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We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional
nonlinear Schrödinger equation. This is done theoretically and experimentally, by realizing an optical
fiber experiment in which the defocusing Kerr nonlinearity strongly dominates linear dispersive
effects. Using a dispersive-hydrodynamic approach, we show that the development of IT can be
divided into two distinct stages, the initial, pre-breaking stage being described by a system of
interacting random Riemann waves. We explain the low-tailed statistics of the wave intensity in IT
and show that the Riemann invariants of the asymptotic nonlinear geometric optics system represent
the observable quantities that provide new insight into statistical features of the initial stage of the
IT development by exhibiting stationary probability density functions.

Propagation of nonlinear random waves has recently
received much attention in many areas of modern physics
such as nonlinear statistical optics [1–4], hydrodynamics
[5], mechanics [6], and cold-atom physics [7]. In all these
areas a broad class of wave phenomena is modelled by in-
tegrable nonlinear partial differential equations (PDEs).
Although the fundamental role of integrable PDEs has
been established since the pioneering work of Fermi,
Pasta and Ulam in the 1950s [8] the significance of ran-
dom input problems for such systems was realized only
recently, leading to the concept of integrable turbulence
(IT) [9–17]. In this context, the one-dimensional nonlin-
ear Schrödinger equation (1D-NLSE) plays a prominent
role because it describes at leading order wave phenom-
ena relevant to many fields of nonlinear physics.

It is now well established from experiments and nu-
merical simulations that heavy-tailed (resp. low-tailed)
deviations from gaussian statistics occur in integrable
wave systems ruled by the focusing (resp. defocusing)
1D-NLSE [11–13, 15]. The heavy-tailed deviations from
gaussian statistics have their origin in the random for-
mation of bright coherent structures having properties
of localization in space and time similar to rogue waves
[12, 13, 18]. On the other hand, the low-tailed deviations
are due to random generation of dispersive shock waves
(DSWs) and dark solitons [11, 15]. One of the key fea-
tures of IT is the establishment, at long evolution time, of
a state in which the statistical properties of the wave sys-
tem remain stationary. Due to integrable nature of the
system, the long-time statistics depends on the statistics
of the input random process (cf. [10–12, 15]). So far,
there has been no satisfactory theoretical framework de-
veloped for the description of statistical features of IT
due to high complexity of nonlinear wave interactions
occurring over the course of its development.

In this Letter, we examine IT in optical systems de-
scribed by the defocusing 1D NLSE from the perspective
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of dispersive hydrodynamics [19], a semi-classical the-
ory of nonlinear dispersive waves exhibiting two distinct
spatio-temporal scales: the long scale specified by initial
conditions and the short scale by the internal coherence
length (i.e. the typical size of the coherent structures).
This scale separation enables one to split the develop-
ment of IT into distinct stages characterized by qualita-
tively different dynamical and statistical features.

At the initial, pre-breaking stage of dispersive-
hydrodynamic IT nonlinear effects dominate linear dis-
persion and the wave fronts of the random initial field
experience gradual steepening leading to the formation
of gradient catastrophes that are regularized through the
generation of DSWs [20]. As numerical simulations re-
ported in ref. [15] show, the pre-breaking stage of IT
is characterized by significant deviations from the gaus-
sian statistics exhibiting the low-tailed probability den-
sity function (PDF) for the wave’s intensity, see also Fig.
1(b). In the post-breaking regime, the evolution of the
statistics of the random wave field is determined by inter-
actions among DSWs leading to further deviations from
gaussianity (see ref. [15] and Fig. 1(c) showing the PDFs
before the occurrence of wave breaking (ξ = 0.156) and
at long evolution distance (ξ = 1.56), in the statistical
stationary state).

In this work, we provide a quantitative explanation
of the occurrence of non-gaussian statistics at the pre-
breaking stage of the IT development by analysing so-
lutions of the defocusing 1D-NLSE in the zero disper-
sion (nonlinear geometric optics) limit, where the dy-
namics can be interpreted in terms of interacting Rie-
mann waves. Moreover, we show that Riemann invari-
ants diagonalising the geometric optics system represent
also the relevant statistical variables in IT, exhibiting sta-
tionary PDFs, in sharp contrast with evolving statistical
distributions of the instantaneous power.

