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Abstract

This paper proposes a new method for tracking the whole trajectory of a ballistic missile (BM), in a

low-observable environment with ‘imperfect’ sensor measurement incorporating both miss detection

and false alarms. A hybrid system with state dependent transition probabilities is proposed where

multiple state models represent the ballistic missile movement during different phases; and domain

knowledge is exploited to model the transition probabilities between different flight phases in a state-

dependent way. The random finite set (RFS) is adopted to model radar sensor measurements which

include both miss detection and false alarms. Based on the proposed hybrid modeling system and

the RFS represented sensor measurements, a state dependent interacting multiple model particle

filtering method integrated with a generalized measurement likelihood function is developed for the

BM tracking. Comprehensive simulation studies show that the proposed method outperforms the

traditional ones for the BM tracking, with more accurate estimations of flight mode probabilities,

positions and velocities.

Keywords: multiple model, state dependent, random finite set, miss detection, false alarm,

particle filter

1. Introduction

A ballistic missile (BM) is one of the major threats from the air, which poses threats to civilians,

territory and deployed forces. Missile defense systems have been built to intercept a hostile BM(s)

before hitting a target in modern warfare. For the BM interception, one essential step is BM

tracking, which estimates BM information (e.q., position and velocity) provided to a missile defense

system for the interception purpose.

As in [1], the whole BM flight from launching to impacting on the ground typically experiences

three different flight phases: boost, coast and reentry. During those phases, the movement char-

acteristics of the BM are significantly different. Dynamic models corresponding to BM movement
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characteristics within different phases have been illustrated in details in [1], based on which various

of methods have been developed for the BM tracking in different phases.

Li et al. [2] proposed a Maximum Likelihood (ML) algorithm for estimating the launch point of

the BM as well as its position and velocity at a particular acquisition time, using the profile-based

modeling of the missile boost phase and the line-of-sight (LOS) measurements. A kind of adaptive

filter algorithm is proposed in [3] for the boost-phase trajectory estimation. A polynomial model is

suggested and the corresponding process noise variance is constructed to make sure that the state

estimation error approximates the error lower bound of the optimal estimation. In [4], a trajectory

tracking algorithm in the boost phase was proposed based on MLE-CKF federated filter. Unlike

the traditional methods (e.g. the Kalman filtering based ones), the estimation of motion state

and motion model parameters were separated by using maximum likelihood estimation (MLE) and

cubature Kalman filtering (CKF) method. Monte-Carlo simulation results showed the estimation

results of the proposed algorithm are superior to the traditional joint estimation based algorithms

in both the motion state and motion model parameters. Besides, in order to achieve stably tracking

the ballistic target and better adaptability to the flicker noise in the boost phase, a multiple model

based method which combines the unscented Kalman filter and unscented particle filter as in [5] is

proposed for tracking the ballistic missile in the boost phase.

There are also works related to the ballistic missile tracking in other phases. Tracking of the BM

in the coast phase is proposed in [6]. The coast dynamic model is applied and sensor mechanism

is modeled to deal with the lag due to the mechanism of data collection and transmission. Both

the dynamics and measurement models are incorporated into the extended Kalman filter (EKF)

for the BM state estimation. In the approach proposed in [7] for the coast phase tracking, the

Doppler frequency is also taken into account for new measurement information. Different from

the traditional Kalman filtering based approach, a unscented Kalman filtering (UKF) filtering

approach is exploited for tracking. An extended interval Kalman filter approach [8] and sequential

Monte Carlo based approach [9] have also been investigated for the reentry phase, where the effect

of atmospheric drag is included in the corresponding reentry dynamic model. Furthermore, a

comparison study between different filtering methods for BM tracking during the reentry phase is

presented in [10]. From the numerical simulation results, it was shown that the Rao-Blackwellised

particle filter achieves the best performance, especially when large initial uncertainties exist. In

order to compensate for the nonlinear and non-Gaussian problems in the reentry phase tracking,

a novel chaos map particle filter (CMPF) [11] is used to estimate the target state. Comparison

results show its better performance over the traditional tracking methods such as EKF, UKF and

generic particle filter.
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In order to accurately track the whole trajectory of the BM, multiple state models need to be

considered in the development of tracking algorithms as the BM experiences different flight phases

from the launch to impact as mentioned earlier. The most widely-used method for multiple model-

based BM tracking is the interacting multiple model (IMM) method (e.q. [12, 13, 14, 15]). Multiple

filters corresponding to different state models have been applied in the IMM algorithms, and the

state estimation is given by three steps: interaction, filtering and combination as in [16]. However,

the traditional IMM method uses constant transition probabilities between different models. This

is not realistic modeling of BM behavior as the transitions between different phases are related

with the states, that is, state dependent. For example, the higher the BM, the more likely the BM

flight phase transits from boost to coast. Besides, the EKF-based implementation of the IMM used

in the aforementioned works [12, 13, 14, 15] has a limitation in dealing with highly nonlinear BM

movement models and measurement models.

For the aforementioned method, it is always assumed that ‘perfect’ measurements are obtained.

