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Abstract 
Road traffic accidents continue to be a public health problem and are a global issue 

due to the huge financial burden they place on families and society as a whole. Speed 

has been identified as a major contributor to the severity of traffic accidents and there 

is the need for better speed management if road traffic accidents are to be reduced.  

Over the years various measures have been implemented to manage vehicle speeds. 

The use of speed cameras and vehicle activated signs in recent times has contributed 

to the reduction of vehicle speeds to various extents. Speed cameras use punitive 

measures whereas vehicle activated signs do not so their use depends on various 

factors. Engineers, planners and decision makers responsible for determining the best 

place to mount a speed camera or vehicle activated sign along a road have based their 

decision on experience, site characteristics and available guidelines (Department for 

Transport, 2007; Department for Transport, 2006; Department for Transport, 2003). 

These decisions can be subjective and indications are that a more formal and directed 

approach aimed at bringing these available guidelines together in a model will be 

beneficial in making the right decision as to where to place a speed camera or vehicle 

activated sign is to be made. The use of optimisation techniques have been applied in 

other areas of research but this has been clearly absent in the Transport Safety sector.  

This research aims to contribute to speed reduction by developing a model to help 

decision makers determine the optimum location for a speed control device. 

In order to achieve this, the first study involved the development of an Empirical 

Bayes Negative Binomial regression accident prediction model to predict the number 

of fatal and serious accidents combined and the number of slight accidents. The 

accident prediction model that was used explored the effect of certain geometric and 

traffic characteristics on the effect of the severity of road traffic accident numbers on 

selected A-roads within the Nottinghamshire and Leicestershire regions of United 

Kingdom. On A-roads some model variables (n=10) were found to be statistically 

significant for slight accidents and (n=6) for fatal and serious accidents.  

The next study used the accident prediction model developed in two optimisation 

techniques to help predict the optimal location for speed cameras or vehicle activated 
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signs. Pattern Search and Genetic Algorithms were the two main types of 

optimisation techniques utilised in this thesis. The results show that the two methods 

did produce similar results in some instances but different in others. Optimised 

results were compared to some existing sites with speed cameras some of the results 

obtained from the optimisation techniques used were within proximity of about 160m. 

A validation method was applied to the genetic algorithm and pattern search 

optimisation methods. The pattern search method was found to be more consistent 

than the genetic algorithm method. Genetic algorithm results produced slightly 

different results at validation in comparison with the initial results. T-test results 

show a significant difference in the function values for the validated genetic 

algorithm (M= 607649.34, SD= 1055520.75) and the validated pattern search 

function values (M= 2.06, SD= 1.17) under the condition t (79) = 5.15, p=0.000. 

There is a role that optimisation techniques can play in helping to determine the 

optimum location for a speed camera or vehicle activated sign based on a set of 

objectives and specified constraints. The research findings as a whole show that 

speed cameras and vehicle activated signs are an effective speed management tool.  

Their deployment however needs to be carefully considered by engineers, planners 

and decision makers so as to achieve the required level of effectiveness. The use of 

optimisation techniques which has been generally absent in the Transport Safety 

sector has been shown in this thesis to have the potential to contribute to improve 

speed management. There is however no doubt that this research will stimulate 

interest in this rather new but high potential area of Transport Safety.   
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1 Introduction and overall research aims 

1.1 Background to research problem 
There is evidence to show that inappropriate speeding is a major contributor to the 

severity of road traffic accidents (Barker, 1997; Chen, Meckle and Wilson, 2002; 

Winnett and Wheeler, 2002; Taylor, Baruya and Kennedy, 2002; Perez et al., 2007; 

World Health Organisation [WHO], 2013). Road traffic speed reduction measures 

are essential to reducing road traffic accident severities (Crombie, 2002; Peden et al., 

2004; Pilkington and Kinra, 2005) with speeding inappropriately for prevailing 

conditions or exceeding set speed limits being the two most common speed related 

factors to road traffic accidents.  

In an attempt to influence and reduce driver speed various road infrastructure devices 

such as road humps, chicanes, rumble strips, narrowing, mini-roundabout and village 

gateway schemes have been used. More recently, speed control devices such as 

speed cameras and vehicle activated signs have been deployed along roads to help 

reduce driver vehicle speeds. A lot of research work has also been conducted into the 

effectiveness of speed cameras and vehicle activated signs with positive responses 

obtained in most instances.  

1.2 Current approach to installing vehicle activated signs and speed 
cameras 
The only source of advisory information identified for the installation of vehicle 

activated signs is Traffic Advisory Leaflet (TAL) 1/03 (Department for Transport, 

2003). This leaflet states that Vehicle Activated Signs (VAS) are to be used to 

address problems associated with inappropriate speeds in situations where 

conventional signing has been ineffective. VASs however should not be used as an 

alternative to fixed signs. It also adds that VASs should be considered in instances 

where there is an accident problem associated with inappropriate speed. It should be 

used where standard signing has been unable to satisfactorily remedy problem. Also 

in instances where safety cameras and other signs are not cost effective or an 

appropriate solution, VASs can be used.  

It is advised that an audit of existing furniture, fixed signs, road condition and road 

markings are undertaken to assess their standard and condition before installing a 
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VAS. It is advised in TAL 1/03 that a detailed accident investigation should be 

undertaken to both identify the dominant accident patterns and to confirm that VASs 

are an appropriate remedial measure. The site selection should also take into account 

the number of speed related accidents and in particular inappropriate speed for the 

conditions prevailing. Monitoring of traffic speeds can be carried out to establish that 

a problem of inappropriate speed exists. Traffic Advisory Leaflet 1/03 advises using 

speed data collected prior to the installation of a VAS to help estimate a suitable 

threshold speed for the sign to display the message (Department for Transport, 

2003).  

For warning sign VASs, TAL 1/03 (Department for Transport, 2003) advises that the 

speed threshold be set at the 50th percentile speed measured before installation. For 

speed limit signs it is advised that the threshold set be dependent on the road 

conditions with a reasonable benchmark being the ACPO (Association of Chief 

Police Officers) guidelines on enforcement of 10% + 2mph. It is also necessary to 

ensure that permanent warning signs sited in advance of any VAS are correctly and 

appropriately placed in accordance with Chapter 4 of the Traffic Signs Manual 

(Department for Transport, 2013).   

Safety cameras are noted to provide a valuable and cost-effective method for 

preventing, detecting and enforcing speed and traffic light offences. They have been 

proved to encourage modified driver behaviour improving road safety for all road 

users. The Department for Transport (DfT) circular 01/07 (Department for Transport, 

2007) provides guidance and best practice on the deployment of speed and red-light 

cameras after April 2007. 

Circular 01/2007 (Department for Transport, 2007) recommends that before deciding 

on using speed cameras, investigations should be conducted on the nature of the 

problem. The investigation should include current vehicle speeds, the proportion of 

vehicles exceeding the speed limit under free-flowing conditions, the proportion of 

different collision types, and the causes of the collisions. It is also essential that 

traffic authorities confirm that the speed limit at each proposed site is appropriate. In 

addition to these in order to select camera sites, a collision data analysis needs to be 

carried out over a minimum period (most recent 3 years or preferably 5 years) and 
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the 85th percentile speed of vehicles within a 12 month period must be collected. 

Cameras must be positioned such that they are not obscured and clearly visible at all 

times. For 40mph or less speed limit roads a minimum visibility distance of 60 

metres is recommended with a minimum of 100 metres at all other speed limit 

locations by TAL 1/03 (Department for Transport, 2003).  

The Parliamentary Office of Science and Technology POSTnote 04/218  

(Parliamentary Office of Science and Technology, 2004) provided DfT guidelines 

applicable to speed camera use. It states that the majority (85%) of cameras must be 

in areas which have a specified minimum level of death and injury within 1km in the 

previous three years (4 collisions resulting in death/serious injury for fixed cameras, 

2 for mobile). It recommends that speeding must be shown to be a problem at the 

location even though crashes do not need to have been speed-related.  

From the summaries provided on the guidelines for the installation of VASs and 

speed cameras, it is evident that the VAS guidelines provide some suggestions of the 

instances under which they should be placed as well as the possible investigations 

which should be carried out.  

Current practice for installing road side speed control devices to manage vehicle 

speed involves engineers, planners and designers to visit the site and make an 

assessment and judgment on where a roadside speed control device should be placed. 

This is usually based on the threshold of recorded accidents, site conditions such as 

the terrain, visibility and other site constraints and considerations. Considering that 

these practices can be subjective, time consuming and also costly, optimisation 

techniques undoubtedly seems to be a promising and suitable alternative way 

forward to achieve the requirements for vehicle speed management.  

The motivation for this research is to develop a model using genetic algorithms and 

pattern search to optimise the location of speed camera to contribute to better 

management of vehicle speeds. The model will focus on the infrastructural aspects of 

roads and other related factors and it will exclude driver behaviour. This approach 

will serve as a useful planning tool for road safety professionals. It can be used to 

predict future accident prone areas and thus can help in the recommendation of 

appropriate corrective measures. 
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1.3 Research in Context 
Against this background used in implementing speed control devices across England, 

the following questions will be addressed; 

• Which infrastructural and related parameters excluding driver behaviour 

contribute to road traffic accidents? 

• Which parameters influence the location of speed control devices (speed 

cameras and vehicle activated signs)? 

• Taking into consideration the above two questions, can a model be developed 

using an optimisation technique to assist decision makers to effectively plan 

the deployment of speed control devices? 

1.4 Research Aim 
Based on the context presented, this research aims to contribute to speed reduction 

by developing a model to help decision makers determine the optimum location for a 

speed control device.  

1.5 Research Objectives 
To be able to achieve this aim the following objectives have been set. 

i. Identify infrastructural and other related parameters excluding driver 

behaviour which have the ability to influence vehicle speed through a 

literature review. 

ii. Identify methods used in facility location problems through a literature 

review.  

iii. Based on parameters identified in (i) above, develop an accident prediction 

model using A-roads and test and validate the model. 

iv. Using genetic algorithm and pattern search optimisation methods, identify the 

parameters to be used in the optimisation model and test the model on a 

selection of existing and future speed control device locations along A-roads. 

 

 



 

5 

 

2 Literature review 

2.1 Introduction into the wider context of road safety issues 
The world’s first motor cars were produced during the 1880s by a German engineer, 

Karl Benz with the aim of making travel faster and more enjoyable (PR Newswire, 

2005). Human beings on the other hand have existed for centuries going about their 

daily activities. These activities sometimes require travelling which in recent times 

have involved the use of vehicles in one form or another. However, increased 

motorisation has not come without a cost to humanity resulting in many deaths and 

injuries from road traffic accidents.   

Road traffic accidents continue to be a public health problem. About 16,000 people 

die each day from all types of injuries around the world. Injuries represent 12% of 

the global burden of disease (major diseases and injuries facing the world 

community) and are the third most important cause of overall mortality and the main 

cause of death among 1 to 40 year-olds (World Health Organisation, 2001). Road 

crashes dominate these injuries worldwide with about 25% of all injuries resulting in 

death being from road traffic accidents (Peden, McGee and Sharma, 2002).   

At the inquest into the first recorded world road death in Britain in 1896 (that of 

Bridget Driscoll, RoadPeace, 2012) the coroner reportedly said ‘This must never 

happen again’. In the same year, the United States of America recorded its first road 

accident in New York when a motor vehicle collided with a pedal cycle rider (Kane, 

1981). Into the twenty first century, many people are still killed and injured on roads 

all around the world. The total waste of human and societal resources resulting from 

road traffic accidents cannot be overemphasised. Worldwide, a conservative estimate 

of between 20 and 50 million people are injured or disabled each year in road traffic 

accidents (Murray and Lopez, 1996; Murray et al., 2001; Roberts, 2005).  The wide-

ranging estimate is largely due to the known underreporting of road traffic accidents.  

Road traffic accidents continue to be a global public health problem and indications 

are that this will continue to worsen unless urgent action is taken (Roberts, 2005). 

International organisations including the World Bank and the World Health 

Organisation (WHO) have all taken a keen interest in the road accident situation 

facing the world community.  
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In an effort to increase public awareness about this menace affecting communities, 

various initiatives have emerged over the years. The World Health Assembly in 1974 

adopted Resolution WHA27.59 acknowledging road traffic accidents as a major 

public health problem requiring the coordinated efforts of member states (World 

Health Organisation, 1974). For the first time in the history of the World Health 

Organisation, World Health day 2004 was dedicated to road safety under the theme 

‘road safety is no accident’. Also, the United Nations General Assembly in 

Resolution A/RES/60/5 (adopted in October 2006), called for member states and the 

international community to designate the third Sunday in November every year as 

the World Day of Remembrance for road traffic victims, in recognition of road 

traffic victims and their families’ loss and suffering  (World Health Organisation, 

2005). The latest campaign includes the years 2011 to 2020 being declared by the 

United Nations as the decade of action for road safety aimed at preventing five 

million road traffic deaths globally by 2020 (United Nations, 2012).   

In 2002, road accident was ranked the tenth leading cause of death worldwide 

(Peden, McGee and Sharma, 2002). It is forecast that by the year 2020 road accidents 

would move up to third place in the table of leading causes of death and disability 

facing the world community (Murray and Lopez, 1996; Peden, McGee and Sharma, 

2002; Kopits and Cropper, 2003; Peden et al., 2004) with speed being the main 

contributory factor in these accidents. Another publication (The World Bank, 2011) 

indicated that annual deaths from road traffic accidents are forecast to rise to 1.9 

million by 2020 and it will be the leading health burden for children over five years 

old in developing countries by the year 2015. More recently, the 2013 WHO Global 

Status Report (World Health Organisation [WHO], 2013) on road safety also 

revealed that if no urgent action is taken by 2030 road traffic deaths will become the 

fifth leading cause of death. The report also mentioned speeding as a major road 

safety problem in all countries. 

2.1.1 The origins of speed limits in the UK 
UK road speed limits are used to define the maximum legal speed limit (it can vary) 

for road vehicles using public roads and are one of the ways used to control traffic 

speed (Safe Motoring, 2013).  Speed limits are commonly displayed on nearby traffic 

signs or indicated by the presence of street lighting. Speed limits in miles per hour 
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are displayed on road signs or through the use of the national speed limit (NSL) 

symbol. The Locomotive Act of 1865 for speed limits in Britain restricted the speed 

of horse-less vehicles to 4mph in open country (towns and villages) and 2mph in 

towns. The act necessitated the use of three drivers for each vehicle with two 

travelling in the vehicle and one walking ahead of the vehicle carrying a red flag. On 

28 January 1896, Walter Arnold of East Peckham, Kent (UK Motorists, 2014) 

became the first person to be successfully charged with speeding in Great Britain. 

The maximum speed limit was increased to 14mph and then to 20mph in 1903. 1930 

saw the end of speed limits for cars and motorcycles. In 1934, a 30mph speed limit 

was introduced on roads in built-up areas (roads with street lighting) and this has 

stayed to this day (UK Motorists, 2014; Safe Motoring, 2013).   The maximum speed 

limit on UK roads has been 70mph since 1965. This limit is applicable to unrestricted 

motorways and dual-carriageways and to cars (including car-derived vans) up to 2 

tonnes maximum laden weight (MLW), motorcycles, buses, coaches and minibuses 

up to 12 metres long and goods vehicles with MLW of 7.5 tonnes.  Single 

carriageways carry a speed limit of 60mph. In 1999 local authorities were given the 

power to introduce 20mph limits without the need to obtain permission from the 

Secretary of State. Speed limits have traditionally been enforced by the police using 

speed guns, automated in-vehicle systems (mobile cameras) and automated road side 

cameras (UK Motorists, 2014; Safe Motoring, 2013). Speed limits on motorways and 

trunk roads are set by the Highways Agency with the government giving advice to 

traffic authorities (County, District and Borough Councils, but not Parish Councils) 

on setting local speed limits. These authorities determine the most suitable speed 

limit for their roads which depend on local factors and conditions such as history of 

road accidents, traffic flows, road traffic combination, nature of adjacent 

development and road geometry (Safe Motoring, 2013).  

2.1.2 History of speed cameras and vehicle activated signs 
The Road Traffic Act 1991 enabled changes to be made to the law allowing courts to 

receive proof of speeding from type approved cameras. This had to be accompanied 

by a certificate signed on behalf of the relevant police force. It enabled safety 

cameras (speed and red traffic light cameras) to be managed by the police forces. In 

1992, the first deployment of 21 fixed speed cameras and 12 red-light cameras was 

carried out in West London. This continued to increase and by the year 2000 an 
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estimated 4500 safety cameras had been deployed on British roads with most being 

fixed speed cameras and a smaller number being red-light and mobile cameras. One 

of the main impediments to the rapid implementation of safety cameras during the 

early years was that of resource. Benefits in the form of revenues received from 

speed camera fines were not received by the police forces instead it went to the 

Consolidated Fund of the Exchequer (Ward, 2003). In April 2000, a new system 

allowing fines from speed and red light cameras to pay for the costs associated with 

camera enforcement was piloted. The success from this trial allowed the government 

to continue with the system establishing the required legislation in Section 38 of the 

Vehicles (Crime) Act 2001. The Department for Transport in April 2007 changed the 

funding arrangements such that fines from cameras remained with the Treasury. It 

created a separate road safety fund for local safety partnerships to be used for a 

variety of road safety activities in addition to paying the cost or supplying and 

operating the cameras. In 2010, the new Coalition Government announced it will no 

longer fund new speed cameras demanding local authorities and the police to publish 

data about speed cameras, including accident and casualty figures amongst other 

requests (ROSPA, 2011).    

In the late 1970s and early 1980s, the Transport Research Laboratory (TRL) 

conducted research on automatic signs that provided drivers with information 

relating to either following closely or excessive speed.  The signs stayed unlit unless 

a driver exceeded a predetermined threshold which was associated with either the 

distance from the vehicle in front or the speed of the vehicle. Signs indicating to 

drivers to ‘MOVE APART’ were made using a back-lit message and it depended on 

an overhead infra-red detector to measure the separation of the close following 

vehicle from the vehicle in front.  For signs indicating to drivers to ‘SLOW DOWN’ 

a message was created by means of a number of pinpoints of light singly provided 

through fibre-optic cables. Inductive loops hidden in the carriageway were used to 

measure the vehicle speed. Current generation of vehicle activated signs show a 

message (symbols and words) outlined by either fibre-optic cables (illuminated by 

quartz halogen lamps) or light emitting diodes (LEDs) placed on the front panel of 

the sign. The signs remain blank when not activated by a vehicle. The main types of 

signs used are either speed enforcing or warning (example, of a hazard) (Winnett and 

Wheeler, 2002).    
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2.1.3 Why do people speed 
There are different views expressed about why people speed. Research (Corbett and 

Simon, 1999) has shown that though many drivers recognise the danger posed by 

high speed they think they are in control when they themselves drive fast and thus 

they will not be harmed. Others believe they are better than an average driver and 

less likely to get involved in an accident as a driver than as a passenger (Corbett and 

Simon, 1999). Drivers who believe they are better than an average driver also hold 

the view that they are less likely to have an accident in comparison to other drivers. 

They also believe the roads will be safer if others drove like them with fast drivers 

believing they are less likely to have an accident than slower drivers (Finn and 

Bragg, 1986; Corbett and Simon, 1999; Horswill and McKenna, 2005; Comte, 

Wardham and Whelan, 2000; Warner, Ozkan and Lajunen, 2010).  

The reasons behind drivers speed have been grouped into five factors; inattention, 

thrill, time pressure, disdain of driving and ego gratification by a research study 

conducted by Gabany, Plummer and Grigg (1997). It is worth noting that the sample 

used in this study comprised college students with no other sample population to 

compare with. Ego gratification was highly regarded by males compared to females 

with younger people being more in favour of risk taking than older people. Time 

pressure, inattention and disdain of driving were mostly agreed upon by females. 

These factors were identified by the students as what they believed were the reasons 

for people exceeding the speed limit and not necessarily their reasons for exceeding 

the speed limit. 

A review of some 40 studies showed a positive relationship between sensation 

seeking and risky driving (Jonah, 1997). Paradoxically some car manufacturers 

display speed as a key performance feature or a higher standard of sporting 

performance and it is of no surprise that the number of people watching the Formula 

One motor racing show keeps increasing. It was reported that the biggest innovation 

introduced to the Formula One racing in 2009 was derived from the KERS (Kinetic 

Energy Recovery System) technology for capturing and storing the car’s braking 

energy instead of wasting it as heat (The Economist, 2009) - the idea being that 

racing drivers will be able to make use of the energy stored to deliver quick bursts of 

speed for overtaking, making the sport more entertaining. During the 2010 FIA 



 

10 

 

Formula One World Championship the total global television audience was 527 

million people in comparison to 516 million people in 2009 making it one of the 

most watched television sports programme and clearly showing the increasing thrill 

speed offers to people (Formula1, 2011).  

Tranter and Warn (2008) investigated the relationship between interest levels in 

motor racing, speeding attitudes and speeding violations on public roads. Of about 

5000 questionnaires distributed randomly to households in Queanbeyan, Australia a 

return yield of 524 was realised. The focus of the study was on mature drivers, aged 

above 25 years and had 2 or more years of driving experience. The final analysis 

sample obtained was 478 respondents with results revealing that the level of interest 

in motor racing is significantly related to speeding attitudes.   

In another instance (Kanellaidis, Golias and Zarifopoulos, 1995) 207 fully completed 

questionnaires in the absence of an interviewer were obtained from a random choice 

of drivers. Male and female drivers aged 18 to 68 with driving experience ranging 

from 1 to 42 years and education ranging from elementary to university was 

represented in the study. The main reasons identified by respondents for speeding 

include being in a hurry, desire to show off to other people, underestimation of the 

risk of speeding and over estimation of driving abilities.  

2.1.4 The contribution of speed to road accidents 
Road accidents do not just happen but result from a number of factors. These factors 

have been grouped as Road user, Vehicle and Road environment (O’Flaherty et. al., 

1997). Of these factors, the human element of the road user contributes to about 95 

percent of road traffic accidents of which speed is a causative factor.  

The road user factors are classed as impairment, errors in perception, skills 

deficiency, and execution manner. The road environment factors involve adverse 

road design, unexpected obstructions, deficiency in road furniture or markings and 

adverse environment. Vehicle factors involve those due to a deficiency in keeping up 

with regular maintenance of the vehicle by the user. 

The likelihood of being involved in a road accident is linked to the vehicle speed 

(McKenna, 2005). Most studies have indicated a clear relationship between speed 

and road accidents with the severity increasing as speed increases – as a general rule, 
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it has been shown that there is a 5 percent increase in accidents resulting from a 

1mile/h increase in average speed (McKenna, 2005; Taylor, Lynam and Baruya, 

2000). At a given road it has been shown that crash rate increase as vehicle speed 

increases (Aarts and Schagen, 2006). This can possibly be further explained in 

relation to the common association between kinetic energy ‘K’, mass of the object 

‘M’ and velocity or speed ‘v’ of the object given as K=1/2(Mv2). Assume the object 

in this case to be the vehicle. In any collision, kinetic energy is released due to the 

speeds involved and it can be argued that at high speeds the reaction time to 

environmental changes is reduced requiring greater stopping distance and thus leads 

to increased severity of a road accident.  

Schemes with vertical speed deflection measures have recorded a 44 percent 

reduction in personal injury accidents whereas sites with safety cameras recorded a 

22 percent reduction (Hirst, Mountain and Maher, 2005; Mountain, Hirst and Maher, 

2005). Mean speeds, 85th percentile speeds and the percentage of vehicles exceeding 

the speed limit are normally reduced but the difficulty usually lies in reducing the 

speeds of drivers who continually speed (Hirst, Mountain and Maher, 2005; Hirst, 

Mountain and Maher, 2005).  A 1km/h reduction in vehicle speed has also been 

shown to lead to a 3 percent reduction in accident risk meaning not only does speed 

contribute to the severity of road accidents but also to the risk of being involved in 

the actual accident (Finch et al., 1994). Hauer (1971) developed a relationship 

between observed accident involvement rates on rural highways for 100 million 

vehicle-miles travelled and varying travel speeds. The study showed the initial 

reduced probability of being involved in an accident with increasing travel speed. 

The lowest probability point was reached in a u-shaped curve but beyond the lowest 

point on the curve, any more increase in vehicle travel speed resulted in an increased 

rate of accident involvement.  

Elvik, Christensen and Amundsen (2004) carried out a number of studies trying to 

understand and establish the relationship between speed and road traffic accidents. 

