosphonium 

salts (PS1) over 1,2-phenoxymethyl oxirane (1e) was conducted producing the results shown in 

Table 2.30. Experimental procedure was performed as detailed above using an amount of 0.1 

mmol of Phosphonium (1% of catalyst loading) salt that was added to 10 mmol of epoxide.  

 

Table 2.30.- Phosphonium salt catalysts for cycl ic carboxylation of 1,2-phenoxymethyl oxirane, anion screening s tudy.a 

Entry Catalyst 
Carbonateb (%) 

5 h 24 h 

1 PS1BPh4 0 0 

2 PS1BF4 0 3 

3 PS1Cl 3 17 

4 PS1Br 39 70 

5 PS1I 45 89 

aGeneral reaction conditions : Phosphonium sal t catalyst and 1,2-phenoxymethyl oxi rane as  starting material at ratios 

100:1, under neat conditions, 1 atm pressure of CO2 ba lloon, at 75 °C. bEvaluated from 1H NMR spectrum. 

 

Graph 2.52.- Anion screening s tudy for phosphonium sal t catalysts for the cyclic carboxylation of 1,2-phenoxymethyl 
oxi rane. Data from Table 2.30. 
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There is a clear trend on anion activity, sorted by higher to lower performance as follows:  

I- > Br- > Cl- > BF4
- > BPh4 

Performance of the phosphonium salt with Cl - anion was much lower than the salt with Br- or I- 

anions, being iodide the best performer. Nevertheless synthesis of PS1I is carried out beginning 

with PS1Cl and LiI, so it was suggested to run the reaction with PS1Cl and LiI that would produce 

PS1I in situ. In this way, a whole step on the synthesis of the catalyst would be saved by 

producing it within the reaction mixture.  

Table 2.31 shows results of a series of reactions using different ratio of PS1Cl:LiI (Entries 3 to 6). 

In order to discard LiI acting as a catalyst for the formation of the cyclic carbonate or other 

subproducts, a control reaction was carried out by adding LiI to 1,2-phenoxymethyl oxirane under 

the same reaction conditions (result shown in entry 1 of Table 2.31). Entries 6 to 8 correspond to 

three replicates of the same reaction in order to estimate the variability of the result. As 

previously explained, the reaction mixture solidified when carbonate concentration reached the 

saturation point and no more carbonate could be formed due to rigidity of the mixture so speed 

of reactions cannot be compared.  

 

Table 2.31.- Cycl ic carboxylation of 1,2-phenoxymethyl oxirane by producing PS1I catalyst in situ.a 

Entry 
1,2-Phenoxymethyloxirane 

(mmol) 
PS1Cl 

(mmol) 
LiI 

(mmol) 
Carbonateb (%) 

5 h 24 h 

1 10 0.00 0.10 00 0 

2 10 0.10 0.00 3 17 

3 10 0.10 0.10 39 87 

4 10 0.10 0.15 52 92 

5 10 0.10 0.20 52 82 

6 10 0.10 1.00 65 83 

7 10 0.10 1.00 34 84 

8 10 0.10 1.00 23 91 

aGeneral  reaction conditions : Phosphonium salt (0.1 mmol) as catalyst and LiI as  cocatalyst (PS1Cl  + LiI  → PS1I), 1,2-

phenoxymethyl  oxi rane (10 mmol) as  s tarting material, under neat conditions , 1 atm pressure of CO 2 balloon, at 75 °C. 

bEvaluated from 1H NMR spectrum.  
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Entry 1 corresponds to a control reaction using LiI as catalyst; Entry 2 corresponds to PS1Cl 

catalyst reaction; Entries 3-6 show results of reactions using different stoichiometric amounts of 

PS1Cl:LiI ; Entries 6-8 show three replicates of the same reaction. 

 

Graph 2.53.- Phosphonium salt (PS1I) as  catalysts generated in situ for cyclic carboxylation of 1,2-phenoxymethyl 
oxi rane. 

 

In order to evaluate the efficiency of different phosphonium cations the structures on Table 2.29 

were synthesized and tested as catalyst for the cyclic carboxylation of epoxi des under neat 

conditions. All salts were synthesized with Cl - anion and later mixed with LiI (1:10) within the 

reaction mixture to produce in situ the corresponding phosphonium iodide as discussed above. 

Table 2.32 shows results for PS1, PS2, PS3 and PS4 catalysis for the cyclic carboxylation of 1,2-

phenoxymethyl oxirane (Table 2.32, Graph 2.54) , allyl glycidyl ether (Table 2.33, Graph 2.55), and 

styrene oxide (Table 2.34, Graph 2.56). 

Table 2.32.- Phosphonium salt anion screening for cycl ic carboxylation of 1,2-phenoxymethyl oxirane.a 

N Catalyst LiI (mmol) 
Carbonate (%) 

5 h 24 h 

1 PS1Cl 1.0 34 84 

2 PS2Cl 1.0 30 93 

3 PS3Cl 1.0 68 95 

4 PS4Cl 1.0 54 89 

a General  reaction conditions : Phosphonium salt as catalyst (0.1 mmol) and LiI as cocatalyst (1 mmol), (PS1Cl + LiI  → 

PS1I), 1,2-phenoxymethyl  oxi rane (10 mmol) or allyl  gl ycidyl  ether (10 mmol) or s tyrene oxide (10 mmol) as s tarting 

material, under neat conditions, 1 atm pressure of CO2 balloon, at 75 °C. bEvaluated from 1H NMR spectrum.  
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Graph 2.54.- Cation screening study of phosphonium catalysts for the cyclic carboxylation reaction of 1,2-

phenoxymethyl oxirane. 

 

Table 2.33.- Phosphonium salt anion screening for cycl ic carboxylation of allyl glycidyl ether.a 

N Catalyst 
Carbonateb (%) 

5 h 24 h 

  allyl Glycidyl ether     

1 PS1Cl 46 97 

2 PS3Cl 32 84 

3 PS4Cl 51 89 

a General  reaction conditions : Phosphonium salt as catalyst (0.1 mmol) and LiI as cocatalyst (1 mmol), (PS1Cl + LiI  → 

PS1I), allyl  glycidyl  ether (10 mmol) as s tarting material, under neat conditions , 1 atm pressure of CO2 balloon, at 75 °C. 

bEvaluated from 1H NMR spectrum.  

 

Graph 2.55.- Cation screening study of phosphonium catalysts for the cyclic carboxylation reaction of allyl glycidyl 

ether. 
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Table 2.34.- Phosphonium salt anion screening for cycl ic carboxylation of styrene oxide.a 

N Catalyst 
Carbonateb (%) 
5 h 24 h 

 
Styrene Oxide 

 
 

1 PS1Cl 7 53 

2 PS3C 26 97 

3 PS4Cl 11 69 

a General  reaction conditions : Phosphonium salt as catalyst (0.1 mmol) and LiI as cocatalyst (1 mmol), (PS1Cl + LiI  → 

PS1I), s tyrene oxide (10 mmol) as s tarting material, under neat conditions , 1 atm pressure of CO 2 balloon, at 75 °C. 

bEvaluated from 1H NMR spectrum.  

 

 
Graph 2.56.- Cation screening study of phosphonium catalysts for the cycl ic carboxylation reaction styrene oxide.  

 

2.6.5 Conclusions 

Three different conditions of background reactions regarding the electrodes were carried out 

showing conversion of epoxides to carbonates in all of them at different levels: short circuit 

(when a wire connected both electrodes and no current was applied), open circuit (when 

electrodes were placed in the solution but no connection between them) and electrodes free (no 

electrodes were used in the reaction). The performance of these conditions at a given 

concentration (0.02 M) of analytes followed the order as expected: Current > Short circuit > open 

circuit > no electrodes.  

When reactions were run under short circuit conditions, yields were of 75% of conversion of 

styrene carbonate after 20 hours under short circuit conditions (in acetonitrile at 75 °C). Different 
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epoxides were tested under these conditions giving different conversion rates as follows: 1,2-

phenoxymethyloxirane > fluorostyrene oxide > styrene oxide > chlorostyrene oxide > 1,2-

epoxyhexane > bromosthyrene oxide > allyl glycidyl ether.  

Open circuit conditions produced a 45% of styrene carbonate after 20 hours, but only 20% of 

chlorostyrene oxide under the same conditions. 12% of 1,2-phenoxymethyl oxirane converted to 

carbonate after 5 hours of reaction. 

Carboxylation of epoxides under no electrodes conditions was as low as 5% at a concentration of 

0.02 M in acetonitrile at 75 °C after 24 hours. However, and before concentration was purposely 

risen, two reactions suffered slow evaporation of the solvent while overnight reaction due to a 

difference in pressure of the CO2 flow possibly caused by the change of temperature in the 

laboratory room during the night and morning. The conversion on these reactions rose from 7% 

after 24 hours for chlorostyrene carbonate to 70% in the next 24 hours; and from 4% after 24 

hours to 92% in the next 24 hours for fluorostyrene carbonate. The 1H NMR analysis of the crude 

comparing integral values of starting material and tetrabutylammonium iodide confirmed that 

despite the higher flow rate of CO2 causing evaporation of the solvent, the starting materials did 

not evaporate.  

A study on the ratio epoxide:catalyst showed that influence of concentration of the species on 

the reaction is higher than the influence of the catalyst ratio. 

The possibility of MgBr2 and MgCO3 species causing the formation of carbonate was rejected by a 

series of experiments that produced no conversion after 20 to 72 hours. Although these species 

might form when electrodes and current are used, the inorganic form is not catalysing the 

carboxylation of epoxides as concluded from these experiments.  

A molarity study using 1,2-phenoxymethyl oxirane and TBAI (1:1) showed the clear reaction rate  

improvement when increasing concentration.  

When a direct flow from the CO2 cylinder was flushed through the cell reaction rates always 

performed better. This could be due to the fact that when heating at 75 °C the pressure in the cell 

is positive towards outside due to partial evaporation of the solvent. That means that the CO2 

contained in the balloon is coming to the cell at a lower rate. If instead the CO2 is flushed with a 

constant flow rate, the concentration of CO2 will be maintained. The fact that some solvent can 

evaporate out of the cell with the CO2 flow, means that the actual concentration of species in 
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solution when CO2 flow is used could be higher than the initial one (usually 1 M). This could be 

improving the yields as compared to the balloon source. However, due to the high volatility of 

styrene oxide the balloon source was chosen to avoid the loss of the starting material and 

maintained in order to compare with the rest of epoxides performance.  

Carboxylation of glycidol and epichlorohydrin were analysed hourly at different epoxide:TBAI 

ratios (1:1 ; 10:1 and 100:1). Again, ratio 1:1 presented a higher conversion rate particularly 

differentiated for the glycidol carboxylation. 

Four membered ring epoxide 3-hydroxyoxetane carboxylation was unsuccessfully attempted 

under these conditions (TBAI in acetonitrile, 75 °C and 1 atm pressure of CO2). 

Carbonate (2e) conversion was achieved using NH4I in acetonitrile (low solubility of the salt was 

an issue) at 75 °C, under CO2 atmosphere although as a minor product (18% after 24 hours). The 

main product (78%) was the halogenated alcohol formed from the ring opening by I - and the 

protonation from the NH4
+ (1-iodo-3-phenoxypropan-2-ol). 

Carboxylation of (S)-1,2-phenoxymethyl oxirane was analysed by chiral HPLC showing that the 

product was enantiomerically pure and rejecting the possibility of carbocation intermediates on 

the chiral carbon in the mechanism.  

Carboxylation of epoxides under neat conditions (epoxide:TBAI 1:1 at 75 °C) was successfully 

achieved. Performance varied greatly depending on the starting material and the conversion after 

24 hours followed the next series: allyl glycidyl ether (94%) > 1,2-phenoxymethyl oxirane (79%) > 

bromostyrene oxide (68%) > chlorostyrene oxide (49%) > styrene oxide (44%) > fluorostyrene 

oxide (31%) > 1,2-epoxyhexane (24%) > propylene oxide (3%). 