We consider the defocusing integrable 1D-NLSE in di-
mensionless form:

iε
∂ψ

∂ξ
+
ε2

2
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∂τ
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In the optical fiber experiment realized in our work,
ψ(ξ, τ) is the slowly-varying envelope of the electric field
A that is normalized to the square root of the mean
optical power ρ̄0 of the partially coherent field propa-
gating inside the fiber (ψ = A/

√
ρ̄0). It is usual in

nonlinear fiber optics to introduce a nonlinear length
LNL = 1/(γρ̄0) and a linear dispersion length LD =
2/(β2[∆ν0]2). γ and β2 are the Kerr and the second-
order dispersion coefficients of the optical fiber, respec-
tively (β2 = +20ps2km−1, γ = +6W−1km−1, normal
dispersion regime). ∆ν0 represents the width of the spec-
trum of power fluctuations of the wave injected inside the
optical fiber. With our notations, the propagation dis-
tance z along the fiber is normalized as ξ = z/

√
LNLLD,

the physical time t is normalized as τ = t/T0 with

T0 = 1/∆ν0 and ε =
√
LNL/LD is the dispersion pa-

rameter which in our experiment is about 0.014.
Considering ε to be a small parameter we introduce

the semi-classical Madelung transformation ψ(ξ, τ) =√
ρ(ξ, τ)ei

φ(ξ,τ)
ε to obtain to leading order in ε the non-

linear geometric optics equations for the the instanta-
neous power ρ(ξ, τ) and the instantaneous frequency
u(τ, ξ) = φτ of the optical wave [21–25]

ρξ + (ρu)τ = 0, uξ + uuτ + ρτ = 0 . (2)

Eqs. (2) are identical to the shallow-water equations for
an incompressible fluid with ρ > 0 and u interpreted as
the fluid height and the depth-averaged horizontal fluid
velocity respectively and with the roles of space ξ and
time τ interchanged. System (2) was rigorously proved
in [26] to describe the pre-breaking NLS dynamics in the
semi-classical (ε→ 0) limit.

Upon introducing Riemann invariants r1,2(ξ, τ) = u±
2
√
ρ as new variables, the system (2) becomes [20]

∂r1,2
∂ξ

+ V1,2
∂r1,2
∂τ

= 0, V1,2 =
3

4
r1,2 +

1

4
r2,1. (3)

For non-constant r1,2 system (3) describes the propaga-
tion of two interacting Riemann waves (RWs) [27].

Fig. 1 shows a typical result of the numerical integra-
tion of Eq. 1 by taking a random field ψ(ξ = 0, τ) having
gaussian statistics as initial condition. This random ini-
tial field is composed of a sum of independent Fourier
modes with random phases, see Supplemental Material
and ref. [15, 28]. Fig. 1 reveals the contrasting be-
haviours of dynamics and statistics of ρ and r1,2 at the
pre-breaking stage of IT.

As shown in Fig. 1(a), the front edges of ρ experience
some steepening while the changes in ρ are more pro-
nounced at the points where the random field exhibits
local maxima. At the same time, Fig. 1(b) reveals that
Riemann invariants r1,2 of the wave system behave as
counterpropagating random waves, as it can be antici-
pated from Eq. (3).

The dynamical features evidenced in Fig. 1(a),(b) de-
termine the statistical properties characterizing IT in the
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FIG. 1: Numerical simulation of Eq. (1) between ξ = 0 and
ξ = 0.156 with ε = 0.014. Time evolution of (a) ρ, (b) r1,2
and (c), (d) associated PDFs. In (c) the black dashed line
represents the exponential distribution P(ρ) = e−ρ and in (d),

it represents the Rayleigh distribution (P(x) = 2xe−x
2/2).