That is, the BM could always be correctly detected by a radar sensor without miss detections/false

alarms. A more realistic low-observable scenario is considered in [17]and [18], in which ‘imperfect’

measurements are obtained with both miss detections and false alarms occurring due to the low

signal-to-noise ratio (SNR) of a radar sensor. The probabilistic data association (PDA) algorithm

is applied in conjunction with other techniques, such as the maximum likelihood (ML) for the data

association and ballistic missile state estimation in such a cluttered environment.

In this work, a new method is proposed for tracking the whole trajectory of a BM in a low-

observable environment with both miss detections and false alarms, while exploiting domain knowl-

edge in a comprehensive way. First, we consider that a BM could experience different phases and

multiple models are thus applied to deal with different movement characteristics. However, dif-

ferent from traditional multiple model works as in [12, 13, 14, 15], a multiple model framework

with state dependent model transition probabilities as in [19] is adopted. In this way, a more ac-

curate modeling of phase transition is achieved by exploiting related domain knowledge. Besides,

a random finite set (RFS) theory [20], which has recently been investigated for the ballistic missile

tracking [21], is applied to construct a more realistic radar measurement model considering both

miss detections and false alarms. Based on the proposed model framework and radar measurement

model with miss detection/false alarms, exact Bayesian inferences are performed for the state esti-

mation and a new generalized interacting multiple model particle filtering (denoted as G-IMMPF)

is developed for the implementation of related inferences. The G-IMMPF algorithm is an extension

of the traditional interacting multiple model particle filtering (IMMPF) in [19], by incorporating

a more realistic random finite set (RFS) based measurement likelihood function to deal with both
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miss detections and false alarms.

The structure of this paper is as follows: Section 2 describes the models used in the BM

tracking. An illustration of the proposed method is presented in Section 3, which explains both

the Bayesian inference and the developed G-SD-IMMPF algorithm for the related implementation.

Comprehensive numerical simulation studies with different algorithms are presented in Section 4,

and the final conclusions are given in Section 5.

2. Ballistic missile tracking models

2.1. A multiple modeling framework with state dependent transition probabilities

As illustrated in Fig. 1, the entire trajectory of the BM from launch to impact is commonly

divided into three phases [1, 22]:

Boost phase: a BM experiences a powered, endo-atmospheric flight which lasts from launch to

thrust cutoff;

Coast phase: the thruster of a BM is turned off and the missile flies freely subject to little

atmospheric drag because it is in a relatively high part of the atmosphere;

Reentry phase: a BM reaches the lower part of the atmosphere and the atmospheric drag

becomes considerable again and lasts until its impact to the ground.

In order to model missile movements in different phases, three different models including boost

model, coast model and reentry model are applied for the BM tracking (details of the BM models

used in this paper are shown in the Appendix).

Time (s)

Altitude 

(km)

Boost

Coast

Re-entry

Impact

Launch

Figure 1: The illustration of the entire trajectory and different phases of the BM.

Traditionally, a multiple modeling system proposed in [12, 13, 14, 21] is applied. As illustrated

in Fig. 2(a), in such a system, the flight mode (boost, coast and reentry) at a particular time only

depends on its predecessor at the previous time instance. Transition probabilities between different

modes are set to be constant. However, in reality the actual BM flight mode may be also dependent

on some state (position/velocity) information. For example, as the height of the BM increases,it is
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Figure 2: The structure of a multiple modeling framework with constant mode transition probabilities (a) and
that with state dependent mode transitions (b), with mt, xt and yt representing the movement mode, state and
measurement, respectively.

more likely for a BM to transit from the boost to coast phase. To reflect this, a modeling system

as illustrated in Fig. 2(b) is applied with the particular movement mode at a time instance being

also dependent on the previous state. Thus state dependent transition probabilities rather than

constant ones shall be used to better represent the physical characteristic of a BM.

Different types of domain knowledge are now exploited to determine the state-dependent mode

transition probabilities in this work. One type of domain knowledge is about the mode transition

related to the BM altitude. As mentioned in [1], the transition between the boost to coast phase

is related to the altitude of the BM. When the height reaches a particular threshold, the thruster

of a BM is turned off and the flight phase transits to the coast phase, as illustrated in Fig. 3(a).

Another type of domain knowledge is that as the missile flies in the coast phase, it first reaches

a peak and then drops towards the ground (due to the effect of the gravity) while the altitude

decreases and the angle between the velocity vector and gravity force also decreases due to the

effect of gravity. When both the height and angle between the velocity vector and gravity force

drop to certain values, the BM reenters the low part of the atmosphere and transits to the reentry

phase, as illustrated in Fig. 3(b).

The aforementioned domain knowledge, which reflects phase transitions, is represented as fol-

lows:

mt = coast, if ht−1 > h1 and mt−1 = boost

mt = reentry, if ht−1 < h2 and θt−1 < θ1 and mt−1 = coast,
(1)

where mt denotes the state model index (boost, coast or reentry). The parameters ht and θt

represent respectively the ballistic missile height and the angle between the missile velocity and

gravity force; h1, h2 and θ1 represent threshold values. Normally, the exact values of h1, h2 and θ1

are unknown, but some information could be obtained from previously collected information (e.g.
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Figure 3: The the BM flight modes transitions between different phases: (a). The BM transits from boost to coast
when it reaches a certain threshold with thruster being off (b). As the BM approaches the lower part of the atmosphere
from time t1 to t2, the height h and angle θ (between the velocity vector v and gravity force vector g) reduce.

the database for a particular missile type). The more information we obtain, the more accurate

values can be obtained with less uncertainties.

