
Averaging method for systems with separatrix
crossing

Anatoly Neishtadt1,2
1 Loughborough University, Loughborough, LE11 3TU, UK

2 Space Research Institute, Moscow, 117997, Russia

Abstract

The averaging method provides a powerful tool for studying evolu-
tion in near-integrable systems. Existence of separatrices in the phase
space of the underlying integrable system is an obstacle for applica-
tion of standard results that justify using of averaging. We establish
estimates that allow to use averaging method when the underlying in-
tegrable system is a system with one rotating phase, and the evolution
leads to separatrix crossings.

1 Introduction

An averaging method (see, e.g., [5]) is a powerful tool for study a long-term
evolution in systems which are small perturbations of integrable systems.
Many applications of this method are for one-frequency systems (also called
systems with one fast rotating phase). In these cases in the phase space of
the corresponding unperturbed system there is a domain foliated by closed
trajectories - invariant circles. Averaging of perturbations over these cir-
cles provides a closed system for an approximate description of perturbed
dynamics in this domain. Typically, in systems under consideration there
are several such domains. These domains are bounded by surfaces on which
this foliation has singularities. Classical results justifying averaging method
[5] guarantee its applicability for description of evolution not too close to
these separating surfaces. However, it is rather typical that evolution leads
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Figure 1: Phase portrait of a pendulum.

to crossing of these surfaces. The goal of this paper is to provide justifica-
tion of a modified version of the averaging method for description of such an
evolution.

A paradigmatic example of problems considered in this paper is a pen-
dulum under the action of perturbations, e.g., of a small friction, a small
constant torque, and a slow change of its length. An unperturbed pendulum
could be in one of three regimes of motion: it could rotate in one or other
direction, or oscillate. In the phase portrait of the pendulum these three
regimes are demarcated by separatrices (Fig. 1). Motion of the pendulum
evolves slowly under the action of perturbations. In the process of this evo-
lution the pendulum can change the regime of its motion. In the phase plane
the phase point crosses an instant separatrix of the unperturbed pendulum.
Evolution of energy far from the separatrix can be described by the averaging
method. Classical results justifying this method [5] are not applicable in the
case of crossings of a separatrix. Moreover, this crossing leads to a remark-
able probabilistic scattering. Initial data for different outcomes of separatrix
crossings are mixed, and it is reasonable to consider each outcome as a ran-
dom event with a definite probability. This probabilistic approach was first
described in a similar problem in [21] and then independently in [14].

A natural way to describe evolution in the considered system is to use
averaging method up to arrival to the separatrix, to calculate probabilities
of capture into different domains at the separatrix, and to use the averag-
ing method starting from the separatrix in the domain in which the system
continues its evolution. In the current paper we justify such an approach
for a rather wide class of one-frequency systems that change a qualitative
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character of their motion in the process of evolution. The obtained estimates
of the accuracy of the averaging method are sharp.

Part of results of this paper was announced (without proofs) in [26] (see
also [4], Subsection 6.1.10) on the basis of estimates in [25].

2 Averaging method and averaging theorem

for the separatrix crossing

In this section an averaging theorem is formulated that justifies the averaging
method for description of the separatrix crossing. The proof is based on
propositions given in Sections 3, 4, 5. There are probability phenomena
due to separatrix crossing. Hence the recipe of the averaging method here
includes calculations of the corresponding probabilities, and the averaging
theorem justifies these calculations. All considerations are for systems of the
form (2.1) below. We explain in the Appendix relation of this form to the
general form of one-frequency systems with separatrix crossings.

2.1 Outline of the problem

We consider systems described by differential equations of the form

q̇ =
∂E

∂p
+ εf1, ṗ = −∂E

∂q
+ εf2, ż = εf3 , (2.1)

E = E(p, q, z), fi = fi(p, q, z, ε), i = 1, 2, 3, (p, q) ∈ R2, z ∈ Rl−2 .

Here ε > 0 is a small parameter characterising the rate of evolution. For
ε = 0, z = const we have an unperturbed system for p, q, which is a Hamilto-
nian system with one degree of freedom. The function E is an unperturbed
Hamiltonian, and the functions εfi are the perturbations. It is supposed,
that there are separatrices in the phase portrait of the unperturbed system
Fig. 2. In the course of evolution the projection of the phase point onto the
plane (p, q) crosses a separatrix.

Far from the separatrices instead of (p, q) it is possible to use the variables
h = E and ϕ, where ϕ is “the angle” (from the pair “action-angle” variables
[2] of the unperturbed system). Then for h, z, ϕ we get the perturbed system
having the standard form of system with one rotating phase [5]: in this
system h, z are called slow variables, ϕ is the rotating phase. It is a classical
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Figure 2: Phase portrait of the unperturbed system.

result that the averaged with respect to ϕ system describes the evolution of
h, z far from separatrices with accuracy O(ε) during the time interval of order
1/ε. At the separatrices the frequency of the unperturbed motion vanishes,
and also the equations in variables h,z,ϕ have singularities. In a region that
includes a separatrix, the conditions of the classical theorem about accuracy
of the averaging [5] fail and the applicability of the averaging method for the
description of the evolution near the separatrices requires a justification.

Separatrix crossing leads to probability phenomena [1, 14, 15, 21]. As a
simple example let as consider the motion of a particle in one dimension in
double-well potential, Fig. 3a, perturbed by a small, of order ε, dissipation
[1]. Phase portrait of the perturbed system is shown in Fig. 3b, where the
initial conditions for the capture into the region, surrounded by the right
separatrix loop, are shaded. The shaded strips far from the saddle have
width of order ε and form a spiral with a step of order ε. Therefore small, of
order ε, change of the initial conditions can change the result of evolution. As
the initial conditions are always known only with some finite accuracy, the
deterministic approach to the problem fails when ε → 0. But it is possible
to define in some natural way and to calculate the probabilities of capture
into different regions after the separatrix crossing [1].

For systems of such types, a procedure of an approximate description of
the evolution consists of using the averaged system up to the separatrix and
calculation of the probability of capture into one or another region on the
separatrix. It will be seen, that for majority of initial conditions this pro-

4



Figure 3: a) Double-well potential. b) Effect of a small friction.

cedure describes the behaviour of the slow variables with accuracy O(ε ln ε)
during time of order 1/ε. The measure of the “bad” set of initial conditions,
for which this description is not valid, tends to 0 faster, than any given power
of ε as ε → 0. The general formula for the probability of the capture into
one or another region (in the sense of definition in [1]) also will be proved.

2.2 Formulation of Hypotheses

System (2.1) is considered for (p, q, z) ∈ D, | ε |< ε1, where D is a bounded
domain in Rl, ε1 = const. We denote B the projection of D onto z-space,
and G = G(z) the section of D by the two-dimensional plane z = const. It is
supposed that each domain G(z) ⊂ R2 is composed of the whole trajectories
of the unperturbed system. It is supposed that the following assumptions
are satisfied.

A. The function E is of smoothness C3, and the functions fi are of
smoothness C2 with respect to p, q, z. Functions fi have one continuous
derivative with respect to ε.

B. For z ∈ B the phase portrait of the unperturbed system in the domain
G(z) has the form shown in Fig. 2. The unstable stationary point C is a
non-degenerate saddle point. The separatrices l1 = l1(z) and l2 = l2(z) divide
the unperturbed phase portrait into three regions Gν = Gν(z), ν = 1, 2, 3.
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In what follows we assume that the Hamiltonian E is normalised in such a
way, that E = 0 at the saddle point C, and therefore, on the separatrices.
Then E > 0 in the region G3, E < 0 in the regions G1 and G2. We denote
l3 = l1 ∪ l2.

C. Introduce quantities

Θν(z) = −
∮
lν

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3

)
dt , ν = 1, 2, (2.2)

Θ3(z) = Θ1(z) + Θ2(z) .

Integrals in (2.2) are calculated along the unperturbed separatrices parametrized
by the time t of the unperturbed motion; f 0

i = fi(p, q, z, 0), i = 1, 2, 3.
Integrals (2.2) are improper, because the motion along a separatrix takes
infinite time. Our normalisation of E guarantees the convergence of the in-
tegrals as it is proved at the end of this section. We assume that the values
Θν , ν = 1, 2, 3 are different from zero. In what follows, for certainty, the
values Θν , ν = 1, 2, 3 are supposed to be positive.

Let us explain the meaning of the condition C. In the region Gν for small
|E| > ε, in the perturbed motion, a phase point makes rounds that are close
to the unperturbed separatrix lν . The change of the value of E during one
such round is close to the value −εΘν . Therefore, for phase points with small
|E|, condition C ensures an approach the separatrix in the region G3 and a
departure from the separatrix in the regions G1 and G2. The convergence of
integrals (2.2) is a corollary of the following assertion.

Lemma 2.1 The first derivatives of the function E with respect to p, q, z
vanish at the point C.

Proof. The derivatives with respect to p, q vanish at the point C be-
cause the point C is an equilibrium position of the unperturbed system. Let
pC(z), qC(z) be coordinates of the point C. The Hamiltonian is normalised by
the condition E(pC(z), qC(z), z) ≡ 0. Calculating the derivative of this equal-
ity with respect to z and taking into account that ∂E

∂p
= ∂E

∂q
= 0 at the point C,

we get that ∂E
∂z

= 0 at the point C. �

Lemma 2.1 implies that

(∂E/∂α)/
√

(∂E/∂p)2 + (∂E/∂q)2, α = p, q, z,

6



tend to finite limits as a point (p, q) tends to the point C along a separatrix.
Let us use in the integrals (2.2) the arc length along the separatrix as a
new independent variable. Then integrands do not have singularities, and
therefore integrals (2.2) converge. Moreover, Θν are smooth functions of z.

2.3 Averaged system

Let us define the averaged system separately for each region Gν first. Let

Σν = {(h, z) : z ∈ B, h = E(p, q, z), (p, q) ∈ Gν(z)}, ν = 1, 2, 3 .

The averaged in the region Gν system is, by definition, the following system
of differential equations in Σν :

ḣ =
ε

T

∮
E=h

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3 )dt , (2.3)

ż =
ε

T

∮
E=h

f 0
3dt .

Here integrals are calculated along the level line E = h of the Hamiltonian
situated in the domain Gν(z). This level line is parametrized by the time
t of the unperturbed motion along it, and T = T (h, z) is the period of
this motion. To write down this averaged system we calculate the rate of
changing of h = E(p, q, z) and z in the perturbed system, and then average
the obtained expressions over t along the level line E = h (for ε = 0 in
the arguments of fi). This averaging is equivalent to the averaging over the
angular variable ϕ discussed in Subsection 2.1.

The period T grows proportionally to − ln |h| in the principal approxi-
mation as h → 0 (see Lemma 3.3). When h = 0 it is reasonable to extent
the definition of the right hand sides of (2.3) by continuity, putting

ḣ |h=0 = 0, ż |h=0 = εf 0
3C ,

where f 0
3C is the value of the function f 0

3 at the point C. Now we can combine
three averaged systems in different regions into one “whole” averaged system.
The phase space of the “whole” averaged system is a singular manifold, glued
of three parts Σ1,Σ2 and Σ3 along the set {h = 0}, Fig. 4. We will call the
set {h = 0} the separatrix for the averaged system.

According to condition C, ḣ < 0 in the averaged system for small h 6= 0
in all regions.
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Figure 4: The phase space of the averaged system.

Definition. A solution H(τ), Z(τ), τ = εt, of the averaged system in
Gν such that H(τ) → 0, Z(τ) → z∗ as τ → τ ∗ − 0 (for the region G3) or
τ → τ ∗ + 0 ( for the regions G1,2) is called a solution crossing the separatrix
at the point z∗ at the moment τ ∗.

The following lemma is proved in Subsection 3.6.

Lemma 2.2 a) For any z∗ ∈ B, τ ∗, and ν = 1, 2, 3 there exists a unique
solution of the averaged system in Gν crossing the separatrix at the point z∗
at the moment τ ∗.
b). If z0 ∈ B, then for small enough |h0| the solution H(τ), Z(τ) of the
averaged system with the initial conditions H(τ 0) = h0, Z(τ 0) = z0 crosses
the separatrix at some moment τ = τ ∗ (τ ∗ > τ0, if h0 > 0 and τ ∗ < τ 0 if
h0 < 0).

Take any point (p0, q0, z0) ∈ D such that (p0, q0) ∈ G3(z0). Denote h0 =
E(p0, q0, z0). Consider the solution (H3(τ), Z3(τ)) of the averaged system in
G3 with the initial condition (h0, z0) at τ = 0 (Fig. 4). Suppose that this
solution crosses the separatrix at some τ = τ ∗, i.e. H3(τ ∗) = 0, Z3(τ ∗) = z∗.
According to Lemma 2.2, we can consider the solution (Hν(τ), Zν(τ)) of
the system averaged in Gν , ν = 1, 2 with the initial condition (0, z∗) at
τ = τ ∗. This solution is well defined for τ close enough to τ ∗, τ > τ ∗. For an

8



approximate description of the behaviour of the values E, z in the perturbed
system (2.1) we use the solution (H3, Z3) for 0 ≤ εt ≤ τ ∗, and the solution
(Hν , Zν) for εt > τ ∗ with ν = 1 or 2, if the phase point has been captured
into the region Gν after the separatrix crossing. We define for τ ≤ τ ∗ the
functions Hν , Zν , ν = 1, 2, by the relations Hν(τ) = H3(τ), Zν(τ) = Z3(τ).
These functions (Hν , Zν) are called the solutions of the averaged system with
the initial condition (h0, z0) at t = 0.

We attribute the probability Θν(z∗)/Θ3(z∗) to the capture into Gν of the
initial point (p0, q0, z0). The meaning of this definition of the probability will
be clear from the results of Subsection 2.4. The function Pν defined by the
formula

Pν(z) = Θν(z)/Θ3(z) (2.4)

will be called the probability of the capture into Gν , ν = 1, 2, at the separa-
trix.

We will need a lemma which allows to estimate a distance between two
solutions of the averaged system with initial conditions near the separatrix.

Lemma 2.3 Let two solutions of the averaged system, (Hν(τ), Zν(τ)) and
(H ′ν(τ), Z ′ν(τ)), 0 ≤ τ ≤ K, be given. Suppose that for some τ0 ∈ [0, K] and
some δ > 0 these solutions satisfy the following condition:

|Hν(τ0)|+ |H ′ν(τ0)|+ |Zν(τ0)− Z ′ν(τ0)| < δ.

If δ is small enough, then for 0 ≤ τ ≤ K the following estimate is valid:

|Hν(τ)−H ′ν(τ)|+ |Zν(τ)− Z ′ν(τ)| < O

(
δ +

δ| ln δ|
1 + | ln |Hν(τ)||

)
.

The proof is given in Subsection 3.6.

In what follows, the action I of the unperturbed system will be important.
The action I = I(h, z) of the unperturbed trajectory E = h in the region Gν

is the area enclosed by this trajectory, divided by 2π. We have [19]

∂I

∂h
=

1

2π
T (h, z) , (2.5)

∂I

∂z
= − 1

2π

∮
E=h

∂E

∂z
dt . (2.6)
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With the aid of the formulas (2.5) and (2.6) the rate of change of I along
a trajectory of the averaged system is found to be:

2π
dI

dt
= ε

∮
E=h

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3 )dt

− ε

T

∮
E=h

∂E

∂z
dt

∮
E=h

f 0
3dt . (2.7)

A corollary of the formula (2.6) when h → 0 is the following useful formula
for the areas S1,2 = S1,2(z) of the regions G1,2 and the area S3 = S3(z) of the
region G1 ∪G2:

∂Sν
∂z

= −
∮
lν

∂E

∂z
dt, ν = 1, 2, 3 . (2.8)

From (2.2) for the averaged system in the region Gν we get:

lim
h→0

d

dt
(2πI − Sν) = −εΘν(z), ν = 1, 2, 3 . (2.9)

A consequence of this equation is the above-mentioned property (see Lemma
2.2) that for solutions of the averaged system with small |h| the arrival at
the separatrix takes a finite time (in the region G3 this time is positive, in
the regions G1,2 it is negative).

