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Abstract 

Thin material layers have found various applications with various roles of functions, such as 

in fibre reinforced laminated composite materials, in integrated electronic circuits, in thermal 

barrier coating material system, and etc.. Interface delamination is a major failure mode due 

to either residual stress or applied load, or both. Over the past several decades, extensive 

research works have been done on this subject; however, there are still uncertainties and 

unsolved problems. This thesis presents the new developed analytical studies on local 

delamination failure of thin material layers.  

Firstly, the analytical theories are developed for post-local buckling-driven delamination in 

bilayer composite beams. The total energy release rate (ERR) is obtained more accurately by 

including the axial strain energy contribution from the intact part of the beam and by 

developing a more accurate expression for the post-buckling mode shape. The total ERR is 

partitioned by using partition theories based on the Euler beam, Timoshenko beam and 2D-

elasticity theories. By comparing with independent test results, it has been found that for 

macroscopic thin material layers the analytical partitions based on the Euler beam theory 

predicts the propagation behaviour very well and much better than the others.  

Secondly, a hypothesis is made that delamination can be driven by pockets of energy 

concentration (PECs) in the form of pockets of tensile stress and shear stress on and around 

the interface between a microscopic thin film and a thick substrate. Both straight-edged and 

circular-edged spallation are considered. The three mechanical models are established using 

mixed-mode partition theories based on classical plate theory, first-order shear-deformable 

plate theory and full 2D elasticity theory. Experimental results show that all three of the 

models predict the initiation of unstable growth and the size of spallation very well; however, 

only the 2D elasticity-based model predicts final kinking off well. Based on PECs theory, the 

room temperature spallation of α-alumina oxidation film is explained very well. This solved 

the problem which can not be explained by conventional buckling theory. 

Finally, the analytical models are also developed to predict the adhesion energy between 

multilayer graphene membranes and thick substrates. Experimental results show that the 

model based on 2D elasticity partition theory gives excellent predictions. It has been found 

that the sliding effect in multilayered graphene membranes leads to a decrease in adhesion 

toughness measurements when using the circular blister test.   
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 Introduction 
 

1.1 Introduction 
 

Thin layer/substrate material systems are commonly seen in many engineering applications, 

such as thermal barrier coating material system in aero engines, erosion resistance coating 

material system in oil transportation pipes, modern carbon /glass fibre reinforced plastic 

materials in aircraft, and thin film/substrate systems for electronic packages etc. The film and 

coating are usually very thin in comparison with the thickness of the substrate and often 

sustain in-plane residual stresses in service condition due to the mismatch of material 

properties, such as thermal expansion coefficients, or release of pre-strains in the substrate; 

also, the residual stress could be induced through manufacture process. In general, the 

residual stress has a detrimental effect on the layered material systems; it causes interface 

delamination and leads to partial or complete failure of the material systems. 

With the increase of the residual stresses in the thin layer, the cracks could initiate and further 

propagate along the interface; as the crack length attains to a critical level, the interface 

delamination is driven by buckling and post-buckling loads. Typically, thin layer 

delamination is coupled with fracture and buckling mechanism.   

As the crack developed in brittle, isotropic and homogeneous bodies, the crack propagation 

obeys the ‘criterion of local symmetry’, the cracks tend to kink by an angle into a direction so 

that the advancing crack tip is a pure mode I fracture [1,2]. The interface cracks of layered 

material advance either kink by an angle or along the interface depending on the competition 

of interface fracture toughness to that of the adjoining materials. If the fracture toughness of 

interface adjoining materials is strong enough, then the crack is constrained to advance along 

the path of the interface; the crack propagation is in the form of mixed mode, typically mixed 

mode I and mode II.  

As mentioned above the delamination of layered materials is a process of failure under mixed 

mode fracture mechanics. Over the past several decades, various mixed mode partition 

theories have been developed by researchers. Commonly used one is the mixed mode 

partition theory based on stress intensity factors of 2D elasticity theory developed by 

Hutchinson [14]. In the work [3-11] and many others, the mixed mode partition theory is 

utilised based on 2D elasticity theory [14] and the assumption of rigid or brittle interface. 
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However, the experimental test results from very experienced researchers [15-21,30] do not 

agree with the predictions of the theory [14]. On the other hand, these experimental results 

[15-21] agree very well with the predictions from the mixed mode partition theory [22-29] 

that is based on Euler beam or classical plate theory for the rigid or brittle interface. The 

experimental results from recent studies, which were conducted by Harvey and Wang [22,23] 

show that the interface delamination between two layers of macroscopic thickness (such as 

the thickness of the layer in the order of mm) are governed by the global classical partition 

theory. Due to the complexity and diversity of the layered material systems and the failure 

modes, there are still uncertainties on this subject need to be investigated and resolved.    

 

1.2 Project motivation  

 

The above conclusion that the brittle interface fracture in the thin beam, plate and shell 

structures is governed by the Euler beam, the classical plate partition theory is for a thin layer 

of macroscopic thickness. The layer thickness of the interface delamination investigated by 

Harvey and Wang [22,23] is in the range of millimetres. However, it is not sure which theory 

governs the interface delamination of thin layers of microscopic thickness, namely, the 

thickness in the order of micrometres and  nanometre thickness. Moreover, despite many 

research works have been carried out on the subject of thin layer delamination for several 

decades, there are still many unsolved problems. For example, the mechanisms of spallation 

of α- alumina oxidation film in the room temperature and the descrease of adhesion 

thoughness of multi-layered graphene membranes remain unsolved.  

 

1.3 Project aims  

 

The aim of the present work attempts to develop analytical mechanical models to study the 

mechanics of interface delamination of thin-layer-substrate material systems based on the 

classical, shear deformable plate and 2D elasticity theories. Whenever possible, the 

developed theory will be verified against experimental results in literature. Some analytical 

mechanical models developed in this work attempt to predict the interface crack process 

including crack propagation, stable, unstable delamination and spalling off of the thin 

http://scholar.google.co.uk/scholar?q=due+to+the+complexity+and+diversity&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjEhryyjbfQAhWD5iYKHTgUB00QgQMIIDAA
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material layers. The models developed might provide an accurate analytical tool for 

researchers and designers to design durable, reliable thin layer material systems.     

 

1.4 Thesis outline 

 

The thesis contains following chapters: 

Chapter 1 

The motivation and objectives of the work are presented.   

Chapter 2 

Background knowledge of linear elastic fracture mechanics is presented and the literature 

review on the subject of interface delamination is conducted. Two Harvey and Wang’s 

experimental assessment papers [22,23] serve as major references for the interface 

delamination between two layers of macroscopic thickness in this chapter. Detailed theories, 

experimental results are recorded with conclusions showing classical partition theory giving 

excellent predictions for delamination between two macroscopically thick layers. 

Chapter 3 

A study on thin layer delamination under mechanical compressive loads is presented after a 

brief literature review on the subject; the analytical theories are developed for post-local 

buckling-driven delamination in bilayer composite beams with macroscopic layer thickness. 

The total energy release rate (ERR) is obtained more accurately by including an axial strain 

energy contribution from the intact part of the beam and by developing a more accurate 

expression for the post-buckling mode shape. The total ERR is partitioned using partition 

theories based on the Euler beam, Timoshenko beam and 2D elasticity theories. Independent 

experimental tests by Kutlu and Chang [32] are used to verify the analytical results. The 

results show that, in general, the analytical partitions based on the Euler beam theory predict 

the propagation behaviour very well and much better than the partitions based on the 

Timoshenko beam and 2D elasticity theories. 
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Chapter 4 

The work of the thin layer delamination under mechanical loads in Chapter 3 is extended to 

the study of the thin layer delamination under thermal loads. At first, the literature review on 

the subject of Thermal Barrier Coating (TBC) is given; then, a normalised analytical 

approach is developed to show the general trends of thermal barrier coating interface crack 

propagation and stability by using Euler beam, Timoshenko beam and 2D elasticity mixed 

mode partition theories. A case study is conducted to verify the general trends predicted by 

the normalised approach.  

Chapter 5 

A hypothesis is made that delamination can be driven by pockets of energy concentration 

(PECs) in the form of pockets of tensile stress and shear stress on and around the interface 

between a thin film and a thick substrate, where PECs can be caused by thermal, chemical or 

other processes. Based on this hypothesis, three analytical mechanical models are developed 

to predict several aspects of thin-film spallation failure including nucleation, stable and 

unstable growth, size of spallation and final kinking off. Both straight-edged and circular-

edged spallation are considered. The three mechanical models are developed using partition 

theories for mixed-mode fracture based on classical plate theory, first-order shear-deformable 

plate theory and full 2D elasticity theory. Experimental results for room temperature 

spallation of α-Al2O3 oxide films of microscopic thickness [124] show that all three of the 

models predict the initiation of unstable growth and the size of spallation very well; however, 

only the 2D elasticity-based model predicts final kinking off well. The energy for the 

nucleation and stable growth of a separation bubble comes solely from the PEC energy on 

and around the interface, which is ‘consumed’ by the bubble as it nucleates and grows. 

Unstable growth, however, is driven both by PEC energy and by buckling of the separation 

bubble. Final kinking off is controlled by the fracture toughness of the interface and the film 

and the maximum energy stored in the separation bubble. 

Chapter 6 

The presence of sliding in multi-layered graphene membranes increases the fracture mode 

ratio GI/GII, leading to a decrease in adhesion toughness measurements when using the 

circular blister test. There is a large reduction of adhesion energy from monolayer to 

multilayer graphene membranes observed in the work [159]. In this chapter, a mechanical 



5 
 

model is developed with considering the fracture mode mixity and the sliding effect to give a 

complete calculation and correct interpretation of the adhesion energy. The study performed 

in this chapter shows that the delamination of thin layer of Nano thickness is controlled by 

2D elasticity partition theory. 

Chapter 7 Conclusions and further work are presented in this chapter. 
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 Interface delamination between two layers of 

macroscopic thickness 
 

2.1 Introduction 
 

Many modern materials are layered; laminated composite materials are one of the most 

representative of layered materials. One of the most common failure modes of laminated 

composite materials is delamination. The remote loadings applied to the composite 

components typically result in interlaminar tension and shear stresses that create mixed-mode 

I, II and III delamination. In general, the total strain energy release rate (ERR), G, contains 

the mode I component due to interlaminar tension, GI, the mode II component due to 

interlaminar sliding shear, GII, and the mode III component, GIII, due to interlaminar 

scissoring shear, as shown in Figure 2-1. In the case of one-dimensional fracture, the total 

ERR G contains only pure mode I, GI and pure mode II, GII. 

 

Figure 2-1: a) pure mode I, b) pure mode II, c) pure mode III. 

In brittle, isotropic and homogeneous materials, it is well known that cracks propagate under 

pure mode I conditions [1,2] to obey the ‘criterion of local symmetry’. However, the interface 

crack of layered materials is often constrained to propagate along the interface since the 

interface normally represent a plane of weakness. Typically, the interface crack propagates as 

a mixed mode and can even propagates under pure mode II loading.  

In this chapter, the characteristic behaviours of interface delamination between two layers are 

presented by reviewing the relevant research works from published literatures. Two Harvey 

and Wang’s experimental assessment papers [22,23] provide the major understanding on the 

subject of the interface delamination between two layers of macroscopic thickness. However, 

it is necessary to present some background knowledges of fracture mechanics at first. 

http://dict.leo.org/ende/index_en.html#/search=characteristic&searchLoc=0&resultOrder=basic&multiwordShowSingle=on&pos=0
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2.2 Linear elastic fracture mechanics 
 

Linear Elastic Fracture Mechanics (LEFM) is the fundamental theory of fracture, originally 

developed by Griffith (1921) [33], and completed in its essential form by Irwin (1957, 1958) 

[34,35], and Rice (1968) [36]. LEFM is a highly simplified but sophisticated theory that deals 

with cracks in elastic materials.  

The theory of linear elastic fracture mechanics has been developed using a stress intensity 

factor (K) determined by the stress analysis, and expressed as a function of stress and crack 

size. 

Inglis (1913) [37] reported that the local stresses around a corner or hole in a stressed plate 

could be many times higher than the average applied stress. Inglis demonstrated that the 

degree of stress magnification at the edge of the hole in a stressed plate depended on the 

radius of curvature of the hole. The radius of curvature at the tip of the ellipsis 
a

b2

 . 

     


a
k 21                           (2.1) 

Where a is the hole radius, b is the half width of the hole and  here is the radius of curvature 

of the tip of the hole, k is the stress concentration factor. 

 

Figure 2-2: Stress concentration of an elliptical hole in a plate. 

For a very narrow elliptical hole the stress concentration factor is much greater than one, see 

Figure 2-2. For a circular hole, the stress concentration factor is about three. The stress 

concentration factor does not depend on the absolute size or length of the hole but only on the 

ratio of the size to the radius of curvature. 
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Despite this progress made by Inglis, however the fundamental nature of the fracture 

mechanism remained unsolved until Griffith (1921). For example: why large cracks tend to 

propagate more easily than small cracks? This question cannot be answered by Inglis’s 

“stress concentration” approach. In 1921, Griffith of the Royal Aircraft Establishment in 

England published a paper and proposed the energy-balance concept of fracture based on the 

principle of energy conservation laws of mechanics and thermodynamics.  

Griffith proposed that the reduction in strain energy due to the formation of a crack must be 

equal to or greater than the increase in surface energy required by the new crack faces. 

According to Griffith, there are two conditions necessary for crack growth: 1) the bonds at 

the crack tip must be stressed to the point of failure. The stress at the crack tip is a function of 

the stress concentration factor, which depends on the ratio of its radius of curvature to its 

length; 2) for an increment of crack extension, the amount of strain energy released, must be 

greater than or equal to that required for the surface energy of the two new crack faces.  

The first condition is based on Inglis’s stress condition and the second one is the development 

by Griffith based on energy balance principle. The second condition can be expressed as:  

da

dU

da

dUs 
                                                               (2.2) 

Where sU is the strain energy, U  is the surface energy, and da  is the crack length 

increment. Equation (2.2) expresses that for a crack to extend, the rate of strain energy release 

per unit of crack extension must be at least equal to the rate of surface energy requirement.  

Taking the derivative, the above equation can be written as the form of energy release rate 

(J/m per unit width): 




2
2


E

aa                                                            (2.3) 

Where   is the fracture surface energy of the solid, a  is the stress applied.  

Further, the critical stress c  for crack propagation can be determined: 






a

E
c

2
                                       (2.4) 

The energy balance criterion indicates whether crack growth is possible, but whether it will 

actually occur depends on the state of stress at the crack tip. A crack will not extend until 
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crack tip are loaded to their tensile strength, even if there is sufficient strain energy stored to 

permit crack growth. Fracture only occurs when the stress at the crack tip is sufficient to 

break the bonds there. In practice, stress singularities due to an “infinitely sharp” crack tip are 

avoided by plastic deformation of the material. The concept of linear fracture mechanics is 

based on the small-scale yielding hypothesis in the crack tip zone. In thin film material 

systems, it is sometimes difficult to justify the use of the small-scale yielding hypothesis due 

to the small geometrical dimensions involved. In such cases, the concept of stress intensity 

factor becomes a more subjective matter. 

Energy Release Rate 

Griffith’s (1921) [33], original work dealt with brittle materials—specifically glass. For 

ductile materials, such as steel, the surface energy predicted by Griffith’s theory is usually 

unrealistically high. Irwin (1957) [34] realised that in a ductile material, the total energy 

supplied to the crack tip was not fully absorbed for creating new surfaces but instead by 

energy dissipation due to plastic flow in the material near the crack tip.  

The strain energy available for surface energy of new crack faces cannot be simply applied to 

ductile solids. For example, in crystalline solids, considerable energy is consumed in the 

movement of dislocations in the crystal lattice and this may happen at applied stresses well 

below the ultimate strength of the material. Dislocation movement in a ductile material is an 

indication of yield or plastic deformation. Irwin modified Griffith’s equation to take into 

account the plastic zone by simply including this term in the original Griffith equation: 

2cG                                                                                         (2.5) 

The modified form  

pc GG  2                          (2.6) 

Then the equation (2.4) is rewritten as 




a

EGc
c       (2.7) 

Since the potential reduction in total potential energy in the body for a unit crack growth must 

exceed material fracture toughness Gc in order to grow the crack. Irwin was the first to 

observe that if the size of the plastic zone around a crack is small in comparison to the size of 

the crack, the energy required to grow the crack will not be critically dependent on the state 
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of stress at the crack tip. In other words, a purely elastic solution may be used to calculate the 

amount of energy available for fracture if the plastic zone is small.  

The energy dissipated during fracture per unit of newly created fracture surface area is 

defined as energy release rate (ERR), and it is denoted by G. This quantity is central to 

fracture mechanics because the energy that must be supplied to a crack tip for it to grow must 

be balanced by the amount of energy dissipated due to the formation of new surfaces and 

other dissipative processes such as plasticity. 

Linear elastic approach is applicable to the brittle or quasi brittle materials; it may be also 

used to assess fracture in non-brittle materials if the amount of plastic flow is small compared 

to both the crack length and the width of the sheet, i.e. conditions of ‘small-scale yielding’. 

For the purposes of calculation, the energy release rate is defined as 

A

VU
G






)(
     (2.8) 

Where U is the potential energy available for crack growth, V is the work associated with 

any external forces acting, and A  is the crack area. The unit of G is J/m2. 

The failure criterion of energy release rate states that a crack will grow when the available 

energy release rate G is greater than or equal to a critical value CG .  

CGG        (2.9) 

Stress intensity factor 

Williams (1957) [38] established the stress intensity factors K to show how stresses vary near 

a crack tip. By using elasticity and Ary stress function approach, he showed that the stresses 

vary proportionally to the inverse square root of distance r. 

Williams showed that the stress field ),(  r  in the vicinity of an infinitely sharp crack tip 

could be described mathematically by: 

https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Fracture
https://en.wikipedia.org/wiki/Fracture_mechanics
https://en.wikipedia.org/wiki/Plasticity_(physics)
http://en.wikipedia.org/wiki/Material_failure_theory
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r

K
yy

    (2.10) 

The first term on the right-hand side of equation (2.10) describes the magnitude of the stress 

whereas the terms involving   describe its distribution. The “stress intensity factor” K1 is 

defined as:  

aYK a 1       (2.11) 

a  is the externally applied stress, Y is a geometry factor, and a is the crack half-length. The 

stress intensity factor K1, which includes both applied stress and crack length, is a combined 

“scale factor”, which characterises the magnitude of the stress at some coordinates (r,  ) near 

the crack tip. The shape of the stress distribution around the crack tip is the same for cracks 

of all lengths. The stress intensity factor K1 provides a numerical “value,” which quantifies 

the magnitude of the effect of the stress singularity at the crack tip. There is a critical value 

for K1 for different materials, which corresponds to the unstable crack propagation or residual 

strength of the material.  

K1C, the critical value of K1  

The value of K1 at the point of crack unstable is called the critical stress intensity factor K1C. 

K1C is a material property and usually is used to characterise fracture toughness. The unit of 

K1C is MPa*m^0.5. Low values of K1C mean that, for a given stress, a material can only 

withstand a small length of crack before a crack unstable. Catastrophic fracture occurs when 

the equilibrium condition is unstable.  

Equivalence of G and K  

Energy release rate G and stress intensity factor K are related. From Equation (2.12) the strain 

energy release rate can be written as the function of stress and crack length; that is, for a 

double-ended crack within an infinite solid, the rate of release in strain energy per crack tip 

is: 

E

a
G

2
        (2.12) 

E

K
G

2

1      (2.13) 
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When K1 = K1C, then Gc becomes the critical value of the energy release rate for the material 

which leads to crack extension and possibly fracture of the specimen. The relationship 

between K1 and G is significant because it means that the K1C condition is a necessary and 

sufficient criterion for crack growth since it contains both the stress and energy balance 

criteria. The value of K1C describes the stresses (indirectly) at the crack tip as well as the 

strain energy release rate at the onset of crack extension.  

 

2.3 Mixed mode partition  
 

2.3.1 Mixed mode interface delamination  

 

As known, the behaviour of interface cracking is significantly different from that of cracks in 

homogeneous media. The stress fields around the crack tip show an oscillatory singularity 

(Williams 1959) [51], as do the relative displacements between the surfaces of the crack 

(England 1965) [52] as well. These are associated with a physically inadmissible 

interpenetration of the crack surfaces near the crack tips.  

Williams [51] was the first to study the problem of a crack lying on the interface between two 

dissimilar isotropic materials in 1959. It is well known from the analysis of Williams that at 

the tip of an interface crack the stress singularity is of the order r , r is the radial distance 

from the crack tip, where   is the complex eigenvalue given by  

 i
2

1
      (2.14) 

Where   here is the bi-material constant, dependent on the properties of the materials across 

the interface. 

]
1

1
ln[

2

1











      (2.15) 

)]1()1([2
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1221

1221









                          (2.16) 

j

j

j








1
  plane stress        (2.17) 

jj     plane strain     (2.18) 



13 
 

and j  = shear moduli, j = Poisson’s ratios and j = 1, 2 for material 1 and 2. 

The presence of the term   results in oscillatory behaviour in stresses as the crack tip is 

approached ( 0r ). The associated displacements are also oscillatory behind the crack tip as 

( 0r ), and the crack faces interpenetrate or overlap each other. Considerable conceptual 

difficulties have arisen due to the presence of oscillatory singularity. 

England [52] showed that this kind of oscillation is physically inadmissible but is confined to 

a very small region near the ends of the crack and can be ignored. To avoid the difficulties of 

oscillatory behaviour in stresses at the crack tip, the strain energy release rate is adopted and  

defined in the same way as in homogeneous materials, i.e.,  the rate of change of strain 

energy ( U ) with virtual crack extension ( a ) as 0a . Malyshev and Salganik [53] are 

the first to derive the expression for total strain energy release rate G. Later several authors 

including Rice [54], Rice and Sib [55], Hutchinson et al. [56], Comninou [57], Sun et al. [58-

60] and Raju [61] have all confirmed the unambiguity of G. Now, the attention is shifted to 

the evaluation of strain energy release rate components GI and GII since fracture can often be 

predicted by using individual mode components.  

 

2.3.2 Mixed mode partition theories  

 

Fracture mode partitions play a key role in the development of crack propagation criteria. 

Double cantilever beams (DCBs) are typical representatives of one-dimensional fracture 

problems and often used to determine critical energy release rates of materials. The Williams 

partition rules were given in his pioneering work [39]. He successfully identified one pair of 

pure mode conditions (mode I and II), which are valid for Euler double cantilever beams 

(DCBs) with bending moments alone. Unfortunately, the other set of pure mode conditions 

and the stealthy interactions between pure modes were missed in his work. As a result, his 

partition theory is only able to give the correct partition for symmetric DCBs. Another piece 

of pioneering work [40] was given by Schapery and Davidson who claimed that Euler beam 

theory does not provide quite enough information to obtain a decomposition of energy release 

rate into opening and shearing mode components. Hutchinson and Suo [14] presented their 

combined numerical and analytical rules based on stress intensity factors and claimed 

Williams rules [39] containing conceptual errors. Some other earlier works are given in refs. 

[41–43]. Several recent research works on the topic are quoted here among many others. 
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They are Wang and Qiao [44], Nguyen and Levy [45], Yan and Shang [46], Ouyang and Li 

[47], and Zou et al. [48,49]. C. M. Harvey [25] provided a detail review of mixed mode 

partition theories and presented the “Wang–Harvey partition theories” in his PhD thesis.  

There are various partition theories. These are (i) a partition theory by Williams (1988) [39], 

based on Euler beam theory; (ii) a partition theory by Suo (1990) [41] and Hutchinson and 

Suo (1992) [14], based on 2D elasticity theory; and (iii) the Wang–Harvey partition theories 

based on the Euler and Timoshenko beam theories. S. Wang and C. Harvey [27-29] 

developed analytical partition theories based on both Euler and Timoshenko beam theories by 

using a completely new approach. The work reveals the in-depth mechanics of the complex 

problems between numerical simulations and different analytical theories. It attempts to 

clarify all the confusions in both numerical and analytical aspects.  

 

The Wang–Harvey partition theories 

Within the context of linear elastic fracture mechanics (LEFM) the total Energy Release Rate 

(ERR) G can be expressed as follows in a general form: 

   

 T

BBBBBB

BBBBBB

PPNNMM

CPPNNMMG

212121

212121

,,,,,      

,,,,,




                                (2.19)  

Where G is a quadratic form and non-negative definite, the general description and loading 

convention of DCB are presented in Figure 2-3. 

According to Wang–Harvey partition theories [25-29], an analogy of G is the kinetic energy 

of a vibrating structure, which can be partitioned into individual modal energies by using 

natural or free vibration modes. This leads to the physical understanding: A mixed-mode 

fracture is formed by natural or pure fracture modes, the total ERR G can be partitioned by 

using these modes. This means that there exist two fundamental pure modes and all other 

pure modes can be determined by using them with orthogonality. 

From Irwin’s VCCT: 
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                                     (2.20) 

Where 
opF and shF are forces for opening and shear respectively; opD and shD are 

displacement for opening and shear respectively. 
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For the simplicity, firstly is to consider the partition of a brittle one-dimensional beam 

subjected to bending moment only,   0,0,0,0,, 21 BB MM . The materials in consideration 

are assumed to be linearly elastic.    

Pure mode I due to 0shD : 
BB MM 112  , pure mode I due to 0shF : BB MM 1

'

12  . 

Pure mode II due to 0opD : BB MM 1

'

12  , pure mode II due to 0opF : 
BB MM 112  . 

The mixed mode partition of mode I and II can be obtained in Eq. (2.21) and (2.22) 

respectively. 
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Where 
1 and '

1  are called symmetrical pair of pure mode I; 
1 and '

1  are called 

symmetrical pair of pure mode II. They all depend on substrate and interface material 

properties, fracture locations, fracture propagation size and mechanics theories used. It is 

difficult to find out 1

'

1 ,  directly using 0shF  and 0opF as they are related to the 

complex interface stresses, while it is much easier to find out out 
1  and '

1  directly using 

0shD and 0opD . With the help of orthogonality as expressed as eq. (2.23) and (2.24), if 

one parameter in the equation is known, the other one can be determined using orthogonality. 

                                                     00,0,0,0,,1][0,0,0,0,,1 11 
T

C                                       (2.23) 

    00,0,0,0,,1][0,0,0,0,,1 11 
T

C                                          (2.24) 

Or in short, )( 11  orthogonal , )( '

1

'

1  orthogonal . 

Now the mixed mode partition of bending moment only can be extended to consider the 

general loading cases,  BBBBBB PPNNMM 212121 ,,,,, . The mixed mode partition of mode I 

and II can be obtained in Eq. (2.25) and (2.26) respectively. 
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'

11, is the fundamental pair of pure modes I and II;  5,...,2,1,  iii   is the 

symmetrical pairs of pure mode I modes;  5,...,2,1,  iii   is the symmetrical pairs of 

pure mode II modes. The first set of orthogonal pure modes I and II is 

 5,...,2,1,)(  jiji  orthogonal ; the second set of orthogonal pure modes I and II is 

 5,...,2,1,)(  jiji  orthogonal . Once '

11,  are determined either analytically or 

empirically or numerically, all other pure modes are conveniently obtained by using the 

orthogonality operation.   

The formula and methodology are universal for beams, plates and shells, classical, shear 

deformable and 2D elasticity mechanics for rigid (brittle) and non-rigid (ductile) interfaces.  

As known, the main difference between Euler beam and Timoshenko beam theory is how to 

consider the through-thickness shear deformation. In the Euler beam theory the cross section 

is perpendicular to the bending line after shear deformation; however, the Timoshenko beam 

theory allows the rotation between the cross section and the bending line. When the through-

thickness shear modulus at the crack tip tends to infinity, Timoshenko beam becomes to Euler 

beams, they become equal. This difference is analogically applicable to classic plate theory 

and first order shear- deformable plate theory. 

Due to the difference between Euler beam and Timoshenko beam theory, in the Wang–

Harvey Euler beam partition theory, the two sets of pure mode pairs are distinct and this leads 

to stealthy interactions. Under the Wang–Harvey Timoshenko beam partition theory, the two 

sets of pure mode pairs exactly coincide and there are no stealthy interactions. Consequently, 

the global partition and local partition of mixed mode are the same for Euler beam partition 

theory, but not for Timoshenko partition theory.  

The other difference between Euler beam and Timoshenko beam mixed mode partition 

theories is that the P1B and P2B do not contribute to the strain energy in Euler beam theory, 

but contribute to the mixed-mode partition using Timoshenko beam theory. Since the 

through-thickness shear effect does not generate any axial displacement in Timoshenko beam 

theory, the two crack tip forces P1B and P2B produce pure mode I fracture only. 
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The detailed partition theories between Euler beam and Timoshenko beam theories are 

provided in Harvey-Wang’s work [25,28,29]. The extensive numerical and experimental 

validations are performed [22-25]; it is concluded that the Wang–Harvey partition theories   

are readily applicable to a wide-range of engineering structures and they provide an excellent 

tool for studying interfacial fracture and delamination.  

It was also found that the average of these two extreme cases (Euler beam and Timoshenko 

partition theories) provides a very accurate approximation to the 2D elasticity result from the 

Suo–Hutchinson partition theory [14,41,50]. Figure 2-3 shows the general description and 

loading convention of DCB used in Wang-Harvey partition theories. The number 1 and 2 

refer to the upper and lower layers respectively. No subscript is used for the intact part of 

beam. 

 

Figure 2-3: DCB (a) general description and (b) crack tip force [23] 

The mode I and II components of the total energy release rate for considering bending and 

axial loading, denoted by GIE and GIIE respectively for using Euler beam partition theory, are 
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Where i  and i  represent the first set of pure mode I and II relationships respectively and 

i'  and i'  represent the second set. The detail calculation of these can be found in reference 

[23]. 
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According to the Wang–Harvey Timoshenko beam partition theory [27-29], the mode I and II 

components of the energy release rates for considering bending and axial loading, denoted by 

GIT and GIIT respectively are 
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Details of 1G and 1G  in Eq. (2.29), (2.30), (2.33) and (2.34) are explained in reference [23].  

Finally, the averaged partition theory is the average of the Wang–Harvey Euler and 

Timoshenko beam partitions. This partition has been found to give an excellent 

approximation to the partition from 2D elasticity theory [27-29]. The mode I and II 

components of the energy release rate for considering bending and axial loading from the 

averaged partition theory are denoted by GIA and GIIA respectively. They are 

2/)( ITIEIA GGG          (2.35) 

2/)( IITIIEIIA GGG             (2.36) 

These three partitions are reduced for isotropic materials. A thickness ratio 12 / hh  is now 

introduced. The present Euler beam partitions for isotropic beams reduce to  
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Where the cIE and cIIE are still given by Equation (2.29), (2.30),  

/211 BBBe NNN        2.39) 

The pure mode relationships are as below: 
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The isotropic 1G and 1G  for use in equation (2.29) and (2.30) are 
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The Timoshenko beam partition for isotropic beams reduced to: 
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The Suo–Hutchinson partition theory 

Suo [41], Suo and Hutchinson [14] developed a partition theory for isotropic DCBs using 2D 

elasticity theory and stress intensity factors, which are analytical except for one parameter 

determined numerically. 

This partition theory assumes that a square-root singular field exists, so the partition is 

expressed in terms of stress intensity factors. The mode I and II stress intensity factors KISH 

and KIISH are 
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Where the M and N are linear combination of the applied loads: 
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And the geometric factors U, V and   are functions of  :   
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With help of numerical solution, the   is determined 
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For the spalling case, 0 ,  1.52 , the mode I and II stress intensity factors become: 
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The relationship between stress intensity factor and energy release rate for plane stress is

EGK 2 ; for plane strain, E can be simply replaced by )1/( 2vE  .  

Similar to the Timoshenko beam partition theory, the 2D elasticity partition theory has 

different global and local mixed mode partitions, the results are mesh size dependant. As 

mentioned, Euler beam partition theory is a global mixed mode partition, the results are 

insensitive to mesh size at the crack tip.      

 

The Williams partition theory 

Williams (1959) [51] was the first to study the problem of a crack lying on the interface 

between two dissimilar isotropic materials. He was one of the first researchers to attempt to 

partition a mixed mode [39]. His theory has been applied to the various test methods for 

laminates [15,16,39]. His pioneering work was partially successful, in that this theory 

correctly predicts a pair of pure modes and also gives the correct partition for a symmetric 

DCB, i.e. 1 . However, it cannot identify the other pure modes and missed the stealthy 

interactions between pure modes according to S. Wang and C. Harvey [26-29]. The Williams 

partition, denoted by GIW and GIIW, is now introduced here. Again, for consistency, the 

notation has been changed where appropriate to match the conventions in this thesis. 
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2.3.3 Mixed mode partition using numerical methods  

 

Virtual crack closure technique (VCCT) and cohesive interface element model are commonly 

used in the finite element analysis of delamination features. The two methods employ similar 

principle, and they simulate the crack propagation by the energy release rate criterion. The 

principle of VCCT is based on classical fracture mechanics, which investigates the behaviour 

of crack propagation when an initial crack is designated. While cohesive element is a 

numerical model based on damage mechanics, in which the stiffness of the element decrease 

when passing a critical stress, until a complete failure is reached, and then the bonding 
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element is eliminated to simulate the propagation of a fracture. Therefore, the entire process 

of crack initiation to propagation could be analysed by cohesive models.  

The crack closure method is based on Irwin’s crack closure integral [35]. The method is 

based on the assumption that the energy released when the crack is extended by a  is 

identical to the energy required to re-close the crack by that same distance. This method 

needs two complete FEM simulations (before and after crack extension). The VCCT is based 

on the same assumptions as the crack closure method. However, in addition, it is assumed 

that a crack extension of a does not significantly alter the state at the crack tip. As a result of 

this assumption, the ERR partition can be calculated with one FEM simulation only using the 

VCCT. 