To consider the uncertainties of h1, h2 and θ1, the Gaussian distribution could be exploited to

model them in a convenient way as:

h1 ∼ N(·|mh1 , σ
2
h1
)

h2 ∼ N(·|mh2 , σ
2
h2
)

θ1 ∼ N(·|mθ1 , σ
2
θ1)

(2)

where mh1 , mh2 and mθ1 represent the guess of the true values of h1, h2 and θ1, whilst σh1 , σh2

and σθ1 are the standard deviations, which represent the uncertainties for the height and angle

thresholds.

Combining (1) and (2), the transition probabilities from the boost to coast and from the coast

to reentry are modeled as (3)

p(mt = coast|mt−1 = boost, ht−1) = p(ht−1 > h1) = CDF (ht−1|mh1, σ
2
h1)

p(mt = reentry|mt−1 = coast, ht−1, θt−1) = p(ht−1 < h2, θt−1 < θ1)

= (1− CDF (ht−1|mh2, σ
2
h2)) · (1− CDF (θt−1|mθ1 , σ

2
θ1)),

(3)

where CDF (·|m, std2) is the cumulative density function for a Gaussian distribution with the mean

m and standard deviation σ.
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In this way, instead of traditional constant transition probabilities, flight mode transitions are

modeled in a state dependent way (related to the height and angle information as in (3)) by

incorporating proper domain knowledge to reflect the realistic BM flight characteristics.

2.2. Measurement model in a low-observable environment

Traditional measurement models in most of current BM tracking works have an unrealistic

assumption that the BM can always be perfectly measured. However, both miss detections and

false alarms exist in a low-observable environment, due to the low signal-to-noise ratio (SNR) as in

[23]. In this work, a more realistic measurement model is applied to deal with such miss detections

and false alarms by representing the measurement set (denoted as Z) as a union of two independent

random finite sets (RFS) [24], which is given by

Z = C
∪

W, (4)

where W represents the RFS due to the object of interest while C denotes the RFS of false

detections.

With a probability of Pd between 0 and 1, it is assumed that a radar measures the range rmt ,

azimuth angle θmt and elevation angle φm
t of a BM in a local east-north-up (ENU) coordinate system

[22]. Thus the RFS W could either be empty or a singleton vector {rmt , θmt , φm
t } representing the

object measurements.

2.2.1. Object measurements

The ENU coordinate system has the origin at the radar position, with three axes being towards

the east, north and up directions, respectively. The global earth-centered-earth-fixed (ECEF) [22]

and local ENU coordinate systems are illustrated in Fig. 4, and the corresponding coordinates can

be converted through: 
px,lt

py,lt

pz,lt

 = M ·




pxt

pyt

pzt

− pR

 (5)

where
[
px,lt , py,lt , pz,lt

]T
represents the local ENU coordinate of the radar, pR =

[
px,R, py,R, pz,R

]T
the position of the radar in the ECEF coordinate system, and M the rotation matrix defined by:

M =


− sin(λ) cos(λ) 0

−cos(λ)sin(ϕ) − sin(λ)sin(ϕ) cos(ϕ)

cos(λ)cos(ϕ) sin(λ)cos(ϕ) sin(ϕ)

 (6)
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Radar 

position

Figure 4: The illustration of the global ECEF and local ENU coordinate systems. Note, the x and y axes of the
ECEF coordinate system lie in the equatorial plane while the x axis pointing towards the Greenwich. And the z-axis
of the ECEF coordinate system is the conventional terrestrial pole (CTP) axis

with ϕ and λ being the latitude and longitude of the radar.

Under the local ENU coordinate system, the measurement equation for the range, azimuth

angle and elevation angle is described as:


rmt

θmt

φm
t

 = h(xs
t ) + nm

t =


√
(px,lt )2 + (py,lt )2 + (pz,lt )2

arctan(
px,lt

py,lt

)

arctan(
pz,lt√

(px,lt )2+(py,lt )2
)

+ nm
t (7)

where xs
t represents the state vector for a particular mode s, which can be boost, coast or reentry,

and nm
t a measurement noise vector.

2.2.2. False detections

As in [24], typically the number of false detections in the RFS set C is modeled by the Poisson

distribution as:

P (|C| = s) =
e−λλs

s!
(8)

where λ is the excepted value of false alarm number. Furthermore, conditioned on the number |C|,

false detections are modeled as independent, identically distributed (IID) random vectors taking

values from the feasible measurement space.

Following these two assumptions, the probability density function (PDF) of the RFS C can be

given by (detailed derivations are referred in [24])
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κ(C) = e−λΠz∈Cλu(z) (9)

where z is a measurement in the RFS C and u(·) represents the uniform distribution defined in the

feasible measurement space.

3. Generalized state dependent interactive multiple model particle filtering

Based on both the BM modeling and RFS measurement model as defined in the previous

section, a generalized state dependent interacting multiple model particle filtering (G-SD-IMMPF)

algorithm is developed for ballistic missile tracking. Compared with the conventional multiple

model filtering method for the BM tracking in [12, 13, 14], the proposed algorithm adopts the

multiple model framework with state dependent transition probabilities. Moreover, particle filtering

is applied to cope with the non-linearity of both state and measurement models for the BM tracking

problem. Compared with the original SD-IMMPF method in [19], the developed algorithm also

incorporates a generalized measurement likelihood function based on the RFS theory into the

Bayesian inference framework, in order to cope with both miss detections and false alarms in a

more effective way.