2.4 Estimates in the averaging method

Let a point M̂0 = (p̂0, q̂0, ẑ0) belong to the region D, and let Î0, ϕ̂0 be the
values of the action-angle variables I, ϕ at this point. The following sets are
well defined and lie in D for small enough δ:

U δ = {p, q, z : |z − ẑ0| < δ, |I − Î0| < δ, |ϕ− ϕ̂0| < δ} , (2.10)

W δ = {p, q, z : |z − ẑ0| < δ, |I − Î0| < δ} .

Denote ĥ0 = E (p̂0, q̂0, ẑ0). We assume that solutions of the averaged system
with initial data (ĥ0, ẑ0) are well defined for 0 ≤ τ ≤ K and cross the
separatrix at some τ = τ̂∗, z = ẑ∗. Denote:

• (p(t), q(t), z(t)) the solution of the perturbed system (2.1) with initial
data (p0, q0, z0) ∈ U δ at t = 0,

• h(t) = E(p(t), q(t), z(t)) the value of the Hamiltonian along this solu-
tion,
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• h0 = h (0),

• (Hν , Zν), ν = 1, 2, the solutions of the averaged system with the initial
condition (h0, z0) at τ = 0,

• τ∗ the moment of separatrix crossing for the solutions (Hν , Zν).

The value δ is supposed to be small enough so that the solutions (Hν , Zν), ν =
1, 2, are well defined for 0 ≤ τ ≤ K, and τ∗ < K. Fix any natural number
r ≥ 2. In what follows Ki (and afterwards ki, ci, di, νi) are positive con-
stants, i.e. values independent of ε, δ and initial conditions (p0, q0, z0) ∈ W δ.
The appearance of Ki in some relation is equivalent to the assertion that
there exists Ki satisfying this relation for small enough ε > 0, δ > 0, ε < δ2

(and similarly for other constants). The following theorem summarises the
principal features of the averaging method for separatrix-crossing orbits:

Theorem 1 There exists a representation U δ = U δ
1∪U δ

2∪v with the following
properties.
I. If (p0, q0, z0) ∈ U δ

ν , ν = 1, 2, then the behaviour of E, z in the perturbed
system is described approximately by the solution (Hν , Zν) of the averaged
system, and the following estimates hold

|h(t)−Hν(εt)|+ |z(t)− Zν(εt)| < K1ε for 0 ≤ εt ≤ τ∗, (2.11)

|h(t)−Hν(εt)|+ |z(t)− Zν(εt)| < K1ε+
K2ε| ln ε|

1 + | ln |Hν(εt)||
for τ∗ ≤ εt ≤ K .

For 0 ≤ εt ≤ τ∗−K3ε| ln ε| the point (p(t), q(t)) moves in the region G3(z(t)),
while for τ∗ +K3ε| ln ε| ≤ εt ≤ K it moves in the region Gν(z(t)).

II. ∣∣∣∣mesU δ
ν

mesU δ
− Θν(ẑ∗)

Θ3(ẑ∗)

∣∣∣∣ < K4

(
δ +

ε| ln ε|
δ

)
.

III. mes v < k5ε
rδ−1mesU δ.

Here mes (·) is the standard phase volume in Rl .

This theorem will be proved by means of a series of propositions established
in the following three Sections (Propositions 2.1, 2.2, 2.3).

It is natural to consider the relative measure of the set of points from a
small neighbourhood of M̂0 that will be captured into the region Gν , ν = 1, 2
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for small ε as the value at the point M̂0 of the probability density of capture
into Gν . This approach is formalised as follows (cf. [1]).

Definition The value at the point M̂0 of the probability density of capture
into Gν , ν = 1, 2 , (or, for brevity, the probability of capture of M̂0 into Gν)
is

Qν(M̂0) = lim
δ→0

lim
ε→0

mesU δ
ν

mesU δ
. (2.12)

Corollary 2.1 The probability of capture of the point M̂0 into the region Gν

is given by the formula

Qν(M̂0) =
Θν(ẑ∗)

Θ3(ẑ∗)
, ν = 1, 2 . (2.13)

By means of the function Pν defined by equation (2.4) – the probability of
the capture into Gν at the separatrix – the last formula can be rewritten in
the form

Qν(M̂0) = Pν(ẑ∗), ν = 1, 2 .

Remarks

1. The formulation of the problem of separatrix-crossing has been de-
scribed in the context of an eight-figure separatrix that is being approached
by orbits of the perturbed and averaged systems. It will be clear from the
nature of the estimates in the succeeding sections, that the basic results em-
bodied in Theorem 1 can be carried over to the other geometric pictures of
separatrix-crossing that are possible in R2. In fact, the phase space need not
be R2. It could, for example, be a cylinder or a sphere. The important hy-
potheses are those demanding the non-degeneracy of the saddle equilibrium
and the non-vanishing of the numbers Θν , ν = 1, 2, 3 (see Appendix). These
conditions may be relaxed: they are needed only when the orbit approaches
the separatrix. During the evolution prior to that time, these conditions are
not needed. Metamorphoses of the phase portrait may take place as long
as the phase point is far from separatrices when this happens. Situations
wherein the crossing of a separatrix occurs for values of z for which Θν = 0
or at which the non-degeneracy condition for the saddle fails are viewed as
degenerate, and the estimates of the averaging method will in general be
poorer in these cases. Examples of separatrix-crossing near a “newborn”
saddle are considered in [11, 16, 18, 20].
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2. The conclusion that the error in the use of the averaging method is
O(ε ln ε), which follows from Theorem 1, cannot be improved. This follows
from asymptotic formulas for change of the adiabatic invariant at a separatrix
in Hamiltonian systems ([27], [9], [23], [24]) and also for systems perturbed
by a weak dissipation [7].

3. The assertion of the Theorem 1 remains valid if the standard volume
mes (·) is replaced by any measure in Rl that has a smooth density, inde-
pendent of ε, with respect to the standard volume. The formula for the
probability given by (2.12) and (2.13) remains valid if U δ is any domain with
piecewise-smooth boundary having diameter δ (but in this case the estimate
in the right hand side in part II of the Theorem 1 may not be satisfied).

4. For the example of motion of a particle in one dimension in double-
well potential perturbed by a small dissipation the formula for probability is
given in [1]. The proof is contained in [8].

5. A different approach for introducing probability was suggested in
[13, 28]. White noise of order εδ was added to the right-hand side of equations
(2.1), in the case when the parameter z is absent from the problem. In this
problem, capture into one or another region becomes a genuinely random
event. Again taking the limit of the probability of capture as ε → 0 (first)
and δ → 0, one recovers the same formula for the probability as that found
in Subsection 2.4 above.

6. D.V.Anosov has suggested yet another approach for introducing prob-
ability in the considered problem1. Denote κν(ε0) the measure of the set of
values ε ∈ (0, ε0] such that M̂0 ∈ U δ

ν for these values of ε, ν = 1, 2. Then we
define the probability of capture of M̂0 into Gν as limε0→0 κν(ε0)/ε0. This
definition was not discussed in a literature. One can show that, e.g. for the
case when f1 = f2 = 0, f3 = const in equations (2.1) this probability is again
given by formula (2.13). It looks plausible that this is the case for the general
form of system (2.1) as well.

7. An important open question is when results of consecutive crossings
of separatrices can be considered as statistically independent. This is not
the case, for example, if (2.1) is a Hamiltonian system with slowly varying
parameter, and Θ1 ≡ Θ2 [10]. However, it looks as a reasonable hypothesis
that typically there is such an independence.

1This was a comment in a meeting of the Moscow Mathematical Society.
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2.5 Derivation of the estimates in the averaging method

In this subsection Theorem 1 is derived from several principal Propositions
describing approach the separatrix, passage through its narrow neighbour-
hood, and departure from the separatrix. These Propositions are proved
in Sections 3, 4, 5. Approach the separatrix is described by the following
assertion.

Proposition 2.1 For all initial conditions (p0, q0, z0) ∈ W δ and for t > 0
while H3(εt) ≥ k1ε the following estimates are valid:

|h(t)−H3(εt)|+ |z(t)− Z3(εt)| = O(ε),
1

2
H3(εt) ≤ h(t) ≤ 2H3(εt) .

Departure from the separatrix in the regions G1,2 is described by an analo-
gous assertion.

Proposition 2.2 Let a moment of time t′ ∈ [0, K/ε] exist such that h(t′) =
−k2ε, (p(t

′), q(t′)) ∈ Gν(z(t′)), ν = 1, 2, |εt′ − τ∗| + |Z(t′) − Z3(τ∗)| < k−1
3 .

Then for t′ ≤ t ≤ K/ε the behaviour of E, z is approximately described by
the solution (H ′ν , Z

′
ν) of the averaged in Gν system with the initial condition

h(t′), z(t′) at τ = εt′ as follows:

|h(t)−H ′ν(εt)|+|z(t)−Z ′ν(εt)| = O

(
ε ln ε

1 + | ln |H ′ν(εt)||

)
, 2H ′ν(εt) ≤ h(t) ≤ 1

2
H ′ν(εt)

It follows from Proposition 2.1 that there exists a moment of time t− =
t−(p0, q0, z0, ε) such that at this moment h(t) = 2k1ε for the first time. Let
t+ = t+(p0, q0, z0, ε) be the moment of time such that at this moment h(t) =
−k2ε for the first time at the segment [0, K/ε]. The moment of time t+
is defined, in general, not for all initial conditions. The following assertion
describes passage through a narrow neighbourhood of the separatrices during
the interval of time t− ≤ t ≤ t+.

Proposition 2.3 There exists a representation W δ = W δ
3 ∪ w such that

mesw = O(εr) mesW δ and for (p0, q0, z0) ∈ W δ
3 the moment of time t+ is

well defined and t+ = t− + O(ln ε). For t− ≤ t ≤ t+ and for ν = 1, 2 the
following estimate holds:

|h(t)|+ |Hν(εt)|+ |z(t)− Zν(εt)| = O(ε) .
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Let W δ
ν , ν = 1, 2, be the sets of points (p0, q0, z0) ∈ W δ

3 such that
(p(t+), q(t+)) ∈ Gν(z(t+)).

Proposition 2.4 The measure of the set W δ
ν is estimated as

mesW δ
ν =

∫
W δ

Pν(Z3(τ∗))dp0dq0dz0 +O(ε ln ε δ−1 mesW δ), ν = 1, 2 .

Here (H3(τ), Z3(τ)) is the solution of the averaged system with the initial con-
dition H3(0) = E(p0, q0, z0), Z3(0) = z0, and τ∗ is the moment of separatrix
crossing for this solution, dz0 is the standart volume element in Rl−2.

Denote U δ
ν = U δ ∩W δ

ν , v = U δ ∩ w.

Proposition 2.5 The measure of the set U δ
ν meets the estimate of part II

in Theorem 1.

For 0 ≤ t ≤ t+ the estimates in Theorem 1 hold due to the estimates of
Propositions 2.2 and 2.3. From these estimates we get also that it is possible
to choose t+ as t′ in Propositions 2.2. Then at t = t+ the distance between
solutions (H ′ν , Z

′
ν) and (Hν , Zν) is O(ε). Therefore from Lemma 2.3 and

Proposition 2.2 we get the estimates in Theorem 1 for t+ ≤ t ≤ K/ε. This
completes the proof of Theorem 1.

To proof Corollary 2.1 it is enough to consider a cover of U δ by the union
of sets

Uκ
j1,j2,j3

= {p, q, z : |z − ẑj1| ≤ κ, |I − Îj2| ≤ κ, |ϕ− ϕ̂j3| ≤ κ}, (2.14)

ẑj1 = ẑ0 + 2κj1, Îj2 = Î0 + 2κj2, ϕ̂j3 = ϕ̂0 + 2κj3 .

Here j2, j3 are integer numbers, and j1 is an integer (l−2)-dimensional vector.
Then one should apply Theorem 1 to those of sets Uκ

j1,j2,j3
, which intersect

U δ. Now proceed to the limit first as ε→ 0 and then as κ→ 0. We get the
formula

lim
ε→0

mesU δ
ν =

∫
Uδ
Pν(Z3(τ∗))dp0dq0dz0

which implies Corollary 2.1.
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3 Estimates of the accuracy of the averaging

method up to separatrix

In this section the proof of Proposition 2.1 is given. The proof of Proposition
2.2 is entirely analogous, and only a sketch of it is given. We use several
lemmas, which are formulated in Subsections 3.1, 3.2. This lemmas are
proven in Subsections 3.4, 3.5.

Only motion in the region G3 is considered in the principal part of this
section. Thus we will omit index ν = 3 at solution (Hν , Zν). The follow-
ing notation is used: I(h, z) - the value of the “action” variable for the
trajectory E = h of the unperturbed system, j(t) = I(h(t), z(t)), J(εt) =
I(H(εt), Z(εt)).

Below z ∈ B−c−1
1 , (p, q, z) ∈ D−c−1

1 in all estimates, and the constant c1

is chosen in such a way that 3c−1
1 -neighbourhood of the set {z : z = Zν(τ), ν =

1, 2; τ ∈ [0, K]} belongs to B, and 3c−1
1 -neighbourhood of the set

{(p, q, z) : z = Zν(τ), E(p, q, z) = Hν(τ), ν = 1, 2; τ ∈ [0, K]}

belongs to D.

3.1 Lemmas on unperturbed motion

Let ϕ = ϕ(p, q, z, ε) and ψ = ψ(p, q, z, ε) be smooth functions, and ϕ vanish
at the saddle point C identically with respect to z, ε. Let 0 < h < 1/2, z ∈
B − c−1

1 .

Lemma 3.1 ∮
E=h

ϕdt =

∮
l3

ϕdt+O(h lnh) . (3.1)

Corollary 3.1 For 0 < h < c−1
2 the following estimate is valid:∮

E=h

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3

)
dt = −Θ3 +O(h lnh) < −c−1

3 . (3.2)
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Lemma 3.2

(1)

∮
E=h

|ϕ|dt = O(1); (2)

∮
E=h

|ψ|dt = O(lnh); (3.3)

(3)
∂

∂h

∮
E=h

ψdt = O(h−1); (4)
∂

∂z

∮
E=h

ψdt = O(lnh);

(5)
∂

∂h

∮
E=h

ϕdt = O(lnh); (6)
∂

∂z

∮
E=h

ϕdt = O(1).

Corollary 3.2

∂I

∂h
=

1

2π
T = O(lnh),

∂I

∂z
= − 1

2π

∮
E=h

∂E

∂z
= O(1), (3.4)

∂2I

∂h2
= O(h−1),

∂2I

∂h∂z
= O(lnh),

∂2I

∂z2
= O(1).

Lemma 3.3 T = −2a lnh + b3 + O(h lnh), where a = a(z), b3 = b3(z), a =
1/ω0, and ω0 > 0 is the eigenvalue of the saddle point C.

Corollary 3.3 T > c−1
4 | lnh|.

Remark. For the period Ti of the unperturbed trajectory E = h < 0 in
the region Gi, i = 1, 2, the following expansion is valid:

Ti = −a ln |h|+ bi +O(h ln |h|),

where b3 = b1 + b2.

Lemma 3.4
∂

∂h

1

T

∮
E=h

ψdt = O(h−1 ln−2 h). (3.5)

3.2 Lemmas on perturbed motion

Let Cξη = Cξη(z) be the system of principal axes for the saddle point C,
oriented as it is shown in Fig. 2.