This has been known as the Power model which makes use of a meta-analysis to 

provide approximations of how changes in speed influence road accident and road 

users’ injury severity numbers using a power function. A power function is a 

mathematical equation or function relating two variables to each other by raising 
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values of one of the variables to a power in order to obtain values for the other 

variable (Elvik, Christensen and Amundsen, 2004).  For example the relationship for 

fatal accidents was given as shown in equation 1 with an exponent of 4 proposed. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎 𝐹𝐹𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎 𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎

 =  
𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 𝐹𝐹𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎4

𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑎𝑎𝑎𝑎4
 

                   …………….Equation 1 
 

In an attempt to evaluate the validity of the Power Model some inconsistencies were 

found. This required the model to be reformulated such that the various levels of 

accident or injury severity did not overlap but instead treated as mutually exclusive 

categories. Despite the limitations associated with the study it was shown that a 

strong and consistent statistical relationship existed between speed and road safety 

such that an estimated 10 percent reduction in the mean speed of traffic results in a 

37.8 reduction in the number of fatalities. Elvik (2009) later provided an updated 

analysis of the relationship between speed and road accidents. The findings differed 

from the original study with regards to first the exponents which were found to differ 

depending on the initial speed such that two new versions of the Power model were 

developed. One model applied to urban and residential areas and the other to rural 

roads and freeways. The second finding was that the exponents were adjusted with a 

tendency to become smaller over time indicating that the effects on speed also 

become smaller. Despite these findings one thing that stood out from all these studies 

was that speed is a very important risk factor in accident occurrence and the severity 

of injury sustained. A more recent study by Elvik (2013) attempted to reanalyse the 

Power Model by fitting exponential functions to data points. Changes in speed and 

accidents were sorted in groups of 10km/h depending on the initial speed. Even 

though the exponential function and the power function fitted the data almost equally 

well, a clear-cut distinction was found between the functions especially at high 

speeds. Generally, the analyses indicated a stronger support to the use of an 

exponential function than the power function with the exponential function 

indicating that the effect on accidents from a given relative change in speed is 

greatest when initial speed is highest. These studies showed (Elvik, Christensen and 

Amundsen, 2004; Elvik, 2009; Elvik, 2013) that speed plays a significant role in road 

traffic accidents. 
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2.1.5 The contribution of speed to pedestrian fatality  
Pedestrians are identified as the most vulnerable road users in most countries 

globally with a relationship existing between vehicle speeds and their rate of 

involvement in accidents and injury outcome (Peden et al., 2004).  

In UK, the 2010 road accidents report (Department for Transport, 2010) identified 

pedestrians as the most vulnerable road users accounting for 405 deaths, a reduction 

compared to the 2009 figure of 500. The problem of pedestrians being classed as 

vulnerable road users has for a long time been identified in literature. Ashton and 

Mackay (1979) set the scene and drew light on the relationship between vehicle 

speeds and pedestrian injuries. It was noted in the study that the speed distribution on 

impact from the front of a vehicle was dependent on the severities of the injuries 

sustained. Taking into consideration the design of cars in the 1970s, pedestrians hit at 

impact speeds less than 30km/h mainly sustained slight injuries with speeds above 

30km/h mainly causing non-minor injuries. At speeds ranging from 50km/h to 

60km/h injuries sustained varied from survivable to fatal. Figure 1 shows the 

cumulative impact speed distributions for pedestrians struck by the front of cars. For 

all casualties, the 50th percentile impact speed varied from 20 to 25km/h with non-

minor injuries having the same percentile speed hovering around 35km/h. At the 90th 

percentile impact speed, all casualties record a speed of 40km/h, 50km/h for non-

minor injuries and 65km/h for fatalities.  

 

Figure 1 Cumulative impact speed distributions for pedestrians struck by the front of 
cars or car derivatives (Ashton and Mackay, 1979) 
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Some differences have been noted in other literature since the studies carried out by 

Ashton and Mackay (1979). Investigation by Rosén and Sander (2009) into 

pedestrian fatality risk as a function of car impact speed showed a much lower 

fatality risk than was generally shown in literature. This was explained to be a result 

of sample bias towards severe injury accident by earlier works. However a strong 

influence on impact speed was obtained since fatality risk at 50km/h was more than 

twice as high as the risk at 40km/h and more than five times higher than the risk at 

30km/h. These results were obtained from a sample of 490 adult pedestrians aged 15 

to 96 years. Adults were of particular interest in the study as there was the need to 

distinguish adult pedestrian fatality risk from child pedestrian fatality risk due to the 

anatomical and biomechanical differences observed in children and adults as 

reported by Tarriére (1995) (in Rosén and Sander (2009)). Figure 2 below shows the 

relationship between fatality risk and impact speed for adults with the dotted curve 

giving an indication of the 95th per cent confidence limits.  

 

Figure 2 Fatality risk as a function of impact speed for adult pedestrians hit by the 
front of a passenger car (Rosén and Sander, 2009) 

 

A review of published literature up to and including the year 2009 on pedestrian 

fatality risk as a function of car impact speed was carried out by Rosén, Stigson and 

Sander (2011). In all, 11 relevant literatures were identified. Consistently running 

through all the literature was the fact that fatality risk increased monotonically with 

the impact speed of the car but absolute risk estimates varied considerably. Another 

striking feature noted was that almost all the data sources used in studying pedestrian 
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fatality risk was made up of a higher percentage of fatalities in comparison to the 

corresponding national pedestrian statistics introducing a phenomenon of sample 

bias. Pre-2000 studies used direct analyses of data which had a huge bias towards 

severe and fatal injuries resulting in an overestimation of fatality risks. On the other 

hand it was noted that post-2000 studies made use of less biased data or adjusted for 

bias and though it revealed a steep increase of risk with impact speed the risks 

estimated were much lower than had been previously reported (Rosén, Stigson and 

Sander, 2011).  Even though the level of pedestrian fatality risk as a function of car 

impact speed has been shown to be much lower than previously envisaged in the 

older literature, there is one common theme that runs through all these literatures 

being that a relation exists between pedestrian fatality risk and car impact speed. 

2.1.6 The contribution of speed to car occupant fatality  
In Great Britain, car occupants have remained the largest road user group in each 

casualty severity (Department for Transport, 2014) with cars making up 80 percent 

of traffic. In 2014, 45 percent of road deaths were car occupants rising by 1.5 percent 

in comparison with 2013. There was a 7.6 percent increase in the number of car 

occupant fatalities in 2014. In 2014, there was a 5.2 percent increase in the number 

of seriously injured car occupants in comparison with the 2013 figure.  

In January 1983, the use of seat belts by front-seat occupants of cars and light vans 

came into operation in Britain (Mackay et al., 1992) with the law aimed at reducing 

the national casualty figures. Mackay et al., (1992), investigated 120 fatal cases in a 

five year study period of cars less than six years old where at least one of the 

occupants being in either the front or rear of the vehicle died. In this study 83 percent 

of front seat occupants who used seat belts died. Results from the study indicates 

intrusion as a result of structural mismatch from large trucks in frontal collisions and 

the very high energies involved in car to car frontal collisions. The seat belt was 

unrelated to the mechanism of injury in 80 percent of the cases. There was frequent 

occurrence of abdominal injuries in fatally injured drivers as compared with 

passengers. Fatal head/neck injuries dominate as a major cause of death.  The sample 

was biased towards collisions resulting in occupant injury with the study focussing 

on fatally injured occupants.   
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Miltner and Salwender (1995), analysed 319 cases of seat belt restrained front seat 

car occupants (234 drivers and 85 passengers) from 241 vehicles involved in a car to 

car head on collision in Germany. The main factors contributing to occupant injury 

severity were the energy equivalent speed (EES) which represents the energy transfer 

in an accident, the change in velocity, the maximum deformation depth and the angle 

of collision. The results indicated fatal injuries to be expected in EES greater than 

50km/h with no occupant remaining uninjured above 60km/h. The position of 

occupants affected only the severity of head injury with drivers being more severely 

injured than passengers. These are consistent with the findings of Mackay et al., 

(1992). Generally, results from the study show that the severity of injury at all body 

locations and the total injury severity of front seat occupants is primarily determined 

by the dynamics of the accident and passenger tolerance to mechanical loading. 

A mathematical model was developed by Buzeman, Viano and Lövsund (1998) to 

estimate average injury and fatality rates in frontal car-to-car crashes for changes in 

vehicle fleet mass, impact speed distribution and inherent vehicle protection. The 

results revealed a possible 27 to 35 percent improvement in frontal crashes as a result 

of a 10 percent increase in fatality risk parameters which reflects significant 

improvement in inherent vehicle protection. A 10 percent impact speed reduction 

was obtained from a 40 percent safety improvement. The effects of vehicle fleet 

mass were not strong but found to depend on the average mass ratio of the fleet. The 

study noted a reduction in mass range would be advantageous.  With a uniform mass 

reduction of 20 percent, there would be a 5.4 percent increase in fatality rate. Impact 

speed reductions strongly improved traffic safety.  

The EU Directive 96/79/EC (1996) makes provision for a high level of protection to 

belted occupants of motor vehicles in Europe in the event of a frontal impact by 

introducing frontal impact test requirements including biomechanical criteria. 

EuroNCAP (European New Car Assessment Programme) also plays a significant 

role in the impact performance of cars. The tests are based on those developed for 

legislation by the European Enhanced Vehicle safety Committee (EEVC) for frontal 

and side impact protection of occupants of cars and for the protection of pedestrians 

hit by the front of cars (EuroNCAP, 2004). Cars manufactured from the mid 1990s 

onwards have shown an overall reduction in car occupant injuries from national 
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accident data in Great Britain (Frampton, Page and Thomas, 2006). Frampton et al., 

(2002) analysed national car to car crashes occurring in 1997 and 1998 and used it to 

estimate changes in mean casualty rates between cars manufactured from 1988 to 

1992 and 1993 to 1998. The use of only two years of data was to reduce the effects 

of any accident reduction measures. The outcome of the study showed a reduction in 

the casualty rate of newer cars with an 18 percent reduction in fatalities obtained. 

The killed/serious injury rate was reduced by as much as 15 percent. Taking into 

consideration that significant change to crash safety during the evaluation period was 

targeted at frontal crashes, it was assumed that the benefits obtained in injury 

reduction could have resulted from improved frontal crash protection.  

Frampton, Page and Thomas (2006) used a stratified random sampling method based 

on injury severity to assess accident cases for investigation. The study aimed to 

investigate the scope for further fatality reduction using passive safety improvements 

in frontal crashes.  The sampling considered crashes that involved towed cars less 

than 7 years old at the time of the accident in selected rural and urban roads in Great 

Britain. The Equivalent Test Speed (ETS) was used as the crash severity measure. 

ETS is computed on the assumption that deformation is caused by impacting a rigid 

barrier with the force directed through the centre of the crush area with the vehicle 

not being assumed to be brought to rest (Frampton, Page and Thomas, 2006).  

Results from the study showed no evidence in support of increasing crash test 

speeds. However, at least 27 percent of fatal drivers and 39 percent of all fatal front 

seat passengers have potential for survival given attention to older occupant’s chest 

injury tolerance and passenger compartment’s intrusion under 60km/h. When belted, 

fatally injured front seat occupants in frontal crashes with no significant overrun was 

considered an estimated survival potential for 49 percent of drivers and 60 percent of 

front seat passengers with improved passive safety was observed. The study suggests 

that targeting unbelted occupant protection could have additional benefit. Figure 3 

shows the distribution of crash severity for fatally injured belted drivers with airbags. 

A median ETS of 50km/h with a 32 to 65km/h interquartile range obtained. Results 

from the study showed 78 percent of driver deaths were obtained with an ETS below 

66km/h which is consistent with the EuroNCAP crash severity. With an ETS below 

60km/h, the study revealed that 68 percent died (consistent with the crash severity 
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for EU Directive 96/79/EC). Evidence from the results obtained was not immense 

enough to require raising of frontal crash test speeds specifically with the added 

suggestion for ‘stiffening’ of vehicle structures. The sampling method used in the 

study gives a bias towards serious injury crashes due to about 80 percent of serious 

and fatal crashes are included with the investigation of all fatal crashes in the sample 

areas studied. 

 

Figure 3 ETS Distribution for fatally injured belted drivers with airbags (N=41) 
(Frampton et al., 2006) 

 

Frampton, Page and Thomas (2006) were able to show that frontal crash fatalities do 

not always arise from crash conditions that are extraordinary. Many of the frontal 

crash fatalities arise from crash severities that are well below those examined with 

crash tests and thus there is scope to improve protection for fatal injuries using 

passive safety.   

2.1.7 Pedal cyclist as vulnerable road users  
The vulnerable road user group which comprises pedestrians, pedal cyclists and 

motorcyclists are excessively represented in casualty numbers taking into 

consideration the distance travelled by these. Pedal cyclists present a noticeable 

difference in casualties. Even though pedal cyclists have a similar fatality rate to 

pedestrians in terms of deaths per billion miles travelled (around 35 to 38 deaths per 

billion miles travelled), their overall reported casualties is very different. Pedal 

cyclists record a close rate to motorcyclists for casualties of all severities at more 
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than 6, 500 casualties per billion passenger miles (Department for Transport, 2014). 

Pedestrians however have a rate of 2.110 casualties per billion miles walked. With 

the exception of 2012 to 2013, the number of seriously injured pedal cyclists has 

increased every year since a low figure of 2,174 was recorded in 2004. This shows a 

growing issue with pedal cyclists casualties. The development of countermeasures to 

prevent crashes with through bicyclists on priority roads crossing a minor road at 

non-signalised intersections within built up urban areas was identified (Schepers et 

al., 2011). Speed reduction measures for drivers leaving or entering the main road 

was identified as the most effective measure to improve the safety of cyclists. 

However red coloured pavement and other markings were found to decline the safety 

of cyclists.  

Morris et al., (2013) assessed the impact of current and upcoming Intelligent 

Transportation Systems (ITS) applications on the safety and mobility of vulnerable 

road users.  The majority of cyclist accidents were found to occur in urban areas on 

relatively low speed limit roads. Also most cycling accidents happened at 

junctions/intersections.  

2.2 Factors influencing vehicle speed 

2.2.1 Introduction 
A number of factors come to play to influence a vehicle’s speed and for that matter a 

driver’s choice of speed on the road. Various researches have been carried out in an 

attempt to identify these factors. Figure 4 below summarises the findings of 

Wahlgren (1967) on the general groups of factors influencing vehicle speed.  

 

In this chapter a literature review was carried out on each of the factors shown in 

Figure 4. Some of the studies carried out on these factors are quite dated but it is 

important to consider them in order to have a broader perspective of investigations 

carried out to date on various factors identified to affect speed. Taking into 

consideration the availability of data and the extent of influence of these factors on 

road traffic accidents, it is worth stating that some of the factors identified will not be 

included in the accident prediction model to be developed in chapter 5. 
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Figure 4 Factors influencing vehicle speed (Wahlgren, 1967) 

 

In identifying the influence of risk on road traffic accident deaths, Smeed (1949) and 

Smeed (1972) derived a formula to calculate the number of road traffic accident 

deaths in a country (D) based on the number of licensed motor vehicles (N) and the 

population (P). The study was based on 1938 data for 20 countries and is given in 

equation 2 as  

D = 0.003(NP2)1/3             ………………Equation 2  
This formula into road traffic accidents was basic and did not include other factors 

such as the road characteristics. After these initial works, other studies have evolved 

taking into consideration the influence of engineering, economics and policy on road 

traffic accidents. The use of laws is another tool applied in countries to contribute to 

road safety improvement.  

Bjørnskau and Elvik (1992) used a game theory model to understand the relationship 

between road user behaviour and police enforcement on road safety. While some 

researchers focus on identifying what measures are effective at reducing road traffic 

accidents, others have tried to establish the causative factors and establish trends in 

road traffic accidents.   
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Other researches have looked at using statistical or empirical approaches to make 

deductions about road accident causation seeking to unveil ‘myths’ about the 

mechanics of accident causation. In an attempt to explain the mechanism of road 

traffic accident causation, Elvik (2006) revealed some statistical regularities that 

determine the shape of the relationship between risk factors and accident occurrence 

referring to them as “laws of accident causation”. The laws proposed by Elvik (2006) 

are: ‘The universal law of learning’ which states that the accident rate per unit of 

exposure will decline as the amount of exposure increases. ‘The law of rare events’ 

states that the more rarely a certain risk factor is encountered the larger its effect on 

accident rate. ‘The law of complexity’ states that the more units of information per 

unit of time a road user must attend to, the higher becomes the probability that an 

error will be made and finally ‘The law of cognitive capacity’ which states that the 

more cognitive capacity approaches its limits, the higher the accident rate. Even 

though this study by Elvik (2006) does not provide a lot of empirical data to support 

his reasoning, it does provide some useful explanation to the reasons behind factors 

affecting road traffic accidents and it makes way for more statistical analysis to 

validate these laws. 

In the development of the study by Elvik (2006), Davis and Swenson (2006) applied 

a causal model to three freeway rear-end collisions. This model compared what 

happened to what would have happened had the supposed cause been absent. One of 

the findings from this study revealed short following headways by the colliding 

drivers as probable causative factors in the collisions.  

2.2.2 Road Conditions 

2.2.2.1 Road curvature and infrastructure  
Horizontal curves have an effect on road safety and especially on two lane rural 

roads due to increased speed of driving along these curves (Johnston, 1982; 

Bhatnagar, 1994). Increasing the degree of horizontal curvature increases the number 

of accidents (Haywood, 1980; Johnston, 1982; McDonald, 2004) with highways 

having single sharp curves in combination with long tangents and flat curves creating 

situations which are often hazardous. Radius of curves less than 600 metres have 

been found to be over represented in road accidents (Choueiri and Lamm, 1987; 

Johnston, 1982) with enough evidence also suggesting that horizontal curve radii less 
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than 400 metres contribute to road accidents. In the case of single vehicle accidents, 

there is a 34 percent increase in accident frequency per sharp curve per kilometre 

(McDonald, 2004). A sharp curve was defined as one marked with a chevron and/or 

curve warning sign. The definition given for sharp curve was vague but it did serve 

as a guide to the authors for assessing the data.  

There is however some argument among researchers that operating speeds are 

affected by the characteristics of the preceding section of the road (McLean, 1979; 

McLean, 1981). Research has produced speed prediction models for individual 

curves with these models found to be simple and possess enough predictive power 

with R2 values ranging from 0.75 to 0.95 (McLean, 1981).  

Among the other important parameters used in regression equations for predicting 

operating speeds on horizontal curves are degree of curvature, curve radius, length of 

curve, deflection angle, cross section and superelevation. Curve radius was a widely 

used parameter since it is considered the most important parameter in obtaining 

operating speeds along horizontal curves (Bennett, 1994; Abdul-Mawjoud and Sofia, 

2008). Other studies have also shown that the 85th percentile speeds on horizontal 

curves can be predicted in combination with parameters such as curve radius, 

superelevation, deflection angle and length of curve (Kadiyali et al., 1981; Lamm 

and Choueiri, 1987; Krammes et al., 1995). 

In another study based on passenger vehicles, there were 28 sites used to develop the 

speed prediction model and 20 other sites used to validate it for horizontal 

alignments of rural two lane highways in northern Iraq (Abdul-Mawjoud and Sofia, 

2008). The regression models developed to predict the 85th percentile speed was also 

based on the geometry of the curves with the approach speed on the preceding 

tangent being based on various gradients. This study used 4 independent variables 

which were 85th percentile approach speed, radius, deflection angle and 

superelevation. With the application of data from 20 validation sites to the four 

individual equations developed for different ranges of gradient it was found that the 

mean absolute percent error in predicting the 85th percentile curve speed ranged from 

7 to 9 percent indicating a reasonable degree of precision of the model. 
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The curvature change rate of single curves (CCRs) was identified to be highly 

successful at explaining the variability in operating speeds and accident rates (Lamm, 

Psarianos and Mailaender, 1999; Charlton and dePont, 2007) and it expresses CCRs 

in gon/km5 (gon is a measure of angle and there are 400 gon in a circle in comparison 

to 360 degrees or 2π radians). For multiple curves, a curve radii ratio was the 

measure employed and it was given as a ratio of the curve radius to the radius of the 

immediately preceding curve. Ratios greater than 0.8 had relatively minor effect on 

crash rate. For ratios less than 0.8 the crash rate increased as the ratio decreased and 

rose rapidly for values less than 0.2. 

The road infrastructure as a parameter has been identified to impact on road traffic 

accidents. Shankar, Mannering and Barfield (1996) used a negative binomial model 

to establish the effect of weather and geometric parameters on road traffic accidents. 

The model suggests that effort should be taken to avoid steep grades and horizontal 

curves with low design speeds in areas with adverse weather. As an example the 

study revealed that removing all horizontal curves with design speed less than 96.5 

kilometres per hour on a roadway section experiencing at least 5.1 cm of snowfall 

one or more days in a month can reduce the monthly accident frequency by 47.3%.   

Milton and Mannering (1998) used a negative binomial regression to isolate the 

effects of various highway geometric and traffic characteristics on annual accident 

frequency for the state of Washington, USA. Results from this study indicate 

accident frequency and exposure to accidents increase as the length of road section 

increases. Horizontal curves with more space between them had a tendency to 

increase accident frequency. An increase in horizontal curve radius decreases the 

number of accidents and smaller tangent lengths preceding a horizontal curve were 

found to lower the frequency of accidents. Also, road widths less than 3.5m were 

found to contribute to a reduction in accident frequency. Haynes et al. (2008) 

investigated the influence of road curvature on fatal crashes in New Zealand and 

found no evidence that frequently curved roads had more crashes than elsewhere 

supporting an earlier finding by Milton and Mannering (1998). The number of 

junctions per kilometre was found to have a negative association with crash rate and 

this was found to be strongly associated with urban settings. One of the limitations 

identified in the study by Haynes et al.(2008) was the small numbers of data (4058 
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fatal crashes) used for the analysis since the statistical power of the study was limited 

given that the data was distributed onto 73 territorial local authority roads.  

Noland (2003) used data from 50 states in the US over 14 years to analyse the effects 

of road infrastructure improvements on traffic related fatalities and injuries while 

controlling for other factors known to affect safety in general. Results from the 

negative binomial regression model did not confirm the hypothesis that infrastructure 

improvement effectively reduces total fatalities and injuries. In a later study, Noland 

and Oh (2004)) were still unable to support the hypothesis that changes in road 

infrastructure and geometric design have benefits on road safety in terms of road 

fatalities and reported accidents. They however were able to deduce that an increase 

in the number of lanes was linked to both an increase in traffic-related accidents and 

fatalities. Also an increase in lane width was found to be linked with an increase in 

fatalities with an increase in outside shoulder width contributing to a decrease in 

accidents.  

Navin, Zein, and Felipe, (2000), Peréz (2006) and Gomes and Cardoso (2012) 

revealed the association between certain types of improved road infrastructure and 

road traffic accidents. Navin, Zein and Felipe (2000) investigated the impact of road 

safety engineering on whiplash injuries in British Columbia, Canada. The study 

revealed that simple and affordable solutions such as enhancing signal visibility 

compared to the more expensive remedies such as the geometric upgrades at 

intersections were found to cost effectively reduce the frequency of rear end 

collisions. Peréz (2006), investigating the effects of four engineering treatments on 

road safety found that highway upgrading had a positive and significant impact on 

safety with the updating and improvement of traffic signing, repainting of road 

markings and pavement resurfacing showing no significant impact on safety. In a 

similar study conducted by Daniels et al. (2010) in Belgium, results indicated no 

effect of additional road marking on driver speed.  Gomes and Cardoso (2012) 

revealed that the application of low cost engineering measures on a multilane road in 

Portugal showed a 10% reduction in the expected annual number of personal injury 

accidents. There was also a 70% decrease in the expected annual number of head on 

collisions and a 26% reduction in the expected annual frequency of accidents 

involving killed and seriously injured persons. Even though finding by Gomes and 
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Cardoso (2012) are similar to those of Navin, Zein and Felipe (2000), the former 

provided expected savings and not actual savings which makes it difficult to compare 

results from both authors.  

Altering the infrastructure was another subject investigated by a number of 

researchers to find its effect on improving road safety. De Brabander, Nuyts, and 

Vereeck (2005) assessing the effects of roundabouts observed that roundabouts tend 

to be most effective at intersections of a main road with a high speed limit (90km/h) 

and an adjacent road with a lower speed limit (50km/h or 70km/h). Later, De 

Brabander and Vereeck (2007) in a study into the effectiveness of roundabouts in 

Flanders, Belgium built between 1994 and 2000 found that roundabouts were not 

always effective at improving road safety. Haynes et al. (2007) used geographical 

information systems to generate indicators of average road curvature from a road-

network in England and Wales at the local authority district level. These indicators 

included number of bends per kilometre, the proportion of straight road lengths, the 

cumulative angle turned per kilometre, the ratio of road distance to straight distance 

and the mean angle of each bend. A negative binomial regression analysis was used 

to establish the relation between each of the road curvature indicators and the number 

of fatal, serious and slight collisions. It was found that collision numbers were 

negatively related to road curvature with the cumulative angle being most strongly 

related to fatal road crashes. A 1° per km increase was associated with approximately 

0.5% reduction in crashes. A weakness identified in this study was the use of district 

averages which did not account for relationships associated with road type within 

districts. Mountain, Fawaz, and Jarrett (1996) used Generalized Linear Modelling 

(GLM) to develop regression estimates of expected accidents for six highway 

categories while improving the estimates obtained with Empirical Bayes by 

combining them with accident counts. It was found that accidents on highway 

sections were a non-linear function of exposure and minor junction frequency.  