In recent years, Ronald Krueger [62-65] carried out series of the benchmark assessment of 

automated delamination propagation capability in finite element codes for standard software 

Abaqus, Ansys and MD Nastran and Marc. However, the assessments are mainly based on 

DCB, ENF and MMB beams, the feasibility of using these standard FEA software for 

specific problem, like buckling driven delamination, mixed mode partition for bi-material 

interface is not very clear. At least further validation works are required before using these 

standard FEA codes. 

Rybicki and Kanninen [66] seems to be the first to evaluate of both mode I and mode II stress 

intensity factors from the results of a single analysis. The method does not use stresses, the 

conventional constant strain elements have been used, and a coarse grid near the crack tip 

was found to be sufficient. The axial and vertical forces at the crack tip were obtained by 

placing very stiff springs between adjacent points and evaluating the forces in these springs. 

The better results are obtained by using four-node quadrilateral, non- singular elements. 

It is convenient to maintain the same size for the elements, of which nodal force and 

displacement are used. If this is not the case, then a modification to handle this case is 

needed. At first, the VCCT was used to calculate energy release rate mode I and mode II. 

Then mode I and mode II stress intensity factors are calculated from energy release rate.  

The relationship between G and the stress intensity factor for an isotropic material in plane 

strain is established using Irwin’s crack closure integral [35],  
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The accuracy to predict strain energy release rate for bi-material interface depends on the 

mesh density applied to crack propagation area. From Raju’s study [61], the individual 

energy release rate did not show convergence as the delamination tip elements were made 

smaller. In contrast, the total strain energy release rate, G, converged and remained 

unchanged as the delamination tip elements were made smaller and agreed with the total G 

analytical calculated.  

For two different anisotropic materials, the singularity is not the classical square root 

singularity but is of the form ir  2/1 , where r is the radial distance measured from the 

delamination tip. The   depends on the material properties of the two materials. This 

imaginary power leads to the stress oscillations very close to the delamination tip. The 

oscillatory component of the singularity may cause the non-convergence of the individual G 

components. In the finite element analysis, this means that the computed mode I and mode II 

strain energy release rates will be dependent on the crack tip element size and do not show 

convergence as the crack tip elements are made smaller. 

B. Dattaguru, et al. performed another convergence study for simulate mode I and mode II 

energy release rate for bi-material interface delamination [67]. The strain energy release rate 

components GI and GII in mode I and mode II at the tip of an interface crack in a bi-material 

plate under tension in a direction normal to the interface were evaluated using finite element 

analysis. The strain energy release rate components GI and GII are calculated at the crack tip. 

The results show that GI and GII are likely to show an oscillatory trend at infinitesimally 

small aa / . Based on the results obtained, it appears that such oscillations are likely to occur 

only when the virtual crack extension proposed a  is less than the contact zone size r. Figure 

2-4 shows the changes of GI, GII and total GT with reducing the mesh size as the mesh size at 

crack tip becomes smaller, 0/  aa , the GII is close to total GT. 
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Figure 2-4: ERR convergence of an edge cracked bi-material plate subjected to tension [67]. 

 

The difficulty with the convergence of the strain energy release rate components GI and GII as 

0/  aa  led Raju [61] to consider a finite thickness adhesive layer at the interface with the 

crack at the centre of the adhesive layer. The comparison energy release rates done by Raju 

[61] for the 'bare' interface laminate, i.e. one without the resin layer, and for the laminate with 

the resin showed that the 'bare' interface models are a very good approximation for the resin 

case if the delamination tip elements were one-quarter to one-half of the ply thickness.  

 

2.3.4 Mixed mode failure criteria 

 

As a crack grows, the required energy must be balanced by the amount of energy dissipated 

due to the formation of new surfaces and other dissipative processes, such as plasticity. When 

the elastic energy released due to a potential increment of crack growth exceeds the demand 

for surface energy for the same crack growth, the crack propagation will start. In interface 

cracking, since mixed-mode cracks propagating along an interface cannot kink into a mode I 

fracture, therefore propagation is generally in a form of a mixed-mode.  

Reeder evaluated the many different mixed-mode failure criteria for predicting delamination 

growth [68]. Failure criterion on stress or strain near the crack tip, crack opening 

displacement, stress intensity factor, or strain energy release rate are reviewed [68]. Strain 

energy release rate is commonly used as a good measure of a materials resistance to 
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delamination extension, and most of the failure criteria can be written in terms of a critical 

strain energy release rate or fracture toughness. 

Zou Z. et al. [48] provided an evaluation of the mixed-mode failure criteria and general 

guideline for selecting an appropriate criterion for some materials. It is crucial to use correct 

mixed mode failure criterion to predict the delamination. The evaluation [48] is based on 

MMB test. MMB test allows almost any combination of mode I and mode II loading. The 

experimental tests [48] show that the failure response of different materials is so different that 

no single criterion based on GIC and GIIC can model all delamination failure. The arbitrary 

parameter is introduced, if the parameter can be changed so that the criterion can fit the test 

data. Zou Z. et al. [48] reported that the fracture surfaces of different materials change 

significantly with mixed-mode ratio. The similarity in the fracture surfaces of these materials 

may explain the similarity between the shapes of the failure responses of these two materials. 

Since the mode I and mode II fracture toughness data is readily available, the mixed-mode 

failure criteria will be written in terms of the pure-mode toughness, GIC and GIIC, when 

possible. Once the mixed-mode response of a material has been determined, the shape of the 

response can be compared to the different failure criteria presented here. 

The simplest criterion which allows for the effect of mixed-mode partition is the ‘linear 

criterion’, Eq. (2.64), which normalises each component of ERR against its critical pure-

mode value. If the sum of these normalised components reaches one, then the crack 

propagates. As shown, the failure locus is a straight line connecting the pure mode I and 

mode II fracture toughness.  

Linear mixed mode failure criterion is the one often used; if the failure locus and critical 

energy release rates GIc and GIIc for the material are known,  
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For the condition the energy release rate GI and GII meet the criteria as expressed in equation 

above, then the crack propagation starts. 

The next failure criterion for mixed mode delamination is quadratic failure criterion.  
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The other criteria introduced by Benzeggah and Kenane [69] using a simple mathematical 

relationship between Gc and GII/GI. 

))((
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ICIICICc

G

G
GGGG      (2.66) 

This is typically called B-K criterion. The exponent  is determined by a curve fit. 

The process to work out the B-K criterion is as follows: 

A quasi static mixed-mode fracture criterion is determined by plotting the interlaminar 

fracture toughness, Gc, versus the mixed-mode ratio, GII/GT, determined from data generated 

using pure mode I Double Cantilever Beam (DCB) (GII/GT=0), pure mode II End Notched 

Flexure (ENF) (GII/GT=1), and Mixed-Mode Bending (MMB) tests of varying ratios, as 

shown in Figure 2-5 for material C12K/R6376. A curve fit of these data is performed to 

determine a mathematical relationship between Gc and GII/GT. Failure is expected when, for a 

given mixed-mode ratio GII/GT, the calculated total energy release rate, GT, exceeds the 

interlaminar fracture toughness, Gc. GT is the total critical strain energy release rate.  

 

Figure 2-5: Mixed-mode fracture criterion for composite materials [63]. 

When choosing a failure criterion, the number of arbitrary variables should be considered, 

and whether criterion is in a form, which can be easily used. A simpler criterion with fewer 

variables is preferred. After the appropriate failure criterion for the material is chosen, a 
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square fit to the experimental data can be performed to optimise any arbitrary constants of the 

criterion. 

 

2.3.5 Mixed mode fracture toughness test 

 

Delamination toughness under mode I opening load and mode II shear load can be measured 

with the double cantilever beam (DCB) test, the end notch flexure (ENF) test, see Figure 2-6, 

respectively. The MMB test (Figure 2-6) allows almost any combination of mode I and mode 

II loading to be tested with the same test specimen configuration. 

 

Figure 2-6: Illustration of DCB, ENF and MMB test. 

MMB is a simple combination of a DCB (mode I) specimen and an ENF (mode II) specimen. 

Load is applied to a beam specimen with an end crack by means of a lever where the 

distance, L, between the load point and the fulcrum can be varied. The design of the MMB 

apparatus allows us to introduce mode I loading at the end of the lever and mode II loading at 

the fulcrum.  

 

2.4 Experimental assessments of interface delamination between two layers of 

macroscopic thickness  
 

2.4.1 Wang–Harvey’s first experimental assessment  

 

The different approaches to partitioning the mixed-mode interface fractures are introduced in 

section 2.3.2. These are (i) a partition theory by Williams [39] based on Euler beam theory; 

(ii) a partition theory by Suo [50] and Hutchinson and Suo [14] based on 2D elasticity theory; 
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and (iii) the Wang–Harvey partition theories [27-29] based on the Euler and Timoshenko 

beam theories. The performance of these mixed mode partition theories was first investigated 

by C. Harvey and S. Wang (2012) [22] using results from the various experimental tests 

presented in the literatures. Their studies showed that the Wang–Harvey Euler beam partition 

theory provides the best explanation for all the experimental observations for the interface 

delamination between two layers of macroscopic thickness; all the layer thicknesses of tested 

specimens are in the millimetre range. The excellent agreement has been achieved with the 

linear failure locus for predicting the interface fracture toughness. It is also observed that the 

global partition of energy release rate predicts the most accurate results in a good agreement 

with the experimental data from the specimens tested by Charalambids M. et al. [17] and 

Hashemi S. et al. [18]. 

In the experimental assessment conducted by C. Harvey and S. Wang [22], firstly the 

experimental data from asymmetric DCB test is used. As shown in Figure 2-7 (a), equal and 

opposite bending moments are applied to the upper and lower arms of an asymmetric beam 

specimen. The crack tip loads are therefore M1B = -M2B = M and N1Be = 0. Experimental 

measurements of the total critical energy release rate Gc for epoxy-matrix/carbon-fibre 

specimens with various values for h1 (top layer thickness) and h2 (bottom layer thickness) are 

extracted from [17] for comparison; the GC values predicted by the various partition theories 

in section 2.3.2 for each specimen are compared against the experimentally measured GC 

values. Generally, if the failure locus and critical energy release rates GIC and GIIC for the 

material are given, the total critical energy release rate Gc for a specimen can be calculated 

using Eq. (2.67). The critical mode I and mode II energy release rate GIC and GIIC can be 

determined experimentally by DCB and ENF test as mentioned in section 2.3.5. In this 

assessment, the values used are GIC = 0.27kN/m and GIIC =0.63kN/m [18]. In Table 2-1, 

mixed mode ratio GI/G are predicted for an epoxy carbon-fibre asymmetric DCB by different 

partition theories, the Gc is calculated using Eq. (2.67) to compare with the Gc obtained from 

experimental tests [17].  

1

)/(1)/(









 


IIC

I

IC

I
C

G

GG

G

GG
G                                 (2.67) 

Both the Wang–Harvey Euler beam theory and the Williams partition theory predict that the 

fracture is pure mode I for all values of h1 and h2. This is the condition of M2B = M1B =
'

1 , 

pure mode I [27,28]. Therefore, GC = GIc for all the specimens. The experimental GC values 
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show very small variation. The Wang–Harvey Euler beam and Williams’s theories are both 

compatible with the experimental results. The Wang–Harvey Timoshenko beam partition 

theory shows significantly more variation and in the majority of cases is not close to the 

experimental GC values. As expected [28], the Suo–Hutchinson and averaged partition 

theories are very similar.  

It is therefore concluded that all theories, except of the Wang–Harvey Timoshenko beam 

partition theory, are compatible with these experimental results. However, only from 

asymmetric DCB test, it is not sufficient to draw further conclusion. As the next, the FRMM 

(fixed-ratio mixed-mode) test data [17] are used for the further investigation.  

 

Figure 2-7: Tests with asymmetric beam (a) symmetric DCB test and (b) FRMM test [22]. 

 

Figure 2-7 (b) shows the fixed-ratio mixed-mode (FRMM) test in which a bending moment 

M is applied to the upper arm only of an asymmetric beam specimen. The crack tip loads are 

therefore M1B = M and M2B = N1Be = 0, which produces a mixed mode. The total critical 

energy release rate Gc can be measured experimentally, and Gc was partitioned into GI and 

GII using the Williams partition theory. These values of GI and GII are the black, filled circle 

markers shown in Figure 2-8. 

From Figure 2-8, it is seen that the Wang–Harvey Euler beam partition theory performs much 

better than the other partition theories when compared with the linear failure locus. A trend 

line, which is represented by the black dashed line in Figure 2-8, has been plotted through the 

Wang–Harvey Euler beam partition theory. For comparison, a solid black trend line has also 

been plotted through the Williams partition.  
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The results from the other partition theories are shown in Figure 2-8. The mixed mode 

partition of experimental measured Gc using Wang–Harvey Timoshenko beam partition 

theory forms a separate vertical curve. The Suo–Hutchinson and the averaged partitions are 

very similar and form another curve half way between the curves from the Wang–Harvey 

Euler and the Timoshenko beam partitions. Since the linear failure locus is generally regarded 

to be a good approximation to the actual failure locus, it can be concluded that, at least for 

these specimens, the Wang–Harvey local Timoshenko beam and averaged partition theories 

and the Suo–Hutchinson partition theory cannot give the partition that predicts the fracture 

propagation. It can be observed that the Wang–Harvey Euler beam partition gives much 

closer agreement with the expected linear failure locus and expected GIc and GIIc than the 

Williams partition. 

Table 2-1: Measured Gc for an asymmetric DCB together with the values from the various 

partition theories [22]. 

 Wang-Harvey theories 

Measured 
Suo-

Hutchinson 
Williams Euler Timoshenko 

Aver

aged 

  
h 

(mm) 

Gc 

(kN/m) 

GI/G 

(%) 

Gc 

(kN/m) 

GI/G 

(%) 

Gc 

(kN/m) 

GI/G 

(%) 

Gc 

(kN/m) 

GI/G 

(%) 

Gc 

(kN/m) 

GI/G 

(%) 

1.33 3.85 0.26 96.4 0.28 100.0 0.27 100.0 0.27 94.2 0.28 97.1 

1.55 3.70 0.27 92.4 0.28 100.0 0.27 100.0 0.27 87.7 0.29 93.9 

1.97 3.33 0.28 85.5 0.29 100.0 0.27 100.0 0.27 75.7 0.31 87.8 

3.72 10.00 0.29 75.3 0.31 100.0 0.27 100.0 0.27 50.1 0.38 75.1 

4.11 2.86 0.29 75.2 0.31 100.0 0.27 100.0 0.27 47.4 0.39 73.7 
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Figure 2-8: A comparison of the FRMM test partitions from various partition theories [22]. 

 

The experimental assessments from C. Harvey and S. Wang [22] are based on the assumption 

that the linear failure criterion, Eq. (2.64). From Eq. (2.64) it can be seen that the interface 

delamination failure is affected by different mixed mode partition theories except of the case 

if GIc = GIIc. Linear failure criterion is regarded as to be reasonably accurate and to give a 

good approximation to the failure locus. Among many different mixed-mode failure criteria 

suggested for predicting delamination growth, Reeder [68] gave a comprehensive review of 

them, and suggested that the linear failure criterion is the one most often used in the 

literature. In addition, there is a wealth of data that either strongly supports the criterion [89], 

or suggests criteria that are close to it [25], [140,141,150–158]. Linear failure criterion is also 

the approach used by Charalambides et al. [17]. 
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Global and local partition 

There is an important difference between a local partition and a global partition for predicting 

interface delamination. Local partition is based on the location to the crack tip B whilst the 

global partition is based the region Δa, which is the region mechanically affected by the 

presence of the crack. Mathematically, the global partition is calculated by including the 

whole crack influence region in the integration limits; the local partition only considers the 
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near crack tip region. The total energy release rate is not affected by the limits of the crack 

closure integral [36], however the partition of energy release rate is affected [28,29]. 

Mathematically Wang–Harvey Euler beam partition theory shows two sets of pure modes 

(the first i , i  set and the second '

i , '

i ), which are both locally and globally pure. The 

local and global partitions are therefore the same when using the Wang–Harvey Euler beam 

partition theory. For the Wang–Harvey Timoshenko beam partition theory, there are two sets 

of locally pure modes, which exactly coincide on the first set i , i  from the Wang–Harvey 

Euler beam partition theory. There are also two sets of globally pure modes and they are the 

same as the pure modes from the Wang–Harvey Euler beam partition theory. Therefore, 

when using the Wang–Harvey Timoshenko beam partition theory, the local partition exhibits 

no stealthy interaction (because the two sets of local pure modes coincide) and is different to 

the Wang–Harvey Euler beam partition theory. However, the global partition is the same as 

the Wang– Harvey Euler beam partition theory. Since the averaged partition theory is the 

average of the Wang–Harvey Euler and Timoshenko beam partition theories, it behaves in the 

same way. The global partition is the same as the Wang–Harvey Euler beam partition theory 

but the local partition is generally different. This difference between local and global 

partitions is important for determining fracture propagation between interfaces and under 

what circumstances.  

The FEM simulation was developed by Wang–Harvey based on the Euler and Timoshenko 

beam theories and 2D elasticity theory using normal and shear point interface springs with 

very high stiffness to model perfectly bonded plies [25]. The energy release rate partition is 

calculated using the virtual crack closure technique in conjunction with these interface 

springs. The numbers of spring elements are increased from one, ten, and twenty to thirty, as 

expected, as the numerical partition becomes a global one, the local partition theory closely 

approaches the Wang–Harvey Euler beam partition theory [28]. 

In summary, the performance of five different partition theories has been investigated by 

using experimental results from the literature for arrange of tests; the partition theories used 

are the Williams theory [39], the Suo–Hutchinson theory [14,41,50] and the Wang–Harvey 

partition theories [27–29], based on the Euler and Timoshenko beam theories. The 

thicknesses of the assessed specimens are all in macroscopic range, the results are presented 

in Figure 2-8. The Wang–Harvey Euler partition theory with linear failure locus offers the 

best and most simple explanation for all the experimental observations. This indicates clearly 
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that the Wang-Harvey global partition theory provides the best prediction for the interface 

delamination in the macroscopic layer thickness.  

 

2.4.2 Wang–Harvey’s second experimental assessment  

 

The second assessment to investigate the capability of different approaches of mixed mode 

partition to predict the interfacial fracture toughness of generally composite beams was done 

by Wang and Harvey [23]. The Wang and Harvey’s Euler beam partition theory [27-29] is 

compared with Davidson et al.’s non-singular-field partition theory and the singular-field 

partition approach [19,20] and [115] by using existing test data from literature [20,21]. The 

Davidson et al.’s singular-field partition approach is based on 2D elasticity theory and finite 

element method. The test data from [20] and [21] are used by Wang and Harvey to validate 

the mixed mode partition and the material fracture toughness predicted by using different 

mixed mode partition theories.  

Davidson et al.’s partition theories include a singular-field partition theory and a non-

singular-field theory. Both theories are derived by using a combined analytical and numerical 

approach based on 2D elasticity with stress intensity factors. Davidson et al.’s partition 

theory assumes a rigid crack interface. Davidson et al.’s 2D-elasticity non-singular-field 

partition theory [19,20] and [115] is based on 2D elasticity theory, it is given by the following 

formula: 
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Where N c  and M c  are the concentrated crack tip force and moment respectively, the 

parameters c1, c2 and   are introduced in reference [20]. Details of Ω, which is called the 

‘mode mix parameter’, is given in eq. (2.69) 
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Note that η  in Eq. (2.61) is given by )(log10   , where   is the thickness ratio. The mode 

mix parameter Ω  is determined with the aid of experimental data. Davidson et al.’s 2D-

http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0030
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0030
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0020
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0020
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0030
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0030
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0020
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0020
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elasticity non-singular-field partition theory was developed with the support of the 

experimental parameter; this is an important reason that its partition approach has a good 

correlation with experimental data and with Wang and Harvey’s Euler beam theory.  

In the second assessment conducted by Wang and Harvey [23], the experimental data from 

three groups of test specimens are considered, namely, unidirectional specimens (UD), 

constrained unidirectional specimens (CUD) and multidirectional (MD) specimens. Two sets 

of graphite/epoxy laminates are utilised in the experimental tests, they are C12K/R6376 of 

low toughness and T800H/3900-2 of high toughness.  

Firstly, the UD specimens made from C12K/R6376 material with midplane and offset 

delamination is considered. All three partition methods give largely identical partition results 

for midplane delamination. By using these results from midplane delamination, a failure 

locus is experimentally determined in terms of the total critical ERR Gc and calculated 

G I I/G. Next, the different partition theories are assessed against this failure locus for offset 

delamination. The results of predicted fracture toughness by three different mixed partition 

methods are shown in Figure 2-9. It is seen that Wang and Harvey’s Euler beam partition 

theory and Davidson et al.’s non-singular-field partition theory give largely identical partition 

results and agree very well with the failure locus; however, the singular-field partition results 

are generally not in good agreement with this failure locus. 

The comparison was also done for the difference between the partitions GII/G from both 

partition theories over a range of bending moment ratios, M 2 B /M1 B , and thickness ratios γ  

(hi/h2). Within the range of layer thickness ratio 1/3<γ<3 , the excellent agreement between 

Wang and Harvey’s Euler beam theory and Davidson et al. non-singular-field partition 

theory; also, both are in good agreement with experimental data [20]. However, when 

γ<1/3 ,  the Wang and Harvey’s Euler beam partition theory has a good agreement with the 

experiment data from [30], it is much better than the Davidson et al.’s non-singular partition 

theory. 

http://www.sciencedirect.com/science/article/pii/S0263822314007302#f0010
http://www.sciencedirect.com/science/article/pii/S0263822314007302#f0010
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Figure 2-9: Fracture toughness of midplane and offset delamination in UD laminates [20]. 

Constrained unidirectional specimens, CUD specimens made from C12K/R6376 material are 

considered with midplane and offset delamination. The CUD specimens contain a 

delamination that was bounded by a single 0° ply on either side, and these plies were 

themselves bounded by plies at a small angle. Effectively, in these specimens, the damage 

zone is constrained to be within the two 0° plies. The critical fracture toughness Gc and the 

mixed mode partition GII/G predicted by difference partition theories are shown in Figure 

2-10. It is seen that the partition results from the three approaches are largely the same as 

their counterparts in the UD specimen. That is, the addition of the ±15°angle plies, 

sandwiching the two 0° fracture layers in the CUD specimens, has negligible effect on the 

partition; however, the fracture toughness has some changes. Some are significant. For 

example, the toughness of UD UENF (unsymmetrical end-notched flexure) 20/12 (number of 

top plies/ number of bottom plies) is 1259 N/m while the toughness of CUD UENF 20/12 is 

976 N/m. In general, the Wang and Harvey’s Euler beam partition theory and Davidson et 

al.’s non-singular-field partition theory both agree well with the failure locus, except for the 

UENF specimen.  
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Figure 2-10: Fracture toughness of midplane and offset delamination in CUD laminates [20]. 

Multidirectional specimens made from C12K/R6376 material with varied layups are 

considered with offset delamination. The results of predicted fracture toughness by three 

different mixed partition methods are shown in Figure 2-11. The partition results from 

singular-field partition approach are still in poor agreement with the failure locus. The 

partition results from Wang and Harvey’s Euler beam partition theory and Davidson et al.’s 

non-singular-field partition theory have significant differences. Although they are both still in 

a better agreement with the failure locus than the singular field approach, the agreement is not 

as good as that seen for the UD and CUD specimens. Through their study, they realised that 

effect of the different fracture toughness values, GIc and GIIc, between two different crack 

interfaces, for example, 0/0 vs. 0/45 contributes to the differences. It is obvious that if the 

fracture toughness values GIc and GIIc of the angle ply interfaces in the MD specimens are 

different from that of the UD specimens, even the correct partition results for MD specimens 

will not agree well with the failure locus determined from the midplane UD specimens. 

http://www.sciencedirect.com/science/article/pii/S0263822314007302#f0010
http://www.sciencedirect.com/science/article/pii/S0263822314007302#f0010
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Figure 2-11: Fracture toughness of midplane and offset delamination in MD laminates [20]. 

In summary, the Wang and Harvey’s Euler beam partition theory [27-29] has excellent 

agreement with experimental test results and gives very accurate predictions of interfacial 

fracture toughness laminated composite beams with arbitrary layups, various thickness ratios 

and various loading conditions. The thicknesses of all tested specimens used for validation 

are in millimetre range. Davidson et al.’s non-singular-field partition theory [19,20] and [115] 

has excellent agreement with experimental test results and with Wang and Harvey’s Euler 

beam partition theory (inside the range 1/3<γ<3) for UD laminated composite materials. Its 

accuracy is still very good for MD laminated composite beams; however, it has been 

observed and argued that overall Wang and Harvey’s Euler beam partition theory [27-29]  

offers improved accuracy. In general, the singular-field approach based on 2D elasticity and 

the finite element method give poor predictions. 

 

2.5 Conclusions  
 

In this chapter, the concept of linear fracture mechanics, the interface delamination and the 

relevant mixed mode partition theories are introduced. There are five basic foundations of 

fracture mechanics developed over the time. They are 1) Energy release rate concept 

developed by Griffith in 1921; 2) Stress intensity factor at the crack tip introduced by 

Williams in 1957;  3) VCCT discovered by Irwin in 1958; 4) J integral presented by Rice in 

http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0055
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0055
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0020
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0020
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0040
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0055
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0055
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1968; 5) Mixed mode partition theories proposed by different researchers in recent decades. 

However, there are still some uncertainties on the mixed mode partition theories due to the 

complexity and diversity of mixed mode fracture mechanics, it is often unclear which theory 

should be applied to the specific problems.    

In this chapter, the assessments of different mixed mode partition theories are presented by 

reviewing the works conducted by S. Wang and C. Harvey [22,23]. The following mixed 

mode partition theories are studied: (1) a partition theory by Williams [39] based on Euler 

beam theory; (2) a partition theory by Suo [50] and Hutchinson and Suo [14] based on 2D 

elasticity theory; (3) Davidson et al.’s non-singular-field partition theory; (4) Davidson et 

al.’s singular-field partition approach [19,20] and (5) the Wang–Harvey partition theories 

[27-29] based on the Euler and Timoshenko beam theories. These mixed mode partition 

theories are examined by S. Wang and C. Harvey [22,23] against test data from the literatures 

[17,18]. From their two experimental assessment works [22,23], the following conclusions 

are obtained: (1) Different mixed mode partition theories may show different performace; for 

the interface delamination between two layers of macroscopic thickness, Wang and Harvey’s 

Euler beam  partition theory gives very accurate predictions of interfacial fracture toughness 

for laminated composite beams. The delamination of a thin layer of macroscopic thickness on 

a brittle interface cannot propagate in the manner as an infinitesimally small growth. Instead, 

it does propagate with a finitely small growth [32]. The Euler beam, Timoshenk beam mixed 

mode partition theory [24-29] and the 2D elasticity partition theory [14] assume an 

infinitesimally small growth; however, the Euler beam mixed mode partition theory is 

insensitive to the growth size. Because of this behaviour the name of ‘global partition theory’ 

is given. In contrast, the Timoshenko beam and 2D elasticity partition theories are sensitive to 

the growth size. Consequently, the name of ‘local partition theory’ is given. Now, it is seen 

that the Euler beam mixed mode partition theory represents the ‘finitely small growth’ 

physics very well. The above explains why it gives accurate predictions for brittle interface 

fracture toughness of generally laminated composites beams [22,23,30,31]. (2) The excellent 

agreement has been achieved with the linear failure locus for predicting the interface fracture 

toughness. (3) The global partition of energy release rate predicts the most accurate results in 

a good agreement with the experimental data from the specimens tested by Charalambids M. 

et al. [17] and Hashemi S. et al. [18].  

To confirm the conclusions made above, a study of buckling driven delamination of 

laminated composite beam is conducted in the next chapter; further, in the chapter 4 to 6 the 

http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0025
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0030
http://www.sciencedirect.com/science/article/pii/S0263822314007302#b0030
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Euler beam, Timosheno beam and 2D elasticity mixed mode partition theories are applied to 

develop the analytical models for solving various mixed mode delamination problems. It 

attempts to examine the predictions from Wang-Harvey mixed mode partition theories 

against the independent experimental results and also to extend the knowledge of mixed 

mode partition theories to solve different interfacial delamination problems.    
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 Post local buckling driven delamination under 

mechanical compressive loads 
 

3.1 Introduction 
 

Interface delamination in layered materials is often driven by buckling and post-buckling 

loads. Some examples include the delamination of laminated composite beams, plates and 

shells under in-plane compression, and the surface spalling of thermal and environmental 

barrier coatings. This topic has been extensively studied in the last few decades. References 

[3-11] are only several examples  among numerous publications on the topic, which are more 

closely related to the present work. References [12,13] are examples of latest studies from 

which more recent studies can be found. Some examples include the delamination of 

laminated composite beams, plates and shells under in-plane compression, the surface 

spalling of aluminium protective coatings and thermal barrier coatings. Xu J. et al. [153] 

gives a recent review; among many of others, the studies are reported on buckling driven 

delamination with straight edge [70,84,86], circular edge [70,83], elliptical edge [70] and 

telephone cord shapes [85].  

Analytical, numerical and experimental approaches are all used for this kind of study. Some 

representative analytical, numerical and experimental studies are given in the works [14,70],  

[71-74] and [32,75], respectively. The first pioneering and instrumental work was done by 

Chai (1981) [87], the full analytical developments for calculating total ERR G based on Euler 

beam theory in cases of thin film, thick column and general post local buckling driven 

delamination in laminated beam-like plates; however, no partition of the total ERR G into its 

individual mode I and II ERR components, 
IG  and 

IIG , is attempted [87]. Chai’s study is 

based on a homogeneous, isotropic and linear elastic material; in his work, classic Euler beam 

theory is used to calculate the strain energy rate for thin layer buckled state: 

)3)((
2

)1(
00

2

crcr

Eh
G 





                (3.1) 

Where E is the Young’s modulus,   is Poisson’s ratio, h is the thin layer thickness. End 

shortening strain and critical buckling strain are defined as 0  and cr respectively. Increasing 

the end shortening strain 0  to exceed the critical buckling strain cr , the thin layer starts to 

buckle.  
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Essentially identical results are received in 1984 by Evans and Hutchinson [79] for thin film 

problem. The circular blister in biaxial compressed film was investigated and energy release 

rate was given. The work for the mixed mode of the interface crack tip was firstly carried out 

by Whitcomb [133], who showed that the crack tip becomes predominately mode II as a one-

dimensional layer buckle spreads. The virtual crack closure method was used to calculate 

mode I and mode II strain-energy release rates, GI and GII, respectively. The forces 

transmitted through the node at the crack tip and the relative displacements of the two nodes 

on the crack boundary closest to the crack tip were used in the calculation. Whitcomb was 

concerned with compressive failure modes in layered composite. Later, Storakers [81] and 

Rothschilds et al. [82] dealed with various aspects of buckling and delamination in laminated 

composite materials. In the work [82], the elastic restraint model (ERM) combined with 

existing FSM modelling of the crack-tip region yields the expressions for the mode I and 

mode II components of the strain energy release rate GI and GII to predict the critical load at 

the onset of delamination growth. The experimental data were produced for a wide range of 

GI/GII ratios at the onset of crack growth; linear mixed-mode crack growth criterion is used to 

predict critical loads. 

In Hutchinson’s work (1992) [14], the analytical calculations for both the total ERR G and 

its components 
IG and 

IIG  for the thin film post local buckling driven delamination was 

given for straight edged and circular blister. Expression of total energy release rate is in 

agreement with Chai [70], Evans and Hutchinson [79]. The partition is based on a 2D 

elasticity partition theory [14], the elastic mismatch of film/substrate can be considered in the 

portion through the Dundurs’ elastic mismatch parameters, α and β. A crack propagation 

condition was derived as well.  

A study on the configuration stability of circular, buckling-driven film delamination was 

presented by J.W. Hutchinson et al. [83]. An initial calculation is developed for the 

mechanics of the growth of an axisymmetric blister under conditions of equi-biaxial 

compression. A second calculation produced the result that the crack front of such a blister 

can become unstable to small perturbations. Under the relevant conditions, the blister loses its 

axisymmetric and develops lobes around the perimeter with an order that depends on the 

magnitude of a/ac and on the mixed mode failure criterion appropriate for the interface. A 

series of model experiments were performed in conjunction with the analysis. These 

experiments showed excellent, quantitative agreement with the trends predicted by the 
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theory. Furthermore, the experiments emphasised the important role that crack-front 

instabilities play in the development of the "worm-like" delamination.  

The numerical studies are developed by using layer-wise plate/shell theory [71-74]. The 

layer-wise plate theory has been developed to account delamination of layered composite 

materials subjected to end-shortening strain and in-plane shearing. The interface in-plane and 

transverse springs are developed and energy release rate and its based failure criteria are used 

to simulate the delamination process [71,72]. The studies in Refs. [32,75,76] are based on 2D 

elasticity theory and the study in Ref. [76] also uses the 3D finite element method. The virtual 

crack closure technique is used to calculate the ERRs in Refs. [71,72,75,76]. The cohesive 

zone model is used in the works [73,74]. The interface element incorporating with layer wise 

theory is employed to simulate the delamination propagation under buckling driven 

delamination for composite layered materials [73]. 

The delamination in a laminated composite beam is analysed with cohesive zone model 

(CZM) and layer-wise third-order shear and normal deformation theory (TSNDT) by Batra 

RC et al. [74]. All geometric nonlinearities are considered including the von Karman 

nonlinearity. The mode I and mode II deformation is extracted. They found that the buckling 

load is influenced by the applied loading rate. A series of experiments was conducted by 

Thouless et al. [89] to study buckle driven delamination of thin films under plane strain 

compression to compare with analytical development of energy release rate and mixed mode 

phase angle. The experiments were conducted with thin film sheets bonded to a steel 

substrate with film/substrate material elastic mismatch. In a series of experiments, Ogawa et 

al. (1986) [125] demonstrated the configurational instabilities focused on beam sputtered and 

magnetron sputtered molybdenum films on glass substrates where the nucleation and 

progression of film delamination and buckling were recorded using interference contrast 

microscopy. The delamination and buckling of Sic coatings on Si substrates were studied 

experimentally by Argon et al. (1989) [137] in an investigation of the intrinsic toughness of 

interfaces. Hutchinson et al. (1992) [14] performed a systematic experimental study of the 

growth and configurational stability of initially circular delamination of films in equi-biaxial 

compression. 