Lemma 3.5 Let at a moment of time t′ the point (p(t′), q(t′)) lie on the
axis Cη(z(t′)) in c−1

5 -neighbourhood of the point C, and c6ε ≤ h(t′) ≤ c−1
7 ≤

c−1
2 , z(t′) ∈ B−2c−1

1 . Then there exists a moment of time t′′ = t′+O(lnh(t′))
such that a) for t′ ≤ t ≤ t′′ the solution (p(t), q(t), z(t)) is well defined, and
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the point (p(t′′), q(t′′)) lies on the axis Cη(z(t′′)) in c−1
5 -neighbourhood of the

point C; b) for t′ ≤ t ≤ t′′ the following estimates are satisfied:

h(t) = h(t′) +O(ε),
1

2
h(t′) ≤ h(t) ≤ 2h(t′),

|z(t)− z(t′)|+ |j(t)− j(t′)| = O(ε lnh(t′)); (3.6)

c) integrals of functions ψ, ϕ (see Section 3.1) along the trajectory are esti-
mated as follows:∫ t′′

t′
ψdt =

∮
E=h(t′)

ψdt+ εO(h−1(t′)),∫ t′′

t′
ϕdt =

∮
E=h(t′)

ϕdt+ εO(h−1/2(t′)). (3.7)

Here integrals in the right hand side are calculated along the unperturbed
trajectory for z = z(t′), ε = 0.

Corollary 3.4

t′′ − t′ =
∫ t′′

t′
dt = T (h(t′), z(t′)) + εO(h−1(t′)), (3.8)

h(t′)− h(t′′) = −ε
∫ t′′

t′

(
∂E

∂q
f1 +

∂E

∂p
f2 +

∂E

∂z
f3

)
dt

= −ε
∮
E=h(t′)

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3

)
dt+ ε2O(h−1/2(t′)) >

1

2
c−1

3 ε.

Lemma 3.6 Let at a moment of time t′ the conditions c6ε ≤ h(t′) ≤ c−1
7 , z(t′) ∈

B−2c−1
1 be satisfied. Then there exists a moment of time t′′ = t′+O(lnh(t′))

such that for t′ ≤ t ≤ t′′ the solution (p(t), q(t), z(t)) is well defined, it meets
estimates (3.6), and the point (p(t′′, q(t′′)) lies on the axis Cη(z(t′′)) in c−1

5 -
neighbourhood of the point C.

3.3 Proof of Proposition 2.1

I. Let t∗ be the maximal moment of time at the interval [0, K/ε] such that
for 0 ≤ t ≤ t∗ the following estimates hold:

(p(t), q(t), z(t)) ∈ D − c−1
1 , h(t) ≥ 1

2
c−1

7 .
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For 0 ≤ t ≤ t∗ the frequency of the unperturbed motion is separated from 0
by a positive constant. Therefore, usual estimates of the averaging method
for one-frequency systems [5] are valid:

|h(t)−H(εt)|+ |z(t)− Z(εt)|+ |j(t)− J(εt)| = O(ε). (3.9)

Thus, for 0 ≤ t ≤ t∗ estimates of Proposition 2.1 hold, and h(t∗) = 1
2
c−1

7 .
The moment t∗ meets conditions of Lemma 3.6. Due to this lemma a

moment of time t1 = t∗ + O(1) is defined such that for t∗ ≤ t ≤ t1 the
estimate (3.9) holds, and the point (p(t1), q(t1)) lies on the axis Cη(z(t1)) in
c−1

5 -neighbourhood of the saddle point C.

II. Let t∗∗ be the maximal moment of time in the interval [t1, K/ε] such
that for t1 ≤ t ≤ t∗∗ the following estimates hold:

(p(t), q(t), z(t)) ∈ D − c−1
1 , h(t) ≥ c6ε,

1

2
H(εt) ≤ h(t) ≤ 2H(εt). (3.10)

Lemma 3.5 allows to define moments of time t2, ..., tn∗ of consecutive arrivals
of the point (p(t), q(t)) at the ray Cη, where n∗ is the maximal number n such
that tn < t∗∗. Denote hn = h(tn) and, analogously, zn, jn, Hn, Zn, Jn. From
(3.6) we have that for tn ≤ t ≤ tn+1 the following estimates are satisfied:

|h(t)− hn| = O(ε),
1

2
hn ≤ h(t) ≤ 2hn,

|z(t)− zn|+ |j(t)− jn| = O(ε lnhn). (3.11)

Lemma 3.2 allows to estimate the right hand sides of the averaged system:

Ḣ = O(ε/ lnH), Ż = O(ε), J̇ = O(ε).

Considering motion in the averaged system for tn ≤ t ≤ tn+1 and making use
of estimates (3.6), (3.10), we get for tn ≤ t ≤ tn+1

|H(εt) − Hn| = O(ε),

|Z(εt) − Zn|+ |J(εt)− Jn| = O(ε lnhn). (3.12)

If n = n∗, then (3.11), (3.12) hold for tn∗ ≤ t ≤ t∗∗.
From formulas

jn+1 − jn = ε

∫ tn+1

tn

(
∂I

∂h

(
∂E

∂q
f1 +

∂E

∂p
f2 +

∂E

∂z
f3

)
+
∂I

∂z
f3

)
dt,

zn+1 − zn = ε

∫ tn+1

tn

f3 dt ,
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making use of (3.3), (3.4), (3.7), (3.11), we get

jn+1 = jn + εT (hn, zn)F (hn, zn) + ε2O(h−1
n ),

zn+1 = zn + εT (hn, zn)Φ(hn, zn) + ε2O(h−1
n ),

where εF (h, z) and εΦ(h, z) are right hand sides of the averaged equations
for I and z respectively:

2πF (h, z) =

∮
E=h

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3

)
dt− 1

T

∮
E=h

∂E

∂z
dt ·

∮
E=h

f 0
3 dt,

Φ(h, z) =
1

T

∮
E=h

f 0
3 dt.

In the averaged system

J̇ = εF (H,Z), Ż = εΦ(H,Z).

Therefore, making use of (3.3), (3.4), (3.6), (3.12), we get

Jn+1 − Jn = ε

∫ tn+1

tn

F (H,Z)dt = ε

∫ tn+1

tn

F (Hn, Zn)dt+ ε2O

(
h−1
n

lnhn

)
= εT (hn, zn)F (Hn, Zn) + ε2O(h−1

n ),

Zn+1 − Zn = ε

∫ tn+1

tn

Φ(H,Z)dt = ε

∫ tn+1

tn

Φ(Hn, Zn)dt+ ε2O

(
h−1
n

lnhn

)
= εT (hn, zn)Φ(Hn, Zn) + ε2O(h−1

n ).

So

Jn+1 = Jn + εT (hn, zn)F (Hn, Zn) + ε2O(h−1
n ),

Zn+1 = Zn + εT (hn, zn)Φ(Hn, Zn) + ε2O(h−1
n ).

Denote
un = |jn − Jn|+ |zn − Zn|.

From the previous estimates by means of (3.3), (3.5), we get

un+1 ≤ un + |hn −Hn|εO(h−1
n ln−1 hn) (3.13)

+|zn − Zn|εO(lnhn) + ε2O(h−1
n ).
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We have

2π∂I/∂h = T > c−1
4 | lnh|, ∂I/∂z = O(1).

Therefore, solving relation I = I(h, z) for h we get h as a function of I, z for
which

∂h

∂I
=

2π

T
= O(ln−1 h),

∂h

∂z
= −∂I/∂z

∂I/∂h
= O(ln−1 h).

Therefore, by Lagrange’s formula,

hn −Hn =

(
∂h

∂I

)
∗

(jn − Jn) +

(
∂h

∂z

)
∗

(zn − Zn) =

= (|jn − Jn|+ |zn − Zn|)O(ln−1 hn).

Symbol “ * ” here means that derivatives are calculated at some point in the
straight line interval with endpoints (jn, zn) and (Jn, Zn). Using this estimate
in (3.13), we get

un+1 ≤
[
1 + εO(h−1

n ln−2 hn)
]
un + ε2O(h−1

n ). (3.14)

Consecutive use of this relation gives

un+1 ≤

[
n∏
s=1

(1 + ε|O(h−1
s ln−2 hs)|

](
u1 + ε2

n∑
s=1

|O(h−1
s )|

)
.

In accordance with (3.8), hs − hs+1 >
1
2
c−1

3 ε. Therefore

n∑
s=1

ε2|O(h−1
s )| ≤ ε2c8

n∑
s=1

h−1
s ≤ 2c8c3ε

n∑
s=1

h−1
s (hs − hs+1)

< εc9

h1∫
hn+1

h−1dh = εc9 ln(h1/hn+1) = εO(lnhn+1).

In an analogous way, from the convergence of
1/2∫
0

h−1 ln−2 h dh, we get

n∏
s=1

(
1 + ε|O(h−1

s ln−2 hs)|
)

= exp

[
n∑
s=1

ln(1 + ε|O(h−1
s ln−2 hs)|

]

≤ exp(ε
n∑
s=1

O(h−1
s ln−2 hs)) = O(1).
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Using these estimates in (3.14) and taking into account that u1 = O(ε), we
get for n = 1, ..., n∗ − 1:

un+1 = |jn+1 − Jn+1|+ |zn+1 − Zn+1| = O(ε lnhn+1).

From here we get with the help of (3.10), (3.11), (3.12) for t1 ≤ t ≤ t∗∗:

|j(t)− J(εt)| = O(ε lnH(εt)), (3.15)

|z(t)− Z(εt)| = O(ε lnH(εt)), |h(t)−H(εt)| < c10ε.

Let us choose k1 = 2c10 + c6. While H(εt) ≥ k1ε, the condition (3.10) can
not be violated. Hence, the estimates in Proposition 2.1 for h(t) are proved.

III. The estimate for z(t) in (3.15) is less accurate, than in formulation
of Proposition 2.1. Now we will improve this estimate. Denote

(∆z)n = zn − Zn, (∆h)n = hn −Hn,

an = −
∮
E=hn

(
∂E

∂q
f 0

1 +
∂E

∂p
f 0

2 +
∂E

∂z
f 0

3

)
dt, bn =

∮
E=hn

(f 0
3 − f 0

3C)dt.

Here f 0
3C = f3C(z) is the value of the function f 0

3 at the saddle point C. The
integrals are calculated for z = zn. We have an identity

ż − Ż = ε[(f 0
3C(z)− f 0

3C(Z)) + (f 0
3 (p, q, z)− f 0

3C(z)) (3.16)

− 1

T (H,Z)

∮
E=H

(f 0
3 (p, q, Z)− f 0

3C(Z))dt+ (f3(p, q, z, ε)− (f 0
3 (p, q, z))].

Let us integrate both sides of this identity with respect to t from tn to
tn+1 and estimate the right hand side making use of already established
estimates (3.15) and Lemmas 3.2, 3.3, 3.5. In the left hand side we have
(∆z)n+1 − (∆z)n. Terms in the right hand side are∫ tn+1

tn

(f 0
3C(z)− f 0

3C(Z))dt = O(ε ln2 hn),∫ tn+1

tn

(f 0
3 (p, q, z)− f 0

3C(z))dt = bn +O(εh−1/2
n ),∫ tn+1

tn

dt

T (H,Z)

(∮
E=H

(f 0
3 (p, q, Z)− f 0

3C(Z))dt

)
= bn

∫ tn+1

tn

dt

T (H,Z)
+O(ε ln2 hn),∫ tn+1

tn

(f 0
3 (p, q, z, ε)− f 0

3 (p, q, z))dt = O(ε lnhn).
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Finally, we have

(∆z)n+1 − (∆z)n = εbn

(
1−

∫ tn+1

tn

dt

T (H,Z)

)
+ ε2O(h−1/2

n ). (3.17)

In an analogous way we get

(∆h)n+1 − (∆h)n = −εan
(

1−
∫ tn+1

tn

dt

T (H,Z)

)
+ ε2O(h−1/2

n ). (3.18)

In accordance with (3.2), an > c−1
3 . Let us denote µn = a−1

n bn. It follows
from (3.17), (3.18) that

(∆z)n+1 − (∆z)n = −[(∆h)n+1 − (∆hn)]µn + ε2O(h−1/2
n ).

Consecutive use of this relation gives

(∆z)n+1 = (∆z)1 −
n∑
s=1

[(∆h)s+1 − (∆h)s)]µs + ε2

n∑
s=1

O(h−1/2
s ).

Moreover,

n∑
s=1

[(∆h)s+1 − (∆h)s]µs = (∆h)n+1µn − (∆h)1µ1 −
n∑
s=2

(∆h)s(µs − µs−1).

The definition of µs, Lemma 3.2 and estimates (3.11) imply that
µs − µs−1 = O(ε lnhs). As (∆h)n+1 = O(ε), (∆z)1 = O(ε), µn = O(1), so

zn+1 − Zn+1 ≡ (∆z)n+1 = O(ε) + ε2

n∑
s=1

O(h−1/2
s ) = O(ε).

Integrating both sides of (3.16) with respect to time from tn to some t ∈
(tn, tn+1) and estimating the right hand side, we get for tn ≤ t ≤ tn+1

z(t)− Z(εt) = zn − Zn +O(ε)

(in the case when n = n∗ this estimate is valid for tn∗ ≤ t < t∗∗). Thus, for
0 ≤ t ≤ t∗∗ we have z(t)− Z(εt) = O(ε). Hence, this estimate is valid while
H(εt) ≥ k1ε (as the last inequality certainly holds for 0 ≤ t ≤ t∗∗). The
Proposition 2.1 is proved.
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Remark. In the proof of the last estimate representation (3.16) was
used. We can not use this representation in problems where separatrices
connect different saddle points, and at these points the function f 0

3 (p, q, z)
has different values. The accuracy of the description of behaviour of z in
these cases is worse than O(ε) in general. This accuracy is given by the
obtained above estimate (3.15): z(t)− Z(εt) = O(ε lnH(εt)).

IV. The proof of Proposition 2.2 is completely analogous to the given
above proof of the Proposition 2.1. But final estimates are different. The
reason is as follows. As above, in nn. I, II, we prove that

|j(t)− J(εt)|+ |z(t)− Z(εt)| = O(ε) +O

(
ε ln

H(εt)

H(εt′)

)
under assumptions of Proposition 2.2 (we will omit subscript ν and super-
script “ ′” in the notation (H ′ν , Z

′
ν)). Here t′ is the initial moment of time for

the motion in Proposition 2.2. Because H(εt′) ∼ ε, we have

|j(t)− J(εt)|+ |z(t)− Z(εt)| = O(ε ln ε)

(for Proposition 2.1 there was H(εt′) ∼ 1, and there was used the estimate
O(ε lnH(εt)) in the right hand side of this equality). As in n. II, to estimate
|h(t)−H(εt)| from here, we use Lagrange’s formula

h(t)−H(εt) =

(
∂h

∂I

)
∗

(j(t)− J(εt)) +

(
∂h

∂z

)
∗

(z(t)− Z(εt)).

The symbol “ * ” here indicates that derivatives are calculated at some point
in the straight line interval with endpoints (j(t), z(t)) and (J(εt), Z(εt)). As
by assumption 1

2
|H(εt)| ≤ |h(t)| ≤ 2|H(εt)|, we have(

∂h

∂I

)
∗

=
2π

T∗
= O

(
1

1 + | ln |H(εt)||

)
,(

∂h

∂z

)
∗

= −
(
∂I/∂z

∂I/∂h

)
∗

= O

(
1

1 + | ln |H(εt)||

)
.

Therefore

h(t)−H(εt) = O

(
ε ln ε

1 + | ln |H(εt)||

)
,

and this is the assertion of Proposition 2.2 concerning an accuracy of descrip-
tion of h.
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Now, the estimate of z can be improved as in n. III, and we get

z(t)− Z(εt) = O

(
ε ln ε

1 + | ln |H(εt)||

)
.

This is the assertion of Proposition 2.2 concerning the accuracy of description
of z.

3.4 Proofs of Lemmas on unperturbed motion

3.4.1 Preliminary estimates

Let η, ξ be such variables that the quadratic part of the Hamiltonian near the
saddle C is 1

2
ω0(z)(η2 − ξ2), ω0 > 0, and the transformation (p, q) 7→ (η, ξ)

is a canonical transformation containing z as a parameter. Let us denote
H(η, ξ, z) the Hamiltonian E expressed via η, ξ, z.