Berhanu (2004) used Poisson and negative binomial regression methods to develop 

accident predictive models based on data from arterial roads in Addis Ababa, 

Ethiopia. Findings from this study indicated a decrease in road curvature results in 

decreased accidents. A possible explanation is that in urban environments, traffic 

speed is likely to be low and this allows for more driver reaction time to reduce 
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speed on curved sections of the road and have better control of the vehicle. The study 

by Berhanu (2004) also recognised that drivers tend to speed on straight sections of a 

road than within bends so there is the possibility of accident risk being reduced at 

areas of increased road curvature. The relationship between lane width and the total 

number of accidents on undivided roads was found to be significant with improved 

safety benefits of lane widening realised for two-lane and four-lane undivided roads.   

From the models discussed above, it is clear that a relationship exists between 

vehicle speeds and road curvature with various levels of statistical significance 

achieved between road curvature and vehicle speeds. As mentioned by Noland 

(2003) and Noland and Oh (2004), the positive effect of infrastructure improvement 

still remains unclear and more research is needed at the local (single road segment) 

level and area wide level.  

2.2.2.2 Gradient 
Even though road gradient is known to have an effect on vehicle speeds, the effects 

described by researchers are varied. In one study, it was found that the 85th percentile 

speed V85 was not varied on downgrade sections when average speeds decrease 

(Gombard and Louah, 1986). On the other hand another study showed that average 

speeds significantly increase downgrade (Yagar and Van Aerde, 1983). Both studies 

however pointed out that speeds decrease on upgrades while other studies indicate no 

significant effect of gradient on speed (Reinfurt et al, 1992). These studies show that 

there is an effect of gradient on vehicle speeds with the level of effect varying. 

2.2.2.3 Sight distance 
Every driver must be able to see ahead to an appropriate distance when driving in 

order to be able to identify any hazards, take the appropriate action and avoid 

crashing into an obstacle. Sight distance is one of the fundamental design parameters 

that should be satisfied in every geometric design. For design purposes when 

discussing sight distance in United Kingdom (UK) stopping sight distances and full 

overtaking sight distances are considered (Highways Agency, 2002).   

Speed is a factor that has been widely acclaimed to have an impact on sight distances 

(Harwood, Mason and Brydia, 1999). The stopping sight distance is the distance 

required for a driver to stop a vehicle travelling at design speed based on design 

conditions. Passing sight distance is described as the distance required by a vehicle 
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driver on a two-lane road to execute a normal passing manoeuvre based on design 

conditions and design speed. Finally, the term decision sight distance is the distance 

required for a driver to detect an unexpected or difficult-to-perceive condition, 

recognise the condition, select an appropriate manoeuvre and complete the 

manoeuvre based on design conditions and design speed (Washington State 

Department of Transport, 2010).  

The stopping distance is made up of the distance travelled during perception and 

reaction and the distance taken to bring the vehicle to a halt. In design, the perception 

and reaction distance is usually given as the distance travelled in 2.5s at the design 

speed. In UK, the stopping sight distance is measured from a minimum driver’s eye 

height of between 1.05m and 2.00m to an object height of between 0.26m and 2.00m 

both above the surface of the road and checked in both the horizontal and vertical 

plane (Highways Agency, 2002). In urban areas where there is likely to be more 

distractions from objects, the object height can be increased to 2 ft (0.61m). Stopping 

sight distance is influenced by both the vertical and horizontal curvature of the road. 

Vertically, the stopping sight distance is influenced by the presence of crest and sag 

curves. Computation of sight distance depends on factors such as the reaction time of 

the driver, vehicle speed, efficiency of brakes, frictional resistance between the tyre 

and the road surface and the gradient of the road (Highways Agency, 2002).   

A study was conducted to establish the relationship between design and operating 

speeds at crest vertical curves with limited sight distance. 3,500 paired speed data 

(speeds at control and crest sections) together with geometric data of 36 sites in 3 

states in the United States of America was used (Fambro, Fitzpatrick and Russell, 

2007). For the range of conditions studied it was observed that both the 85th 

percentile speed and the mean operating speeds were above the design speeds of the 

crest vertical curves. Mean reductions in speed between the control and crest sections 

were found to increase as the available sight distance was decreased.  

Leong (1968) measured free speeds at 31 locations on sections of two-lane two-way 

rural highway in New South Wales, Australia between 1963 and 1967. Sight distance 

was found to affect free speeds with an increase in sight distance causing an increase 
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in free speeds. An increase in 2.4km/h per 100m of sight distance for mean car 

speeds was obtained. 

Yagar (1984) estimated highway speeds as a combined function of both traffic 

volumes and the geometric and environmental conditions of the highway. The study 

was carried out on a 2-lane rural highway in Ontario, Canada and involved 6000 

sample points from 37 different environmental locations consisting each of a 1500m 

stretch upstream. Factors used included road curvature, gradient, lane width, land 

use, extra lane, access, shoulder width to nearest obstruction, sight distance, 

centreline marking and speed limit. Results from this study revealed that the only 

factor found not to be clearly statistically significant was the slope of the road. This 

was further explained to be probably due to the limited range of that factor in the 

data set used. Factors found to be statistically significant on speeds were traffic 

volumes, direction and type of vehicles, existence of driveway access to adjacent 

land use, access from other highways, speed limit, existence of extra lane and 

grade/slope.  Due to the generality of the models developed, it was advised not to use 

either traffic volumes or geometric/environmental properties outside the range of 

values for which the models were calibrated for. Consideration of other locations and 

slopes with the possibility of testing the model outside Ontario, Canada will be 

useful to gaining confidence in the results.  

2.2.2.4 Road Width 
Free speeds were found to be affected by shoulder and pavement widths with an 

increase in pavement width and shoulder width increasing free speeds. This 

observation was noted in a study in New South Wales, Australia of free speeds 

measured at 31 locations on sections of two-lane two-way rural highways between 

1963 and 1967 (Leong , 1968). 

Widths of road lanes and road shoulders have been found not to be directly related to 

design speed but do affect vehicle speeds (American Association of State Highways 

and Transportation Officials (AASHTO), 2001). Where lane widths have been found 

to influence speeds, the range of possible lane widths was found to be narrow and 

suggested it was better to produce relationships based on the lane and carriageway 

widths being considered (Lamm and Choueiri, 1987). An investigation into the 

possibility of reducing driving speeds by using lane delineation on roads of width 
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3.6, 3.0 or 2.5m in Australia showed driving speeds to be reduced on the narrowest 

width road and further reductions were obtained on straight sections of road that had 

centre marking with painted hatching (Godley, Triggs and Fildes, 2004). To avoid 

bias from the additional lave width used in conjunction with the control centreline, 

Godley, Triggs and Fildes (2004) all road centre marking main effect and interaction 

contrasts were averaged across only the narrow (2.5m) and medium (3.0m) lane 

widths.  

2.2.3 Traffic Conditions 
A Poisson regression model was used in analysing data for counties in four countries, 

(Denmark, Finland, Norway and Sweden) for the effects of factors such as 

randomness, exposure, weather, daylight and speed limits on road accidents 

(Fridstrøm et al., 1995). Randomness and exposure accounted for 80 to 90 percent of 

the observable variation in the data sets with the relationship between exposure and 

injury accidents appearing to be proportional. Traffic volume was considered an 

important factor which when decreased would result in a substantial reduction in 

accidents. In the following subsections the effects of different traffic conditions on 

road traffic accidents are discussed.  

2.2.3.1 Traffic flow and traffic density 
Traffic is one of the causative factors of road traffic accidents. Without traffic there 

will be no need to discuss road traffic accidents. It is thus useful to explore the 

characteristics of traffic and what it is about traffic that affects road traffic accidents. 

Typical characteristics of traffic are flow, density, congestion and speed. Since these 

characteristics are somewhat interlinked it is possible that an explanation into one 

can provide an insight into the others. The characteristics and how they affect road 

traffic accidents are discussed.  

The relationship existing between speed, flow and density is normally expressed as 

q= kῡ  where q is the traffic flow in vehicles per unit time, k is the traffic density in 

vehicles per length of road and ῡ is the mean speed in distance per unit time. As 

traffic flow increases, with limited capacity up to a defined point traffic congestion 

and delay set in resulting in speed reduction. This phenomenon is supported by Hau 

(1992) stating that traffic density determines speed and not vice-versa. Since traffic 

flow is a product of traffic density and speed, Figures 5 and 6 provide some 
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explanation into this phenomenon. The rectangular area shown under Figure 5 

equates to the traffic flow and is given in vehicles per hour. As traffic density 

increases, the speed of vehicles are initially kept at a stable maximum speed Smax due 

to the absence of the inflow of more vehicles which will increase density and cause 

congestion. This maximum speed Smax is maintained for a period of time. As density 

increases on the road segment, vehicles are unable to maintain their maximum speed 

Smax and this is the point at which vehicle speeds begin to fall resulting in congestion. 

Speeds continue to fall to a point at which the maximum density of traffic on the 

road leads to zero speed and maximum congestion.  

 

Figure 5 Speed-density curve (Hau, 1992) 
 

Figure 6 shows a similar phenomenon whereby vehicles travel at their maximum 

speed Smax and as traffic flow increases, speeds drop to a maximum flow level of 

Fmax referred to as ‘Engineering capacity’. At this maximum flow into the road 

segment vehicle speed begins to drop, density increases and congestion sets in as 

shown in the lower half of the speed-flow graph reverting to zero in Figure 6. 
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Figure 6 Speed-flow curve (Hau, 1992) 
 

Ceder and Livneh (1978) provided some understanding into the relationship between 

accident and average daily traffic on interurban road sections by fitting a power 

function model. The total accident density which was found to increase with an 

increase in average daily traffic (ADT) was a combined result of a sharp increase in 

multi-vehicle accidents, moderate decrease in single-vehicle accidents and a 

negligible effect on pedestrian accidents. These findings reported by Ceder and 

Livneh (1978) had been noted earlier by Belmont (1953). Later on, Ceder and Livneh 

(1982) extended their earlier investigation (Ceder and Livneh, 1978) into the 

relationship between road accidents and hourly traffic flow instead of ADT using a 

power function model with data over an 8 year period.  The reason for using hourly 

traffic flows was to provide a better understanding into the relation between 

accidents and traffic flow. A major finding from this study was the significant 

deterioration in single-vehicle accidents at the mid flow range (around 1000 veh/hr) 

which is somewhat intuitive.   

Ceder (1982) followed on with another study investigating the relationship between 

road accidents and hourly traffic flow using single and multi-vehicle accident rates in 

conjunction with free-flow and congested flow conditions. Under free-flow traffic 
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conditions, a U-shaped relationship was observed between the total accident rate and 

hourly flow curve. Where congested flow data was used which was often 

characterised by multi-vehicle accidents, accident rates were found to increase 

sharply with hourly flow.  

Martin (2002) investigated the relation between crash incidence rates and hourly 

traffic volume for French inter-urban motorways and found crash incidents to be 

lowest at traffic flow rates of 1000 to 1500 vehicles/h. Crash incidence rates 

increased steadily as traffic increased on 2 and 3 lane motorways to levels of 3000 

vehicles/h. The number of crashes was higher on weekdays for heavy traffic with no 

significant difference found between the number of daytime and night-time crashes 

irrespective of the traffic level. For a given level of traffic, no difference was found 

in crash severity by number of lanes or period in the week however, severity was 

found to be greater during the night when hourly traffic was light.  

In a study into the relationship between traffic flow conditions and the likelihood of 

traffic accidents by type of crash, Golob, Recker and Alvarez (2004) were able to 

show that the key traffic elements affecting safety are mean traffic volume and 

median speed as well as temporal variations in volume and speed. Hiselius (2004), 

using Poisson and Negative Binomial regression models indicated the importance of 

considering the differences between vehicle types in estimating the effect of traffic 

flow on accidents. Important information can be lost if no consideration is taken.  

When traffic was treated as homogeneous, accident rate decreased. However when 

cars were independently considered accident rate was found to be constant or 

increased while a decrease in accidents was observed with increase in lorries. Lord, 

Manar and Vizioli (2005) developed a predictive model to determine the statistical 

relationship between crashes and hourly traffic flow characteristics. Results show 

that predictive models making use of traffic volume as the only explanatory variable 

may not provide a true understanding of accidents on freeway segments. However, 

models making use of vehicle density and V/C (volume over capacity) ratio gave a 

better description of crashes occurring in either urban or rural settings. These 

findings suggest that traffic volume, vehicle density and the V/C ratio directly 

influence the likelihood and severity of a crash. Ivan, Wang and Bernardo (2000) 

estimated the Poisson regression model for predicting both single and multi-vehicle 
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highway crash rates as a function of traffic density and other land use factors. It was 

found that traffic intensity provided explanation into the differences in crash rates 

even when controlling for factors such as time of day and light conditions with 

differences occurring for single and multi-vehicle crashes. Due to the limited sample 

size of 17 sites and variable variability in the study it is advisable not to transfer 

findings to other sites with more investigation advised.     

Golob and Recker (2001) in a study into how accidents occurring on heavily used 

freeways in Southern California, USA relate to traffic flow, weather and ambient 

lighting conditions used linear and non-linear multivariate statistical analysis. It was 

found that the collision type had a strong relation to median traffic speed and to 

temporal variations in speed within the left and interior lanes. Accident severity had 

an inverse relation with traffic volume. While controlling for weather and lighting 

conditions, severity of accidents was found to be influenced more by the volume of 

traffic than by speed. Levine, Kim and Nitz (1995a) analysed the spatial patterns of 

1990 motor vehicle accidents in Honolulu, USA. Spatially, accidents were found to 

fluctuate dynamically in response to changing traffic patterns and volume.  

In another study by Levine, Kim and Nitz (1995b) a spatial lag model was developed 

to examine the zonal relationship of motor vehicle accidents to population, 

employment and road characteristics. The model was independently tested for each 

hour of the day, weekdays and weekends. Test results from the model indicate that 

the predictors of accidents fluctuate according to different trip generating activities 

and changes considerably over the day. It is worth noting that the method employed 

focused on neighbourhood and area characteristics and not just on the road system.  

2.2.3.2 Traffic congestion 
Traffic congestion is another factor that affects road traffic accidents.  Shefer (1994) 

hypothesised that a negative relation exists between road traffic accident fatalities 

and road congestion levels. The V/C ratio per unit length of road was used in 

defining the vehicle density in the study by Shefer (1994). The relation between road 

fatalities and vehicle density is shown in the bell-shaped curve in Figure 7. During 

stage I, with few vehicles on the road link the probability of an accident occurring is 

low. As the number of vehicles increase the number of fatalities also increases. For 

the initial part of Stage II, a steep slope is shown indicating an increasing rate of 
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change in total fatalities. This is because during this phase high speeds of travel can 

be accommodated on the link relative to the allowable travel speed. 

 

Figure 7 Relationship between road fatalities and vehicle density (Shefer, 1994) 
 

In the second half of Stage II, it can be seen that as vehicle density increases, road 

congestion occurs leading to a reduction in travel speed. The slope shown is flatter 

meaning that with an increase in traffic density total fatalities increase but at a 

decreasing rate. At a certain level of vehicle density and hypothesised fatalities, 

fatalities begin to decrease and this is depicted in Stage III of Figure 7. This 

hypothesis can be supported with the reasoning that with an increase in traffic 

density, congestion sets in, and vehicle travel speed decreases leading to a decrease 

in the number of road accident fatalities. The argument being put across in Stage III 

of Figure 7 is in agreement with the study by Martin (2002). The study revealed that 

light traffic volume is a safety problem as far as the severity and frequency of road 

traffic accidents is concerned. However, Noland and Quddus (2005) in a spatial 

analysis study of congestion and safety of roads in London found little evidence to 

support their hypothesis that traffic congestion may result in some safety benefits. 

Models developed for both congested and uncongested time periods did not provide 

any differences to lead to any firm conclusions. Lower casualties were observed at 

areas with higher minor road density whilst areas with higher A-road density had 
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more casualties. It was further explained to be the result of higher traffic levels on A-

roads and lower speeds on minor roads. However, results obtained for motorway 

density confirmed the hypothesis that congestion may be beneficial to safety.  

Uncongested periods showed an increase in serious injuries but there was no 

increased association with fatalities. The weakness in the proxies used for congestion 

was mentioned as a possible cause for the inconclusive results obtained from this 

study. This is because congestion can be localised to a great extent and it can be 

specific to a particular time of day so more precise definitions of time is required. 

Another reason to be attributed to the results obtained is that free-flow maximum 

speeds observed in the study area, London did not exceed 40mph (65km/h) which 

could have played a role since high speed study areas may display different results. 

In another study a spatial analysis approach was undertaken into the impact of traffic 

congestion on road accidents on the M25 London orbital motorway (Wang, Quddus 

and Ison, 2009). The study controlled for other factors such as curvature, gradient 

and number of lanes that may affect road traffic accidents. With other studies using a 

proxy in measuring congestion levels, Wang, Quddus and Ison (2009) sought to use a 

more accurate measurement for congestion. A series of Poisson based non-spatial 

and spatial models were used to take into consideration heterogeneity and spatial 

correlation effects. Results from the study indicated that traffic congestion had little 

or no impact on the frequency of road accidents. One limitation associated with the 

study was the lack of investigation into the effects of traffic congestion on road 

accidents on other roads connecting to the M25 motorway as there may be some 

spatial variations in congestion levels and on accident frequencies. 

2.2.3.3 Traffic speed 
Lave (1985) is reported to have said ‘Speed kills, slower is safer’ and went on to 

quote Schelling (1978) as saying “… the crucial element is often coordination. 

People need to do the right things at the right time in relation to what others are 

doing”. In the analysis by Lave (1985) of the effects of 55mph national maximum 

speed limit on motorists for six different types of high speed roads, the effects of 

limit-defying behaviour (speeding) and the absence of coordination (speed variance) 

on the fatality rate was measured using state cross-section data. No statistical relation 

was found between fatality rate and average speed. However a strong relationship 
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was found with speed variance providing some explanation to variance in speed 

being the accident causative factor and not speed itself.  

Johansson (1996) investigated the impact of lowered speed limit on the number of 

accident severities using Poisson and negative binomial count data models. The 

study showed that minor injury and vehicle damage accident numbers appeared to 

have reduced due to a reduction in speed limit on Swedish motorways. Aljanahi, 

Rhodes and Metcalfe (1999) in a study into the relationship between various 

measures of traffic speed during free flow conditions and accident rates for two 

different geographical locations in Tyne and Wear, UK and Bahrain found statistical 

correlation between mean speed and accident rate in Bahrain. Tyne and Wear 

showed a less significant statistical correlation for these parameters but instead a 

stronger relationship existed between accidents and the traffic speed variability. The 

study did not provide any further insight into what results would have been obtained 

if different accident severities had been considered. Various other researches have 

pointed at the effect speed has on the severity of accidents. Ossiander and Cummings 

(2002) analysing the effects of increasing speed limits on a rural freeway in the USA 

found speed variance not to have been affected by the increase in speed limit. Even 

though the fatal crash rate increased due to the increase in speed limit, the total crash 

rate showed little change implying that fatal crashes can result without necessarily 

having an increase in total crashes. One limitation found in the study by Ossiander 

and Cumming (2002) was that it did not consider the effect of spatial variation in 

vehicle speeds on the results obtained.   

Other studies have also tried to establish the relationship between speed and road 

traffic accidents. Taylor, Baruya and Kennedy (2002) investigated if there will be a 

change in accidents on a given road section assuming everyone drove faster than they 

usually do with all other factors remaining constant. 174 rural road sections with 

60mph speed limits across England were used for the analyses.  Results from the 

study showed the frequency of all injury accidents rose quickly with the mean speed 

of traffic. However, the study only considered 60m/h roads so much comparison 

cannot be made with other classes of roads with different speed limits. In another 

study by Taylor, Lynam and Baruya (2000) the frequency of road traffic accidents 

was found to increase with traffic speed and higher speeds showed a quick increase 
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in accident frequency. It is worth stating that results from the study relate to all injury 

accidents without differentiating between accidents involving different severities of 

injury.  

2.2.4 Road Environment 
The road environment must be taken into account when discussing factors that affect 

vehicle speeds. A study acknowledged AASHTO’s (American Association of State 

Highways and Transportation Officials) findings of drivers selecting their speed 

based on the road environment instead of an assumed design speed (Fambro, 

Fitzpatrick and Russell, 2007).  Free speeds were found to be affected by shoulder 

and pavement widths with an increase in pavement width and shoulder width 

increasing free speeds. This observation was noted in a study in New South Wales, 

Australia of free speeds measured at 31 locations on sections of two-lane two-way 

rural highways between 1963 and 1967 (Leong, 1968). The existence of driveway 

access to adjacent land use, access from other highways, grade/slope and the 

existence of an extra lane were found to have statistical significance on vehicle 

speeds in Ontario, Canada. This was calculated based on models developed for 

predicting vehicle speeds at the 10th, 50th and 90th percentiles. The study was limited 

by the lack of severe gradients on high-volume roads and the use of standard road 

widths (Yagar, 1984).   

Karlaftis and Golias (2002) showed that parameters such as geometric design and 

pavement condition are the most important factors having an effect on road accident 

rates. In the United States (US) about a third of highway fatalities result from single-

vehicle run-off into roadside features (Lee and Mannering, 2002). A test on the 

combined effect of three roadway elements; shoulder width, existence of guardrail 

and roadway geometry (curvature) on driving showed a significant effect of roadway 

geometry on driver speeds. However, only in the presence of a guardrail did shoulder 

widths have a significant effect on actual speeds, lane position and on perceived safe 

driving speed (Ben-Bassat and Shinar, 2011). In the absence of a guard rail, the 

shoulder width loses a lot of its advantages and impact on driving behaviour. The 

results also indicated that roadway geometry can be used for reducing driving speeds 

but it can also have negative impacts in maintaining a stable lane position in sharp 
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curves (Ben-Bassat and Shinar, 2011). Controlling road shoulder widths and the use 

of guard rails can be a safer way to tackle speed and lane position control.  

Graham and Glaister (2003) developed a spatial model to investigate the role of 

urban environment and its associated traffic generation characteristics on road 

pedestrian accidents. Pedestrian casualties were noted to occur more frequently in 

residential areas than in business areas. Abdel-Aty (2003) investigated factors 

affecting the severity of driver injury at multiple locations in Central Florida, USA. 

The study showed that in addition to other factors, dark lighting conditions and 

roadway curves were found to be associated with a high probability of causing 

injuries during a road traffic accident. Results also indicate that wherever the crash 

occurs, older, drivers, male drivers and those not wearing a seat belt have a greater 

probability of a severe injury. In addition to these, passenger car drivers, vehicles hit 

at the driver’s side and those who speed encounter higher injury severity levels. 

Eluru, Bhat and Hensher (2008) also examined pedestrian and bicycle injury severity 

levels in road traffic accidents and identified darker periods of the day as a 

contributory factor to higher injury severity. Some of the other variables found to be 

critical in influencing non-motorist injury severity levels are the speed limit of the 

road (higher speed limits lead to higher injury severity levels) and location of crashes 

(those at signalised intersections are less severe than those elsewhere). This study 

had a limitation of investigating non-motorised injury severity in crashes with a 

single motorised vehicle. Even though these types of crashes may be common, a 

study of other crashes will be informative.  

Khorashadi et al. (2005) investigated the differences between urban and rural driver 

injuries (both passenger-vehicle and large-truck driver injuries) in accidents 

involving large trucks (in excess of 10,000 pounds). The extent of the effect of 

variables found to be significant in both urban and rural models on driver severity 

outcomes varied remarkably. Results revealed the likelihood of a 68.7% reduction in 

severe/fatal injuries on rural area roads that had concrete median barriers. The results 

of the study suggested a complex relationship between road geometry, environmental 

conditions and the severity of driver injury during a road traffic accident.  
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Usman, Fu and Miranda-Moreno (2010) made use of three different models 

(Negative binomial model, generalised NB model and zero inflated NB models) to 

examine the relation between accident frequency during snow storm events and road 

surface conditions, visibility and other influencing factors while controlling for 

traffic exposure. It was shown amongst other things that poor road surface conditions 

was linked with higher accident frequencies on roads in Ontario, Canada. Also, air 

temperature and precipitation were found to have a statistically significant effect on 

accident frequency. These findings were confirmed in a later study by the same 

authors (Usman, Fu and Miranda-Moreno, 2012) showing a statistically significant 

effect of factors such as precipitation intensity, air temperature, wind speed etc. on 

winter road safety.  

2.2.5 Other factors  
Apart from the factors described so far in this chapter, other factors also contribute to 

the speed of vehicles and some of these are described in the following section. 

2.2.5.1 Weather 
Weather has been investigated by a few researchers as a factor having effect on 

speeds and accidents. This section presents the findings of some investigators.  

In a study of motorists’ speeds in wet weather as compared to dry conditions for two 

separate survey locations on the M4 motorway, South Wales in United Kingdom, 

one site had conventional asphalt surfacing while the other had porous asphalt 

wearing course (Edwards, 2002). It was found that drivers slowed down marginally 

in wet weather and although the speed reductions were statistically significant, it was 

found to be insufficient to compensate for the additional wet weather risks imposed. 

These marginal speed reductions were about 3 mph or 4.5 percent at the 85th 

percentile for mean speeds during wet conditions compared to dry weather 

conditions. A similar reduction of 3 percent was obtained for 85th percentile speed on 

porous asphalt surfacing and 4.3 percent reduction for dry conditions on the same 

surfacing type.  