A solvent screening study revealed that the more polar the solvent the higher the yiel d of 

carbonate conversion. Also protic solvents showed excellent conversions with 100% achieved 

after 5 hours. Conditions were 1:1 at 75 °C. Presence of hydrogen bonds from solvents –OH to 

carbon dioxide could be the answer to the good performance of these  solvents.  

Phosphonium salts as catalysts were tested under the neat reaction conditions. An optimization 

of the catalyst structure was concluded based on the results of different anions performance and 

different phosphonium structures performance. 
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The anions screening study was carried out using PS1 as the phosphonium structure. There is a 

clear trend on anion activity, sorted by higher to lower performance as follows: I - > Br- > Cl- > BF4
- 

> BPh4. In order to evaluate the efficiency of different Phosphonium cations, structures PS1, PS2, 

PS3 and PS4 were tested for the carboxylation reactions of 1,2-phenoxymethyl oxirane and 

styrene oxide. The order of catalyst performance was: PS3 > PS4 > PS1 = PS2. However, 

carboxylation of allyl glycidyl ether showed a reversed on catalytic activity: PS4 = PS1 > PS3. 

Testing these catalysts on other epoxides or functional groups would be of interest for a future 

project.  
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2.7 FTIR MONITORING CARBOXYLATION REACTION AND CALCULATION OF 

REACTION KINETICS 

In order to calculate the reaction order regarding the catalyst next experiment was made possible 

thanks to a collaboration with Professor Matt Sigman in the Organic Chemistry department of the 

University of Utah. A series of cyclic carboxylation reactions of epichlorohydrin with N-

tetrabutylammonium iodide were monitored with a ReactIR iC10 from Mettler Toledo. All spectra 

from reactions were processed by extracting values of the reference expectra of acetonitrile at 75 

°C. Calculations and results can be found at the end of this section (2.7.5.4). 

Calibrations of tetrabutylammonium iodide and epichlorohydrin at 1 M concentration range were 

carried out (see concentrations in Table 2.35). Cyclic carboxylation of epichlorohydrin in 

acetonitrile and in water were monitored by IR (see concentrations in Table 2.36). 

Table 2.35.- IR Calibration concentrations 

 
TBAI (M) Epichlorohydrin (M) 

CALIBRATION 1 

  
CAL1_a 0.50 0.00 

CAL1_b 0.75 0.00 

CAL1_c 1.00 0.00 

CAL1_d 1.25 0.00 

CALIBRATION 2 

  
CAL2_a 0.00 0.50 

CAL2_b 0.00 0.75 

CAL2_c 0.00 1.00 

CAL2_d 0.00 1.25 

 

 

Scheme 2.4.- Conversion of epichlorohydrin to 4-(chloromethyl )-1,3-dioxolan-2-one through carboxylation with CO2 
and TBAI. 
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Table 2.36.- Cycl ic carboxylation reactions of epichlorohydrin .  

N Solvent/Ratio TBAI (M) Epichlorohydrin (M) 

1 ACN 0.56 5.60 

2 ACN 1.00 10.00 

3 ACN 1.00 5.00 

4 ACN 0.50 5.00 

5 ACN 0.25 5.00 

6 ACN 0.05 5.00 

7 H2O 1.00 1.00 

General  reaction conditions : Bu4NI catalyst and epichlorohydrin as  starting material  at different ratios  in Acetonitrile, 1 

atm pressure of CO2 ba lloon, at 75 °C. 

 

2.7.1 Peaks 

Trends of the absorbance of the following peaks (Table 2.37) are represented for every reaction 

and compared between them. 

Table 2.37.- Selected peak profiles description for reaction analysis. 

Peak Profile Description (range in 1/cm wavenumber) 

Cyclic carbonate 
Carbonate Peak 1 Height to Zero, Peak from 1861 to 1766 

Carbonate Peak 2 Height to Zero, Peak from 1201 to 1126 

Carbonate Peak 4 Height to Zero, Peak from 1090 to 1052 

Carbon dioxide 
CO2 Height to Zero, Peak from 2363 to 2321 

CO2 Peak 2 Height to Zero, Peak from 673 to 654 

Epichlorohydrin 
Epichlorohydrin Peak 2 Height to Zero, Peak from 983 to 946 

Epichlorohydrin Peak 3 Height to Zero, Peak from 869 to 823 

Epichlorohydrin Peak 4 Height to Zero, Peak from 703 to 688 

N-tetrabutylammonium iodide 
TBAI Height to Zero, Peak from 1501 to 1408 

All peak values were defined as heights to zero in the ReactIR iC10 software. Peaks on green were selected to analyze 
trends as they were not overlapping with other peaks in the reaction spectra.  

 

2.7.2 Infra Red reference spectra. 

Acetonitrile Infra Red reference spectra: Peaks at 750, 918, 1041, 1377, 1444, 2258 and 2295 

1/cm. 
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Graph 2.57.- Acetonitrile reference spectrum at room temperature. 

When acetonitrile was saturated with CO2 (dry ice pellets dissolved), new peaks appeared at 661 

and 2348 1/cm (Graph 2.58 and Graph 2.59). 

 

Graph 2.58.- Acetonitrile at room temperature saturated (red) and not saturated (blue) of CO2. 

Carbon dioxide reference spectrum: CO2 peaks at 661 and 2348 1/cm. Obtained by subtracting 

Acetonitrile reference spectrum to CO2 saturated acetonitrile spectrum. 
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Graph 2.59.- CO2 IR s ignals in acetonitrile at room temperature. 

Epichlorohydrin (1M) reference spectrum in acetonitrile: 

Peaks at 724, 761, 855, 929, 963 and 1269 1/cm. Obtained by subtracting Acetonitrile reference 

spectrum to epichlorohydrin (1M) in acetonitrile spectrum. 

 

Graph 2.60.- Epichlorohydrin 1 M reference spectrum. 
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N-tetrabutylammonium iodide (1M) spectrum in acetonitrile:  

Peaks at 739, 802, 885, 1034, 1067, 1385, 1448, 1470, 1489 and 2254 1/cm. Obtained by 

subtracting Acetonitrile reference spectrum to N-tetrabutylammonium iodide (1M) in acetonitrile 

spectrum. 

 

 

Graph 2.61.- N-tetrabutylammonium iodide reference spectrum. 

Water reference spectrum: Transmitted intensity of water is higher than acetonitrile.  

 

Graph 2.62.- Water reference spectrum at room temperature. 
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2.7.3 Temperature effect on IR measurements 

Higher temperature had a decreasing effect on intensity of the IR signal along the whole range of 

the spectrum. Graph 2.63 shows the differences between pure acetonitrile at room temperature 

(blue dashed line), saturated with CO2 at room temperature (red dashed line), and acetonitrile 

saturated with CO2 at 75 °C (purple and green line). When dry ice was added to pure acetonitrile 

and left to reach the room temperature the spectrum (red dashed line) showed two new peaks at 

661 and 2348 1/cm wave number, which were both attributed to CO2 vibrations. When the same 

solution was heated up to 75 °C (purple line), the intensity of most peaks decreased noticeable. 

When the same solution was next kept at 75 °C for 30 minutes while stirring (green line), intensity 

of the spectrum kept constant, but CO2 signals considerably decreased showing that the solution 

had partially degassed after 30 minutes.  

 

Graph 2.63.- Temperature effect on acetonitrile and carbon dioxide absorbance. 

 

2.7.4 Calibrations 

Calibration of the instrument is required in order to stablish a mathematical relationship between 

absorbance and concentration of the analyte. This is accomplished by applying the Lambert-Beer 
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Law defined in ‘A Dictionary of chemistry’167 book as ‘A law relating the reduction in luminous 

intensity of light passing through a material to the length of the light's path through the material:  

log (
𝐼

𝐼0

) = −𝜀 [  𝐽 ] 𝑙 Eq.- ( 2.1 ) 

A =  − log(
𝐼

𝐼0

) =  𝜀 [  𝐽 ] 𝑙 Eq.- ( 2.2 ) 

 

Where A is absorbance, I is the intensity after passing through a sample of length l, I0 is the 

incident intensity, ε is the molar absorption coefficient, and [J] is the concentration of species J. 

Representation of the Absorbance measured for each solution of different concentration of 

analyte has a lineal correlation being (ε * l) the slope.   

 

Epichlorohydrin calibration (Calibration 1): 

Graph 2.64 is showing a zoom of the data from 600 to 1600 wavenumber (1/cm) in order to be able 

to appreciate the differences on intensity of peaks.   

 

Graph 2.64.- ReactIR iC10 ca libration of Epichlorohydrin in acetonitrile at 75 °C. 
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Representation of the height of the peak (or area of the peak) versus concentration of 

epichlorohydrin gave the calibration curve for this analyte (Graph 2.65). The peak selected to 

calculate the relation between absorbance and concentration is the same that will be used for 

monitoring the remaining epoxide in the reaction (peak at 963 1/cm wave number). The 

calibration showed that there was a linear correlation between either peak height and peak area 

with concentration and no significant difference between considering peak heights or peak areas 

was found, and both equations gave the same result for concentration of epichlorohydrin 

through the reactions. 

 

Graph 2.65.- Epichlorohydrin calibration of FTIR peak height from 947 to 986 1/cm for 4 differet concentrations  (0.5, 

0.75, 1 and 1.25 M) (y = 0.05715*x; r2 = 0.9835). 

N-tetrabutylammonium iodide calibration (Calibration 2): 

 

Graph 2.66.- ReactIR iC10 ca libration of N-tetrabutylammonium iodide in acetonitrile at 75 °C. 
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Graph 2.67.- ReactIR iC10 calibration of N-tetrabutylammonium iodide in acetonitrile at 75 °C. ACN pattern and mixture 
pattern added to the overlapped spectra.  

 

Graph 2.68.- Reference spectrum of mixture 1 to 1 of epichlorohydrin and TBAI (0.6 M) in acetonitrile. 

 

2.7.5 Calculation of kinetics, reaction order of N-tetrabutylammonium iodide. 

Reactions with 1M epichlorohydrin with different concentration of catalyst at 75 °C in acetonitrile 

were monitored in order to compare the reaction kinetics under the catalyst influence.  
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2.7.5.1 Reaction of epichlorohydrin 1 M – TBAI 0.5 M 

An example of IR spectra collection for the carboxylation reaction of epichlorohydrin (1 M) with 

TBAI catalyst (0.5 M) and CO2 is shown in the next 2 and 3 dimension graphs (Graph 2.69 and 

Graph 2.70). Trends of the main peaks through time are represented in Graph 2.71. 

 

Graph 2.69.- IR monitoring reaction of cycl ic carboxylation of epichlorohydrin (1M) and N-tetrabutylammonium (0.5M). 

 

 

Graph 2.70.- 3D IR spectra  representation versus time of the reaction of cyclic carboxylation of epichlorohydrin (1M) 

and N-tetrabutylammonium (0.5M). 
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Peak trends are represented in Graph 2.71, showing absorbance maximums of the reactants and 

product versus reaction times: carbonate peak at 1799 cm -1 in red, carbon dioxide peak at 2348 

cm-1 in blue, epichlorohydrin peak at 963 cm-1 in green and tetrabutylammonium salt peak at 

1470 cm-1 in yellow. 

 

Graph 2.71.- Trends  of main peak heights  of the reaction of cyclic carboxylation of epichlorohydrin (1M) and N-
tetrabutylammonium (0.5M). 

2.7.5.2 Reaction of epichlorohydrin 1 M – TBAI 0.25 M 

 

Graph 2.72.- IR moni toring reaction of cyclic carboxylation of epichlorohydrin (1M) and N-tetrabutylammonium 

(0.25M). 
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Graph 2.73.- 3D IR spectra  representation versus time of the reaction of cyclic carboxylation of epichlorohyd rin (1M) 
and N-tetrabutylammonium (0.25M). 