Lemma 3.7 Let |ξ| < d−1
1 , |η| < d−1

1 .
If H(η, ξ, z) > 0, then

η = ±
√

2ω−1
0 H + ξ2 +O(H + ξ2),

∂H/∂η = ω0η +O(η2),

d−1
2

√
H + ξ2 < |∂H/∂η| < d2

√
H + ξ2. (3.19)

If H(η, ξ, z) < 0, then

ξ = ±
√

2ω−1
0 |H|+ η2 +O(|H|+ η2),

∂H/∂ξ = −ω0ξ +O(ξ2),

d−1
2

√
|H|+ η2 < |∂H/∂ξ| < d2

√
|H|+ η2.

Proof.
Consider the case H > 0. The case H < 0 is analogous. We have

H =
1

2
ω0(η2 − ξ2) +O(η3) +O(η2ξ) +O(ηξ2) +O(ξ3),

η2(1 +O(η) +O(ξ)) = 2ω−1
0 H + ξ2 + ξ2(O(η) +O(ξ)),

η2 =
2ω−1

0 H + ξ2

1 +O(η) +O(ξ)
+ ξ2(O(η) +O(ξ)).
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From this equality we derive that

ν−1
1 |ξ| < ν−1

1

√
H + ξ2 < |η| < ν1

√
H + ξ2,

η2 = 2ω−1
0 H + ξ2 +O((

√
H + ξ2)3),

η = ±
√

2ω−1
0 H + ξ2 +O(H + ξ2).

∂H/η = ω0η +O(|η|2 + |ξ|2) = ω0η +O(η2),

d−1
2

√
H + ξ2 <

∣∣∣∣∂H∂η
∣∣∣∣ < d2

√
H + ξ2.

Lemma 3.7 is proved.

Corollary 3.5 a) For |ξ| < d−1
3 < d−1

1 , 0 ≤ h ≤ d−1
4 the equationH(η, ξ, z) =

h defines a unique η = η̃(h, ξ, z) such that 0 ≤ η̃(h, ξ, z) < 1
2
d−1

2 . For
h+ ξ2 > 0 the function η̃ is smooth and

∂η̃

∂h
=

1

∂H/∂η
,
∂η̃

∂z
= −∂H/∂z

∂H/∂η
. (3.20)

The same equation H(η, ξ, z) = h defines also a unique η = ˜̃η(h, ξ, z) such
that −1

2
d−1

2 < ˜̃η ≤ 0 with analogous properties.
b) For |η| < d−1

3 < d−1
1 , −d−1

4 ≤ h ≤ 0 the equation H(η, ξ, z) = h defines
a unique ξ = ξ̃(h, η, z) such that 0 ≤ ξ̃(h, η, z) < 1/2d2. For |h|+ η2 > 0 the
function ξ̃ is smooth and

∂ξ̃

∂h
=

1

∂H/∂ξ
,
∂ξ̃

∂z
= −∂H/∂z

∂H/∂ξ
.

The same equation H(η, ξ, z) = h defines also a unique ξ = ˜̃ξ(h, ξ, z) such

that −1
2
d−1

2 < ˜̃ξ ≤ 0 with analogous properties.

3.4.2 Proof of Lemma 3.1

To save notation we consider the case when ϕ does not depend on ε: ϕ =
ϕ(p, q, z). Let 0 < h < 1

2
d−1

4 . Denote

R(h) =

∮
E=h

ϕdt, R(0) =

∮
l3

ϕdt .
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10. Split R(h) into integrals R′(h) and R′′(h) over the segments of the
curve E = h, situated inside and outside of the rectangle |ξ| < d−1

3 , |η| < d−1
1

respectively. Split R′(h) into integrals R′i(h), i = 1, 2, 3, 4, where R′i(h) is
calculated over the segment of the curve E = h, situated into the ith quadrant
of the coordinate system Cξη. Split R(0) in the same way.

20. The integral R′′(h) is calculated over the arcs separated from the
singularity (i.e. from the point C). It is easy to check that

R′′(h) = R′′(0) +O(h).

30. Estimate R′1(h). Let us use ξ as an independent variable in this
integral. According to Corollary 3.5 we get

R′1(h) =

∫ d−1
3

0

(
ϕ

ξ̇

)
h

dξ =

∫ d−1
3

0

(
ϕ

∂H/∂η

)
h

dξ,

where the subscript “ h ” indicates that we should plug η = η̃(h, ξ, z) into
the integrand. The function ϕ has the form

ϕ = αξ + βη + ϕ2(η, ξ, z), ϕ2 = O(ξ2 + η2), α = α(z), β = β(z).

Represent

R′1(h) − R′1(0) = α

d−1
3∫

0

[
ξ

(∂H/∂η)h
− ξ

(∂H/∂η)0

]
dξ (3.21)

+ β

d−1
3∫

√
h

[(
η

∂H/∂η

)
h

−
(

η

∂H/∂η

)
0

]
dξ + β

√
h∫

0

[(
η

∂H/∂η

)
h

−
(

η

∂H/∂η)

)
0

]
dξ

+

d−1
3∫

√
h

[(
ϕ2

(∂H/∂η

)
h

−
(

ϕ2

(∂H/∂η

)
0

]
dξ +

√
h∫

0

[(
ϕ2

(∂H/∂η

)
h

−
(

ϕ2

∂H/∂η

)
0

]
dξ.

Estimate the last integral in (3.21). According to Lemma 3.7, the inte-
grand in this integral is O(

√
h). Therefore, this integral is O(h).

Estimate the next to last integral in (3.21). Using Lagrange’s formula
and Corollary 3.5, we get, that this integral is equal to

d−1
3∫

√
h

h

(
∂

∂h

(
ϕ2

∂H/∂η

)
h

)
h∗

dξ = h

d−1
3∫

√
h

(
∂

∂η

(
ϕ2

∂H/∂η

)
1

∂H/∂η

)
h∗

dξ,
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where 0 < h∗ < h. By Lemma 3.7, the integrand is O((h∗ + ξ2)−1/2). There-
fore, this integral is

O(h)

d−1
3∫

√
h

dξ√
h∗ + ξ2

dξ = O(h)

d−1
3∫

√
h

dξ

ξ
= O(h lnh).

Consider the third integral in (3.21). It is equal to

1

ω0

√
h∫

0

[(
η

η + χ2

)
h

−
(

η

η + χ2

)
0

]
dξ =

1

ω0

√
h∫

0

(η)h(χ2)0 − (η)0(χ2)h
(η + χ2)h(η + χ2)0

dξ.

Here χ2 is a function of η, ξ, z; expansion of χ2 with respect to η, ξ starts with
second order terms. By Lemma 3.7, the integrand is O(

√
h). The integral is,

therefore, O(h).
Estimate the second integral in (3.21). Using Lagrange’s formula and

Corollary 3.5, we get that this integral is equal to

h

ω2
0

d−1
3∫

√
h

(
∂

∂η

(
η

η + χ2

)
· 1

η + χ2

)
h∗

dξ =
h

ω2
0

d−1
3∫

√
h

(
χ2 − η ∂χ2/∂η

(η + χ2)3

)
h∗

dξ.

The integrand here is O(1/ξ). Therefore the second integral in (3.21) is
O(h lnh).

Estimate the first integral in (3.21). It is equal to

1

ω0

d−1
3∫

0

[
ξ√

2ω−1
0 H + ξ2

− ξ

|ξ|

]
dξ

+
1

ω0

d−1
3∫

0

ξ

[(
ω0

√
2ω−1

0 H + ξ2 − ∂H/∂η√
2ω−1

0 H + ξ2 ∂H/∂η

)
h

−
(
ω0|ξ| − ∂H/∂η
|ξ|∂H/∂η

)
0

]
dξ.

We can estimate the second integral in this expression by splitting it into two
integrals, from 0 to

√
h and from

√
h to d−1

3 . This gives that this integral is
O(h lnh). So we get

R′1(h)−R′1(0) =
α

ω0

d−1
3∫

0

(
ξ√

2ω−1
0 h+ ξ2

− ξ

|ξ|

)
dξ +O(h lnh).
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Analogous estimates are valid for R′2, ..., R
′
4. In particular,

R′4(h)−R′4(0) =
α

ω0

0∫
−d−1

3

(
ξ√

2ω−1
0 h+ ξ2

− ξ

|ξ|

)
dξ +O(h lnh).

Therefore
R′1(h) +R′4(h)−R′1(0)−R′4(0) = O(h lnh)

(we use here that the integral of an odd function over a symmetric with
respect to 0 interval is equal to 0). The same estimate holds for R′2 + R′3.
Taking into account the estimate for R′′, we finally get

R(h) = R(0) +O(h lnh).

Lemma 3.1 is proved.

3.4.3 Proof of Lemma 3.2

To save notation we consider the case when the functions ϕ, ψ do not depend
on ε: ϕ = ϕ(p, q, z), ψ = ψ(p, q, z). The proof uses the same scheme, as
the proof of the Lemma 3.1 above. The part of the curve E = h, situated
outside of the neighbourhood of the point C, gives a contribution O(1) to any
integral in (3.3). In a neighbourhood of the saddle point C we split the curve
E = h into four segments situated in four quadrants of the coordinate system
Cξη. The contribution to the integral of each of these segments is estimates
in the same way. For certainty, let us consider the segment situated in the
first quadrant. The corresponding integral we denote R(i), where i is the
number of the integral in the Lemma 3.2, i 6= 5. To estimate integrals R(i)

we introduce ξ as an independent variable in the integral and use estimates
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in Lemma 3.7 and Corollary 3.5. We have

R(1) =

d−1
3∫

0

(
|ϕ|

∂H/∂η

)
h

dξ =

d−1
3∫

0

(
O(η)

|η|

)
h

dξ =

d−1
3∫

0

O(1)dξ = O(1).

R(2) =

d−1
3∫

0

(
|ψ|

∂H/∂η

)
h

dξ =

d−1
3∫

0

O(1)√
h+ ξ2

dξ = O(lnh).

R(3) =
∂

∂h

d−1
3∫

0

(
ψ

∂H/∂η

)
h

dξ =

d−1
3∫

0

(
∂

∂η

(
ψ

∂H/∂η

)
1

∂H/∂η

)
h

dξ

=

d−1
3∫

0

O(1)dξ

(h+ ξ2)3/2
= O

(
1

h

)
.

R(4) =
∂

∂z

d−1
3∫

0

(
ψ

∂H/∂η

)
h

dξ

=

d−1
3∫

0

(
∂

∂z

(
ψ

∂H/∂η

)
− ∂

∂η

(
ψ

∂H/∂η

)
∂H/∂z
∂H/∂η

)
h

dξ =

=

d−1
3∫

0

O(1)√
h+ ξ2

dξ = O(lnh).

R(6) =
∂

∂z

d−1
3∫

0

(
ϕ

∂H/∂η

)
h

dξ

=

d−1
3∫

0

(
∂

∂z

ϕ

∂H/∂η
− ∂

∂η

(
ϕ

∂H/∂η

)
∂H/∂z
∂H/∂η

)
h

dξ =

d−1
3∫

0

O(1)dξ = O(1).

In order to estimate the integral (5) in Lemma 3.2 it is useful to combine
the integrals over the segments of the curve E = h situated in a neighbour-
hood of the point C in the 1st and 4th quadrants. Denote the corresponding
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integral R(5). Then

H =
1

2
ω0(η2 − ξ2) + χ3(η, ξ, z), χ3 = O(|ξ|3 + |η|3),

ϕ = αξ + βη + ϕ2(η, ξ, z), ϕ2 = O(ξ2 + η2),

R(5) =
∂

∂h

d−1
3∫

−d−1
3

(
ϕ

∂H/∂η

)
h

dξ =

d−1
3∫

−d−1
3

(
∂

∂η

(
ϕ

∂H/∂η

)
1

∂H/∂η

)
h

dξ

=

d−1
3∫

−d−1
3

(
(β + ∂ϕ2/∂η)(ω0η + ∂χ3/∂η)− (αξ + βη + ϕ2)(ω0 + ∂2χ3/∂η

2)

(∂H/∂η)3

)
h

dξ

= −
d−1
3∫

−d−1
3

ω0αξdξ

(∂H/∂η)3
h

+

d−1
3∫

−d−1
3

O(1)√
h+ ξ2

dξ = −ω0α

d−1
3∫

−d−1
3

ξdξ

(∂H/∂η)3
h

+O(lnh)

= −ω0α

d−1
3∫

−d−1
3

ξdξ

(ω0

√
2ω−1

0 h+ ξ2)3

− ω0α

d−1
3∫

−d−1
3

ξ

(
1

(ω0η + ∂χ3/∂η)3
h

− 1

(ω0

√
2ω−1

0 h+ ξ2)3

)
dξ +O(lnh) =

=

d−1
3∫

−d−1
3

ξ
O(η4)dξ

(h+ ξ2)3
+O(lnh) =

d−1
3∫

−d−1
3

O(1)dξ√
h+ ξ2

+O(lnh) = O(lnh).

Combining estimates for different segments, we get estimates of Lemma 3.2.

3.4.4 Proof of Lemma 3.3

Let 0 < h < 1
2
d−1

4 . We have

T = T (h) =

∮
E=h

dt .
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Let us split T (h) into two integrals, T ′(h) and T ′′(h), calculated over the
segments of the curve E = h situated respectively inside the domain |ξ| <
d−1

3 , |η| < d−1
3 and outside this domain. Let us, in addition, split T ′(h) into

integrals T ′1,4(h) and T ′2,3(h), calculated over the segments situated in the 4th
and 1st and, respectively, in the 2nd and 3rd quadrants of the system Cξη.
Integral T ′′(h) is calculated over the segments of the curve separated from
the point C. Therefore, T ′′(h) = T ′′(0) + O(h). To estimate T ′4,1(h), let us
introduce ξ as an independent variable:

T ′4,1(h) =

d−1
3∫

−d−1
3

dξ

(∂H/∂η)h

=

d−1
3∫

−d−1
3

dξ

ω0

√
2ω−1

0 h+ ξ2
+

d−1
3∫

−d−1
3

ω0

√
2ω−1

0 h+ ξ2 − (∂H/∂η)h

ω0

√
2ω−1

0 h+ ξ2 (∂H/∂η)h
dξ.

The integrand in the last integral remains bounded as h→ 0. Acting as in the
proof of Lemma 3.1 we get that this integral can be calculated at h = 0 (i.e.
over the separatrix) with an accuracy O(h lnh). Another integral, forming a
part of T ′4,1(h), has an explicit form:

d−1
3∫

−d−1
3

dξ

ω0

√
2ω−1

0 h+ ξ2
=

1

ω0

ln(ξ +

√
2ω−1

0 h+ ξ2 )

∣∣∣∣d−1
3

−d−1
3

(3.22)

= − 1

ω0

lnh+
1

ω0

ln
ω0

2
+

2

ω0

ln(d−1
3 +

√
d−2

3 + 2ω−1
0 h )

= − 1

ω0

lnh+
1

ω0

ln
ω0

2
+

2

ω0

ln(d−1
3 ) +O(h) .

Analogous estimate holds for T ′2,3(h). Combining these estimates we get the
assertion of Lemma 3.3.

The calculation of asymptotic expansion of the function Ti(h), the period
of the motion along the trajectory E = h < 0 situated in the region Gi, i =
1, 2, is treated by the same method, but as independent variable near the
saddle the variable η is used. In this calculation the sum of integrals over
separatrices in asymptotic expansions of T1 and T2 coincides with the sum of
integrals over separatrices for asymptotic expansion of the period of motion
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in the the region G3. The integral, which is calculated in this way, is reduced
to the same form (3.22); the only difference in that h is replaced with |h|,
and ξ is replaced with η. Hence the assertion of the Remark to Lemma 3.3
is valid.

3.4.5 Proof of Lemma 3.4

Let us denote ψc the value of the function ψ at the point C. Then

∂

∂h

1

T

∮
E=h

ψdt =
∂

∂h

1

T

∮
E=h

(ψ − ψc)dt . (3.23)

Calculating the derivative and making use of the estimates in Lemma 3.2,
its corollary, and corollary of Lemma 3.3, we get the result of the Lemma
3.4. The transformation (3.23) can not be used in the problems where the
boundary of the domain contains several saddle points. But the result of the
lemma is valid in these cases too. Let us describe briefly the corresponding
proof. As in Lemma 3.3 we can prove expansions

T = α lnh+ χ, χ = χ(h, z) = O(1), ∂χ/∂h = O(lnh) ,∮
E=h

ψdt = β lnh+ µ, µ = µ(h, z) = O(1), ∂µ/∂h = O(lnh) .