In a similar study by the same researcher, the effect of three weather conditions (fine, 

rain and misty conditions) on driver behaviour was compared (Edwards, 1999). Spot 

speeds were recorded for 200 vehicles in the outside lane of the eastbound dual 2-

lane carriageway of the M4 Motorway in South Wales, United Kingdom. Speeds in 
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poor weather conditions were compared to those in fine weather conditions. A small 

but significant reduction in mean speeds for both wet weather and misty conditions 

was realised. The speed reductions achieved were insufficient to compensate for the 

increased hazard posed by inclement weather. In another investigation by the same 

author, the relationship between road accident severity and the weather was 

investigated for England and Wales (Edwards, 1998).  Findings indicated accident 

severity reduced significantly in rain compared with fine weather. Accident severity 

in fog showed geographical variation while accident severity in high winds was 

found to be inconclusive.  

In Calgary and Edmonton, Canada, accident risks following rain was investigated. 

Data for 169 rain events and over 15,000 accidents occurring during the years 1979 

to 1983 was used. It was found that the risk of an accident occurring in rainfall 

conditions was 70 percent higher than during normal conditions. The data suggests 

that accident risk returns to normal as soon as the rainfall stops notwithstanding the 

wet weather conditions remaining (Andrey and Yagar, 1993). Ivey et al. (1981) 

developed the Wet Weather Safety Index (WWSIe) using multiple regression 

technique to provide a prediction of wet accident rates as a function of traffic, road 

geometry and pavement surface characteristics. This Index was applied to 68 

highway segments in Texas, USA having accidents per year per mile with values 

ranging from zero to 40. It was noted that urban areas had much higher accident rates 

than rural areas but advised being careful of using the index for roads where specific 

remedial measures had been carried out. Edwards (1996) investigated weather related 

road accidents in England and Wales using spatial analysis. Results from this study 

showed a clear positive relationship between the presence of weather hazards and 

road accidents. This study however did not take into consideration other factors such 

as the type of manoeuvre being carried out, the age and years of driving experience 

etc. of the driver which can also influence an accident’s occurrence.  

Using negative binomial regression methods to investigate the impact of snowfall on 

road accident crash counts, Eisenberg and Warner (2005) used US traffic crash rates 

between 1975 and 2000. The study revealed that even though there were fewer fatal 

crashes on snowy days than on dry days, more non-fatal injury crashes and property 

damage-only crashes were noted on snowy days. The large sample size used in the 
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study allowed for the controlling of potential confounders. Keay and Simmonds 

(2006) were able to show the presence of rainfall to be a hazard for driving in a study 

into the association between rainfall and road accidents in a metropolitan area in 

Melbourne, Australia from 1987 to 2002. These findings are consistent with other 

researches by Kim et al. (2007), Brijs, Karlis and Wets (2008), Koetse and Rietveld 

(2009) and Jung, Qin and Noyce (2010) about the significance of inclement weather 

on the severity of road traffic accidents with road surface condition being the major 

contributory factor in winter road safety. Andersson and Chapman (2011) 

investigated the relationship between temperature and severe road accidents in the 

West Midlands, UK. The study showed that reducing road slipperiness can reduce 

accidents by up to 12% assuming accidents remain constant over time. The study 

also acknowledged that with continual improvements in vehicle technology and road 

safety the assumption is not likely to be true. Al-Harbi et al. (2012) studied the effect 

of meteorological conditions on road traffic accidents in Kuwait found that 

temperature during the fall, spring and winter seasons were the most significant 

meteorological conditions causing road traffic accidents. During summer wind speed 

was noted as the most significant factor causing road traffic accidents. 

Finally, in a review of methods proposed for measuring the added risk of road 

accidents in rainy weather conditions, two methods were applied with adjustments to 

data from Israel and the United States. Results indicated a substantial added risk of 

an injury accident in rainy conditions and it was found to be two or three times 

greater than in dry weather conditions (Brodsky and Hakkert, 1988).  The above 

review of weather on road accidents indicates that weather does have an effect on 

road traffic accidents. Unfortunately, the extent of influence of weather is not one of 

the factors that can be altered.  

2.2.5.2 Speed Restrictions 
Studies suggest that the use of devices such as Vehicle Activated Signs (VASs) and 

Speed Cameras to enforce speed limits can result in reduced speed violations and 

road accidents (Corbett, 1995). VASs are used to address problems associated with 

inappropriate speed at locations where conventional signing has proved ineffective. 

Inappropriate speeds include vehicle speed on approaches to hazards such as bends 

or junctions. VASs are supposed to complement fixed signs and should not be an 
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alternative to them. They are triggered to show a particular hazard or speed limit 

when drivers exceed a set threshold speed and can be accompanied by the message 

“SLOW DOWN”.  They can even warn drivers of a safety camera if they are 

exceeding the speed limit. An example is shown in Figure 8.  

 
Figure 8 ‘SLOW DOWN' sign 

 

Recent VASs display messages with the help of either fibre optic cables or light 

emitting diodes (LEDs) on the front panel of the sign. Different colours can be used 

to show different parts of the sign with an automatic dimmer in place to reduce its 

intensity of brightness at night. It remains blank when not activated by a vehicle. 

Current VAS types used are speed enforcing and hazard warning signs. VASs are to 

be used only where road traffic accidents are caused by vehicle speeding. They are 

particularly useful where speed cameras and other related signs are not cost effective 

or appropriate solutions. VASs do not record any data for prosecution purposes 

(Winnett and Wheeler, 2002; Department for Transport, 2003) and can be moved 

from site to site. However, interventions that do not involve identification and 

punishment of drivers exceeding speed limits have been shown not to be responded 

to well by drivers (Morrison, Petticrew and Thomson, 2003). One such way to 

counteract this problem is through the use of speed cameras.  

Speed cameras can be fixed (operated permanently from a roadside housing) or 

mobile (operated from a mobile vehicle parked by the side of the road). Although 

mobile cameras are flexible with regards to locations to which they can be deployed, 

they can however prove difficult to be resourced. The most common type of speed 

http://www.google.co.uk/imgres?imgurl=https://www.swarco.com/var/em_plain_site/storage/images/media/images/swarco-traffic-ltd/hazard-and-safety-warning/slow-down-vas/189154-1-eng-US/Slow-Down-VAS_200px.jpg&imgrefurl=https://www.swarco.com/stl/News-Events/News/News-Archive&h=220&w=200&tbnid=wSEGbWpfe73XrM:&docid=uNmMicLHgwR0kM&ei=bUe5Va-2NKnD7gaUrYz4Cw&tbm=isch&ved=0CC8QMygPMA9qFQoTCO-gsJGmgccCFamh2wodlBYDvw


 

43 

 

camera in use in countries is typically spot speed cameras and these have been shown 

to reduce vehicle speeds with up to 17 percent reduction in collisions obtained after 

introduction (Pilkington and Kinra, 2005; Champness, Sheehan and Folkman, 2005). 

Improvements realised from the deployment of speed cameras include a reduction in 

mean traffic speeds in comparison to posted speed limit levels with traffic speeds 

even declining in the absence of enforcement measures (Chen, Meckle and Wilson, 

2002; Keall, Povey and Frith, 2002). Crash and casualty data also indicates a 

significant reduction in estimated casualties per crash indicating fallen speeds.   

There is some overseas evidence to further suggest the usefulness of speed cameras. 

In Australia and New Zealand, speed cameras have produced up to 32 percent and 14 

percent reduction in urban and rural areas personal injury accidents respectively 

(Keall, Povey and Frith, 2001). An analysis of 10 studies of the effect of speed 

cameras in seven European countries found a 19 percent decrease in injury causing 

accidents (Elvik, 2002). Canada recorded a 9 percent reduction in road traffic 

accidents and a 2.8 kilometres per hour fall in mean speeds at speed camera sites 

(Chen, Meckle and Wilson, 2002; Jones, Sauerzapf and Haynes, 2008). A speed 

camera evaluation pilot project in the United Kingdom (UK) carried out in 1992 

showed that camera use resulted in a 41 percent decrease in casualties killed or 

seriously injured and a mean speed reduction of 10 miles per hour (Gloag, 1993). 

The evaluation of the effects of a new enforcement deployment method by the Israeli 

National Traffic Police on 700km of interurban roads (Hakkert et al., 2001), revealed 

85 percent of drivers violated the rural road speed limits in the absence of any 

penalising enforcement measure. From this review, even though it is evident that 

speed cameras do reduce vehicle speeds and road accidents it is worth stating that 

speed cameras tend to be introduced at sites where there are high numbers of speed 

related collisions. Considering that an increase in collision may not be following any 

pattern and be due to chance, any further reductions could be suggestive of normal 

variation (‘regression to the mean’ effect) (Pilkington and Kinra, 2005). Regression 

to the mean is a common phenomenon in statistics with possible severe 

consequences. It can lead to an imprecise conclusion that an effect is due to treatment 

when it could actually be due to chance (Morton and Torgenson, 2003). 
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2.2.6 Effectiveness of vehicle activated signs   
Even though history of the first use of vehicle activated signs (VASs) dates back to 

the late 1970s with early research carried out by the Transport Research Laboratory, 

UK, not much literature can be found on the effectiveness of vehicle activated signs. 

This section reviews the identified literature on VASs.   

Winnett and Wheeler (2002) provided insight into speed reductions achieved in the 

late 1970s and early 1980 trial of vehicle activated signs usage in the UK. These 

signs were described as automatic signs providing drivers with information relating 

to close following drivers or excessive speed. The signs were unlit until drivers 

exceeded a predetermined value in relation to either the distance from the vehicle in 

front or the speed of the vehicle. Results from these earlier studies for the close 

following signs indicated (i) a 30% reduction in the number of drivers following the 

front vehicle with a gap less than 1 second with the effect maintained up to a distance 

of 800m downstream and (ii) over a five year period no appreciable degradation of 

the sign’s effectiveness was noted. For the speed reduction signs, speeds measured 

were found to decrease with time after the signs were installed and in some two 

villages, speeds of faster vehicles were reduced to a small extent.   

The study by Winnett and Wheeler (2002) involved a large scale evaluation of 

vehicle activated signs in the UK following the installation of speed roundels at 

30mph, 40mph, 50mph, speed change from 30mph to 20mph and speed change from 

40mph to 30mph sites. Speed was used as a measure of the anticipated accident 

frequency since it takes time for accident data to build up. For the 30mph sites, mean 

speed reductions of between 2.6mph and 7.1mph was achieved. The proportion of 

vehicles exceeding 30mph was reduced by between 18 and 34 percent whilst the 

proportion of vehicles exceeding 35mph was reduced by about 15 to 51 percent. For 

the 30mph sites large changes in speed reductions were obtained probably because 

the monitoring sites were located close to the vehicle activated signs. At the 40mph 

sites, mean speed reductions of between 1.2 and 4.4mph was achieved. There was 

between 7 and 35 percent reduction in the proportion of vehicles exceeding 40mph 

and between 1 and 17 percent reduction in the proportion of vehicles exceeding 

45mph. In the case of the 50mph sites, there was a fall in speeds of 4.6mph for lane 1 

vehicles and 3.6mph speed fall for lane 2 vehicles. There was a 22 percent reduction 



 

45 

 

in the proportion of lane 2 vehicles exceeding 50mph with a 26 percent reduction 

obtained for lane 1 vehicles. There was also a 31 percent reduction in the proportion 

of vehicles in lane 1 and 10 percent reduction in the proportion of vehicles in lane 2 

exceeding 55mph. Where speed limits were reduced from 30mph to 20mph, drivers 

had difficulty attaining and maintaining a speed of 20mph. Reduction in mean speeds 

of between 4.4mph and 7.5mph was obtained for the 20mph speed limit. There was 

between 28 and 51 percent reduction in the proportion of vehicles exceeding the 

25mph speed with between 38 and 56 percent reduction in the proportion of vehicles 

exceeding 30mph. For the 40mph to 30mph change in speed limit, there was between 

6.5mph and 1.8mph reduction in mean speed. There was also between 13 and 60 

percent reduction in the proportion of vehicles exceeding 30mph and between 50 and 

80 percent reduction in the proportion of vehicles exceeding 35mph. Accident 

reductions ranging from 16 to 100 percent with a 58 percent reduction across the 

sites combined was achieved at the speed roundel locations.  

Warning signs investigated by Winnett and Wheeler (2002) included junction, bend 

and safety camera repeater signs. For sites with junction warning signs, mean speed 

reductions of between 0.8 and 9.2mph was achieved with drivers observed to reduce 

their speeds not only after they have passed the sign but also on approach to the sign. 

Apart from one site, all other sites recorded between 45 percent and 100 percent 

reduction in accidents with a 26 percent reduction obtained in all sites combined. 

However the proportion of accidents involving fatal or serious injury accidents was 

found to have changed little. At sites with bend signs, mean speed reductions of 

between 2.1 and 6.9mph were achieved. For locations with safety camera repeater 

signs, mean speed reductions of between 0.5 and 3.7mph was achieved with a 

reduction in the percentage of vehicles exceeding various threshold speeds also 

obtained.  Accident reductions of between 8 and 31 percent was realised at safety 

camera repeater sign locations with a 17 percent overall reduction across combined 

sites realised.  

The reductions in speed obtained by Winnett and Wheeler (2002) are consistent with 

the findings of Burbridge, Eveleigh and Van Eysden (2010) in their study on vehicle 

activated signs in Queensland, Australia. Results from their study showed a 5 to 

10km/h reduction in average speeds and 10 to 15 percent reduction in the proportion 
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of drivers travelling in excess of 9km/h above the speed limit on approach to the 

signs. It was however noted that about 20 percent of the proportion of vehicles 

approaching the sign were travelling in excess of 9km/h above the limit but this 

percentage was found to reduce once the vehicle activated the sign. Speed data 

collected downstream of the signs showed less than 2 percent of vehicles travelled in 

excess of the 9km/h above the speed limit. There was an overall decrease in the 85th 

percentile speed, decrease in the mean/average speed and a decrease in the overall 

number of speeding vehicles. It was noted from the study that speed reductions 

obtained a year after installation of the signs were similar to reductions obtained 

within a month of activation of the signs.   

In another study in London, speed reductions were realised from the use of speed 

indicator devices (SID) (Walter and Broughton, 2011). SIDs are temporary vehicle 

activated signs used in detecting and displaying real-time vehicle speeds. Even 

though the maximum mean speed reduction obtained from the SIDs was 2.6mph, the 

overall speed reduction obtained was 1.4mph with a reduction from 57% to 45% in 

the proportion of vehicles exceeding the speed limit. The speed readings were 

recorded over a maximum period of three weeks. This study demonstrated the 

effectiveness of vehicle activated signs. When the SID was in operation, the 

proportion of drivers exceeding 30mph was significantly reduced at all sites. During 

the period of operation, most sites had mean speeds being reduced by about 0.2mph 

at a distance of 200m downstream of the device which was small but was found to be 

statistically significant. However at a distance of 400m downstream, mean speeds 

were found to increase by about 0.6mph signifying the depletion in effectiveness of 

the device at this distance. Since SIDs are temporary, it was noted that there was no 

lasting effect after removal with sites where the SID had the greatest effect while in 

place having small reduction in speeds remaining.  

Santiago-Chaparro, Chitturi and Noyce (2012) investigated the spatial effectiveness 

of speed feedback signs (SFS). These are sometimes referred to as dynamic speed 

display or VASs. SFS are signs installed to give real-time dynamic display of the 

vehicular speed of a driver at a specific location. The investigation sought to find out 

how far upstream and downstream of the SFS speed reductions were maintained. 

Upstream and downstream speed of free flowing vehicles was obtained using radar 
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units as well as video recording.  Upstream of the SFS 50 percent of vehicles reduced 

their speed by at least 1.0mph. Downstream, 50 percent of vehicles increased their 

speed by 1.0mph. At a distance of between 381m and 441m upstream of the SFS, 

vehicle speeds were found to start reducing by at least 1.0mph. Downstream, the 

effectiveness of the SFS on vehicle speeds was found to diminish at distances from 

91m to 183m. The most notable speed reductions were achieved at distances from 

366m to 427m upstream whilst downstream, the most notable speed increase was 

obtained at distances from 91m to 152m. Findings from this study illustrates that 

once drivers pass the SFS there is a reduction in its effectiveness with 

recommendations being that SFS need to be placed closer to the location where it is 

intended to reduce vehicle speeds.  

2.2.7 Effectiveness of speed cameras  
Speed cameras (mobile or fixed) have been used in various countries with several 

studies pointing to the benefits to be attained following the introduction of mobile 

and fixed speed camera operations. This section discusses speed camera 

effectiveness.  

Corbett (1995) studied drivers who use the A40, one of the first roads in England to 

have unmanned speed cameras installed along it. The study revealed that 54% of 

respondents said they had been driving more slowly at least in some places since the 

introduction of the cameras. Of these respondents,  8% said they slowed down ‘a lot’, 

21% said they drove ‘a bit’ more slowly, 15% said they slowed down in some places 

but drove no differently in others with 10% saying they drove slowly in some places 

but faster in others. 46 percent of respondents said they drove ‘a bit’ or ‘a lot’ slower 

in areas where they suspected there were cameras. The outcome by Corbett (1995) 

was partly supported by speed monitoring data obtained by the Department for 

Transport. The data revealed that during the first six months of the introduction of 

the speed camera, average free-flow speeds fell by 10% and injury or damage only 

accidents also fell by 22%. Corbett (1995) expressed concern about the possibility of 

the effectiveness of speed cameras diminishing over time.  

In Barcelona, Novoa et al. (2010) assessed the effectiveness of speed cameras in 

reducing crashes and the number of injured people on 50km/h speed limit arterial 

roads as well as the long term effectiveness on an 80km/h speed limit beltway. The 
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study did not show any effect of fixed speed cameras on the arterial roads. This lack 

of effect was partly attributed to the small numbers of vehicles traversing the stretch 

of road, lower speed limit and the presence of traffic lights. On the beltway, a 30% 

reduction in injury accidents and a 26% reduction in people injured were realised. In 

another study in Barcelona, Pérez et al. (2007) used the same roads used by Novoa et 

al. (2010) but the beltway was used as the ‘intervention group’ and the arterial roads 

was the ‘comparison group’ and had no fixed cameras installed. In the case of Novoa 

et al. (2010), both arterial roads and the beltway had speed cameras installed on 

them. An estimated 27% reduction in the number of collisions and another 26% 

reduction in the number of vehicles involved in collisions were obtained by Pérez et 

al. (2007). Despite the fact that Pérez et al. (2007)  showed that speed cameras are 

effective at reducing road collisions and the number of people injured in urban road 

accidents they were not able to provide any evidence about the effectiveness of the 

speed cameras for the arterial roads. With the method of comparison used by the two  

authors Novoa et al. (2010) and Pérez et al. (2007) being different, it makes it 

difficult to make any meaningful comparison about the effects of the speed cameras 

on arterial roads and the beltway even though both studies were conducted in 

Barcelona with the same set of roads. Some of the variables that are often considered 

to have confounding consequences on results obtained for observational before and 

after road safety studies comprise regression to the mean Pérez et al. (2007). This 

variable was controlled for in the study by using time-series analysis which allowed 

for seasonality and trend adjustment. Considering that the beltway characterises and 

functions as the fastest route connecting the city to the outlying metropolitan area, it 

was not suspected that a remarkable number of vehicles would divert onto other 

routes to avoid the speed cameras. Contrary to what was expected, vehicle-

kilometres travelled on the beltway grew over the study period.    

He et al. (2013) studied speed enforcement in China through the national, provincial 

and city initiatives using a combination of automatic detection from speed cameras 

(fixed and mobile) and other traffic law enforcement. At the national level there was 

a reduction from 17.2% in 2004 to 10.2% in 2007 in fatalities associated with 

speeding. One of the fears envisaged by He et al. (2013) was that with increase in 

motorisation and increase in highway lengths in China, fatalities from road traffic 
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accidents may revert back to previous numbers. This fear can be allayed by the 

findings from another study (Shefer, 1994) that with increased motorisation come 

associated congestion resulting in reduced travel speeds and leading to no increase in 

road accidents associated with vehicle speeds.  

In a study by Carnis and Blais (2013) in France, significant decreases in both fatal 

and non-fatal traffic injuries were realised following the deployment of a speed 

camera programme in 2003. Translating the benefits achieved into figures, 15,193 

fatalities and 62,259 non-fatal injuries were prevented by the programme between 

November 2003 and December 2010. Fatality rate per 100,000 vehicles dropped by 

21% whilst the decrease in non-fatal injuries revealed a decay function with a 26.2% 

reduction being recorded in the first month but dropped to 3.5% in December 2008 

and 0.8% in December 2010. This dissipating effect is likely to be due to the initial 

deterrent effect posed by the speed cameras and the fading off effect with the passage 

of time.  One other point raised in the study was the possibility of the decline in non-

fatal injuries resulting from incidents outside the scope of the speed cameras. Some 

of these incidents include the use of mobile phones for listening, talking and texting 

while driving. This is another area of research that could provide some evidence 

about the decline in non-fatal injuries. It was noted that additional input of speed 

cameras did not translate into proportional decreases in fatal injuries consistent with 

the findings from Elvik (2011) that the preventive effect remains stable at about 

21%.  

A systematic review on the effectiveness of speed cameras in preventing road traffic 

collisions and related casualties by Pilkington and Kinra (2005) identified 92 

published and unpublished papers for different countries. After reviewing the 

identified materials, 21 studies were found to be potentially suitable for use. On 

further elimination of some of the material, the review was eventually carried out 

using 14 studies. Results from the reviewed materials were mostly before-after 

studies. One study which had been introduced for about 4.6 years showed sustained 

longer term effects. Across all the studies there was a 5% to 69% reduction in 

collisions, 12% to 65% reduction in injuries and a 17% to 71% reduction in deaths 

within the immediate vicinity of the camera sites. A similar order of magnitude in 

reductions was obtained over wider geographical areas. Evidence from this study 
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showed that speed cameras are an effective measure in reducing road traffic 

collisions and related casualties. A much smaller study carried out in Maryland, USA 

(Retting, Farmer and McCartt, 2008) analysed speed data obtained 6 months before 

and 6 months after the deployment of speed cameras in Montgomery County, 

Maryland where roads had speed limits ranging from 25mph to 35mph. The 

proportion of drivers travelling more than 10mph above the posted speed limit 

declined by about 70% at locations which had both speed cameras and warning 

signs, 39% at locations with warning signs alone and 16% on residential streets with 

no warning signs or speed cameras. The introduction of fixed speed cameras on the 

Loop 101 freeway in Scottsdale, Arizona was the first use on a major US highway 

(Retting, Kryychenko and McCartt, 2008). The 9 month trial of the speed cameras 

revealed an 88% reduction in the number of vehicles travelling 11mph or more above 

the 65mph limit, however traffic speeds were found to increase soon after the pilot 

study was over. At distances of 25 miles away from where the camera had been 

installed, huge reductions in speeding was observed providing some evidence that 

speed cameras can substantially reduce the speed of vehicles. The study however did 

not consider the effect of the speed reduction on crashes.  

Shin, Washington and Van Schalkwyk (2009) investigating the same stretch of road, 

Loop 101 freeway in Scottsdale, Arizona in the US used the 9 month demonstration 

speed enforcement programme (SEP). Unlike the previous authors, Shin, 

Washington and Van Schalkwyk (2009) investigated the impact of the speed 

enforcement programme on crashes. The outcome of the study indicated that taking 

traffic flow into account, average speeds within the enforcement area reduced by 

about 9mph when the SEP was introduced. All types of crashes were found to reduce 

with the exception of rear-end crashes. Even though Retting, Kryychenko and 

McCartt (2008) observed speed reductions at up to about 25 miles from the 

enforcement site, Shin, Washington and Van Schalkwyk (2009) observed no 

statistically significant reduction in average speeds at about 40 miles away from the 

enforcement zone. Shin, Washington and van Schalkwyk (2009) cautioned 

generalising the results obtained from the study since it was from a short programme. 

Similarity in the predictions observed between the Empirical Bayes before-after 

study and the before-after study allowing for traffic flow adjustments indicates a 
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comparatively small possibility of bias from regression to the mean when evaluating 

the impact of the SEP on safety in the enforcement zone (Shin, Washington and Van 

Schalkwyk, 2009).There was still evidence to suggest that speed cameras do help to 

reduce vehicle speeds and road traffic accidents with other long term programmes 

(Pilkington and Kinra, 2005) supporting this claim. Høye (2015), Høye (2015a), 

Mountain et al. (2004) and Elvik (1997) used the Empirical Bayes approach to 

control for regression to the mean in their evaluation of the impact of speed cameras 

on safety. Mountain et al. (2004) in their study showed that speed enforcement 

cameras on 30mph roads provide safety benefits over a distance of up to 1kilometre 

upstream and downstream of the camera. An average of 20 percent or 1 PIA/km/year 

decrease in accidents ascribed to reductions in speed over this distance was realised. 

A before-after empirical Bayes method was used to study the safety effects of 223 

fixed speed cameras installed between 2000 and 2010 in Norway by Høye (2015). 