The proposed G-SD-IMMPF algorithm is based on the exact Bayesian inference framework for

a multiple model system, and its overall process is divided into four steps:

p(mt−1|Zt−1)
Mixing−−−−→ p(mt|Zt−1) (10)

p(xt−1|mt−1,Zt−1)
interact−−−−→ p(xt−1|mt,Zt−1) (11)

p(xt−1|mt,Zt−1)
Evolutions−−−−−−→ p(xt|mt,Zt−1) (12)

p(xt|mt,Zt−1)
Correction−−−−−−→ p(xt,mt|Zt) (13)

where mt represents the model index (boost, coast or reentry), xt the state vector and Zt the

obtained measurements at time instance t, which may include both miss detections and false alarms.

3.1. Detailed Bayesian inference procedure

The detailed Bayesian inferences for the four steps are described as follows.
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3.1.1. Mode mixing:

The mode mixing is related to the evolution of the model probability between consecutive

discrete time instances t− 1 and t. Using the law of total probability, we have:

p(mt = s|Zt−1) =
∑
r∈M

p(mt = s,mt−1 = r|Zt−1) =
∑
r∈M

p(mt = s|mt−1 = r,Zt−1)p(mt−1 = r|Zt−1),

∀s, r ∈ M = {boost, coast, reentry},

(14)

where p(mt = s|mt−1 = r,Zt−1) which can further be decomposed as:

p(mt = s|mt−1 = r,Zt−1) =

∫
πrs(xt−1) · p(xt−1|mt−1 = r,Zt−1) dxt−1 (15)

and πrs(xt−1) represents the state-dependent model transition probability between models r and s

as discussed in the last section.

3.1.2. State interacting:

State interaction generates the initial mode-conditioned density p(xt−1|mt = s,Zt−1) according

to the conditional probability relation and the law of total probability as:

p(xt−1|mt = s,Zt−1) =

∑
r∈M

πrs(xt−1) · p(xt−1,mt−1 = r|Zt−1)

p(mt = s|Zt−1)
. (16)

3.1.3. Evolution:

The state evolution step is to propagate the mode-conditioned state density from t − 1 to

t. Given the initial density is provided in Eq. (16), the mode-conditioned prior distribution

p(xt|mt = s,Zt−1) at t is calculated as:

p(xt|mt = s,Zt−1) =

∫
p(xt|xt−1,mt = s,Zt−1)p(xt−1|mt = s,Zt−1)dxt−1 (17)

where p(xt|xt−1,mt = s,Zt−1) is the transition probability depending on a particular state model

mt = s (details of state models are provided in the Appendix).

3.1.4. Correction:

Generalized likelihood function: According to Eq. (4), a measurement set Z is represented as a

union of two independent RFS. Based on the convolution formula for the RFS statistics calculus

as in [24] and the possible value of RFS W representing the object of interest measurement, the
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corresponding conditional probability density function (PDF) for the measurement set at time

instant t can be estimated as:

p(Zt|xt) =
∑
zt⊆Zt

η(zt|xt)κ(Zt\zt), (18)

where zt could either be empty or a single measurement in the measurement set Zt, ‘\’ denotes the

set-difference operation, and η(zt|xt) is defined according to [24] as:

η(zt|xt) =

 1− Pd zt = ∅

Pdg(zt|xt) otherwise
(19)

where g(zt|xt) is the (conventional) measurement likelihood function of measurement zt due to the

object in state xt. For the BM tracking in this work, it is a Gaussian distribution determined by

(7).

By combining (9), (18) and (19), we can obtain the following generalized likelihood function:

p(Zt|xt) = η(∅|xt) · κ(Zt) +
∑
zt⊆Zt

η(zt|xt) · κ(Zt\zt)

= κ(Zt)[1− Pd + Pd

∑
zt⊆Zt

g(zt|xt)κ(Zt\zt)
κ(Zt)

]

= κ(Zt)[1− Pd + Pd

∑
zt⊆Zt

g(zt|xt)

λc(zt)
].

(20)

Bayesian updating :

The obtained generalized likelihood function is then applied to correct the prior by Bayes rule

as:

p(xt,mt = s|Zt) ∝ p(mt = s|Zt−1)p(xt|mt = s,Zt−1)p(Zt|xt), (21)

which is posterior distribution based on the current measurement set and summarizes both the

state and mode information at the current time instance.

3.2. G-SD-IMMPF implementation

Since there is no analytical solution for the above Bayesian inference framework due to the

nonlinearity and non-Gaussian distribution of both the state and measurement models, a parti-

cle filtering-based approach is proposed to implement the aforementioned Bayesian inference of

the modeling system with a generalized measurement likelihood function to deal with both miss

11



detection and false alarms.

Initially, it starts at time t − 1 with the set of weighted particles {xr,k
t−1, w

r,k
t−1; r ∈ M, k ∈

{1, . . . , N}} to approximate the probability p(xt−1,mt−1 = r|Zt−1). Based on this, the Bayesian

inference procedure is implemented by the G-SD-IMMPF algorithm as follows.