Now

∂

∂h

1

T

∮
E=h

ψdt =
1

T 2

[(
β

h
+
∂µ

∂h

)
(α lnh+ χ)− (β lnh+ µ)

(
α

h
+
∂χ

∂h

)]
=

=
1

T 2
O(h−1) = O(h−1 ln−2 h) .

3.5 Proofs of Lemmas on perturbed motion

In this subsection Lemma 3.5 is proved. The proof of Lemma 3.6 is completely
analogous, and it is omitted.

In accordance with Lemma 3.2 (1)∮
E=h

|χ|dt < ν,
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where

χ = χ(p, q, z, ε) =
∂E

∂q
f1 +

∂E

∂p
f2 +

∂E

∂z
f3 .

Let us introduce c6 = 3ν1, c7 = 2 max(c2, c4). Denote η(t), ξ(t) the values
of η, ξ at the point (p(t), q(t), z(t)). Let c6ε < h(t′) < c−1

7 . Denote t1∗ the
supremum of moments of time t1 such that for t′ ≤ t ≤ t1 the solution
(p(t), q(t), z(t)) is defined and meets the conditions

|ξ(t)| < d−1
3 , |η(t)| < d−1

1 , z(t) ∈ B − 3

2
c−1

1 , (3.24)

1

2
h(t′) < h(t) < 2h(t′).

Denote ξ1∗ = ξ(t1∗). For t′ ≤ t ≤ t1∗ we have

ξ̇ = ∂H/∂η +O(ε) > d−1
2

√
1

2
h(t′) + ξ2 +O(ε) >

1

2
d−1

2

√
1

2
h(t′) + ξ2 ,

t− t′ =

ξ(t)∫
0

dξ

ξ̇
< 2d2

d−1
3∫

0

dη√
1
2
h(t′) + ξ2

= O(lnh(t′)) , (3.25)

|z(t)− z(t′)| = O(ε lnh(t′)) ,

|h(t)− h(t′)| ≤ ε

∫ t

t′
|χ|dt < 2d2ε

ξ(t)∫
0

|χ|dξ√
1
2
h(t′) + ξ2

=

d−1
3∫

0

O(1)dε = O(ε) .

The obtained inequalities allow to get more accurate estimate for h(t1∗):

h(t1∗) − h(t′) = ε

∫ t1∗

t′
χdt = ε

ξ1∗∫
0

χ

∂H/∂η +O(ε)
dξ =

= ε

ξ1∗∫
0

(
χ

∂H/∂η

)
E=h(t′)
z=z(t′)
ε=0

dξ + ε

ξ1∗∫
0

( χ

∂H/∂η +O(ε)

)
E=h(t)
z=z(t)

−
(

χ

∂H/∂η

)
E=h(t′)
z=z(t′)
ε=0

 dξ .
By means of (3.25) we get that the integrand in the second integral is

O(ε)

h(t′) + ξ2
+
O(ε lnh(t′))√
h(t′) + ξ2

.
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So

h(t1∗)− h(t′) = ε

ξ1∗∫
0

(
χ

∂H/∂η

)
E=h(t′)
z=z(t′)
ε=0

dξ +O(ε2/
√
h(t′) ) .

In this expression the integral is calculated over the segment of the unper-
turbed trajectory in the unperturbed motion. Therefore

|h(t1∗)− h(t′)| < εν1 ≤
1

2
εc6,

1

2
h(t′) < h(t1∗) < 2h(t′) .

Therefore at t = t1∗ the conditions on z, h, η in (3.24) are satisfied as strict
inequalities. By definition of t1∗ there should be ξ(t1∗) = d3.

In the further motion the phase point evidently makes the curve that is
close to the unperturbed trajectory E = h(t′), z = z(t′), and arrives at the
segment ξ = d−1

3 , −d−1
1 < η < 0. Along this curve h = h(t′) + O(ε), z =

z(t′) + O(ε lnh(t′)). Along any part of this curve the change of E with an
accuracy O(ε2 ln ε) is equal to the integral of the function εχ(p, q, z, 0) over
the segment of the unperturbed trajectory and, therefore, this change does
not exceed 3

2
εν1. Therefore in this motion 1

2
h(t′) < h(t) < 2h(t′).

Further motion is considered in an analogous manner. The phase point
arrives first at the segment ξ = −d−1

3 , −d−1
1 < η < 0, then it makes the curve

close to the unperturbed trajectory, arrives at the segment ξ = −d−1
3 , 0 <

η < d−1
1 and, finally, at a moment of time t′′ = t′ +O(lnh(t′)) arrives at the

ray Cη having 0 < η < d−1
1 . For t′ ≤ t ≤ t′′ estimates (3.6) are satisfied and

the estimate

|j(t)−j(t′)| ≤
(
∂I

∂h

)
h=h∗
z=z∗

|h(t)−h(t′)|+
(
∂I

∂h

)
h=h∗
z=z∗

|z(t)−z(t′)| = O(ε lnh(t′))

is valid (here h∗ ∈ (1
2
h(t′), 2h(t′)), z∗ = z(t′) +O(ε lnh(t′))).

For the function ϕ(p, q, z, ε), which vanishes identically at the point C,
the integral along the motion is estimated in the same manner as above for
the function χ. This gives the second estimate (3.7).

To estimate the integral along the motion of the function ψ in (3.7), we
split it into integrals over the defined above segments of the trajectory, situ-
ated either far from or near the saddle. Integrals over the segments, situated
far from the saddle, coincide with accuracy O(ε lnh(t′)) with integrals over
the segments of the unperturbed trajectory E = h(t′). For the integral over
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the segment of the perturbed trajectory with 0 < ξ < d−1
3 , η > 0, situated

near the saddle, we have

t1∗∫
0

ψdt =

d−1
3∫

0

(
ψ

∂H/∂η +O(ε)

)
E=h(t)
z=z(t)

dξ =

d−1
3∫

0

(
ψ

∂H/∂η

)
E=h(t′)
z=z(t′)
ε=0

dξ +

+

d−1
3∫

0

( ψ

∂H/∂η +O(ε)

)
E=h(t)
z=z(t)

−
(

ψ

∂H/∂η

)
E=h(t′)
z=z(t′)
ε=0

 dξ .
Taking into account already proved estimates (3.6) and Lemma 3.7, we esti-
mate the integrand in the last integral as

O(ε)

(h(t′) + ξ2)3/2
+
O(ε lnh(t′))

h(t′) + ξ2
.

The integral of this function is O(ε/h(t′)). Therefore

t1∗∫
0

ψdt =

d−1
3∫

0

(
ψ

∂H/∂η

)
E=h(t′)
z=z(t′)
ε=0

+O(ε/h(t′)) .

The integral in the right hand side is just the integral of ψ along the unper-
turbed trajectory E = h(t′), z = z(t′) when ε = 0. The integrals of ψ along
other segments of the trajectory near the saddle are estimated in analogous
manner. Combining these estimates we get the first estimate (3.7).

3.6 Proofs of Lemmas on averaged system

In this subsection the proofs of Lemmas 2.2 and 2.3 on the motion in averaged
system are given. These proofs are based on Lemmas on unperturbed motion
in Subsection 3.1.

3.6.1 Proof of Lemma 2.2

a) Existence of the solution with initial condition h = 0, z = z∗ at τ = τ∗
follows from the standard existence theorem for ODEs (see, e.g., [17], p. 21)
as the right hand side of the averaged system is continuous.
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To prove a uniqueness let us suppose that there are two solutions,
(H(1)(τ), Z(1)(τ)) and (H(2)(τ), Z(2)(τ)), say in the region G3 (i.e. τ < τ∗),
crossing the separatrix at τ = τ∗, z = z∗. Denote J (i)(τ) = I(H(i)(τ), Z(i)(τ)),
i = 1, 2. Denote u(τ) = |(J (2)(τ)−J (1)(τ)|+|(Z(2)(τ)−Z(1)(τ)|. Suppose that
u(τ∗∗) 6= 0 for some τ∗∗ < τ∗. Then u(τ) 6= 0 for τ∗∗ < τ < τ∗ (in the opposite
case we have a contradiction with the standard uniqueness theorem). We
may assume that H(i)(τ∗∗) < 1/2, i = 1, 2. From the formulas for the right
hand side of the averaged equations for z, J , (2.3), (2.7) and from Lemmas
3.1 - 3.4 we get that for τ∗∗ < τ < τ∗

du(τ)

dτ
= O

(
1

H∗(τ) ln3H∗(τ)

)
u(τ) ,

where H∗(τ) = min{H(1)(τ), H(2)(τ)}. Therefore for τ1 ∈ (τ∗∗, τ∗) we have

u(τ∗∗) = u(τ1) exp

 τ∗∗∫
τ1

O

(
1

H∗(τ) ln3H∗(τ)

)
dτ

 .

But according to the averaged equation for h (2.3), estimate (3.2), and
Lemma 3.2 we have

dH(i)

dτ
< ν−1

1 / lnH(i) .

Therefore

τ∗∗∫
τ1

O

(
1

H∗(τ) ln3H∗(τ)

)
dτ = O

 1/2∫
0

dh

h ln2 h

 = O(1)

and
U(τ∗∗) = U(τ1)O(1) . (3.26)

But U(τ1) → 0 as τ1 → τ∗. Therefore U(τ∗∗) = 0 in contradiction with our
hypothesis. The uniqueness is proved.

b) Assertion b) of the Lemma 2.2 is an evident corollary of formula (2.7)
and condition (2.2), as it was discussed at the end of Subsection 2.3.

3.6.2 Proof of Lemma 2.3

We will omit index “ν” at solutions (Hν , Zν) and (H ′ν , Z
′
ν). There exists a

moment of the slow time τ̄0 > τ0, τ̄0 = τ0 +O(δ ln δ) such that

−ν1δ < H(τ̄0) < −δ, −ν1δ < H ′(τ̄0) < −δ.
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Making use of the formula

dZ

dτ
= f3C(Z) +

1

T

∮
E=h

(f 0
3 − f3C)dt (3.27)

we get that
Z(τ̄0)− Z ′(τ̄0) = O(δ).

For τ0 ≤ τ ≤ τ̄0 we have

|H(τ)|+ |H ′(τ)|+ |Z(τ)− Z ′(τ)| = O(δ). (3.28)

Therefore, the estimates of Lemma 2.3 are valid for τ0 ≤ τ ≤ τ̄0. Denote

J(τ) = I(H(τ), Z(τ)), J ′(τ) = I(H ′(τ), Z ′(τ)),

U(τ) = |J(τ)− J ′(τ)|+ |Z(τ)− Z ′(τ)|.

Then U(τ̄0) = O(δ ln δ).
Exactly as in (3.26), we get that U(τ) = O(U(τ̄0)) for τ̄0 ≤ τ ≤ K. So

|J(τ)− J ′(τ)| = O(δ ln δ), |Z(τ)− Z ′(τ)| = O(δ ln δ). (3.29)

From here we get that

|H(τ)−H ′(τ)| < ν2
δ| ln δ|

1 + | ln |H∗(τ)||
, (3.30)

where H∗(τ) lies between H(τ) and H ′(τ).
Let us consider two cases: H(τ) ≥ −2ν2δ| ln δ| and H(τ) < −2ν2δ| ln δ|.
If H(τ) ≥ −2ν2δ| ln δ|, then, from (3.30), H ′(τ) > −ν2δ| ln δ|, H∗(τ) >

−ν2δ| ln δ| and
|H(τ)−H ′(τ)| = O(δ). (3.31)

If H(τ) < −2ν2δ| ln δ|, then, from (3.30), 1
2
|H(τ)| < |H ′(τ)| < 2|H(τ)|,

1
2
|H(τ)| < |H∗(τ)| < 2|H(τ)| and, therefore,

|H(τ)−H ′(τ)| = O

(
δ ln δ

1 + | ln |H(τ)||

)
. (3.32)

In view of (3.28), (3.31), (3.32) we get for τ0 ≤ τ ≤ K

|H(τ)−H ′(τ)| = O

(
δ +

δ| ln δ|
1 + | ln |H(τ)||

)
,
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i.e. the estimate of Lemma 2.3 for |H(τ)−H ′(τ)|.

Now we should improve the estimate (3.29) for Z. From equality (3.27),
considered for Z(τ) and Z ′(τ), Lemma 3.4, and (3.29), (3.30), making use of
Lagrange formula, we get for τ̄0 < τ < τ̄0 + ν−1

3

d

dt
(Z − Z ′) = O(Z − Z ′) +O

(
δ ln δ

H∗(τ) ln3 |H∗(τ)|

)
,

where H∗(τ) lies between H(τ) and H ′(τ).
From here we get for τ̄0 ≤ τ ≤ τ̄0 + ν−1

3

Z(τ)−Z ′(τ) = O(δ)+O

 τ∫
τ̄0

δ ln δ dτ

H∗(τ) ln3 |H∗(τ)|

 = O(δ)+O

 |H∗(τ)|∫
δ

δ ln δ dh

h ln2 h

 ,

or

|Z(τ)− Z ′(τ)| = O

(
δ +

δ| ln δ|
| ln |H∗(τ)||

)
. (3.33)

We know that for τ̄0 + ν−1
3 ≤ τ ≤ K the following estimate is valid:

|Z(τ)− Z ′(τ)| = O(δ ln δ). (3.34)

In view of (3.28), (3.33), (3.34) we have for τ0 ≤ τ ≤ K

|Z(τ)− Z ′(τ)| = O

(
δ +

δ| ln δ|
1 + | ln |H(τ)||

)
.

Lemma 2.3 is proved.

4 Passage through a narrow vicinity of sepa-

ratrices

In this section Proposition 2.3 of Subsection 2.5 is proved.
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Figure 5: New coordinates.

4.1 Preliminary transformation

Below in all estimates z ∈ B − c−1
1 , where the constant c1 is chosen in such

a way that 3c−1
1 -neighbourhood of the set {z : z = Zν(τ), ν = 1, 2; τ ∈

[0, K]} belongs to B, and 3c−1
1 -neighbourhood of the set {(p, q, z) : z =

Zν(τ), E(p, q, z) = Hν(τ), ν = 1, 2; τ ∈ [0, K]} belongs to D. In some
neighbourhood of the point C we can introduce new coordinates x̄, ȳ instead
of p, q in such a way that the equations x̄ = 0 and ȳ = 0 define separatri-
ces as it is shown in Fig. 5, and ∂(p, q)/∂(ȳ, x̄)|C = 1 (we do not need the
transformation (p, q) 7→ (ȳ, x̄) be symplectic). In the new coordinates the
function E has the form

E = −ω0ȳx̄(1 +O(|ȳ|+ |x̄|)), ω0 = ω0(z) > c−1
2 .

Lemma 4.1 For z ∈ B − c−1
1 , |ȳ| < c−1

3 , |x̄| < c−1
3 there exists a smooth

transformation of variables F̄ : y, x, z → ȳ, x̄, z such that ȳ = y + O(ε), x̄ =
x+O(ε), and in the variables y, x the perturbed motion is described by equa-
tions

ẋ = −ω0x(1 +O(ε+ |x|+ |y|)), ẏ = ω0y(1 +O(ε+ |x|+ |y|)).

This Lemma is a direct corollary of a theorem by N. Fenichel (see [12],
Theorem 11.1). Coordinates of such type as y, x here are often called Fenichel’s
coordinates.

Lemma 4.1 allows to define in the domain |ȳ| < c−1
3 , |x̄| < c−1

3 the trans-
formation of variables F : y, x → p, q depending on z as a parameter. The
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Figure 6: The square K.

inverse transformation F−1 : p, q → y, x is defined in the c−1
4 -neighbourhood

of the point C in the plane q, p.