 

 

 

Graph 2.74.- Trends  of main peak heights  of the reaction of cyclic carboxylation of epichlorohydrin (1M) and N-

tetrabutylammonium (0.25M). 
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2.7.5.3 Reaction of epichlorohydrin 1 M – TBAI 0.05 M 

 

 

Graph 2.75.- IR monitoring reaction of cyclic carboxylation of epichlorohydrin (1M) and N-tetrabutylammonium 
(0.05M). 

 

 

Graph 2.76.- 3D IR spectra  representation versus time of the reaction of cyclic carboxylation of epichlorohydrin (1M) 
and N-tetrabutylammonium (0.05M). 
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Graph 2.77.- Trends  of main peak heights  of the reaction of cyclic ca rboxylation of epichlorohydrin (1M) and N-
tetrabutylammonium (0.05M). 

In the Graph 2.77, a pressure change can be noticed at 303 min of reaction provoked by the refill 

of liquid N2 to the reactIR due to its evaporation as the air conditioning of the laboratory was out 

of order and the temperature of the room got higher than 28 °C. 

Comparison of the peak heights of the carbonate for the reactions with different concentration of 

TBAI is shown in Graph 2.78. Time of reaction has been normalized by setting as 0 the second at 

which epichlorohydrin was injected and the initial intensity of the baseline for the different 

spectrum.  

 
Graph 2.78.- Comparison of height trends  of carbonate peaks for the reactions of cyclic carboxylation of 
epichlorohydrin (1 M) and N-tetrabutylammonium (0.05 (red), 0.25 (green) and 0.5 (blue) M). 
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Graph 2.79 shows the peak height of each analyte for the reaction containing epichlorohydrin 

and TBAI (0.5 M) during 30 straight hours (1800 min). Since CO2 is supplied with a balloon refilled 

with CO2 cardice pellets the overnight reaction suffers a stand by when the CO2 empties (see 

almost flat signals from 550 to 1300 min). When the balloon was refilled the next day the 

reaction restarted (from 1300 to 1800 min). 

 

Graph 2.79.- Trends  of absorbance of species  during 30 h (1800 min) of carboxylation reaction of epichlorohydrin with 
TBAI (0.5 M). 

 

2.7.5.4 Determination of reaction order with respect to N-tetrabutylammonium 

iodide. 

The rate equation for the synthesis of 4-(chloromethyl)-1,3-dioxolan-2-one from epichlorohydrin, 

CO2 and Bu4NBr (Scheme 2.4),  has the form shown in Eq.- ( 2.3 ). The kinetics calculations have 

been carried out studying the first 400 minutes of the reaction in order to avoid possible 

deviations due to the concentration of CO2 decreasing (as seen in Graph 2.79). Within this range 

(0 to 400 minutes) concentration of CO2 will be constant. Since tetrabutylammonium iodide act as 

a catalyst it can be assumed that its concentration does not change significantly during the 

reaction. Because of these two assumptions Equation 2.3 can be simplified as Eq.- ( 2.4 ).  

In order to calculate the reaction order with respect to tetrabutylammonium iodide, logarithm 

has to be taken of Eq.- ( 2.4 ) leading to Eq.- ( 2.5 ). 
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𝑅𝑎𝑡𝑒 = 𝑘[𝑒𝑝𝑜𝑥𝑖𝑑𝑒]𝑎[𝐶𝑂2]𝑏[𝑇𝐵𝐴𝐼]𝑐 Eq.- ( 2.3 ) 

𝑅𝑎𝑡𝑒 = 𝑘𝑜𝑏𝑠[𝑒𝑝𝑜𝑥𝑖𝑑𝑒]𝑎          where        𝑘𝑜𝑏𝑠 = 𝑘[𝐶𝑂2]𝑏[𝑇𝐵𝐴𝐼]𝑐 Eq.- ( 2.4 ) 

log(𝑘𝑜𝑏𝑠) = 𝑏 log[𝐶𝑂2] + c log[𝑇𝐵𝐴𝐼] Eq.- ( 2.5 ) 

Due to the excess on starting material the reaction kinetics is of pseudo-zero order as it is shown 

in Graph 2.80.  

 

Graph 2.80.- Zero-Order kinetics  plots for the conversion of epichlorohydrin to 4-(chloromethyl)-1,3-dioxolan-2-one 

with di fferent concentrations of tetrabutylammonium iodide. (Ci rcles [TBAI] = 0.25 M   y = -0.01563x +99.34936.  R2 = 
0.91829; Triangles [TBAI] = 0.5 M    y = -0.04047x + 99.83677.   R2 = 0.99899; Squares [TBAI] = 1 M   y = -0.07386x + 

100.72099.   R2 = 0.99000). 

 

Representation of the log(kobs) of each reaction against the concentration of TBAI has a slope of 

1.1 suggesting a first order in the concentration of tetrabutylammonium iodide (Graph 2.81). 
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Graph 2.81.- Plot of kobs against [TBAI], which shows that the synthesis of 4-(chloromethyl )-1,3-dioxolan-2-one is fi rst 
order in [TBAI] (y = 1.1218x – 1.10549; R2 = 0.96724). 

 

It is worth noting that usually a number of 4 reactions are analysed in order to determine the 

reaction order more accurately. However, the 4th reaction (0.05 M TBAI) was discarded due to 

high dispersion on the data.  
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3 CONCLUSIONS AND FUTURE WORK 

3.1 CYCLIC VOLTAMMETRY 

The electrochemical studies of the regarding cyclic carboxylation of epoxides in a two electrode 

system cell with tetrabutylammonium hexafluorophosphate catalyst 1% in acetonitrile were 

carried out. Electrode screening showed that in general (Pt, GC and Gold working electrodes) 

solvent decomposition started at a lower potential under N 2 atmosphere than when CO2 was 

flushed through. Copper working electrode performed differently showing a broad band 

appearing from 0.6 to -0.6 V and decomposing acetonitrile at a lower voltage (-0.6 V). 

Comparison of the different working electrodes CVs showed that their ability for CO 2 reduction 

when Bu4NPF6 catalyst was used can be ranked from higher to lower as follows: Cu > Au > Pt > GC 

When Cu working electrode was tested for CO2 reduction in acetonitrile with Bu4NBr 1% vs. RHE 

and platinum as counter electrode a higher dissolution of the Cu atoms occurred and the solution 

turned purple indicating the possible formation of a coordination complex. This colour was only 

visible after several scans and never spotted on the reaction mixture before (although the 

reaction mixture usually turns to a brown-yellowish colour depending on the starting material 

used). However, Anish P. Patel synthesized and tested the coordination complex 

[Cu(Br)4][(Bu4N)3] (suspected to be forming) for carboxylation of epoxides with no success.  

When magnesium was used as the counter electrode, Cu as working electrode vs RHE and Bu 4NBr 

1% in acetonitrile, the changes on the CV could not be assigned to a process due to the 

complexity of the system when simultaneous dissolution of both Cu and Mg occurs. However, the 

difference on the CV under CO2 atmosphere indicates that CO2 is being reduced at a similar 

voltage range (-0.6 to -1.2 V). 

From comparing the two different electrolytes used and the pairs of electrodes, a classification of 

performance can be listed as follows (working/counter electrodes-electrolyte 1%): 

GC/Pt-Bu4NPF6  <  Pt/Pt-Bu4NPF6  <  Au/Pt-Bu4NPF6  < Cu/Pt-Bu4NPF6  < Cu/Pt-Bu4NBr  < Pt/Pt-

Bu4NBr 
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This sequence would be consistent with the experimental results obtained previously on catalyst 

screening for carboxylation of epoxides, being Bu4NBr a better catalyst than Bu4NPF6. 

The addition of styrene oxide to the system of Cu/Pt electrodes with Bu4NBr showed a CV looking 

as an irreversible process. However, when the electrode pair used was Cu/Mg, a very different 

curve was acquired with at least three processes going on when CO2 was flushed. Due to the 

complexity of the system more experiments should be carried out in order to determine the 

processes taking place.  

A 2015 January publication by Berto, T. C., Zhang, L., Hamers, R. J. & Berry, J. F. reported a deeper 

analysis on this matter concluding that “the “catalytic” role of NR4
+ salts in CO2 electroreduction is 

non-existent.153 None of the current data supports a strong electrostatic interaction between 

either NR4
+ and CO2 or NR4

+ and the electrode surface, and the diffusion-controlled 

electroreduction best fits a simple direct outer-sphere reduction of dissolved CO2, the mechanism 

which was originally put forth by Savéant and co-workers.154”. 

Experiments using no current were designed to further understand the mechanism of the 

reaction.  

3.2 ICP ANALYSIS OF CU AND MG CONTENT ON ELECTROCATALYTIC CYCLIC 

CARBOXYLATION OF EPOXIDES 

Determination of Cu and Mg ions in reaction mixtures was carried out and results analysed in 

order to establish a relationship between the quantitative presence of those ions and the yield of 

the reaction. Cu and Mg content usually rose with time and so did the carbonate within the same 

reaction, however when comparing different starting materials, trends were not consistent. After 

48 hours of reaction of styrene oxide (with TBAI in ACN at 75 °C and 1 atm of CO2) at a 

concentration of 0.02 M conversion to carbonate was of 87% containing less than 10 mg/L in Cu 

and Mg ions. In contrast, after the same time of reaction, 1,2-epoxyhexane conversion to 

carbonate was of 60% while Cu and Mg ions content was more than 45 mg/L. It can be concluded 

that a straight relation cannot be identified between Cu and Mg in solution and concentrations 

and conversion when comparing different starting materials.  
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3.3 MEASURE OF THE ONSET POTENTIAL OF THE CELL 

In order to test the presence of a current flow in a Short Circuit mode reaction the onset potential 

of the cell was measured with a multimeter. The positive response indicated that due to the 

voltage difference between the two electrodes a current was flowing from one to the other 

through the wire that connected them. If more information is to be obtained from this 

experiment instrumental improvements need to be made. A multichannel multimeter controlled 

by a computer has been built by A. Sertap Kavasoglu, a colleague from Hacettepe University, 

Engineering Faculty in Beytepe / Ankara, Turkey and sent to Loughborough University for its use 

on the future for this purpose. LCMS and 1H-NMR analysis of reaction samples is also advisable. 

3.4 CONSTRUCTION OF A GC/MS FOR ANALYSIS OF IN-SITU 

ELECTROCHEMICALLY ASSISTED CARBOXYLATION REACTIONS 

The coupling of a mass spectrometer detector with the electrochemical cell was successful and 

spectra showed both main components of the reaction (CO2 and acetonitrile). Different 

temperatures produced different ratios of intensities of CO2/ACN and the collection of TIC spectra 

showed that when warm ACN run through the mass spectrometer it took at least 3 minutes to 

leave the system due to condensation of the solvent in the capillary. In summary, although the 

system was working properly, a liquid chromatography device should be added to the MS in 

order to be able to analyse the content of the liquid phase and to separate CO2 signals from other 

possible subproducts of interest like CO. Calibration on CO2 response of the final instrument 

would be required to calculate accurate contents of analytes in the reaction mixture. 

3.5 BACKGROUND REACTIONS 

Three different conditions of background reactions regarding the electrodes were carried out 

showing conversion of epoxides to carbonates in all of them at different levels: short circuit 

(when a wire connected both electrodes and no current was applied), open circuit (when 

electrodes were placed in the solution but no connection between them) and electrodes free (no 

electrodes were used in the reaction). The performance of these conditions at a given 
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concentration (0.02 M) of analytes followed the order as expected: Current > Short circuit > open 

circuit > no electrodes.  