Mode mixing implementation: By using a set of particles, prior mode probability in (14) can

be approximated as:

p(mt = s|Zt−1) ≈
∑
r∈M

N∑
k=1

πrs(x
r,k
k−1) · w

r,k
t−1 , Λs

t−1, (22)

where Λs
t−1 is defined to facilitate the rest of the derivation.

State interacting implementation: The state interaction process can be implemented by inserting

particles at t− 1 with the different mode index r into Eq. (16) such that

p(xt−1|mt = s,Zt−1) ≈
∑
r∈M

N∑
k=1

πrs(x
r,k
t−1)w

r,k
t−1δ(xt−1 − xr,k

t−1)/Λ
s
t−1. (23)

In order to cumbersome the problem of increasing number of particles from N to N × |M|

(where |M| represents the number of modes) which will also lead to the exponentially increasing

of particles in the following time instances, a resampling procedure as in [19] is performed. A set

of N particles {xs,k
t−1}k=1,...,N is sampled according to the distribution representation in (23) for

approximating p(xt−1|mt = s,Zt−1). In this way, the number of particles for approximating the

related distribution will not increase.

Evolution implementation: The third step is the particles’ evolution from time t − 1 to t.

Resampled particle set {xs,k
t−1}k=1,...,N could be evolved to generate a new particle set {xs,k

t , }k=1,...,N

to approximate the distribution p(xt|mt = s,Zt−1) according to (24). As mentioned in [19], for

every xs,k
t , it is obtained from sampling the related transition distribution p(xt|mt = s,xs,k

t−1,Zt−1).

p(xt|mt = s,Zt−1) ≈
1

N

N∑
k=1

δ(xt − xs,k
t ). (24)

Correction implementation: By inserting (22) and (24) into (21), we have:

p(xt,mt|Zt) ∝
N∑
k=1

Λs
t−1

N
p(Zt|xs,k

t )δ(xt − xs,k
t ) (25)

According to the definition of the generalized likelihood function as in (20) , we have:
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p(xt,mt = s|Zt) ∝
N∑
k=1

ws,k
t δ(xt−xs,k

t ), with ws,k
t = Λs

t−1κ(Zt)[1−Pd+Pd

∑
zt⊆Zt

g(zt|xs,k
t )

λc(zt)
]. (26)

The weights are finally normalized to make
∑

s

∑N
k=1w

s,k
t = 1. The posterior distribution

p(xt,mt = s|Zt) for the mode s is then approximated by a set of weights {ws,k
t }k=1,...,N and

particles {xs,k
t }k=1,...,N (the same procedure for implementing mode mixing, intersection, evolution

and correction is applied for every mode). Finally, both the state estimation (denoted as x̂t) and

mode probability can be estimated from related particles and weights as:

x̂t =
∑
s∈M

N∑
i=1

wi,s
t xi,s

t (27)

p(mt = s) =

N∑
i=1

wi,s
t (28)

4. Numerical simulation studies

4.1. Experimental scenario setting

In this section, numerical simulation studies are performed to analyse the performance of the

proposed G-SD-IMMPF method for the BM tracking. An entire BM trajectory is simulated in the

ECEF coordinate system as in Fig. 5. Key parameters of the simulated BM flight trajectory are

listed in Table I, which corresponds to the short range ballistic missile as described in [25]. Based

on the simulated BM trajectory, algorithms can be applied for the BM tracking, with the following

settings.
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Figure 5: Simulated BM trajectory and radar position in the ECEF coordinate system
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Table 1: The parameters of the simulated BM trajectory

Flight time Range Boost time Engine-off velocity
305 (s) 292 (km) 66 (s) 1.46 (km/s)

Initialisation: Considering the uncertainty about both the initial position and velocity of a

tracked BM, Gaussian distributions are applied to model the initial position p0 and velocity v0 of

the BM in the ECEF coordinate system as:

p0 ∼ N(·|p0,Σ
p
0 ), v0 ∼ N(·|v0,Σ

v
0 ) (29)

where the means p0 and v0 represent the initial guess of the true position and velocity, respectively

and Σp
0 and Σv

0 the associated uncertainties, in this work they are defined as:

Σp
0 =


100, 0, 0

0, 100, 0

0, 0, 100

 (m), Σv
0 =


1, 0, 0

0, 1, 0

0, 0, 1

 (m/s) (30)

We model p0 and v0 as:

p0 = ps
0 +wp, v0 = vs

0 +wv (31)

where ps
0 and vs

0 are the position and velocity of the simulated trajectory at t = 0, and wp and

wv introduced noisy terms controlling the accuracies of the initial observation/guess. In this work,

wp and wv are set to follow Gaussian distributions with non-zero means of w̄p =


10

10

10

 and

w̄v =


1

1

1

, as well as covariances of Σp
0 and Σv

0 as defined previously.

State and measurement models: Three state models corresponding to boost, coast and reentry

phases are applied for the BM tracking and the details of these models are provided in Appendix.