4.2 Lemmas on perturbed motion

Consider in the plane x, y a square K = {x, y : |x| < 2c6

√
ε, |y| < 2c6

√
ε, }.

The constant c6 is chosen below in Lemma 4.2 and Subsection 4.3. Let
α1, ...α4 be sides of this square, the numeration of the sides corresponds to
Fig. 6. Denote K̃ = K̃(z) = F [K], α̃i = α̃i(z) = F [αi], i = 1, ..., 4. For
a point (p(t), q(t)), that belongs to c−1

4 -neighbourhood of the point C, we
denote (y(t), x(t)) = F−1(p(t), q(t)). The following two Lemmas show that
points that started to move at sides of the square K̃ far from its corners
and not too close to the x-axis, will return to the sides of K̃. In Fig. 7 the
trajectories I and II correspond to Lemmas 4.2 and 4.3, respectively.

Lemma 4.2 If z(t′) ∈ B − 2c−1
1 , (p(t′), q(t′)) ∈ α̃i(z(t′)), i = 1, 3, |x(t′)| <

c6

√
ε, then there exists a moment of time t′′ such that

(p(t′′), q(t′′)) ∈ α̃i+1(z(t′′)), t′′ − t′ = O(ln ε), h(t′)− h(t′′) > c−1
7 ε .

Remark. If we increase the value of the constant c6, it would result in
increasing of values of the constants cj, j > 7. The constant c7 can be
chosen independently of c6.
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Figure 7: Trajectories I and II.

Lemma 4.3 Let z(t′) ∈ B−2c−1
1 , (p(t′), q(t′)) ∈ α̃2(z(t′))∪α̃4(z(t′)), |y(t′)| >

εr1, where r1 is any given in advance positive number. If (p(t′), q(t′)) ∈
α̃2(z(t′)), y(t′) > εr1, then there exists a moment of time t′′ such that

(p(t′′), q(t′′)) ∈ α̃1(z(t′′)).

In analogous way,

if (p(t′), q(t′)) ∈ α̃2(z(t′)), y(t′) < −εr1 , then (p(t′′), q(t′′)) ∈ α̃3(z(t′′)),

if (p(t′), q(t′)) ∈ α̃4(z(t′)), y(t′) > εr1 , then (p(t′′), q(t′′)) ∈ α̃1(z(t′′)),

if (p(t′), q(t′)) ∈ α̃4(z(t′)), y(t′) < −εr1 , then (p(t′′), q(t′′)) ∈ α̃3(z(t′′)).

In all cases t′′ − t′ = O(ln ε), h(t′′)− h(t′) = O(ε3/2).

The following assertion shows that a phase point that stared to move
from a diagonal of the square K̃ not too close to the origin of the coordinate
system will arrive to a side of K̃.

Lemma 4.4 If z(t′) ∈ B−2c−1
1 , (p(t′), q(t′)) ∈ K̃(z(t′)), y(t′) = −x(t′) > ε,

then there exists a moment of time t′′ such that

(p(t′′), q(t′′)) ∈ α̃1(z(t′′)), t′′ − t′ = O(ln ε), h(t′′)− h(t′) = O(ε3/2).
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Solutions of the averaged system with initial conditions from W δ at τ = 0
cross the separatrix at τ, z such that |τ − τ̂∗| < c8δ, |z − ẑ∗| < c9δ. Consider
the surface Λ in the space x, y, z:

Λ = {x, y, z : |x| = 2c6

√
ε, |z − ẑ∗| < 2c9δ, |y| < εr1}.

Let Λ̃ be the image of this surface under the map x, y, z 7→ p, q, z. Denote Ξ
the set in the space p, q, z sweept by Λ̃ during the shift along the trajectories
of the perturbed system (2.1) for time t ∈ (−τ̂∗−2c8δ,−τ̂∗+ 2c8δ) before the
first arrival to the boundary of the region D − c−1

1 .

Lemma 4.5
mes Ξ = O(εr1−1/2mesW δ).

These Lemmas are proved in Subsections 4.4.2, 4.4.3

4.3 Proof of Proposition 2.3

Define r1 = r + 1/2, where r is the integer number introduced before the
formulation of Theorem 1. Introduce w = W δ ∩ Ξ, W δ

3 = W δ \ w, where Ξ
is defined at the end of Subsection 4.2. According to Lemma 4.5 mesw =
O(εrmesW δ). Consider motion of a phase point (p(t), q(t), z(t)) that starts
in W δ

3 at the moment of time t = 0. In accordance with Proposition 2.1 the
moment of time t− is defined such that h(t−) = 2k1ε. Then there exists a
moment of time t′− preceding t− such that the point (p(t′−), q(t′−)) lies in the
c−1

4 -neighbourhood of the saddle C for z = z(t′−), and y(t′−) = −x(t′−) > 0,
c5ε < h(t′−) < 2c5ε. The proof of the last assertion is completely analogous
to the proofs of Lemmas 3.5, 3.6 and is omitted here.

Now let us choose the constant c6 that defines the size of the square
K in Subsection 4.2 (here we use the Remark to Lemma 4.2, which allows
to increase the value of c6). Choose c6 such that in the segments α1 and
α3 the inequality −2k2ε < E < 4c5ε implies the inequality |x| < c6

√
ε for

z ∈ B − c−1
1 . In the segments α1 and α3 according to Lemma 4.1 we have

|E| = 2ω0c6

√
ε |x| + O(ε3/2), ω0 > c−1

2 . Choose c2
6 > 4c2 max(2c5, k2). Then

for |x| > c6

√
ε we have |E| > max(4c5ε, 2k2). So, this choice of c6 meets our

condition. It is easy to check that under the same choice of c6 the inequality
|E| > 2c5ε is satisfied on the line x = −y outside of K.

Let us return to the motion of the point (p(t), q(t), z(t)). It is evident
that y(t′) > ε (otherwise h(t′) = O(ε2) < c5ε). In accordance with Lemma

43



4.4 there exists a moment of time t′′− = t′−+O(ln ε) such that (p(t′′−), q(t′′−)) ∈
α̃1(z(t′′−)) and h(t′′−) = h(t′−) + O(ε3/2). In particular 1

2
c5ε < h(t′′−) < 3c5ε

and, therefore, |x(t′′−)| < c6

√
ε due to the choice of c6. Now Lemmas 4.2,

4.3 allow, while their hypotheses are satisfied, to definite inductively the
moments of time ts of consecutive arrivals of our phase point to the sides
α̃1 or α̃3 of the square; t1 = t′′−. In accordance with Lemmas 4.2, 4.3,
h(ts) − h(ts+1) > 1

2
c−1

7 ε. As |E| < c10

√
ε in the square K, so s < 4c7c10. As

ts+1−ts = O(ln ε), so z(ts)−z(t1) = O(ln ε) and, therefore, z(ts) ∈ B− 5
2
c−1

1 .
If |x(ts)| < c6

√
ε, then the moment of time ts+1 do exists (here we use the

following: because of the choice of initial conditions and the definition of the
set w, the hypothesis |y| > εr1 of Lemma 4.3 can not be violated). But the
sequence {ts} should be finite: s < 4c7c10. Therefore, there exists a number
s∗ such that |x(ts∗)| ≥ c6

√
ε. Then because of the choice of c6 it should be

h(ts∗) < −k2ε. By continuity there exists a moment of time t+ ∈ (t−, ts∗)
such that h(t+) = −k2ε, as it was stated in Proposition 2.3.

Estimate h(t), Hν(εt), z(t), Zν(εt) for t− ≤ t ≤ t+. For t ∈ (t−, t+)
we have h(t) = O(ε) by definitions of t−, t+. As Hν(εt−) = O(ε), t+ −
t− = O(ln ε) and, in correspondence with estimates of Lemmas 3.2, 3.3,
Ḣν = O(ε/ ln |Hν |) for Hν 6= 0, so Hν(εt) = O(ε) for t ∈ (t−, t+). As
ż = O(ε), Żν = O(ε), so for t ∈ (t−, t+) we have

z(t)− Zν(εt) = O(ε ln ε).

Improve the last estimate. From identity (3.16) we get

ż − Żν = εO(|z − Zν |) + εO(1/ ln |Hν |) + εf 0
3 (p, q, z)− f 0

3C(z) +O(ε2),

where f 0
3C is the value of the function f 0

3 (p, q, z) at the point C. Calculate
integrals of the left and right sides of this relation with respect to time from
ts to some t ∈ (ts, ts+1). Making use of already established estimates for
Hν , z − Zν , we get

z(t)− Zν(εt) = z(ts)− Zν(εts) +O(ε) + ε

∫ t

ts

(f 0
3 (p, q, z)− f 0

3C(z))dt.

The integrand in the last integral vanishes at the point C. Analogously to
Lemma 3.5, this integral is O(1). Therefore, for t ∈ (ts, ts+1) we have

z(t)− Zν(εt) = z(ts)− Zν(εts) +O(ε).

44



Analogous estimate holds for t1 ≤ t ≤ t− . As s < 4c7c9 and, in accordance
with Proposition 2.1, z(t−)−Zν(εt−) = O(ε), so z(t)−Zν(εt) = O(ε) for t− ≤
t ≤ t+. This was the assertion of Proposition 2.3.

Remark. In the proof of the last estimate the representation (3.16) was
used. We can not use this representation in problems, where separatrices
connect different saddle points, and at these points the function f 0

3 (p, q, z)
has different values. The accuracy of description of z in these cases is, in
general, given by proved above estimate z(t) − Zν(εt) = O(ε ln ε) (see also
Remark at the end of Subsection 3.3, part III).

4.4 Proofs of Lemmas on motion in a narrow vicinity
of separatrices

4.4.1 Proof of Lemma 4.2

Let, for certainty, (p(t′), q(t′)) ∈ α̃1(z(t′)). Then for any choice of c6 there
exists a moment of time t′′ > t′, t′′ = t′ + O(ln ε) such that the point
(p(t′′), q(t′′)) lies in the c−1

4 -neighbourhood of the saddle C, and |x(t′′)| =
2c6

√
ε, h(t′′) = h(t′) − εΘ2(z(t′)) + O(ε3/2). The proof of this assertion is

analogous to the proof of Lemma 3.5, and we omit it. Last estimate shows, in
particular, that c−1

7 ε ≤ h(t′)−h(t′′) ≤ d1ε, where c7 and d1 do not depend on
choice of c6. As h(t′) = O(ε), so h(t′′) = O(ε) and, therefore, y(t′′) = O(

√
ε).

Now

h(t′) = −2ω0c6

√
εx(t′) +O(ε3/2),

h(t′′) = −2ω0c6

√
εy(t′′) +O(ε3/2).

From here

y(t′′)− x(t′) =
h(t′)− h(t′′)

2ω0c6

√
ε

+O(ε).

Choose c2
6 > d1c2. Then

|y(t′′)− x(t′)| < d1c2

2

√
ε

c6

+O(ε) <
1

2
c6

√
ε+O(ε) < c6

√
ε.

Therefore, if |x(t′)| < c6

√
ε, then |y(t′′)| < 2c6

√
ε. This means that (p(t′′), q(t′′)) ∈

α̃2(z(t′′)). This was the assertion of the Lemma 4.2.
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4.4.2 Proofs of Lemmas 4.3, 4.4

Let, for certainty, (p(t′), q(t′)) ∈ α̃2(z(t′)), y(t′) > εr1 . Denote t′′ the supre-
mum of the moments of time t̄ such that for t′ ≤ t ≤ t̄ the following conditions
hold:

z(t) ∈ B − c−1
1 , −2c6

√
ε ≤ x(t) ≤ 2c6

√
ε+ ε,

1

2
εr1 ≤ y(t) ≤ 2c6

√
ε . (4.1)

According to Lemma 4.1, for t′ ≤ t ≤ t′′ we have ẏ > 1
2
c−1

2 y. Therefore
t′′ − t′ = O(ln ε) and z(t′′) ∈ B − 3

2
c−1

2 . Then, again in correspondence with
Lemma 4.1, on the segment x = 2c6

√
ε, |y| < 2c6

√
ε we have ẋ < −c6c

−1
2

√
ε.

On the segment x = −2c6

√
ε, |y| < 2c6

√
ε we have ẋ > c6c

−1
2

√
ε. Therefore,

for t′ ≤ t ≤ t′′ conditions for x(t) in (4.1) hold as strict inequalities, and
|x(t′′)| < 2c6

√
ε. In correspondence with the estimate ẏ > 1

2
c−1

2 y we have
y(t′′) > εr1 . As at the moment t = t′′ the phase point should arrive to the
boundary of the domain defined in (4.1), there exists the only possibility:
y(t′′) = 2c6

√
ε, i.e. (p(t′′), q(t′′)) ∈ α̃1(z(t′′)).

In accordance with Lemma 4.1 for t′ ≤ t ≤ t′′ we have

h(t) = −ω0(z(t))y(t)x(t) +O(ε3/2),
d

dt
(ω0(z(t))y(t)x(t)) = O(ε2 + |x|3 + |y|3) .

Therefore, h(t′′)− h(t′) = O(ε3/2), and this was the assertion of Lemma 4.3.
The proof of Lemma 4.4 follows the same lines.

4.4.3 Proof of Lemma 4.5

Denote Λ̃ ◦ t the time-t schift of the set Λ̃ along trajectories of the perturbed
system (2.1). Denote Λ̃ ◦ [a1, a2] = ∪t∈[a1,a2]Λ̃ ◦ t. Assume for simplicity of

explanation that Λ̃ ◦ [−K/ε, 0] ∈ D (it is easy to avoid this restriction by
considering only the part of the set Λ̃ ◦ [−K/ε, 0] which does not leave D).
For the set Ξ we have

Ξ =

(
Λ̃ ◦

[
−τ̂∗ − 2c8δ

ε
,
−τ̂∗ + 2c8δ

ε

])
∩ (D − c−1

1 ).

Consider Ξ0 = Λ̃ ◦ [−d−1
1 , 0]. For small enough d−1

1 the points of this set
lie in B − 3

2
c−1

1 with respect to z and in 1
2
c−1

4 -neighbourhood of the saddle
point C with respect to (p, q). Therefore the set Ξ0 can be considered in the
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variables x, y, z of Lemma 4.1. As in these variables the phase flux through
Λ̃ is O(εr1+1/2δl−2), so the phase volume of the set Ξ0 is O(εr1+1/2δl−2), if the
volume element is dxdydz. As the Jacobian of the transformation x, y, z 7→
p, q, z is O(1), so the same estimate of the phase volume is valid if the volume
element is dpdqdz. Consider now sets

Ξj = Ξ0 ◦ (−jd−1
1 ),

j =

[
(τ̂∗ − 2c8δ)d1

ε

]
− 1, ...,

[
(τ̂∗ + 2c8δ)d1

ε

]
+ 1.

We have mes Ξj = O(mes Ξ0), as the divergence of the right hand side of
system (2.1) is O(ε), and so the distortion of the phase volume in this system
during the time O(1/ε) does not exceed O(1) times. As Ξ ⊂ ∪j Ξj, we get
mes Ξ = O(εr1−1/2δl−1) = O(εr1−1/2mesW δ). Lemma 4.5 is proved.

5 Calculation of measures captured into dif-

ferent regions at the separatrix

In this section Propositions 2.4 and 2.5 of Subsection 2.5 are proved.

5.1 Preliminary constructions

Denote I = I(ν, z, h) the value of the action variable for the trajectory E = h
of the unperturbed system in the region Gν , ν = 1, 2, 3. Since in each of the
regions Gν the dependence of I on h is monotonous, we can rewrite in any
Gν the averaged system (2.3) as a system of differential equations for I, z.
Making use of gluing of solutions of averaged system at the separatrix (see
Subsection 2.3), we can consider the averaged system with respect to the
variable γ = (ν, z, I). Separatrix crossing leads to a jump of values ν and
I. Denote ḡτ1 (γ) the shift of the point γ for slow time τ = εt along the
trajectory of such averaged system, ḡ0

1(γ) = γ, and index “1” indicates that
the solutions with ν = 3 and ν = 1 are glued at the separatrix. Denote
W = W δ, Wν = W δ

ν , α = (p, q, z). Let Π(·) be the standard projection from
the α-space to the γ-space; Π(α) = γ. Denote

Γ = Π[W ], ΓK1 = ḡK1 [Γ],WK
1 = Π−1[ΓK1 ].
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We will denote points from Γ,ΓK1 ,W,W
K
1 as γ0, γK , α0 = (p0, q0, z0), αK =

(pK , qK , zK) respectively.

