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What is the central question of this study? 

Between 60-80% of multiple sclerosis patients (MS) experience transient symptoms 

worsening with increases in body temperatures (heat-sensitivity). As sensory 

abnormalities are common in MS, we asked whether afferent thermosensory function is 

altered in MS following exercise-induced increases in body temperature. 

 

What is the main finding and its importance? 

Increases in body temperature of as little as ~0.4ᵒC were sufficient to decrease cold, but 

not warm, skin thermosensitivity (~10%) in MS, across a wider temperature range than 

what is observed in age-matched healthy individuals. These findings provide novel 

evidence on the impact of heat-sensitivity on afferent function in MS, which could be 

useful for clinically evaluating this neurological disease.  
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Abstract  

In multiple sclerosis (MS), increases in body temperature result in transient worsening of 

clinical symptoms (heat-sensitivity /Uhthoff’s phenomenon). While the impact of heat-

sensitivity on efferent physiological function has been investigated, the effects of heat 

stress on afferent sensory function in MS are unknown.  Hence, we quantified afferent 

thermosensory function in MS following exercise-induced increases in body temperature 

with a novel quantitative sensory test. Eight relapsing-remitting MS patients (3M/5F; 

51.4±9.1 y; EDSS score: 2.8±1.1) and 8 age-matched controls (CTR; 5M/3F; 47.4±9.1 y) 

rated perceived magnitude of two cold (26; 22°C) and warm (34; 38°C) stimuli applied to 

the dorsum of the hand, pre and post 30-min cycling in the heat (30ᵒC air; 30% RH). 

Exercise produced similar increases in mean body temperature in MS (+0.39ᵒC [95%CI: 

+0.21, +0.53] p=0.001) and CTR (+0.41ᵒC [95%CI: +0.25, +0.58] p=0.001). These 

changes were sufficient to significantly decrease thermosensitivity to all cold (26ᵒC 

stimulus: -9.1% [95%CI: -17.0, -1.5], p =0.006; 22ᵒC stimulus: -10.6% [95%CI: -17.3, -

3.7], p=0.027), but not warm, stimuli in MS.  Contrariwise, CTR showed sensitivity 

reductions to colder stimuli only (22ᵒC stimulus: -9.7% [95%CI: -16.4, -3.1], p=0.011). 

The observation that reductions in thermal-sensitivity in MS were confined to the 

myelinated cold-sensitive pathway, and extended across a wider (including milder/colder) 

temperature range than what is observed in CTR, provides novel evidence on the impact 

of rising body temperature on afferent neural function in MS. Also, our findings support 

the use of our novel approach to investigate afferent sensory function in MS during heat 

stress.   

Abbreviations: MS, multiple sclerosis; CTR, control; 
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Introduction 

Between 60 and 80% of individuals affected by the demyelinating disease multiple 

sclerosis (MS) experience heat-sensitivity/Uhthoff’s phenomenon, a characteristic  

transient worsening of clinical symptoms resulting from increases in body (core) 

temperatures of as little as 0.5°C (Davis et al., 2010).  

While temperature-dependent conduction slowing and/or block in demyelinated axonal 

segments seems to trigger this phenomenon (Davis et al., 2010), its underlying 

pathophysiology is still mostly unclear (Kiernan, 2017). As a result, there is no available 

pharmacological intervention that can mitigate the burden posed by heat sensitivity on 

MS sufferers and on their quality of life (Kanagaratnam et al., 2017).  

Heat-sensitivity in MS can be triggered by routine daily life activities such as light 

physical work, exercise, or sunlight exposure (Davis et al., 2010). This translates in MS 

patients experiencing severe challenges in maintaining appropriate physical activity 

levels (White & Dressendorfer, 2004), as well as in conducting normal working activities 

(e.g. early retirement due to heat intolerance and fatigue is highly prevalent amongst MS 

patients) (Palmer et al., 2013). There is therefore a need to better understand the 

pathophysiology of heat sensitivity and its impact on normal physiological functions to 

develop appropriate interventions aimed at improving life quality in MS.    