3.5.1 Short Circuit reactions 

Yields were of 75% of conversion of styrene carbonate after 20 hours under short circuit 

conditions (in acetonitrile at 75 °C). Temperatures higher than 85 °C would have a degassing 

effect on the solvent as acetonitrile boiling point is at 83 °C and no conversion would be observed 

at atmospheric pressure. Different epoxides were tested under these conditions giving different 

conversion rates as follows: 1,2-phenoxymethyloxirane > fluorostyrene oxide > styrene oxide > 

chlorostyrene oxide > 1,2-epoxyhexane > bromosthyrene oxide > allyl glycidyl ether.  

3.5.2 Open circuit reaction 

Open circuit conditions produced a 45% of styrene carbonate after 20 hours, but only 20% of 

chlorostyrene oxide under the same conditions. 12% of 1,2-phenoxymethyl oxirane converted to 

carbonate after 5 hours of reaction. 

3.5.3 Carboxylation of epoxides (No Electrodes) 

3.5.3.1 Dilute reactions 

Carboxylation of epoxides under no electrodes conditions was as low as 5% at a concentration of 

0.02 M in acetonitrile at 75 °C after 24 hours. However, and before concentration was purposely 

risen, two reactions suffered slow evaporation of the solvent while overnight reaction due to a 

difference in pressure of the CO2 flow possibly caused by the change of temperature in the 

laboratory room during the night and morning. The conversion on these reactions rose from 7% 

after 24 hours for chlorostyrene carbonate to 70% in the next 24 hours; and from 4% after 24 

hours to 92% in the next 24 hours for fluorostyrene carbonate. The 1H NMR analysis of the crude 

comparing integral values of starting material and tetrabutylammonium iodide confirmed that 

despite the higher flow rate of CO2 causing evaporation of the solvent starting materials did not 

evaporate.  

A study on the ratio epoxide:catalyst was carried out with bromostyrene oxide as starting 

material and TBAI. 1:1 and 1:2 ratios at a concentration of 0.04 M produced a significantly slower 

reaction than the one held at 1:1.5 ratio and 0.26 M. Conversions were of 15, 20 and 40% 
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respectively after 48 hours showing that influence of concentration of the species on the reaction 

was higher than the influence of the catalyst ratio. 

3.5.3.2 MgCO3 and MgBr2 as cocatalyst for cyclic carboxylation of epoxides 

The possibility of MgBr2 and MgCO3 species causing the formation of carbonate was rejected by a 

series of experiments that produced no conversion after 20 to 72 hours. Although these species 

might form when electrodes and current are used, the inorganic form is not catalysing the 

carboxylation of epoxides as concluded from these experiments.  

3.5.3.3 Concentration Study 

A molarity study using 1,2-phenoxymethyl oxirane and TBAI (1:1) showed the clear reaction rate  

improvement when increasing concentration. Yield after 5 hours went from 4% at 0.1 M to 54% 

at 2.0 M (the actual concentration would be lower than 2 M due to partial insolubility of the 

catalyst as the acetonitrile got saturated).  

Conduction of a study of the solubility of tetrabutylammonium iodide in acetonitrile at different 

temperatures could fill a gap in literature about these experimental data. In the same way, 

analyses of concentration of CO2 in acetonitrile at different temperatures, with and without 

tetrabutylammonium iodide in solution could tell us if the ammonium salt is capturing CO2 when 

dissolved in acetonitrile. 

3.5.3.4 High concentrate cyclic carboxylation reactions 

Reactions at higher concentrations (1 M or higher) were carried out with different CO 2 source. 

When a direct flow from the CO2 cylinder was flushed through the cell reaction rates always 

performed better, especially after 5 hours of reaction, than when CO2 was supplied by a balloon 

that was refilled as needed (expect overnight, when the balloon was left until the next day). This 

could be due to the fact that when heating at 75 °C the pressure in the cell is positive towards 

outside due to partial evaporation of the solvent. That means that the CO 2 contained in the 

balloon is coming to the cell at a lower rate. If instead the CO2 is flushed with a constant flow 

rate, the concentration of CO2 will be maintained. The fact that some solvent can evaporate out 

of the cell with the CO2 flow, means that the actual concentration of species in solution when CO2 

flow is used could be higher than the initial one (usually 1 M). This could be improving the yields 

as compared to the balloon source. Also, the balloon needle got sometimes solvent condensed 
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inside and had to be emptied in order for the CO2 to keep flowing (that was accomplished only by 

applying pressure on the balloon so the solvent would drop back to the reaction mixture).  

However, due to the high volatility of styrene oxide the balloon source was chosen to avoid the 

loss of the starting material and maintained in order to compare with the rest of epoxides 

performance.  

3.5.3.5 Glycidol and epichlorohydrin cyclic carboxylation 

In general, reactions were analysed at 5 hours and 20 or 24 hours by sampling and running 1H 

NMR of the crude. For all starting materials that got 100% of conversion at 24 hours the time at 

which the reaction finished was uncertain as it probably finished overnight but was not tested 

until the next morning. This was the case of epichlorohydrin and glycidol at 1 M in acetonitrile 

with TBAI (1:1) that got 100% of conversion to the corresponding carbonate after only 5 hours. 

Further experiments sampling hourly were carried out at different epoxide:TBAI ratios (1:1 ; 10:1 

and 100:1). Again, ratio 1:1 presented a higher conversion rate particularly differenciated for the 

glycidol carboxylation. 

3.5.3.6 Cyclic carboxylation of 3-hydroxyoxetane 

Four membered ring epoxide 3-hydroxyoxetane carboxylation was unsuccessfully attempted 

under these conditions (TBAI in acetonitrile, 75 °C and 1 atm pressure of CO2). 

3.5.3.7 NH4I catalyst for cyclic carboxylation of 1,2-phenoxymethyloxirane 

The attempt to replicate the new reaction conditions without electrodes of the electrochemical 

system reported in the literature using NH3/I2 as electrocatalysts152 was also carried out. 

Carbonate conversion was achieved using NH4I in acetonitrile (low solubility of the salt was an 

issue) at 75 °C, under CO2 atmosphere although as a minor product (18% after 24 hours). The 

main product (78%) was the halogenated alcohol formed from the ring opening by I - and the 

protonation from the NH4
+ (1-iodo-3-phenoxypropan-2-ol). 

3.5.3.8 Study of enantioselectivity of cyclic carboxylation of (S)-1,2-

phenoxymethyloxirane 

Carboxylation of (S)-1,2-phenoxymethyl oxirane was analysed by chiral HPLC showing that the 

product was enantiomerically pure and rejecting the possibility of carbocation intermediates on 

the chiral carbon in the mechanism.  
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3.5.3.9 Solvent free reactions or neat reactions 

Carboxylation of epoxides under neat conditions (epoxide:TBAI 1:1 at 75 °C) was successfully 

achieved. Performance varied greatly depending on the starting material and the conversion after 

24 hours followed the next series: allyl glycidyl ether (94%) > 1,2-phenoxymethyl oxirane (79%) > 

bromostyrene oxide (68%) > chlorostyrene oxide (49%) > styrene oxide (44%) > fluorostyrene 

oxide (31%) > 1,2-epoxyhexane (24%) > propylene oxide (3%). 

3.5.3.10 Solvent screening study of the cyclic carboxylation reaction of 1,2-

phenoxymethyloxirane 

A solvent screening study revealed that the more polar the solvent the higher the yield of 

carbonate conversion. Also protic solvents showed excellent conversions with 100% achieved 

after 5 hours. Conditions were 1:1 at 75 °C. Reaction in H2O went by two phases. Presence of 

hydrogen bonds from solvents –OH to carbon dioxide could be the answer to the good 

performance of these solvents. Also, that could be the explanation as well for the exceptional 

conversion rates for the glycidol compared to other starting materials. 

3.5.3.11 Phosphonium salts as catalysts.  

Resulting of a collaboration with Prof. Martin Smith and grad student Matías Giménez, 

phosphonium salts as catalysts were tested under the neat reaction conditions. An optimization 

of the catalyst structure was concluded based on the results of different anions performance and 

different phosphonium structures performance. 

The anions screening study was carried out using PS1 (see Table 4.8) as the phosphonium 

structure. Conversions to carbonate after 24 hours of reaction went from 0% with PS1BPh4 to 

90% with PS1I. There is a clear trend on anion activity, sorted by higher to lower performance as 

follows: I- > Br- > Cl- > BF4
- > BPh4 

Synthesis of PS1I is carried out beginning with PS1Cl and LiI, so the reaction was run with PS1Cl 

and LiI to produce PS1I in situ. In this way, a whole step on the synthesis of the catalyst was saved 

by producing it within the reaction mixture.  

The reaction mixture solidified when carbonate concentration reached the saturation point and 

time of completion of conversion is not accurate.   
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In order to evaluate the efficiency of different phosphonium cations, structures in Table 2.29 

were tested (PS1, PS2, PS3 and PS4). For the carboxylation reactions of 1,2-phenoxymethyl 

oxirane and styrene oxide the order of catalyst performance was: PS3 > PS4 > PS1 = PS2. 

However, carboxylation of allyl glycidyl ether showed a reversed on catalytic activity: PS4 = PS1 > 

PS3. 

Testing these catalysts on other epoxides or functional groups would be of interest for a future 

project.  

3.6 FTIR MONITORING CARBOXYLATION REACTION AND CALCULATION OF 

REACTION KINETICS 

Kinetic studies were carried out using a ReactIR to on-line monitor the conversion of 

epichlorohydrin to carbonate, thanks to a collaboration in Matt Sigman’s laboratory in the 

Organic department of The University of Utah, USA. Representation of concentration of 

remaining epoxide versus time showed a linear correlation suggesting a zeroth order of reaction. 

Representation of the logarithmic kobs vs log([TBAI]) showed a linear correlation with a slope of 

1.1 suggesting a first order with respect to TBAI concentration. Other studies to de termine the 

reaction order with respect to CO2 could be carried out. Other epoxides carboxylation reaction 

kinetics would be interesting to calculate and compare with the results obtained.  
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4 EXPERIMENTAL 

4.1 ELECTROCHEMICAL EXPERIMENTS 

4.1.1 Reagents and apparatus 

Potentiometric analysis were performed using a model 760 C Potentiostat from CHInstruments, 

Inc. (Austin, Texas, USA). 

Electrodes dimensions were 2 mm diameter for Pt and Au disk electrodes, 3 mm diameter for 

Glassy-Carbon disk electrode, 2 mm diameter of Cu rod and aproximately 3 mm wide-0.15mm 

thick Mg ribbon. Before every measure, disk electrodes were polished with 1.0, 0.3 and 0.05 

micron alumina in a sequence on a polishing pad. In order to eliminate the protective passivated 

layer, Cu rod and Mg ribbon electrodes were sanded with sand paper followed by a wipe to 

remove remaining powder. Hydroflex Reversible Hydrogen Electrode was used as the reference 

electrode.  

4.1.2 Electrochemical Cell design 

The three electrode system was set up in a 25 mL three necked round bottom flask as a single 

compartment cell and 0.1% w/v Tetrabutylammonium hexafluorophosphate (Bu4NPF6 or TBAHF) 

or Tetrabutylammonium bromide (Bu4NBr or TBABr) acetonitrile solution as the electrolyte 

(Figure 4.1). The cyclic voltammograms were acquired firstly under nitrogen atmosphere by 

purging the solution with N2 gas for one hour followed by a constant draft through the cell of N2, 

and secondly, in CO2 saturated solution from bubbling CO2 gas for one hour followed by a 

constant draft of CO2.  
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Figure 4.1.- Single compartment Electrochemical cell set up. See also section 4.1.2 for experimental conditions. 

 

Electrochemical reduction of carbon dioxide in acetonitrile solution has been studied by cyclic 

voltammetry technique. Different electrodes have been tested and compared to identify the best 

performance system conditions. As previously discussed, electrode material is crucial in the 

mechanism of carbon dioxide reduction and the product of the reaction depends on the 

electrocatalytic activity of the cathodic metal and on other factors like the composition of the 

supporting electrolyte (aqueous or nonaqueous solutions), and the experimental reaction 

parameters (cathode potential, current density, temperature and pressure).  