The PDF in green line in (c) is obtained at ξ = 1.56 where
the wave system has reached a statistical stationary state.

pre-breaking regime. As shown in Fig. 1(c) and also pre-
viously reported in ref. [11, 15], the PDF of ρ exhibits
low-tailed deviations from the exponential distribution
that arise from changes in ρ seen in Fig. 1(a). Contrast-
ingly, the numerical simulations suggest that the PDFs
of the Riemann invariants r1,2 in IT remain stationary,
despite the noticeable evolution of r1,2 themselves (see
Fig. 1(b) for the evolution of r1,2 and Fig. 1(d) for the
PDF of r1/2). Moreover, as the initial velocity u is close
to zero, the stationary PDFs of r1,2 are very close to the
Rayleigh distribution shown in Fig. 1(d) by a dashed
line.

The contrasting nature of the evolutions of the PDFs
of ρ and r1 (or r2) evidenced by the numerical simula-
tions presented in Fig. 1 represents a striking feature
that provides a new insight into the initial pre-breaking
stage of the development of IT. Going beyond numeri-
cal simulations, we have used an analytical approach to
investigate dynamical and statistical features typifying
random Riemann waves.

First, we show that the dynamical evolution presented
in Fig. 1(a) can be analyzed from the shallow water equa-
tions (2) with random initial conditions ρ(τ, 0) = ρ0(τ),
u(τ, 0) = u0(τ), whose statistics is defined by the input
Gaussian process ψ(τ, 0). In our typical experimental

and numerical input data, we have u0(τ) �
√
ρ0(τ) so

we shall be assuming u0(τ) = 0 in the analytical develop-
ment. Looking for the asymptotic solution of (2) in the
form of “short-time” expansions for ρ(τ, ξ) and u(τ, ξ) we
readily obtain for ξ � 1:

ρ(τ, ξ) ' ρ0(τ) + 1
4 [ρ20(τ)]′′ξ2, u(τ, ξ) ' −ρ′0(τ)ξ . (4)
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At the points τm of local maxima of ρ0(τ) we have
[ρ20(τm)]′′ = 2ρ0(τm)[ρ0(τm)]′′ < 0 so that the first equa-
tion in (4) immediately implies the appearance of low
tails in the PDF of ρ due to the decrease of the maxi-
mum amplitude of the peaks of fluctuations of ρ with the
evolution variable ξ (note that in the focusing case the
expansion of ρ has the same form (4) but with the mi-
nus sign for the O(ξ2) term explaining the heavy-tailed
statistics observed in [12]).

The stationary nature of the PDF of r1 evidenced in
Fig. 1(d) can be analyzed from Eq. (3) by noticing that
the condition u � √

ρ must be satisfied at least over

some propagation distance since u0(τ) �
√
ρ0(τ). We

obtain that in the regime of our interest V1,2 ≈ 1
2r1,2 and

Eqs. (3) can then be approximated by the system of two
decoupled RWs

∂ri
∂ξ

+
ri
2

∂ri
∂τ

= 0, i = 1, 2. (5)

Evolution of statistical parameters of random RWs has
been studied in the context of Burgers turbulence [29].
One of the straightforward results of the developed the-
ory is that the PDF P(r; ξ) of a random RW field
r(τ, ξ) is invariant with respect to the ξ-evolution, i.e.
P(r; ξ) = P(r; 0). The small u approximation (5) of the
dispersionless dynamics (2) then implies that the PDFs
of the Riemann invariants r1,2 in the full NLS equation
(1) will remain stationary or almost stationary during
the initial evolution of IT.

It should be emphasized that numerical simulations
shown in Fig. 1 are made for the regime in which the
condition u � √ρ of our theoretical analysis is not full-
filled. Hence the numerical results of Fig. 1 reveal that
the conservation of the PDF of Riemann invariants holds
at a much longer (but still pre-breaking) evolution time,
when the two RWs are coupled and their evolution is
governed by Eq. (3) instead of Eq. (5). This statistical
result represents an important extension of the random
RWs theory [29] deserving further theoretical analysis.