After controlling for effects of trends, volumes of traffic and speed limit changes, it 

was found that on road sections between 100m upstream and 1 km downstream of 

the speed cameras there was a 22 percent statistically significant reduction in the 

number of injury crashes. On longer sections of road and for killed and seriously 

injured (KSI), results were found to be statistically significant. For speed cameras 

installed in 2004 or later, a reduction in injury crashes and the number of KSI on 

road sections from 100m upstream up to both 1 km and 3 km downstream of the 

speed camera was noted. Greater effects were found for KSI than for injury crashes 

with the effects decreasing with increasing distance from the speed cameras. At 

distances of 100 metres upstream and downstream of the camera sites, crash 

reductions were smaller and non-significant. 

Fourteen sites in Norway were investigated to establish the safety effects of section 

control by Høye (2015a) in a before-after study using the empirical Bayes method. A 

non-significant reduction by 12 percent in injury crashes was found. There was a 49 

percent significant reduction in the number of killed or severely injured at section 

controlled sites. Results revealed that crash reduction in tunnels (mostly undersea 

tunnels with section control on steep downhill segments) are of the same enormity as 

on open roads. Injury crashes downstream of the section control sites (up to 3km in 

each direction) were observed to be remarkably reduced by 46 percent but the 
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number of killed or seriously injured downstream of the section control sites was too 

small for any meaningful conclusion to be drawn. Section control was found to be 

effective at decreasing both speed and crashes, mainly serious crashes with the 

possibility of spill over effects (crash reductions at non-enforcement sites) more 

likely to arise than crash migration (Høye, 2015a).          

Improvements realised from the use of speed cameras are not unique to the UK as 

shown earlier and in other parts of the world it includes a reduction in mean traffic 

speeds in comparison to posted speed limit levels with traffic speeds declining in the 

absence of enforcement measures (Chen, Meckle and Wilson, 2002; Keall, Povey 

and Frith, 2002). Crash and casualty data from these studies also indicate a 

significant reduction in estimated casualties per crash as well as reduced speeds 

(Chen, Meckle and Wilson, 2002; Keall, Povey and Frith, 2002). There is some 

overseas evidence to further suggest the usefulness of speed cameras. In Australia 

speed cameras have produced up to 41% reduction in fatal crashes (Cameron et al., 

1994). In another Australian study (Newstead, 2009) there was an estimated 47% 

reduction in fatal to medically treated crashes with an overall 32% and 30% 

reduction respectively in all reported crashes including non-injury crashes for the 2 

years assessed period of 2006 and the first half of 2007. An analysis of 10 studies of 

the effect of speed cameras in seven European countries found a 19 percent decrease 

in injury causing crashes (Elvik, 2002). Canada recorded a 9 percent reduction in 

road traffic crashes and a 2.8 kilometres per hour fall in mean speeds at speed camera 

sites (Chen, Meckle and Wilson, 2002; Jones, Sauerzapf and Haynes, 2008). A speed 

camera evaluation pilot project in the UK carried out in 1992 showed that camera use 

resulted in a 41 percent decrease in casualties killed or seriously injured and a mean 

speed reduction of 10 miles per hour (Gloag, 1993).   

Table 1 provides a summary of factors identified in literature to affect vehicle speed 

as discussed in section 2.2.  
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Factor Author and Year Commentary  

Radius of 

curvature  

 

Abdul-Mawjoud and Sofia 

(2008);McDonald (2004); 

Donnell et al., (2001); 

Fitzpatrick et al., (2000); 

Bhatnagar (1994), Lamm and 

Choueiri (1987);  (McLean 

(1981); McLean (1979) 

curve radius being a widely used 

parameter since it is considered 

the most important parameter in 

obtaining operating speeds along 

horizontal curves and it does have 

effect on vehicle speed. 

Road gradient  Reinfurt et al., (1992); 

Gombard and Louah (1986); 

Yagar and Van Aerde (1983) 

speeds decrease on upgrades and 

has been shown to have effect on 

vehicle speed. 

Environmental 

factors  

Fambro, Fitzpatrick and 

Russell (2007); Lee and 

Mannering (2002); Yagar 

(1984) 

The speed of vehicles as a 

function of the terrain with 

particular reference to the 

horizontal curvature of the road 

has an impact on vehicle speeds.  

Road 

roughness. 

Karlaftis and Golias (2002);  This is found to have an effect on 

vehicle speeds on a case by case 

basis. 

shoulder 

widths  

 

Ben-Bassat and Shinar (2011); 

Fambro, Fitzpatrick and 

Russell (2007); Leong (1968) 

 

Increasing shoulder widths 

increases vehicle speeds. 

Combining shoulder widths with 

distances to lateral obstructions in 

the road environment affects 

vehicle speed.    

Side friction McLean (1979); McLean 

(1981) 

This has been shown to have no 

effect on vehicle speed. 

 

Table 1 Summary of factors influencing vehicle speed 
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Factor Author and Year Commentary  

sight distance  Fambro, Fitzpatrick and 

Russell (2007); AASHTO 

(2004); Easa and Hassan 

(2000); Harwood, Mason and 

Brydia (1999);  Highways 

Agency (2002); Yagar (1984);  

Leong (1968) 

Significant impact at higher 

percentile speeds. As sight 

distance decreases, mean 

reductions in speed between the 

control and crest sections 

increase. Sight distance does have 

an effect on vehicle speed. 

road widths  Fambro, Fitzpatrick and 

Russell (2007); Godley, Triggs 

and Fildes (2004); AASHTO 

(2001); Lamm and 

Choueiri(1987);  Yagar (1984);  

Leong (1968) 

This effect is significant at widths 

below a certain critical value. 

Narrowing roads to widths of less 

than 3.0m using a painted hatched 

road centre marking can be 

effective at reducing vehicle 

speeds. Road widths have some 

effect on vehicle speed.  

superelevation Abdul-Mawjoud and Sofia 

(2008); Krammes et a.l (1995); 

Bennett (1994); Lamm and 

Choueiri (1987); Kadiyali et al. 

(1981) 

Only affects high speeds such as 

85th percentile speed of drivers. 

Superelevation has minimal effect 

on vehicle speed 

Weather  Edwards (2002); Edwards 

(1999); Edwards (1998); 

Andrey and Yagar (1993); 

Wasielewski (1984); Brodsky 

and Hakkert (1988) 

Marginal effect of wet weather on 

vehicle speeds. Small but 

significant reduction in mean 

speeds obtained for poor weather 

(wet weather and misty 

conditions) in comparison with 

fine weather condition. Weather 

does have some effect on vehicle 

speed. 

Table 1 Summary of factors influencing vehicle speed (continued) 
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Factor Author and Year Commentary  

Other factors 

(traffic 

volume, 

presence of 

driveway 

access to 

adjacent land 

use, speed 

limit and 

access from 

other 

highways) 

Jones, Sauerzapf and Haynes 

(2008); Pilkington and Kinra 

(2005); Champness, Sheehan 

and Folkman (2005); Morrison, 

Petticrew and Thomson 

(2003); Karlaftis and Golias 

(2002); Elvik (2002); Chen, 

Meckle and Wilson (2002); 

Keall, Povey and Frith (2002); 

Keall, Povey and Frith (2001);    

Fridstrøm et al. (1995); Corbett 

(1995); Gloag (1993); Yagar 

(1984); 

A combination of other factors, 

some not necessarily associated 

with the geometry of the road 

have been shown to have effect 

on vehicle speed. 

Table 1 Summary of factors influencing vehicle speed (continued) 

2.3 Summary 
Transportation professionals are continually tasked with improving road safety. To 

improve road safety there is the need to understand what factors come to play to 

contribute to the problem of road safety. The chapter provided a detailed review of 

literature that identifies factors that affect vehicle speed. These factors include road 

conditions (curvature, gradient, roughness, sight distance and road width), vehicle, 

traffic conditions, road environment and other factors. Various factors affecting 

vehicle speeds were identified in the literature and these factors have been studied 

using a wide range of methods such as engineering and economics. Some of the 

important factors identified to affect vehicle speed are radius of curvature and 

gradient of the road. Others include environmental factors such as the speed of 

vehicles as a function of the terrain with particular reference to the horizontal 

curvature of the road.  

The outcome of this literature review will contribute to this research since it seeks to 

investigate the optimum locations for speed control devices and thus the importance 

of identifying factors that affect vehicle speed. With the identification of these 

factors, the next chapter aims to find an accident prediction model that includes these 



 

56 

 

factors. Where an appropriate accident prediction model cannot be found, one will be 

developed based on the factors identified. The accident prediction model will then be 

applied to an optimisation technique to optimise the location of the speed control 

device along roads.  
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3 Analysis Methodologies 

3.1 Introduction 
A wide range of models exist for predicting accident occurrence and severity along a 

road. In order to establish which model to use in this research a review of previous 

works was carried out. The primary aim of this thesis is to contribute to speed 

reduction by developing an optimisation model to help decision makers determine 

the optimum location for a speed control device. In view of this aim, a review on 

accident prediction models as well as a review of the optimisation techniques to be 

used in this research will be carried out. Some of the advantages and disadvantages 

exhibited by the accident prediction models are revealed. The identified accident 

prediction model will be used to further enhance the methodology of the thesis. 

3.2 Accident Prediction Models 
In road accident prediction models different areas of the road segment ie. specific 

areas, junctions, and segments of road are usually used. Models used for accident 

frequency tend to differ from those used in accident severity (Jones and Jorgensen, 

2003; Wang, Quddus and Ison, 2011). Accident frequency models tend to establish 

the relationship existing between the number of accidents observed over a specific 

period of time and the contributory factors to the accidents for a given road segment, 

area etc. Accident severity models on the other hand tend to establish a relationship 

between the level of severity of the accident ie. fatal, serious and/or slight and 

information about the characteristic of individual accidents. Accident frequency and 

accident severity models are classed as accident prediction models. These two types 

of models have been used over the years to help predict and provide suitable 

remedial measures to reduce road traffic accidents. The discussion of accident 

prediction models will be grouped based on the type of modelling technique used. It 

is appreciated that accident prediction models have gained respectable recognition by 

road safety practitioners and advocates over the years dating back a few decades. 

However an attempt to review all this literature will prove too ambitious for this 

thesis and some very dated studies may not prove very useful. In identifying suitable 

material to be used a literature search was undertaken of journal articles, conference 

papers and books etc. Other materials were obtained from searching ‘Google scholar’ 

and ‘Google’. A combination of search key words used included ‘road geometry 
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parameters and road accidents’, ‘road geometry and road accidents’, ‘accident 

prediction models’ and ‘accident prediction models for roads’.  Different approaches 

to accident prediction modelling used in this chapter typically fit into these 

categories; multiple linear regression, multiple logistic regression, Poisson models, 

negative binomial models, random effect models etc.. 

3.2.1 Empirical Bayes (EB) models 
Empirical Bayes models are used for modelling complicated systems, provide a 

mechanism for obtaining parameter estimates and are based on Bayesian models but 

they make use of alternate estimation techniques. Bayesian models are able to derive 

estimates for all parameters of interest in a model. Inferences from Empirical Bayes 

analysis tend to be frequentist (drawing conclusions from sample data by drawing 

emphasis on the frequency of the data) (Casella, 1992). Bayesian analysis is 

dependent on a prior distribution for the parameters of the model. Depending on 

unknown parameters which may be obtained from some second stage prior, the prior 

can be nonparametric or parametric. The order of parameters and priors make up a 

hierarchical model. The hierarchy must terminate at some point with the rest of the 

prior parameters assumed to be known. Instead of making this assumption, the 

empirical Bayes method applies the observed data to estimate the final stages 

parameters and then proceeds as though the prior was known (Carlin and Louis, 

2000). Some of the good features of the empirical Bayes (EB) approach are that it 

helps to deal with the regression to mean (RTM) bias, EB estimates tend to be more 

precise and also the EB approach allows the estimation of the entire time series as 

required (Hauer, 1997). The central concept of the EM method is the reference 

population with each entity of the reference population said to have its own accident 

count k.  The EM method utilises data about the mean and variance of the k’s in the 

reference population with methods for evaluating the E{k} and VAR{k} given where 

E is the mean and VAR is the variance. 

Brüde and Larsson (1988) used a variant of the Empirical Bayes method for a before 

and after period in predicting accidents at 1,901 3-way junctions on rural roads. The 

variant EB method made use of predicted numbers of accidents for each junction but 

it was not possible to provide evidence as to whether the average estimates of the 

expected number of accidents were better than results obtained using the 
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conventional EB method. Also the conventional Bayes method provided satisfactory 

results whereas the population of objects eg. junctions was not too small. This model 

however made use of very few parameters ie. accident numbers and traffic flows and 

did not consider the role the characteristics of the road infrastructure played in 

accident prediction. Mountain, Fawaz and Jarrett (1996) developed a model to 

predict accidents on main roads with minor junctions where traffic counts were 

unavailable on the minor approaches. It was based on approximately 3800km of 

highway in the UK in addition to 5000 minor junctions using data for periods 

varying from 5 to 15 years. The roads studied were restricted to A- and B- roads 

outside major conurbations with motorways and C-roads being excluded from the 

study. It was noted that other explanatory variables such as traffic composition, 

pedestrian flow and minor road entry flow could have improved the fit of the models. 

Accidents on single-carriageways were found to be proportional to link length whilst 

accidents on dual-carriageways were less than proportional with the best results 

obtained using the empirical Bayes method.   

A general modelling strategy was used to analyse and forecast road accident fatalities 

in Yemen using socioeconomic and cultural variables (Ameen and Naji, 2001). The 

model did not consider other categories of road traffic accidents as well as the road 

geometry characteristics. Elvik (2008) compared the EB method to the traditional, 

naive assumption of treating the recorded number of accidents as an unbiased 

estimator of the expected number of accidents. All versions of the EB estimates were 

found to give considerably more correct predictions of accident numbers than the 

traditional approach. The traditional method assumes that the recorded number of 

accidents is an unbiased estimator of the expected number of accidents. EB model 

estimates are not always accurate, however if the differences between EB estimates 

and the actual number of accidents are small and random they can be accepted 

considering that there is randomness present in accident counts (Elvik, 2008).  

Summarising the concept of the Empirical Bayes approach, the prior information is 

obtained from a reference group of sites similar to those being assessed to compute a 

sample mean and variance, or from a calibrated safety performance function relating 

the frequency of crashes to their features. The point estimates of the expected mean 
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and variance are them combined with the site specific crash count to get a better 

approximation of a site’s long term expected crash numbers (Persaud et al., (2010).  

3.2.2 Bayesian Hierarchical (BH), Hierarchical Bayes (HB) and Full Bayes 
Hierarchical and Bayesian multivariate models 
The Bayesian approach to modelling data has been extensively used over the past 

years. The potential to forecast risks accurately even with sparse data or rare events 

is one of the main benefits of the Bayesian approach (Withers, 2002). Also, the 

potential to include prior knowledge without the limitation of classical distributional 

assumptions makes it possible to implement the Bayesian approach in a lot of fields. 

When sample sizes are comparatively small as is often the case with accident 

frequency analysis, a Bayesian approach can be chosen to obtain robust 

approximations. However with very large sample sizes, as is normally the case with 

severity analysis, a frequentist inference can be used since the approximated results 

are equivalent to the Bayesian method (Train, 2003). The Bayesian theorem 

stipulates that the posterior distribution is proportional to the prior distribution times 

the likelihood of the observed data. For large sample sizes, the prior becomes 

irrelevant and the maximum of the likelihood function becomes the same as the 

maximum and also the mean of the posterior (Train, 2003). Bayesian models also 

take account of both spatial dependence and uncorrelated heterogeneity. Deductions 

made from traditional spatial models can be deceptive as it does not reveal the 

underlying data generating processes accurately (Bhati, 2005). Also, with the spatial 

units being analysed getting smaller (such as zip-code, wards, post-code etc.), the 

number of observed counts in each sampled units reduces leading to the distribution 

of counts becoming a highly skewed (to the right) distribution as the number of 

spatial units with zero counts increases. To control these issues, a Bayesian method is 

used by researchers in spatial econometrics. Bayesian hierarchical models can be 

estimated using the Markov Chain Monte Carlo (MCMC) method (Carlin and Louis, 

2000). Bayesian Hierarchical models are noted to be suitable for analysing area-wide 

traffic crash incidents. Nevertheless, some form of strong distributional assumption a 

priori must be implored for such fully parametric models. It is difficult to assume a 

priori in non-experimental situations such as traffic crash occurrence.  Thus, model 

estimates and inferences obtained from them can be sensitive to distributional 

assumptions (Quddus, 2008). The use of an alternative semi-parametric method (the 
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cross-entropy (CE) method) that avoids parametric distributional assumptions is 

proposed (Bhati, 2005).   Li, Zhu and Sui (2007) used a Hierarchical Bayes approach 

to identify and rank roadway segments with potentially high risk for crashes to help 

implement preventative actions. The model however only made use of traffic volume 

and annual average daily vehicle miles travelled without incorporating road 

characteristics and severity of the crash. The study failed to answer why some road 

segments are riskier or what could be carried out to improve safety. HB methods 

analyse iteratively with multiple levels of analysis (Carlin and Louis, 2000). Whilst 

conventional statistical inferences derive the average parameter estimates, HB 

models produce parameter estimates at each analytical unit stage as well as revealing 

and flagging ‘extra variance’ (Congdon, 2001). Bayesian models are generally 

known to borrow information from neighbours to infer individual-level parameter 

estimates (Bolstad, 2007; Lee, 2004). Two stages are involved in Hierarchical 

Bayesian modelling. During the first stage, a likelihood model for the observed crash 

counts vector based on the relative risk vector of crashes is specified. The second 

stage then involves specifying a prior model over the space of possible relative risks 

(Li, Zhu and Sui, 2007).   

Full Bayesian models facilitate the steady analysis of aleatory and epistemic 

uncertainties, non-linear dependencies amongst the indicator variables and the 

updating of the developed risk models established on new available data (Deublein, 

2013). Aguero-Valverde and Jovanis (2006) compared a full Bayes (FB) hierarchical 

model to a traditional negative binomial (NB) model using annual county level crash 

frequency. Covariates included socio-demographics, weather conditions, 

transportation infrastructure and amount of travel. Total precipitation was found to 

be significant in the NB model but not in the FB. In the FB model, spatial 

correlation, time trend, and space-time interactions were found significant for injury 

crashes.  Highly significant variables in the NB models were found to be also 

significant in the FB models. However, variables found to be marginally significant 

in the NB models were generally found to be non-significant in the FB models. Song 

et al. (2006) also used Full Bayes models to estimate crash rates for different crash 

types. MacNab (2004) used a Bayesian model to analyse variations in accidents and 

injury from data in British Columbia, Canada.  A broad range of socioeconomic data 
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was used with no traffic or road geometric data included in the analyses. One 

advantage highlighted in this study over conventional methods was its ability to 

account for extra variation over space.  

Deublein et al. (2013) developed a Bayesian hierarchical model for the Austrian rural 

motorway network to predict the expected number of road accidents between risk 

indicating variables and the model response variables.  The model was tested against 

a dataset that was excluded from the initial model development. When model 

predictions were compared with actual observations, for injury accidents and light 

injuries relatively high correlations were obtained with r=0.73 and r=0.67 

respectively. However for severely injured road users and the number of fatalities, 

the correlation coefficients between model predictions and real observations were 

found to be relatively low with r values being r=0.50 and r=0.31 respectively.  These 

low r values can be attributed to the low recorded numbers of these categories of 

road accidents.  This model is useful in the way it is generic since it can be modified 

for use on different road types and also additional risk indicating variables can be 

added as required. The model has credibility as far as the accident predictive power 

is concerned with correlation coefficients of up to r=0.73 obtained between the 

predicted and the actual numbers of accidents.  

A Full Bayesian model was developed and applied to crash data from Korean 

expressways to evaluate the safety benefits of decreasing the posted speed limit 

(Park, Park and Lomax, 2010). The model was tailored to a before-after study with a 

comparison group making use of only AADT, segment length and number of lanes 

as variables.  Results from the model indicated that a more precise crash prediction 

and safety effectiveness estimate can be obtained in comparison with those from 

univariate models. There was an increase in correlation across crashes of different 

types and severities with an anticipated increase in the gain in precision of the 

multivariate approach. The method was however described as complex.  

Wang, Quddus and Ison (2011) used a two-stage mixed multivariate model which 

combined both accident frequency and severity models to estimate accident 

frequency. A Bayesian spatial model and a mixed logit model were used. The 

method was able to predict low frequency accidents and was more advantageous 
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over the traditional frequency based methods. The proposed method made use of 

detailed road accident data which may not be available in certain countries. The 

proposed method however was found to be flexible in that it allows the researcher to 

choose the appropriate model at each stage based on for example the sample size. 

Despite the advantages portrayed in this method, no validation of the method using 

other models or data was carried out. 

Summarising, in the full Bayes approach the prior information is obtained from a 

model of a reference population as in the Empirical Bayes approach. However, 

instead of a point estimation of the predicted mean and variance done in the 

Empirical Bayes approach, there is the generation of a distribution of likely values. 

To get the approximation of long term anticipated frequency of crashes, the 

distribution of likely values is then merged with the site specific amount of accidents. 

There is precision in the calculation of the variance by applying a prior distribution 

instead of a point estimate (Persaud et al., (2010).  

3.2.3 Negative Binomial (NB) models 
Count models such as negative binomial (NB) regression models are normally aimed 

at establishing a relationship between area-wide traffic crashes and the contributing 

factors (Quddus, 2008). NB models are noted to be able to take account of the effect 

of unobserved heterogeneity (due to omitted variables in the model) among 

neighbourhoods however they may not take into account spatial correlation areas. 

NB accident frequency models are not able to distinguish between sections of 

roadway that are truly safe (near zero accident likelihood) from those that are unsafe 

but have zero accidents occurring along them during a time of observation. Due to 

the prevalence of zero accident observations the coefficient estimates produced can 

be biased (Shankar, Milton and Mannering, 1997).   The NB model generalises the 

Poisson model with the introduction of an individual, unobserved effect into the 

conditional mean, thereby relaxing the equidispersion assumption (Graham and 

Glaister, 2003). Where over-dispersion exists, and is found to be moderate or high  

NB can be investigated (Poisson when the data is not significantly over dispersed and 

negative binomial when it is). The NB approach to modelling is regarded as an 

extension of the Poisson regression methodology with the variance being different 

from the mean (Abdel-Aty and Radwan, 2000).  Shankar, Milton and Mannering 

(1997) and Abdel-Aty and Radwan (2000) used Negative binomial models to 
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estimate the effect of various highway geometric parameters and traffic 

characteristics on the frequency of accidents over a length of road. Even though 

various parameters were observed to be significant determinants of accident 

frequency, all the parameters were not present in one model and were considered 

separately. This may be an attempt to reduce the phenomenon of multi-collinearity 

whereby the presence of several parameters in a model may have a relation with each 

other. This increases the standard errors of the coefficients and makes the 

coefficients less significant. Noland and Quddus (2005) used the NB model in their 

examination of how congestion affects traffic safety. No conclusive results were 

obtained from this study even though small differences were observed for the model 

between congested and uncongested time periods. Since the model focussed on 

congestion, geometric parameters were not considered. Graham and Glaister (2003) 

were able to show that the characteristics of the local environment have a powerful 

influence on pedestrian casualties. The model was however unable to provide 

information about the relationship existing between variables within the model. 

Noland and Oh (2004) in their study using the NB model could not confirm that 

changes in road infrastructure and geometric design are beneficial to road safety.  

Whilst Poisson models assume the mean and variance are identical, the Negative 

Binomial model generalises the Poisson model with the introduction of an individual 

effect into the conditional mean allowing for a relaxation in the assumption of equal 

dispersion (Graham and Glaister, 2003). Shanker, Mannering and Barfield (1995) 

and Noland and Quddus (2004) argue for the use of NB models in the representation 

of vehicle crash data since it is a count distribution having a variance greater than the 

mean. Hiselius (2004) used a Poisson and negative binomial regression models to 

analyse the relationship between accident frequency and traffic flow on rural roads in 

Sweden. Even though the results indicated that the expected number of accidents per 

hour and kilometre, and the traffic flow differed considerably depending on whether 

different traffic modes were considered it also became apparent that other parameters 

such as speed should have been taken into account. This was a very basic model 

which did not consider a lot of variables that are often deemed important in accident 

analyses problems. Vieira Gomes (2013) used a NB model to estimate accident 

frequencies for road segments in Portugal. The model for accidents provided a good 
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fit in comparison to the model for pedestrians which had relatively low fit quality 

due to the small sample size of data involved. The accident model failed to split the 

accidents by level of severity and no validation of the results was carried out.  

The negative binomial (Poisson-gamma) regression model, an extension of the 

Poisson model aims to overcome possible over dispersion in the data and probably it 

is the most commonly used model for crash frequencies but with some limitations. 

These limitations include the model’s inability to handle under dispersed data and 

dispersion parameter estimation problems when the data are characterised by low 

sample mean values and small sample sizes (Lord, 2006). 

3.2.4 Poisson Regression (PR) models 
Ivan, Wang and Bernardo (2000) provided a model to predict both single and multi-

vehicle highway crash rates as a function of traffic density, land use, light conditions 

and time of day. Even though some observations were made about the effect of the 

parameters selected on road safety, mention was not made of road geometric 

parameters. Also the limited size in the sample used warrants some care being taken 

in transferring the results to other sites.  