Table 4.1 summarizes the cyclic voltammetry experimental conditions of every experiment 

carried out which will be later explained in more detail. Platinum, Glassy-carbon, gold and copper 

electrodes were tested for carbon dioxide electrochemical reduction in acetonitrile with Bu 4NPF6 

or Bu4NBr as electrolyte. Platinum wire was used as counter electrode except in entries 6 and 8 

where Magnesium ribbon was used instead. The reference electrode employed was Standard 

Hydrogen Electrode from Hydroflex and a Scan Rate of 0.1 V/s. 
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Table 4.1.- Experimental conditions for cycl ic voltammetry experiments of carbon dioxide electrochemical reduction.  

 Electrodes   

Entry Working type Counter type ELECTROLYTE Epoxide 

1 Pt disk Pt wire Bu4NPF6 - 

2 GC disk Pt wire Bu4NPF6 - 

3 Au disk Pt wire Bu4NPF6 - 

4 Cu rod Pt wire Bu4NPF6 - 

5 Cu rod Pt wire Bu4NBr - 

6 Cu rod Mg ribbon Bu4NBr - 

7 Cu rod Pt wire Bu4NBr Styrene oxide 

8 Cu rod Mg ribbon Bu4NBr Styrene oxide 

Where “GC” is Glassy-Carbon; General conditions: 0.1% electrolyte solution in acetonitrile, Reversible hydrogen electrode as 
reference. 
 

4.2 ICP ANALYSIS OF CU AND MG CONTENT ON ELECTROCATALYTIC CYCLIC 

CARBOXYLATION OF EPOXIDES 

Copper and Magnesium content in solution after Short Circuit 

reactions was measured by Atomic Absorption Spectrometry (AAS) 

using a iCE3000 AAS series from Thermo Fishcer Scientific. Different 

range of dilutions of Cu and Mg (1000 ppm) stock solutions from 

Fischer Scientific were used to calibrate the instrumen. The 

sensitivity range of the instrument to Cu is 2 to 8 ppm and to Mg is 

0.1 to 0.4 ppm as listed in the manual. One stock solution of Cu (100 

ppm) and one of Mg (10 ppm) were prepared as follows: 

 Cu solution (100 ppm): Dilut 10 mL of Cu stock solution (1000 ppm) to 100 mL in a 

volumetric flask. 

 Mg solution (10 ppm): Dilut 1 mL of Mg stock solution (1000 ppm) to 100 mL in a 

volumetric flask. 

Standard solutions were prepared from Cu (100 ppm) and Mg (10 ppm) solutions as indicated in 

Table 4.2. 
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Table 4.2.- preparation of standard solutions for ca libration. 

Std solution V(Cu) (mL) V(Mg) (mL) Final V (mL) [Cu] (ppm) [Mg] (ppm) 

1 2 1 100 2 0.1 
2 4 2 100 4 0.2 

3 6 3 100 6 0.3 

4 16 8 200 8 0.4 

Sample preparation:  

After a first dilution 1 to 10 with water, and checking the range of concentration of Cu and Mg in 

our sample, redilution was usually necessary for Mg analysis. The data were later normalized.  

4.3 MEASURE OF THE ONSET POTENTIAL OF THE CELL 

Some Short Circuit reactions were monitored looking at the onset potential of the cell. This was 

simply measured by connecting a multimeter to the Cu and Mg electrodes on the voltmeter 

mode. The usual response was in a range from 0.8 to 1 volt which is the potencial at which CO2 

has been found to start to be reduced at different electrodes91,157,158. If this occurs, the products 

of the reduction could be determined by analysing the system by LCMS coupled to the 

electrochemical cell. 

The current has been also measured for a period of 80 minutes with the same multimeter set up 

on the amperimeter mode. The experimental procedure of the reaction set up is the same as 

explained for short circuit reactions in section 4.6.2.5.  

4.4 DMS ANALYTICAL TECHNIQUE TO MONITOR IN-SITU ELECTROCATALYTIC 

CYCLIC CARBOXYLATION OF EPOXIDES. 

This experiment was carried out in the Analytical chemistry department in Loughborough 

University. Mchem student Ellie Henshall-Bell performed the DMS analysis measurements under 

the supervision of Dr. Jim Reynolds and Prof. Paul Thomas. I carried out the electrochemical cell 

set up and assisted on the connection of the cell to the DMS device and the supervision of the 

reaction and measurements. 
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Sionex Corporation differential mobility spectrometer was used for the DMS studies. Instrumental 

details are listed in Table 4.3. 

Table 4.3.- Instrumental details for the DMS-electrochemical cell coupled experiment.  

Parameter Setting  

Instrument and serial no. Sionex Differential Mobility Spectrometer  
 SVAC-V  
 SVAC-0126  
Transport gas N2  
Transport gas purity High purity grade 5.0 (99.999%)  
Transport gas flow rate, F2 340-350 cm3min-1 
Tsensor 100 °C 
RF Voltage (VRF) 500-1400 V 
Compensation Voltage (VC) -45 to +12 V 
Software and versión Sionex Expert  
Computer Sionex 1004  

A second device (serial no. SVAC-V0136) with same specifications was used for previous analysis in order to collect spectra 
of CO2, Methanol and mixtures of both gases. 

 

All glassware used in the experiment was fully washed with water, methanol, and 

dichloromethane and later dried under high vacuum oven over weekend. No grease was used in 

the junctions to avoid contamination and problems in measurements. 

A 25 mL three necked round bottom flask was used as a single compartment electrochemical cell 

topped with a reflux tube and electrode couplings. Copper rod as cathode and Magnesium ribbon 

as anode were previously sanded to remove the passivated layer on the metal surface. The cell 

was filled with 10 mL of Bu4NBr-acetonitrile electrolyte solution and styrene oxide added in a 2:1 

ratio. Solution was purged for 30 min with a CO2 gas flow of 5 mL/min which was kept along all 

the process. A capillary tube was introduced as the outlet to the DMS instrument (flow rate 1.6 

mL/min) and an extra gas outlet (metal needle) was placed to avoid overpressure in the system 

(picture in Annexe, Figure 5.3). Special care was taken to avoid contact between electrodes 

(Annexe, Figure 5.4).  

Blanks were measured in-between every addition of a new component in the cell and the 

reaction was monitored every hour (Table 4.4).  
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Table 4.4.- Blanks and measurements carried out during experiment. 

Experiment T (°C) air 
CO2 (5 

mL/min) 
Current 
(60 mA) 

TBABr 
(0.1 M) 

TBABr + SO  

1 blank (air background) rt x         

2 CO2 blank rt   x   x   

3 CO2 blank with SO  rt   x     x 

4 current blank rt   x x x   

5 current blank SO rt   x x   x 

6 Current blank 50 °C 50   x x x   

7 current blank SO 50 °C 50   x x   x 

Acetonitrile (10 mL) was used as solvent. Bu4NBr and styrene oxide added in a 2:1 ratio. SO stands for “styrene oxide”. 

As the Table 4.4 shows, blanks were recorded in-between every addition of a new component in 

the cell. So that there was a background of every step: opened cell (air blank); closed cell (CO2/air 

blank); CO2 saturated electrolyte solution; CO2 saturated electrolyte solution with constant 

current of 60 mA at room temperature; CO2 saturated electrolyte solution constant current of 60 

mA at 50 °C; and same blanks as before but adding the reactant, styrene oxide. Once all the 

conditions on (CO2 saturated solution, 60 mA constant current, 50 °C), the reaction was 

monitored every hour for 4 hours. 

4.5 CONSTRUCTION OF A GC/MS FOR ANALYSIS OF IN-SITU 

ELECTROCHEMICALLY ASSISTED CARBOXYLATION REACTIONS 

An attempt of mass spectrometry analysis of compounds produced in the electrocarboxylation of 

epoxides was made by building a mass spectrometer in the laboratory next to a fumehood in 

where the electrochemical cell was placed to run the reaction. A silicon tube fitted with a metal 

syringe connects the cell to a manual valve injector that dispenses the sample to a glass capillary 

that continues into the mass spectrometer. The carrier gas when the instrument was not 

sampling was Helium flowing at 1.5 mL/min. When a sample was taken, the positive pressure of 

CO2 in the electrochemical cell carried the vapours to the loop in the manual valve.  
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4.6 ORGANIC SYNTHESIS PROCEDURES 

4.6.1 Reagents and apparatus 

The NMR spectra were recorded in a Jeol JNM-ECS400 or a Bruker Avance 400 MHz spectrometer. 

The solvent used for NMR spectroscopy was CDCl3 (unless stated otherwise) using TMS 

(tetramethylsilane) as the internal reference.  

Reactions were monitored using thin layer chromatography (TLC) visualised by UV radiation at a 

wavelength of 254 nm, or stained by exposure to an ethanoic solution of phosphomolybdic acid 

(acidified with concentrated sulfuric acid), followed by charring when appropriate. Purification by 

column chromatography used Merck Kiesel 60 H silica adsorbent. 

All infrared spectra were recorded in a FT-IR 8400S with GS10800-X Quest ATR diamond 

accessory. At the University of Utah, ReactIR iC10 from Mettler Toledo was used for monitoring 

cyclic carboxylation reactions of epoxides and carbon dioxide.  All chemicals were used as 

received.  
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Table 4.5.- Chemicals CAS no. and supplier. 

Entry 
Name /  

IUPAC name 
Grade (%) CAS no. Supplier 

1 
Styrene Oxide /  
2-Phenyloxirane 

97 96-09-3 Aldrich 

2 
Chlorostyrene Oxide /  
2-(4-Chlorophenyl)oxirane  

96 2788-86-5 Aldrich 

3 
Fluorostyrene Oxide /  
2-(4-Fluorophenyl)oxirane 

95 18511-62-1 Alfa Aesar 

4 
Bromostyrene Oxide /  
2-(4-Bromophenyl)oxirane 

96 32017-76-8 Aldrich 

5 
1,2-Phenoxymethyl oxirane /    
1,2-Epoxy-3-phenoxypropane 

99 122-60-1 Aldrich 

6 1,2-Epoxyhexane 96 1436-34-6 Alfa Aesar 

7 
Allylglicidyl Ether /  
Allyl 2,3-epoxypropyl ether 

99 106-92-3 Acros Organics 

8 (+-)-Propylene oxide 99 75-56-9  Sigma Aldrich 

9 
Epichlorohydrin / 
2-(chloromethyl)oxirane 

99 106-89-8 Sigma Aldrich 

10 
Trimethylene oxide / Oxetane /  
1,3-propylene oxide 

97 503-30-0 Sigma Aldrich 

11 
2-methyl styrene oxide /  
2-Methyl-2-phenyloxirane 

98 2085-88-3  Sigma Aldrich 

12 
alpha-methyl styrene /  
2-Phenylpropene 

99 98-83-9 Sigma Aldrich 

13 glycidol / 2,3-Epoxy-1-propanol 96 556-52-5  Sigma Aldrich 

14 
4-Methylstyrene oxide /  
2-(4-methylphenyl)oxirane 

99 13107-39-6  Sigma Aldrich 

15 2-(4-methoxyphenyl)oxirane 99 6388-72-3 Sigma Aldrich 

16 4-Methoxystyrene / 4-Vinylanisole 97 637-69-4 Sigma Aldrich 

17 4-Methylstyrene / 4-Vinyltoluene  96 622-97-9 Sigma Aldrich 

18 3-hydroxyoxetane / oxetan-3-ol 95 7748-36-9  Sigma Aldrich 

19 
N-tetrabutylammonium Iodide / Bu4NI 
/ TBAI  

98 311-28-4 Alfa Aesar 

20 
N-tetrabutylammonium Bromide / 
Bu4NBr / TBABr  

98 1643-19-2 Alfa Aesar 

21 
Magnesium carbonate hydroxide 
hydrate / MgCO3•Mg(OH)2•3H2O                                         

95 235-192-7 Acros Organics 

22 Magnesium bromide / MgBr2  98 7789-48-2  Aldrich 

23 Acetonitrile anhydrous / ACN / MeCN 99.8 75-05-8 Sigma Aldrich 

24 Ethyl Acetate / EtOAc 99 141-78-6 Fischer Scientific 

25 Diethyl ether 99.7 60-29-7 Sigma Aldrich 

26 Deionized water 99.9 7732-18-5 Sigma Aldrich 

27 Ethanol  / EtOH 99 64-17-5 Fischer Scientific 

28 Acetonitrile  / ACN / MeCN  99 75-05-8 Sigma Aldrich 

29 Carbon dioxide 100 124-38-9 BOC 

http://www.sigmaaldrich.com/catalog/search?term=7732-18-5&interface=CAS%20No.&lang=en&region=US&focus=product
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4.6.2  Reaction conditions and procedures 

Three different experimental conditions have been designed in order to carry out the control 

reaction blanks of the electrocarboxylation of epoxides. Scheme 4.1 shows the electrodes 

conditions of these experiments. 