Mechanistically, the transient effects of heat-sensitivity on efferent autonomic functions 

(e.g. control of eye movements; regulation of thermoregulatory sweating) have been 

investigated  in MS patients (e.g. rises in body temperature induce transient slowing of 

horizontal saccadic eye movements; Davis et al., 2008; thermoregulatory sweating is 

blunted under heat stress; Allen et al., 2017) . However, the impact of heat-sensitivity on 
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afferent sensory function, e.g. skin sensations, has escaped quantitative assessment in 

MS. This is surprising, particularly as somatosensory abnormalities, amongst which 

reductions in skin sensitivity to temperature, are highly prevalent MS symptoms 

(incidence of 50-55%) (Leocani et al., 2003).  

The ability to sense changes in our skin temperature represents the key trigger of 

behavioral responses  to environmental- and exercise-induced heat stress (e.g. reducing 

physical work, removing clothing, seeking shade) (Schlader et al., 2011; Filingeri, 2016). 

Changes in skin temperature often occur largely in advance of those elevations in core 

temperature that appear to induce heat-sensitivity in MS (e.g. when being exposed to 

sunshine); hence, assessing how skin temperature sensing is impacted by heat-sensitivity 

could be critical to better understand what behavioral and physiological factors could 

modulate vulnerability to heat stress in MS patients. 

In humans, conscious skin temperature sensing (i.e. afferent thermosensory function) 

represents a unique index of afferent function (Filingeri, 2016), and its assessment could 

prove advantageous to non-invasively evaluate somatosensory function within normally 

functioning non-myelinated pathways and within demyelinated afferent pathways in MS. 

Indeed, the neuro-anatomical and -physiological differences between the human 

peripheral and central pathways for cold (served by myelinated nerve fibers) and warm 

(served by non-myelinated nerve fibers) skin thermosensitivity (Dostrovsky & Craig, 

1996; Iannetti et al., 2003), allow for the independent assessment of myelinated and non-

myelinated afferent neural pathways (Filingeri, 2016). The opportunity to concurrently 

and non-invasively evaluate both myelinated and non-myelinated afferent pathways is 
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particularly relevant in the context of  a demyelinating disease such as MS (Noseworthy 

et al., 2000). 

In light of the above, the aim of this study was to assess afferent thermosensory function 

in MS under conditions of exercise-induced increases in body temperature (in the range 

of what is shown to induce heat-sensitivity, i.e. Δ~0.5°C) (Davis et al., 2010) using a 

novel quantitiave sensory testing paradigm (Filingeri et al., 2017a). We hypothesized that 

exercise-induced increases in body temperature would reduce cold (served by myelinated 

fibers), but not warm (served by non-myelinated fibers), local skin thermosensitivity in 

relapsing-remitting MS patients compared to age-matched healthy individuals. 

 

Methods 

Ethical approval 

All human testing procedures conformed to the standards set by the latest revision of the 

Declaration of Helsinki and received University of Sydney ethical approval (HREC# 

2015/125). Written informed consent was obtained from all participants. 

 

Procedures 

Using G*Power 3 software (Heinrich-Heine-Universität Düsseldorf, Germany (Faul et 

al., 2007)) a power calculation was performed which employed an α of 0.05, a β of 0.20, 

and an effect size of 16.8, calculated from the mean difference in thermal sensation 

between a control and a sensory impaired condition (Filingeri et al., 2014), to determine a 

required sample size of 8 individuals per group for the current study. As such, 8 

individuals diagnosed with relapsing-remitting MS (MS group; 3M/5F; 51.4±9.1 y; 
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75.3±10.3 kg; 171±8cm; Expanded Disability Status Scale (EDSS) score: 2.8±1.1) and 8 

age-matched, otherwise healthy control individuals (CTR group; 5M/3F; 47.4±9.1 y; 

81.6±18.9 kg; 172±10 cm), participated in this study. 