One of the limitations associated with the Poisson regression model is the variance of 

the accident data being equated to the mean. Accident frequency data is mostly over 

dispersed and depicted by a variance being greater than the mean. Poisson regression 

models have been found to be unable to handle over and under dispersion and can be 

affected by low sample means thereby producing biased results in small samples. 

3.2.5 Random Effect Negative Binomial (RENB) and Random Parameters Negative 
Binomial Regression models 
Correlations amongst variables are sometimes expected and these arise from either 

spatial considerations, temporal considerations or a combination of both. In an 

attempt to account for such correlations, random-effects models and fixed effects 

models are considered (Lord and Mannering, 2010). Chin and Quddus (2003) used 

the RENB model to investigate the relationship between accident occurrence and the 

geometric, traffic and control characteristics of signalised intersections in Singapore. 

The RENB model treats data as time series cross-section panel and is able to deal 

with the spatial and temporal effects in the data. Shankar et al., (1998) showed that 

RENB models may be suitable for road accident studies given that geometric and 
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traffic variables are likely to have location-specific effects. RENB models allow for 

the introduction of a random location-specific effects term in the relationship 

between the expected numbers of accidents and the covariates of an observation unit 

in a given time period. In instances where the Poisson regression and Negative 

Binomial models have failed to take into account location-specific effects and/or 

serial correlation in time of the accident counts, the RENB is recommended for use 

in capturing all unobserved heterogeneity (Chin and Quddus, 2003). Despite the 

RENB being able to identify factors that may influence accident frequencies there 

remains the concern about its suitability to predict accidents.   

Random-parameters negative binomial models have been used to explore and better 

understand the factors affecting the frequency of accidents on road segments over a 

period of time. This type of model has been shown to enable one to account and 

correct for heterogeneity that could arise from a number of factors relating to road 

geometrics, pavement and traffic characteristics, driver behaviour, socio economic 

factors and other factors (Anastasopoulos and Mannering, 2009). Using 5 years of 

vehicle data from Indiana, USA a random parameters negative binomial regression 

model was developed by Anastasopoulos and Mannering (2009) to gain new 

knowledge into the extent to which various factors impact on accident frequencies. 

Factors relating to pavement condition, road geometry and traffic were used. 

Findings from the study indicated that disregarding the possibility of random 

parameters when estimating count-data models can result in significant different 

marginal effects of the factors that affect accident frequencies. Random parameter 

models are viewed as an extension of random-effects models and instead of only 

influencing the intercept of the model, random-parameter models enable each 

estimated parameter of the model to vary across each individual observation in the 

dataset (Milton, Shankar and Mannering, 2008). With each observation having its 

own parameters, the final model often provides a statistical fit that is significantly 

better than a traditional fixed parameter model. Despite this advantage shown, 

random-parameter models have been found to be very complex to estimate; their 

predictive power may not be particularly significant and also it may not be possible 

to transfer model results to other datasets since the results are distinct to observations 

(Lord and Mannering, 2010). 
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3.2.6 Multivariate Poisson-lognormal (MVPLN) regression, Univariate Poisson 
regression and Poisson lognormal (PLN) models 
Poisson log-normal models assume that the intensity parameter of a Poisson process 

follows a lognormal distribution in a sample of observations (Stewart, 1994). The 

lognormal distribution can model skewed distributions and it has simple parameters 

that are understandable in the context of normal distributions however, zero counts 

are problematic since the log of zero is negative infinity so normally adjustments 

such as adding 0.5 to zero counts may be required (Stewart, 1994).   

MVPLN allows for a more general correlation structure as well as overdispersion. 

MVPLN provides the opportunity to incorporate the association across collision 

severity levels and their influence on safety analyses. The MVPLN model apart from 

being able to account for over-dispersion possess a reasonably general correlation 

structure which enables for different covariance terms and the possibility of negative 

correlations (El-Basyouny and Sayed, 2009). It is able to handle more than two 

collision categories and the MVPLN model’s unknown parameters have to be 

estimated and a Bayesian approach can be used for the estimation. El-Basyouny and 

Sayed (2009) used the MVPLN model with only AADT and collision frequencies 

used as data variables. Estimates of the extra Poisson variation parameters were 

considerably smaller using the MVPLN implying a higher precision. It was estimated 

that the MVPLN model was more than twice as precise as the univariate Poisson log-

normal (PLN) model. The better precision values obtained was attributed to the fact 

that the MVPLN takes into account the correlation between the latent variables 

representing property damage only (PDO) and injuries plus fatalities (I + F). 

Univariate Poisson regression models are unable to account for correlations at 

different levels of severity for a specific segment of roadway (El-Basyouny and 

Sayed, 2009). In univariate Poisson regression models traffic crash counts at 

different levels of severity are estimated separately.  In the model by Ma, Kockelman 

and Damien (2008), crash data in addition to road design features, traffic intensity 

and geometric parameters were used.  The model dealt with the effects of individual 

geometric design features as being independent of each other ignoring the possibility 

of a relationship between them. 

El-Basyouny and Sayed (2009) used a PLN model for urban arterial roads in 

Vancouver, Canada and found a number of variables including segment length, 
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AADT, number of lanes and a few other factors influencing the frequency of 

accidents. With a single data set used in that study, the authors suggested that further 

research with varying datasets will aid in confirming the results obtained.  Another 

model by El-Basyouny and Sayed (2009) was done using signalised intersections in 

the city of Edmonton. Two severity levels; property damage only (PDO) and injuries 

plus fatalities (I+F) were considered using a single data set. The model was 

compared with an independent univariate PLN model with respect to model 

inference, goodness-of-fit, identification of hazardous locations and precision of 

expected collision frequency. Results indicated that some hazardous locations could 

be overlooked if the analysis is restricted to a univariate model. This model mainly 

used AADT as model parameters and was noted to be preferred by practitioners to 

models containing several covariates due to the ease of calibration (Lord, Guikema 

and Geedipally, 2008). AADT-only models may experience an omitted variable bias 

as the unobserved heterogeneity from other factors known to influence collision 

frequency (example, number of lanes, signal-control timing, speed limits, etc) ends 

up in the correlation structure and affects the estimated correlation (El-Basyouny and 

Sayed, 2009).  

The Poisson-lognormal model, though it offers more flexibility than the negative 

binomial/Poisson-gamma models, is limited in the complexity of the model 

estimation and the effects of small sample sizes and low sample mean values (Lord 

and Mannering, 2010). 

3.2.7 Zero Inflated (ZI) models 
Zero-inflated models are normally applied to crash data containing a lot of zero data 

than would be expected for use in Poisson or negative binomial (NB) models (Lord, 

Washington and Ivan, 2007). They possess much greater flexibility in revealing 

processes influencing accident frequencies on observed roadway sections with zero 

accidents and those with observed accident occurrences (Shankar, Milton and 

Mannering, 1997).  Even though zero-inflated models display an improved statistical 

fit to most crash data, Lord, Washington and Ivan, (2005) argue that the inherent 

assumption of a dual state process underlying the development of the model appears 

inconsistent with crash data. ZI models assume that the phenomenon being studied 

takes the form of a dual-state process; a true-zero and a non-zero state. Also, because 

http://www.sciencedirect.com/science/article/pii/S0001457506001072
http://www.sciencedirect.com/science/article/pii/S0001457506001072
http://www.sciencedirect.com/science/article/pii/S0001457506001072
http://www.sciencedirect.com/science/article/pii/S0001457506001072
http://www.sciencedirect.com/science/article/pii/S0001457506001072
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the zero or safe state has a long term mean equal to zero, the model crash data 

generating process cannot be reflected properly. 

3.2.8 Generalised Linear models (GLM) 
Generalised Linear Models (GLM) is a big family of models of which Linear models 

belong to. GLMs are generalisations of the Linear Regression Model (LRM). LRMs 

assume the dependent variable is continuous, normally distributed with constant 

variance and is a linear function of a set of independent variables. The independent 

variables tend to be categorical, continuous or a combination of both (Dunteman and 

Ho, 2006). Alternatively, the response variable is taken as part of the exponential 

family of distributions which include Normal, Poisson, gamma, inverse Gaussian, 

binomial, exponential and other distributions. A multivariate method such as GLMs 

accommodates for correlations and enables interaction effects to be explored (Zou, 

Zhang and Lord, 2013). GLMs statistical computations also assist in choosing 

significant variables as well as in validating the model assumptions. The limitations 

exhibited in LRMs led to the development of GLMs by Nelder and Wedderburn in 

1972.   

GLMs allow the prediction of the conditional mean or some function of the 

conditional mean of a dependent variable as a linear function of a set of independent 

variables or covariates. This implies that for each subject or observation the expected 

value or some function of the expected value of the dependent variable is subject to 

the value of the independent variables or covariates (Dunteman and Ho, 2006). 

GLMs are typically made up of three parts; a response variable distribution 

(occasionally referred to as the error structure), a linear predictor that takes into 

account the regressor variables or covariates and a link function connecting the linear 

predictor to the natural mean of the response variable (Myers, Montgomery and 

Vining, 2001).  

Greibe (2003) used GLM to predict the expected number of accidents at urban 

junctions and road links. The model was used in the identification of factors affecting 

road safety and ‘black spots’. Vehicle traffic flow was found to be the most powerful 

variable for the models developed. A lot of road geometric and non-geometric 

variables were incorporated into the model which provided a sound blend of data 

variables. However, a major problem encountered in this model was the strong 
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internal correlation that existed within the data. This correlation made it difficult for 

the safety effects from a single explanatory variable to be estimated since it may be 

affected by other variables in the model (Greibe, 2003).  In another model by Cafiso 

et al. (2010) three models were proposed out of the 19 models developed and ranked. 

These models were developed using 14 variables belonging to four main groups. 

However the three proposed models did not contain all fourteen variables with 

AADT being the only common variable in all models. 

3.2.9 Classification and Regression Tree (CART) models 
The CART model is a data mining technique applied in business, industry and 

engineering and it does not require any pre-defined underlying relationship between 

the dependent variable often referred to as the target and the independent variable 

(predictors) (Chang and Wang, 2006). CART is known to be good at handling 

prediction and classification problems. A CART model was developed using road 

accident data from Taipei, Taiwan to establish the relationship between injury 

severity and driver/vehicle characteristics, highway environmental variables and 

accident variables. Some advantages and disadvantages of using the CART model 

were highlighted. There is no need to specify a functional form in a CART model 

unlike a regression model in which a mis-specification of the model can result in an 

erroneous estimated relationship between the dependent and independents variables 

as well as the model predictions. In regression analysis, outliers are known to present 

a serious problem with an adverse effect on the coefficient estimates. In contrast, 

CART models have outliers isolated into a node resulting in no effect on splitting 

(risk factors) (Chang and Wang, 2006). CART deals with large data sets containing a 

large number of explanatory variables and can produce beneficial results from using 

a few important variables. The main disadvantages associated with CART models 

include the lack of provision of a probability level or confidence interval for the risk 

factors (splitters). CART models also have difficulty in conducting elasticity or 

sensitivity analysis and are also very unstable. They are normally used to identify 

important variables and then some other flexible modelling technique is used to 

develop the final model. 

3.2.10 Other models 
Integer valued autoregressive (INAR)  Poisson models are applicable for the analysis 

of time series count data since these models have the characteristics of Poisson 

http://www.sciencedirect.com/science/article/pii/S0001457506000583
http://www.sciencedirect.com/science/article/pii/S0001457506000583
http://www.sciencedirect.com/science/article/pii/S0001457506000583
http://www.sciencedirect.com/science/article/pii/S0001457506000583
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regression and are able to deal with serial correlation providing an alternative to the 

real-valued time series models (Quddus, 2008).   Quddus (2008) used INAR models 

for the time series analysis of traffic accidents in Great Britain using both 

disaggregate and aggregate time series data. The performance of the INAR was 

found to be good in comparison to Negative Binomial (NB) models. The INAR 

model was found to be able to control both properties of time series data. It was 

further suggested that INAR models should be considered when developing accident 

prediction models for serially correlated time series count data, particularly during 

instances where the time interval between successive observations is short, such as a 

day, a week, or a month rather than a year. As with most road accident data, INAR 

also has a limitation in dealing with over-dispersion. 

 

Mixed logit models have been used in modelling accident severities at various levels 

and is noted to be able to account for the differential (from one road segment to the 

next) effects that variables have on the numbers of injury severity (Milton, Shankar 

and Mannering, 2008). In traditional multinomial logit models the error term 

(unobserved effects) are assumed to be an independently and identically distributed 

extreme value. It is however necessary to take into account the likelihood of shared 

unobservables between injury outcomes in functions that determine the injury 

proportions on individual roadway segments. The alternate severity outcomes are 

presumed to be independent with a model specification error resulting if they are not 

in traditional multinomial logit models. The mixed logit permits for a more general 

error-correlation structure, while eliminating the requirement for creating a priori 

assumption about the structure of shared observables (such as nested structures) in  

preventing this error term (Milton, Shankar and Mannering, 2008).  It has been noted 

that the difficulties associated with modelling accidents at various severities have 

resulted in most road safety researchers opting for accident modelling based on 

frequencies. Milton, Shankar and Mannering (2008) used mixed logit which offered 

the flexibility of capturing segment-specific heterogeneity that can arise from a 

number of factors related to the roadway characteristics, environmental factors, 

driver behaviour, vehicle types and interactions among these factors. The inter-

relationship between the factors used in the model were not revealed even though 
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consideration of various factors provided a better understanding of the complicated 

interaction of factors that come to play with road safety. 

 

3.3 Summary table of reviewed accident prediction models 
A summary of the accident prediction models reviewed in this chapter is provided in 

Table 2. 
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Method Authors and 
year 

Area studied Characteristics of model 
 

Results/ Comments 

Empirical 
Bayes (EB) 
(variant) 

Bude and 
Larsson (1988) 
 

Junctions of 
the same 
type/individual 
junction 

1,901 3-way junctions on rural roads. Data used 
included number of junctions and existing number 
of accidents. 

Model predicts accidents at junctions based 
on existing record of accidents. Not possible 
to show better results or significant difference 
was achieved for the variant EB as compared 
to conventional EB method. 

Mountain, 
Fawaz and 
Jarrett (1996) 

Link and minor 
junction 
accidents 

3800km of highway including 5000 minor 
junctions studied. Link length and traffic flow are 
the main explanatory variables used in the model. 

Very basic model not including a lot of 
parameters. The EB method results in 
unbiased estimates of the estimated treated 
effect when sites are selected on the basis of 
high accident frequency.  

Negative 
binomial  

Shankar, Milton 
and Mannering 
(1997) 
 

Principal 
arterial roads 
in Washington 
State, USA 

4386km of highway and 11757 accident records 
were used. Model included variables such as 
shoulder width, horizontal and vertical curve 
information, traffic volume and speed data. In this 
model, the effects of individual variables were 
presented. 

Model allows for over dispersion and takes 
account of the variance being more than the 
mean.  
A single model containing all the individual 
variables was not presented. 
 

Negative 
binomial 

 

Abdel-Aty and 
Radwan (2000)  

Principal 
arterial roads 
in Florida, 
USA 

1606 accidents over a 3 year period were used. 
Model revealed the significance of the AADT, 
degree of horizontal curvature, lane, shoulder and 
median widths, urban/rural, section lengths and 
frequency of accident occurrence. 

Heavy traffic volume, speeding, narrow lane 
width, larger number of lanes, urban roadway 
sections, narrow shoulder width and reduced 
median width increased likelihood of accident 
involvement. 

Negative 
binomial 

Noland and Oh 
(2004)  

Roads in the 
state of 
Illinois, USA 

Analyses focussed on whether various changes in 
road network infrastructure and geometric design 
is associated with changes in road fatalities and 
reported accidents. Model hypothesises that 
improved infrastructure geometric design is 
beneficial to road safety. 

Results could not confirm hypothesis. 
Increased number of lanes associated with 
increased traffic-related accidents and 
fatalities. Increased lane widths associated 
with increased fatalities.  

Table 2 Summary table of reviewed accident prediction models 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Negative 
binomial 

Graham and 
Glaister (2003)  

Pedestrian road 
casualties 

The model examines the role of urban scale, 
density and land-use mix on the incidence of road 
pedestrian casualties. 

Results indicate the local environment can 
have a powerful influence on pedestrian 
casualty incidents. Even though model 
includes parameters such as the road length 
and traffic flows, geometric characteristics of 
the road are not included in the model which 
could have an impact on pedestrian casualties. 

Negative 
binomial 

Vieira Gomes 
(2013)  

Urban road 
networks in 
Lisbon, 
Portugal 

The model predicts the frequency of accidents. 
The explanatory variables included vehicles and 
pedestrian traffic flow counts, and highway 
geometric design features.  
 

Variables identified to increase the frequency 
of accidents included traffic, lane balance, 
average lane width etc. 
Accidents were not split by levels of severity.  
No validation checks were carried out.  

Random 
Effect 
Negative 
Binomial 
(RENB) 

Chin and 
Quddus (2003)  

Signalised 
intersections in 
Singapore 

52 four legged intersections in Southwestern 
Singapore were used accounting for 15% of such 
intersections. Accident data, traffic volume, 
geometric data in the form of approach curvature, 
sight distance to intersection and road width was 
used. Other parameters included median width, 
left turn length on slip roads, distance of upstream 
and downstream bus stop from intersection, 
uncontrolled left turn lane, exclusive right-turn 
lane, acceleration section and the presence of an 
overhead bridge near the intersection. Other 
parameters included the existence of surveillance 
camera, signal control and signal timing plan.  
 

11 variables significantly affected safety at 
the intersections. The relatively small sample 
size used placed a limitation on the findings. 
Even though the RENB can be used to 
identify factors that influence total accident 
frequency, there still remains the question 
about its suitability in predicting accidents. 
This is because the identification of factors 
may provide a relationship with accidents 
occurring but not necessarily the causation of 
the accident.  

Table 2 Summary table of reviewed accident prediction models (continued) 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Multivariate 
Poisson-
lognormal 
(MVPLN) 
regression 
model 

El-Basyouny 
and Sayed 
(2009) 

Signalized 
intersections in 
the city of 
Edmonton, 
Canada 

99 signalized 4-leg intersections were studied in 
order to develop collision prediction models. Data 
on collision frequencies and traffic volumes were 
used. Collisions are grouped as property damage 
only and injuries and fatalities.  

This model may suffer from omitted variables 
since it was purely based on AADT. This is 
because other non-flow variables have been 
shown to affect collision frequency. The 
technique generalizes the univariate posterior 
probability of excess commonly proposed and 
applied in literature to fit the multivariate 
relationship between latent variables.  

Multivariate 
Poisson-
lognormal 
(MVPLN) 
regression 
model 
 
 

El-Basyouny 
and Sayed 
(2009) 

City of 
Edmonton, 
Canada 

99 signalised intersections were used for the 
development of collision prediction models 
relating to safety of urban 4-leg intersections to 
their traffic flow. Other data used included 
collision frequencies for three years and traffic 
volume. Two severity levels ie. Property damage 
only (PDO) and injuries plus fatalities(I+F) were 
considered. 

The MVPLN model was found to be twice as 
precise as the univariate PLN model. The 
MVPLN also provided a superior fit over the 
univariate models. Small differences in the 
regression parameter estimates were noted 
between the univariate and multivariate 
models.  

Bayesian 
Hierarchical 
(BH) models 

Quddus (2008) 
 
 
 
 
 
 
 
 

Greater 
London 
metropolitan 
area-wide, UK  

633 census wards of the Greater London 
metropolitan area were used.  Traffic 
characteristics, road characteristics and socio-
demographic factors were used in the model. 

Results obtained from the negative binomial 
(NB) models and the BH models were 
similar. BH models were found to be an 
appropriate model to analyse area-wide traffic 
crash occurrences. A series of relationships 
were developed between area-wide different 
traffic casualties and the contributing factors 
associated with the ward characteristics 
instead of a single model being developed. 
 

Table 2 Summary table of reviewed accident prediction models (continued) 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Bayesian 
Hierarchical 
(BH) models 
 
 

Li, Zhu and Sui 
(2007) 
 
 

Harris County, 
Texas state 
maintained 
roadways, 
USA 

Five year crash data, where one or more vehicles 
were towed included in the data. AADT and 
Annual average daily vehicle miles travelled 
(VMT) are used. 

Model does not include road characteristics 
and is unable to provide reasons as to why 
some road segments are riskier than others. 
Model does not also distinguish between 
accident severities.   

Full Bayes 
(FB) 
hierarchical 
models 

Aguero-
Valverde and 
Jovanis (2006) 

Pennsylvania 
State county 
roads, USA 

Fatal and injury crash data as well as socio-
demographics, weather conditions, transportation 
infrastructure and amount of travel data was used. 

Models were developed for injury and fatal 
crashes. No evidence of spatial correlation in 
fatal crashes but significant correlation was 
found for injury crashes. 
 

Full Bayes 
 
 

Song et al. 
(2006) 

Texas, USA Crash data, weather variations and horizontal 
curve parameters were used in the model. 

Higher accident risk locations were identified 
for some sites than others.  

Full Bayes 
 
 
 
 
 

Li et al. (2008) Iowa State, 
USA 

Data was analysed by comparing sites receiving 
an intervention during the study with sites which 
did not to assess the effect of the intervention on 
road safety. The number of crashes per month 
over the period 1982 to 2004 and average daily 
traffic was used. 

Results not presented in this paper but it is 
apparent that the FB method is favoured.  

Multilevel 
model 
 
 
 
 

Jones and 
Jorgensen 
(2003) 

Norway Data from 16,000 fatally and seriously injured 
casualties involved in accidents between 1985 and 
1996 analysed. Other parameters used in the 
analyses were age, sex, type of vehicle, 
characteristics of the impact, road section 
attributes, time of day and alcohol involvement.  

Model found statistical significant residual 
variation in casualty outcomes between 
separate accidents and different geographical 
locations. The road geometric characteristics 
were absent from the model.  

Table 2 Summary table of reviewed accident prediction models (continued) 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Generalised 
Linear models 
(GLM) 
 
 
 
 
 

Greibe (2003) Urban roads in 
Denmark 

Data from 1036 junctions and 142km of road links 
in urban areas was used.  

Model for urban road links was able to 
describe more than 60% of the systematic 
variation (percentage-explained value) while 
models for junctions had lower values. Most 
powerful variable was vehicle traffic flow. 
Both geometric and traffic characteristics 
used however not all parameter values can be 
obtained for current research.  

Bayesian 
model 

MacNab (2004) British 
Columbia, 
Canada 

Hospital data from 83 local hospitals from 1990 to 
1999 was used. Some of the data included socio-
economic indicators, residential environment 
indicators, medical services availability and 
utilisation, population health, crime rates, 
speeding charges and seatbelt violation data.   

Study revealed geographic/spatial patterns in 
injury ratios but did not indicate areas with 
exceptionally elevated injury rates.  

 
Bayesian 
spatial model 
and mixed 
logit model 
 

Wang, Quddus 
and Ison (2011) 

M25 motorway 
and its 
surrounding 
major roads, 
London, 
England. 

2003 to 2007 road accident data including 
parameters like date, time, lighting weather 
conditions, number of vehicles and number of 
casualties was used. Others include traffic flow, 
traffic delay and road curvature.  

The two stage model was generally 
comparable to the MVPLN model and fixed 
proportion method. Even though the model 
was found to be able to predict low frequency 
accidents, there is the need for further 
research to validate the method with other 
data samples or models.  

Poisson and 
Negative 
Binomial 
Regression 
models 

Hiselius (2004) Rural roads in 
Sweden 

Data from 83 rural road sections, police reported 
accidents with personal casualties from 1989 to 
mid-1995 and hourly traffic flow was used. It was 
assumed that traffic flow counted at a stationary 
point along the road is valid for the road section.  

Very basic model and it is mentioned that 
missing factors such as weather, road 
conditions, type of vehicle and driver 
characteristics can influence the occurrence of 
an accident.  

Table 2 Summary table of reviewed accident prediction models (continued) 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Classification 
and regression 
tree model 

Chang and 
Wang (2006) 

Taipei, Taiwan 2001 accident data in addition to driver/vehicle 
characteristics, highway/environmental variables 
and accident variables. 

The most important variable associated with 
crash severity was found to be the vehicle 
type.  

Integer-valued 
autoregressive 
(INAR) 
Poisson 
models 

Quddus (2008)  Great Britain Annual road traffic fatalities between 1950 and 
2005 used. Explanatory variables used included 
seat belt wearing law, new legislation on safety 
and veh-km (billion). Aggregate and disaggregate 
time series data were considered.  

The performance of the INAR model in 
comparison with the real-valued models show 
both models to perform similarly in terms of 
coefficient estimates and goodness of fit for 
the aggregated time series data. For the 
disaggregated time series accident data, the 
INAR model was found to be better than the 
real-values models.  

Empirical 
Bayes (EB) 

Elvik (2008) Norway 21,738 1-km sections on national roads, accident 
data and some variables associated with the 
number of accidents for the period 1997 – 2004 
was used. Road sections remained unchanged 
except for ordinary road maintenance like 
resurfacing, renewing road markings and traffic 
sign replacement. The main variables included in 
the model were AADT, speed limit, motorway 
type, number of lanes and number of junctions. 