A relevant experiment work and analytical model on the topic of buckling driven 

delamination is done by Kutlu Z, et al. [32,75]. In their work part I [75], an analytical model 

was developed to investigate the compression response of laminated composite panels 
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containing multiple through-the- width delamination; also, a nonlinear finite element analysis 

was developed based on the model. The delamination growth model and the local fibre-

matrix failure model were implemented into the finite element model. The model consists of 

three portions: stress analysis, contact analysis, and failure analysis. Linear elastic fracture 

mechanics and failure criteria were selected in the failure analysis for predicting delamination 

growth and for predicting local fibre-matrix failure within each layer respectively. 

In the experiment work [32], the specimens with various ply orientations were fabricated 

from both flat and cylindrical composite panels containing one to two pre-implanted through-

the-width delamination. Specimens were tested by uniaxial compression, and strain gauges 

were utilised to record the strain history as a function of the applied load from initial loading 

to final failure. Numerical simulations were performed according to the test conditions. 

Comparisons were then made between the predictions and the measured test data. Overall, 

the predictions agreed with the data very well. Parametric studies were also performed using 

the finite element analysis to demonstrate the effect of the size, location and number of the 

delamination on the compression response of laminated composites.  

Although post-buckling driven delamination generally occurs as mixed-mode fracture with 

all three opening, shearing and tearing actions (i.e. mode I, II and III), post-buckling driven 

one-dimensional (1D) delamination has received more attention because it is simpler, still 

captures the essential mechanics. The term ‘1D delamination’ means that a delamination 

propagates in one direction with mode I opening and mode II shearing action only. Some 

examples of 1D delamination include through-width delamination in beams, and blisters in 

laminated composite plates and shells. 

The focus of the present work is 1D post-local buckling-driven delamination. A detailed 

definition of this will be given in next section. Key tasks in studying 1D post-local buckling-

driven delamination include: (1) determining the critical buckling strain and the post-

buckling deformation, (2) calculating the post-local buckling total energy release rate (ERR) 

G , (3) partitioning the total ERR G into its individual mode I and II ERR components, IG

and IIG , which govern the propagation of mixed-mode delamination, and (4) predicting the 

delamination propagation behaviour. 

The present work aims to develop an improved analytical method to complete the four key 

tasks stated above. The structure of this chapter is as follows: the analytical development is 
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given in section 3.2, the numerical verification and experimental validation are reported in 

section 3.3, and finally the conclusions are given in section 3.4. 

 

3.2. Analytical development   
 

Figure 3-1 shows a post-locally buckled bilayer composite beam. The Young’s moduli of the 

upper and lower layers are 
1E and 

2E  respectively, and the corresponding thicknesses are 
1h

and 
2h with

12 hh  . The beam has a total length L  and a width b  with a central through-

width interfacial delamination of length a . The delamination tips are labelled ‘B’. The beam 

is clamped at both ends and is under uniform end-shortening compression. The local 

buckling, as shown, divides the beam into three parts, namely, the locally-buckled part 

labelled ‘1’, the substrate part labelled ‘2’ and the intact parts labelled ‘3’. The deformation 

of three parts of the beam are assumed as linear elastic. The following development assumes 

that the whole process of buckling, post-buckling and delamination propagation is localised 

in the upper layer, that is, the bending action in both parts 2 and 3 is negligible. 

 

Figure 3-1: A post-locally buckled bilayer composite beam due to delamination under 

compression. 

 

3.2.1. Deformation, internal forces and bending moments 

 

The uniform end-shortening compression is represented by a strain 0 , defined as Lu /00   

with 0u being the end-shortening displacement. The compressive axial strains of the neutral 

surfaces of each the three parts of the beam are represented by i (with 3,2,1i ). Similarly, 

iN and  ii xM  represent the axial forces and bending moments respectively in each part, 

where ix is the axial axis on each neutral surface. The directions of the axes of the three parts 
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together are shown in Figure 3-1 where only their directions are indicated. The axial forces 

iN can be expressed as 

iiei AEN 1         (3.2) 

Where the effective cross-sectional areas ieA are given by 

 12 bhA e       113 bhA e  (3.3)                                                            

and 
12 EE and 

12 hh , which are the modulus and thickness ratios respectively. 

Before the local buckling of part 1, 0 i , 01 iei AEN  and   0ii xM , that is, all three 

parts are under constant uniform axial compressive strain 0  and there is no bending. After 

the local buckling of part 1, part 1 is under both axial compression and bending action while 

parts 2 and 3 are still assumed to be under axial compression only without bending action. 

The axial strain 1 is assumed to remain constant at the critical local-buckling strain c

throughout [14,70], that is, 

c 1  (3.4)                                                                     

The axial strain 2  can be expressed by using the axial equilibrium condition, NNN  21
 

giving 




 c

 3
32                                           (3.5)                                                                     

from which it is obvious that 32   . Also, the axial strain 3 should be smaller than the end-

shortening strain 0  after local buckling, that is, 03   . From these two observations, it is 

reasonable to assume that the following is a good approximation: 

02                                                              (3.6)                                                                      

Then Eq. (3.5) gives 











1

0
3

c                      (3.7) 

In order to determine the critical local buckling strain c  and bending moment  11 xM

accurately, it is essential to find an accurate post-locally buckled mode shape. Here, it is 

assumed to be 
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where  is the correction factor for the quality of the clamped end condition at the crack tip. 

In Refs. [14,87], the value of   is taken as 1. The critical local-buckling strain c  can be 

determined by considering the free-body diagram of a symmetrical half of the buckled upper 

layer shown in Figure 3-2. 

 

Figure 3-2: Free-body diagram of a symmetrical half of the buckled upper layer. 

Horizontal equilibrium combined with Eqs. (3.2) and (3.4) gives cB AENN 11110  and 

bending moment equilibrium gives 1010101 VNMM B  , which together give 

1011110 VAEMM cB  . Classical beam theory and Eq. (3.8) give

      cos24
2

11

2

101110 aAIEaVIEM  . Therefore, the critical local-buckling 

strain c is obtained as 
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                     (3.9)                                                                       

The value of the correction factor  for the problem under consideration can be determined 

either from numerical simulations or from experimental tests. More details about the value of 

 will be given in section 3.3 which deals with the experimental validation. The amplitude A 

is now determined by using the following assumption, where   21 ac represents half-

length of part 1 at the instant of local buckling,   21 0 a represents the half-length of part 2 

during post-local buckling, and ds  represents the differential arc length of part 1’s buckled 

mode shape: 
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Note that this assumption implies that the curved half-length of the buckled part 1 remains 

constant at   21 ac during post-buckling. In order to determine the amplitude A

accurately, particularly in the deep post-buckling region, a third-order series expansion based 

on  211 dxdV is used to expand the integrand on the right-hand-side of Eq. (3.10), which 

results in the following: 
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                             (3.11) 

Let ca   0 , which represents the additional end-shortening strain beyond the critical 

buckling, and approximate the upper limit on the integration as   221 0 aa  . 
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Substituting Eq. (3.8) into Eq. (3.12) and evaluating the integration gives 

02

2

4

4

6

6  aACACAC                                                (3.13) 

where 
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Since  is typically close to 1, the harmonic terms can be neglected as a further 

approximation. The polynomial in Eq. (3.13) can then be solved, which gives the amplitude A 

as 
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where 

243135071243675330
2

 aaa                              (3.19) 

The bending moment at the delamination tip B is then obtained by using Eqs. (3.8), (3.9), and 

(3.18), 

3
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                                                (3.20) 

where 
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3.2.2 Strain energy and total energy release rate 

 

By using the internal bending moment in part 1 and the internal axial forces in parts 1, 2 and 

3, but neglecting the internal bending moments in parts 2 and 3, the strain energy U in one 

half of the symmetrical post-buckled beam is 
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It is worth noting that ERR represents the strain energy density difference or ‘pressure’ across 

the delaminated and intact parts. Since uniform axial compression results in no strain energy 

density difference, it does not produce any ERR. Therefore, an effective axial force BeN1 is 

defined as 

  aBe bhEAEN  1121111                                                  (3.24) 

The total ERR G in Eq. (3.23) then becomes 
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where    1 . Substituting BM1 from Eq. (3.20) and BeN1 from Eq. (3.24) into Eq. 

(3.25) gives 

 aca chEG   
2

11 4
2

1
                             (3.26) 

Note that when 1 , 1  and 1c Eq. (3.20) becomes the same as that in Refs. [14,87]. 

 

3.2.3. Partitions of energy release rate 

 

3.2.3.1. Euler beam partition 

 

From the reference [22,26-29], the Euler beam partition of the total ERR G in Eq. (3.25) can 

be written as 
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where   ,  and   ,  are the two sets of orthogonal pure modes. The   and    pure 

modes correspond to zero relative shearing displacement and zero relative opening 

displacement respectively just ahead of the crack tip [22,26-29]. Using the beam mechanics 

in section 3.2.1 in conjunction with these conditions, and then the orthogonality condition 

[22,26-29] through the ERR in Eq. (3.25) to obtain the orthogonal   and   pure modes, 

gives the following: 
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    ,0,                             (3.30) 

Note that the zero value of   results from the approximate nature of the total ERR G in Eq. 

(3.25) and is due to neglecting the bending action in parts 2 and 3 of the bilayer beam. This 
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does not prevent from the mode II ERR 
IIEG from being obtained as it is readily obtained as

IEGG when the mode I ERR
IEG is known. The coefficient 

IEc in Eq. (3.27) is calculated by 

using Eqs. (3.25) and (3.27) together, and noting that 
IEGG  when 11 BM  and BeN1 , 

giving 
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Now the ERR partitions, IEG and IIEG , are known in terms of the delamination tip bending 

moment 
BM1

in Eq. (3.20) and the effective axial force BeN1 in Eq. (3.24). For the sake of 

convenience, they are also given below in terms of the critical buckling strain c and the 

additional end-shortening strain a . 

 acacIE cchEG   3211                                            (3.32) 

 acaIIE chEG   21323

11                                               (3.33) 

Note that when BBe MN 11  or      32 ca c , the crack tip normal stress becomes 

compressive, and so IEG  is taken to be zero with GGIIE  . 

 

3.2.3.2. Timoshenko beam partition 

 

From reference [22,26-29], the Timoshenko beam partition of the total ERR G in Eq. (3.25) 

can be written as 
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In terms of the critical buckling strain c and the additional end-shortening strain a , they 

become 

 
 211 32
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                                          (3.39) 

Again, note that when BBe MN 11  or      32 ca c , the crack tip normal stress 

becomes compressive, and so ITG  is taken to be zero with GGIIT  . 

3.2.3.3. 2D elasticity partition 

 

In general, if there is a material mismatch across the interface and Young’s modulus ratio 

12 EE is not equal to 1, then the 2D-elasticity-based partition of ERR is crack extension 

size-dependent ERR due to the complex stress intensity factor [51]. It has been one most 

challenging fracture mechanics problems to obtain analytical solutions for the ERR partition 

and the stress intensity factors. Recently Harvey et al. [150,151] have solved this problem by 

using a novel and powerful methodology. It is expected, however, that the effect of material 

mismatch across the delamination is not significant in this study as the local deformation in 

the upper layer dominates the fracture. Therefore, the 2D-elasticity-based partition theory 

[14,78] for homogeneous beams with no material mismatch across the interface is used 

instead. The total ERR G  in Eq. (3.25) can be partitioned as 
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where 
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In terms of the critical buckling strain c and the additional end-shortening strain c , they 

become 
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Again note that when BDBe MN 121  or      3450.4 ca c , the crack tip normal 

stress becomes compressive, and so the DIG 2 is taken to be zero and GG DII 2 . 

 

3.2.4. Crack propagation and stability 

 

In general, the propagation criterion can be expressed in the form 

  0,,, IIcIcIII GGGGf                                           (3.47) 

where IcG and IIcG are the respective critical mode I and II ERRs. The form of Eq. (3.47) is 

not unique but is crack interface-dependent and is determined from experimental testing for a 

given interface. At the instant when Eq. (3.47) is met, two scenarios could occur. One is 

unstable crack propagation in which the crack continues to advance without increasing end-

shortening. The other is the stable crack propagation in which the crack stops propagating 

unless further end-shortening is applied. Mathematically, these two scenarios can be 

expressed as 














stable0

unstable0

a

f
                                       (3.48) 

Alternatively, the stability of crack propagation can be checked by finding the value of f at 

the critical end-shortening strain for propagation at the initial delamination length and then at 
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a slightly increased delamination length. An increasing value of f indicates unstable 

propagation. The stable and unstable crack propagation is discussed in detail in the next 

section for the case studies. 

 

3.3 Numerical verification and experimental validation 
 

This section aims to examine the capability of the analytical development in section 3.2 for 

predicting the propagation behaviour of post-local bucking-driven delamination by making 

comparisons with independent numerical [71,72] and experimental data [32,75]. The 

quantities of interest are the critical propagation end-shortening strain, the ERR partitions 

during propagation and the propagation stability. Two composite beams [32,75] are studied, 

which both contain a single through-width delamination, and which are subjected to uniform 

end-shortening displacement at the clamped ends, as shown in Figure 3-1. The composite 

beams are made from T300/976 graphite/epoxy plies and have a total length L equal to 

50.8 mm, and a width b equal to 5.08 mm. Table 3-1 gives more details of the two cases. The 

double slashes “//” denote the location of the delaminated interface. All plies have equal 

thickness. The ply longitudinal modulus 1E is 139.3 GPa. The critical ERR for mode I IcG is 

87.6 N/m and for mode II IIcG is equal to 315.2 N/m. Experimental studies [32,75] suggest 

that the material has a linear failure criterion, that is, the Eq. (3.47) takes the form 

  01,,, 
IIc

II

Ic

I
IIcIcIII

G

G

G

G
GGGGf                                               (3.49) 

which will be used in the following studies. For these two cases, an empirical formula for the 

critical buckling strain correction factor  in Eq. (3.9) is obtained by using finite element 

method simulations and is given by 

9755.06654.3738.11 1

2

12 


















a

h

a

h
                                        (3.50) 

A 2D axial symmetrical finite element model was built in Abaqus 6.13.1 with fixed top layer 

thickness (h1) and varied crack length (a). The critical buckling strain was obtained from 

finite element model with eigenvalue solver. The FEA results are compared with analytical 

results, the derivations vs ratio of top layer thickness to varied crack length, (h1/a), are 

calculated. The Eq. (3.50) is received from approximation of these comparisons.       

http://dict.leo.org/ende/index_en.html#/search=approximation&searchLoc=0&resultOrder=basic&multiwordShowSingle=on&pos=0
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Table 3-1: Configurations of two composite beams containing a central through-width 

delamination. 

Case Lay-up  (mm) 
1h (mm) h  (mm) 

1  4124 0//0/0  38.1 0.518 2.59 

2  4124 0//0/0  19.05 0.508 2.54 

 

 

3.3.1. Comparison of total ERR G with independent numerical results 

 

Accurate calculation of total ERR G is a crucial pre-requisite step towards the accurate 

prediction of propagation behaviour. The following exercise aims to examine the accuracy of 

the total ERR G given by Eq. (3.26) and the solutions in the works [14,87] by them against 

independent numerical results ref. [72]. Table 3-2 and Table 3-3 record the comparisons for 

Case 1 and Case 2 respectively. In general, good agreement is observed between the present 

solutions and the numerical results ref. [72] for both cases. The solutions from Refs. [14,87] 

have reasonable agreement for Case 1 and very poor agreement for Case 2. 
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Table 3-2: Total ERR G results for Case 1 

0 (10-3) G (N/mm) 

Ref. [72] Eq. (3.26) Refs. [14,87] 

1.00 0.0424 0.0405 0.0399 

1.20 0.0663 0.0628 0.0646 

1.40 0.0931 0.0874 0.0921 

1.60 0.1208 0.1142 0.1225 

1.80 0.1499 0.1435 0.1559 

2.00 0.1796 0.1750 0.1920 

2.20 0.2125 0.2088 0.2311 

2.40 0.2441 0.2450 0.2731 

 

Table 3-3: Total ERR G results for Case 2. 

0 (10-3) G (N/mm) 

Ref. [72] Eq. (3.26) Refs. [14,87] 

2.20 0.0324 0.0365 0.0000 

2.30 0.0642 0.0658 0.0000 

2.40 0.0949 0.0958 0.0202 

2.50 0.1335 0.1263 0.0541 

2.60 0.1716 0.1573 0.0887 

 

 

3.3.2. Comparison of delamination propagation behaviour with independent experimental 

results  

 

It is well known that fracture toughness depends on fracture mode partition. The validity of a 

particular mixed-mode partition theory can only be validated against experimental tests [32]. 

Thorough and comprehensive experimental test data from several independent research 

groups [17-21,30] shows [22,23] that Wang and Harvey’s Euler beam partition theory gives 

the most accurate prediction of mixed-mode fracture toughness. The exercise in this section 

aims to establish whether this partition theory also governs the propagation of mixed-mode 

delamination driven by post-local buckling.  
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Case 1 is considered first. Table 3-4 and Figure 3-3 record the delamination propagation 

behaviour predicted by the three partition theories described in section 3.2. The symbol f in 

Table 3-4 represents the propagation criterion in Eq. (3.49) with 0f  indicating no 

propagation and 0f  indicating stable propagation. Both the Euler and Timoshenko beam 

partition theories predict an initial mixed-mode delamination followed by a pure-mode-II 

delamination, with delamination propagation beginning in the pure-mode-II region at an end-

shortening strain 3

0 1076.2  and reaching the clamped ends at an end-shortening strain of

3

0 1092.2  . Although the propagation is stable, it takes only 31017.0  of extra end-

shortening strain (or 0.0085 mm of end-shortening displacement) to extend the delamination 

by 12.7 mm. This might suggest an observation of unstable propagation in experimental tests. 

The 2D elasticity partition theory predicts a mixed-mode delamination which begins to 

propagate at an end-shortening strain of 3

0 1052.2  and reaches the clamped ends at an 

end-shortening strain 3

0 1091.2  . It takes an extra end-shortening strain of 31039.0   (or 

0.0020 mm of end-shortening displacement) to extend the delamination by the same 

12.7 mm, which is much larger than the 31017.0  of extra end-shortening strain predicted 

by the Euler and Timoshenko partition theories. This might suggest an observation of stable 

propagation in experimental tests. The propagation behaviour is also shown graphically in 

Figure 3-3 as delamination length a  versus the end-shortening strain 0 . The two beam 

partition theories predict a much steeper growth rate than the 2D elasticity partition theory 

does. It is seen that the predictions from the two beam partition theories are considerably 

different from that of the 2D elasticity partition theory.  
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Figure 3-3: Delamination length vs. end-shortening strain for Case 1 

 

Table 3-4: Delamination propagation behaviour of Case 1 

0  

(10-3) 

Euler  Timoshenko  2D Elasticity 

a (mm) f  GGII
 (%)  a (mm) f  GGII

 (%)  a (mm) f  GGII
 (%) 

0.60 38.10 0  
18.6  38.10 0  80.3  38.10 0  43.6 

1.00 38.10 0  
66.5  38.10 0  96.2  38.10 0  69.4 

1.40 38.10 0  
88.4  38.10 0  99.5  38.10 0  80.2 

1.80 38.10 0  
100.0  38.10 0  100.0  38.10 0  86.6 

2.20 38.10 0  
100.0  38.10 0  100.0  38.10 0  90.8 

2.52 38.10 0  
100.0  38.10 0  100.0  38.10 0 93.1 

2.60 38.10 0  
100.0  38.10 0  100.0  39.96 0 95.0 

2.70 38.10 0  
100.0  38.10 0  100.0  42.53 0 96.9 

2.76 38.10 0 100.0  38.10 0 100.0  44.24 0 97.8 

2.80 41.12 0 100.0  41.12 0 100.0  45.73 0 98.4 

2.90 48.75 0 100.0  48.75 0 100.0  50.23 0 99.6 

2.91 49.59 0 100.0  49.59 0 100.0  50.80 0 99.7 

2.92 50.80 0 100.0  50.80 0 100.0  - - - 

 

Experimental test data in reference [32] are used next to assess the accuracy of each partition 

theory. The tests record the history of the compression force per unit width F against the 
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upper surface mid-span axial strain sc . The compression force per unit width is calculated 

analytically as 

   01121   chEbNNF                                                    (3.51) 

and the upper surface mid-span axial strain is calculated analytically as 

cc

x

sc
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dx

Vdh
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Figure 3-4 compares the three partition theories with the test results [32]. The following 

points are noted: (1) the analytical critical local-buckling compression force is much smaller 

than the experimental one. One possible reason for this is the sticking of the specimen’s sub-

laminates through the Teflon film—inserted to create the initial delamination—during 

manufacturing, thus increasing the buckling load [32]. Note that both the analytical and 

experimental results display bifurcation type local-buckling, which appears as the first sharp 

corner in the figure. (2) By cross-comparing with the results in Table 3-4, the two beam 

partition theories predict pure-mode-II propagation, beginning at the second sharp corner and 

ending at the third one, which corresponds to the complete delamination. During the 

delamination propagation process, the compression force does not change very much, which 

equates to an almost-unstable propagation. On the other hand, the 2D elasticity partition 

theory predicts mixed-mode propagation, starting smoothly and ending at about the same 

point predicted by the two beam prediction theories. During the delamination propagation, 

the compression force does change significantly, which equates to a stable propagation. (3) 

The experimental results [32] do show an almost-unstable propagation and both the initial- 

and end-propagation compression forces agree very well with the predictions of the two beam 

partition theories. (4) The significant discrepancy between the analytical and experimental 

critical local-buckling compression forces results in a significant difference between the 

predicted and experimental loading curves. This needs to be investigated in order to examine 

the partition theories more thoroughly. 
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Figure 3-4: Compression force per unit width F vs. upper-surface mid-span strain sc for 

Case 1 using the analytical buckling strain c . 

In the following, an approximate expression for the critical local-buckling end-shortening 

strain ce is derived where the subscript e indicates that it is based on experimental results. 

Similar to in Eq. (3.9), ce is written as 
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                                                    (3.53) 

where the correction factor e needs to be determined based on experimental results. It is 

perhaps the case that, in general, the ratio  e varies with the ratio ah1
; however,  e  is 

assumed here to be constant at its value at the initial-buckling delamination length due to lack 

of experimental results for other crack lengths. The accuracy of this assumption will be 

examined shortly. It is now only required to determine the value of e at the point of initial 

buckling. From Figure 3-4, two approximate critical local-buckling end-shortening strains  

ce  are found from the upper-surface mid-span axial strain and the compression force at the 

bifurcation point of the experimental results: (1) Since 01   before the local buckling of 

part 1, at this location 310748.0  scce  . (2) Before the local buckling of part 1, 02  

also, giving    1011hEF  or    3

11 10903.01   hEFce
 at this location. By 
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averaging these two values, an approximate critical local-buckling end-shortening strain is 

obtained as 310825.0 ce . Therefore, the value of e at the critical local-buckling point is 

determined from Eq. (3.53) to be 163.1e  and the ratio 207.1e . The critical local-

buckling strain ce at any delamination length is then calculated from Eq. (3.53) as 

cce  2207.1 . 

 

Figure 3-5: Compression force per unit width F vs. upper-surface mid-span strain sc for 

Case 1 using the experimental buckling strain ce . 

Figure 3-5 compares the test results [32] with the three partition theories, which now use the 

critical local-buckling end-shortening strain ce based on experimental results. The two beam 

partition theories predict the propagation behaviour very well and much better than the 2D 

elasticity partition theory does. The delamination propagation is indeed the pure-mode-II 

propagation predicted by the two beam partition theories. It is now clear that the 2D elasticity 

partition theory does not provide the right partition for predicting the propagation behaviour 

of buckling-driven delamination for Case 1. The question of which beam partition theory 

provides the right partitions when the propagation is not pure mode II, however, still needs to 

be answered. Case 2 is considered next to answer this question. 

Case 2 is now considered in the same manner. Table 3-5 and Figure 3-6 record the 

delamination propagation behaviour predicted by the three partition theories. All three 
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partition theories predict an initial mixed-mode delamination after the local buckling of the 

upper layer at 310073.2 c , followed by unstable mixed-mode delamination propagation 

and then stable propagation. The Euler beam partition theory predicts mode-I-dominated 

unstable propagation occurring at an end-shortening strain of 3

0 1046.2  , during which 

the delamination extends to a total length of 28.99 mm. Then the delamination propagates 

stably as mode-II-dominated to a total length of 29.67 mm corresponding to end-shortening 

strain 3

0 1069.2  after which the delamination propagates stably as pure-mode-II to the 

clamped ends at an end-shortening strain 3

0 1097.2  . The Timoshenko beam partition 

theory predicts mode-II-dominated unstable propagation occurring at an end-shortening strain 

of 3

0 1092.2  , during which the delamination extends to a total length of 46.68 mm. 

Then the delamination propagates as pure-mode-II to the clamped ends at an end-shortening 

strain of 3

0 1097.2  . The 2D elasticity partition theory predicts a fairly mixed-mode 

unstable propagation occurring at an end-shortening strain of 3

0 1056.2  , during which 

the delamination extends to a total crack length of 37.45 mm. Then the delamination 

propagates as mode-II-dominated to the clamped ends at an end-shortening strain of 

3

0 1096.2  . In a sense, the 2D elasticity partition theory is an ‘average’ of the two beam 

partition theories. The propagation behaviour is also shown graphically in Figure 3-6 as 

delamination length a versus the end-shortening strain 0 . It is seen that the predictions from 

the three partition theories are considerably different from each other. In contrast with the 

prediction for Case 1, for Case 2 the Timoshenko beam partition theory gives very different 

predictions to those from the Euler beam partition theory. 
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Figure 3-6: Delamination length vs. end-shortening strain for Case 2. 

 

 

Figure 3-7: Compression force per unit width F vs. upper-surface mid-span strain sc for 

Case 2 using the analytical buckling strain c . 
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Table 3-5: Delamination propagation behaviour of Case 2 

0  

(10-3) 

Euler  Timoshenko  2D Elasticity 

a  (mm) f  GGII
 (%)  a  (mm) f  GGII

 (%)  a  (mm) f  GGII
 (%) 

2.30 19.05 0  
25.0  19.05 0  

83.1  19.05 0  
47.2 

2.34 19.05 0  
27.2  19.05 0  

84.0  19.05 0  
48.5 

2.38 19.05 0  
29.3  19.05 0  

84.8  19.05 0  
49.6 

2.42 19.05 0  
31.2  19.05 0  

85.6  19.05 0  
50.7 

2.46 19.05 0  33.2  19.05 0  
86.4  19.05 0  

51.8 

2.46 28.99 0 92.7  19.05 0  
86.4  19.05 0  

51.8 

2.50 29.13 0 94.0  19.05 0  
86.9  19.05 0  

52.6 

2.54 29.26 0 95.4  19.05 0  
87.6  19.05 0  

53.5 

2.56 29.31 0 95.9  19.05 0  
87.8  19.05 0  53.9 

2.56 29.31 0 95.9  19.05 0  
87.8  37.45 0 93.4 

2.60 29.44 0 97.3  19.05 0  
88.4  38.41 0 94.4 

2.64 29.55 0 98.5  19.05 0  
88.9  39.33 0 95.2 

2.68 29.64 0 99.6  19.05 0  
89.4  40.29 0 96.0 

2.72 32.56 0 100.0  19.05 0  
89.8  41.33 0 96.7 

2.76 35.55 0 100.0  19.05 0  
90.3  42.45 0 97.4 

2.80 38.27 0 100.0  19.05 0  
90.7  43.69 0 98.0 

2.84 40.98 0 100.0  19.05 0  
91.1  45.08 0 98.6 

2.88 43.82 0 100.0  19.05 0  
91.5  46.67 0 99.1 

2.92 46.68 0 100.0  19.05 0  91.8  48.43 0 99.5 

2.92 46.68 0 100.0  46.68 0 100.0  48.43 0 99.5 

2.94 48.53 0 100.0  48.53 0 100.0  49.67 0 99.7 

2.96 50.11 0 100.0  48.53 0 100.0  50.80 0 99.8 

2.97 50.80 0 100.0  50.80 0 100.0  - - - 

 

Similar to the study for Case 1, experimental test data in reference. [32] are used to assess the 

accuracy of each partition theory. Figure 3-7 shows the histories of the compression force per 

unit width F against the upper surface mid-span axial strain sc as measured in testing and as 

predicted by the three partition theories. In general, it is seen that the predictions from the 

Euler beam partition theory agree quite well with the test results, that the predictions from the 

Timoshenko beam partition theory are poor, and that the predictions from the 2D-elasticity 

partition theory are somewhere in the middle. 
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As was seen for Case 1, the critical local-buckling compression force predicted analytically 

may not agree very well with the experimentally observed value. In order to examine the 

partition theories more thoroughly, it is necessary to correct for any discrepancy between the 

analytical and experimental critical local-buckling compression forces. Figure 3-7, however, 

shows that an imperfection-type initial buckling is observed in experiments (whereas a 

bifurcation-type initial buckling is predicted by the analytical theories). To account for this, 

the intersection point of the linear regions of the pre-buckling and post-buckling responses in 

the experimental data in Figure 3-7 (data markers 1 to 6, and 15 to 17 respectively) is used to 

approximate the experimental values of the upper-surface mid-span axial strain sc  and the 

compression force F at the point of bifurcation-type local buckling, which are found to be 

310834.1 sc and N 672F . As before for Case 1, these values give two approximate 

critical local-buckling end-shortening strains ce . When averaged, 310867.1 ce is 

obtained with 893.0e and 949.0e . The critical local-buckling strain ce  at any 

delamination length is then calculated from Eq. (3.53) as cce  2949.0 . 

Figure 3-8 shows the comparisons between the three partition theories and the test results 

[32]. In general, it is seen that the predictions from the Euler beam partition theory agree well 

with the test results, that the predictions from the Timoshenko beam partition theory are poor, 

and that the predictions from the 2D-elasticity partition theory are, again, somewhere in the 

middle. 
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Figure 3-8: Compression force per unit width F vs. upper-surface mid-span strain sc for Case 

2 using the experimental buckling strain ce . 

 

3.4 Conclusions 
 

Based on the Euler beam, Timoshenko beam and 2D-elasticity mixed-mode fracture partition 

theories [14,22,24-29], analytical theories have been developed for predicting the propagation 

behaviour of post-local buckling-driven delamination in bilayer composite beams. The 

conclusions are as follows: (1) Accurate calculation of the total ERR G  is essential in order 

to obtain accurate predictions. This work has presented a more accurate analytical formula for 

total ERR G than that in Refs. [14,87] by developing a more accurate expression for the post-

buckling mode shape and also by including the axial strain energy contribution from the 

intact part of beam. Very good agreement is observed between the present analytical results 

and the numerical results [72]. (2) The accuracy of critical local-buckling strain is also a key 

factor in making accurate predictions. Empirical values, obtained either numerically or 

experimentally for particular cases, give more accurate predictions. (3) The method used to 

partition the total ERR G into IG and IIG is another key factor for making accurate 

predictions. This work presents three partition theories, namely, the Euler beam, Timoshenko 

beam and 2D elasticity partition theories. Independent experimental tests by Kutlu and Chang 
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[32] show that, in general, the analytical theory based on the Euler beam partition theory 

predicts the propagation behaviour very well and much better than the theories based on the 

Timoshenko beam and 2D elasticity partition theories, when using the critical local-buckling 

strain derived with the aid of experimental results. (4) Buckling-driven delamination is a 

major form of failure in engineering structures made of composite layered materials. One 

important example is the thermal buckling-driven cracking of thermal barrier coatings used in 

aero-engines. The present Euler beam analytical theory provides a valuable tool for the 

engineering design of such material structures.  
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 Post local buckling driven delamination under 

thermal loads 
 

4.1 Introduction 
 

This chapter and chapter 5 will study some failure behaviours of Thermal Barrier Coating 

(TBC) material systems. A detailed introduction is given in this chapter. 

Thermal barrier coating systems are multilayer material systems to provide thermal insulation 

to the metallic/super-alloy engine parts from high temperature environment. Typical 

application of TBC is as gas turbine engine for aircraft propulsion, power generation and 

marine propulsion. The TBC is commonly manufactured by air plasma-spray (APS) or 

electron-beam physical vapour deposition (EB-PVD). The former is used for aircraft engine 

and latter is for gas turbine.  

Air plasma spray (APS) is a type of thermal spray process to produce thin film on the 

substrate. In the thermal spray process, a thermal plasma arc or a combustion flame is used to 

melt and also to accelerate particles of metals, ceramics, polymers, or their composites to 

high velocities in a directed stream towards the substrate. The sudden deceleration of the 

particle upon the substrate surface leads to lateral spreading and rapid solidification of the 

particle, it forms a ‘splat’ in a very short time. Successive impingement of the droplets leads 

to the formation of a lamellar structure in the deposit [131]. 

Electron beam physical vapour deposition (EB-PVD) is a form of physical vapour deposition 

in which a target anode is bombarded on the substrate surface with an electron beam under 

high vacuum environment. It is a physical process facilitating the transform of atoms from a 

solid or molten source onto a substrate. In this process, thermal energy is supplied to a source 

from which atoms are evaporated. The evaporated atoms travel through reduced background 

pressure in the evaporation chamber and condense on the growth surface [131].  

The EB-PVD coating produces a feathery microstructure with a columnar grain structure that 

offers excellent compliance to thermal cycling. EB-PVD coatings exhibit enhanced durability 

under aero-engine thermal loading environments. On the other hand, a typical APS coating 

displays a layered architecture, this brick wall like layered structure with interpenetrating 

porosity and interfaces offers compliance, but lesser extent than the columnar grain structure. 