All participants took part in one experimental session. During this session, we used a 

novel quantitative sensory testing paradigm to assess perceived magnitude of cold and 

warm temperature stimuli applied to the dorsum of the hand. Our novel quantitative 

sensory test of afferent thermosensory function is based on the one we recently developed 

and tested in healthy individuals to assess the effects of whole-body thermal stress on 

local skin thermosensitivity (Filingeri et al., 2017a) .  

Sensory testing was performed at rest and after 30-min of semi-recumbent cycling 

(intensity: 35 to 45% of individual maximal aerobic capacity; this intensity is well below 

the lactate threshold for untrained individuals of similar age (Iredale & Nimmo, 1997)) 

performed in an environmental chamber regulated to 30°C ambient air and 30% relative 

humidity.   

MS and CTR participants used a hand-scored 200 mm visual analogue scale [anchor 

points: Very Hot (0 mm) and Very Cold (200 mm); middle point: Neutral (100 mm)] to 

rate the perceived magnitude of thermal sensations elicited by two warm (34ᵒC and 38ᵒC 

from a 30ᵒC baseline) and two cold stimuli (26ᵒC and 22ᵒC from a 30ᵒC baseline) applied 

to the non-glabrous skin of the dorsum of the left hand with a thermal probe  (25 cm2; 

Physitemp Instruments, USA), at rest and during the 30th minute of cycling. The probe 

was kept in contact with the skin throughout the session and maintained at 30ᵒC baseline, 

before stimuli were delivered. Within 5 s of the warm or cold stimuli being delivered, 

participants reported their local thermal sensations.  After each stimulus, the probe was 
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reset to 30ᵒC, and each stimulus was separated by 5 s. The order of delivery of the stimuli 

was randomized-counterbalanced within/between participants. 

Throughout the experimental session, rectal temperature (Mallinckrodt Medical, USA) 

and a 4-point mean skin temperature estimation (Concept Engineering, USA) were 

recorded every 5 s. Mean body temperature was estimated as follow: [(rectal temperature 

× 0.8) + (mean skin temperature × 0.2)] (Gagge & Gonzalez, 1996).  

 

Statistical Analysis 

We assessed changes in mean body temperature from pre- to post-cycling with individual 

two-tailed paired t-tests. We assessed the effects of group (MS vs. CTR) and of stimulus 

temperature (34 vs. 38ᵒC; 22 vs. 28ᵒC) on baseline (i.e. prior to exercise) magnitude 

estimation of warm and cold stimuli with a mixed model ANOVA (note: cold and warm 

stimuli data were analyzed separately). We then assessed changes in magnitude 

estimation of warm and cold stimuli from pre- to post-cycling with individual two-tailed 

paired t-tests. In all analyses, p<0.05 was used to establish statistically significant 

differences. Data are reported as means and 95% Confidence Intervals [CI]. 

 

Results 

Changes in mean body temperature 

Mean body temperature was significantly and similarly elevated after 30 min of cycling 

in both MS (mean difference: +0.39ᵒC [+0.21, +0.53] p=0.001) and CTR (mean 

difference: +0.41ᵒC [+0.25, +0.58] p=0.001). 
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Magnitude estimation of warm and cold stimuli  

Prior to exercise, there were no differences between MS and CTR in the magnitude 

estimation of warm (p=0.172) and cold stimuli (p=0.267). 

Similarly, exercise-induced increases in mean body temperature did not induce any 

change in the magnitude estimation of warm stimuli from pre-exercise values, neither in 

the CTR (34ᵒC stimulus mean difference: 1.0 mm [-26.3, 28.3] p=0.93, Fig. 1A; 38ᵒC 

stimulus mean difference: -9.6 mm [-25.1, 5.8] p=0.185, Fig. 1C), nor in the MS group 

(34ᵒC stimulus mean difference: 2.5 mm [-10.5, 15.5] p=0.633, Fig. 1B; 38ᵒC stimulus 

mean difference: 1.2 mm [-26.7, 29.3] p=0.919, Fig. 1D). 