As mentioned in Section 2, the proposed modeling system is applied with state dependent tran-

sition probabilities between boost to coast as well as coast to reentry. Based on these transition

probabilities and some other movement characteristics of a BM (i,e., a BM can not transit from

the coast phase to the boost phase) , a full mode transition matrix is shown as
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boost coast reentry

boost

coast

reentry


1− p1(ht) p1(ht) 0

0 1− (1− p2(ht)) · (1− p1(θt)) (1− p2(ht)) · (1− p1(θt))

0 0 1

 ,
(32)

where p1(ht) = CDF (ht|mh1, stdh1), p2(ht) = CDF (ht|mh2, stdh2) and p1(θt) = CDF (θt|mθ1 , stdθ1).

Related parameters are set as: mh1 = 35000 (m), mh2 = 25000 (m), σh1 = σh2 = 3000 (m),

mθ1 = 0.85 (rad) and σθ1 = 0.2 (rad) in this work.

It is assumed that the radar measures the BM with a detection probability of 90%. The related

object measurement is modeled according to (7), with the measurement noises being:

nm
t ∼ N(·|03×1,Σm), (33)

where

Σm = diag([(100)2 (m)2, (0.1)2 (rad)2, (0.1)2 (rad)2]). (34)

The number of false alarms satisfies a Poisson distribution with the expected number of false

alarms λ in (8) being 10. Conditioned on the expected number, the false alarm measurements are

distributed uniformly among the measurement space.

4.2. Algorithm evaluation

Based on the aforementioned experimental setting, the proposed G-SD-IMMPF algorithm is

tested and compared with other algorithms, with 1 × 104 particles being applied for every state

model. Firstly, the algorithm is compared with the traditional SD-IMMPF algorithm in [19], to

show its advantage to incorporate the RFS based generalized measurement likelihood function.

Note, different from the proposed method, the traditional SD-IMMPF algorithm only exploits one

measurement for the correction procedure. In order to find the most suitable measurement to be

applied in the SD-IMMPF algorithm, the nearest neighbor data association method as in [26] is

applied.

100 Monte Carlo simulations are made and the comparison results are shown in Fig. 6 and

Tables 2 and 3, from which we can see that the proposed method achieves much better performance

than the traditional SD-IMMPF one, during different BM flight phases including both time periods

after flight mode transition occurs and the one when the BM flights ‘stable’ following the coast
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mode. For the proposed method, the miss detection, object measurement and false alarms are

comprehensively considered and modeled in a theoretical way by the RFS theory. However, in the

traditional SD-IMMPF method, only one measurement is chosen for updating in an empirical way

instead of a comprehensively theoretical modeling. When the object is not detected, some false

alarm may be chosen as the ‘correct’ measurement by the nearest neighbor data association method

for updating, which will lead to poor estimation results.

(a) (b)

(c)

(d)

(e) (f)

Position RMSEs (a) and velocity RMSEs (b) after the transition from boosting to coasting at t=65s 

Position RMSEs (c) and velocity RMSEs (d) during the coasting period 

Position RMSEs (e) and velocity RMSEs (f) after the transition from coasting to reentry at t=280s 

Figure 6: The averaged position and velocity RMSEs curves during different intervals, from 100 Monte carlo simula-
tions by different algorithms

Table 2: The averaged position RMSEs (m) of different phases for 100 Monte Carlo simulations by different algorithms.

SD-IMMPF G-SD-IMMPF
Averaged RMSE for 65-80 (s) 443.68 299.14

Averaged RMSE for 100-175 (s) 265.88 170.36
Averaged RMSE for 280-295 (s) 375.90 254.06

Next, we show the comparisons of methods applying different multiple modeling framework,

including the constant transition probabilities model (denoted as CTP Model for short) based

method as in [12, 13, 14, 15] and the proposed method exploiting state dependent transition prob-

abilities model (denoted as SDTP Model for short). For a fair comparison, the particle filtering

method with the same particle sizes and generalized measurement likelihood function is applied.
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Table 3: The averaged velocity RMSEs (m/s) of different phases for 100 Monte Carlo simulations by different
algorithms.

SD-IMMPF G-SD-IMMPF
Averaged RMSE for 65-80 (m/s) 101.72 77.30
Averaged RMSE for 100-175 (m/s) 8.46 6.06
Averaged RMSE for 280-285 (m/s) 81.07 62.98

Fig. 7 shows the estimated mode probabilities by exploiting different models, from which we can

see that the mode estimation results are more consistent with the groundtruth ones by the SDTP

Model approach thanks to the domain knowledge aided transition probabilities. The better mode

estimation results also lead to more accurate estimation of the position and velocity information,

as shown in Fig. 8 and Table 4 and 5.

Besides, the computational time of the proposed algorithm is evaluated. 100 Monte-Carlo

simulations on an ordinary PC (Intel(R) Core (TM) i5-3570 CPU@3.40 GHz) are performed. On

average, it is shown that the time taken for exploiting measurements obtained at a time instance

for implementing the G-SD-IMMPF filtering algorithm (as in Section 3.2) is approximately 0.05s.

(a)

(b)

(c)

Figure 7: Estimated mode probabilities by CTP and SDTP Models respectively.