5.2 Proof of the Proposition 2.4

Denote gt(α) the time-t shift of a point α = (p, q, z) along the trajectory
of system (2.1). Consider gt(αK) for αK ∈ WK

1 . Estimates in Propositions
2.1, 2.2, 2.3 were proved for initial conditions from W . Analogous estimates
are valid for initial conditions from WK

1 , if we consider the motion in reverse
direction in time. From this we get the following assertion: there exists a
set w1 ⊂ WK

1 , mes w1 = O(εrδl−1), such that for initial conditions αK ∈
WK

1 \w1 the behaviour of h, z along gt(αK), −Kε ≤ t ≤ 0, is described with
an accuracy O(ε ln ε) by the solution of averaged system glued of solutions
in G1 and G3 (passage from G1 to G2 is impossible for αK ∈ WK

1 \ w1).
It follows from these estimates that there exists a set W ′K

1 ⊆ WK
1 such

that g−Kε
−1

[W ′
1
K ] ⊆ W, mes (WK

1 \ W ′
1
K) = O(ε ln ε δl−2). Denote W ′

1 =
g−Kε

−1
[W ′

1
K ]. The definition of W2 implies that

W ′
1 ⊆ W \W2 = W1 ∪ w

A standard calculation of change of a phase volume along a motion gives us

mesW ′
1 =

∫
W ′1

K

exp

−ε Kε−1∫
0

(
∂f1

∂q
+
∂f2

∂p
+
∂f3

∂z

)
dt

 dpKdqKdzK . (5.1)

Here the outer integral is calculated with respect to initial (or, better to say,
“final”) conditions from the set W ′

1
K . The inner integral is calculated with

respect to time along a solution of system (2.1) with given “final” condition.
In the integral with respect to time it is reasonable to replace exact solution
with the averaged one ḡ−τ1 (γK), and to estimate the accuracy of this approx-
imation. The result is described by the following Lemma, which is proved in
Subsection 5.4.1.
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Lemma 5.1 For αK ∈ W ′
1
K the following estimate holds:

ε

Kε−1∫
0

(
∂f1

∂q
+
∂f2

∂p
+
∂f3

∂z

)
dt =

K∫
0

F(γ̄)dτ +O(ε ln ε),

where γ̄ = ḡ−τ1 (γK), γK = Π(αK),

F(γ) =
1

T

∮
γ

(
∂f 0

1

∂q
+
∂f 0

2

∂p
+
∂f 0

3

∂z

)
dt.

The integral with index γ = (ν, Z, J) is calculated along the level line of the
Hamiltonian E in the region Gν(z), and the “action” for this level line is
equal to J . The parameter along the level line is time t of the unperturbed
motion, T is the period of this motion.

Making use of Lemma 5.1 we get

mes W ′
1 =

∫
W ′1

K

exp

− K∫
0

F(γ̄)dτ

 dpKdqKdzK +O(ε ln ε δl−2).

Replace domain of integration W ′
1
K with WK

1 in the last expression. This
gives an additional error O(ε ln ε δl−2). We get

mes W ′
1 =

∫
WK

1

exp

− K∫
0

F (γ̄)dτ

 dpKdqKdzK +O(ε ln ε δl−2).

In the last expression we can use action-angle variables JK , ϕK instead of
pK , qK as independent variables. As integrand does not depend on ϕK , we
get

mes W ′
1 = 2π

∫
ΓK1

exp

− K∫
0

F(γ̄)dτ

 dJKdzK +O(ε ln ε δl−2).

Let us make in the outer integral the transformation of variables (JK , zK) 7→
(J0, z0) by means of the formula ḡK1 (γ0) = γK , where γ0 = (3, z0, J0), γK =
(1, zK , JK). We get

mes (W ′
1) = 2π

∫
Γ

Ω0,K(γ0)dJ0dz0 +O(ε ln ε δl−2),
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where

Ω0,K(γ0) = exp

− K∫
0

F(γ̄)dτ

 ∂(JK , zK)

∂(J0, z0)
, γ̄ = ḡτ1 (γ0).

Lemma 5.2
Ω0,K(γ0) = P1(z∗) = Θ1(z∗)/Θ3(z∗),

where z∗ = z∗(γ
0) is the value of z at the moment of the separatrix crossing

for the solution of averaged system ḡτ1 (γ0).

This Lemma is proved in Subsection 5.4.2.

Because of Lemma 5.2

mes W ′
1 = 2π

∫
Γ

P1(z∗)dJ
0dz0 +O(ε ln ε δl−2). (5.2)

As W ′
1 ⊆ W1 ∪ w and mes w = O(εr δl−1), so

mes W ′
1 < mes W1 +O(εr δl−1).

In completely analogous way, but for the index ν = 2, we get that there
exists a set W ′

2 ⊆ W2 ∪ w such that

mes W ′
2 = 2π

∫
Γ

P2(z∗) dJ
0dZ0 +O(ε ln ε δl−2), (5.3)

mes W ′
2 < mes W2 +O(εr δl−1).

Consider relations

mes W ′
1 < mes W1 +O(εr δl−1), (5.4)

mes W ′
2 < mes W2 +O(εr δl−1),

mes W1 + mes W2 = mes W +O(εr δl−1),

mes W ′
1 + mes W ′

2 = mes W +O(ε ln ε δl−2).

To get the last equality, it is enough to add (5.2) and (5.3), and to take into
account that P1 + P2 = 1. From (5.4) we get

mes W1 = mes W −mes W2 +O(εrδl−1) = mes W ′
1 + mes W ′

2 −mes W2 +O(ε ln εδl−2)

< mes W ′
1 +O(ε ln ε δl−2),
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and, on the other hand,

mes W1 > mes W ′
1 +O(εr δl−1).

Therefore we get

mes W1 = mes W ′
1 +O(ε ln ε δl−2) = 2π

∫
Γ

P1(z∗) dJ
0dz0 +O(ε ln ε δl−2) =

=

∫
W

P1(z∗)dp
0dq0dz0 +O(ε ln ε δl−2),

and analogous expression for W2. Proposition 2.4 is proved.

5.3 Proof of Proposition 2.5

Let I, ϕ mod 2π be the action-angle variables of the system with Hamiltonian
E in a neighbourhood of the set W δ. Consider in system (2.1) variable ϕ
as a new time. For I, z we get a nonautonomous system of l − 1 equations.
Consider for this system extended phase space with space variables I, z, ϕ
and a new time ϑ : dϑ/dϕ = 1. Now for ϕ, I, z we have

ϕ′ = 1, I ′ = εf4, z
′ = εf5 .

Here “prime” denotes derivative with respect to ϑ, fi = fi(ϕ, I, z, ε), j =
4, 5, are smooth functions. Denote uϑ the operator of the shift along the
trajectories of this system during the time ϑ. Consider the sequence of the
sets

u2sδ(U δ), s = 0, 1, ..., N − 1, N = [π/δ] .

Only adjoining sets in this sequence can intersect each other. The measure
of any such intersection is O(εδl−1). Making use of the fact that the shift
along the trajectories of this system during the time O(1) distorts measure
only with a coefficient 1 +O(ε), we get

mes
N−1⋃
s=0

u2sδ(U δ) = N mesU δ +O(εδl−2). (5.5)
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Analogous reasoning for sets U δ
ν , ν = 1, 2, gives the estimate

mes
N−1⋃
s=0

u2sδ(U δ
ν ) = N mesU δ

ν +O(εδl−2). (5.6)

Then

mes (W δM
N−1⋃
s=0

u2sδ(U δ)) = O(εδl−2 + δl), (5.7)

mes (W δ
νM

N−1⋃
s=0

u2sδ(U δ
ν )) = O(εδl−2 + δl).

Here it is taken into account that uϑ(U δ
ν ) ∩W δ ⊆ W δ

ν ∪ w; M is the symbol
of symmetric difference of sets. From (5.5) - (5.7) we get

mes U δ =
1

N
mes W δ +O(εδl−1 + δl+1),

mes U δ
ν =

1

N
mes W δ

ν +O(εδl−1 + δl+1),

mes U δ
ν

mes U δ
=

mes W δ
ν

mes W δ
+O(δ +

ε

δ
).

From here and from the result of Proposition 2.4 we get

mes U δ
ν

mes U δ
=

Θν(ẑ∗)

Θ3(ẑ∗)
+O

(
δ +

ε| ln ε|
δ

)
.

This was the assertion of Proposition 2.5.

5.4 Proofs of Lemmas on measure estimates

5.4.1 Proof of Lemma 5.1

Denote

χ = χ(p, q, z, ε) =
∂f1

∂q
+
∂f2

∂p
+
∂f3

∂z
, χ0 = χ(p, q, z, 0).

We have
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ε

Kε−1∫
0

χdt = ε

Kε−1∫
0

χ0dt+O(ε) (5.8)

= ε

t′−∫
0

χ0dt+ ε

t′+∫
t′−

χ0dt+ ε

Kε−1∫
t′+

χ0dt+O(ε),

where t′− and t′+ are the moments of the time analogous to the moments
t−, t+ introduced in Subsection 2.5, but for initial conditions from WK

1 . As
t′− − t′+ = O(ln ε), so the second term in the right hand side of the last
equality is O(ε ln ε).

For 0 ≤ t ≤ t′− we will consider motion round by round, as it was done
in Section 3. Suppose for simplicity of the exposition that during any round
the phase point crosses the ray Cη just one time, and that the motion takes
place in the region |E| < 1/2. Denote t1 < t2 < ... < tN the successive
moments of the crossing of Cη, ti ∈ (0, t′−). According to Lemma 3.5 and
its Corollary, we have

ε

ti+1 − ti

ti+1∫
ti

χ0dt =
ε

T (h(ti), z(ti))

∮
E=h(ti)

χ0dt+ ε2O
(
h−1(ti) ln−1 h(ti)

)
.

(5.9)
According to Propositions 2.1 - 2.3

|h(ti)−H1(ti)|+ |z(ti)− Z1(ti)| = O

(
ε ln ε

lnH1(ti)

)
, (5.10)

1

2
H1(ti) < h(ti) < 2H1(ti).

From (5.9), (5.10), making use of Lemma 3.4 and estimate (4) of Lemma 3.2
we get

ε

ti+1 − ti

ti+1∫
ti

χ0dt =
ε

T (H1(ti), Z1(ti))

∮
E=H1(ti)
z=Z1(ti)

χ0dt+O

(
ε2 ln ε

H1(ti) ln3H1(ti)

)
.
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Let us multiplay the left and right hand sides of this equality by
ti+1 − ti = O(lnH(ti)) and sum up the obtained estimates. Taking into
account that t1 = O(1), tN = t′− +O(ln ε), we get

ε

t′−∫
0

χ0dt =
N∑
i=1

1

T (H1(ti), Z1(ti))
(

∮
E=H1(ti)
z=Z1(ti)

χ0dt ) ε(ti+1 − ti) +O(ε ln ε).

The sum in the right hand side can be represented as an integral with an
accuracy O(ε ln ε). Therefore, we have

ε

t′−∫
0

χ0dt =

τ∗∫
0

F(γ̄)dτ +O(ε ln ε),

where τ∗ is the moment of the separatrix crossing in the averaged system. In
the analogous way

ε

Kε−1∫
t′+

χ0dt =

K∫
τ∗

F(γ̄)dτ +O(ε ln ε).

Results of Lemma 5.1 follow from these estimates and (5.8).

5.4.2 Proof of Lemma 5.2

Let τ3 and τ1 be any numbers such that 0 ≤ τ3 < τ∗ < τ1 ≤ K. Here
τ∗ = τ∗(γ

0) is the moment of the separatrix crossing for ḡτ1 (γ0). Denote

ḡτ31 (γ0) = γ(3) = (3, z(3), J (3)), ḡτ11 (γ0) = γ(1) = (1, z(1), J (1)).

Each of values γ0, γ(3), γ(1), γK defines all others. These values can be defined
also through τ∗, z∗. Denote

Ωτ3,τ1 = exp

− τ1∫
τ3

F(γ̄)dτ

 ∂(J (1), z(1))

∂(J (3), z(3))
. (5.11)

Similarly define Ω0,τ3 and Ωτ1,K . Then

Ω0,K = Ω0,τ3Ωτ3,τ1Ωτ1,K .
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Lemma 5.3 Ω0,τ3 = 1, Ωτ1,K = 1 .

This Lemma is proved in Subsection 5.4.3.

Corollary 5.1 Ω0,K = Ωτ3,τ1 .

Now let τ3 and τ1 tend to τ∗. The first multiplier in (5.11) tends to 1.
Therefore

Ω0,K = lim
τ3→τ∗−0
τ1→τ∗+0

∂(J (1), z(1))

∂(J (3), z(3))
= lim

τ1→τ∗+0

∂(J (1), z(1))

∂(τ∗, z∗)

/
lim

τ1→τ∗−0

∂(J (3), z(3))

∂(τ∗, z∗)
.

Let us calculate these limits. Denote F and Φ the right hand sides of the
averaged equations for I and z respectively. Then

J (1) =
1

2π
S1(z∗) +

τ1∫
τ∗

Fdτ , z(1) = z∗ +

τ1∫
τ∗

Φdτ .

Integrals here are calculated along the solution of the averaged system ḡτ1 (γ0),
and S1 = S1(z) is the area of the region G1(z). Making use of the formulas
for the right hand sides of averaged system (2.3), (2.7), we get

lim
τ1→τ∗+0

∂J (1)

∂τ∗
= − lim

τ1→τ∗+0
F =

1

2π

Θ1(z∗) +

∮
l1

∂E

∂z
dt

 f 0
3c

 ,

lim
τ1→τ∗+0

∂z(1)

∂τ∗
= − lim

τ1→τ∗+0
Φ = −f 0

3c,

lim
τ1→τ∗+0

∂J (1)

∂z∗
=

1

2π

∂S1

∂z∗
= − 1

2π

∮
l1

∂E

∂z
dt,

lim
τ1→τ∗+0

∂z(1)

∂z∗
= 1l−2.

Here 1l−2 is the unit (l− 2)× (l− 2) matrix; f 0
3c is the value of the function

f 0
3 at the saddle point C for z = z∗. Making use of these relations, we get

lim
τ1→τ∗+0

∂(J (1), z(1))

∂(τ∗, z∗)
=

∣∣∣∣∣∣∣
1

2π

(
Θ1(z∗) +

(∮
l1

∂E
∂z
dt

)
f 0

3c

)
, − 1

2π

∮
l1

∂E
∂z
dt

−f 0
3c, 1l−2

∣∣∣∣∣∣∣ =
1

2π
Θ1(z∗) .
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Similarly,

lim
τ3→τ∗−0

∂(J (3), z(3))

∂(τ∗, z∗)
=

1

2π
Θ3(z∗) .

Finally we have
Ω0,K = Θ1(z∗)/Θ3(z∗) .

This was the assertion of Lemma 5.2.

5.4.3 Proof of Lemma 5.3

To avoid long calculations with derivatives we will use known results about
the averaging method. Denote Γ0 a neighbourhood of the point (3, z0, J0)
such that ḡτ1 (γ) does not cross the separatrix for 0 ≤ τ ≤ τ1 and γ ∈ Γ0.
Let W0 = Π−1(Γ0), where Π is the standard projection from p, q, z-space to
γ = (ν, z, J)-space. The reasoning of the Subsection 5.1 shows that there
exists a set W ′

0 ∈ W0 such that

mes W0
′ = mes W0 +O(ε),

mes W0
′ = 2π

∫
Γ0

Ω0,τ3dJ
0dz0 +O(ε).