The APS TBCs are suitable for the environment with lower operating temperatures, reduced 

https://en.wikipedia.org/wiki/Physical_vapor_deposition
https://en.wikipedia.org/wiki/Anode
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temperature gradients, and fewer thermal cycles. Typically, the low-cost APS method is used 

to deposit TBCs on stationary engine parts (combustor, shroud, vanes), whereas EB-PVD 

TBCs are more durable used primarily on the most demanding hot-section parts in jet engines 

such as blades.  

The TBC system commonly consists of four layers: superalloy substrate, bond coat, TGO and 

top layer, see Figure 4-1. Typically, the top layer is a ceramic layer, which has lower thermal 

conductivity to provide thermal isolation [132], the thickness of the top layer is normally 100 

to 300 um  with a columnar grain structure that provides strain tolerance. The strain tolerance 

is designed to avoid instantaneous delamination due to thermal mismatch. The bond coat is 

an oxidation-resistant metallic layer, normally 30 to 100um  in thickness; it essentially 

dictates the spallation failure of the TBC. Its primary function is to provide a reservoir from 

which Al can diffuse to form a protective α -Al2O3 TGO while maintaining cohesion with the 

TBC without reacting with it; bond coat also compensates the thermal mismatch of different 

layers. The third layer is a thermal growth oxide (TGO) layer that is formed at the peak 

operating conditions between the bond coat and the ceramic top layer. The TGO thickness is 

typically 0.1 to 10 um . The substrate is a thick layer of nickel or cobalt based metallic alloy, 

it is the structural component, which needs to be protected from high temperature operation 

conditions.   

The ceramic top layer is typically made of Y2O3 stabilised ZrO2 (YSZ). YSZ has a high 

thermal expansion coefficient and low thermal conductivity [132]. The in-plane stiffness of 

top layer is relative small, for example, the elastic modulus of the top layer is about 50GPa. 

The top layer can be further grouped to one dense layer at the bottom with thickness several 

micrometres and the other more compliant layer at the top.  

The TGO layer is formed between the top layer and bond coat in operation condition, for 

instance, the bond-coat temperature in gas-turbine engines typically exceeds 700°C, resulting 

in bond-coat oxidation and the formation of the thermally grown oxide. The thickness of 

TGO layer increases during the operation condition. It is better that the TGO forms as α -

Al2O3 and that its growth is slow, uniform, and defect free. The formation of the TGO layer 

initially provides a diffusion barrier, retarding further bond-coat oxidation, but the growth of 

the TGO thickness leads to the degradation of TBC interface toughness and the interface 

delamination. 
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Figure 4-1: Schematic illustration multilayer TBC system (not to scale) [133] 

Originally, the TBCs were introduced to extend the life of stationary engine parts such as the 

combustor, but in the late 1980s, TBCs were first used on rotating blades. Over several 

decades, the driving force for development of the TBC systems is to increase the durability 

and reliability of the components under high thermal loading operation conditions. From the 

70s to 90s, the TBCs were not “prime reliant”; the ceramic coating was not considered in the 

design of the temperature capability of the underlying metal parts. Later, the TBC system is 

gradually considered as “prime reliant” [133]: TBCs are required to maintain thermal 

protection for prolonged service times and thermal cycles without failure. Typically, these 

service times are 1000s of hours for jet engines being cycled between a maximum 

temperature of ∼ 1300°C and room temperature (take-off/landing and on-ground), and 

10,000s of hours for power-generation engines with fewer thermal cycles (maintenance shut-

downs) [133]. 

These industrial demands are the driving force for the development of TBC material systems. 

Over several decades, a large number of research works have been conducted on the subject 

of TBC material systems, the experimental, analytical and numerical methods are used to 

investigate the TBC failure modes, to develop the TBC lifetime prediction model and to 

improve the durability and performance of TBC material systems. An overview of the 

research works on the subject of TBC material systems is conducted from section 4.1.2 to 

4.1.5 to show the typical studies with the focus on the interface delamination under mixed 
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mode delamination. The purpose of this review is attempt to summarise the main 

characteristics of TBC research works and to serve as basis for the development of TBC life 

prediction model.  

 

4.1.1 Thermal barrier coating failure  

 

N. P. Padture et al. (2002) [132] addressed that TBC is the material system where a complex 

interplay occurs with all of the following phenomena: diffusion, oxidation, phase 

transformation, elastic deformation, plastic deformation, creep deformation, thermal 

expansion, thermal conduction, radiation, fracture, fatigue, and sintering. The TBC failures 

are similar, the coating spalls off, the engine parts are exposed to the hot gases, and this leads 

to the underlying metal rapidly oxidation or melting; however, there are several mechanisms 

contributing to the observed failures [132]:   

A. the thermal expansion mismatch stresses  

B. TGO growth  

C. the oxidation of the metal 

D. the continuously changing compositions, microstructures, interfacial 

morphologies, and properties of the TBC system. 

A detailed summary of damage accumulation, the failure and life prediction of TBC is 

presented by Nitin P. Padture et al. [132]. They described that the progressive roughening 

(ratcheting) of the bond-coat/TGO/topcoat interfaces occurs during the thermal cycling, the 

roughening manifests in the form of TGO penetration into the bond-coat and results in out-of-

plane stresses normal to the metal/ceramic interface. They addressed that these stresses, in 

combination with the interfacial imperfections, are primarily responsible for TBC failure.  

The mechanisms of TBC interface delamination caused by TGO displacement into bond coat 

with each thermal cycle were further investigated by D.R. Mumm (2001) [91] experimentally 

in detail. Their study revealed a localised, cyclic instability in the TGO that results in lateral 

cracking of the TBC above the ratcheting sites. These cracks grow and coalesce, resulting in 

a delamination large enough to cause large scale buckling and spalling.  

As a response of TBC thermo-mechanical process, an out of plane displacement instability 

occurs in the TGO, with ensuing crack evolution in the TBC over-layer. The prior literature 
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indicates the possibility of two such morphological instabilities. One is the formation of 

regular, relatively long wavelength undulations, referred to as “rumpling” [94,97–99]. The 

second comprises of a localised penetration of the TGO into the bond coat. It has been 

referred to as “ratcheting” [100]. Both “rumpling” and “ratcheting” relate to an interface 

morphology, they describe the shape of the interface displacement. In a desired status, the 

TGO should remain elastic to the highest temperatures and not creep to prevent “rumpling” 

[133]; otherwise, it may lead to the development of local separations at the TBC interface. 

The “ratcheting” was studied by He, M. Y. et al. in 2000 experimentally [100]. A deep 

insight is provided by their study to understand the evolution of TGO growth and the 

interface delamination. The TGO systematically thickens at the peak temperature with 

parabolic growth kinetics. The instabilities are manifest as displacements of the TGO into the 

underlying bond coat that grow systematically as cycling increases. As the instabilities grow 

larger, cracks develop in the overlying TBC layer. These cracks extend laterally as the 

instabilities penetrate further into the bond coat, and eventually coalesce into a separation 

zone large enough to cause large-scale buckling and failure [9].  

Similar study of the progressively roughen (“rumple'') on the initial flat platinum-modified 

nickel aluminide bond coat surface with thermal cycling was performed by Tolpygo, V. K. et 

al. [94]. They discussed mechanisms of the observed rumpling and the implications of the 

bond coat surface evolution leading to the failure of thermal barrier coatings.  

Another study on rumpling was done by D.S. Balint et al. [106]. Their study explored the 

main factors causing the rumpling. At 600 °C, bond coat creep, thermal expansion mismatch 

occurs between substrate and oxide layer or bond coat; also the bond coat expansion is 

caused due to phase transformation. These mismatch cause undulation growths. Undulation 

growth is driven by the lateral growth strain in the TGO and occurs at a rate governed by 

many factors, including power law creep of bond coat and plastic yielding of the TGO. They 

concluded that increasing the bond coat creep strength reduces undulation growth.  

The TBC failure typically occur as a sequence of crack nucleation, propagation and 

coalescence events [9,92,101]; it can be summarised as follows: (a) The stress due to thermal 

mismatch and its induced strain energy release rate concentrate in the vicinity of the TGO 

imperfections, causing small cracks and separations to nucleate [95]. (b) Once nucleated, the 

cracks extend at a rate governed by the magnitude of the stresses around the imperfections 
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and the associated energy release [96]. (c) Failure occurs when cracks from neighbouring 

imperfections coalesce and detach the layer over a sufficient area to cause large-scale 

buckling (LSB) or edge delamination [9,93].  

The TBC failure is driven primarily by the high compressive stresses in the TGO [104], the 

extremely large compression residual stress (3-6GPa) could be developed in the TGO layer 

due to thermal mismatch as the system cools to ambient temperature; also a relative smaller 

stress, less than 1GPa is induced through TGO growth [102],[138]. In summary, the TGO 

growth is a key factor to TBC failure [102], delamination at the interface between the TGO 

and the bond coat, with subsequent spalling, is the chief failure mechanisms for electron 

beam deposited TBCs [94], [146].  

 

4.1.2 Early research works (80s and 90s) 

 

Thermal barrier coating (TBCs) were first successfully tested in the turbine section of a 

research gas turbine engine in the mid-1970s and entered in the service in early 1980s. Firstly 

the plasma- sprayed coatings were brought into application; in 1990s, the physical vapour 

deposition (PVD) was successfully brought into commercial service and this made a 

significant progress to the TBC development.  

The early research works in 80s mainly focused on the TBC materials and process 

optimisation, the failure mechanisms understanding, the lifetime prediction and modelling. 

One of the most important researcher is R. A. Miller and his research group from NASA-

Lewis Research Centre. Begin 80s, thermal barrier coating is just used in the combustor 

section of some advanced gas turbine engines but not have been introduced into the turbine 

section of any commercial engine. The goal of his research is to provide the technology base 

and incorporation TBC into the engine bill-of-materials. In his published paper in 1980 [134], 

the spalling failure in the TBC system was mentioned and an overview of TBC system was 

introduced. It shows that the major efforts at that time were to investigate process parameters 

to achieve better TBC performance. In 1982, he investigated the TBC failures using burner or 

furnace tests, the surface crack and spalling failure were found in the test specimen [135]. 

The tests showed that this type of failure could be reproduced only if the atmosphere was 

oxidizing. He pointed out that the cooling stresses arising from thermal expansion mismatch 

between the ceramic layer and the bond coat, and the oxidation of the bond coat at the 
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irregular bond coat/ceramic interface are the main driven factors for the crack and spalling. 

His study confirmed that the coating life is both time and cycle dependent. 

The works done by R. A. Miller leads to further development of life prediction model for 

TBC systems. Typically, the life prediction contains two steps work, the first is to investigate 

the coating degradation and to test the delamination toughness; the second step is to develop 

a life prediction model. In 1984, R. A. Miller presented a lifetime prediction model [136]. 

The model is to calculate cycles-to-failure as a function of heating cycle duration. It was 

based on the assumption that oxidation is the single important time-dependent factor which 

limits the life of these coatings, and that oxidation-induced strains combine with cyclic strains 

to promote slow crack growth in the ceramic layer.  

The other important life prediction model is presented from NASA annual research report in 

1986 [145]. That was the most systematic work carried out to investigate the TBC failures by 

the tests. The experiments were conducted to determine relevant failure modes of the thermal 

barrier coating systems. Analytical studies coupled with appropriate TBC physical and 

mechanical properties were employed to derive a life prediction model relative to the 

predominant failure mode(s). The spalling was confirmed as the predominant mode of TBC 

failure by experiments and also by flight service components. It had been realised that the 

bond coat oxidation damage at the metal-ceramic interface contributes significantly to 

cracking in the ceramic layer. 

The next relevant life prediction model was presented in 1988 by T. A. Cruse et al.[146], it 

addressed that the cyclic thermal loading and thermal exposure play relevant roles in 

controlling the spallation life of the coating. A life prediction model has been developed 

based on a damage accumulation algorithm that includes both cyclic and time-dependent 

damage. The cyclic damage is related to the cyclic inelastic strain range in the ceramic 

coating; the time-dependent damage is related to the oxidation kinetics at the bond-ceramic 

interface. The model accounts for cyclic mechanical damage through time independent 

hysteresis (plasticity) and time-dependent hysteresis (creep).  

The other relevant life prediction model was presented in 1988 [147]. It addressed that the 

cyclic thermal loading and thermal exposure play relevant roles in controlling the spallation 

life of the coating. A life prediction model has been developed based on a damage 

accumulation algorithm that includes both cyclic and time-dependent damage. The cyclic 

damage is related to the cyclic inelastic strain range in the ceramic coating; the time-
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dependent damage is related to the oxidation kinetics at the bond-ceramic interface. The 

model accounts for cyclic mechanical damage through time independent hysteresis 

(plasticity) and time-dependent hysteresis (creep).  

Until that time, the works presented are based on the first-generation plasma deposited 

zirconia TBC; the life prediction model correlates spallation life with exposure time, 

temperature and number of thermal cycles [145].  

The next representative NASA TBC life prediction model was introduced in 1992 [148]. 

TGO growth and induced TGO strain levels are correlated with ceramic spallation life 

measured in an instrumented burner rig. Burner rig test parameters were varied to generate 

design data over a wide range of simulated mission cycles. These tests were grouped in three 

generic cycle types: the "strain emphasis" cycle, where many rapid thermal cycles were 

imposed, the "oxide emphasis" cycle, where significant hold time was imposed at the cycle 

maximum temperature, and the "mixed mode" cycle, which combined elements of the strain 

and oxide cycles. 

As an example of the life prediction model, the power law life model was developed [148]: 

bAN         (4.1) 

Where N is the cyclic life, A is an empirical normalising constant depending on the amount 

of oxide growth, b is the empirical power law coefficient. The strain range  is assumed as 

the maximum TGO tensile mechanical strain. The TGO elastic strains were used instead of 

EB-PVD ceramic strains, the TGO mechanical strain was due to the thermal growth 

mismatch between the TGO and the substrate.  

To use mixed mode fracture mechanics to study the TBC failure was found in two papers 

from NASA conference publication. The work done by Klod Kokini et al. (1995) [88] studied 

edge crack, interface crack using tests to simulate the thermal loading condition, the study 

addressed that the both cracks subjected to the (opening and shearing) mixed mode. Stress 

intensity factors KI and KII are used to characterise the mixed mode fracture [88].  

Another example of analytical model for TBC spalling life perdition for EV-PVD and plasma 

spray TBC is introduced by David M. Nissley [149] in 1995. Empirical TBC spalling life 

models are developed based on a combination of failure mode observation, TBC spalling life 

data and stress analysis. TBC failure was assumed to occur when the imposed stress at the 
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interface exceed the material strength at or near the interface. The top ceramic layer buckling 

is realised as the failure mode spalling.  

The next work to mention is a study conducted by Maurice Gella et al. [90] in 1999, an 

investigation of the spalling depending on strength and stress with thermal cycling is 

performed. Five thermal barrier coating test specimens were thermally cycled between room 

temperature and 1121°C to determine relative spallation life. Bond strength and bond stress 

measurements were carried out on two EB-PVD coatings as a function of thermal cycling. 

Bond strength measurements were made using a modified direct pull-test. Bond stress 

measurements were made in the thermally grown oxide using a laser photoluminescence 

technique, the change of the strength and stress is dominated by thermal cycling and these are 

related to oxidation and micro-debonding effects.  

In summary, in the early time of the TBC research, the development of life prediction 

methodologies consists of identification of critical failure mechanisms, stress/strain 

modelling, and the development of mathematical expressions that define life in terms of 

stress state and relevant failure criteria. The analytical life prediction models were strong 

relied on the tests; the mixed mode fracture mechanics and buckling driven delamination 

were not systematically considered. This situation has been changed in the 21st century.   

 

4.1.3 Review of TBC analytical model 

 

In the 21st century, more TBC material systems are developed; the performance, durability 

and reliability of TBC system are improved. The research works on thermal barrier coating 

have been continued and further developed. The deeper understanding of the TBC failure 

modes has been gained and better life prediction model of spalling are developed; however, 

due to the complexity and diversity of TBC structures and the severity of operating 

conditions, TBC research remain a challenge tasks for the researchers.  

To develop a mechanical analytical model is a crucial step towards the thermal barrier 

coating life prediction. The studies are conducted from different aspects by researchers to 

gain the understandings of the thermal barrier coatings. In 1999, Sung Ryul Choi et al., [9] 

studied the edge delamination and buckling delamination, which occur at the interface 

between the bond coat and the TGO. They found that the low in-plane elastic moduli of the 

porous zirconia layer benefit the buckling delamination but suppress the edge delamination; 
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small scale delamination arise when the TBC topcoat has a very low modulus; the larger 

scale delamination occur when the topcoat is stiff. In addition, they proposed a quantitative 

model for the two competing delamination mechanisms and presented a “failure map” to 

illustrate the dependences on the topcoat in-plane stiffness. They reported there is a range of 

in-plane moduli where both mechanisms can be suppressed. 

In their work, the failure mechanisms of edge-delamination and buckling delamination are 

studied. They reported that the edge-delamination is developed when the in-plane moduli of 

the thick topcoat are moderately high, caused by the large elastic strain energy which 

develops during cooling. The edge crack is described as the pure mode II delamination. The 

energy release rate is derived as follows:  
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Where 1h  is the thickness of the topcoat.  

If initial interface edge flaws approach several film thicknesses and G0 reaches steady state, 

then edge-delamination is expected whenever the G0 exceeds the mode II interface toughness. 

It can be seen that in steady state the edge crack condition is dependent on the residual stress, 

film thickness but not dependent on the crack length.  

The energy release rate for buckling delamination of a straight-sided blister is expressed as   
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This is based on critical buckling condition of a debonded film, width 2a and thickness 1h ; 

clamped edge condition. The critical buckling stress c  is expressed as Eq. (4.4) for both end 

pivoted condition. 
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The energy release rate averaged over the crack front can be obtained by an integration of Eq. 

(4.3) with respect to crack width because this gives the energy released per unit of front in 

steady state [14]: 
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It can be observed that the energy release rate at the curved front is always less than that 

along the sides. Figure 4-2 shows the edge delamination and buckling delamination. For the 

buckling delamination, the energy release rate can be determined in the front or at the side of 

the crack.  

 

Figure 4-2: Edge delamination and buckling delamination (straight- sided blister) 

In their studies, they developed an analytical approach to calculate the energy release rate for 

edge delamination and buckling delamination considering TBC as single layer and also as 

multilayer; they investigated the effects of topcoat in-plane stiffness to the edge and buckling 

delamination. In their study, the results for delamination of the single layer film are 

generalized for the film with multiple layers. They pointed out that the buckling delamination 

is in the form of mixed mode I and II; however, no mixed mode partition is considered to 

describe the delamination in their work.  

The edge effect and the edge delamination of thin film were studied by H. H. YU et al. in 

2001 [5]. In their study, the interface edge effect on the film delamination was classified as 

two types: (a) a film whose edge lies in the interior of the substrate Figure 4-3 (a); (b) a film 

whose edge is aligned with the edge of the substrate, Figure 4-3 (b). An analytical method is 

introduced to analyse the residual stress distribution in a film near its edge, the energy release 

rate and the mode mix for an interface delamination. The authors addressed the significant 

differences between the two cases. First, the elastic mismatch between the film and the 

substrate is more pronounced in case (b), but not in case (a); second, it is much quicker for a) 

to reach the energy release rate steady state than for (b). For (a), the energy release rate 

approaches the steady state, when the crack has extended less than one film thickness. By 

contrast, in case (b) the energy release rate reaches the steady-state rate until the crack 

extends to ten or more film thicknesses from the edge. In case (b), the edge effect provides a 
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significant protection against edge delamination, whereas in case (a) it does not. This edge 

effect is clearly illustrated in Figure 4-4.   

The steady state energy release rate is expressed as follows. This is the same expression as 

the ERR used for edge delamination from reference [9]. 
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Figure 4-3: (a) interior edge, (b) edge at a corner, (c) crack approaches from interior to 

interior edge and (d) to corner edge [5]. 

 

Figure 4-4: Normalised ERR as a function of crack length a to film thickness h ratio [5]. 

 

The second type of the edge effect is investigated wherein the interface crack approaches the 

edge of the film from the interior. The film displays a different type of behaviour when the 
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crack approaches one film edge from interior, see Figure 4-3 (c) and (d). The crack tip and 

the edge “sense” each other from a large distance whether the edge is at a corner or in the 

interior of the substrate. As they become close, the remaining residual stress in the film 

decreases and the energy release rate drops. The crack propagation will stop when the energy 

release rate drops to the level of the interface toughness. Zhuk et al. [142] realised this edge 

effect in the experimental measurement of the interface toughness of a Ni-polymer bilayer 

bonded to a silicon substrate. He, Evans and Hutchinson [143] termed such behaviour as 

“convergent debonding”. In their work the energy release rate and mode mixity are calculated 

analytically for the edge crack like c) and d) in Figure 4-3.  

Next relevant study to explore the mechanisms of controlling the thermal barrier coating 

durability is conducted by A.G. Evens et al. in 2001 [101]. They reported that the TGO layer 

develops the large compressive residual stress due to thermal mismatch to the substrate upon 

cooling; also the stresses arise during TGO growth. They addressed that the high 

concentration of compressive residual stress causes the high-energy density and benefits the 

crack nucleation and propagation in the interface. A detailed explanation of the stress 

development, redistribution and relaxation with focus on the sign and magnitude in the 

vicinity of imperfections and on the consequences of thermal cycling are provided in their 

work. The analytical approaches are developed for the stress due to thermal mismatch and 

growth of oxide layer, TGO thickness growth and stress intensity factor in the crack tip. In 

addition, they presented a buckling map to show the different stages of buckling and buckling 

propagation with consideration of mode mixity.  

A.G. Evens et al.’s work [101] explored the mechanisms behind the TBC failure and 

developed the analytical approaches to describe the relevant contributors to the failures. The 

buckling driven and mixed mode delamination is addressed in their study; this is one of the 

most comprehensive studies contributed to TBC research.     

Another interesting study was presented by P.Y. Thery et al. [105] to use an energy balance 

method to predict the TBC life. An energetic model of spallation is developed based on a 

two-layer analytical model to represent the TBC material system. The analytical model only 

considers the strain energy contribution from TGO layer and YSZ top layer. Due to the 

observation from their tests, they concluded that the strain energy from bond coat and 

substrate plays an insignificant role to the TBC failure. This energy balance analytical model 

is based on the principle that the strain energy stored in the YSZ and TGO layers must be 
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balanced by the surface energy, which is required to form new surface due to interface crack 

propagation. This condition is only true if the plastic deformation at the crack tip is sufficient 

small.        

The TBC interface investigated by P.Y. Thery et al [105] is a brittle material. According to 

their energy balance model, the TBC failure is induced by the accumulation of strain energy 

in the ceramic layers and resisted by the interfacial fracture toughness. The available energy 

release rate at each stage of the evolution of the TBC is compared to the critical crack 

propagation energy Gc needed for spontaneous spallation using failure criterion 

GcWavailable  . The material fracture toughness Gc can be determined from the modified 4-

point bending adhesion measurements.  

The available energy is so considered that the scale-curved energy must be removed from 

stored energy. 

curvedscalestoredavailable WWW _      (4.7) 

Where )()(_ TGOWYSZWW curvedcurvedscalecurved   

The stored energy consists of the strain energy from YSZ layer and TGO layer: 
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Where h is the thickness of the layer, E and  are, respectively, its in-plane Young’s modulus 

and its Poisson’s ratio. 

In the study carried out by P.Y Thery et al. [105], the energy-based spallation model 

compares the decreasing of TBC adhesion energy and the increasing elastic stored energy due 

to the growth of thermal oxide and possible sintering phenomena. This lifetime predictions 

are validated by the experimental lifetimes and a good correlation is achieved. It indicates the 

feasibility of using energy balance method to predict TBC spalling failures based on two 

layers assumption for the brittle materials.   
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In contrast to the works done by P.Y Thery et al. [105] only considering the strain energy 

contribution from TGO layer and YSZ top layer, the TBC interface delamination influenced 

by substrate compliance is investigated by Hong-Hui Yu et al. [107-109]. The work of 

Cotterell and Chen [109], who were the first to call attention to the importance of substrate 

deformation [109]. If the substrate is compliant, the critical buckling load and the energy 

release rate of the interface crack can be significantly affected [109]. Yu and Hutchinson 

analysed the effects of compliance of substrate by introducing compliance coefficients [107]; 

their study [107] confirms the findings of Cotterell and Chen [109] and extends their results 

to arbitrary combinations of mismatch and blister size. The critical buckling condition, the 

energy release rate and the mode mix of the interface delamination crack are calculated as a 

function of the elastic mismatch between the film and substrate. Substrate deformation has a 

significant effect on thin film buckling delamination when the ratio of the film modulus to 

substrate modulus exceeds about three. The results show that the more compliant the 

substrate is, the easier for the film to buckle and easier for the interface crack to propagate 

after buckling. This conclusion was confirmed by other researchers as well [108]. 

Until now, it can be seen that many efforts have been given to the development of analytical 

mechanical model to predict the TBC life over several decades; the good correlations 

between experimental tests and analytical model have been achieved; the mechanism of 

mixed mode fracture mechanics and the buckling driven delamination have been considered. 

However, there is still some uncertainties in the current analytical mechanical models 

presented above. For instance, there is no consistent model to predict the TBC failure from 

crack nucleation, propagation, stable and unstable growth and final spallation; it is unsure 

which mixed mode partition theory governs the prediction of TBC failure and the life model.  

 

4.1.4 Finite Element Modelling  

 

In 80s, in the early time of TBC research work, the finite element analysis has been found 

with experimental results to develop life prediction models for the plasma-sprayed TBC. As 

an example, a two-dimensional, axisymmetric finite element analysis with cyclic loading and 

material nonlinearities has been developed at company GE [117]. This finite element analysis 

was carried out to examine the stresses that occur during the operation cycle showing that a 

considerable residual stress exists in the specimen. The plastic deformation of substrate, bond 

coat and the top coating creep are considered in the FE analysis. At that time, this FE Model 
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is limited to a maximum of three materials, it was not possible to directly model the substrate, 

bond coat, oxide scale, and topcoat with separate materials; the substrate properties were 

substituted for the bond coat.  

The next FE model to be mentioned is that one developed by J. Cheng et al. [118] in 1998 

with elastic and plastic material properties to determine the thermal/residual stress in the 

bond coat of an EB deposited TBC. Based on the test data from the cyclic furnace testing 

performed on TBC specimens and the observation of progressive failure [103], they found 

that purely elastic analysis failed to show some important tensile regions associated with the 

observed failure. The stresses computed in the elastic analysis were higher than those from 

the elastic/plastic calculations. The elastic calculations fail to show tensile stresses that occur 

on reheating; the stresses upon reheating that are missed in elastic analysis were responsible 

for some of the observed cracking. In addition, J. Cheng et al [118] realised that the failure is 

associated with interface irregularities that are not always sinusoidal, therefore, the finite 

element models were built with actual interface geometries from the image processing of 

metallographic sections, which were found in the experiments by them. Generally the actual 

interface geometries have higher local curvature in place of the more commonly used 

sinusoidal geometries, to use of actual interface geometries results in the calculation of higher 

local stresses. All the analyses were carried out using the finite element code Abaqus version 

5.6. 

In the same year, a FE model was used by A.M. Freborg et al. [119] to simulate the oxidation 

induced stresses in thermal barrier coatings. The finite element model was developed to 

evaluate stresses induced by thermal cycling of a typical plasma sprayed TBC system. The 

failure mechanisms of thermal barrier coatings have been examined through a finite element 

model of residual stress generation due to oxidation, topcoat creep and bond coat creep. The 

results indicate that topcoat and bond coat creep generate tensile stresses at bond coat peak 

and off-peak locations, while generating compressive stresses in the valley regions. In this FE 

model, the element “birth” and “death” techniques are utilised to replace the bond coat 

element with the same size of oxide bond coat elements at defined time intervals. The first 

oxide birth was in the elements located at the ceramic metal interface. Subsequent growth 

occurred through oxide elements birthed at the scale/metal interface at the start of the high 

temperature of the cycle. The oxide elements were allowed to ‘‘grow’’ during steady state to 

the full volume. In this way, the stress due to oxide growth, relaxation of growth stresses and 
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thermal cycling was incorporated in the model. Since the oxide elements were birthed at the 

oxide/bond coat interface, the model simulates the inward growth of an oxide scale. 

The next is to introduce a 2D axisymmetric FE Model, which was built using ABAQUS to 

simulate an oxidation process in 2001 [120]. In this FE model, an oxidation process wherein 

the new TGO forms at the interface, an anisotropic growth law is used. The growth of the 

TGO is simulated by imposing stress-free strains in accordance with a user subroutine. It 

consists of two components, g  and t . The magnitude of the strain per cycle normal to the 

interface, t  (which governs the thickening), is taken to be much larger than the strain per 

cycle, g  parallel to the interface (which causes lengthening of the TGO and induces the 

growth stress). Thickening of the TGO is modelled by adding a strain, t  in the row of TGO 

elements next to the bond coat. Moreover, in order to limit the growth stress to levels found 

experimentally, the TGO is allowed to undergo high temperature stress relaxation.  

The next important contribution to the FE simulation of TBC is the work done by U. 

Hermosilla et al. in 2009 [121], a coupled FE model integrating the mechanical response and 

microstructure evolution with considering the TGO growth, volume changes and the impact 

to TBC damage. A coupled microstructural–mechanical analysis was used to study the high 

temperature behaviour of coatings and the accumulation and concentration of stresses that 

may responsible for spallation upon cooling. A microstructure evolution model, a 1D 

diffusion model is developed to simulate phase changes under different temperature 

conditions using thermodynamic phase equilibrium calculation. 

One of the major purposes of the work [121] is to understand the development of stresses due 

to the growth of the oxide layer. Initial models assumed a simple parabolic growth law for the 

oxide layer; the models were then developed to consider the evolving properties of the 

substrate and bond coat, and a more rigorous model of the oxidation process was 

implemented. The formation of the thermally grown oxide (TGO) is modelled by considering 

the volume change due to oxidation. In turn, the model predicts the evolution of stresses at 

the positions within the TGO layer. The TGO growth was modelled by applying swelling 

strain rates to the material that composes the initial oxide layer. 

Similar FE model is built by U. Hermosilla et al. in 2013 [122] to simulate microstructure 

phase transformation and material degradation of TBC material system. A one-dimensional 

finite element diffusion model is developed to simulate diffusion of elements between the 
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substrate material and the bond coat in TBC. The TGO growth is simulated within the model 

and coupled with diffusion of the oxide-forming element. Microstructure changes and 

material degradation under different temperatures with varied bond coat compositions are 

simulated using this FE model. The results show that the accumulation of high out-of-plane 

tensile stress within the alumina layer as an additional phenomenon that could drive high 

temperature crack nucleation. 

Based on the studies presented above, it is seen that the finite element method is capable to 

predict some aspects of TBC failures. It is the work in the future to extend the analytical 

model developed in this chapter to a complete TBC life prediction model with the supporting 

of numerical and experimental method.    

 

4.1.5 TBC delamination fracture toughness test 

 

Thermal Barrier Coating interface fracture toughness test plays an important role to develop 

the life prediction model; however, there are challenges and difficulties linked with the test. 

Robert Vaßen described these challenges in 2012 [111]. For example, the TBC properties 

change during operation, typically leading to degradation of fracture toughness; the TBC 

service conditions are often extremely harsh, combining high temperatures, steep temperature 

gradients, fast temperature transients, high pressures, and additional mechanical loading, also 

oxidative and corrosive environments. It is difficult to reproduce the operation conditions in 

the laboratory. The coating system also changes with time and temperature as inter-diffusion 

occurs, microstructures evolve, and the properties of the constituent multilayer materials 

change. The mechanical properties are not stable because they vary and change with the 

loading conditions, etc.  

Robert G Hutchinson provided a review of tests for measuring mixed mode delamination 

toughness in 2011 [112]. He reviewed and commented the relevant mixed mode delamination 

toughness test methods. He stated that the modified four-point bend test is an effective means 

of measuring delamination toughness under conditions with a nearly equal mix of mode I and 

II components, see Figure 4-5. It is also possible to measure toughness over the full range of 

mode mix relevant to coating delamination. The four-point bending test was at first 

introduced by Charalambides et al. [144] to measure the critical energy release rate at the 

metal-ceramic interface, then Hofinger et al. [113] proposed a modification of the four-point 
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bending test wherein stiffeners are bonded to the surface of the coating with a gap cut at the 

centre to allow delamination to occur. It prevents the large plastic deformation in the 

substrate, which is caused by required large bending during the test.  

There are also other advantages to the modified four-point bending test method. If the 

stiffener balances the substrate, the coating interface will lie near the neutral bending axis; 

therefore, the bending load does not change the stress at the coating interface away from the 

crack tip. The energy for delamination is primarily provided by the elastic energy stored in 

the stiffener. In addition, if the coating is thin compared with the stiffener, most of the 

residual stress in the coating will not be released in the test because the coating remains 

bonded to the stiffener. 

 

 

Figure 4-5: Modified notched four- point bending test 

 

The next possibility to determine the delamination toughness is to use the indent test, see 

Figure 4-6, the advantages of indent test is that it requires only minimum sample preparation 

along with small quantities of material and is easy to perform. The basic principle is that the 

indenter penetrates the coating and generates plastic and elastic deformations in the system, 

driving cracks in the interface between the coating and substrate. However, a major shortage 

is the difficulty of interpreting the test results; also, it requires the finite element modelling to 

quantify displacements of the bond coat and superalloy substrate. These disadvantages lead to 

the limitation of using indent test to measure TBC interface fracture toughness.   
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Figure 4-6: Illustration of indent test to determine the interface fracture toughness [114]. 