Now we report an optical fiber experiment in which we
realize the first observation of random Riemann waves in
a turbulent field. Before presenting our experimental re-
sults, let us emphasize that experimental observations
of RWs that have been reported so far involve the set-
ting implying only one ‘isolated’ RW [30, 31]. In the
nonlinear optics context, this corresponds to imposing
a very special relation between the wave intensity and
the phase gradient (chirp) [32]. Such specially designed
optical RWs have been recently realized in optical fiber
experiments reported in ref. [30] and the wave breaking
dynamics of one simple RW has been also examined in
some recent hydrodynamical experiments [31].

In the context of IT, the intrinsic random nature of
nonlinear waves prevents the realization of a simple set-
ting in which the dynamics of the wave system would
be given by one Riemann invariant while the other one
would remain constant. This has major implications for
the experiment that must be designed in order to mea-

sure not only one hydrodynamical variable but both ρ
and u in a simultaneous way. Moreover the observation
of the changes experienced by the random RWs can be
made only if ρ and u are simultaneously measured at the
input and output ends of the nonlinear medium.

Fig. 2 represents the experimental setup that we have
designed to perform the measurement of Riemann invari-
ants in the context of IT. A partially-coherent light beam
at 1064 nm is generated by a homemade source that has
a narrow linewidth together with a gaussian statistics.
The typical time scale characterizing power fluctuations
of this light source is T0 ∼ 250 ps (∆ν0 = 4 GHz). The
optical power of the beam is amplified to ρ̄0 ∼ 130 mW by
using an Ytterbium fiber amplifier. The partially coher-
ent light beam is linearly-polarized and it is launched in-
side a 1.4 km-long polarization-maintaining (PM) single-
mode optical fiber. In our experiment, the linear and
nonlinear lengths are LD = 6250 km and LNL = 1.3 km
(ε ∼ 0.014). The normalized propagation distance corre-
sponding to the 1.4 km physical distance is ξ = 0.0156.

PM
fiber

Fast
oscilloscope

AmplifierAOM
Partially

coherent
 light source

Local
oscillator

Heterodyne
setup

Data
processing

FIG. 2: Experimental setup. Partially coherent light at 1064
nm is injected inside a 1.4-km-long PM fiber in a regime where
nonlinear effects strongly dominate linear ones (LNL = 1.3
km, LD = 6250 km, ε = 0.014). Real-time observation of
ρ(τ) and of u(τ) at the input and output ends of the PM
fiber is achieved by combining a time-division multiplexing
technique and an heterodyne measurement (see text).

As shown in Fig. 2, the partially-coherent light wave
at the input and output ends of the PM fiber is analyzed
by using a heterodyne setup. The light wave is linearly
mixed with an external laser source, also called local os-
cillator, that delivers stable single-frequency radiation at
1064 nm. Two fast photodiodes having a bandwidth of 50
GHz are used in the heterodyne setup to record the power
fluctuations of the incoherent light wave and the beating
signal between the partially-coherent light and the lo-
cal oscillator. The two photodiodes are connected to a
fast oscilloscope (bandwidth 65 GHz, sampling rate 160
GSa/s). Signals detected by the two photodiodes have
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been carefully synchronized with an accuracy of ∼ 3 ps
by using a mode-locked laser delivering picosecond pulses
and an adjustable delay line, see Supplemental Material
for details about the heterodyne measurement of u and
the synchronization procedure.