Contrariwise, MS and CTR experienced a reduction in cold sensitivity with elevations in 

body temperature, which extended across a wider temperature range (including 

milder/colder temperatures) in the MS as compared to the CTR group.  

While the CTR group presented reduced cold sensitivity to the 22°C stimulus only (mean 

difference: -16.6 mm [-30.1, -3.2,] p=0.022; Fig. 2C), MS patients showed a significantly 

reduced cold sensitivity to both 22ᵒC (mean difference: -18.7 mm [-29.9, -7.5] p=0.006; 

Fig. 2D) and 26ᵒC stimuli (mean difference: -13.2 mm [-24.5, -1.9] p=0.027; Fig. 2B).  

When expressed as percentage of change from pre-exercise values, the reductions in cold 

sensitivity in MS corresponded to -9.1% [-17.0, -1.5] and -10.6% [-17.3, -3.7] for the 

26ᵒC and 22ᵒC stimuli respectively. In CTR, percentages of change from pre-exercise 

values sensitivity corresponded to 1.7% [-16.3, +19.8] and -9.7% [-16.4, -3.1] for the 

26ᵒC and 22ᵒC stimuli respectively. 

 

Discussion 
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For the first time, we assessed afferent somatosensory function in MS relative to age-

matched CTR during exercise-induced increases in body temperature using our newly 

developed quantitative sensory test of afferent thermosensory function. We observed that, 

while under thermo-neutral conditions (prior to exercise) perceived magnitude of warm 

and cold stimuli appeared intact, exercise-induced increases in mean body temperature of 

as little as ~0.4ᵒC were sufficient to decrease cold, but not warm, local skin 

thermosensitivity (~10%) in patients with MS. This reduction occurred across a wider 

temperature range (i.e. including milder and colder temperatures) than what is observed 

in age-matched healthy individuals, indicating a clear role for MS in independently 

modulating afferent thermosensory function under exercise-induced increase in body 

temperature. 

To give the reader an idea of what such a reduction in local cold thermosensitivity means 

in practice, it should be noted that MS participants experienced the 22ᵒC stimulus post 

exercise to be as cold as the 26ᵒC prior to exercise (compare Fig. 2D Post-EX with Fig. 

2B Pre-EX), despite the same participants clearly distinguished between these two stimuli 

prior to exercise (compare Fig. 2B Pre-EX with Fig. 2D Pre-EX). As human cold 

sensitivity is known to be remarkably high (i.e. we are able to perceive stimuli of as little 

as 0.4ᵒC below our skin temperature) (Filingeri et al., 2017b), we believe that the 

magnitude of the observed reduction in MS cold thermosensitivity is therefore 

physiologically meaningful and could carry both fundamental and applied implications 

for the understanding and management of heat-sensitivity in this neurological population.  

Fundamentally, the observation that reductions in skin thermosensitivity in our MS group 

were confined to the myelinated cold-sensitive pathway could provide novel evidence on 
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the impact that increases in body temperature have on afferent transmission in 

demyelinated nerves in MS. In humans, magnitude estimation of skin thermal sensations 

is determined by afferent impulses produced by peripheral skin thermoreceptors 

(Filingeri et al., 2017b) and by their integration operated by central (sub-cortical/cortical) 

neural structures (Filingeri, 2016). Due to the central, and not peripheral, nature of MS 

lesions within the nervous system (Noseworthy et al., 2000), it could be therefore 

suggested that the pronounced reduction in cold sensitivity observed in our relapsing-

remitting MS group could be dependent on heat-induced alterations in the processing of 

afferent somatosensory inputs within central neural centers.  