 

The next two important test methods are “barb test” and “push-out test” which were 

developed by Kagawa and his colleagues [116], [139]. They are similar and both are used to 

determine the mode II delamination toughness. The coating is subject to additional 

compression by forcing it against a hard block. The force at which the coating delaminates is 

used to determine the critical energy release rate and the associated toughness. The 

disadvantage of these tests is to add compression to any residual compression in the coating, 

and they impose a delamination displacement and shearing stress on the interface. The barb 

and pushout tests require highly refined specimen preparation and sophisticated testing which 

are likely to limit their use for routine toughness testing.  

Kagawa and his colleagues have collected an extensive data showing how the toughness 

degrades with thermal exposure and with thermal cycling using pushout and barb test. Two 

relevant tests carried out to determine the mode II fracture toughness of TBC are to study the 

life time dependence on the thermal cycle and time exposure [110], [139].   

A pushout is used to test TBC shear delamination toughness by Kagawa et al. [139]. The 

measured delamination toughness varied from 9 to 95 J/m2. Thermal cycling tests of an EB-

PVD TBC were conducted under four maximum hot temperatures of 1000, 1025, 1050, and 

1100 °C. A pushout test method was used to quantify effect of thermal cycling temperatures 

on the delamination toughness of the EB-PVD TBC system. The delamination toughness 

depends strongly on hot time temperature. At the hot temperature 1000 °C, the delamination 

toughness achieved a maximum value up to 95 J/m2. Thereafter, the toughness decreases with 

the increase of hot temperatures and was about 9 J/m2 for the hot temperature 1100 °C. 

Influence of the hot temperature on the microstructure change is also revealed and related to 

the interface delamination toughness. During the thermal cycling tests, the TGO was formed 
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between the TBC and the bond coat. The delamination toughness is affected by various 

parameters such as the average TGO layer thickness, total hot time, and hot time temperature. 

The other test was done by Kagawa is to study the change of interface fracture toughness of 

EB-PVD TBC system with thermal exposure using push-out test [110]. The measured 

delamination toughness varied from 10 to 115 J/m2. The test results show a significant 

decrease of TBC delamination toughness with time exposure in the high temperature 

conditions. 

In this chapter, buckling driven delamination of TBC layer due to thermal load is considered 

by extending the theory in chapter 3.  

 

4.2 Development of normalised mixed mode partition   
 

4.2.1 Introduction  

 

As discussed in the section 4.1, the “Thermal Barrier Coating” (TBC) is a multilayer 

composite material system to provide thermal insulation to the engine parts from high 

temperature environment. Due to the mismatch of thermal expansion coefficient between the 

TBC layers the residual stress is often induced either during the temperature cycles or the 

time exposure in high temperatures, or both. In addition, the residual stress can be caused by 

manufacture process of TBC material system. As a detrimental effect of the accumulation of 

the residual stress in the TBC layers, the cracks could nucleate, propagate and coalesce in the 

interface, finally the thermal barrier coating layer delaminates and spalls off from substrate 

material.  

The delamination of the TBC interface is often characterised as mixed mode crack 

propagation, which is driven by buckling loads. In the case where the interface fracture 

toughness is weaker than those of adjoining materials, the path of the crack propagation is 

constrained along the interface, the TBC layer delamination is in the form of mixed mode 

fracture. As the length of the interface crack and the compressive stress attain a critical level, 

the TBC layer buckles away from substrate, then the further crack propagation is driven by 

buckling and postbuckling mechanism. 

The mixed mode partition theory plays a crucial role to predict the TBC failure. In this 

section, the Wang–Harvey Euler beam partition theory, Timoshenko beam partition theory 
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and 2D elasticity partition theories [27-29] are utilised to develop a normalised analytical 

approach to predict the trends of TBC failures. Under the thermal loading the deformation of 

TBC layers and substrate is assumed in linear elastic range. The studies in this section contain 

the mixed mode partition, the mixed mode crack propagation and the crack propagation 

stability. It attempts to show the general trends of TBC life prediction with minimum 

presence of detailed thermal barrier coating material data. It forms a relevant part of TBC life 

prediction models, which will be developed in the future with the support of experimental 

and numerical works. The experimental and numerical works are planned in the future to 

validate the normalised analytical approaches.  

 

4.2.2 Normalised mixed mode partition  

 

The TBC delamination can be simplified as the thin layer delamination caused by 

compressive residual stress induced by thermal loading. The TBC material system is 

simplified as bilayer material system with straight edge: one thin layer and one substrate. The 

substrate is assumed as the rigid body with infinite stiffness. The energy release rate is 

calculated from top layer. The total energy release rate and mixed mode partition using 

Wang–Harvey’s Euler beam, Timoshenko beam and 2D elasticity partition theories can be 

written as Eq. (4.10) to (4.16) respectively by setting 1c  for the simplicity from the 

equation (3.26), (3.32) to (3.33), (3.38) to (3.39) and (3.45) to (3.46) in section 3.2.3. Where 

c is a correction factor to correct bending moment calculation, Eq. (3.21).   

Total Energy Release Rate: 

 acahEG   4
2

1
11      (4.10) 

Euler Beam Partition: 

 acacIE hEG  3211       (4.11) 

 acaIIE hEG  21323

11       (4.12) 

Timoshenko Beam Partition: 

 acaIT hEG  32
8

1
11       (4.13) 
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 acaIIT hEG   32
8

1
11      (4.14) 

2D Elasticity Partition: 

 2112 3450.4062888.0 acaDI hEG                                        (4.15) 

                                 2112 3697.2*0.103768 acaDII hEG                                    (4.16) 

Based on the Eq. (4.10) to (4.16) the normalised expressions are derived using G , IG  and 

IIG to represent a normalised G, GI and GII for total energy release rate, mode I and mode II 

ERR, respectively. They are written as Eq. (4.17) to (4.23). 
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Euler Beam Partition: 
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Timoshenko Beam Partition: 
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2D Elasticity Partition: 
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The crack running in contact condition can be expressed as Eq. (4.24) and (4.25) for using 

Euler beam, Timoshenko beam and 2D elasticity partition theories respectively based on 

reference [27-29]: 
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As known, to use simplified one-dimensional approach, the strain produced by thermal 

loading can be written as T * ; where  is the difference of material thermal 

expansion coefficient between TBC thin layer and substrate; T  is the temperature 

difference referenced to a temperature point, where no thermal stress is induced. Typically, 

the reference temperature of TBC material system exceeds 1000 °C.     

The following expression is used to convert the strain into the temperature loading: 
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Where c  and cT are the critical buckling strain and the critical temperature drop at 

buckling respectively.     

With the equations (4.17) to (4.26), the mixed mode partition can be calculated using Euler 

beam, Timoshenko beam and 2D elasticity partition theories according to the increased 

thermal loading cTT  / ratio.  

At the point where the cTT  /  equals to 1, the top TBC layer just buckles; to increase T

and to assume a fixed cT , the top layer buckles further and the energy release rate at the 

crack tip increases as well. From Figure 4-7, it can be seen that the mode II is significantly 

larger than mode I, this trend is predicted by all three partition theories with exception that 

Euler beam partition theory predicts higher proportion of mode I than mode II at the cTT  /  

ratio from 1 to approximately 1.25. This trend can be more clearly observed from Figure 4-8: 

the Euler beam partition theory shows the ratio of IG  to G  is higher than 50% in the range 

of cTT  /  increasing from 1.0 to about 1.25.       

Figure 4-8 illustrates the mode mixity ratio of IG  to G  over thermal loading ratio cTT  / , 

where G  represents normalised total ERR from Eq. (4.8). From Figure 4-8 it can be seen that 

the Euler beam partition theory shows the highest ratio of mode I until cTT  /  increases to 

1.7; after this point, 2D elasticity partition theory predicts the highest ratio of mode I. In 

contrast, Timoshenko beam partition theory predicts the lowest ratio of IG  to G  over 
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cTT  / . The higher ratio of the mode I to total ERR normally indicates an earlier and faster 

delamination since the interface mode I fracture toughness often is significantly lower than 

that of mode II.  

The crack running in contact conditions are presented in Figure 4-8 as well. As the thermal 

loading ratio cTT  /  equals to 2.41, Euler and Timoshenko beam partition theories show 

the same condition of crack running in contact; the 2D elasticity partition theory presents a 

higher loading point for crack running in contact, where cTT  / ratio equals to 7.76. Once 

the crack running in contact, the crack propagates in the form of pure mode II, the GII is 

identical as the total G.  

The evolution of normalised mode I ERR, IG  is presented in Figure 4-9. It can be seen that 

the mode I ERR increases at first, then decreases and finally turns into pure mode II. This 

trend is predicted by all three partition theories; however, it occurs at different loading ratio 

of cTT  /  according to different partition theories. The speed of TBC delamination is 

influenced by the mode mixity ratio of mode I to total G and the evolution of mode I during 

the loading cycle.  

 

Figure 4-7: Mixed mode partition between Euler beam, Timoshenko beam and 2D elasticity 

partition theories 
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Figure 4-8: Comparison of GGI /  between Euler beam, Timoshenko beam and 2D elasticity 

partition theories. 

 

 

Figure 4-9: Comparison of IG evolution between Euler beam, Timoshenko beam and 2D 

elasticity partition theories 

 

4.2.3 Normalised mixed mode crack propagation  

 

Mixed mode interface crack propagation can be expressed mathematically as Eq. (4.27).  

0),,,( ICIICIII GGGGf      (4.27) 
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Where GI, GII are the energy release rate of the mode I and mode II, respectively; GIC and 

GIIC are the interface fracture toughness of mode I and mode II, respectively.  

Equation (4.28) and (4.29) are the linear and quadratic failure criterion, respectively.  
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Interface mixed mode crack propagation or delamination can be predicted using failure 

criterion equations. The fracture toughness GIC and GIIC can be written as normalised form as 

Eq. (4.30) and (4.31). 
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Also, the ratio   is introduced to express the relation of fracture toughness mode I and mode 

II as ICIIC GG  . The linear and quadratic failure criterion can be written as normalised 

form: 
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From the expression (4.30) to (4.33), it is seen that to predict the crack propagation requires 

the material fracture toughness data GIC and GIIC. Once the GIC and GIIC from experimental 

data are applied to Eq. (4.30) and (4.31), the prediction of interface delamination can be made 

from the Eq. (4.32) and (4.33).  A “delamination index” is introduced as the right term of Eq. 

(4.32) and (4.33) for using linear and quadratic failure criterion respectively. 

Figure 4-10 presents the “delamination index” according to the increased cTT  /  ratio using 

linear failure criterion and Eq. (4.32) by Euler beam, Timoshenko beam and 2D partition 

theories respectively. Figure 4-11 shows the similar results but using quadratic failure 
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criterion. In these figures, the values of “delamination index” are calculated assuming TBC 

interface fracture toughness GIC=10N/m, GIIC=50N/m, top layer thickness h1=0.02mm, 

E=50GPa and the initial crack length a0=0.5mm.   

The sequence of crack propagation predicted by different partition theories is shown in 

Figure 4-10 and Figure 4-11 for using linear and quadratic failure criterion respectively. The 

horizontal line is the “threshold of delamination index”, which is calculated by Eq. (4.30) or 

right term of Eq. (4.32) using linear failure criterion as follows. 
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The left term of Eq. (4.32) is the value calculated from normalised mode I and mode II ERRs 

and named as “Delamination index”. As the “Delamination index” increases and reaches the 

“threshold of delamination index”, for example 0.36 for using linear failure criterion, the 

crack propagation starts. In the Figure 4-10, the Euler beam partition theory predicts the 

earliest crack propagation; the Timoshenko beam partition theory shows the latest crack 

propagation and the 2D elasticity partition theory is in the middle. The results are consistent 

with the prediction from the ratio  of mode I to total ERR (GI/G) in Figure 4-8 in section 

4.2.2, the higher ratio of mode I ERR normally indicates an earlier delamination.  

Similarly, the “threshold of delamination index” of using quadratic failure criterion is 

calculated as 0.13 by using (4.34) and (4.33) based on interface fracture toughness 

GIC=10N/m, GIIC=50N/m. It is presented as the lower horizontal line in Figure 4-11. 

Compared with delamination predicted by using linear failure criterion in Figure 4-10, a 

slightly later delamination was predicted by using quadratic failure criterion in Figure 4-11. 

To predict later interface delamination means a less conservative approach for the practice 

application.  

The sequence of crack propagation predicted by different mixed mode partition theories is 

dependent on the interface fracture toughness. In Figure 4-10 and Figure 4-11 it can be 

observed that the delamination index curve of 2D elasticity overtakes the Euler delamination 

index curve at the thermal loads ratio of cTT  /  about 1.7, this means that the 2D elasticity 

partition theory predicts earlier delamination than Euler beam partition theory does. This case 
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is illustrated by the upper horizontal lines in Figure 4-10 and Figure 4-11 for using linear and 

quadratic failure criteria respectively. The values of “threshold of delamination index” are 

calculated using arbitrarily 1.95 times of  GIC=10N/m and GIIC=50N/m, namely GIC=19.5N/m 

and GIIC=97.5N/m. It is seen that the 2D elasticity partition theory predicts the earliest 

delamination for both of using linear and quadratic failure criterion; Euler partition theory 

predicts the second earliest delamination for using linear failure criterion but last for using 

quadratic failure criterion.   

The trends of crack propagation sequence can be also observed from the mode I ERR mixity 

curve in Figure 4-8 and Figure 4-9. The higher ratio of mode I ERR normally indicates an 

earlier delamination since the mode I fracture toughness is often smaller than mode II fracture 

toughness in the interface.     

It is worth noting that the “threshold of delamination index” presented in Figure 4-10 and 

Figure 4-11 is only to calculate the starting point of the interface crack propagation or 

delamination. From Eq. (4.34), it can be seen that the critical buckling strain cr  is depedent 

on the crack length. As the interface crack advances from initial crack length a0 to the next 

crack length a1, the critical buckling strain corresponding to the a1 decreases; subsequently, 

the “threshold of delamination index” increases. In other words, after the crack propagation 

started, the “threshold of delamination index” is not a constant value, it varies with the crack 

length but it still can be calculated using Eq. (4.34), (4.30) and (4.31). 

The other observation from the “delamination index” presented in Figure 4-10 and Figure 

4-11 is that the Euler beam partition theory exhibits the high nonlinearity with increased 

thermsl loading compared with those calculated by Timoshenko beam and 2D elasticity 

partition theories. The high nonlinearity of “delamination index” can be traced back to the 

mixed mode partition theories. The mode I and mode II ERR calculated by Euler beam 

partition theory also show high nonlinearity in Figure 4-7.  
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Figure 4-10: Crack propagation condition by various partition theories using linear criterion 

 

 

Figure 4-11: Crack propagation condition by various partition theories using quadratic 

criterion 

 

4.2.4 Crack propagation stability   

 

Eq. (4.28) and (4.29) are the linear and quadratic failure criterion respectively to calculate the 

interface delamination condition. At the instant where the condition of Eq. (4.28) or (4.29) is 

met, two scenarios of crack propagation occur: stable or unstable crack propagation. For the 
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stable crack propagation, the advance of the crack requires further loads input, either 

mechanical or thermal loading; for the unstable crack propagation, the crack propagation 

does not require further mechanical or thermal loads. Stable crack propagation can be 

controlled; however, the unstable crack propagation normally links with total failure of the 

structure if it is controlled. 

Mathematically, these two scenarios can be expressed with Eq. (4.36). 
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The interface crack and stability of crack propagation are dependent on the mixed mode 

partition. In this section, the crack propagation stability is studied based on the mixed mode 

partition theory by Euler beam, Eq. (4.18) and (4.19), Timoshenko beam Eq. (4.20) and 

(4.21), and 2D elasticity Eq. (4.22) and (4.23); IICG  is expressed as ICG , the linear failure 

criterion, Eq. (4.28) is used and it is written as: 

0 ICIII GGG        (4.37) 

Substituting GI and GII in Eq. (4.37) with these from Eq. (4.18) to (4.23), the interface crack 

and the stability equations are obtained as follows:     

Using Euler Beam Partition: 
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It can be expressed as the function of crack length a 
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    from Eq. (4.34).                            

Using Timoshenko Beam Partition: 
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Using 2D Elasticity Partition: 
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Crack running in contact: 
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Equation (4.40), (4.42), (4.44) and (4.46) define the condition where the crack propagation 

starts; the first order derivative of the equation (4.40), (4.42), (4.44) and (4.46) defines the 

stability condition of interface delamination; however, the analytical solution of the first 

order derivatives of these equations are ineffective expressions for practice usage. 

Alternatively, numerical expression can be employed to show the stability condition of 
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interface delamination. It can be observed from the loading curve, if further mechanical or 

thermal loading is required to promote the incremental crack propagation a , the crack 

propagation is in a stable manner; if no further loading is required but the crack continue to 

advance with a , the crack propagation is unstable. 

For the crack running in contact condition, mode II dominates the interface crack and it is 

replaced by total energy release rate. Therefore, Eq. (4.46) is applicable for all three partition 

theories for the crack running in contact.  

To investigate the crack propagation stability, it requires the detail material data. An example 

of case study is provided in the next section with illustrations of stable and unstable crack 

propagation. 

4.2.5 Case study   

 

A case study is performed with the thermal barrier coating parameters as presented in Table 

4-1. The TBC is simplified as a bilayer straight edge plate with top layer 20 um  and an 

infinite stiff substrate. The top layer 20 um  is so considered that the topcoat consists of 

effective 10 um  thickness from “strain tolerance” top layer and 10 um  dense layer. The TGO 

layer, bond coat and substrate are simplified as one rigid substrate. The width of TBC is 

assumed as 1.0 mm, the thermal expansion coefficient 6

1 0.8  /°C and 5

2 6.1  /°C are 

applied to the top layer and the substrate respectively. The mode I and II fracture toughness 

are assumed as 10N/m and 50N/m respectviely. The reference temperature is defined as 

1300°C.  

To assume the TBC material system as a bilayer system is a simplification as an initial step 

towards the development of mechanical model for predicting TBC life. It attempts to gain the 

basic trends to guide the experimental and numerical work in the future for TBC life model 

development.   

Table 4-1: TBC configuration and material properties for case study 

E1 [MPa] a0 [mm] h1 [mm] 1 [1/°C] 2 [1/°C] GIC [N/m] GIIC [N/m] 

50,000 0.5 0.02 8.0e-6 1.6e-5 10 50 

 

The critical buckling strain cr is calculated from the crack length a and the top layer 

thickness h1 using equation (4.34) based on plane stress and both end clamped condition.  
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The corresponding critical buckling temperature cT can be calculated using cr  from (4.34) 

with Δα (difference of material thermal expansion coefficient between top layer 
1  and 

substrate 
2 ).  

                
T

CTCT cr
cc





13001300                       (4.46) 

Where cT represents the temperature difference from reference temperature 1300°C to the 

critical buckling temperature cT .  

It is assumed that the strain energy of top layer is produced once the top layer starts to buckle. 

In other words, when the temperature decreases from stress free reference temperature 

1300°C to the critical buckling temperature cT , the top layer starts to buckle. The strain 

energy release rate accumulates with further reduced temperature until the crack propagation 

criterion is satisfied by mode I and mode II energy release rate. At this point, the crack starts 

to propagate.  

In the case study, the thermal loading ΔT/ ΔTc ratio at the point where the propagation starts 

is shown in Figure 4-12: 1.28, 1,72 and 1.35 is predicted by Euler beam partition, 

Timoshenko beam partition and 2D elasticity partition theory respectively. The results are 

identical as those were calculated using normalised approach and linear failure criterion in 

Figure 4-10.  

Figure 4-13 shows the energy release rate according to ΔT/ ΔTc ratio by using Euler beam, 

Timoshenko beam and 2D elasticity partition theories. The same results for the ratio of GI to 

total G and the crack running in contact condition can be observed as those using normalised 

approach.  

Figure 4-14 shows the temperature profiles, which are required to advance the crack versus 

the crack propagation length. The phase of stable and unstable crack propagation can be seen 

obviously. In the Figure 4-14 the solid line is the temperature profile predicted by Euler beam 

partition theory for the crack from initial length 0.5mm to 1.5mm. The crack propagation 

starts from point A, where the temperature is about 460°C, to A’, this is a phase of unstable 

crack propagation, since the crack advances from 0.5mm to 0.57mm (A’) has no further 
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temperature loading required. Temperature increase means the decrease of the thermal 

loading. 

Similar unstable phases can be observed in Figure 4-14: from point B (T=167°C) to B’ (crack 

length about 1.0mm) is predicted by Timoshenko partition theory; from point C (T=410°C) to 

C’ (crack length about 0.7mm) is predicted by 2D elasticity partition theory.   

Table 4-2 records the delamination propagation behaviour of case study presented in Figure 

4-12 to Figure 4-14. The symbol f in Table 4-2 represents the propagation criterion in Eq. 

(3.49) introduced in chapter 3 with 0f  indicating no propagation, 0f  indicating stable 

propagation and 0f indicating unstable crack. The temperatures marked with bold text 

indicate the unstable crack propagation. 

Table 4-2: Delamination propagation behaviour of case study 

 

cTT  /

 

Euler Timoshenko 2D Elasticity 

T(°C) 
a

(mm) 
f  

GGII
 

(%) 
T(°C) 

a
(mm) 

f  
GGII

 (%) 
T(°C) 

a
(mm) 

f  
GGII

 (%) 

1.00 642 0.50 <0 - 642 0.50 <0 - 642 0.50 <0 - 

1.05 612 0.50 <0 0.77 600 0.50 <0 0.15 606 0.50 <0 0.51 

1.11 572 0.50 <0 0.70 570 0.50 <0 0.12 570 0.50 <0 0.46 

1.26 472 0.50 <0 0.53 470 0.50 <0 0.07 474 0.50 <0 0.38 

1.28 459 0.50 <0 0.51 445 0.50 <0 0.06 458 0.50 <0 0.37 

1.35 481 0.52 >0 0.45 410 0.50 <0 0.05 410 0.50 <0 0.34 

1.37 485 0.53 >0 0.44 400 0.50 <0 0.05 415 0.51 >0 0.33 

1.44 488 0.54 >0 0.39 354 0.50 <0 0.04 439 0.53 >0 0.31 

1.49 490 0.55 >0 0.35 322 0.50 <0 0.03 450 0.54 >0 0.29 

1.68 462 0.57 >0 0.24 196 0.50 <0 0.02 464 0.58 >0 0.25 

1.72 444 0.58 0 0.21 167 0.50 <0 0.01 462 0.58 >0 0.24 

1.87 212 0.59 0 0.16 182 0.53 >0 0.01 458 0.61 >0 0.20 

2.21 210 0.60 0 0.05 201 0.58 >0 0.01 430 0.64 >0 0.16 

2.39 208 0.61 0 0 208 0.61 >0 0 400 0.67 0 0.15 

3.23 217 0.70 >0 0 217 0.70 >0 0 340 0.75 0 0.09 

4.26 205 0.80 0 0 205 0.80 >0 0 282 0.82 0 0.08 

5.47 189 0.90 0 0 189 0.90 >0 0 212 0.91 0 0.01 

6.84 174 0.99 0 0 174 0.99 >0 0 174 0.99 0 0 

6.86 172 1.00 0 0 172 1.00 >0 0 172 1.00 0 0 

8.41 157 1.10 0 0 157 1.10 0 0 157 1.10 0 0 
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Figure 4-12: Delamination length vs. ΔT/ ΔTc thermal loading for case study 

  

 

Figure 4-13: Mode I ERR mixity vs thermal loading ΔT/ ΔTc for case study 
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Figure 4-14: Temperature loading vs. stable and unstable delamination for case study 

 

In summary, the results from the case study show the same trends as those predicted by 

analytical mechanical models for the top layer buckling and the TBC interface crack 

propagation; the stability trend of crack propagation is demonstrated in the case study by 

using Euler beam, Timoshenko beam and 2D elasticity partition theories. It can be concluded 

that the normalised analytical approach can be used for the further development of the TBC 

life model.       

 

4.3 Conclusions  
 

In this chapter, the buckling-driven delamination of thermal barrier coatings used in aero-

engines is studied. The normalised analytical approaches are developed based on the Euler 

beam, Timoshenko beam and 2D elasticity partition theories to predict the trends of TBC 

interface crack delamination with minimum presence of detail TBC material data. Based on 

the normalised mixed mode partition and the linear or quadratic failure criterion, 

“delamination index” is developed using mode I and mode II interface fracture toughness to 

predict the interface crack propagation. Following conculsions can be obtained from the 
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study in this chapter: (1) The sequence of crack propagation is not only dependent on the 

mixed mode partition theories but also relates to the interface fracture toughness GI and GII. 

(2) An earlier crack propagation is predicted by using linear failure criterion rather than using 

quadratic failure criterion. (3) The crack propagation stability can be well illustrated by using 

the “T-a” curve (temperature loading “T” vs. crack propagation length “a” curve), to use 

numerical incremental crack length aa   combining with graphic illustration is convinent 

to show crack propagation stability.     

In the end of this chapter, the normalised approaches are verified by a case study with 

detailed material data; the results show a excellent correlation between case study and 

developed normalised approaches.  The work in this chapter provides some clear trends with 

minimum presence of real material data and it is particularly useful to develop the life 

prediction model for TBC material system with numerical method and experimental tests, 

which are planned in the future.    
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 Local delamination driven by pockets of energy 

concentration 
 

5.1 Introduction  
 

As presented in chapter 4, the TGO layer of thermal barrier coating contains the main 

relevant mechanisms controlling the TBC failure. To study the failure of TGO layer is a key 

step towards the development of TBC life model. In chapter 4, a normalised approach is 

introduced to simplify the TBC as a bilayer material system; the general trends are obtained 

by using various mixed mode partition theories. In this chapter the spallation failure of α-

Al2O3 oxide film is studied based on new developed Pockets of Energy Concentration (PEC) 

hypothesis, it attempts to explore the mechanisms of TBC spallation, which is controlled by 

TGO layer.      

A commercial heat-resistant Kanthal alloy forms a protective film of α-Al2O3 oxide which 

may spall from the alloy surface under certain conditions. The thin film separation or 

spallation was observed after cooling in the room temperature, but not during the time of 

heating and cooling [123]. The observations of a thin film delamination and spalling at room 

temperature are presented by V. K. Tolpygo and D. R. Clarke [123]. During the cooling 

process, residual compressive stress in  -Al2O3 oxide films on the surface of Fe-Cr-Al 

Kanthal A-1 heat-resisting alloy gradually increases due to material thermal expansion 

mismatch. It is expected that the buckling and spalling of the oxide layer occur when the 

compressive stress reaches to a critical level. However, the observations contradict this 

understanding: the failure occurs by spontaneous buckling and spalling at room temperature 

under a constant residual stress in the film. The extent of buckling and spalling does not 

decrease by reducing the residual stress in the film. In addition, the experiment shows that 

spalling (and buckling) occurs only at the intermediate cooling rates (5–200°C min−1). The 

oxide exhibits failure after cooling at intermediate rates but remains intact after cooling at 

either higher or lower rates [123]. In addition, the extent of buckling and spalling depends on 

the thickness of the substrate.  

This unique failure of thin film is described as spontaneous spalling, it is well investigated by 

V.K. Tolpygo, D.R. Clarke [123,124]. The works [123,124] contain the investigation of 

failure mechanisms and development of analytical model to describe it. The measurements of 

the residual stress in the alumina films for different cooling rates and metal thickness are 
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carried out, the aim of their tests is to establish the driving force for spallation and also to 

characterise the extent of any stress relaxation that occurs during the cooling. 

A commercial heat-resistant alloy annealed in vacuum at 1100°C for 25h was used in the test. 

The specimen was cut into rectangular plates (12×12 mm2) of different thickness. Four 

groups of specimens with the same oxidation thickness hox = 4.9±0.1um  but different 

substrate thickness 0.53, 1.05, 2.00, and 2.65 mm were tested. After isothermal oxidation, 

each specimen was cooled to room temperature at a constant rate, while several cooling rates 

in the range 2 – 1000°C min−1 were used. The residual stress in alumina scales was evaluated 

based on the stress-induced frequency shift of the Cr3+ photoluminescence [170,171]. 

Residual stress was measured in the adequate selected location in order to attain biaxial stress 

state, xx and yy .  

Two major conclusions were received from the phenomenon observed from the tests: 

• The general trend for each group of specimens is a significant decrease of the residual 

stress with decreasing the cooling rate. 

• At any given rate, the stress is smaller on thinner specimens. 

In their experimental studies, it is realised that the stress relaxation during the cooling rate 

reduces the residual stress. Stress relaxation can be caused by metal creep, oxide creep or 

both, it occurs both in the metal and oxide. The extent of stress relaxation strongly depends 

on the cooling rate. This is an important observation to understand the problem.  

Since fast cooling is assumed to have only little relaxation, the residual stresses attained after 

cooling at the highest rate (500 or 1000°C min−1) are equal to the maximum stress *

ox , 

corresponds to a purely thermo-elastic behaviour of the metal and oxide. The maximum stress 

*

ox  represents a sum of the stress existing in the scale during oxidation (the growth stress, 

Gox )( , and the thermal-mismatch stress induced by cooling, Tox )( . However, as for the 

lower cooling rate and thinner substrate, the residual stress is smaller than *

ox , and the 

difference 
oxox   * , indicates the extent of stress in the oxide relieved during cooling 

due to relaxation. The symbol ox  indicates the residual stress corresponding to the certain 

cooling rate.  
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The existing models of spalling of compressive stressed films is based on classic buckling 

principle that spalling takes place when the compressive stress in the thin film exceeds the 

critical level. However, the results presented in the literature [123,124] show a much complex 

effect. It is also found that the amount of spalled oxide has a clear correlation with the metal 

thickness: it is larger on thinner specimens and smaller on thicker ones which is contrary to 

expectation.  

Various hypotheses were thoroughly and insightfully examined in the work [123,124]. The 

first category of them is the flaw or imperfection hypothesis [127,128] aiming to explain the 

nucleation and growth of the separations. The flaw includes pre-existing separations, cavities 

and other defects, pre-existing inclusions such as Zr - containing oxide, impurity segregations 

at the oxide-metal interface due to slow cooling rates. However, optical microscopy studies 

showed that no any interfacial separations or spallation exist in all the specimens when 

examined immediately after cooling to the room temperature. When examining the exposed 

metal surface after spallation there is no any interfacial cavities or voids except for areas near 

sharp edges at the periphery of the specimens. The size of Zr –rich oxide particles contained 

in the films is largely in the same range of the film thickness which is unable to provide 

interface flaws capable of resulting in film buckling. In fact, these Zr –rich oxide particles 

often resist the propagation of separations resulting in a great majority of stable separations. 

It is usually expected that some impurities, such as sulphur, carbon, phosphorous for instance, 

may segregate at the interface due to the gradual decrease of solubility of the metal during 

non-fast cooling. However, an investigation of the interface segregation show little difference 

between slow and fast cooling. Therefore, the first category of hypotheses is invalidated.  

The second category is the stress corrosion hypothesis due to moisture [129] aiming to 

explain the time dependent growth behaviour of these separations. To have a convincing 

invalidation of this hypothesis, some specimens after slow cooling were placed in a sealed 

container in a purified nitrogen atmosphere with zero humidity. The spallation was still as 

prevalent as during the regular exposure in the ambient atmosphere [123].  

Since the cooling rates govern the separation and spallation behaviour, a third category of 

hypothesis is that the metal plastic strain during cooling is the key factor governing the 

spallation as it is directly related to the cooling rates. However, carefully designed 

experiments showed that the metal plastic strain during cooling is not sufficient to cause 

spallation of the film [123].  
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In addition, several other hypotheses were also considered, such as condensation of 

equilibrium thermal vacancies at the interface during cooling, diffusion of hydrogen or 

carbon monoxide from the metal to the film causing disruption to the film at room 

temperature, metal embrittlement or hardening near the interface. However, the work [123], 

states that none of these hypotheses is consistent with all the experimental results.  

A more recent study [130] on the same topic presents some contradictory observations. The 

major one is that the impurity segregation at the film metal interface is a key factor on the 

separation and spallation of the film. 

In order to attain a satisfactory explanation for these observations, several possible reasons 

are discussed by V.K. Tolpygo, D.R. Clarke [123,124], such as slow cooling, impurity 

segregation, moisture induced, and so on. However, none of these hypotheses is consistent 

with all the experimental results. Although the correlation is not yet clear, the present work 

insists that the amount of spalled oxide is mainly associated with the extent of stress relation 

during cooling, and influenced by some other factors, which remain to be established.  

Similar study on alumina scale thin film spontaneous spalling as that conducted by V. K. 

Tolpygo and D. R. Clarke [123] was carried out by Xiao Ping and his research group [130]. 

In their study the experiment works were performed on the substrate thickness range from 

0.477 to 7.608 mm and cooling rate from 1°C min−1 to 100°C min−1. They confirmed that the 

spalling occurs at intermediate cooling rate and no spalling takes place at high cooling rate. 

Meanwhile, the grain size of Fecralloy decreases with increase in cooling rate. However, 

contrary to what found by V. K. Tolpygo and D. R. Clarke, the amount of spallation on the 

alumina scale increases with the substrate thicknesses. They think the different results may be 

caused from the use of different alloys.  

In their experimental research, it is found that the interface toughness falls within a small 

range for the samples with the same cooling rate and different substrate thicknesses. This 

indicates that the bonding between alumina scale and Fecralloy substrate is affected by the 

cooling rate but not by the thickness of substrate. This is also proved by their estimated 

calculations.  

Further, the chromium carbide layer thickness increased with decrease of cooling rate and the 

extent of segregation is of the same level for the samples with different thicknesses. 

Therefore, it is inferred by the authors that the interfacial chromium carbide segregation 

effect may weaken the bonding and is crucial for alumina scale adherence. 
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Through this research, they finally draw a conclusion that the combination of residual 

stresses, grain size change and the Cr-carbide segregation together controls the spallation. 

In Tolpygo and Clarke’s second work [124], the experimental tests are performed with varied 

oxide film thicknesses and residual stresses in the oxide film. The residual stress in the 

alumina scale, after oxidation at 1200°C, is systematically varied between −2.8 and −5.5 

GPa, by appropriate choice of the oxidation time, metal–oxide thickness ratio and cooling 

rate. They attempt to study the development of interface separation and establish a relation 

between residual stress and spalling behaviour. 