 

Scheme 4.1.- Electrodes experimental conditions summary for the Control reactions of electrocarboxylation of 
epoxides . a) An external current of 60 mA is applied to the electrodes . b) A Short Ci rcui t using a wire  to connect both 
electrodes. c) Open ci rcuit where electrodes are in solution but no contact exis ts between them and d) Reaction with 
NO electrodes. 

External Current conditions (Scheme 4.1, a)) refers to the electrochemical carboxylation of 

epoxides run by applying 60 mA of current to the electrodes. Short Circuit conditions (Scheme 

4.1, b)) consists on connecting the electrodes with a wire and applying no current. Open Circuit 

conditions (Scheme 4.1, c)) consists on inserting the electrodes in solution with no connection 

between them. And No Electrodes conditions (Scheme 4.1, c)) consists on running the blank of 

the reaction with the only presence of the reagents and no Cu nor Mg and at different 
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concentrations (dilute, high concentrated and solvent free conditions).Ten different starting 

materials listed below have been studied under the named reaction conditions.  

 

Figure 4.2.- Starting materials with different functional groups. From 1a to 1k. Productos from b1 to b10. 

 

4.6.2.1 Product characterization 

All product 1H NMR, 13C NMR and IR data are listed below: 

 4-phenyl-1,3-dioxolan-2-one (2a)  

 

 as an amber oil ; vmax(CH2 Cl2)/cm- 1  1768 (C=O) , 1165 (C-O); 1 H NMR (400 MHz, CDCl3) 

  ppm 4.36 (t,  J=8.2 Hz, 1 H),  4.81 (t,  J=8.5 Hz, 1 H),  5.69 (t,  J=8.0 Hz, 1 H),  7.34 - 

7.50 (m, 5 H). 13 C NMR (100 MHz, CDCl3,  Me 4Si)  δC ppm 71.2, 78.1, 125.94, 129.3, 

129.8, 135.9, 154.9. Data in agreement with l iterature. 16 8 
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 4-(4-chlorophenyl)-1,3-dioxolan-2-one (2b)  

 

as a white  solid mp 67-70 °C; vmax(CH2 Cl2 )/cm -1  1645 (C=O), 1203 (C-O), 790 (C-Cl); 1H 

NMR (400 MHz, CDCl 3)  d ppm 4.31 (t,  J=8.2 Hz, 1 H) ,  4.84 (t,  J=8.4 Hz, 1 H),  5.69 (t, 

J=7.9 Hz, 1 H),  7.30 - 7.35 (m, 2 H) ,  7.43 (m, 2 H) ,  13 C NMR (100 MHz, CDCl3 , Me4Si) 

δC  ppm 71.0, 127.3, 129.5, 134.3, 135.8, 154.5.  Data in agreement with l iterature.1 69 

 4-(4-fluorophenyl) -1,3-dioxolan-2-one (2c)  

  

as a colorless solid. Mp 63-65 °C; vmax(CH2Cl 2)/cm -1  1643 (C=O),  1160 (C-O),  1056 (C-

F);  1 H NMR (400 MHz, CDCl 3)    ppm 4.32 (t,  J=8.2 Hz, 1 H),  4.82 (t,  J=8.5 Hz, 1 H), 

5.73 (t, J=8.0 Hz, 1 H) ,  7.16 (m, 2 H),  7.39 - 7.49 (m, 2 H),  1 3C NMR δC  (100 MHz, 

CDCl3,  Me4 Si)  71.1, 77.4, 116.0, 127.4, 131.5, 154.6, 164.6. Data in agreement with 

l i terature.1 17 

 4-(4-bromophenyl) -1,3-dioxolan-2-one (2d)  

  

as a white  solid, mp 72-74 °C; vmax(CH2 Cl2)/cm- 1  2946, 2518, 2159, 2028, 1976, 1818, 

1785; 1 H NMR (400 MHz, CDCl3 )    ppm 4.30 (dd, J=8.7, 7.8 Hz, 1 H) ,  4.81 (t,  J=8.4 Hz, 

1 H),  5.65 (t,  J=8.0 Hz, 1 H),  7.19 -  7.31 (m, 2 H) ,  7.54 -  7.64 (m, 2 H) . 13 C NMR (100 

MHz, CDCl3 , Me4Si ) δC  ppm 70.9, 77.2, 123.8, 127.5, 132.4, 134.7, 154.5.  Data in 

agreement with l iterature. 169  
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 4-(phenoxymethyl)-1,3-dioxolan-2-one (2e) 

  

as a white  solid, mp 95-97 °C;  vmax/cm -1  1787 (C=O); 1 H NMR (400 MHz, CDCl3)    ppm 

4.13 (dd, J=7.0, 3.5 Hz, 1 H),  4.23 (dd, J=10.6, 4.1 Hz, 1 H),  4.52 (dd, J=8.56, 5.91 Hz, 

1 H),  4.60 (t,  J=8.4 Hz, 1 H) ,  4.97 -  5.06 (m, 1 H) ,  6.91 (d, J=8.3 Hz, 2 H) ,  6.98 (t,  J=7.9 

Hz,  1 H) ,  7.31 ( t,  J=7.9 Hz, 2 H). 13 C NMR (100 MHz, CDCl 3,  Me4 Si)  δC  ppm 66.2, 66.9, 

74.1, 114.6, 121.9, 129.6, 154.7, 157.8. Data in agreement with l iterature.1 22 

 4-butyl-1,3-dioxolan-2-one (2f)  

  

as a yellow clear oil; vmax(CH2 Cl2)/cm- 1  1791 (C=O) , 1165 (C-O); 1H NMR (400 MHz, 

CDCl3)    ppm 0.93 (t,  J=6.9 Hz, 3 H),  1.29 -  1.53 (m, 4 H),  1.64 -  1.75 (m, 1 H),  1.76 – 

1.87 (m, 1 H),  4.08 (dd, J=8.4, 7.2 Hz, 1 H),  4.54 (t, J=8.2 Hz, 1 H),  4.67 – 4.78 (m, 1 

H). 13 C NMR (100 MHz, CDCl3 ,  Me4 Si)  δC  ppm 13.7, 22.1, 26.3, 33.4, 69.3, 77.0, 155.1. 

Data in agreement with l i terature. 122  

 4-((allyloxy)methyl)-1,3-dioxolan-2-one (2g)  

  

as a clear oil; vmax(CH2Cl 2)/cm -1  1781 (C=O), 1645 (C=C) ,  1193 (C-O); 1H NMR (400 

MHz, CDCl3 )    ppm 3.61 (dd, J=11.1, 3.8 Hz, 1 H),  3.72 (dd, J=11.1, 3.0 Hz, 1 H),  4.05 

(d,  J=5.6 Hz,  2 H),  4.39 (dd, J=8.1, 6.0 Hz, 1 H) ,  4.53 (t,  J=8.3 Hz, 1 H),  4.84 – 4.92 (m, 

1 H),  5.21 (dt, J=10.3, 1.3 Hz, 1 H) , 5.29 (dt, J=17.4, 1.3 Hz, 1 H) ,  (ddt, J=17.4, 10.5, 

5.7 Hz, 1 H). 1 3C NMR (100 MHz, CDCl3,  Me 4Si)  δC  ppm 66.2, 68.7, 72.4, 75.0, 117.8, 

133.6, 154.9. Data in agreement with l iterature.17 0 
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 4-methyl-1,3-dioxolan-2-one (2h)  

  

as a clear oil ; vmax(CH2 Cl2)/cm- 1  1782 (C=O)1 51 ; 1H NMR (400 MHz, CDCl 3)   ppm 1.26 

(m, J=6.3 Hz, 1 H) ,  3.87 (dd, J=8.2, 7.1 Hz, 1 H),  4.43 (dd, J=8.2, 7.1 Hz, 1 H) ,  4.68 - 

4.78 (m, 1 H); 1 3C NMR (100 MHz, CDCl3,  Me4 Si)  δC  ppm 19.3, 70.6, 73.5, 155.1.  Data 

in agreement with l iterature.17 0 

 4-(chloromethyl)-1,3-dioxolan-2-one (2i)  

  

as a yellow clear oil  °C; vmax(CH2Cl 2)/cm -1  1800 (C=O), 1150 (C-O),  1050 (C-Cl) ; 1H 

NMR (400 MHz, CDCl3)    ppm 3.75 (m, J=11.4, 3.7 Hz, 1 H),  3.81 (dd, J=12.4, 6.0 Hz, 

1 H) ,  4.43 (dd, J=8.9, 5.7 Hz, 1 H) ,  4.61 (t,  J=8.5 Hz, 1 H),  4.95 -  5.04 (m, 1 H) ; 13C 

NMR (100 MHz, CDCl 3,  Me4 Si)  δC  ppm 44.2, 66.6, 74.3, 154.5. Data in agreement 

with l iterature.1 70  

 4-(hydroxymethyl)-1,3-dioxolan-2-one (2j )  

  

as a clear oil ; vmax(CH2Cl2 )/cm -1  3433 (-OH), 1767 (C=O), 1397, 1165 (C-O); 1 H NMR 

(400 MHz, CDCl 3)    ppm 3.04 (s,  1 H),  3.71 (dd, J=13.1, 3.4 Hz, 1 H) ,  3.99 (dd, J=12.8, 

2.7 Hz, 1 H),  4.47 (dd, J=8.2, 6.9 Hz, 1 H),  4.54 (t,  J=8.2 Hz, 1 H),  4.77 -  4.87 (m, 1 H); 

1 3C NMR (100 MHz, CDCl3,  Me 4Si)  δC ppm 60.4, 65.6, 76.9, 155.0.  Data in agreement 

with l iterature.1  
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4.6.2.2 % of conversion Calculations 

Due to volatility of many of the epoxides used as starting material in the reactions, ratios of 

conversion after work up are not reliable. A way of accurately knowing the % of conversion in 

every moment is by sampling the reaction solution and analysing the mixture by 1H-NMR 

spectroscopy. If the solution is dilute the strong response of the solvent will translate on a loss of 

accuracy on the target signals (reactants). There exists an NMR solvent suppression technique 

called “presaturation at solvent signal” that allows to “hide” the solvent peak and improve the 

baseline and integration areas accuracy of the analyte signals resulting in a better resolution 

spectra. 

1H-NMR analysis of solutions were made after 5/19/24/48 and/or 72 hours under this technique. 