The EB method provided a better prediction 
of accidents than the traditional approach. 

Mixed logit 
models 
 
 
 
 

Milton, Shankar 
and Mannering 
(2008) 

Washington 
State, USA 

Accident severities modelled. Data consisted of 
274 road way segments with mean segment length 
of 2.4 miles, accident data from 1990 to 1994, 
weather, geometric, pavement, roadside and traffic 
characteristics associated with road segments.   

Details of geometric parameters used were 
quite detailed and model also included other 
factors which contribute to road accidents. 
Estimated parameters included in the model 
were statistically significant.  

Table 2 Summary table of reviewed accident prediction models (continued) 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Poisson 
lognormal 
model 

El-Basyouny 
and Sayed 
(2009)  

Urban arterial 
roads in 
Vancouver, 
British 
Columbia, 
Canada 

392 road segments clustered into 58 corridors, 
accident and traffic data was used to model 
accident frequencies.   

Apart from the intercepts, the regression 
coefficients were all found to be positive 
signifying that factors such as segment length, 
AADT, crosswalks density, business land use, 
un-signalised intersection density and number 
of lanes are positively associated with the 
number of accidents.  
 

Random-
parameters 
negative 
binomial 
regression  

Anastasopoulos 
and Mannering 
(2009)  

Rural interstate 
highways in 
Indiana, USA 

5 year accident data, 322 road segments and 
detailed geometric and pavement data was used in 
developing a model to obtain knowledge about 
factors influencing accident frequencies.   

A number of factors relating to pavement 
condition, road geometry and AADT were 
found to significantly influence the frequency 
of accidents. Some of the factors were found 
to vary significantly across road segments.  
 

Full Bayesian 
(FB) 
multivariate 

Park, Park and 
Lomax (2010) 

Expressways 
in Korea 

The FB method was applied to crash data from 
Korean expressways in order to assess the safety 
benefits of decreasing the posted speed limit. 
Crash data from 1996 to 2006 in addition to road 
characteristics, AADT and speed limit change 
information was used. The model was developed 
for crash counts of different types of severity for a 
before-after evaluation with a comparison group.   

The multivariate approach can recover the 
underlying correlation structure of the 
multivariate crash counts and can lead to a 
more precise safety effectiveness estimate by 
taking into account correlations among 
different crash severities or types for the 
estimation of the expected number of crashes. 

Table 2 Summary table of reviewed accident prediction models (continued) 
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Method Authors and 

year 

Area studied Characteristics of model 

 

Results/ Comments 

Generalised 
Linear 
Modeling 
(GLM) 

Cafiso et al. 
(2010) 

Two lane local 
rural roads in 
Italy 

5 years road accident and traffic flow data was 
used in addition to computed road curvature 
change rate (CCR) and road side hazard rating 
(RSH).  Other variables not influencing the 
homogeneity of the segments included in the 
model were curvature ratio, tangent ratio and 
average operating speed. The model was 
developed to estimate the expected number of 
accidents along the road segments.  

19 models were developed and three were 
selected as recommended. The three were 
selected on the basis of practical 
considerations, statistical significance and 
goodness of fit indicators. The main variable 
common in all three recommended models 
was AADT.  

Table 2 Summary table of reviewed accident prediction models (continued) 
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3.4 Characteristics of accident prediction models  
Table 3 is a summary of some accident prediction models stating some advantages 
and disadvantages about them.  
 
Model type Advantages Disadvantages 
Poisson Most basic model; easy to 

estimate. 
Cannot handle over- and 
under-dispersion; negatively 
influenced by the low 
sample-mean and small 
sample size bias. 

Negative binomial/ 
Poisson-gamma 

Easy to estimate can account for 
over-dispersion. 

Cannot handle under-
dispersion; can be adversely 
influenced by the low 
sample-mean and small 
sample size bias. 

Poisson-lognormal 
 
 
 
 
 
 
 
 

More flexible than the Poisson-
gamma to handle overdispersion. 

Cannot handle under-
dispersion; can be adversely 
influenced by the low 
sample-mean and small 
sample size bias (less than 
the Poisson-gamma), cannot 
estimate a varying dispersion 
parameter. 

Zero-inflated Poisson 
and 
negative binomial 

Handles datasets that have a large 
number of zero-crash observations. 

Can create theoretical 
inconsistencies; zero-inflated 
negative binomial can be 
adversely influenced by the 
low sample-mean and small 
sample size bias. 

Conway–Maxwell–
Poisson 

Can handle under- and over-
dispersion or combination of both 
using a variable dispersion 
(scaling) parameter. 

Could be negatively 
influenced by the low 
sample-mean and small 
sample size bias; no 
multivariate extensions 
available to date. 

Gamma Can handle under-dispersed data. Dual-state model with one 
state having a long-term 
mean equal to zero. 

Generalized estimating 
Equation 
 
 
 

Can handle temporal correlation. May need to determine or 
evaluate the type of temporal 
correlation a priori. Results 
sensitive to missing values. 

Generalized additive 
 
 
 

More flexible than the traditional 
generalized estimating equation 
models and allows non-linear 
variable interactions. 

Relatively complex to 
implement; may not be easily 
transferable to other datasets. 

Table 3 Characteristics of accident prediction models (Lord and Mannering, 2010) 
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Model type Advantages Disadvantages 
Random-effects Handles temporal and spatial 

correlation. 
May not be easily 
transferable to other datasets. 

Negative multinomial Can account for over-dispersion 
and serial correlation; panel count 
data. 

Cannot handle under-
dispersion. Can be adversely 
influenced by the low 
sample-mean and small 
sample size bias. 

Random-parameters More flexible than the traditional 
fixed parameter models in 
accounting for unobserved 
heterogeneity. 

Complex estimation process; 
may not be easily 
transferable to other datasets. 

Bivariate/multivariate Can model different crash types 
simultaneously; more flexible 
functional form than the 
generalised estimating 
equation models (can use non-
linear functions). 

Complex estimation process; 
requires formulation of 
correlation matrix. 

Finite mixture/Markov 
switching 

Can be used for analysing sources 
of dispersion in the data. 

Complex estimation process; 
may not be easily 
transferable to other datasets. 

Duration By considering the time between 
crashes (as opposed to crash 
frequency directly), allows for a 
very in-depth analysis of data and 
duration effects. 

Requires more detailed data 
than traditional crash 
frequency models. Time-
varying explanatory variables 
are difficult to handle. 

Hierarchical/multilevel Can handle temporal, spatial and 
other correlations among groups of 
observations. 

May not be easily 
transferable to other datasets. 
Correlation results can be 
difficult to interpret. 

Neural network, 
Bayesian 
neural network, and 
support vector 
machine 

Non-parametric approach does not 
require an assumption about 
distribution of data, flexible 
functional form and usually 
provides better statistical fit than 
traditional parametric models. 

Complex estimation process; 
may not be transferable to 
other datasets, work as black-
boxes and may not have 
interpretable parameters. 

Table 3 characteristics of accident prediction models (Lord and Mannering, 
2010)(continued) 

3.5 Facility Location 
Facility location problems have been defined in most literature with similar wording. 

In one such review of location science research, facility location problems was 

described as one investigating where to physically locate a set of facilities 

(resources) in a way so as to minimise the cost of satisfying a set of demands subject 

to some constraints (Hale and Moberg, 2003). Facility location problems are noted to 

be generally solved in three main environments; continuous spaces (spatial), discrete 

spaces and network spaces. Continuous spaces solve problems in a continuous space 

(typically one, two or three dimensional) where every location is a possible ideal 
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place for locating a facility. Discrete spaces deal with problems in which a location 

must be selected from a pre-chosen set of possible locations and finally network 

spaces deal with problems restricted to arcs and nodes of an underlying network 

(Hale and Moberg, 2003). Even though there seems to be some controversy about the 

origin of location science, it is thought (Hale and Moberg, 2003) to be traceable back 

to Pierre de Fermat, Evagelistica Torricelli (he is said to have been a student of the 

renowned scientist Galileo) and Battista Cavallieri. Hale and Moberg (2003) went on 

to provide a review of location science research which documented a broad review of 

facility location and location science research. It however was not aimed at providing 

a detailed list of location science topics but rather it provided the reader with a 

general review of the location science research landscape revealing the diverse areas 

and disciplines of application. 

Location science has become well known with a lot of academic disciplines making 

use of facility models. These include civil engineers, geographers, electrical 

engineers, industrial engineers and urban planners to mention a few. Due to the range 

of academic disciplines involved in the use of facility location models, literature on 

this subject area has increased over the years.  Over the years, a combination of exact 

and heuristic methods has evolved to help solve facility location problems. 

Brotcorne, Laporte and Semet (2003) trace the literature for ambulance location and 

relocation models some 30 years back showing how various stages have evolved 

with the passage of time. These models initially set off with static and deterministic 

location problems more suited to the early stages of planning thus ignoring the 

stochastic considerations such as the availability of ambulances. These were then 

followed on by the more probabilistic models reflecting the ‘server within a queuing 

system’ operation of ambulances and finally the dynamic nature of the more recent 

models which reflect the practicalities of relocating ambulances to efficiently and 

effectively cover needs.    

3.5.1 Multi-objective spatial decision making 
Pareto has been well acknowledged in research (Xiao, Bennett and Armstrong, 2007) 

as having the first study which dealt with optimality of multi-objective problems. His 

analytical work was illustrated using the following multi-objective optimisation 

problem 
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min f(x) = [f1(x), f2(x), …, fm(x)]T   subject to x є S          …..…Equation  3 
where f is a vector of m objective functions (f1, f2, …, fm) to be minimised, the 

decision variable vectors are x and the set defining all feasible solutions is S. 

The solution space is described as the set of all feasible alternative solutions to the 

objective function whilst the decision space tends to be formed when the solutions 

are placed in a space formed by the decision variables. In a much similar way when 

solutions derived from the objectives are placed in a space it is described as an 

objective space. Non-dominated or most commonly called Pareto optimal solutions 

are used to describe a subset of all feasible solutions obtained which are not 

dominated by any solution. It also refers to solutions found to be outside the subset 

obtained which are dominated by at least one solution from within the subset. The 

Pareto front describes the set of non-dominated solutions (Xiao, Bennett and 

Armstrong, 2007). 

Finding solutions to optimisation problems have generally been approached using 

either an exact method or a heuristic method. In the former method, limitations are 

brought to light when the problem to be solved tends to be of a large size and 

difficulties are encountered (Armstrong, 2000). The latter method on the other hand 

has been shown (Reeves, 1993) to be able to obtain optimal or near optimal solutions 

though this is not always guaranteed. The aim of multi-objective problems is to find 

near optimal solution (a Pareto optimal solution).  

Three main approaches have been developed by Miettinen (1999) to solve a multi-

objective problem heuristically. The first approach desires decision makers to agree 

on the weighting to be given to each objective. Scalarisation technique is then 

applied to decision makers preferred options and then a conversion of a multi-

objective problem to a single objective problem to be solved. In this approach, taking 

a decision on which weighting to assign proves difficult to decision makers due 

sometimes to conflicting interests, different background knowledge and also due to 

the fact that certain objectives may just not be quantifiable. Examples of these are 

religious interests and cultural objectives.        

The second approach, which has proved popular in recent times, is an interactive 

process whereby the preferences from decision makers are refined and inputted into 
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the investigation. Each iteration provides decision makers with a subset of non-

dominated solutions. Based on these solutions, preferred objectives are identified by 

decision makers leading to the formulation of a single objective problem. Solutions 

derived are refined and the process repeated until decision makers obtain a solution 

they are content with. However the reaching of an acceptable solution is not always 

guaranteed (Miettinen, 1999). This approach is similar in a way to the first in the way 

decision makers make input to the decision variables. However, this approach 

provides a step forward in allowing decisions to be refined and re-input into the 

model in an iterative fashion. This can be described as a positive step forward in 

obtaining better solutions even though this is not assured.  

The third approach normally referred to as posterior articulation of preferences does 

not need the intensive involvement of decision makers when generating alternative 

solutions. It rather relies on methods that can be used to obtain a variety of Pareto 

optimal solutions uniformly distributed on a Pareto front. Solutions obtained are 

provided to decision makers who look at the merits of each solution and choose the 

most suitable option. The main problems identified with this approach are firstly to 

do with difficulties in obtaining a Pareto front and secondly the outcome of a large 

number of solutions will cause decision makers to be inundated with these solutions 

and faced with the challenge of selecting a solution from a number of alternatives. 

On the other hand, this approach is known to provide some advantages in that the 

Pareto front allows the real multi-objective structure of the problem to be properly 

visualised leading to better decision making (Brill, 1979). Another problem 

visualised in the third approach is to do with its reversed method of implementation. 

In optimisation problems, decision makers are the initial proposers or initiators of 

things to be done so for them not to be intensively involved during the generation of 

alternative solutions looks out of place. The solution will eventually revert back to 

these decision makers for approval so what one may ask is why not get them well 

involved in the decision making process so as to save time, money and provide a 

well-managed solution to the problem.  

The use of posterior approaches has been used in evolutionary algorithms and in 

multi-objective optimisation problems (Badri, Mortagy and Alsayed, 1998; Yang, 

Jones and Shuang-Hua, 2007). In contrast to exact methods evolutionary algorithms, 



 

86 

 

classified as heuristic algorithms are known to be more efficient and produces a wide 

set of non-dominated solutions comparative to the Pareto front (Deb, 2001). Another 

area the posterior approach is being made use of is in spatial analysis with 

visualisation capabilities such as intelligent geographic information systems (GIS) 

(Sasaki et al., 2010). 

Many decisions to be made in location science require a multiple number of 

objectives to be achieved. This is mainly due to the various stakeholders involved 

who have objectives, normally conflicting which inevitably must all be fulfilled in 

one way or the other. In an example of locating airport fire stations the main 

objectives to be fulfilled by decision makers will be to minimise the total setup cost 

of the fire stations, minimise the total loss cost of an incident and minimise the 

longest distances from fire station to any incident point and high risk area (Tzeng and 

Chen, 1999).  

3.5.2 Challenges of multi-objective optimisation problems 
The three main challenges (Xiao, Bennett and Armstrong, 2007) to multi-objective 

optimisation problems are firstly the huge amount of time required for computation 

due to the optimisation problems being combinatorial. Secondly, different 

stakeholders having different backgrounds and views about the problem to be tackled 

are involved in the decision making. Finally, it is sometimes difficult if not 

impossible to meet the needs of all stakeholders involved in the decision making. 

This will then require a weighting of the objectives to be carried out with a 

compromise agreed on in order to achieve a meaningful result to the satisfaction of 

all stakeholders. Due to these three main challenges, solutions developed must be 

efficient in respect to time and complexity, effective with regards to finding good 

quality solutions and interactive so as to allow decision makers to visually probe 

different scenarios to find the most suitable solution (Xiao, Bennett and Armstrong, 

2007). This is because decision makers are not normally interested in the 

technicalities of decision making.  

3.5.3 Applicable methods for facility location problems 
Salhi and Gamal (2003), in their approach for solving a location-allocation problem 

used genetic algorithm with the introduction of a selection and removal stage based 

on groups of chromosomes instead of individual chromosomes. They also proposed 
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the use of specific crossover and mutation operators that relied on the impact of the 

genes selected as well as the introduction of a new operator for injecting new 

chromosomes into the population as and when needed. This approach by Salhi and 

Gamal (2003) brought about variety within the search thereby preventing early 

convergence. Cheung, Langevin and Villeneuve (2001) proposed an overall 

reconstruction of the traditional genetic algorithm method in order to overcome its 

inherent slow convergence weakness. A variety of crossover operators and the 

genetic search scheme were probed. Application of this method has been 

successfully executed on a number of real life problems such as hub location 

problems from airline networks and location-allocation problems from the oil 

industry. Arostegui, Kadipasaoglu and Khumawala (2006) made a comparative study 

of Tabu search, simulated annealing and genetic algorithms for facility location 

problems whilst Peng, Xu and Qin (2008) also made use of simulated annealing for a 

facility location problem.  

Another method used in facility location problems is ant colony optimisation. Chen 

and Ting (2008) combined Lagrangian heuristic and Ant colony system to solve a 

facility location problem. Lu and Hou (2009) only made use of ant-colony 

optimisation to solve a facility location problem for large-scale emergencies whilst 

Xiang-lin, Yun-xian and Shen (2010) used a combination of fuzzy queuing and ant 

colony to solve large scale emergency problems.   

Analytical Hierarchy Process (AHP) has also been used for facility location 

problems. AHP involves the decomposition of a problem into a hierarchy of easily 

understandable sub-problems, each of which can be independently analysed and 

having the elements of the hierarchy being able to relate to any aspect of the decision 

problem (Erden and Coşkun, 2010). Erden and Coşkun (2010) quote Siddiqui, 

Everett and Vieux (1996) as being the first to combine Geographic Information 

Systems (GIS) and AHP for a site selection problem. They also made use of AHP 

and GIS for the multi-criteria site selection of fire services. This same approach was 

used by Wei et al. (2011) for siting a fire station. Badri (1999) on the other hand 

made use of a combination of AHP and goal programming for solving facility 

location problems.  
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This research aims to move a step further with the application of Geographical 

Information Systems (GIS) in the location allocation problem being investigated. 

Malczewiki (2006) reveals that GIS and multicriteria decision analysis has generated 

a huge amount of interest over the 15 year period (1991 to 2004) investigated. GIS 

has a role to play in decision making or solving problems. Malczewiki  (2006)  went 

on to quote Cowen (1988) as recognising GIS ‘as a decision support system 

involving the integration of spatially referenced data in a problem solving 

environment’. Of the 319 peer-reviewed papers identified the major areas of 

application were found to be in environmental planning/ecology management, 

transportation, waste management, hydrology and water resource, agriculture and 

forestry in order of decreasing application with all these areas accounting for 72.4 

percent of the literature surveyed. The remaining 27.6 percent was taken up by areas 

of application such as natural hazard management, recreation and tourism 

management, housing and real estate, geology and geomorphology, industrial facility 

management and cartography. Most of the decision problems were to do with land 

suitability problems. This illustrates the wide variety of research application areas of 

GIS in decision making. GIS and multicriteria decision making complement each 

other to make the decision making process more meaningful. GIS used to be an 

expert oriented area but this has shifted with more disciplines embracing the use of 

GIS leading to decision making becoming more flexible and allowing for a lot more 

public engagement (Malczewiki, 2006). Malczewiki (2006) further suggests that GIS 

multicriteria decision analysis (MCDA) can be constructed from two perspectives ie. 

the techno-positivist perspective on GIS and the socio-political, participatory GIS 

perspective. It is worth stating that, no matter what perspective is taken it should 

ultimately aim to provide easy integration between the two perspectives at any point 

in time when required.  

Li and Yeh (2005) used genetic algorithms (GAs) and GIS to effectively solve a 

spatial decision problem for optimally locating ‘n’ sites of a facility based on 

population and transportation constraints derived from a GIS. The GA method 

performed better when compared with simulated annealing method.  Indriasari et al. 

(2010) on the other hand used a combination of genetic algorithms (GA), tabu search 
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(TS) and simulated annealing (SA) with GIS in a facility location model. All 

methods produced better results than the existing method in use.  

Despite the varied disciplines and combinations of these optimisation techniques in 

use, they all have their strengths and weaknesses. Li, He and Liu (2009) identified 

the huge combinatorial solution space problems associated with the brute-force 

method for solving optimisation problems with high-dimensional spatial data. This 

makes it an infeasible choice to opt for. Heuristic algorithms such as the Monte-

Carlo method have been found to be simple and efficient amongst most methods but 

they do have the potential to get stuck on local suboptimal solutions since a move 

can only be made if a better solution is found. Genetic algorithms (GA) on the other 

hand have been found by Li, He and Liu (2009) to have problems in reaching 

convergence for large targets since the chromosome length has limitations on how 

long it can be. For example, a GA will find it hard to obtain the optimal location for 

more than 15 targets since the length of chromosome will be too long. To further 

explain the chromosome length, suppose it is desired to find the shortest distance to 

travel to six cities called A, B, C, D, E and F, a typical chromosome to represent the 

order of travel one may want to try can be represented as ‘DFABEC’.     

Li, He and Liu (2009) went on to reveal that ant colony optimisation (ACO) has been 

shown to have certain advantages over GAs when considered for certain areas of 

application. For example in operational settings with a dynamically changing system 

such as pipes breaking, pumps failing etc., ACO was found to be more advantageous 

than GA. Also ACO can be useful in instances where sequential decisions have to be 

made to help construct a trial solution where choosing some component solutions 

puts a limitation on subsequent choices.   

3.6 Genetic Algorithms 
Addressing the problem of site selection by decision-makers is an enormous task 

considering the various options that need to be taken into account. Since a large 

number of decision variables are involved and the search space can be large a search 

through heuristic methods that have been developed to handle problems associated 

with huge solution space was carried out. This approach was taken to make effective 

and efficient the decision making process associated with mounting road side speed 

control devices since this has been absent from the transport safety sector. Also most 
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of the traditional methods used to solve problems associated with site selection are 

known to be unable to handle huge data sets and heuristic methods have been found 

to perform better (Li, He and Liu, 2009).  

In an attempt to identify which optimisation technique is better suited for this 

research, an investigation into some of the optimisation techniques available was 

carried out. Taking into consideration the vast majority of optimisation techniques 

available, time limitations associated with this research and the types of 

optimisations techniques relevant to this area of research the choice was restricted to 

heuristic algorithms by making use of Genetic Algorithms and Pattern search. 

Heuristic Algorithms are algorithms that sift through a set of possible solutions and 

produce solutions close to the best. Heuristic algorithms provide approximate 

solutions but are able to get results quickly and easily which tends to be beneficial to 

decision making processes.   

3.6.1 Background to Genetic algorithms 
The concept of using a population of solutions to tackle practical engineering 

problems was considered in great detail during the 1950s and 1960s (Coley, 1999). 

There was however a revolutionary turn round in the 1960s when John Holland 

identified Genetic Algorithms (GA).  Genetic Algorithms have been found to be the 

best and most robust kind of evolutionary algorithms (Haupt and Haupt, 2004).  GA 

mimics natural biological evolution and belong to the broad class of evolutionary 

algorithms. Evolutionary algorithms work with a population of possible solutions to 

a problem. It then applies the principles of ‘survival of the fittest’, reproduction and 

mutation to reproduce a better breed/solution. For each evolutionary algorithm 

iteration, a new generation is produced through the processes of selection and 

reproduction leading to a new population of individuals who are better suited to the 

environment in which they are placed (Zalzala and Fleming, 1997).  

Genetic Algorithms have been used in a wide range of applications and these include 

but are not limited to, image processing, laser technology, medicine, spacecraft 

trajectories, water networks, architectural aspects of building design and facial 

recognition (Zalzala and Fleming, 1997).  
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3.6.2 Characteristics of Genetic algorithms 
Genetic Algorithms (GA) are different from the other types of heuristic algorithms in 

that they work on a population of feasible solutions and are also probabilistic 

(stochastic) and not deterministic. In a GA population each individual represents a 

possible solution to the problem under investigation (Zalzala and Fleming, 1997).  

Once one identifies the individuals thought to be the best contributing solutions to 

the problem, a combination of these individuals into new individuals is carried out 

and with the repeated use of the method good solutions evolve (Mathworks, 2015).  

The main characteristics associated with GAs is the selection process, crossover and 

mutation stages and these largely affect the performance of GAs (Zalzala and 

Fleming, 1997; Vose and Wright, 1998; Coley, 1999).  

The selection process will choose the fittest individuals, whilst the cross over 

combines the selected individuals into new individuals and the mutation is a way of 

adding or taking out some ‘genes’ out of an individual to obtain a healthier breed. 

In order for an algorithm to be described as genetic, it must have a 

• mathematical representation for the solution being sought 

• method for creating the start-up population such that one determines how 

many individuals must represent the population. 

• way in which fitness can be measured so as to select the best individuals and 

abandon the rest. 

• genetic function and this involves the selection, cross-over and mutation 

process. 

• number of parameters and this involves deciding in advance the population 

size, number of parents to select, mutation rate etc.   

The following sections explains some of the basic terms/procedures used in genetic 

algorithms 

3.6.2.1 Initialisation 
An initial population of possible solutions is generated for the problem to be solved. 

The population size can vary from little to many thousands depending on the 

simplicity or complexity of the problem to be solved. Traditionally, the population is 

normally generated at random and this covers the possible range of solutions (the 

search space) (Mathworks, 2015).   
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3.6.2.2 Selection 
The selection process involves determining the number of times a particular 

individual is selected for reproduction and thus the resulting offspring that will 

evolve from the reproduction. In selecting to breed a new population, a proportion of 

the existing population is used. The selection is then made by choosing the fittest 

individuals in the population sample who always have a better chance of being 

included. The selection process normally has two main processes 

• determining the number of trials an individual can expect to be selected 

(fitness assignment) and 

• converting the expected number of trials into discrete number of offspring 

(sampling).  