While our results point to a heat-induced alteration in central neural transmission, it 

should be noted that the observed modulation of local cold sensitivity in our MS group 

could be also dependent on additional mechanisms, amongst which is endogenous 

analgesia. Exercise-induced analgesia (Koltyn, 2000) has been previously shown to 

reduce cold (Ouzzahra et al., 2014) and warm sensitivity (Gerrett et al., 2014) in healthy 

individuals, an observation that is in line with the reduction in sensitivity to colder 

temperatures (i.e. 22ᵒC) recorded in our CTR group.  Furthermore, we recently 

discovered that whole-body thermal stress modulates local skin thermosensitivity in 

healthy adults (Filingeri et al., 2017a) via central mechanisms similar to those underlying 

endogenous analgesia (Ossipov et al., 2010). Hence, it cannot be excluded that an 

interaction between pathological (i.e. demyelination) and physiological (i.e. exercise 

analgesia) mechanisms could underlie our observed heat-induced modulation of afferent 

thermosensory function in MS. 
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While further studies are required to determine the exact physiological mechanisms 

underlying the thermosensory modulation observed here, our data indicate a clear role for 

MS in independently modulating afferent thermosensory function under exercise-induced 

heat stress, a novel finding that could have important applied implications. 

For example, the fact that skin thermosensitivity to cold could be significantly reduced 

during heat stress in MS should be taken into account when designing/developing cooling 

aids (e.g. ice vests) aimed at mitigating the adverse effects of heat-sensitivity (Davis et 

al., 2010). If not adequately tailored to the potential perceptual changes in temperature 

sensing occurring under heat stress, the perceptual benefits for MS users of such devices 

(e.g. improving thermal comfort during exercise/sunshine exposure) could be indeed 

hindered by heat sensitivity-induced reductions in the ability to sense the “true coldness” 

of these cooling interventions, when this is most needed (e.g. during elevations in body 

temperature).  

Along with their fundamental and applied implications, our preliminary findings also 

support the use of our newly developed quantitative sensory test of afferent 

thermosensory function as a methodology to quantitatively characterize thermal stress-

induced changes in afferent sensory function in MS within both clinical and experimental 

contexts. From a clinical perspective, this knowledge could be indeed beneficial to 

support the design of quantitiave testing procedures supporting early clinical detection, 

assessment of disease progression, and treatment effectiveness in MS.  

To date, research on the impact of heat-sensitivity in MS symptoms has focused on the 

investigation of the efferent control of physiological functions (e.g. control of 

movements, blood pressure, sweating) (Davis et al., 2008, 2010). As afferent sensory 
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abnormalities are highly prevalent symptoms in MS (Leocani et al., 2003), we propose 

that our novel methodology could be implemented in future experimental approaches to 

quantitatively characterize heat-stress-induced changes on both afferent and efferent 

physiological pathways in MS and provide a more comprehensive picture of the impact 

of heat-sensitivity in MS. Afferent and efferent dysfunctions occur frequently and early 

in the disease (Leocani et al., 2003) and their concurrent assessment via specifically 

designed quantitative methods could be essential to improve our understanding of the 

pathophysiology of MS.  
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Figure Legends 

Figure 1. Impact of exercise-induced increases in body temperature on skin 

thermosensitivity to warm stimuli in CTR (A, C) and MS (B, D). Individual (n=8) and 

mean (±95% CI) values for magnitude estimation of local thermal sensations resulting 

from 34°C (A, B) and 38°C (C, D) stimuli pre- and post- 30-min cycling are shown. It 

can be observed that exercise-induced increases in mean body temperature did not induce 

any change in the magnitude estimation of warm stimuli from pre-exercise values, neither 

in the CTR nor in the MS group. 
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Figure 2. Impact of exercise-induced increases in body temperature on skin 

thermosensitivity to cold stimuli in CTR (A, C) and MS (B, D). Individual (n=8) and 

mean (±95% CI) values for magnitude estimation of local thermal sensations resulting 

from 26°C (A, B) and 22°C (C, D) stimuli pre- and post- 30-min cycling are shown. It 

can be observed exercise-induced increases in mean body temperature induced reduction 

in cold sensitivity in MS and CTR, although these were more pronounced in the MS 

group (i.e. both sensitivity to 26 and 22°C was reduced). * denotes statistically significant 

difference at p<0.05. 

 

 

 

 