See an example of 1H-NMR spectrum (Figure 4.3) and 1H-NMR “presaturated at ACN signal” 

spectrum (Figure 4.4) of 2-(4-fluorophenyl)oxirane (or fluorostyrene oxide) carboxylation after 24 

hours of reaction. This technique allows us to visualize the signals corresponding to the product 

with higher accuracy. However, signals which  shift is near the solvent signal (like ammonium 

salt H signals from 1.5 – 2.5 ppms) suffer distortion and integral values decrease considerably 

(almost half of its true value). The same sample was analysed by 1H NMR with and without 

solvent suppression technique in order to confirm that only the ammonium salt signals are 

affected by the distortion and the epoxide signals remain constant.  
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Figure 4.3.- 1H-NMR of crude from 2-(4-Fluorophenyl )oxi rane carboxylation reaction in ACN. Short Ci rcuit, TBAI , 75 °C, 
24 h. 
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R14_1 presat@ACN.esp
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Figure 4.4.- 1H-NMR presaturated at Acetonitrile signal  of crude from 2-(4-Fluorophenyl )oxi rane carboxylation reaction. 

Short Ci rcui t, TBAI, 75 °C, 24 h 
R14 crude and presat@ACN.esp
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Figure 4.5.- Overlapped 1H-NMR spectra  before presaturation (from Figure 4.3, in green) and after presaturation at 

acetonitrile signal (from Figure 4.4, in red). 

**When the reaction was run at a concentration of 1 M or more, suppression of solvent signal 

was not necessary as the signal of the solvent was of a similar height to the analytes signals and 

calculations were made using the normal 1H-NMR spectra.  
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4.6.2.3 Initial improvements in procedure and work up. 

The best performance conditions of the electrocarboxylation reactions carried out by Anish P. 

Patel1 were chosen as starting point for the following background reaction experiments as 

detailed next. 

Initial procedure for electrocarboxylation of epoxides (current, short circuit and open circuit 

modes): 

The epoxide was added to a solution of supporting electrolyte (Bu4NBr) in acetonitrile in a ratio of 

(1:1) (unless otherwise stated), the resulting solution was flushed with CO2 for 1h, followed by 

heated electrolysis for 5h at 75 °C and constant current (60mA) with constant stirring and 

constant CO2 flow, in a single compartment cell containing a magnesium anode (30 cm of Mg 

ribbon) and copper cathode (60 cm of Cu rod) previously sanded (to remove the oxide layer).  

On completion the reaction mixture was filtered to remove the precipitate formed and 

hydrolysed with HCl (50 mL / 0.1 M) followed by extraction using Et2O (3 x 35 mL). The combined 

organic extracts were evaporated to dryness affording a crude oil. EtOAc (5 mL) was added to 

precipitate Bu4NI. After precipitation the solid was removed by filtration and the solvent 

evaporated to afford the corresponding carbonate (b1 or 2b). Flash Chromatography (solvent 

petroleum ether : ethyl acetate, 1:1) was usually needed to completely remove Bu4NI traces from 

the product.  

 

Table 4.6.- Example of diol formation in reactions carried out under initial experimental procedure. 

Entry Starting material T (°C) 
Epoxide 
(mol/L) 

Time (h) Carbonate (%)a diol (%)a 

 Styrene Oxide 

     
1 SC1_10a 75 0.02 19 0.0 0.0 

2 SC1_10b 75 0.02 48 56.4 15.8 

3 SC1_10c 75 0.02 72 83.2 13.4 

4 ER1_2 50 0.10 19 73.0 22.0 
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5 OC1_1 50 0.04 19 45.5 54.5 

General reaction conditions: copper rod and magnesium ribbon (Short circuit system in reactions 1 to 3; current of 60 mA 
entry 4; Open circuit conditions entry 5), Bu4NI (entries 4 and 5) or Bu4NBr (entries 1 to 3) as supporting electrolyte, CO2 
constant flow, CH3CN, 50 and 75 °C; aEvaluated from 1H NMR spectrum. Ri refers to the code given to each reaction. 

 

As it can be seen on the results the corresponding diol was being formed in addition to the cyclic 

carbonate. This could be due to an accumulation of carbonic acid/water coming from the CO2 gas 

after long hours running. Measures like integrating a silica gel tube drier in the CO2 flow line and 

removing the hydrolysis step in the work up were implemented and exclusive cyclic carbonate 

formation was successfully achieved (all reactions hereafter).  

Regarding the formation of diol, it was suspected that it was produced directly from the epoxide 

remaining in solution as it is widely reported in the literature. However, the possibility of the diol 

coming from the cyclic carbonate was also considered as a degradation of the carbonate in 

presence of some organometallic complexes used for its synthesi s from epoxides was previously 

reported by Muralidharan & Heeralal.  

A couple of experiments were carried out in order to answer this question. The first one consisted 

on subjecting the cyclic carbonate to the electrocarboxylation conditions and 0.5 mL of H2O 

followed by addition of 0.5 mL of 0.1 M HCl to see if it was degrading to diol, and results showed 

that this was not happening (see Table 2.5 below). The second one consisted on washing styrene 

oxide with acidic water confirming that diol was forming (Figure 4.6). 

 

Table 4.7.- Degradation s tudy of 4-phenyl-1,3-dioxolan-2-one under short ci rcuit mode. 

Time (h) Carbonate (%)a diol (%)a 

19 100.0 0.0 
48 100.0 0.0 

General reaction conditions: 4-phenyl-1,3-dioxolan-2-one as starting material, copper rod and magnesium ribbon (Short 
circuit mode), Bu4NI as supporting electrolyte, CO2 constant flow, CH3CN, 75 °C; aEvaluated from 1H NMR spectrum. Ri refers 
to the code given to each reaction. 
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Figure 4.6.- Evolution of styrene oxide carboxylation reaction. 

 

4.6.2.4 Electrocarboxylation of epoxides. 

Improved General Procedure: 

The epoxide (1a or 1b) was added to a solution of supporting electrolyte (Bu4NBr) in acetonitrile 

in a ratio of (1:1) (unless otherwise stated), the resulting solution was flushed with CO 2 for 1h, 

followed by heated electrolysis for 5h at 75 °C and constant current (60mA)  with constant stirring 

and constant CO2 flow, in a single compartment cell containing a magnesium anode (30 cm of Mg 

ribbon) and copper cathode (60 cm of Cu rod) previously sanded (to remove the oxide layer).  

On completion the reaction mixture was filtered if any precipitate was formed and later 

concentrated under reduced pressure (in ice bath if required). EtOAc (5 mL) was added to 

precipitate Bu4NI. After precipitation the solid was removed by filtration and the solvent 

evaporated to afford the corresponding carbonate (2a or 2b). Flash Chromatography (solvent 

petroleum ether : ethyl acetate, 1:1) was usually needed to completely remove Bu4NI traces from 

the product.  

    
 
 

4.6.2.5 Short Circuit reactions 

General Procedure:  
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The epoxide (1a to 1g) was added to a solution of supporting electrolyte (Bu4NI) in acetonitrile, 

the resulting solution was flushed with CO2 for 1h, followed by heating at 75 °C with constant 

stirring for 19h (or overnight), 24, 48 and 72 hours under constant CO 2 flow, in a single 

compartment cell containing a magnesium anode (15 cm of Mg ribbon) and copper cathode (30 

cm of Cu rod) previously sanded. A wire connection between Cu and Mg electrodes was used to 

close the system, but no current was applied.  

On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate (2a to 

2g). Flash Chromatography (solvent petroleum ether : ethyl acetate, 1:1) was usually needed to 

completely remove Bu4NI traces from the product.  

 

4.6.2.6 Open circuit reaction 

General procedure: 

Epoxide (1a, 1b or 1e) was added to a solution of supporting electrolyte (Bu4NBr) in acetonitrile 

(1:1), the resulting solution was flushed with CO2 for 1h, followed by heating at 50 °C, constant 

stirring and constant CO2 flow, in a single compartment cell containing a magnesium ribbon (15 

cm of Mg ribbon) and copper rod (30 cm of Cu rod) previously sanded. No connection was made 

between the electrodes or current applied. 

On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate (2a, 2b 

or 2e). Flash Chromatography (solvent petroleum ether : ethyl acetate, 1:1) was usually needed 

to completely remove Bu4NI traces from the product.  
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4.6.2.7 Carboxylation of epoxides (No Electrodes) 

Three different ranges of concentrations of reactants were studied under No Electrodes 

conditions (dilute reactions from 0.02 to 0.26 M, concentrated reactions from 1 to 20 M, and neat 

conditions). The general procedures are described in this section. 

4.6.2.8 Dilute reactions 

General Procedure: 

Epoxide (1a to 1g) was added to a solution of supporting electrolyte (Bu4NI) in acetonitrile (1:1) 

and heated to 75 °C. Constant CO2 flow (1 atm pressure). No electrodes were placed in the 

solution. 

On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate (2a to 

2g). Flash Chromatography (solvent petroleum ether : ethyl acetate, 1:1) was usually needed to 

completely remove Bu4NI traces from the product.  

 

 

4.6.2.8.1 MgCO3 and MgBr2 as cocatalyst for cyclic carboxylation of epoxides 

From the observation of the Magnesium electrode being a sacrificial anode and the formation of 

an inorganic solid (not soluble in any of the usual solvents) in solution, one of the reaction 

catalysts hypothesis of the electrocarboxylation of epoxides with Mg and Cu as electrodes was 
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that Mg metal reduced to Mg2+ and formed MgCO3 (with CO2 in solution) and/or MgBr2 (with free 

bromide in solution coming from the N-tetrabutylammonium bromide). 

MgCO3 and MgBr2 were added to a solution of styrene oxide in order to check their catalytic 

capacity.  

 The General procedure for these reactions is as follow: 

Styrene oxide (0.1 mmol) was dissolved in acetonitrile (60 mL) and heated to 50 °C. One 

equivalent of different catalyst/cocatalyst were tested. One reaction contained 0.1 mmol of 

MgBr2 and CO2 was supplied with a balloon at atmospheric pressure. Different species were 

tested as possible CO2 source in the carboxylation of epoxides: MgCO3 (0.1 mmol), N-

tetrabutylammonium bromide (0.1 mmol), and MgBr2 (0.1 mmol). 1H NMR analysis were carried 

out after 19 hours of reaction. 

 

4.6.2.8.2 Concentration study 

A study on the influence of the concentration of the reactants on the cyclic carboxylation of 

epoxides was carried out. 1,2-Phenoxymethyloxirane (1e) was added to a solution of the catalyst 

(Bu4NI) in acetonitrile at a 1 to 1 ratio previously heated to 75 °C. Reactions were run at 

concentrations of 0.1, 0.5, 1.0 and 2.0 M. CO2 atmosphere (1 atm pressure) was maintained with 

balloons. No electrodes were placed in the solution. 1H NMR analysis of the aliquots were made 

at 5 hours and 24 hours of reaction.  
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4.6.2.8.3 High concentrate reactions 

The general procedure is as follows: 

Epoxide (1a to 1j) was added to a concentrate solution (1 M) of supporting electrolyte (Bu 4NI) in 

acetonitrile and heated to 75 °C. No electrodes were placed in the solution. 

On completion the reaction mixture was concentrated under reduced pressure (in ice bath if 

required) and EtOAc (5 mL) was added to precipitate Bu4NI. After precipitation the solid was 

removed by filtration and the solvent evaporated to afford the corresponding carbonate (2a to 

2j). Flash Chromatography (solvent petroleum ether : ethyl acetate, 1:1) was usually needed to 

completely remove Bu4NI traces from the product.  

 

 

4.6.2.8.4 Glycidol and epichlorohydrin cyclic carboxylation 

Epoxide (1i and 1j) was added in different ratios (1:1; 10:1 and 100:1) to a 1 M solution of 

supporting electrolyte (Bu4NI) in acetonitrile and heated to 75 °C. CO2 was supplied with balloons. 

No electrodes were placed in the solution. As seen in the results and discussion chapter glycidol 

and epichlorohydrin epoxides had a conversion to carbonate of 100% in 5 hours. In order to 

identify the reaction time and kinetics some extra measurements were taken.  