By the experiment, it was observed that the separation growth will lead to spallation. The 

residual stress is lower in the separated region, and its minimum typically corresponds to the 

centre of separation. However, the stable separation does not produce spalls because the 

propagation of interface cracks was arrested for some reasons and the separation size was still 

smaller than the calculated critical size db for buckling diameter. Buckling of the oxide layer 

occurs if initial separations of diameter larger than db exist at the oxide–metal interface. 

However, according to what they observed from the test results, the actual buckling diameter 

is smaller than using db predicted. They explained this as not all the separations eventually 

spall and some of them remain stable indefinitely at a size smaller than the calculated critical 

buckling diameter. 

In the work done by the Tolpygo and Clarke’s [124], an analytical approach to determine the 

spall diameter, ds and the height H of the spherical arc of film buckling deflection are 

developed. However, despite of many efforts have been given by Tolpygo and Clarke and the 

good results have been obtained; the phenomenon of α-Al2O3 oxide spontaneous spalling 

hasn’t been fully explained; in addition, the current finite element method is not able to solve 

this kind of problems due to lack of the knowledge on the failure mechanism and the driving 

force for the spallation; therefore, the further studies and new analytical approaches on this 

subject are necessary. 
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5.2 Hypotheses of pockets of energy concentration (PEC)   
 

A hypotheses is made in this section that pockets of energy concentration (PEC) can be 

formed by pockets of tensile stress and shear stress, with the former being dominant 

[123,124], around the interface between a thin film and a thick substrate because of thermal 

effects, chemical effects and etc. Based on the PEC hypothesis, three mechanical models are 

developed analytically to predict some aspects of the process of thin film spallation failure 

including nucleation, stable and unstable growth, the size of spallation and final kinking off. 

Spallation with both straight edge and circular edge are considered. The classical plate model 

is established based on classical plate mixed mode partition theory while the shear 

deformable plate and 2D elasticity models are established based on the first order shear 

deformable plate and 2D elasticity mixed mode partition theories.  

Experimental results in the next section show that all three of the models predict the initiation 

of unstable growth and the size of spallation very well; however, only the 2D elasticity-based 

model predicts final kinking off well. The energy for the nucleation and stable growth of a 

separation bubble comes solely from the PEC energy on and around the interface, which is 

‘consumed’ by the bubble as it nucleates and grows. Unstable growth, however, is driven 

both by PEC energy and by buckling of the separation bubble. Final kinking off is controlled 

by the fracture toughness of the interface at the film and the maximum energy stored in the 

separation bubble. This work will be particularly useful for the study of spallation failure in 

thermal barrier coating material systems planned in the future. 

In the studies on buckling driven delamination, it is conventional to assume either an existing 

interface crack larger than the critical buckling characteristic dimension or an existing 

imperfection [127,128]. However, some cases of thin film delamination [123,124] show no 

any evidence of existing interface cracks or imperfection, but still with buckling behaviour. 

The work conducted by V. K. Tolpygo, D. R. Clarke in 1999 and 2000 presented a series of 

experimental studies on room temperature circular spallation of  - alumina films grown by 

oxidation on Fe-Cr-Al alloy with very impressive observations which contradicts the classic 

buckling and interface crack mechanisms.   

In the work [123,124], the Al2O3 oxide films of different thicknesses were firstly formed on 

the surface of Fe-Cr-Al heat-resisting alloy substrates of different thickness at 1200°C with 

different heating hours. Then, the film substrate material systems were cooled down to room 
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temperature with different cooling rates. Interestingly, no spallation failure was observed 

during cooling at any cooling rates when the compressive residual stress gradually increases 

due to thermal expansion mismatch. Surprisingly, however, for slow cooling rates (5-200°C 

min-1), it was observed that circular separations of films nucleate, grow in height and 

propagate in radius at room temperature with constant compressive residual stress, this 

compressive residual stress is far below the critical buckling stress. After a period of slow and 

stable growth, some separations grow abruptly and spall off. Most intriguingly, for extremely 

slow cooling rates  ( 1min2  ) and very fast cooling rates ( 1min500  ), no separation and 

spallation were observed.  

In the case of fast cooling, nearly no plastic or creep relaxation occurs in both oxide and 

metal due to cooling and the mechanical process is purely thermo-elastic [123]. It might be 

reasonable to expect that this process result in uniform biaxial in plane compressive stress in 

the film and no interfacial stress apart from the areas near the edges of the specimens. 

Therefore, there are no PECs formed in the film metal material system even though the film 

has the largest residual stress.  

In contrast, nearly complete plastic or creep relaxation occurs in both the film and the metal 

during extremely slow cooling. The ‘complete’ here means that a fully plastic relaxation is 

achieved at any temperature during cooling. That is, any slower cooling rates will produce the 

same plastic relaxation history with respect to cooling temperature. Thus, it might be also 

reasonable to expect that the slow cooling rate result in uniform biaxial in plane compressive 

stress in the film and no interfacial stress apart from the areas near the edges of the 

specimens. Therefore, there are no PECs formed in the film metal material system with the 

film having the smallest residual stress.  

Now, it becomes clear that the intermediate cooling rates are unable to produce converged 

plastic relaxation. The present study makes the hypothesis that the non-converged plastic 

relaxation results in pockets of tensile stress and shear stress at the interface and its neighbour 

materials while still producing uniform in-plane residual stress in the film. The pockets of 

tensile stress and shear stress results in PECs. These PECs cause interface separation 

nucleation, growth and spallation of the film. When this process is regarded as the 

continuation of the non-converged plastic relaxation, the time dependence of the process is 

apparent. However, it is not considered in this work. The present work focuses on the 

development of an analytical mechanical model based on the PECs hypothesis to predict the 
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separation behaviour including nucleation, stable and unstable growth, and final spallation 

and kinking off.  

It is necessary to have a brief introduction to the experimental procedure recorded from the 

work [123,124]. A commercial heat-resistant alloy Kanthal A-l with nominal composition Fe 

-21.2%Cr5.6%Al (wt. %) was used in the experimental tests. The alloy was annealed in 

vacuum at 1100oC for 25 hours and cut into rectangular plates (12 x 12 mm2) of different 

thickness (0.53, 1.05, 2.00 and 2.65 mm thick). After polishing to 3 um  finish and cleaning 

in acetone, all the specimens were oxidized at 1200oC in ambient air for times ranging from 

0.5 to 100 hours to give different oxide thickness ranging from 0.5 to 8.0 um . After the 

isotheral oxidation, each specimen was cooled to room temperature at a constant rate. Several 

cooling rates in the range 2-1000oC/min were used. The nucleation, growth and spallation of 

the  - alumina film separations from the Fe-Cr-Al alloy substrate at constant room 

temperature and constant residual stress were monitored using different experimental 

techniques. Figure 5-1 shows a general view of a specimen after  - alumina spallation at 

room temperature, the spalled regions of the alumina scale, exposing bare metal surface, 

appear bright against the darker intact oxide. The randomly distributed white spots are the 

spallation sites. It can be observed that they all are nearly circular and have nearly the same 

size. The thicknesses of alumina and the alloy of the specimen shown in Figure 5-1 are 4.9 

mm and 1.05 mm, respectively. The oxidation time of this specimen is 25 hour at 1200oC in 

ambient air. Six cooling rates are shown. When cooling rate is below 2oC min-1 there is no 

any spallation observed as converged plastic relaxation is achieved at any temperature during 

cooling resulting in no PECs. When cooling rate is above 500oC/min there is no any 

spallation observed either as the cooling process is purely thermo-elastic resulting in no 

PECs.  
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Figure 5-1: View of a group of 1.05-mm thick Kanthal samples after 25-h oxidation at 

1200°C cooled to room temperature [123].  

 

Figure 5-2 shows the sequence of optical images illustrating the nucleation, growth and 

spallation of one typical separation from another specimen where the thickness of the oxide 

scale is about 4.9um  and the residual stress is 4.3 GPa. Figure 5-2 (a)-(e) show the 

nucleation, stable growth stages which took 22 minutes. The time values were counted from 

when the specimen was just reached room temperature from cooling.  In Figure 5-2 (a)-(d) 

the radius of the nearly circular separation are far below the critical value for buckling. In the 

work [124], it is called incipient buckle. Here, it is conveniently called separation bubble as 

its radius is far too small to cause buckling, particular in Figure 5-2 (a)-(c). The abrupt 

growth starts at Figure 5-2 (e) and spallation failure occurs at Figure 5-2 (f) only taking just 1 

minute. The following work aims to develop a mechanical model analytically to explain some 

aspects of the above observations.   
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Figure 5-2: The sequence of the nucleation and growth of a bubble with time at room 

temperature [124]. 

  

5.3 Analytical model for delamination with straight edges 
 

In this section, a mechanical model is developed analytically with straight edges based on the 

PECs hypothesis to explain several aspects of thin-film spalling including the nucleation, 

stable and unstable growth, size of spallation and final kinking off. Figure 5-3 shows a 

rectangular thin film substrate composite material system with a through the width b interface 

delamination of length 2RB. The delamination tip or the edge of the bubble are donated by the 

label “B”. The thickness of the film h is assumed so small that only the in-plane residual 

stresses are induced before delamination. The thickness of the substrate is so large that it has 

little global deformation such as bending, extension and twisting due to the residual stresses 

in the film. Both film and substrate materials are assumed to be homogeneous and isotropic. 

The film material has Young’s modulus E and Poisson’s ratio  . In general, a uniaxial 

uniform residual stress 0,0,0  xyyx   will be achieved when the width of the film is 

less than two times the thickness for a long film strip. Therefore, a plane stress model is 

suitable for this case. On the other hand, a biaxial uniform residual stress 

0,, 00  xyyx   is achieved when both the width and length of the film are larger 

than twenty times the thickness [5,7], and a plane strain model is suitable for this case. Since 

the development for both models are essentially the same with the Young’s modulus E in 
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plane stress model changing to be )1/( 2 EE  in plane strain model. In the following 

development, a uniaxial uniform residual stress 0,0,0  xyyx   state is used. 

 

Figure 5-3: A delamination bubble with straight edges 

 

5.3.1 Nucleation of a delamination bubble, PEC and ERR 

 

According to the PECs hypothesis, the nucleation of PEC-driven delamination is caused by 

pockets of tensile stress and shear stress, with the former being dominant [123,124], on and 

around the interface. The details are unclear and not considered in present work. Once a 

delamination is nucleated, the strain energy of the tensile stress is liberated and becomes the 

bottom surface energy of the delamination, the surface energy of the alloy substrate 

underneath the bubble, and part of the strain energy in the delaminated bubble. Note that 

“delamination bubble” is used here to differentiate it from “delamination buckle” as the 

length of the bubble 2RB at this stage is far shorter than the critical buckling length. In order 

to calculate the strain energy in the bubble, its shape is approximated to be sinusoidal and 

represented by Eq. (5.1). 
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With w representing the upward deflection and A being the amplitude. Clamped edge 

condition at 
BRx   is assumed as the thickness ratio between the film and the substrate is 

very small in the present study. The elastic bending strain energy can be readily calculated 

using classical beam theory as Eq. (5.2). 
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Where EE   for plane stress condition and )1/( 2 EE for plane strain condition. The 

elastic in-plane strain energy is calculated using Hooke’s law as  
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and where 0u  in Eq. (5.3) is the residual strain energy density in the film given by 
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As mentioned earlier, plane stress and plane strain models are suitable for uniaxial and 

biaxial stress cases respectively. The averaged axial relaxation strain in the bubble is 

calculated by using the conventional von Kármán geometric nonlinearity assumption. 
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The averaged axial relaxation stress is then given by 
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For brittle materials, the the surface energy is  

cB

R

R
cs GbRdxxGbU
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2)(                                                     (5.7) 

Where )(xGc is the interface fracture toughness which is position dependent as crack tip 

loading conditions vary with propagation. The cG  is the averaged fracture toughness over the 

delaminated surface. Note that when 1/ hA , )(xGc is constant as shown later. This is the 

case considered in the present study.  Collecting sib UUU ,, together gives 

aUUU  0                                       (5.8) 

where 00 2 bhuRU B is the strain energy only before any separation, and aU  is 
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0U is the mechanical energy containing strain energy only before separation and aU  is the 

additional increase in mechanical energy after separation with E/00    and Gh /00   . 

It can be shown that aU  is always positive and monotonically increase with respect to the 

relaxation strain R

r or the bubble amplitude A when    0

22
12// hRB . It is seen, 

therefore, that a separation bubble represents another type of PEC. Its energy comes from the 

PEC energy ‘consumed’ by the bubble as it nucleates and grows. Although there is a close 

relationship between aU  and the PEC energy, there are some differences between them. 

Here, aU  is called ‘bubble energy’. When the PEC energy is able to provide the bubble 

energy aU  for nucleation, nucleation of a separation bubble will occur. It is expected that the 

bubble energy aU  governs the growth behavior of a bubble. According to this understanding, 

the described bubble separation behavior is an effect of positive bubble energy; therefore, this 

work only considers 0aU . Obviously, when the bubble energy disappears, then 0aU , a 

bubble will stop growing. Details about aU  are given during the following development, for 

bubble nucleation, stable growth, unstable growth, spallation and kinking off. 

After nucleation, the delamination bubble bends away from the substrate. That is, it grows in 

height and produces the driving force for axial growth, i.e. the energy release rate (ERR) at 

the bubble edge. When ERR exceeds the interface fracture toughness the bubble length 

grows.  From the work [14,152], the total ERR G is given as  
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Where xBM  and xBeN  are crack tip longitudinal bending moment and effective axial force 

per unit width respectively. They can be readily calculated in terms of R

x  by using classical 

beam theory as  
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Substituting xBM  from Eq. (5.11) and xBeN from Eq. (5.12) into Eq. (5.10) gives 
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It is well known that the mixed-mode interface fracture toughness is mode mixity dependent 

which varies with different partition theories [14]. Extensive experimental tests [15-17,20-

23,30,152] have shown that the partition theory based on Euler beam or classical plate theory 

[28-29] gives very accurate predictions of interface fracture toughness for macroscopic 

mixed-mode fracture while the partition theories based on Timoshenko beam theory [28-29] 

or the first order shear deformable plate theory and 2D elasticity [14] give poor predictions. 

However, for the delamination behavior of micro-scale and nano-scale thin films it is still 

uncertain which partiton theory gives accurate predictions. This work therefore aims to 

develop three analytical models to predict the PEC-driven spallation behavior of thin films 

and to examine their respective performances. The three mechanical models are established 

based on these three partition theories: Euler beam or classical plate partition theory, 

Timoshenko beam or first-order shear-deformable plate partition theory, and 2D elasticity 

partition theory. 

After the total ERR G in Eq. (5.13) is partitioned into mode I ERR 
IG and Mode ERR II 

IIG , 

a failure criterion is used to check if the delamination grows or not. In general a growth 

criterion can be expressed in the form 

  0,,, IIcIcIII GGGGf                                     (5.14) 

Where IcG and IIcG are the respective critical mode I and II ERRs. The form of Eq. (5.14) is 

not unique but is crack interface-dependent and is determined from experimental testing for a 

given interface. Many previous studies such as the work [22,23,152] have shown that the 

following linear propagation criterion [68] agrees with experimental results very well for 

brittle interfaces: 

1
1












II
I

IcIIc

II

Ic

I G
G

GG

G

G

G
                                            (5.15) 

Where IcIIc GG  is assumed with a factor  . For the sake of comparison all the three 

partition theories mentioned above will be used in the following developments. 
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5.3.2 Mechanical model based on Euler beam   

 

5.3.2.1 Stable growth of the delamination bubble driven by PEC energy 

 

Based on Euler beam theory or classical plate theory [28,29] the mode I and II ERRs for 

brittle interfacial fracture are given as 
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where the subscript E denotes Euler beam or classical plate partition theory. By substituting 

the ERRs from Eq. (5.16) into Eq. (5.15), the propagation criterion becomes 
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Where cEE Gh 00   . Note that, consistent with the notation described above, cEG  is the 

film-substrate mode-dependent interface fracture toughness cG  based on Euler beam partition 

theory. It is seen from Eqs. (5.13) and (5.16) that when 1hA  then 1GGI
, that is, the 

delamination is pure mode I. Therefore, IccE GG   and IcE Gh 00   . The amplitude for 

crack growth is therefore obtained from Eq. (5.17) as 
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With the subscript GR denoting growth. Substituting Eq. (5.18) into Eqs. (5.5,5.6) gives the 

relaxation strain and stress   
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Note that these three quantities, i.e. 
GRE

R

xGRE

R

xGREhA )(,)(,)/(   are independent of the 

residual stress 0 . The bubble energy aU at growth can be obtained by substituting Eq. 

(5.19) into Eq. (5.9) 
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The first term in Eq. (5.21) is the sum of the bending strain energy and surface energy while 

the rest is the relaxed in-plane strain energy negligible if small BR due to the high powers of 

BR in these terms. Therefore, the first term is then regarded as the nucleation energy or the 

PEC energy required for nucleation. That is,   cEBNUEa bGRU 3  where BR is very small. It is 

seen that a third of the nucleation PEC energy is used to bend the delamination outwards after 

nucleating the interface delamination using two thirds of its energy. When the PEC energy is 

able to provide the energy  
GREaU  the delamination bubble nucleates and grows. Two 

scenarios could occur. One is a slow and stable growth when BR is smaller than the critical 

buckling characteristic length. The other is unstable growth when BR approaches to the 

critical buckling characteristic length. The stable bubble becomes an unstable buckle. The 

initiation of unstable growth is considered next. 

 

5.3.2.2 Initiation of unstable growth by buckling 

 

With the slow and stable growth, the in-plane compressive stress R

x 0
 reduces in the 

bubble with increase in its length BR . At a certain point the following buckling condition is 

met. 
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Where  is a correction factor as the buckling occurs at the existence of the amplitude A

which can be treated as an initial imperfection. Alternatively, it is treated as an effect of 

boundary conditions in the present work. That is, the range of values is 0.15.0  with the 

two limits corresponding to simply supported and clamped edge conditions, respectively. A 

good approximation can be the average of the extreme values, i.e. 75.0  which is used in 

the present study. By using Eq. (5.20) and (5.22), the initiation of unstable growth is found at 
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with the subscript UGdenoting the initiation of unstable growth and 
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Also, note that there is no unstable growth when 2E . Binomial expansion of the 

expression in the square bracket in Eq. (5.23) if 2E , Eq. (5.23) becomes 
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Substituting Eq. (5.25) into Eqs. (5.18), (5.19) and (5.20), and use of Eq. (5.24) where 

appropriate, results in Eqs. (5.26), (5.27) and (5.28), respectively. 
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The bubble energy at the initiation of unstable growth is obtained by substituting Eq. (5.25) 

into Eq. (5.21) and using Eq. (5.24). 
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5.3.2.3. Unstable growth and spallation driven by buckling and bubble energy 

 

The developments in the section are generally approximate due to neglect of the dynamic 

effect from the abrupt unstable growth and the effect of large amplitude A. Some more 

detailed discussions on this will be given later in this section and in the section of 

experimental verification. Since the bubble aU  plays a key role in the growth of the 

separation, the variation of the bubble energy at growth  
GRaU in Eq. (5.25) is considered 

first. By differentiating  
GRaU  in Eq. (5.21) with respect to  ,/ hRB its maximum occurs at 
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with the subscript MU denoting the maximum  
GREaU . Note that when 6/5E

 there is no 

solution. Binomial expansion of the expression in the square bracket in Eq. (5.30) for 

6/5E
 leads to 
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Substituting Eq. (5.31) into Eqs. (5.18), (5.19) and (5.20), and use of Eq. (5.24) where 

appropriate, results in Eqs. (5.32), (5.33) and (5.34), respectively. 
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Note that  
MUEB hR / in Eq. (5.31) is equal to  

UGEB hR /  in Eq. (5.25) with 0.1  for a 

clamped edge condition. Substituting Eq. (5.31) into Eq. (5.21) gives the bubble energy as 
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More importantly, the GREaU )( becomes to be zero at 
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Note that when 2/3E
there is no solution. Binomial expansion of the expression in the 

square bracket in Eq. (5.40) for 2/3E
 leads to 
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Substituting Eq. (5.37) into Eqs. (5.18), (5.19) and (5.20), and use of Eq. (5.24) where 

appropriate, results in Eqs. (5.38), (5.39) and (5.40), respectively. 
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At this moment it is reasonable to expect that the unstable growth stops as there is no driving 

energy. However, if the kinetic energy in the buckle is large enough to break the film at its 

edge, the buckle spalls. The subscript SP in above equations denotes spallation.  

A sketch of the variation of  
GREaU in Eq. (5.21) is now given in Figure 5-4. Note that the 

sketch of the variation of   
GREaU for a delamination with a circular edge is based on Eq. 

(5.75) and the analysis in section 5.3.3. The bubble energy  
GREaU , given by Eq. (5.21), 

increases with growth up to  
MUEBR , given by Eq. (5.30) and approximately by Eq. (5.31). 

This increase comes from the PEC. Because of the increasing nature of the bubble energy 

 
GREaU in this region, the growth is expected to be generally slow and steady, even in the 

first range of unstable growth, that is, in the range    
MUEBBUGEB RRR  . Unstable growth 

starts at  
UGEBR , given by Eq. (5.23) and approximately by Eq. (5.25). In the first region of 

unstable growth, the bubble length grows by a factor of about 333.1/1  , and the 

amplitude by a factor of about 778.1/1 2  . When the PEC is too weak to provide the 

bubble energy, the bubble will stop growing, even in the first unstable growth range. 

 

Figure 5-4: Sketch of the variation of  
GREaU with respect to  2/ hRB for a delamination with 

straight edges and a circular edge. 
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The bubble energy  
GREaU decreases with growth after  

MUEBR and reduces to zero at 

 
SPEBR , given by Eq. (5.36) and approximately by Eq. (5.37). This decreasing nature has two 

meanings. The first is that the bubble is no longer able to store any further bubble energy 

from the PEC. The second is that the bubble energy  
GREaU , cumulated in the range 

 
MUEBB RR 0 , is being transformed into kinetic energy. This is consistent with the fact 

that the bifurcation-type buckling occurs at around  
MUEBR , resulting in more ‘violent’ 

growth after  
MUEBR . In this second region of unstable growth, that is, in the range 

   
SPEBBMUEB RRR  , the bubble length grows by a factor of about 1.732, and the 

amplitude by a factor of about 3. Obviously, the bubble will stop growth at  
SPEBR as the 

bubble energy becomes zero. The minimum kinetic energy can be estimated as  
MUEaU  in 

Eq. (5.35) by assuming that the PEC boundary ends at  
MUEBR  resulting in no contribution to 

the kinetic energy. When  
GREaU is large enough to break the film, then spallation occurs, 

that is, the interface crack kinks into the film. The kink-off angle  is measured from the 

interface as shown in Figure 5-5. 

 

 

Figure 5-5: The kink-off angle of a straight-edged film spallation. 

 

The kink-off angle can be determined using 

   
  cfcEMUEBMUEa G
bh

bGRU
sin

2
2                                            (5.41) 

where cfG is the fracture toughness of the film material, which is generally different to the 

fracture toughness of the film-substrate interface cEG . Note that the left-hand side of Eq. 

(5.41) comes from Eq. (5.35) and the right-hand side is the breaking surface energy of the 
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oxide film as shown in Figure 5-5. The kink-off angle is then obtained from Eq. (5.41) as 

follows, after substituting  
MUEBR  and  

SPEBR  from Eqs. (5.31) and (5.37) respectively: 
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5.3.3 Mechanical model based on Timoshenko beam   

 

Since the development in this section follows closely with that in section 5.3.2 only several 

key equations are recorded here. Based on Timoshenko beam theory or first order shear 

deformable plate theory [28,29] the mode I ERR is given as 
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where the subscript T denotes Timoshenko beam or shear deformable plate partition theory. It 

is seen from Eq. (5.13) and (5.42) that when 1/ hA , GGI / approaches to 0.25, a mode II 

dominated mixed mode. Therefore, the total critical ERR cTG is found by using Eqs. (5.13), 

(5.15) and (5.42). 
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Thus, this gives 
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The mechanical model can be readily obtained by replacing EcEG 0, and E in the 

mechanical model based on Euler beam or classical plate partition theories using TcTG 0,   

and T , respectively. Since the critical ERR ratio  is usually larger than one, cTG  is then 

larger than cEG while T0 and T  are smaller than E0  and E , respectively.  These 

differences result in larger values for 
R

xhA ,/ and 
R

x . However, it is interesting to note that 

when T  is still large enough, the values of hRB /  at the initiation of unstable growth, the 

maximum of PEC power and final spallation are the same as those in the mechanical model 

based on Euler beam or classical plate partition theory. 
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5.3.4 Mechanical model based on 2D elastic partition theory   

 

Similarly, based on 2D elasticity partition theory [14,78,126,150] the mode I ERR is given as 
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where the subscript 2D denotes 2D elasticity partition theory. It is seen from Eq. (5.13) and 

(5.46) that when 1/ hA , GGI / approaches to 0.6227, a mixed mode.  Therefore, the total 

critical ERR DcG2 is found by using Eqs. (5.13), (5.15) and (5.46). 
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Thus, this gives 
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The mechanical model can be readily obtained by replacing EcEG 0, and 
E in the 

mechanical model based on Euler beam or classical plate partition theories using DDcG 022 ,  

and 
D2 , respectively. 

Again, DcG 2  is then larger than cEG while D02 and 
D2 are smaller than E0 and 

E , 

respectively resulting in larger values for R

xhA ,/  and R

x .  Similarly, if 
D2 is still large 

enough, the values of hRB /  at the initiation of unstable growth, the maximum of PEC power 

and final spallation are the same as those in the mechanical model based on Euler beam or 

classical plate partition theory. 

 

5.4 Analytical mechanical model for delamination with circular edges 
 

The mechanical development in this section closely follows that in section 5.3 for 

delamination with straight edges. Only the key development are recorded here. Figure 5-6 

shows circular separation bubble of radius BR . The delamination tips or the edge of the 

bubble are denoted by the label ‘B’. The model is developed in a polar coordinate system. 
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Biaxial compressive residual stress is assumed (i.e. 0  r ) so the model is effectively 

plane strain with  21  EE . 

 

Figure 5-6: A delamination bubble with circular edge. 

 

5.4.1. Nucleation of a delamination bubble, PEC and ERR 

 

In order to calculate the strain energy in the bubble, its shape is approximated to be 

axisymmetric and represented by 
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with w representing the upward deflection and A being the amplitude. Clamped edge condition 

at BRr  is assumed as the thickness ratio between the oxide film and the alloy substrate is 

very small. Using linear elastic plate theory, the bending moments in the bubble are 

calculated as [25] 
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The subscripts ,r represent the polar coordinates in the radius and circumference direction, 

respectively. ,E are Young’s modulus and Poisson’s ratio of the oxide film, respectively. 

The bending strain energy is calculated as 
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with subscript b representing bending. The four equations above gives 
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Where )1/( 2 EE and R

r  is the elastic radius relaxation strain due to the upward 

deflection by using the conventional Von-Karman geometrical nonlinearity assumption. That 

is, 
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The superscript R represents relaxation. The relaxation stresses in the oxide film are then 

easily obtained as 
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The in-plane strain energy in the film is now calculated. 
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where 00 ,   are the biaxial compressive residual stress and strain in the original non-

detached film, respectively. The sum of the bottom surface energy of the bubble and the 

surface energy of the alloy substrate underneath the bubble is calculated as 

cB

R

cs GRrdrrGU
B 2

0
)(2                                                  (5.59) 

Where )(rGc is the interface fracture toughness which is position dependent as fracture mode 

mixity at crack tip may vary due to varying loading conditions at crack tip with propagation.  

The cG is the averaged fracture toughness over the separated surface. Note that when

1/ hA , )(xGc is constant. Collecting sib UUU ,, together gives 

aUUU  0                                                         (5.60) 

with 
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0U is the mechanical energy containing strain energy only before separation and aU is the 

additional increase in mechanical energy after separation with the E/00    and 

cGh /00   . It can be shown that aU  is always positive and monotonically increase with 

respect to the relaxation strain R

r  or the bubble amplitude A when   0

22
12// hRB . 

Therefore, it is seen that the separation bubble represents a PEC arising from the tensile stress 

at the interface and its neighbouring area. Hence, aU  is termed as the PEC energy and 

)/( 2

Ba RU  , i.e. the PEC energy per unit interface area, is termed as PEC intensity.  When the 

PEC energy is big enough, nucleation of a separation bubble will occur.  

Note the similarity between the bubble energy in Eq. (5.9) for a straight-edged bubble and in 

Eq. (5.62) for a circular-edged bubble. The equations for total ERR are identical to those in 

Eqs. (5.10) to (5.13), except with the x -coordinate swapped for the r -coordinate. The linear 

failure criterion in Eq. (5.15) is used again. The following development is based on 2D 

elasticity partition theory [14,78,126]. The mechanical models based on classic plate theory 

and the first-order shear-deformable plate and the 2D elasticity partition theories can be 

readily obtained by using the same parameter replacements as for the straight-edged case, as 

described in sections 5.3. 

 

5.4.2. Stable growth of a separation bubble driven by PEC energy 

 

The separation bubble bends away from the alloy substrate after nucleation. That is, it grows 

in height and produces the driving force for radius growth, i.e. the energy release rate (ERR) 

at the bubble edge. When ERR exceeds the interface fracture toughness the radius grows.  

From the work [14,152], the total ERR G is given as  
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Where rBM and rBeN are the crack tip radial bending moment and effective radial force, 

respectively. They can be readily calculated as  
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Substituting 
rBM from Eq. (5.64) and rBeN from Eq. (5.65) into Eq. (5.63) gives 
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Eq. (5.65) results from the fact mentioned earlier that measurements of residual stress in the 

work [124] show approximately zero relaxation stress at the crack tip. It is well known that 

interface fracture toughness is mode mixity-dependent and varies with different partition 

theories. For delamination with circular edges the development of mechanical model based 

on 2D elasticity mixed mode partition theory is explained in detail, the mechanical models 

based on classic plate theory and first-order shear-deformable plate partition theory can be 

readily obtained. 

The ERR partitions based on 2D elasticity theory are therefore given by 
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Many previous studies have shown that the following linear propagation criterion generally 

agrees very well with experimental results for brittle interfaces 
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where IcIIc GG  , and IcG and IIcG  are the pure mode I and II critical ERRs. Substituting the 

partitions in Eqs. (5.67) and (5.68) into Eq. (5.69) gives the following fracture toughness. 

IcIcc GGG 








6227.03773.0
                                            (5.70) 

where 
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6227.03773.0 
                                           (5.71) 

Obviously, the fracture toughness is constant due to the constant mode mixity. Eqs. (5.64) 

and (5.67)–(5.70) together give the amplitude for crack growth as 
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where cGh 00   and the subscript GR denotes crack growth. Substituting Eq. (5.72) into 

Eqs. (5.56) and (5.57) gives the average relaxation strain and stress as 
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Note that these three quantities,  
GR

hA ,  
GR

R

r and  
GR

R

r , are independent of the biaxial 

residual stress 0 . The bubble energy aU  at crack growth can be obtained by substituting Eq. 

(5.73) into Eq. (5.62). 
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                           (5.75) 

The first term in Eq. (5.75) is the sum of the bending strain energy and surface energy while 

the rest is the relaxed in-plane strain energy, which is negligible if BR  is small. The first term 

is therefore regarded as the nucleation energy, that is,   cBNUa GRU 25.1  where BR is very 

small. It is seen that one third of the nucleation energy is used to bend the separation 

outwards after nucleating the interface separation using two thirds of its energy.  

 

5.4.3 Initiation of unstable growth by buckling 

 

During slow and stable growth, the in-plane compressive stress in the bubble R

r 0
 

reduces as its radius BR increases. At a certain point the following buckling condition is met. 
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where  is a correction factor and it can be considered an effect of boundary conditions. The 

range of  is 220.1652.0   with the two limits corresponding to simply-supported and 

clamped edge conditions respectively. A good approximation may be the average of the 

extreme values, that is, 936.0 . This value is used in the present study. By using Eqs. 

(5.74) and (5.76), the initiation of unstable growth is found at 
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with the subscript UG denoting the initiation of unstable growth and where 
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There is no unstable growth when 2 . When 2 , Eq. (5.77) becomes 

 

0

22

12












UG

B

h

R
                                  (5.79) 

and 












3

42


UGh

A
                               (5.80) 

 
0

2

2


 

UG

R

r                                (5.81) 

 



422

0

2

0

2

0

2 










h

EGE c

UG

R

r                                                (5.82) 

The bubble energy at the onset of unstable growth is obtained by substituting Eq. (5.79) into 

Eq. (5.75). 
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 5.4.4 Unstable growth and spallation driven by buckling and PEC energy 

 

Since the bubble energy aU  governs the growth behaviour of the separation, the variation of 

bubble energy at growth  
GRaU in Eq. (5.75) is considered. Its maximum occurs at 
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with the subscript MU denoting the maximum  
GRaU . When 89  there is no solution. 

When 89 , Eq. (5.84) becomes 
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Note that  
MUBR in Eq. (5.85) is equal to  

UGBR in Eq. (5.79) with 220.1  for a circular 

buckle with a clamped edge condition. Substituting Eq. (5.85) into Eq. (5.75) gives the 

bubble energy as 
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More importantly,  
GRaU becomes zero at 
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When 23 there is no solution. When 23 , Eq. (5.90) becomes 
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At this moment, the unstable growth stops as there is no driving energy; however, if the 

kinetic energy due to fast unstable growth of the buckle is large enough to break the film at 

its edge, the buckle spalls. The subscript SP in the equations above denotes spallation. 