17



(a) (b)

(c)

(d)

(e) (f)

Position RMSEs (a) and velocity RMSEs (b) after the transition from boosting to coasting at t=65s 

Position RMSEs (c) and velocity RMSEs (d) during the coasting period 

Position RMSEs (e) and velocity RMSEs (f) after the transition from coasting to reentry at t=280s 

Figure 8: The averaged position and velocity RMSEs curves during different intervals, from 100 Monte carlo simula-
tions by different modeling approaches

Table 4: The averaged position RMSEs (m) of different phases for 100 Monte Carlo simulations by different models.

CTP Model SDTP Model
Averaged RMSE for 65-80 (s) 360.35 299.14
Averaged RMSE for 100-175 (s) 175.87 170.36
Averaged RMSE for 280-295 (s) 341.93 254.06

5. Conclusions

In this paper, we have proposed a new G-SD-IMMPF method for tracking the entire trajectory

of a ballistic missile while considering both miss detections and false alarms in a low-observable en-

vironment. A hybrid system with state dependent transition probabilities is proposed for modeling

the realistic BM movement. The measurement set including both miss detection and false alarm

is modeled by a RFS, with a generalized measurement likelihood function being calculated by the

related RFS theory. By the aid of the generalized measurement likelihood function, the particle

Table 5: The averaged velocity RMSEs (m/s) of different phases for 100 Monte Carlo simulations by different models.

CTP Model SDTP Model
Averaged RMSE for 65-80 (m/s) 116.06 77.30
Averaged RMSE for 100-175 (m/s) 7.25 6.06
Averaged RMSE for 280-285 (m/s) 89.83 62.98
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filtering based G-SD-IMMPF method is then developed to implement the Bayesian inference for

the BM tracking, based on the enhanced hybrid modeling system with state dependent transition

probabilities. The simulations showed the advantage of the proposed algorithm for the estimations

of both the model probability and state vector components of a BM.

In the future, we will exploit more domain knowledge to model the BM transition probabilities in

a more realistic way. Besides, from the algorithm aspect we will exploit variable number of particles

for each mode instead of a fixed number (for example, when the probability is low, comparatively

small number of particles will be assigned) to increase the algorithm efficiency.
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Appendix

In the appendix, we explain the mathematical representations of BM state models during dif-

ferent phases in details:

Boost model
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During the boost phase, the missile is affected by the gravity force, thrust force and aerodynamic

drag force [22]. Besides, considering the fact that the earth rotates about the CTP axis with an

angular velocity ω, the missile is also affected by two other forces: coriolis force and centripetal

force. According to Newton’s force law, the following basic equations hold:

ṗt = vt

v̇t = agravityt + athrustt + adragt + acorriolist + acentripetalt

(35)

where pt = (pxt , p
y
t , p

z
t )

T and vt = (vxt , v
y
t , v

z
t )

T ((·)T denotes the vector transpose) represent the

position and velocity in the ECEF coordinate system, respectively [1]. The vectors agravityt , athrustt ,

adragt , acorriolist and acentripetalt represent the accelerations introduced by different types of forces

as defined in [22], from which the summed acceleration of a BM along three axes of the ECEF

coordinate system during the boost phase (denoted as ax,bt , ay,bt and az,bt ) can be calculated as in

(36).

ax,bt =
ng

1− qt

vxt√
(vxt )

2 + (vyt )
2 + (vzt )

2
− ρ(ht)

2β
vxt

√
(vxt )

2 + (vyt )
2 + (vzt )

2

− uG

(
√

(pxt )
2 + (pyt )

2 + (pzt )
2)3

pxt + (2ωvyt + ω2pxt )

ay,bt =
ng

1− qt

vyt√
(vxt )

2 + (vyt )
2 + (vzt )

2
− ρ(ht)

2β
vyt

√
(vxt )

2 + (vyt )
2 + (vzt )

2

− uG

(
√

(pxt )
2 + (pyt )

2 + (pzt )
2)3

pyt + (2ωvxt + ω2pyt )

az,bt =
ng

1− qt

vzt√
(vxt )

2 + (vyt )
2 + (vzt )

2
− ρ(ht)

2β
vzt

√
(vxt )

2 + (vyt )
2 + (vzt )

2

− uG

(
√

(pxt )
2 + (pyt )

2 + (pzt )
2)3

pzt

(36)

The parameters are defined as: uG = 3.99 × 1014Nm2/kg, g = 9.81ms−2 and ω = 7.29 ×

10−5rad/s represent a positive constant, the gravitational acceleration and the Earth’s angular

speed, respectively. The parameters n, q and β represent respectively the initial thrust-to-weight

ratio, normalised mass burn rate and ballistic coefficient related to a particular type of ballistic

missile [22]; ht represents the altitude of the BM at the time instance t and ρ(·) is the air density

function defined as:

ρ(ht) = ρ0 exp(−k · ht) (37)

where ρ0 = 1.22 and k = 0.14× 10−3.

From the acceleration terms in (36) and the piecewise-constant acceleration assumption during
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a short time interval T , we can obtain the evolution of the position and velocity between t and

t+ T as:

pxt+T = pxt + T · vxt +
T 2

2
(ax,bt + wx,b

t )

pyt+T = pyt + T · vyt +
T 2

2
(ay,bt + wy,b

t )

pzt+T = pzt + T · vzt +
T 2

2
(az,bt + wz,b

t )

vxt+T = vxt + T · (ax,bt + wx,b
t )

vyt+T = vyt + T · (ay,bt + wy,b
t )

vzt+T = vzt + T · (az,bt + wz,b
t )

(38)

where wx,b
t , wy,b

t and wz,b
t represent the boost phase acceleration uncertainties in three axes.