On completion the reaction mixture was concentrated under reduced pressure and EtOAc (5 mL) 

was added to precipitate Bu4NI. After precipitation the solid was removed by filtration and the 

solvent evaporated to afford the corresponding carbonate (2i and 2j). Flash Chromatography 

(solvent petroleum ether : ethyl acetate, 1:1) was usually needed to completely remove Bu4NI 

traces from the product.  
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4.6.2.8.5 Cyclic carboxylation of 3-hydroxyoxetane 

3-Hydroxyoxetane (Epoxide 1k) was added to a 1 M solution of supporting electrolyte (Bu 4NI) in 

acetonitrile (1:1) and heated to 75 °C. CO2 was supplied with balloons. No electrodes were placed 

in the solution. 1H NMR analysis were carried out after 5 and 24 hours of reaction with no 

success.  

 

 

4.6.2.8.6 NH4I catalyst for cyclic carboxylation of 1,2-phenoxymethyloxirane 

Epoxide (1e) was added to a concentrate suspension of catalyst (NH4I) in acetonitrile in a flask 

that has been previously flushed with CO2 and heated to 75 °C. CO2 1 atm pressure was 

maintained with balloons. No electrodes were placed in the solution. 1H NMR analysis was carried 

out after 5 and 24 hours of reaction.  

 

 

4.6.2.8.7 Study of enantioselectivity of cyclic carboxylation of (S)-1,2-

phenoxymethyloxirane 

Epoxide (1l, 3.6 M) was added to a 1 M solution catalyst (Bu4NI) in acetonitrile in a flask that has 

been previously flushed with CO2 and heated to 75 °C. CO2 1 atm pressure was maintained with 

balloons. No electrodes were placed in the solution.  

On completion the reaction mixture was concentrated under reduced pressure and EtOAc (5 mL) 

was added to precipitate Bu4NI. After precipitation the solid was removed by filtration and the 
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solvent evaporated to afford the corresponding carbonate (2l). Flash Chromatography (solvent 

petroleum ether:ethyl acetate, 1:1) was usually needed to completely remove Bu4NI traces from 

the product. HPLC quirality column (Eurocel 01) was used to analyse the product stereochemistry.  

 

 

4.6.2.8.8 Solvent free reactions or neat reactions 

General Procedure: 

The catalyst (Bu4NI) was added to the epoxide (1a to 1j) in absence of solvent and heated to 75 

°C. The catalyst (Bu4NI) dissolved in the epoxide when temperature increased up to 70 °C (only if 

ratio epoxide:salt was equal to or lower than 100:1 regarding the catalyst). No electrodes were 

placed in the solution. 

On completion the reaction mixture usually became an amalgam due to slow precipitation of the 

carbonate mixed with the non-reacted epoxide and the ammonium salt. Due to rigidity of the 

mixture the reaction stopped at a lower percentage of conversion compared to when the 

reaction took place using a solvent, as shown by NMR analysis. The mixture was homogenised by 

grindering it with a morter and analysed by 1H NMR to calculate the conversion % and further 

dissolved in 1 mL of EtOAc to be purified by flash chromatography (solvent petroleum ether : 

ethyl acetate, 1:1) to completely remove salt traces from the product and to afford the pure 

carbonate (2a to 2j).  

 

Two control reaction under neat conditions were carried out with 1,2-phenoxymethyloxirane as 

epoxide one using NH4I as catalyst and another using no catalyst. 
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4.6.2.8.9 Solvent screening study of the cyclic carboxylation reaction of 1,2-

phenoxymethyloxirane 

A study on the influence of the solvent on the cyclic carboxylation of epoxides was carried out. 

1,2-Phenoxymethyloxirane (1e) was added to a 1 M solution of catalyst (Bu4NI) in acetonitrile 1 to 

1 ratio while heating up to 75 °C. CO2 atmosphere (1 atm pressure) was maintained with balloons. 

1H NMR analysis of the aliquots were made at 5 hours and 24 hours of reaction.  

On completion the reaction mixture was concentrated under reduced pressure and EtOAc (5 mL) 

was added to precipitate Bu4NI. After precipitation the solid was removed by filtration and the 

solvent evaporated to afford the corresponding carbonate (2e). Flash Chromatography (solvent 

petroleum ether : ethyl acetate, 1:1) was usually needed to completely remove Bu4NI traces from 

the product.  

 

 

4.6.2.8.10 Phosphonium salts as catalysts. 

In collaboration with Professor Martin Smith from Inorganic Chemistry department in 

Loughborough University, Matias Giménez Toledo (Erasmus student from The University of 

Valencia, Spain) synthesized a series of Phosphonium salts that were tested as catalysts for the 

reaction of cyclic carboxylation of epoxides. Procedure of the synthesis  can be found in the 

literature.164,165 In this project, phosphonium salts were synthesized from THPC 
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{tetrakis(hydroxymethyl)phosphonium chloride} and phenylenediamine derivates in ethanol at 

room temperature while stirring during two hours (Scheme 4.2).166 

 

Scheme 4.2.- Synthesis of phosphonium salts from THPC.166 

The structures and molecular data of the synthesized, and tested as catalysts for carboxylation of 

epoxides, phosphonium salts are presented in Table 4.8. 

 

 

 

Table 4.8.- Phosphonium salts structure and molecular data. 



Chapter 4 – Experimental 

 

195 

 

 
Molecular data of Phosphonium salt catalysts . Synthesis of Phosphonium salts  can be found in li terature. 164,165 
1H-NMR, 13C-NMR, 31P-NMR, IRs, X-Ray and MS analysis of samples  were carried out as part of the compound 
characterization.166 

All reactions with phosphonium salts catalysts were conducted under neat conditions following 

the procedure described below. 

General Procedure: 

The phosphonium catalyst was added to the epoxide (1a, 1f or 1g) in the absence of solvent and 

heated to 75 °C. The catalyst did not dissolve in the epoxide at low temperatures, but it did when 

reaction temperature was reached. No electrodes were placed in the solution. 

On completion, if carbonate production was achieved the reaction mixture became an amalgam 

due to slow precipitation of the carbonate mixed with the non-reacted epoxide and the 

phosphonium salt. The mixture was homogenised by grinding it with a mortar and analysed by 1H 

NMR to calculate the conversion %.  

An initial screening study regarding catalyst performance of different anions of the phosphonium 

salts (PS1) over 1,2-phenoxymethyl oxirane (1e) was conducted producing the results shown in 
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Table 2.32. Experimental procedure was performed as detailed above using an amount of 0.1 

mmol of Phosphonium (1% of catalyst loading) salt that was added to 10 mmol of epoxide.  

 

 

 

In order to evaluate the efficiency of different Phosphonium cations the structures in Table 4.8 

were synthesized and tested as catalyst for the cyclic carboxylation of epoxides under neat 

conditions. All salts were synthesized with Cl - anion and later mixed with LiI (1:10) within the 

reaction mixture to produce in situ the corresponding phosphonium iodide as discussed above.  

4.7 FTIR MONITORING CARBOXYLATION REACTION AND CALCULATION OF 

REACTION KINETICS 

Next experiment was made possible thanks to a collaboration with Professor Matt Sigman in the 

Organic Chemistry department of the University of Utah. A series of cyclic carboxylation reactions 

of epichlorohydrin with N-tetrabutylammonium iodide were monitored with a ReactIR iC10 from 

Mettler Toledo.  

The reactor chamber (shown Figure 5.5 on Annexe) consisted on a two neck Pyrex tube 

specifically designed to fit the mobile probe of  the ReactIR iC10, assuring a complete sealing by 

using grease in joints. A three way tap controlled the inlet of CO2 gas that was supplied to the 

reactor through a septum lid with a balloon filled with dry ice vapour which was refilled when 

needed.  

The reactor tube was held with a clamp assuring a straight and vertical position and immersed in 

a heating bath provided with a magnetic stirrer.  Solutions were injected through the septum lid 
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with a long metal needle and a plastic syringe. A minimum of 2.5 mL of solution was needed in 

order to reach the detector screen on the tip of the IR probe.  

The probe was rinsed with acetonitrile and acetone (methanol when necessary), before and after 

every experiment. An air background IR was recorded before every batch of analysis started. 

Reference IR spectra of solvent (at different temperatures and concentrations of CO2) and 

reactants were recorded. All spectra from reactions were processed by extracting values of the 

reference spectrum corresponding to acetonitrile at 75 °C. 

Calibrations of tetrabutylammonium iodide and epichlorohydrin at 1 M concentration range we re 

carried out. Cyclic carboxylation of epichlorohydrin in acetonitrile and in water were monitored 

by IR. 

 

 



Chapter 4 – Experimental 

 

198 

 

 

 



Annexe 

 

199 

 

 

 

 

 

 

 

 

 

 

 

5 ANNEXE 



Annexe 

 

200 

 

 

 

 

 

 



Annexe 

 

201 

 

5.1 GIBBS FREE ENERGY OF CO2 AND OTHER MOLECULES. 

 

Figure 5.1.- Thermodynamic considerations  for CO2 conversion and utilization involving co-reactants  (reproduced 

from [5]). 
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5.2 ELECTROCHEMICAL CELL SET UP 

 

 

    

Figure 5.2.-  LEFT: Electrochemical cell  used to carry out cyclic vol tammetry. RIGHT: Short Ci rcui t reaction conditions 

for the carboxylation of s tyrene oxide experimental set up. For open ci rcui t conditions  the set up was the same but 
without wire connecting the electrodes. 
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5.3 DMS EXPERIMENT SET UP. 

 

Figure 5.3.-Electrochemical cell connected to the DMS instrument. 

 

Figure 5.4.- Electrochemical cell  containing Copper rod, Magnesium ribbon electrodes , the CO2 gas  inlet and the 

magnetic s tirrer. 
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Data from:  http://webbook.nist.gov/chemistry/ 

5.4 THEORETICAL MASS SPECTRA DATA. 

5.4.1 N2 

 

14, 28 

5.4.2 O2 

 

16, 32 

http://webbook.nist.gov/chemistry/
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Data from:  http://webbook.nist.gov/chemistry/ 

5.4.3 CO2 

 

12, 16, 22, 28, 44, 45 

5.4.4 CO 

 

12, 16, 28, 29 

 

http://webbook.nist.gov/chemistry/
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Data from:  http://webbook.nist.gov/chemistry/ 

5.4.5 Acetonitrile 

 

14, 39, 40, 41 

5.4.6 Ethyl Acetate 

 

29, 43, 45, 61, 70, 88 

http://webbook.nist.gov/chemistry/
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Data from:  http://webbook.nist.gov/chemistry/ 

5.4.7 Formic Acid 

 

17, 28, 29, 45, 46 

5.4.8 Methane 

 

12, 13, 14, 15, 16 

http://webbook.nist.gov/chemistry/
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Data from:  http://webbook.nist.gov/chemistry/ 

5.4.9 Methanol 

 

15, 29, 31, 32 

5.4.9.1 Styrene oxide 

 

39, 51, 66, 90, 91, 119, 120 

http://webbook.nist.gov/chemistry/
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Data from:  http://webbook.nist.gov/chemistry/ 

5.4.9.2 Table of main peaks 

 

Table 5.1.- Summary of main peaks. 

 1st I peak (m/z) 2nd I peak (m/z) 3rd I peak (m/z) 

N2 28 14 - 

O2 32 16 - 

CO2 44 28 16-12 

CO 28 12 16-29 

Acetonitrile 41 40 29 

Ethyl Acetate 43 61 45 

Formic Acid 29 46 45 

Methane 16 15 14 

Methanol 31 32 29 

Styrene oxide 91 120 90 

 

 

http://webbook.nist.gov/chemistry/
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5.5 REACTIR REACTION SET UP. 

 

 

Figure 5.5.-Experimental set up for the cycl ic carboxylation reaction of epichlorohydrin with CO2 and TBAI. 
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