A sketch of the variation of  
GRaU  for a delamination with a circular edge is shwon in Figure 

5-4. The  
GREaU in Figure 5-4 is equivalent to the bubble energy  

GRaU  presented here. The 

 
GRaU  given by Eq. (5.75), increases with radial growth up to  

UGBR , given by Eq. (5.84) 

and approximately by Eq. (5.85). This increase comes from the PEC. Because of the 

increasing nature of the bubble energy  
GRaU in this region, the growth is expected to be 

generally slow and steady, even in the first range of unstable growth, that is, in the range 

   
MUBBUGB RRR  . Unstable growth starts at  

UGBR , given by Eq. (5.77) and 

approximately by Eq. (5.79). In the first region of unstable growth, the radius grows by a 

factor of about 308.15.1 5.0  , and the amplitude by a factor of about   712.123 2  . 

When the PEC is too weak to provide the bubble energy, the bubble will stop growing, even 

in the first unstable growth range. 

The bubble energy  
GRaU  decreases with radial growth after  

MUBR and reduces to zero at 

 
SPBR , given by Eq. (5.90) and approximately by Eq. (5.91). This decreasing nature has two 

meanings. The first is that the bubble is no longer able to store any further bubble energy 

from the PEC. The second is that the bubble energy  
MUaU , cumulated in the range 

 
MUBB RR 0 , is being transformed into kinetic energy. This is consistent with the fact that 

the bifurcation-type buckling occurs at around  
MUBR , resulting in more ‘violent’ growth 
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after  
MUBR . In this second region of unstable growth, that is, in the range 

   
SPBBMUB RRR  , the radius grows by a factor of about 1.414, and the amplitude by a 

factor of about 2. It is seen that the cracked area at  
SPBR is twice that at  

MUBR . Obviously, 

the bubble will stop growth at  
SPBR as the bubble energy becomes zero. The minimum 

kinetic energy can be estimated as  
MUaU in Eq. (5.89) by assuming that the PEC boundary 

ends at  
MUBR  resulting in no contribution to the kinetic energy. When  

MUaU is large 

enough to break the oxide film, then spallation occurs, that is, the interface crack kinks into 

the oxide film. The kink-off angle   is measured from the interface as shown in Figure 5-7. 

 

Figure 5-7: The kink-off angle of a spalled oxide film. 

The kink-off angle can be determined using 
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where cfG is the fracture toughness of the oxide film. The kink-off angle is then given by 
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The mechanical models based on classic plate theory and first-order shear-deformable plate 

partition theory can be readily obtained by replacing cG , 0  and   in the mechanical 

model based on classical plate partition theory with and and cEG , E0  and E2 and cTG , T0  

and T , respectively. 

Some salient points are now summarized. When using classical plate partition theory and 

assuming 1hA , the whole delamination process (i.e. the nucleation, stable and unstable 
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growth, and final spallation) for both straight-edged and circular-edged delaminations is a 

pure mode I fracture. Note that the bubble energy intensity decreases during delamination 

growth as expected; however, it is interesting to note that at the start of unstable growth and 

at the maximum bubble energy radius, the bubble energy intensities for straight-edged 

delamination are larger than those for a circular-edged delamination. This suggests that 

circular spallation occurs more easily than straight-edged spallation, as usually expected. 

When first-order shear-deformable plate or 2D elasticity partition theory is used, the whole 

delamination process is a mixed-mode fracture.  

In the next section, predictions from the developed model are compared against experimental 

observations from the work [123] and [124]. 

 

5.5 Experimental verifications  
 

In this section the mechanical models developed in section 5.3 and 5.4 are verified against the 

experimental results from the study [123,124] on the spalling failure of  - alumina films 

grown by oxidation in the room temperature. The verification of the mechanical models will 

be performed based on classical plate mixed fracture mode partition theory or Euler beam 

partition theory, the first order shear deformable plate or Timoshenko beam partition theory 

and 2D elasticity mixed fracture mode partition theory.  

It is necessary to introduce the experimental works done in [123,124]. In the work [123,124], 

 -Al2O3 oxide films of different thicknesses were firstly formed on the surface of Fe-Cr-Al 

heat-resisting alloy substrates of different thickness at C1200 with different heating hours. 

Then, the film substrate material systems were cooled down to room temperature with 

different cooling rates. There is no spallation failure was observed during cooling at any 

cooling rates when the compressive residual stress gradually increases due to thermal 

expansion mismatch. For some cooling rates, it was observed that circular separations of 

films nucleate, grow in height and propagate in radius at room temperature, and the 

compressive residual stress is far below the critical buckling stress, and after a period of slow 

and stable growth, some separations grow abruptly and spall off.  

Figure 5-8 shows the sequence of optical images illustrating the nucleation, growth and 

spallation of one typical separation from a specimen where the thickness of the oxide scale is 

about um8 and the residual stress is 4.3 GPa. Figure 5-8 (a)-(e) show the nucleation, stable 
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growth stages which took 120 minutes. In Figure 5-8 (a)-(d) the radius of the nearly circular 

separation is far below the critical value for buckling. Here, it is conveniently called 

separation bubble as its radius is far too small to cause buckling, particular in Figure 5-8 (a)-

(c). The abrupt growth starts at Figure 5-8 (e) and spallation failure occurs at Figure 5-8 (f) 

only taking just 3 minutes. The following verifications aim to verify the mechanical models 

developed in section 5.3 and 5.4 to explain some aspects of the above observations.   

 

Figure 5-8: Sequence of slow growth of a separation bubble and spalling of um8  oxide [124]. 

 

5.5.1 Validation of specimen with similar residual stress and varied layer thickness  

 

5.5.1.1 Unstable growth and spalling 

 

In the following verifications, the material properties of the oxide film are Young’s modulus 

E = 400 GPa and the Poisson’s ratio 25.0  [123,124]. The interface mode I critical ERR is

mNGIc /6.8 , IcIIc GG  with 5 and the critical mode I ERR of the oxide film 

mNG f /20 [123,124].  

The experimental verification starts to use Eq. (5.79) to predict the initiation of unstable 

growth, and to use (5.91) to predict the size of spallation. The tests done by Tolpygo and 

Clarke [124] contains specimens with the oxide under a similar residual stress (

GPa5.43.40  ) but with a different oxide thickness. In Figure 5-9, three sets of 
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validation results are presented: (a) Data from four different bubbles, successively measured 

on the same specimen ( μm 9.4h ); (b) Data from two bubbles on another specimen (

μm 2.6h ); (c) Data from a single bubble of a thick oxide ( μm 0.8h ). The solid dots in 

Figure 5-9 (a), (b) and (c) represent series of measurements of the size of individual 

separations as a function of time at room temperature. Time equal to zero corresponds to the 

moment when the specimen was placed under the microscope and its temperature was close 

to ambient. Figure 5-9 (a) shows four different separations successively monitored using 

optical microscopy on a single specimen after isothermal oxidation for 25 h at 1200°C and 

cooling at 20°C/min. All of them were growing at a constant compressive stress, 

4.046.40  GPa (measured in the adherent oxide far away from separations). The whole 

process contains nucleation, stable and unstable growth, and final spallation. Although the 

nucleation stage was not recorded due to the limitation of monitoring technique, e.g. the 

difficulty to spot a bubble on time at nucleation, the stable growth with a radius far smaller 

than the critical buckling value is observed. At a certain critical radius, again far smaller than 

the critical buckling value, the unstable growth abruptly occurs and final spallation takes 

place. It is very impressive to observe that all the four separations start unstable growth with 

very similar radius, and spall off with very similar radius as well. The two thicker oxides 

were produced by 50-h and 100-h oxidation and are shown in Figure 5-9 (b) and (c), 

respectively. The growth behaviours of two separation bubbles are shown Figure 5-9 (b). 

Again, the two separations start unstable growth with very similar radius, and spall off with 

very similar radius as well. Figure 5-9 (c) shows the growth behaviour of one separation 

bubble. The two horizontal lines (one dashed line and one solid line) in Figure 5-9 (a) (b) and 

(c) represent the predictions from Eq. (5.79) and (5.91), respectively. It is very impressive to 

see that the predictions from Eq. (5.79) and (5.91) have excellent agreements with the test 

results.  

The values of   are 9.2728, 11.6808 and 14.1388 for Figure 5-9 (a) (b) and (c), respectively. 

They are much larger than 8761.0936.0 22   in Eq. (5.77). Thus, Eq. (5.77) and Eq. 

(5.79) predict very close results for the initiation of unstable growth. Also, the  values are 

much larger than 1.5 as required by in Eq. (5.91). Eq. (5.90) and Eq. (5.91) predict very close 

results for the size of spallation. 
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Figure 5-9: Separation bubble radius versus time at room temperature for three different 

samples. 

 

5.5.1.2 Prediction using different mixed mode partition  

 

It is worth to note that both Eq. (5.79) and (5.91) are common for the three mechanical 

models based on classical plate, the first order shear deformable plate and 2D elasticity mixed 

fracture mode partition theories when the values of parameter   meet certain requirements 

of Eq. (5.79) and (5.91). To examine the accuracy of Eq. (5.79) and (5.91), Table 5-1 shows 

the prediction results from Eq. (5.77) and Eq. (5.90) in comparison with those from Eq. 

(5.79) and (5.91). It is seen that they agree with each other very well. The SP, 2D and CP 

represent shear deformable plate, 2D elasticity and classical mechanical model, respectively. 

The ratio 5/  IcIIc GG  is used in the calculation of SP, 2D and CP predictions. To 

examine the accuracy of Eq. (5.79) and (5.91) further, an extended study on Figure 5-9 (a), 
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(b) and (c) is also carried out by varying the critical mode I ERR ICG of the oxide film while 

keeping all other parameters unchanged. Figure 5-10 (a)-(c) show the variation of  
UGBR  

with respect to interface critical mode I ERR IcG for the specimens in Figure 5-9 (a), (b) and 

(c), respectively, using all the three mechanical models. The values of  
UGBR in all the three 

models converge to the value in Eq. (5.79) with decreases of the mode I ERR IcG . At the 

value mNGIc /6.8 in the work [123,124], the predictions of Eq. (5.79) and Eq. (5.77) are 

very close to each other also as shown in Table 5-1. 

Figure 5-11 shows a similar study on the variation of  
SPBR with respect to the interface 

critical mode I ERR IcG . Again, the values of  
SPBR  in all the three models converge to the 

value in Eq. (5.91) with decreases of the mode I ERR IcG . At the value mNGIc /6.8 in the 

work [123,124], the predictions of Eq. (5.91) and Eq. (5.90) are very close to each other also 

as shown in Table 5-1. Again, the ratio 5/  IcIIc GG  is used in the calculation of SP and 

2D predictions in Figure 5-10 to Figure 5-11.  

It is desirable to give some explanations why the three mechanical models give nearly the 

same predictions on the initiation of unstable growth and the size of spallation. The three 

mechanical models are all developed based on the assumption of small amplitude to thickness 

ratio, i.e. 1/ hA . One direct consequence of the assumption is that the crack tip radial 

force rBeN in Eq. (5.12) has no contribution to the total ERR in Eq. (5.13). The total ERR is 

solely from the crack tip bending moment rBM in Eq. (5.11). This results in a constant 

fracture mode mixity in the whole process of spallation. The first order shear deformable 

plate model predicts a mixed mode fracture, i.e. 25.0/ GGI
. The 2D elasticity model also 

predicts a mixed mode fracture, i.e. 6227.0/ GGI
. The classical plate model predicts a 

pure mode I fracture, i.e. 0.1/ GGI . The mode mixty has no much effect on the predictions 

on the initiation and the size of spallation when IcG is small. That is, all three models give 

nearly the same prediction as shown in Figure 5-10 to Figure 5-11 and Table 5-1.  

The mode mixity does, however, affect the amplitude in Eq. (5.72), of a delamination bubble, 

the relaxation strain in Eq. (5.73) and relaxation stress in Eq. (5.74). These three models 

therefore give different predictions of these quantities. Due to lack of accurate measurements 

of these quantities, no comparisons could be made in the present work. Comparison can, 
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however, be made between measurements of the kink-off angle and predictions from Eq. 

(5.96). Values of  tanh  are also recorded in Table 5-1. The critical mode I ERR of the 

oxide film is mN 20cfG . For Figure 5-9 (a),   μm 10.9tan h  was measured 

approximately from Tolpygo and Clarke’s work [124] Fig. 3, which is a similar case. No test 

value for the Figure 5-9 (b) case is found in the work [123,124]. For Figure 5-9 (c), 

  μm 46.13tan h was measured approximately from Figure 5-2 (f) in this work (reprinted 

from Tolpygo and Clarke, 2000 [124]), which is a similar case. The averages of the 

measurements of the four diameters at 0°, 90° and ±45° were used to obtain the test values. It 

is seen that the 2D elasticity model gives good predictions but the other two models do not. 

It can be concluded at this point that the 2D elasticity model predicts the whole delamination 

process very well, including the initiation of unstable growth, size of spallation and kink-off 

angle. The other two models, however, only give good predictions of the initiation of 

unstable growth and the size of spallation. 

As mentioned earlier, extensive fracture testing (Hashemi et al. [15]; Kinloch et al. [16]; 

Charalambides et al. [17]; Davidson et al. [19], [20]; Harvey and Wang [22], [23]); Conroy et 

al. [30] has shown that the partition theory based on Euler beam or classical plate theory [26-

29] gives very accurate predictions of interface fracture toughness for macroscopic mixed-

mode fracture while the partition theories based on Timoshenko beam theory or the first-

order shear-deformable plate theory [26-29] and 2D elasticity, Hutchinson and Suo [14] give 

poor predictions. The very latest studies (Wang et al. [31],[126]), however, show that the 2D 

elasticity partition theory gives accurate predictions for the delamination behavior of micro-

scale and nano-scale thin films. This may be expected since the partition theory based on 

Euler beam or classical plate theory is a ‘global’ partition theory (that is, cracks develop over 

finite-size length scales) which governs macroscopic fracture whereas the 2D elasticity 

partition theory is a ‘local’ partition theory (that is, infinitesimal crack growth is assumed) 

which governs micro- or nano-scale fracture. 

However, it is worth to note the following comments. All the three mechanical models are 

developed based on the assumption of small amplitude to thickness ratio, i.e. 1/ hA . For 

Figure 5-9 (a), (b) and (c), the respective ratios at the initiation of unstable growth are 

2810.0,3093.0,3470.0)/( UGThA , 1610.0,1772.0,1988.0)/( 2 DUGhA  and 

1124.0,1237.0,1388.0)/( UGEhA  respectively in the three mechanical models by using Eq. 
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(5.26). They are very small indeed in the classical plate model, but are not small in the shear 

deformable plate and 2D elasticity models. The respective ratios at spallation are

9623.0,059.1,188.1)/( SPThA , 5513.0,6066.0,6808.0)/( 2 DSPhA   and

3849.0,4235.0,4753.0)/( SPEhA , respectively. Obviously, they are not small for all the 

three models. Since the model predicts the spallation behaviour very well it must capture 

some key physics in the mechanical process. As mentioned earlier, one direct consequence of 

the assumption, i.e. 1/ hA , is that the crack tip radial force rBeN  in Eq. (5.12) has no 

contribution to the total ERR in Eq. (5.13). The measurements of residual stress in some 

stationary buckles (see Figs. 8 and 9 in the work [124]) do show 0rBeN  at crack tip for 

large values of hA/ . The total ERR is solely from the crack tip bending moment rBM in Eq. 

(5.11). Therefore, the assumption i.e. 1/ hA  is no longer required. The only restriction is 

that 1~/hA , i.e. the usual condition of the Von-Karman geometrical nonlinearity assumption 

used in Eq. (5.56). The above values of hA/  are obviously within the limitation.  

Table 5-1: Comparison of the present mechanical model with test data [124] for the initiation 

of unstable growth, the size of spallation and kinking off. 

Fig.5-10 

   μm 
UGBR      μm 

SPBR     μm tan h  

Eq. (5.77) Eq. 

(5.79) 

Test 
data 

 Eq. (5.90) Eq. 

(5.91) 

Test 
data 

 Eq. (5.96) Test 
data SP 2D CP  TB 2D CP  SP 2D CP 

(a) 41.6 41.2 41.0 40.7 40.0  78.3 76.9 76.4 75.3 75.0  15.0 7.5 3.8 9.1 

(b) 52.4 52.0 51.9 51.5 47.5  98.3 97.0 96.5 95.4 97.5  18.2 9.1 4.5 - 

(c) 68.5 68.1 67.9 67.6 67.5  128.2 126.8 126.2 125.0 122.5  23.9 12.0 6.1 13.5 
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Figure 5-10: Variation of the unstable growth bubble radius  
UGBR with respect to IcG  

according to various partition theories. 
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Figure 5-11: Variation of the spall radius  
SPBR  with respect to IcG according to various 

partition theories. 

 

5.5.2 Validation of specimen with varied layer thickness and residual stress 

 

More verifications are now performed on samples having oxide films of various thicknesses 

and residual stresses. The results are shown in Figure 5-12. Again, all the dots represent the 

measurements on the oxides with h=0.8–8.0 m  (after oxidation for 0.5–100 h) and with 

residual compression in the range 4–5 GPa. The solid line is from Eq. (5.91). Again, the 

present mechanical models predict the experimental results very well. (Since lack of 

experimental results, no verification is carried out on spallation with straight edges.) 
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Figure 5-12: The spallation parameter 2/1

0)( BR  as a function of the oxide thickness with test 

data [124] 

 

5.5.3 Validation of specimen with similar layer thickness and varied residual stress 

 

To further test the capability of Eq. (5.91) for prediction of spallation size, the extensive test 

data in the work [124] is used here as the second group of experimental verification. All 

measurements of the spall size after 25-h oxidation at 1200°C (h=4.9 mm) are gathered in 

Figure 5-13. A total of 23 specimens of different substrate thicknesses were oxidized in 

identical conditions and then cooled at different rates (5–200°C/ min). The spall size, RB, was 

measured on 50–60 circular spalls on each specimen, and the residual stress was probed in 

the adherent oxide remote from the spalls. The spall radius plotted as a function of residual 

stress in the oxide can indeed be described very well by Eq. (5.91) shown by the top solid 

line. The middle solid line is from Eq. (5.85) for the position of maximum PEC energy. The 

bottom solid line is from Eq. (5.79) for the initiation of unstable growth. The minimum size 

at which bubbles were first discerned is indicated by the bottom of the shaded bulk arrow. 

This region can be regarded as the nucleation stage with the PEC energy IcBGR25.1  in Eq. 

(5.79). It is seen that a third of the nucleation PEC energy is used to bend the separation 

outwards after nucleating the interface separation using two thirds of its energy. Stable 

growth occurs below this line and is solely driven by PEC energy in Eq. (5.79). If the PEC 

energy is not big enough as required by Eq. (5.79), the bubble will stop growth resulting in a 

stationary bubble. The region between the bottom and middle lines is regarded as the first 
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stage unstable growth driven by both PEC energy and buckling effect. Although the growth 

rate is much faster than that of stable growth it is still too slow to build up any kinetic energy. 

However, the bubble now changes to be a buckle due to the buckling effect. If the PEC 

energy is not big enough as required by Eq. (5.83), the buckle will stop growth resulting in a 

stationary buckle. The dash line in this region shows the largest stationary buckles observed. 

The region between the middle solid and top solid lines is regarded as the second stage 

unstable growth. The PEC energy reaches its maximum value in Eq. (5.89) at the middle 

solid line and contains solely static mechanical energy including strain energy and surface 

energy. Above this line, the tensile stress at the crack tip and its neighbouring area is solely 

produced by the crack and no tensile stress residual stress produced by the non-converged 

plastic relaxation effect. Therefore, the total energy in the buckle will remains constant 

afterwards including the PEC energy in Eq. (5.79) and kinetic energy due to the much more 

violent growth. At the size of spallation in Eq. (5.90) or (5.91), the PEC energy in Eq. (5.79) 

becomes zero and the crack propagation along the interface is not possible. If the kinetic 

energy of the same amount of that in Eq. (5.89) in the spall is not big enough to break the 

oxide film, a stationary spall is produced. If it is big enough to break the oxide film, that is, 

the Eq. (5.95) is satisfied, spallation or kinking off takes place.  

 

Figure 5-13: Bubble growth behaviour and spallation radius as a function of residual stress in 

the oxide for the same oxide thickness ( μm 9.4h ). 
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 5.6 Conclusions 
 

PECs can be formed by pockets of tensile stress and shear stress on and around the interface 

between a thin film and a thick substrate, which can be caused by a number of different 

processes, including thermal effects and chemical effects. PECs can cause the interface 

spallation failure of thin films. Three mechanical models have been developed to predict 

several aspects of the spallation failure of elastic brittle thin films by using partition theories 

for mixed-mode fracture based on classical plate theory, first-order shear-deformable plate 

theory and full 2D elasticity. Based on experimental results from Tolpygo and Clarke 

[123,124] for circular-edged delaminations, the three models all give accurate predictions of 

the initiation of unstable growth of separation bubbles and the size of spallation. The 2D 

elasticity model also gives accurate predictions of the final kink-off angle but the classical 

plate and first-order shear-deformable plate models are unable to. The nucleation and stable 

growth of a separation bubble are solely driven by the bubble energy but unstable growth is 

driven by both bubble energy and buckling. Final kinking off is controlled by the toughness 

of the interface and the film and the maximum bubble energy. 

The present mechanical models reveal a new failure mechanism of thin films under 

compressive residual stress and will be particularly useful to study the spallation failure of 

thermal barrier coating material systems. 
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 Adhesion energy of multilayer graphene 

membranes 
 

6.1 Introduction 
 

The buckling driven delamination of bilayer laminated composite beam with macroscopic 

layer thickness was studied in chapter 3 by using the experimental data from ref. [32], the 

results shows that the Euler beam mixed mode partition theory gives more accurate 

predictions than the 2D elasticity mixed mode partition theory does. In chapter 5, the 

spallation failure of α-alumina films with microscopic layer thickness was investigated by 

using classical plate, the first order shear deformable plate and 2D elasticity partition 

theories. All three partition theories predict the interface crack nucleation, stable and unstable 

growth very well; however, only the 2D elasticity model predicts final kinking off accurately. 

It is understand that the classical plate mixed mode partition theory is insensitive to the crack 

growth size since it is a ‘global partition theory’; in contrast, the 2D elasticity partition theory 

is sensitive to the crack growth size and suitable for microscopic thickness layer. To confirm 

this, the adhesion energy of multilayer graphene membranes with thickness in nanoscale is 

discussed in this chapter.   

The graphene membranes are often made of multilayered graphenes with intrinsically high 

Young's modulus and strength. To determine the adhesion energy is an essential task to 

define the interface mechanical properties between multilayer graphene membranes and 

substrates. The adhesion energy of mono- and multi-layered graphene membranes on a 

silicon oxide substrate was measured by Koenig et al. [159] using a pressurised blister test 

experimentally. It was observed there is a large decrease of adhesion energy from mono-

layered blisters to multi-layered. The average adhesion energy of a monolayer graphene 

blister is reported as 245.0 mJG  whereas the multi-layered specimens have an average 

adhesion energy of 
231.0 mJG  . The other experimental work on the measurement of 

adhesion energy of multi-layered graphene membranes was done by Zong et al. [160] using 

point loading. The adhesion energy of the point loaded graphene blister of five layers was 

reported as being 
2151.0 mJG  .  However, fracture mode mixity and the sliding effect are 

not considered in the current mechanical models [159-165] in the determination of the 
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adhesion energy for multi-layered graphene membranes using the blister test. This has caused 

confusion in interpreting the adhesion energy.   

In this chapter, the analytical models are developed to calculate the adhesion toughness by 

using the classical plate, shear deformable plate partition and 2D elasticity partition theories. 

The developed theories are applied to blister tests of pressure loading and point loading. The 

results show that the determination of adhesion toughness of multi-layered graphene 

membranes is governed by 2D elasticity partition theory with considering sliding effect and 

the analytical model gives excellent predictions for adhesion energy between multilayer 

graphene membranes and substrates.     

 

6.2 Mixed mode partition theories for delamination of thin-layer materials  
 

Figure 6-1 (a) shows a simplified thin-layer-substrate composite material system with an 

interface crack. The crack is assumed to be one-dimensional with either a straight edge or a 

circular edge, the crack propagates perpendicularly to the edge and driven by mode I and II 

ERRs. Figure 6-1 (b) shows the crack tip forces in the thin layer including bending moment 

)/( mNmMB
, in-plane force )/( mNNB

 and shear force )/( mNPB
. The material properties 

of the film are the Young’s modulus E  and Poisson ratio  .  

The recent significant progress on mixed fracture mode partitions by the C. Harvey and S. 

Wang reveals that mode I and II ERRs at brittle interface can be written systematically in the 

following form  
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Where Ic and IIc  are two constants, and  ii  ,  and  ii  ,  (with 4,2i ) represent the two 

sets of orthogonal pure modes which vary from different partition theories. Note that these 

two set of pure modes coincide each other for non-rigid interface fracture [77]. In the present 

study, the interface is assumed brittle and rigid, the substrate is assumed infinite stiff and top 

layer produces the energy release rate. Therefore, the h instead of h1 is used to represent the 

top layer thickness in the work. 
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Figure 6-1: A simplified thin layered material system and its loading conditions. (a) General 

description. (b) Details of the crack influence region Δa 

 

6.2.1 Euler beam partition/classical plate partition theory 

 

When Euler beam/classical plate partition theory is used, two sets of orthogonal pure modes 

 ii  ,  and  ii  ,  (with 4,2i ) exist.  According to [152] the Eqs. (6.1) and (6.2) become: 
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                                                        (6.4) 

Where the subscript E  represents Euler beam partition theory. EE   for plane stress with a 

straight edge crack and )1/( 2 EE for plane strain with a straight edge crack or for crack 

with a circular edge, h is the thin layer thickness. The effective crack tip through thickness 

shear force BP has no effect as expected. 
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6.2.2 Timoshenko beam/the first order shear deformable plate partition theory 

 

When Timoshenko beam/the first order shear deformable plate partition theory is used, two 

sets of orthogonal pure modes  ii  ,  and  ii  ,  (with 4,2i ) coincide with each other. 

According to [152] the Eqs. (6.1) and (6.2) become: 
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with 

  hET //3
2/1

4                                                (6.7) 

 

The subscript T represents Timoshenko beam/the first order shear deformable plate partition 

theory, and the shear correction factor is 6/5 and through thickness shear modulus is 

    12/E . Note that the effective crack tip through thickness shear force 
BP  only 

produces mode I ERR. 

 

6.2.3 2D elasticity partition theory 

 

Within the context of 2D elasticity, two sets of orthogonal pure modes  ii  ,  and  ii  ,  

(with 4,2i ) exist at rigid bilayer interface, which are also crack extension size dependent 

[150,151]. When the material elastic mismatch is neglected, the two sets of pure mode 

coincide with each other. This is the case studied in the present work. Mode I and II ERRs 

take the following form [152]. 
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where the subscript 2D represents 2D elasticity partition theory. D24 and D24  are 

determined in what follows. From the reference [78], D24  is generally expressed as 
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The detailed expressions and meanings of the involved quantities are given in the work [78].  

The present study assumes an infinitely thick substrate and very thin film. In this case, 

0/1 2  DP  and 6198.0121/75/ 2121  DD   from the work [166] which is very close 

to 6059.0/ 2121  DD   from the work [14].  In this study 6059.0/ 2121  DD   is used. 
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Therefore, Eqs (6.10-6.12) give 

h

0063.1
2D-4                                   (6.13) 

From the reference [73], D24  is generally expressed as 
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Where 
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is of finite non-zero value while 0
2D-


P
G . Therefore,  

 D24                    (6.16) 

Again, note that the effective crack tip through thickness shear force BP only produces mode I 

ERR. 

Now, complete analytical formulas are obtained for mode I and II ERRs of thin layer 

delamination under general loading conditions based on Euler beam/classical plate theory, 

Timoshenko beam/first order shear deformable plate theory and 2D elasticity theory. In the 

following sections, some practical cases are considered from some available experimental 

assessments. 
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6.3 Mixed mode partition for circular blister delamination under pressure 

loading at the membrane limit 
 

Circular blister delamination test under pressure loading is often used to determine the 

interface toughness between a thin layer material and a substrate. Total interface ERR and its 

partitions are considered in this section and the delamination is assumed to be on the 

interface. 

Figure 6-2 shows a delamination test of a circular blister of radius BR  under pressure load p. 

Also from the work [166,167], at the membrane limit, the effective crack tip moment and 

force as follows.  
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The parameter )( p is given as 
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Which comes from the relationship 
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The deflection   at the centre of the blister is 
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The factor 0.9635 in Eq. (6.23) is introduced in the present work to achieve the bench mark 

value of 645.0)3/1( f  in the work [167] as 
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When BP  is neglected, the total ERR is 
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Where J  indicates Jensen’s work, [166,167]. The parameter   is 
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Partitions of the total ERR are considered next. 

 

 

Figure 6-2: Sketch of circular blister test for interface fracture toughness determination [166].  

 

6.3.1 Using Euler beam/classical plate partition theory 

 

The partitions are obtained by using Eqs. (6.3), (6.4), (6.17) and (6.18). 
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The mode mixity ratio IIEIE GG / is then 

20674.0865.0272.1

636.0922.0
/









 IIEIEE GG                                    (6.28) 

It is independent of the blister radius BR . Consequently, the interface fracture toughness is 

also independent of the blister radius BR , which can be determined from Eq. (6.24) by using 

measured critical values of applied pressure p or the centre deflection  in experiments. The 
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mode mixity 
IIEIE GG /  varies from 0.725 at 0  to 0.351 5.0 . It is a mode II dominated 

fracture. The total ERR EG is the same as JG in Eq. (6.24).  

  

6.3.2 Using Timoshenko beam/shear deformable plate partition theory  

 

The partitions are obtained using Eqs. (6.5), (6.6), (6.17), (6.18) and (6.20). 
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The mode mixity ratio 
IITIT GG /  is given as 
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and the ratio of ERR contribution from the through thickness shearing effect TSG  to JG , i.e. 
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The parameter in Eq. (6.33) can have the following alternative expressions by using Eq. 

(6.22).  
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Where 
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In Eq. (6.35) shear correction factor is 6/5 . 

The mode mixity decreases with the increases in the blister radius 
BR and approaches to zero 

when BR . Consequently, the interface fracture toughness also decreases with the 

increases in the blister radius
BR . When 

BR approaches to zero, the mode mixity 
IITIT GG /

varies between 0.0509 at 0  and 0.0200 at 5.0 . It is mode II dominated fracture. 

Moreover, the total ERR 
TG is larger in general than JG in Eq. (6.24). It is mode II dominated 

fracture. Moreover, the total ERR 
TG is larger in general than JG in Eq. (6.24) due to the 

through thickness shear force contribution. However, the numerical simulation in the latest 

work [168] for a single layered thin layer material in the membrane limit agree well the JG in 

Eq. (6.24). This suggests that the through thickness shear force contribution disappears for a 

single layered thin layer materials at the membrane limit. Therefore, in the case of monolayer 

graphene membranes, there is no ERR contribution from the shear force. However, in the 

case of  multi-layer graphene membranes, the interlayer sliding effect will activate the 

through thickness force leading to ERR contributions. To account for this effect,  T  in Eqs. 

(6.29)-(6.32) is replaced by 
T  defined as 

  TT

n

T nSen  )(1)( 1                           (6.36)  

Where  the assumed )(nS  is termed as  sliding factor with n representing the number of 

graphene layers.  Obviously, )(nS satisfies that 0)1( S and 1)( S . That is, 0)1( T  for 

monolayer graphene membranes with zero shear force effect  and TT  )(  for membranes 

of large number of graphene layers with full shear force effect. The total ERR can then be 

written in terms of the sliding component STG  and JG , the contribution from the crack tip 

bending moment BM in Eq. (6.17) and in-plane force BN  in Eq. (6.18) as 

 TJSTJT GGGG  1                                                 (6.37) 
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6.3.3 Using 2D elasticity partition theory 

 

For the membrane limit, the ERR partitions are obtained by using Eqs. (6.8), (6.9), (6.17), 

(6.18) and (6.19). 
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The mode mixity ratio 
DIIDI GG 22 / is given as 
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and the ratio of ERR contribution from the through thickness shear effect DSG2  to JG , i.e. 
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The parameter in Eq. (6.40) can have the following alternative expressions by using Eq. 

(6.22).  
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where 
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Again, the mode mixity decreases with the increases in the blister radius 
BR and approaches to 

zero when BR . Consequently, the interface fracture toughness also decreases with the 

increases in the blister radius
BR . When 

BR  approaches to zero, the mode mixity 
DIIDI GG 22 /

varies between 0.528 at 0  and 0.084 at 5.0 . It is mode II dominated fracture. Again, 

the total ERR 
DG2

is larger in general than JG in Eq. (6.24) due to the through thickness shear 

force contribution. However, the numerical simulation in the work [168] agree well the JG in 

Eq. (6.24) for a single layered thin layer material in the membrane limit. This suggests that 

the through thickness shear force contribution disappears at the membrane limit for 

monolayer graphene membranes; however, it should be taken into account for multi-layered 

graphene membranes. To account for the sliding factor )(nS , D2  in Eqs. (6.38)-(6.41) is 

replaced by 
D2  similar as defined (6.36). 

 

6.4 Adhesion energy of multilayer graphene membranes using circular blister  

test under pressure loading 
 

Figure 6-2 (a) schematically shows a circular blister test to determine the adhesion toughness 

of mono- and multi-layered graphene membranes under pressure loading [159]. The thickness 

of mono- and multi-layered graphene membranes is in the nanometre range. It is expected 

that the 2D elasticity partition theory is to provide more accurate results in the prediction of 

interface toughness. The 2D elasticity partition theory is considered at first, then the studies 

of using Euler beam/the classic plate partition theory and Timoshenko beam/the first order 

shear deformable plate partition theory are presented in the next for comparison. The results 

are compared with test data from ref. [159].       