Typically, as ballistic missile parameters n, q and β in (36) are unknown, they need to be

estimated. The estimated parameters can then be used in missile trajectory prediction and missile

type identification. In order to estimate the initial thrust-to-weight ratio n and normalised mass

burn rate q, a simple Brownian motion model is used as:

nt+T = nt + T · wn

qt+T = qt + T · wq

(39)

where wn and wq represent the introduced parameter uncertainties.

A similar way could be used to model β. However, when the BM is at a high altitude, the value

of ρ(ht)
2β in (36) will be close to zero no matter the value of β, due to the exponential decay of the

term ρ(ht) with respect to the height ht. In this case, different values of β have the same effect on

the position and velocity evolution, and thus the value of β can not be estimated correctly. In order

to address this issue, we adopt the same strategy for parameter modelling used in [8]. Instead of

β, a parameter γt =
ρ(h)
2β is first modelled and calculated. And β can then be computed from γt.

By the Euler approximation [27], the evolution of γt can be modelled as:

γt+T = γt + T · γ′t + T · wγ (40)

where wγ represents the parameter uncertainty and γ′t represents the differentiation of γt with

respect to the time t given as:

γ′t = −k · γt
pxt v

x
t + pyt v

y
t + pzt v

z
t√

(pxt )
2 + (pyt )

2 + (pzt )
2
. (41)

By augmenting the state dynamic equation (38) with the parameter models in (39) and (40),
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the complete state model for the boost phase is represented as:

xb
t+T = F bxb

t +Gb




abt

γ′t

0

0

+wb
t

 (42)

where

xb
t =



pxt

pyt

pzt

vxt

vyt

vzt

γt

nt

qt



, F b =



1 0 0 T 0 0 0 0 0

0 1 0 0 T 0 0 0 0

0 0 1 0 0 T 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1



Gb =



T2

2
0 0 0 0 0

0 T2

2
0 0 0 0

0 0 T2

2
0 0 0

T 0 0 0 0 0

0 T 0 0 0 0

0 0 T 0 0 0

0 0 0 T 0 0

0 0 0 0 T 0

0 0 0 0 0 T
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ab
t =


ax,b
t

ay,b
t

az,b
t

 wb
t =



wx,b
t

wy,b
t

wz,b
t

wγ,b
t

wn,b
t

wq,b
t


.

(43)

Coast model

During the coast phase, the BM usually follows a Keplerian orbit at a high part of or even

outside the atmosphere, with the thruster ignition being off. In this case, it will not be affected by

the thrust and drag forces, so the acceleration term components in three axes become:

ax,ct = − uG

(
√
(pxt )

2 + (pyt )
2 + (pzt )

2)3
pxt + (2ωvyt + ω2pxt )

ay,ct = − uG

(
√
(pxt )

2 + (pyt )
2 + (pzt )

2)3
pyt + (2ωvxt + ω2pyt )

az,ct = − uG

(
√
(pxt )

2 + (pyt )
2 + (pzt )

2)3
pzt .

(44)

The acceleration terms do not contain any ballistic missile parameters (i.e. n, q and β) due to the
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negligible thrust and drag forces. Without these BM parameters, the state model reduces to:

xc
t+T = F cxc

t +Gc(at,c +wc
t) (45)

where

xc
t =


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(46)

and wc
t represents the coast model uncertainty.

Reentry model

At the terminal stage of the BM flight, the BM re-enters the low part of the atmosphere (i.e.

troposphere and stratosphere). It is affected by the drag force again and the related acceleration

terms in three axes become (47):

ax,rt = −ρ(ht)
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2 + (vyt )
2 + (vzt )

2 − uG

(
√
(pxt )

2 + (pyt )
2 + (pzt )

2)3
pxt + (2ωvyt + ω2pxt )

ay,rt = −ρ(ht)

2β
vyt

√
(vxt )

2 + (vyt )
2 + (vzt )

2 − uG

(
√
(pxt )

2 + (pyt )
2 + (pzt )

2)3
pyt + (2ωvxt + ω2pyt )

az,rt = −ρ(ht)

2β
vzt

√
(vxt )

2 + (vyt )
2 + (vzt )

2 − uG

(
√

(pxt )
2 + (pyt )

2 + (pzt )
2)3

pzt .

(47)

By assuming a piecewise-constant acceleration model and considering the evolution of the pa-

rameter γt =
ρ(ht)
2β in (40) and (41), the state model for the reentry phase is represented as:

xr
t+T = F rxr

t +Gr

 art

γ′t

+wr
t

 (48)
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where

xr
t =



pxt

pyt

pzt

vxt

vyt

vzt

γt


, F r =



1 0 0 T 0 0 0

0 1 0 0 T 0 0

0 0 1 0 0 T 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, Gr =



T2

2
0 0 0

0 T2

2
0 0

0 0 T2

2
0

T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T



ar
t =


ax,r
t

ay,r
t

az,r
t

 , wr
t =


wx,r

t

wy,r
t

wz,r
t

wγ,r
t

 .

(49)
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