From here

mes W0 − 2π

∫
Γ0

Ω0,τ3dJ
0dz0 = O(ε).

As the left hand side does not depend on ε, so

mes W0 = 2π

∫
Γ0

Ω0,τ3dJ
0dz0 =

∫
W0

Ω0,τ3dp
0dq0dz0.

Therefore Ω0,τ3 = 1. Similarly, Ωτ1,K = 1. Lemma 5.3 is proved.

5.5 A rule for calculation of probabilities

A heuristic reasoning of [14, 21], which leads to the formulas of Section 2 for
probabilities of capture into different regions, is exposed in this subsection.
This reasoning can be used as, in some sense, a rule, as it allows to calculate
probabilities in general case of systems of form (2.1), for other than in Fig.
2 types of phase portraits. This reasoning is justified by Proposition 5.1 of
this subsection.
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5.5.1 A scheme of calculation of probabilities

The following reasoning does not pretend to be rigorous. A corresponding
rigorous assertion is formulated at the end of this subsection. Let Cξη =

Cξη(z) be the system of principal axes for the saddle point C oriented as
in Fig. 2. Let a phase point (p(t), q(t)) start moving at a moment of time
t = t′ with z = z′, E = h′ from the ray Cη. Denote Θν = Θν(z

′). The point
(p(t), q(t)) first makes a curve l′2, which is close to l2(z). At the end of this
curve

E = h′′ = h′ +

∫
l′2

dE

dt
dt ≈ h′ +

∫
l2

dE

dt
dt = h′ − εΘ2 .

If 0 < h′ < εΘ2, then h′′ < 0, i.e. the phase point is captured into the region
G2. If h′ > εΘ2, then in further motion the phase point makes a curve l′1,
which is close to l1(z′). At the end of this curve E = h′′′ ≈ h′−ε(Θ1 +Θ2). If
εΘ2 < h′ < ε(Θ1 +Θ2), then h′′′ < 0, i.e. the phase point is captured into the
region G1. If h′ > ε(Θ1 + Θ2), then h′′′ > 0, i.e. the phase point comes back
to Cη. Introduce intervals κ1 = (εΘ2, ε(Θ1 + Θ2)), κ2 = (0, εΘ2, ), κ3 =
(ε(Θ1 + Θ2),∞), κν = κν(z′). In accordance with the previous explanation,
points with h′ ∈ κ3 will come back to Cη and after several rounds will arrive
to κ1 ∪ κ2. Points with h′ ∈ κν , ν = 1, 2, will be captured into Gν . The
measure of the subset of U δ, which will be captured into Gν , is proportional
to the length of the interval κν(ẑ∗) (because the majority of points from U δ

have z ≈ ẑ∗ when cross Cη for the last time, and the phase flux through κν
is equal in the principal approximation to the length of κν). Thus

Qν(M̂0) =
length κν

length κ1 + length κ2

=
Θν(ẑ∗)

Θ1(ẑ∗) + Θ2(ẑ∗)
.

The following assertion corresponds to the previous reasoning.

Proposition 5.1 Let at a moment of time t′ a point (p(t′), q(t′)) lie on the
axis Cη(z′) in k−1

3 -neighbourhood of the point C, and z′ ∈ B − k−1
4 , h′ =

E(p(t′), q(t′), z(t′)). Introduce intervals (Fig. 8)

κ′1 = (εΘ2 + k5ε
3/2, ε(Θ1 + Θ2)− k5ε

3/2),

κ′2 = (k5ε
3/2, εΘ2 − k5ε

3/2),

κ′3 = (ε(Θ1 + Θ2) + k5ε
3/2, k−1

6 ) .
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Figure 8: For calculation of probabilities.

Then the following holds.
10. If h′ ∈ κ′ν , ν = 1, 2 then the phase point does not cross Cη again for

t > t′. There exists tν = t′+O(ln ε) such that (p(tν), q(tν)) ∈ Gν(z(tν)), h(tν) =
−k2ε.

20. If h′ ∈ κ′3, then there exists t3 > t′ such that (p(t3), q(t3)) ∈ Cη(z(t3)), h′−
h(t3) > k−1

7 ε.

Remarks.
1. Constant k2 was introduced in Proposition 2.1.
2. Making use of Proposition 5.1 it is possible to prove formula for the

probability (2.13). It is possible to prove also the result analogous to Propo-
sition 2.4 but with more rough estimate: O(

√
ε) instead of O(ε ln ε).

3. The proof of the formula for the probability in previous sections uses
essentially that separatrices divide phase space into three regions. But some-
times, because of an additional symmetry of the problem, a system has sev-
eral saddle points connected by separatrices, and in these cases phase space
can be divided into four or more regions (see, for example, [22]). Formulas
for probabilities for these cases can be obtained by means of a reasoning,
analogous to that used at the beginning of this section. These formulas can
be justified by means of an assertion analogous to Proposition 5.1.

5.5.2 Proof of Proposition 5.1

Let us restrict ourselves by proving of assertion 10 for ν = 2. The proofs of
other assertions are completely analogous. Denote

χ = χ(p, q, z, ε) =
∂E

∂q
f1 +

∂E

∂p
f2 +

∂E

∂z
f3 .
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Choose any k4 such that B − k−1
4 is not empty. For z ∈ B − 1

2
k−1

4 we have∮
l2

|χ|dt < c1 .

We may assume that the quadratic part of the Hamiltonian E near the saddle
point C in the variables η, ξ has the form 1

2
ω0(z)(η2 − ξ2), ω0 > 0. Denote

x = (ξ − η)/
√

2, y = (ξ + η)/
√

2 (cf. Fig. 7). Let Ψ = Ψ(y, x, z) be the
Hamiltonian E, expressed through y, x, z:

Ψ = −ω0yx+O(|y|3 + |x|3) .

Lemma 5.4 Let z ∈ B − 1
2
k−1

4 , |x| < d−1
1 , |y| < d−1

1 . If |y| ≥ |x|, then

∂Ψ

∂x
= −ω0y +O(y2) .

If |y| < |x|, then
∂Ψ

∂y
= −ω0x+O(x2) .

The proof is evident.

Corollary 5.2 For 0 < |y| < d−1
2 < d−1

1 , |h| < d−1
3 , |x| ≤ y the equation

Ψ(y, x, z) = h defines a unique x = x̃(y, h, z) such that |x| < d−1
1 . Function

x̃ is smooth and
∂x̃

∂h
=

1

∂Ψ/∂x
,
∂x̃

∂z
= −∂Ψ/∂z

∂Ψ/∂x
.

For 0 < |x| < d−1
2 , |h| < d−1

3 , |y| ≤ |x| the equation Ψ = h defines in the
analogous manner y = ỹ(x, h, z).

Denote y(t), x(t) the values of y, x at the point p(t), q(t), z(t). We have
y(t′) = −x(t′) > 0. Let ε3/2 < h(t′) < εΘ2(z′). Denote t1∗ the supremum of
moments of time t1 > t′ such that for t′ ≤ t ≤ t1 the solution p(t), q(t), z(t)
is defined and meets the conditions

|x(t)| < d−1
1 , 0 < y(t) < d−1

2 , z(t) ∈ B − 3

4
k−1

4 , (5.12)

|y(t)| > |x(t)|, y(t) > ε7/8
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(the set of such t1 is not empty, as ẏ(t′) > −ẋ(t′) ). Denote y1∗ = y(t1∗).
For t′ ≤ t ≤ t1∗ we have

ẏ = ω0y +O(y2) +O(ε) > c−1
2 y , (5.13)

t1∗ − t′ =

y1∗∫
y(t′)

dy

ẏ
< c2

y1∗∫
y(t′)

dy

y
< c2 ln

y1∗

y(t′)
= O(ln ε) ,

z(t)− z(t′) = O(ε ln ε) ,

|h(t)− h(t′)| ≤ ε

t∫
t′

|χ|dt < c2ε

y(t)∫
y(t′)

|χ|dy
y

= ε

y(t)∫
y(t′)

O(1)dy = O(ε) .

The obtained inequalities show that at the moment of time t1∗ all conditions
in (5.12) but the inequality y(t) < d−1

2 are satisfied with some margins.
Therefore y(t1∗) = d−1

2 .
The obtained inequalities allow to give more accurate estimate of h(t1∗):

h(t1∗) − h(t′) = ε

t1∗∫
t′

χdt = ε

d−1
2∫

y(t′)

χdy

−∂Ψ/∂x+O(ε)

= ε

d−1
2∫

y(t′)

(
− χ

∂Ψ/∂x

)
E=0
z=z′
ε=0

dy − ε
d−1
2∫

y(t′)

( χ

∂Ψ/∂x+O(ε)

)
E=h(t)
z=z(t)

−
(

χ

∂Ψ/∂x

)
E=0
z=z′
ε=0

 dy .
By means of (5.12), Lemma 5.4 and its Corollary, the integrand in the second
integral for y >

√
ε is estimated as

O

(
ε

y2

)
+O

(
ε ln ε

y

)
.

For ε7/8 < y <
√
ε the integrands in both integrals are O(1). Therefore

h(t1∗)− h(t′) = −ε
d−1
2∫

0

(
χ

∂Ψ/∂x

)
E=0
z=z(t′)
ε=0

dy +O(ε3/2) .

Here the integral is calculated over a segment of the unperturbed separatrix.

60



In the further motion the phase point makes a curve situated in O(ε ln ε)-
neighbourhood of the unperturbed separatrix for z = z′ and arrives at the
segment x = d−1

2 , |y| < d−1
1 at a moment of time t2∗ = t1∗ + O(1) having

E = O(ε). The change of E along this curve with an accuracy O(ε2 ln ε) is
equal to the integral of function εχ(p, q, z′, 0) along the corresponding part
of the unperturbed separatrix.

Then, through the time O(ln ε), at some moment of time t3∗, the phase
point arrives either at the ray x = y+c3ε > 0 or at the ray x = −y+c3ε > 0.
The motion for t ∈ (t2∗, t3∗) is considered in completely analogous way to that
for t′ ≤ t ≤ t1∗. The change of E with an accuracy O(ε3/2) is equal to the
integral of εχ(p, q, z′, 0) along the segment of the unperturbed separatrix with
0 ≤ x ≤ d−1

2 , |y| < d−1
1 . Therefore h(t3∗) = h(t′)− εΘ2(z′) +O(ε3/2).

If
k5ε

3/2 < h(t′) < εΘ2(z′)− k5ε
3/2 ,

then

−εΘ2(z′) +
1

2
k5ε

3/2 < h(t3∗) < −
1

2
k5ε

3/2

Therefore at the moment of time t3∗ the phase point lies in the region
G2(z(t3∗)). Condition h(t3∗) < −1

2
k5ε

3/2 and Lemma 5.4 allow to estimate
η̇ from below by a value of order ε3/4. Making use of this estimate we can
show that at a moment of time t′′ = t3∗ +O(ε1/4) the phase point arrives at
the ray Cξ having h(t′′) = O(ε), h(t′′) < −1

4
k5ε

3/2.
Further motion is considered in an analogous manner. While −k2ε <

h(t) < 2c1ε the phase point moves round by round making curves near the
unperturbed separatrix l2. One round takes time O(ln ε), the value of E
during one round decays by εΘ2(z′)+O(ε3/2) > c−1

3 ε. Therefore, there exists
a moment of time tν = t′ + O(ln ε) such that h(tν) = −k2ε, (p(tν), q(tν)) ∈
Gν(z(tν)). This is the assertion of Proposition 5.1.

Acknowledgment. The author is thankful to N.R.Lebovitz for com-
ments, discussions, and help, to A.Bolsinov for advices on integrable systems.
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A Appendix. Perturbations of polyintegrable

systems and separatrix crosings

The goal of this Appendix is to give a general description of the problem
of separatrix crossing in single-frequency systems and to demonstrate, that
under rather general assumptions the study of this problem can be reduced
to study of separatrix crossing in system (2.1). The exposition here follows
mainly [4], Subsection 6.1.10.

A natural framework for studying one-frequency averaging is the frame-
work of perturbations of polyintegrable superintegrable (also called Nambu)
systems 2. In this problem the equations of motion have the form

ẋ = v(x, ε), x ∈ D ⊆ Rl, 0 < ε� 1, v(x, ε) = v0(x)+v1(x, ε) . (A.1)

Here D is a bounded domain in Rl. We assume that the unperturbed (ε = 0)
system is polyintegrable, i.e. it has l − 1 smooth first integrals H1, . . . , Hl−1

which are independent almost everywhere in D. We assume that the domain
D contains, together with each point, also the entire connected component
of the common level set (a level line) of the integrals passing through this
point. Then a level line on which the first integrals are independent is a
smooth closed curve. In any domain filled by such level lines system (A.1)
can be reduced to the standard form of a system with one rotating phase.

To introduce a framework for separatrix crossing we assume that:
a) the rank of the Jacobi matrix of the map H : D → Rl−1 given by H(x) =
(H1(x), . . . , Hl−1(x)) is equal to l − 1 everywhere but on a smooth l − 2
dimensional surface, where it equals to l − 2 ;
b) at each point, where the rank equals l−2, the restriction of one of integrals
onto the joint level of other integrals has a non-degenerate critical point;
c) at equilibrium positions of the unperturbed system (A.1) two eigenvalues
are non-zero real numbers (the other eigenvalues are equal to 0 because of
the existence of the integrals).

Then points, where the rank of the map H equals l − 2, coincide with
equilibria of system (A.1) for ε = 0, the sum of non-zero eigenvalues equals
0 for such an equilibrium. We call separatrices the common level lines that
pass through these points as well as a union of such level lines. Under the
action of the perturbation phase points can cross separatrices.

2See [3] for description of properties of polyintegrable systems.
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Assume that functions H1, . . . , Hl−2 are independent on separatrices. The
values z1, . . . , zl−2 of these functions from some ball in Rl−2 can be taken as
new variables. Joint levels of these functions form l− 2-parametric family of
2-dimensional surfaces Sz, z = (z1, . . . , zl−2). Unperturbed dynamics on each
of these surfaces is described by a Hamiltonian system with one degree of
freedom for which the restriction E of the function Hl−1 onto this surface is
Hamilton’s function, but the symplectic structure may be non-canonical. The
phase portrait of each of these systems contains a saddle point and passing
through it separatrices. In a neighbourhood of separatrices the phase portrait
has the same form as in Fig. 2 and can be considered as a portrait in R2.
(Notice that this does not depend on topology of Sz. For example, the phase
portrait of the pendulum, Fig. 1, should be considered on a cylinder, but
a neighbourhood of separatrices can be put in R2 as a neighbourhood of
separatrices of the form shown in Fig. 2.)

Let p̃, q be Cartesian coordinates in R2. In these coordinates, in a neigh-
bourhood of separatrices, the symplectic structure has a form µ(p̃, q, z)dp̃∧dq,
µ(p̃, q, z) 6= 0. Define in a neighbourhood of separatrices a function p =
p(p̃, q, z) such that ∂p/∂p̃ = µ(p̃, q, z). In the variables p, q the symplectic
structure takes the canonical form dp ∧ dq, and equation (A.1) takes the
form (2.1). Thus, the results in Subsection 2.4 for system (2.1) describe also
separatrix crossing for (A.1).

One can also consider separatrix crossings directly for perturbations of a
polyintegrable system. The phase space of the averaged system is the set of
common level lines of the integrals of the unperturbed system, which has the
natural structure of a manifold with singularities [6] (singularities correspond
to a separatrix). The averaged system approximately describes the evolution
of the slow variables - values of the integrals of the unperturbed system. The
probabilities of falling into different domains after a separatrix crossing are
expressed in terms of ratios of the quantities

Θ̃i(z) = −
∮
li(z)

(
β1(z)

∂H1

∂x
+ . . .+ βl−1(z)

∂Hl−1

∂x

)
v1(x, 0)dt ,

where z parametrises the surface of singular points (“saddles”) of the un-
perturbed system, βj are coefficients such that the expression inside the
parentheses in the integrand vanishes at singular points, and li = li(z) is
a separatrix.
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