From previous section, at the membrane limit, the effective bending moment and crack tip 

forces are 
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Where the h in (6.17) and (6.18) is expressed as nt in (6.45) and (6.46). 
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The ratio JDSD GG22   is 
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The work [159] finds the value of mNEt 347  with TPaE 1 . Taking Poisson ratio   to 

be 0.16 as in the work [159],   3099.016.0  ,   6907.016.0 f ,   4502.016.0   and 

  891.116.0  . Then, some essential equations above become  
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  JJDDS GGG   470.15577.022                                         (6.49)  

Using 2D elasticity partition theory: 

JDII GG 6988.02                     (6.50)  
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Using Euler beam partition theory: 
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IIE

IE
E

G

G
                          (6.53) 

Using Timoshenko beam partition theory: 
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                           (6.55) 

Note that in the work [159] pGJ 655.0 , which is very close to Eq. (6.48) calculated 

above. In the following, the pressure p , the centre deflection  and the radius BR of the 

multilayer graphene membrane blisters in work [159] are measured from the Figure S4, S2 

and S3 in work [159], respectively. The results are recorded in Table 6-1 to Table 6-5 for the 

mono-, two-, three-, four- and five-layer graphene membrane blisters respectively. To keep 
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consistency with the work [159], results are calculated using the pressure p and centre 

deflection  meaning that pGJ 652.0  and 

4/1

2 074.2 









nEt

p
D


  are used.  

The average adhesion energies (G) using 2D elasticity partition are 0,424, 0.362, 0.389, 0.348 

and 0.359 J/m^2 for the mono-, two-, three-, four- and five-layer graphene membrane 

blisters, respectively, which correspond to the following mode mixities 

0.786 and 0.792 ,0.794 ,0.714 ,431.0222  DIIDID GG . The large increase of the mode 

mixity occurs between monolayer and two-layer graphene membrane blisters, which results 

in a big drop in adhesion energies. The adhesion energies have no significant changes 

afterwards as there are no significant mode mixity changes. An overall average adhesion 

energy of multilayer graphene membrane blisters using 2D elasticity partition is 

2/364.0 mJG  with 764.0222  DIIDID GG . These results are shown in the Table 6-1 to 

Table 6-6 below.  

For single layer graphene membranes there is no difference between using 2D elasticity, 

Euler beam and Timoshenko beam partition theories to calculate the interface adhesion 

energy except of mode I to mode II ratio. Euler partition theory predicts the constant ratio 

0.581 of mode I to mode II for single and multi-layered graphene membrane without taking 

the sliding effect into account. Timoshenko partition theory predicts same ratio of mode I to 

mode II for single layered graphene membrane but different ratio for multi-layered graphene 

membrane with accounting the sliding effect. However, Timoshenko partition theory shows a 

mode II dominant mixed mode partition which has no good correlation with test data. These 

results are presented in Table 6-7 to Table 6-18. 

The average adhesion energy of a monolayer graphene blister from the pressure loading 

blister test data [159] is reported as 
245.0 mJG  whereas the multi-layered specimens have 

an average adhesion energy of 231.0 mJG  . An overall average adhesion energy of 

multilayer graphene membrane blisters using 2D elasticity partition is 2/364.0 mJG  . It 

can be concluded that the 2D elasticity partition theory shows the best agreement with the 

data from the experimental results. 

Finally, the mode I and mode II critical ERRs can be estimated using the linear failure 

criterion and the results in Table 6-6 based on 2D elasticity partition method. From the 

studies conducted in chapter 2 section 2.4 and chapter 3 it is evident that the linear failure 
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criterion provides the accurate results for the thin layer brittle interface delamination. The 

critical mode I and mode II ERRs are obtained as follows.   

  2
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1 /683.0 mJ
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                                (6.56) 

and  
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                                      (6.57) 

In the next section, the circular blister delamination under point loading is studied to show the 

validity of using 2D elasticity partition theory und linear failure criterion to predict the 

adhesion energy of layered graphene membranes. 

 

6.5 Adhesion energy of multilayer graphene membranes using circular blister  

test under point loading 
 

Figure 6-2 (b) shows a sketch of delamination test of a circular blister of radius BR under 

point load P. At small deflection, within the linear range, from the work [166,167], at the 

membrane limit, the effective bending moment and crack tip forces are 
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  )()/(
3/1222  PBB REhPN                                               (6.59) 

B

B
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P
P

2
                                                           (6.60) 

The analytical model for a point loaded [166,167], blister is very much the same as the model 

for the pressure load developed above. Some essential formulas are presented here. The 

Poisson’s ratio dependent parameter )(  can be obtained by fitting a curve to the data in 

Fig.15 from the work [166] as 

422.025.0006.0418.0)( 23                                    (6.61) 

The deflection  at the centre of the blister is 
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and )(f  now becomes 

 22 1)(2
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 f                                               (6.63) 

The parameter T  for Timoshenko mixed mode partition theory becomes 
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The parameter D2 for 2D elasticity mixed mode partition theory becomes 
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Then by replacing the pressure load p with 
2

BR

P


 in Eqs. (6.24) where P  represents the point 

load. The energy release rate JG  from point loading can be calculated as follows: 
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When taking Poisson’s ratio to be 0.16 [159], ,4636.0)16.0(  ,4974.1)16.0( f  

,3743.0)16.0(  3134.2)16.0(   and 1588.2)16.0(  . Therefore, Eqs. (6.66 and (6.65) 

become          
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Using 2D elasticity partition theory: 

4/1

2

3/1

2 0913.25449.13134.2 
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               (6.68) 

  JDDJDDS GGG 2222 0298.14486.0                                    (6.69) 

JDII GG 8811.02                                                   (6.70) 
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 22
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2 5149.05091.0 D

DII
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G
                                        (6.71) 

From Eq. (6.71) it can be seen that 135.0  for monolayer graphene in the point loading 

condition ( 0 ), which is much smaller than that calculated for the pressure loading 

condition 431.0 . The adhesion energy for the monolayer graphene in the point loading 

can be calculated to be 2/ 550.0 mJG   using 22 /683.0,/226.0 mJGmJG IIcIc 

(determined from pressure loading in section 6.4) and a linear failure criterion. Obviously, the 

adhesion energy for the monolayer graphene in the point loading is larger than 

2/ 424.0 mJG  predicted in the pressure loading case.  

The adhesion energy for multilayer graphene under point loading can be estimated in a 

similar way with experimental results in work [160]. The work [160] reports the 

measurement of adhesion energy of five-layer graphene membrane blisters, that is 

2/151.0 mJG  . Unlike the work [159] where the blister is under a pressure load, the work 

[160] uses nanoparticles acting as a point load. An average blister possesses a radius BR in the 

range nm300250  and height   in the range nm7050  . The work [160] used the formula 

 40625.0 BRnEtG   with TPaE 5.0  and nmnt 7.1 . It is seen that the value of E  is 

half of that in the work [160] and 5n . The adhesion energy is reported to be 

2/151.0 mJG  meaning that 2309.0BR . Eq. (6.67) gives 2/180.0 mJGJ  . The 

numerical results in recent work [168] show that Eq. (6.67) gives accurate calculations. When 

using TPaE 0.1  as in the work [159] 2/360.0 mJGJ  , which is much larger than 

2/288.0 mJGJ  for the pressure load.  

To explain the reason, again consider the mode mixity. Using Eqs (6.67) and (6.68) for the 

point loaded blister with 2309.0BR , TPaE 0.1 , nmnt 7.1  and 5n , the total ERR 

G can be obtained as 2/438.0 mJG  , which is very close to 2/424.0 mJG  for the 

monolayer graphene membrane blister under a pressure load from Table 6-6. Eq. (6.71) gives 

the mode mixity to be 381.0  which is very close to 431.0  for the monolayer 

graphene membrane blister under a pressure load from Table 6-6.  

The total ERR for point loading blister test (using TPaE 0.1 ) is calculated as 

2/438.0 mJG   with 2D elasticity partition theory considering sliding effect. The total ERR 



164 
 

G is calculated as 2/438.0 mJ  as well by using ,/226.0 2mJGIc 
2/683.0 mJGIIc  , 

381.0  and a linear failure criterion. The interface fracture toughness 2/226.0 mJGIc 

and 2/683.0 mJGIIc   are material properties, which are determined from the pressure 

loading case. The mode mixity 381.0  is calculated from five-layer graphene under point 

loading using 2D elasticity partition theory. The result obtained from point loading using 2D 

elasticity partition theory has the excellent correlation with that calculated using material 

mode I and mode II fracture toughness and linear failure criterion.     

Except of the differences in prediction for ERR mode I and mode II mixed mode ratio  , the 

same adhesion energy 2/360.0 mJG  , (G is identical as for GJ) are obtained for monolayer 

graphene membrane by using 2D elasticity, Euler beam and Timoshenko beam partition 

theories respectively; the mixed mode I and mode II ratio  is 0.135, 0.581 and 0.039 

respectively. It can be seen that the Euler beam partition theory predicts the highest mode I to 

mode II ratio, the Timoshenko beam theory gives the lowest ratio of mode I to mode II ratio 

and 2D elasticity theory is in the middle. The same trends can be observed from five layer-

graphene membranes for mode I to mode II ratio, they are 0.381, 0.581 and 0.132 

respectively. The adhesion energy 222 /485.0,/360.0,/438.0 mJmJmJG   are calculated by 

using 2D elasticity, Euler beam and Timoshenko beam partition theories respectively. The 

results of adhesion toughness under point load for five-layer graphene membranes by using 

2D elasticity, Euler beam and Timoshenko beam partition theories are represented in Table 

6-19. It can be seen that 2D elasticity partition theory predicts the adhesion energy 0.438J/m2, 

which has an excellent agreement with the results calculated from ,/226.0 2mJGIc   

2/683.0 mJGIIc  , 381.0  and the linear failure criterion. 

 

6.6 Conclusions 
 

The presence of sliding in multilayered graphene membranes increases the fracture mode 

ratio III GG / , leading to a decrease in adhesion toughness measurements when using the 

circular blister test. In the case of a silicon oxide substrate and pressure loading [159], the 

mode mixity jumps up from 43% in the monolayer graphene membranes to above 71% in the 

two-layer graphene membranes. This increase in the mode mixity has the effect of lowering 



165 
 

the adhesion toughness cG  from 2 424.0 mJ to 2 362.0 mJ . As the number of graphene 

layers is increased further, the mode mixity increases slightly and the average adhesion 

toughness of the multi-layered membranes is 2 364.0 mJG  . The critical mode I and mode 

II adhesion toughness are found to be 2 226.0 mJGIc  and 2 683.0 mJGIIc  , respectively 

using linear failure criterion.   

In the case of a silicon oxide substrate and point loading [160], the mode mixity jumps from 

14% in the monolayer graphene membranes to above 38% in the multilayer graphene 

membranes, while the adhesion toughness cG  falls down from 2 0.550 mJ to 2 0.438 mJ . 

The adhesion toughness cG in general loading conditions can be determined accurately using 

the critical mode I and mode II adhesion toughness 2 226.0 mJGIc  , 2 683.0 mJGIIc  and 

a linear failure criterion.  

The studies presented in this chapter show that adhesion energy of mono-multilayered 

graphene membranes can be determined by mechanical models using linear failure criterion 

and 2D elasticity partition theory considering sliding effect. It is evident that the prediction of 

interface delamination of microscopic thin layers is governed by 2D elasticity partition 

theory.   
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Table 6-1:  Adhesion toughness of monolayer graphene membranes (2D.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
DIIDI GG 22 /  

 MPap 18.30   

1.709 0.363 2.492 0 0.405 0.405 0.431 

1.514 0.396 2.710 0 0.391 0.391 0.431 

1.267 0.463 2.934 0 0.382 0.382 0.431 

1.096 0.496 3.171 0 0.354 0.354 0.431 

Group Average 0.383 0.383 0.431 

 MPap 55.30   

1.648 0.405 2.756 0 0.435 0.435 0.431 

1.429 0.456 2.947 0 0.425 0.425 0.431 

1.242 0.493 3.168 0 0.400 0.400 0.431 

Group Average 0.420 0.420 0.431 

 MPap 95.30   

1.632 0.437 2.964 0 0.465 0.465 0.431 

1.547 0.466 3.021 0 0.470 0.470 0.431 

1.320 0.509 3.252 0 0.438 0.438 0.431 

Group Average 0.458 0.458 0.431 

 MPap 10.40   

1.494 0.475 3.208 0 0.463 0.463 0.431 

1.429 0.502 3.376 0 0.468 0.468 0.431 

1.255 0.514 3.513 0 0.421 0.421 0.431 

Group Average 0.450 0.450 0.431 

Total Average 0.424 0.424 0.431 

The Work, ref [159] 0.450 0.450 0.431 

  



167 
 

Table 6-2: Adhesion toughness of two-layer graphene membranes (2D.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
DIIDI GG 22 /  

 MPap 25.30   

1.684 0.288 2.401 0.213 0.316 0.380 0.718 

1.471 0.319 2.573 0.211 0.306 0.367 0.715 

1.284 0.345 2.738 0.208 0.289 0.345 0.711 

Group Average 0.304 0.364 0.715 

 MPap 67.30   

1.380 0.341 2.830 0.212 0.307 0.367 0.715 

1.189 0.376 2.978 0.209 0.291 0.348 0.711 

1.085 0.407 3.146 0.208 0.288 0.344 0.711 

Group Average 0.295 0.353 0.712 

 MPap 35.40   

1.076 0.456 3.322 0.214 0.320 0.384 0.719 

0.901 0.542 3.467 0.214 0.318 0.382 0.718 

0.756 0.583 3.679 0.208 0.287 0.343 0.710 

Group Average 0.308 0.370 0.716 

Total Average 0.303 0.362 0.714 

The Work, ref [159]   0.431 

 

Table 6-3: Adhesion toughness of three-layer graphene membranes (2D.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
DIIDI GG 22 /  

 MPap 25.30   

1.623 0.280 2.467 0.259 0.296 0.370 0.789 

1.376 0.339 2.615 0.261 0.304 0.380 0.792 

Group Average 0.300 0.375 0.791 

 MPap 67.30   

1.425 0.334 2.862 0.262 0.310 0.388 0.794 

Group Average 0.310 0.388 0.794 

 MPap 35.40   

1.210 0.411 3.286 0.265 0.325 0.408 0.799 

1.020 0.478 3.405 0.264 0.318 0.399 0.797 

Group Average 0.321 0.404 0.798 

Total Average 0.311 0.389 0.794 

The Work, ref [159]   0.431 
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Table 6-4: Adhesion toughness of four-layer graphene membranes (2D.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
DIIDI GG 22 /  

 MPap 25.30   

1.535 0.265 2.664 0.258 0.265 0.331 0.787 

1.420 0.271 2.845 0.254 0.251 0.313 0.782 

Group Average 0.258 0.322 0.785 

 MPap 67.30   

1.407 0.319 2.998 0.264 0.293 0.368 0.797 

Group Average 0.293 0.368 0.797 

 MPap 35.40   

1.118 0.414 3.513 0.266 0.302 0.380 0.801 

Group Average 0.302 0.380 0.801 

Total Average 0.278 0.348 0.792 

The Work, ref [159]   0.431 

 

 

Table 6-5:  Adhesion toughness of five-layer graphene membranes (2D.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
DIIDI GG 22 /  

 MPap 25.30   

1.700 0.244 2.459 0.253 0.271 0.337 0.780 

1.621 0.252 2.587 0.252 0.267 0.332 0.778 

1.417 0.305 2.686 0.256 0.282 0.351 0.784 

Group Average 0.273 0.340 0.781 

 MPap 67.30   

1.596 0.276 2.861 0.257 0.287 0.358 0.786 

1.517 0.289 2.961 0.257 0.286 0.356 0.785 

1.430 0.306 3.017 0.257 0.285 0.356 0.785 

Group Average 0.286 0.356 0.785 

 MPap 35.40   

1.297 0.376 3.276 0.264 0.318 0.399 0.796 

1.181 0.384 3.372 0.259 0.296 0.369 0.789 

1.056 0.436 3.483 0.260 0.300 0.375 0.790 

Group Average 0.305 0.381 0.792 

Total Average 0.288 0.359 0.786 

The Work, ref [159]   0.431 
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Table 6-6: Average adhesion toughness of multilayer graphene membranes (2D.) 

Graphene 
Membranes 

 2mJGJ
  2 mJG   

DIIDI GG 22 /  

Present 
Work, 

ref [159] 
Present 

Work, 
ref [159] 

Present 
Work, 

ref [159] 

Monolayer 0.424 0.450 0.424 0.450 0.431 0.431 
Multilayer 0.295 0.310 0.364 0.310 0.764 0.431 

 

 

Table 6-7:  Adhesion toughness of monolayer graphene membranes (Euler) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IIEIEE GG /  

 MPap 18.30   

1.709 0.363 2.492 0 0.405 0.405 0.581 

1.514 0.396 2.710 0 0.391 0.391 0.581 

1.267 0.463 2.934 0 0.382 0.382 0.581 

1.096 0.496 3.171 0 0.354 0.354 0.581 

Group Average 0.383 0.383 0.581 

 MPap 55.30   

1.648 0.405 2.756 0 0.435 0.435 0.581 

1.429 0.456 2.947 0 0.425 0.425 0.581 

1.242 0.493 3.168 0 0.400 0.400 0.581 

Group Average 0.420 0.420 0.581 

 MPap 95.30   

1.632 0.437 2.964 0 0.465 0.465 0.581 

1.547 0.466 3.021 0 0.470 0.470 0.581 

1.320 0.509 3.252 0 0.438 0.438 0.581 

Group Average 0.458 0.458 0.581 

 MPap 10.40   

1.494 0.475 3.208 0 0.463 0.463 0.581 

1.429 0.502 3.376 0 0.468 0.468 0.581 

1.255 0.514 3.513 0 0.421 0.421 0.581 

Group Average 0.450 0.450 0.581 

Total Average 0.424 0.424 0.581 

The Work, ref [159] 0.45 0.45 0.431 
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Table 6-8: Adhesion toughness of two-layer graphene membranes (Euler) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IIEIEE GG /  

 MPap 25.30   

1.684 0.288 2.401 0.213 0.316 0.316 0.581 

1.471 0.319 2.573 0.211 0.306 0.306 0.581 

1.284 0.345 2.738 0.208 0.289 0.289 0.581 

Group Average 0.304 0.304 0.581 

 MPap 67.30   

1.380 0.341 2.830 0.212 0.307 0.307 0.581 

1.189 0.376 2.978 0.209 0.291 0.291 0.581 

1.085 0.407 3.146 0.208 0.288 0.288 0.581 

Group Average 0.295 0.295 0.581 

 MPap 35.40   

1.076 0.456 3.322 0.214 0.320 0.320 0.581 

0.901 0.542 3.467 0.214 0.318 0.318 0.581 

0.756 0.583 3.679 0.208 0.287 0.287 0.581 

Group Average 0.308 0.308 0.581 

Total Average 0.303 0.303 0.581 

The Work, ref [159]   0.431 

 

Table 6-9: Adhesion toughness of three-layer graphene membranes (Euler) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IIEIEE GG /  

 MPap 25.30   

1.623 0.280 2.467 0.259 0.296 0.296 0.581 

1.376 0.339 2.615 0.261 0.304 0.304 0.581 

Group Average 0.300 0.300 0.581 

 MPap 67.30   

1.425 0.334 2.862 0.262 0.310 0.310 0.581 

Group Average 0.310 0.310 0.581 

 MPap 35.40   

1.210 0.411 3.286 0.265 0.325 0.325 0.581 

1.020 0.478 3.405 0.264 0.318 0.318 0.581 

Group Average 0.321 0.321 0.581 

Total Average 0.311 0.311 0.581 

The Work, ref [159]   0.431 
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Table 6-10: Adhesion toughness of four-layer graphene membranes (Euler) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IIEIEE GG /  

 MPap 25.30   

1.535 0.265 2.664 0.258 0.265 0.265 0.581 

1.420 0.271 2.845 0.254 0.251 0.251 0.581 

Group Average 0.258 0.258 0.581 

 MPap 67.30   

1.407 0.319 2.998 0.264 0.293 0.293 0.581 

Group Average 0.293 0.293 0.581 

 MPap 35.40   

1.118 0.414 3.513 0.266 0.302 0.302 0.581 

Group Average 0.302 0.302 0.581 

Total Average 0.278 0.278 0.581 

The Work, ref [159]   0.431 

 

 

Table 6-11: Adhesion toughness of five-layer graphene membranes (Euler) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IIEIEE GG /  

 MPap 25.30   

1.700 0.244 2.459 0.253 0.271 0.271 0.581 

1.621 0.252 2.587 0.252 0.267 0.267 0.581 

1.417 0.305 2.686 0.256 0.282 0.282 0.581 

Group Average 0.273 0.273 0.581 

 MPap 67.30   

1.596 0.276 2.861 0.257 0.287 0.287 0.581 

1.517 0.289 2.961 0.257 0.286 0.286 0.581 

1.430 0.306 3.017 0.257 0.285 0.285 0.581 

Group Average 0.286 0.286 0.581 

 MPap 35.40   

1.297 0.376 3.276 0.264 0.318 0.318 0.581 

1.181 0.384 3.372 0.259 0.296 0.296 0.581 

1.056 0.436 3.483 0.260 0.300 0.300 0.581 

Group Average 0.305 0.305 0.581 

Total Average 0.288 0.288 0.581 

The Work, ref [159]   0.431 
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Table 6-12: Average adhesion toughness of multilayer graphene membranes (Euler) 

Graphene 
Membranes 

 2mJGJ
  2mJGJ

 IIEIEE GG /  

Present Work, 
ref [159] 

Present Work, 
ref [159] 

Present Work, 
ref [159] 

Monolayer 0.424 0.45 0.424 0.45 0.581 0.431 
Multilayer 0.295 0.31 0.295 0.31 0.581 0.431 

 

 

 

 Table 6-13:  Adhesion toughness of monolayer graphene membranes (Timo.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IITITT GG /  

 MPap 18.30   

1.709 0.363 2.492 0 0.405 0.405 0.039 

1.514 0.396 2.710 0 0.391 0.391 0.039 

1.267 0.463 2.934 0 0.382 0.382 0.039 

1.096 0.496 3.171 0 0.354 0.354 0.039 

Group Average 0.383 0.383 0.039 

 MPap 55.30   

1.648 0.405 2.756 0 0.435 0.435 0.039 

1.429 0.456 2.947 0 0.425 0.425 0.039 

1.242 0.493 3.168 0 0.400 0.400 0.039 

Group Average 0.420 0.420 0.039 

 MPap 95.30   

1.632 0.437 2.964 0 0.465 0.465 0.039 

1.547 0.466 3.021 0 0.470 0.470 0.039 

1.320 0.509 3.252 0 0.438 0.438 0.039 

Group Average 0.458 0.458 0.039 

 MPap 10.40   

1.494 0.475 3.208 0 0.463 0.463 0.039 

1.429 0.502 3.376 0 0.468 0.468 0.039 

1.255 0.514 3.513 0 0.421 0.421 0.039 

Group Average 0.450 0.450 0.039 

Total Average 0.424 0.424 0.039 

The Work, ref [159] 0.45 0.45 0.431 
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Table 6-14: Adhesion toughness of two-layer graphene membranes (Timo.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IITITT GG /  

 MPap 25.30   

1.684 0.288 2.401 0.323 0.316 0.376 0.088 

1.471 0.319 2.573 0.333 0.306 0.366 0.090 

1.284 0.345 2.738 0.339 0.289 0.347 0.091 

Group Average 0.304 0.363 0.090 

 MPap 67.30   

1.380 0.341 2.830 0.324 0.307 0.366 0.088 

1.189 0.376 2.978 0.340 0.291 0.350 0.091 

1.085 0.407 3.146 0.348 0.288 0.348 0.092 

Group Average 0.295 0.355 0.090 

 MPap 35.40   

1.076 0.456 3.322 0.369 0.320 0.391 0.096 

0.901 0.542 3.467 0.420 0.318 0.400 0.106 

0.756 0.583 3.679 0.426 0.287 0.362 0.107 

Group Average 0.308 0.384 0.103 

Total Average 0.303 0.367 0.094 

The Work, ref [159]   0.431 

 

Table 6-15: Adhesion toughness of three-layer graphene membranes (Timo.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IITITT GG /  

 MPap 25.30   

1.623 0.280 2.467 0.305 0.296 0.349 0.085 

1.376 0.339 2.615 0.349 0.304 0.367 0.092 

Group Average 0.300 0.358 0.089 

 MPap 67.30   

1.425 0.334 2.862 0.314 0.310 0.368 0.086 

Group Average 0.310 0.368 0.089 

 MPap 35.40   

1.210 0.411 3.286 0.336 0.325 0.389 0.090 

1.020 0.478 3.405 0.378 0.318 0.390 0.098 

Group Average 0.321 0.390 0.094 

Total Average 0.311 0.372 0.091 

The Work, ref [159]   0.431 
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Table 6-16: Adhesion toughness of four-layer graphene membranes (Timo.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IITITT GG /  

 MPap 25.30   

1.535 0.265 2.664 0.268 0.265 0.306 0.078 

1.420 0.271 2.845 0.256 0.251 0.288 0.076 

Group Average 0.258 0.297 0.077 

 MPap 67.30   

1.407 0.319 2.998 0.286 0.293 0.341 0.081 

Group Average 0.293 0.341 0.081 

 MPap 35.40   

1.118 0.414 3.513 0.317 0.302 0.358 0.087 

Group Average 0.302 0.358 0.087 

Total Average 0.284 0.332 0.082 

The Work, ref [159]   0.431 

 

 

Table 6-17: Adhesion toughness of five-layer graphene membranes (Timo.) 

)(MPap  )( m  )( mRB     

 p  

)/( 2mJGJ
 

 p  

)/( 2mJG  
IITITT GG /  

 MPap 25.30   

1.700 0.244 2.459 0.267 0.271 0.312 0.078 

1.621 0.252 2.587 0.262 0.267 0.307 0.077 

1.417 0.305 2.686 0.305 0.282 0.332 0.085 

Group Average 0.273 0.317 0.080 

 MPap 67.30   

1.596 0.276 2.861 0.259 0.287 0.330 0.077 

1.517 0.289 2.961 0.262 0.286 0.329 0.077 

1.430 0.306 3.017 0.273 0.285 0.330 0.079 

Group Average 0.286 0.330 0.078 

 MPap 35.40   

1.297 0.376 3.276 0.309 0.318 0.376 0.085 

1.181 0.384 3.372 0.306 0.296 0.349 0.085 

1.056 0.436 3.483 0.337 0.300 0.360 0.090 

Group Average 0.305 0.362 0.087 

Total Average 0.288 0.336 0.082 

The Work, ref [159]   0.431 
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Table 6-18: Average adhesion toughness of multilayer graphene membranes (Timo.) 

Graphene 
Membranes 

 2mJGJ
 )/( 2mJG  

IITITT GG /  

Present 
Work, 

ref [159] 
Present 

Work, 
ref [159] 

Present 
Work, 

ref [159] 

Monolayer 0.424 0.45 0.424 0.45 0.039 0.431 
Multilayer 0.297 0.31 0.352 0.31 0.087 0.431 

 

 

 

Table 6-19: Adhesion toughness of graphene membranes under point loading 

Mixed Mode Partition Theory  2mJGJ

 

  )/( 2mJGS
   )/( 2mJG  

III GG /  

1n , 2309.0BR , TPaE 0.1 , nmnt 7.1  

2D Elasticity Theory 0.360 0 0 0.360 0.135 

Euler Beam Theory 0.360 0 0 0.360 0.581 

Timoshenko Beam Theory 0.360 0 0 0.360 0.039 

5n , 2309.0BR , TPaE 0.1 , nmnt 7.1  

2D Elasticity Theory 0.360 0.350 0.078 0.438 0.381 

Euler Beam Theory 0.360 0 0 0.360 0.581 

Timoshenko Beam Theory 0.360 0.360 0.125 0.485 0.132 
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 Conclusion and future work 
 

7.1 Conclusions 
 

Firstly, the performance of different mixed mode partition theories are reviewed via the 

assessments which were conducted by Wang-Harvey [22,23], it has been found that Euler 

beam partition theory with global partition provides the most accurate prediction for 

delamination toughness between two macroscopic layers. In the next, the analytical theories 

have been developed for predicting the crack propagation behaviour of post-local buckling-

driven delamination in bilayer composite beams. The work has presented a more accurate 

analytical formula for total ERR G than that in Refs. [14,87] by developing a more accurate 

expression for the post-buckling mode shape and also by including the axial strain energy 

contribution from the intact part of beam; the accuracy of critical local-buckling strain is also 

a key factor in making accurate predictions. Three partition theories, namely, the Euler beam, 

Timoshenko beam and 2D elasticity partition theories are employed in the study for 

comparison of accuracy. Independent experimental tests by Kutlu and Chang [32] show that, 

in general, the analytical theory based on the Euler beam partition theory predicts the 

propagation behaviour very well and much better than the theories based on the Timoshenko 

beam and 2D elasticity partition theories. The thickness of the bilayer composite beam is in 

the range of millimetres.  

The next important example is the thermally buckling-driven delamination of thermal barrier 

coatings used in aero-engines. The normalised approaches are developed based on the Euler 

beam, Timoshenko beam and 2D elasticity partition theories to predict the TBC interface 

crack delamination with minimum requiring the detail TBC material data. The TBC material 

system is simplified as two layer systems. The trends of crack development, propagation are 

clearly illustrated by using different partition methods. For specific GIC=10N/m and 

GIIC=50N/m used, the Euler beam theory predicts the earlier delamination and Timoshenko 

beam theory predicts the later crack propagation, the prediction of 2D elasticity partition is in 

the middle. The work provides some clear trends with minimum presence of real material 

data and it is particularly useful to develop the life prediction model for TBC material system 

with numerical method and experimental tests, which are planned in the future.    

As another example of thin film delamination, the spontaneous spalling of α-alumina films 

grown by oxidation under room temperature is investigated. A hypothesis is made that 
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pockets of energy concentration (PECs) can be formed by pockets of stresses around the 

interface between a thin film and a thick substrate because of thermal effects, chemical 

effects and etc... Based on the PECs hypothesis, three mechanical models are developed 

analytically to predict some aspects of the process of thin film spallation failure including 

nucleation, stable and unstable growth, the size of spallation and final kinking off. The 

present mechanical model reveals a new failure mechanism of thin films under compressive 

residual stress and predict very well several aspects of the room temperature failure of α-

alumina films grown by oxidation, including the initiation of unstable growth, and the size of 

spallation or kinking off. Spallation with both straight edge and circular edge are considered. 

The experimental results show that the three models predict the initiation of unstable growth 

and the size of spallation very well. However, only the 2D elasticity model predicts final 

kinking off well. The nucleation and stable growth of a separation bubble are solely driven by 

the PEC energy while the unstable growth is driven by both PEC energy and buckling. The 

final kinking off is controlled by the toughness of the interface and the film and the maximum 

PEC energy. The thickness of aluminum scales on the substrate is in the micrometre range.  

The last example studied in this thesis is the prediction of interface adhesion energy, or 

interface fracture toughness. A mechanical model is developed to give a complete calculation 

and correct interpretation of the adhesion energy with consideration of the fracture mode 

mixity and the sliding effect in the determination of the adhesion energy for multi-layered 

graphene membranes using the blister test. The study demonstrates the accuracy of using 2D 

elasticity partition method for prediction the adhesion energy in nano-metre thickness range.  

 

In conclusion, the brittle interface fracture of macroscopically thin beam, plate and shell 

layers is governed by the Euler beam, classical plate and shell partition theory instead of the 

2D elasticity partition theory. A fracture or delamination on a brittle interface with layers of 

macroscopic thickness cannot propagate in the manner as an infinitesimally small growth. 

Instead, it does propagate with a finitely small growth [32]. Both the classical partition theory 

[24-29] and the 2D elasticity partition theory [14] assume an infinitesimally small growth. 

However, the classical partition theory is insensitive to the growth size, or in other words, the 

energy release rate (ERR) partitions converge at relatively large finite element mesh size 

[28]. In contrast, the 2D elasticity partition theory is very sensitive to the growth size, or in 

other words, ERR partitions converge at very small finite element mesh size [28] as assumed 

in the theory [14]. Consequently, it is given the name of ‘local partition theory’. It is 

important to note that ERR partitions based on 2D elasticity approach to the classical ones 
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when growth size increases [26]. It is seen that the classical partition theory represents the 

‘finitely small growth’ physics very well.  

The mechanical models developed in this thesis provide the analytical solutions to study the 

mechanics of interface delamination of thin-layer substrate material systems; it benefits the 

further experimental and numerical works to investigate the thin film delamination. The 

analytical models developed in this thesis provide convenient methods for researchers, 

designer to design a reliable thin film material systems.    

 

7.2 Future work 
 

Experimental and analytical works are required to develop thermal barrier coating life 

prediction model. Current normalised analytical model presented in chapter 4 shows only the 

trends of the TBC interface crack delamination with minimum presence of real material data, 

also the current analytical model is based on two-layer approach, the detailed experimental 

and analytical work on the TBC spallation is required to overcome the limitation of the 

current approach in chapter 4.  

In chapter 5, a hypothesis is made that delamination can be driven by pockets of energy 

concentration (PECs) in the form of pockets of tensile stress and shear stress on and around 

the interface between a microscopic thin film and a thick substrate, a good prediction of the 

initiation of unstable growth of separation bubbles, the size of spallation and final kink-off 

angle are obtained; however, more evidence and details from experimental work are requied 

to verify the hypothesis completely. A clear direct extension is to study the well known 

telephone cord buckling phenomenon frequently occurred in thin films. A preliminary study 

in another PhD project has shown excellent predictions by the PEC model. This may extend 

the PEC model from idealised straight edged and circular plate to complicated geometry 

applications. Also, it is one of the main activity for the future work to apply the PEC model to 

study the thermal barrier coating delamination and spallation.  

In the present work, the material elastic mismatch between top layer and substrate is 

neglected in the developed analytical models. In spite of the good correlation between the 

analytical models and the test data, it might be still useful to quantify the sensitivity of the 

analytical models to the material elastic mismatch.   
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