The experimental setup incorporates a time-division
multiplexing part that enables the accurate observation
of the nonlinear changes experienced by ρ(τ) and u(τ)
between the input and the output ends of the PM fiber.
An acousto-optic modulator (AOM) is used to periodi-
cally slice square windows with a duration ∆T = 5.7µs
� T0 ∼ 250ps in the light wave that is injected inside
the PM fiber. A 50/50 fiber coupler is used to combine
light beams at the input and at the output ends of the
PM fiber. Hence the heterodyne setup periodically an-
alyzes input light fluctuations and subsequently, output
light fluctuations that are delayed by a time TF ∼ 7 µs
associated with propagation inside the PM fiber. Com-
puting the autocorrelation function of the power fluctu-
ations P (t), we have been able to measure TF with an
accuracy of ±3 ps. Data have been processed in such a
way that light fluctuations at the output of the fiber are
shifted backward in time by TF , which permits the direct
observation of the nonlinear changes experienced by ρ(τ)
and u(τ) inside the PM fiber.
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FIG. 3: Experiments. Time evolution of ρ, u, and of the Rie-
mann invariants r1,2 = u± 2

√
ρ at the input end (ξ = 0) and

at the output end (ξ = 0.0156) of the fiber (T0 = 250 ps).
The black dashed lines represent Riemann invariants calcu-
lated from numerical integration of Eqs. (5) while starting
from the experiment initial conditions (blue lines).

As shown in Fig. 3(a), the experiment reveals dynam-
ical features for ρ(τ) that are similar to those evidenced
by numerical simulations of Fig. 1(a). As shown in Fig.
3(b), the experiment also reveals that the instantaneous
frequency u(τ) does not change in regions where ρ(τ)

reaches extrema, see vertical dashed lines in Fig. 3(a)(b)
indicating that the positions of maxima of ρ coincide with
positions where u stays close to zero. This experimental
result is in full agreement with the expression obtained
for u in Eq. 4.

Fig. 3(c) shows the two Riemann invariants r1,2 =
u±2

√
ρ that are computed from the data plotted in Fig.

3(a)(b). The evolution plotted in Fig. 3(c) agrees quite
well with the one given by Eq. (5). The Riemann in-
variants evolve as two waves that propagate in opposite
directions. Even though the evolution captured by the
experiment between ξ = 0 and ξ = 0.0156 is much less
pronounced than the one evidenced by numerical sim-
ulations of Fig. 1, it should be emphasized that it is
nevertheless significant and in reasonably good agrement
with the evolution predicted by Eq. (5). Indeed, the
dashed black lines in Fig. 3(c) represent the result of
the numerical integration of Eq. (5) between ξ = 0 and
ξ = 0.0156 while starting from initial conditions recorded
in the experiment. The obtained agreement between ex-
periments and numerical simulations is acceptable with-
out being perfect because of limited signal to noise ratio
in the measurement of ρ and u.
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FIG. 4: Experimental PDFs of (a) ρ, (b) r1/2. Blue (resp.
yellow) lines represent PDFs at the input (resp. output) end
of the fiber. In (a) the black dashed line represents the ex-
ponential distribution and in (b), it represents the Rayleigh
distribution.

Statistical features typifying dispersive-hydrodynamic
IT have been investigated from long time series lasting
500µs and including 80.106 points. As shown in Fig.
4(a), the evolution depicted by the PDF of ρ is qualita-
tively similar to the one evidenced in Fig. 1(c) and also
in ref. [11]. On the other hand, as implied by the approx-
imate decoupled RW system (5) the PDF of the Riemann
invariant r1/2 practically does not change with ξ: it is
found to nearly retain the shape of the (initial) Rayleigh
distribution (note that initially R1,2 ≈ ±2

√
ρ), see Fig.

4(c). Note that ∼ 2% of the measured points were ex-
cluded from the statistical analysis giving the PDFs of u
and r1/2. For those points, the value of ρ is indeed too
small for the proper determination of u.

In conclusion, we have examined the development of
IT from the perspective of dispersive hydrodynamics.
Within this framework the initial stage of the IT de-
velopment is described by a system of two interacting
random Riemann waves. Our analysis provides an ele-
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mentary theoretical explanation of the fundamental IT
phenomenon of the appearance of low tails in the PDF
of the wave’s intensity. We have also shown from an op-
tical fiber experiment that Riemann invariants represent
observable quantities that provide new insight into the
description and the understanding of IT. We hope that
the dispersive-hydrodynamic approach used in our work
will pave the way to further theoretical and experimental
studies in this field.
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