It is normal practice that the best 50 percent will be selected to be used in 

reproducing with the remaining 50 percent discarded. Though this is a practical 

method, it is not commonly used. This is because although it enables the best to 

reproduce, distinguishing between ‘good’ and ‘very good’ is problematic (Zalzala 

and Fleming, 1997; Vose and Wright, 1998). A more commonly used selection 

method is the fitness-proportional also known as roulette wheel selection (Zalzala 

and Fleming, 1997).  

With the roulette wheel, the probability of an individual being selected depends on 

the individual’s fitness. The analogy of a roulette wheel is the size of an individual’s 

slot being proportional to their fitness (Coley, 1999). In the example shown in Figure 

9, the circumference of the roulette wheel represents the sum of all six individual 

fitness values. Individual 6 is the most fit as it occupies the largest segment whereas 

individual 5 is the least fit occupying the least segment of the roulette wheel.  
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Figure 9 Roulette wheel 

 

The wheel is spun and a figurative ball thrown in. The ball coming to rest in a 

particular slot is equivalent to the arc of the slot and thus to the fitness of the 

corresponding individual. 

3.6.2.3 Crossover  
Crossover is the fundamental operator for producing new chromosomes in genetic 

algorithm. Crossover enables new individuals to be produced having some parts of 

both parents’ genetic make-up. It occurs between two individuals selected from the 

population and allows parts of their genes to be exchanged thereby forming new 

individuals (Vose and Wright, 1998).  

Single-point crossover is the simplest form of crossover used (between one and eight 

crossover points are usually used in the natural world). If Pc is the probability of pairs 

of individuals selected undergoing crossover and Rc is a random number generated in 

the range 0 to 1, then the individuals can only undergo crossover if Rc < Pc, 

otherwise the pair will proceed without crossover. Typical values of Pc is from 0.4 to 

0.9 with a Pc of 0.5 being the median value implying half of the population will be 

formed by selection and crossover with the other half being formed by selection 

only.  

A single point crossover starts by initiating the cutting of a pair of selected strings at 

a random locus/point (this is chosen by selecting a random number RL between 1 and 

L-1 and swapping tails to produce two child string. Assuming RL = 4 then we have 

this scenario shown in Figure 10 (a). The new population consists of the same 

number of individuals as the original population. 
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Figure 10 Simple single point crossover and Simple multipoint crossover 
 
In the case of multipoint crossover, n crossover locations are chosen with ki = {1, 2 

...., l-1} being the crossover points and l the chromosome length chosen randomly 

and arranged in ascending order. Both parents then exchange features between 

successive crossover points to produce new offspring. The first member of the series 

of genes occupying the first position on the chromosome at the location of the initial 

crossover point is left unchanged between the parents as shown in Figure 10 (b).  

3.6.2.4 Mutation  
The mutation process helps prevent premature convergence and it ensures that the 

population is thoroughly searched through, time permitting (Mathworks, 2015; Vose 

and Wright, 1998). This operation occurs after the crossover process and it is done 

through the alteration of one or more genes in a chromosome at randomly selected 

locations. Mutation occurs at probability rates similar to what happens in biological 

circles and this is usually very small (example 0.001). A 100 percent mutation 

implies all gene positions are altered. For example a string with this structure 1000 

0001 0011 can be mutated at the second position resulting in this new string structure 

1100 0001 0011.  

Crossover is the main operation that allows the search space to be well exploited, 

however crossover alone as an operation is found not to prevent a local minima 

convergence and this is where mutation is useful. Mutation is known to achieve 

better and healthier solutions than crossover only operations. It is advised not to 
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select only crossover or mutation, with a balance between them helping to achieve 

good results (Coley, 1999; Vose and Wright, 1998).  

The probability of mutating a gene/variable Pm, has been found to be inversely 

proportional to the number of variables ‘n’ in the chromosome. The more variables 

there are the smaller the probability of mutation required. The mutation rate is 

expressed as m = 1/n (Vose and Wright, 1998).    

3.6.3 Advantages and disadvantages of genetic algorithm 
GAs as an optimisation and search technique is based on the principles of nature and 

its reproduction. Thus the ‘survival of the fittest’ rule in nature governs the 

effectiveness of genetic algorithms. Some of the main advantages of using GA is that 

it is able to sift through a solution very quickly enabling bad proposals to be 

discarded quickly and it works based on its own internal rules. 

Some of the identified advantages for genetic algorithms are (Haupt and Haupt, 

2004) 

• It is able to optimise with both continuous and discrete variables. 

• It optimises variables which have extremely complex cost surfaces. 

• It does not just provide a single solution but a list of optimum variables. 

• It does not require derivative information. 

• It is able to effectively handle a huge number of variables. 

• It can perform with numerically generated data, experimental data or 

analytical functions.   

• It simultaneously searches from a wide sampling of the cost surface and 

• It may encode variables such that the optimisation is done using the encoded 

variables. 

Despite the above advantages, GAs cannot be said to provide the ideal solution for 

every problem. This is because, in problems that are not particularly difficult with 

few variables to solve, GA does not perform well and traditional methods of solution 

searching is faster and more efficient. However many real life problems are not as 

simplistic as one would expect and thus a quicker and more efficient problem solving 

approach is desired and this is where GAs comfortably fills the gap (Li and Yeh, 

2005; Li, He and Liu, 2009).  
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3.6.4 Applications of genetic algorithms in location science 
The use of genetic algorithms have been applied to areas such as locating fire 

stations, schools, waste disposal sites, supermarkets etc.. Other areas include health 

planning ie. ambulance locations, urban and regional planning, land use planning, 

environmental policy, land acquisition and routing problems. Examples are as 

follows: 

Chau (2004) formulated a model on the allocation of construction facilities in GA 

using a mixed integer program. Lim and Kuby (2010) also used heuristic algorithms 

to solve a problem for the optimal locations for refuelling stations that used 

alternative fuels. Geroliminis et al. (2011) developed a heuristic model for the 

optimal deployment of many emergency response units in an urban transportation 

network and an application for transit mobile repair units in the city of Athens, 

Greece.  

Yang, Jones and Yang (2007) used a combination of fuzzy multi-objective 

programming and genetic algorithm to determine the optimal location of fire station 

facilities. The three main things distinguishing this approach from existing fire 

station location models are firstly, the consideration of the fuzzy nature of a decision 

maker in the location optimisation model (this was done using the recommendations 

of the UK Home Office on the speed of fire engine attack to accidents in the optimal 

location model) (Yang, Jones and Yang, 2007). Secondly, full consideration of the 

demands for the facilities from areas with various fire risk categories was taken and 

finally the need to be practical and understandable to the decision maker was done 

(this involved choosing a suitable chromosome format and embedding the constraints 

into the fitness function of a genetic algorithm reducing the complexity of the 

model). One of the main advantages of this approach over existing ones is that in the 

use of multi-objectives and constraints, different risk categories and obstacles within 

specified regions were considered.  

The main objectives defined for the model are to minimise the fixed cost and the 

total loss cost of incidents and to minimise the distance from the fire station to any 

incident site. The main constraints satisfied were firstly the total number of fire 

stations obtained must be N. The second constraint takes into consideration obstacles 
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in a given area such that a fire station must not be built within any obstacles such as 

waterways and reserved areas. Thirdly there should be a reasonable distance dr
ab 

between any two adjacent fire stations ‘a’ and ‘b’. The decision variable Sij is binary 

and the location is a pair of integer coordinates (x,y) taken from the National Grid. 

The chromosome is represented as shown in Equation 4 

 [(i1, j1), (i2, j2), …, (iN, jN)] where (ia, ja) is the coordinate of the ath fire station and 

Siaja = 1 (a = 1, 2, …, N),  ia є {x1, x2, …, xk} and ja є {y1, y2, …, yn}   

       …….…Equation 4 

The ordinary genetic algorithm operators namely reproduction, mutation and 

crossover were applied to the fitness function and 30 fire station locations were 

identified. Most of the locations identified were similar to the actual fire stations 

already located (Yang, Jones and Yang, 2007).  

The main difference noted between the recommended and actual fire station 

locations was that all actual locations were either within the city centre or in a village 

centre whereas some of the recommended fire station locations were between two 

villages or out of the city centres. The reason for this difference is because the 

recommended locations only targeted the various categories of risk in a given area 

without taking into account any social elements.   

The second example of the use of multi-objective modelling for airport fire stations 

was considered by Tzeng and Chen (1999) who made use of a fuzzy model in 

combination with genetic algorithms. The model was developed to aid decision 

makers to help determine the optimal number and sites of fire stations at an 

international airport.   

Binary type variables were used for the decision variables with the location model 

developed to optimise the number and sites of the fire stations. The main objectives 

of this model were to 

• minimise the total setup cost of fire stations and the total loss cost of an 

accident. This is given mathematically as  

Min f1 = Ʃ i Ʃ j Sij x SC + TLC x e- Ʃ i Ʃ j Sij          ………Equation 5 
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Where Sij is the decision variable. 

• minimise the longest distance from the fire station to any point at the airport 

and is given by the expression 

Min f2 = Ʃ {(i,) Sij = 1, I,j}   {Max |x-i| + |y – j|}         ………Equation 6 

• minimise the longest distance from any fire station to the high risk area. The 

expression for this is given as 

Min f3 = Max Ʃ i Ʃ j rij x {|x-i| + |y – j|}           ………Equation 7 

The first constraint imposed on the model related to the summation of Sij being 

greater than or equal to 1 where Sij is the decision variable, for a fire station located 

on an x,y coordinate (i, j).  

Ʃ i Ʃ j Sij ≥ 1                ………Equation 8 

The second constraint required a reasonable distance dr
ab between any two fire 

stations. This distance dl
ab should be such that it is not too long for fire stations to be 

able to support each other and the other distance ds
ab should not be too short to cause 

an overlap of services. In formulating the fuzzy constraints dl
ab and ds

ab were used. 

The function representing the distance between any two fire stations is given as  

µd(dab) = 1     if dab = dr
ab         …..Equation 9 

µd(dab) = (dl
ab – dab)/( dl

ab – dr
ab)  if dl

ab ≥ dab > dr
ab       ……Equation 10 

µd(dab) = (dab – ds
ab)/( dr

ab – ds
ab)  if ds

ab ≤ dab > dr
ab      …….Equation 11 

µd(dab) = 0         ….. Equation 12
      

Otherwise if {Sij} denote the set of Sij = 1, with ‘a’ and ‘b’ being any two different 

elements taken from {Sij} then the above constraint can be given as shown in 

Equation 13 

|xa - xb| + |ya – yb| ≈ dr
ab         …Equation 13 

Equation 8 which is the first constraint relates to the minimum number of fire 

stations allowed such that it cannot be zero (implying no fire station) with the 

minimum number of fire stations desired to be greater than or equal to 1. Equations 9 
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to 12 relate to allowable distances. These distances are normally based on guidelines 

and sometimes local knowledge on what works. Distances between proposed fire 

stations should be such that they are not too far apart such that the desired benefits 

are not derived from placing the fire stations at the proposed locations. Also, the 

distances should not be too close such that the benefits to be derived from 

positioning these fire stations will be such that services will overlap each other 

resulting in cost inefficiencies.     

Tzeng and Chen (1999) adopted a fuzzy multi-objective approach in locating fire 

stations at an airport for three main reasons. Firstly, the model was intended to be 

optimised for the number and location of fire stations at an airport and thus the input 

of more than one objective made a fuzzy approach suitable (Zeleny, 1982). Secondly 

when compared with traditional weighting methods for multi-objective optimisation 

models, it has shown (Bellman and Zadeh, 1970; Sakawa et al., 1997) that the fuzzy 

multi-objective method is simpler. Thirdly, the fuzzy multi-objective technique is 

more efficient in comparison to traditional methods (Chen and Hwang, 1992). 

Sakawa (1993) described the basic concept of fuzzy multi-objective optimisation as 

finding the maximal achievement level among a set of constraints with conflicting 

objectives. The model by Tzeng and Chen (1999) referred to as simple genetic 

algorithm (SGA) noted the omission of the crossover stage in genetic algorithms to 

prevent infeasible solutions and promote self-evolution efficiency. 

The main difference between the Tzeng and Chen (1999) model in comparison to the 

Yang, Jones and Yang (2007) model is that in the former, risk rank was used which 

was statistically computed based on the accident data collected for the model 

location, Taipei International Airport. These accidents were categorised according to 

the accident frequency by type calculated. The accident frequency rate was computed 

for different areas and a risk rank was obtained from the inverse of the accident 

frequency rate computed. The latter however made use of recommendations by the 

UK Home Office which provides the speed of attack to fire incidents. These risks 

have been placed into four categories with the expected number of pumps to be made 

available within each risk category given. Ranges were also given for time limits for 

attendance as well as the distance limits to incident sites. These categories revealed 

the fuzzy nature of the Yang, Jones and Yang (2007) model. 
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Tzeng and Chen made a comparison of a GA to an enumeration method. The former 

was found to be more efficient with a computing time of 20.33 minutes and a 

comparative performance index of λ=0.75 in comparison to the latter which had a 

computing time of 73.57 minutes and a performance index of λ=0.78.  

3.6.5 Sample calculation for Genetic Algorithm 
Assume we have a population size M=20, two elite points N=2, a probability of 

recombination pr=1 a probability of mutation pm=0.02, and a number of generations 

K=100. The maximum number of function evaluations is K(M-N)+N= 1802. 

Manually computing 1802 evaluations will take some time and thus optimisation will 

prove to be a quicker and better alternative to computing values. 

3.7 Pattern search 
Heuristic algorithms are used in solving problems where conventional methods fall 

short. Like genetic algorithms, pattern search can be used to solve optimisation 

problems which have objective or constraint functions which are continuous, 

discontinuous, stochastic, do not possess derivatives or includes simulations or black 

box functions where some of the parameter settings have undefined values 

(Mathworks, 2015). Both pattern search and genetic algorithm can be customised. 

Pattern search optimisation was first proposed by Hooke and Jeeves (1961) with 

variants of this method emerging over the years. Pattern search has been applied to 

real life problems and to problems where the objective function is highly non-linear 

and discontinuous (Ackora-Prah et al, 2014). This includes the selection of an 

optimal portfolio of stocks (Ackora-Prah et al, 2014) and extracting parameters from 

various models (Al Hajri et al, 2012). Zheng and Chen (2010) used pattern search in 

predicting the strength and location of hazardous materials. The model was 

compared with other methods including genetic algorithms and it was found that 

pattern search can produce optimal solutions in a relatively shorter time in 

comparison with genetic algorithms which requires a large number of function 

evaluations per iteration resulting in more computation time (Zheng and Chen, 2010). 

Results obtained from the application of pattern search to these real life problems 

were found promising when compared to other methods. Pattern search is noted to 

have the potential for parameter estimation and system identification. Another study 
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also identified the reduced computation time required in pattern search in comparison 

with genetic algorithms (Miloua et al, 2011) 

Pattern search works by computing a sequence of points that approach an optimal 

point. During each step, the algorithm investigates a set of points called a mesh, 

around the current point (the point computed at the previous step of the algorithm). 

The formation of the mesh involves adding the current point to a scalar multiple of a 

set of vectors called a pattern. When pattern search finds a point in the mesh that 

refines the objective function at the current point, the new point then acts as the 

current point during the next step of the algorithm (Mathworks, 2015). The three 

main types of pattern search algorithms used are generalised pattern search (GPS) 

algorithm, the generating set search (GSS) algorithm and the mesh adaptive search 

(MADS) algorithm. These pattern search algorithms compute a sequence of points 

that approach an optimal point. A number of terminologies are used in pattern search 

and these are explained below. 

3.7.1 Pattern  
A pattern is a set of vectors {vi} that the pattern search algorithm uses to find the 

points to search at each iteration. The set {vi} is defined by the number of 

independent variables in the objective function, N, and the positive basis set (a 

positive basis is a positively independent set with positive span (Lewis and Torczon, 

1996)).  

3.7.2 Meshes  
Pattern search searches through a set of points called a mesh at each step and also 

for a point that improves the objective function (Mathworks, 2015). Pattern search 

then forms the mesh by  

• Generating a set of vectors {di} by multiplying each pattern vector vi by a 

scalar Δm. Δm is called the mesh size. 

• Adding the {di} to the current point (the point with the best objective function 

value found from the previous step). 

To illustrate this using the GPS algorithm assume 

• The current point is [1.6   3.4] 
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• The pattern consists of the vectors v1 = [1  0]; v2 = [0  1];    v3 = [-1  0] and  v4 

= [0  -1] 

• The current mesh size Δm is 4 

The algorithm multiplies the pattern vectors by 4 and adds them to the current point. 

Direction is used to refer to the pattern vector that produces a mesh point. 

3.7.3 Polling  
The algorithm polls the points in the current mesh by calculating their objective 

function values during each step. With the ‘Complete poll’ option having a default 

setting ‘off’ in Matlab, the algorithm stops polling the mesh points as soon as it finds 

a point with objective function value less than that found for the current point. When 

this happens, the poll is described as successful and the point found serves as the 

current point for the next iteration (Mathworks, 2015).  The algorithm only calculates 

the mesh points and their objective function values up to the point at which it stops 

the poll. At the point where the algorithm is unable to find a point that makes the 

objective function better, the poll is described as unsuccessful and the current point 

remains the same at the next iteration.  

When the ‘Complete poll’ option is set to ‘On’ in Matlab, the algorithm calculates 

the objective function values at all the mesh points. The algorithm makes a 

comparison between the mesh point and the smallest objective function value to the 

current point. If the mesh point is found to have a smaller value than the current point 

then the poll is described as successful. 

3.8 Choice of accident prediction model and justification and Chapter 
summary 
Various accident prediction models have also been reviewed in the earlier sections of 

this chapter with a view to identifying an appropriate model to be developed and 

used in the optimisation model in chapter 6. Some UK road models were identified 

however these were rejected on the basis that they were old models, too complex for 

the purposes of this research, contained parameters that will not be easily obtained 

within the time constraints of this research and could not be validated.  

In choosing an accident prediction model, some of the factors that had to be taken 

into account included the suitability, flexibility in obtaining data, availability of data 
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and ability of the model to deal with confounding factors such as effects of 

regression to the mean.   

All accident prediction models have limitations and in choosing one it was essential 

to also consider the objectives desired to be met from the model, advantages and 

disadvantages of the model, interpretation of results to be obtained and ease of 

transfer of the model for other use. 

In this research an Empirical Bayes Negative Binomial Regression model was 

chosen to be developed in Chapter 5. This type of model was favoured because the 

primary aim of this research is not just to develop an accident prediction model but to 

go a step further in using the accident prediction model for optimising the location of 

speed control devices.  

Roads selected for use in this research will be based on the high numbers of road 

accidents. It is possible that these high numbers may have been due to interim 

attributes arising from random variation in accident numbers with the possibility of 

the numbers returning to the net mean after a period of time (regression to the mean 

(RTM) effect). Similarly, the occurrence of the regression to the mean effect 

describes a significant effect when high crash sites are selected for treatment as is 

usually done. RTM depicts the statistical likelihood for high-crash tendency to 

decrease toward the mean in later periods of time independent of any treatment 

(Hauer, 1997 and Elvik, 2002).   Hauer (1997) proposes the use of the empirical 

Bayes method to correct for the effect of the regression to the mean and this method 

is proposed for use in this research. In the method, the mean and variance of the 

expected number of accidents in a reference population is utilised to compute the 

revised estimate of the effect of an intervention. In this research a sufficiently large 

reference population of roads are used and the choice of road accident data was 

based on a long period of 5 years all in an attempt to help control for the effect of 

regression to the mean. The DETR (2001) suggests that much more than three to five 

years data will lead to the likelihood for changes in flow and notable changes in the 

network to affect accident figures. To control for RTM effects, the expected number 

of accidents in the before period were estimated using the Empirical Bayes method. 

Using this method, the mean accident frequency is determined as a weighted average 

of two sources of data: the observed accidents in the period before treatment, XB and 
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the predicted model approximation of expected accidents given the nature of the site 

and traffic flow levels (Hauer, 1997) 

The latter sections of this chapter presented an overview of findings from various 

facility location problems making use of optimisation techniques, areas of 

application of the optimisation techniques and their strengths and weaknesses. The 

main purpose for carrying out the review on the use of optimisation techniques in 

facility location problems was to investigate its suitability, applicability and 

practicality to the location of speed control devices in this research. Facility location 

problems in the form of locating ambulance stations, schools, fire stations, hospitals 

etc have benefitted from the use of optimisation techniques (Wei et al., 2011; Li and 

Yeh, 2007; Salhi and Gamal, 2003).  The use of optimisation techniques in road 

safety has been evidently lacking and its application in this research proves very 

useful. Managing vehicle speed to contribute to road traffic accident reduction 

involves the identification of accident prone areas from datasets. The decision 

making process for identifying an optimum location to place a speed control device 

also involves different objectives some of which include minimising the severity of 

road accident numbers, minimising the set-up cost of the device and minimising the 

maintenance costs associated with the device. Taking into consideration the fact that 

the cost aspects of an objective function will not affect the location of a speed control 

device but instead affect the number, the cost aspect of the objective function will not 

be included in the optimisation model. The objective function that deals with 

minimising the severity of road accident numbers will be optimised. 

 There are many studies making use of a single optimisation method or a 

combination of methods. As far as this research is concerned geographic information 

systems (GIS) in combination with two heuristic methods will be used in order to 

allow for meaningful comparisons to be made. Considering that earlier facility 

location problems made use of small datasets and simple objective function 

equations, the use of geographical information systems (GIS) in recent times in 

combination with more advanced computer programming software has facilitated the 

decision making process where large datasets and complex objective functions are 

involved (Indriasari et al., 2010). This research involves the use of large datasets and 
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mathematical formulations that will benefit in terms of computation time savings and 

spatial data representation by making use of GIS and an optimisation technique.  
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4 Methodology and data description 

4.1 Introduction to overall approach  
A literature review on factors contributing to road accidents was identified in a 

literature review. These factors had to be selected based on their contribution to road 

traffic accidents, their availability and ease of collection of data to enable use in an 

accident prediction model. Another literature review was carried out to identify an 

appropriate accident prediction model to be developed using the factors identified as 

contributory factors to road accidents.  The accident prediction model is to be used in 

the optimisation model. The optimisation model aims to optimise the location of road 

side speed control devices based on a set of objectives. The accident prediction 

models were tested on some independent roads data. Lastly an optimisation model 

which incorporates the accident prediction model was developed to identify 

appropriate locations to place roadside speed control devices. The optimisation 

model minimises the costs associated with the expected frequency of accidents along 

a segment of road at the required severity level. The model was then tested on 

independent road samples to determine the suitability as well as to validate the model. 

4.2 Study Area: Nottinghamshire and Leicestershire, UK  
Nottinghamshire is a county in the East Midlands of England sharing a boundary to 

the north-west with South Yorkshire, east with Lincolnshire, south with 

Leicestershire and west with Derbyshire. The established county town is 

Nottingham. Nottinghamshire’s districts are Ashfield, Bassetlaw, Broxtowe, 

Gedling, Mansfield, Newark and Sherwood and Rushcliffe. The city of Nottingham 

was an administrative part of Nottinghamshire between 1974 and 1998 but this was 

made a unitary authority and only remains part of Nottinghamshire for ceremonial 

occasions. The estimated population of Nottinghamshire in 2011 was 785,800 with 

more than half of the population living in the Greater Nottingham metropolis having 

a population of about 650,000 (Nottingham City Council, 2011).  

In a report by the Department for Transport (DfT) (2012a), exceeding the speed limit 

was a factor in 5 per cent of accidents and these accidents involved 14 per cent of 

fatalities. In 12 per cent of all accidents, at least one of ‘exceeding the speed limit’ 

and ‘travelling too fast for the conditions’ was reported with 25 per cent of these 

accidents accounting for fatalities. The Nottinghamshire County Council’s ‘Safer 
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Roads’ report (Nottinghamshire County Council, 2010) recorded a 46 per cent 

reduction in the proportion of people killed and seriously injured in road traffic 

accidents as against a national target of 40 per cent.  The reduction in the number of 

children killed and seriously injured in road traffic accidents achieved was 69 per 

cent against a national target of 50 per cent. 

Leicestershire is a landlocked county in the Midlands of England deriving its name 

from the City of Leicester, long known to be the administrative centre. The City of 

Leicester unitary authority is currently managed separately from the rest of 

Leicestershire. Leicestershire is bordered to the north by Nottinghamshire, north-east 

by Lincolnshire, east by Rutland, south-east by Northamptonshire, south-west by 

Warwickshire, west by Staffordshire and north-west by Derbyshire.  The population 

of the county is just under 1 million with more than half the population residing in 

Leicestershire’s built-up area. The Local Government Act 1972 terminated the 

county borough status of Leicester city and the county status of neighbouring 

Rutland in 1974 changing both to administrative districts of Leicestershire. These 

changes were reverted on 1st April 1997 with Rutland and the City of Leicester 

becoming unitary authorities (Leicestershire County Council, 2011).     

In Leicestershire, amongst the efforts particularly focused on improving road safety 

are speed management, improving safety for vulnerable road users and encouraging 

safer driving (Leicestershire County Council, 2011). Speed as a contributory factor to 

road traffic accidents in Leicestershire is provided in Table 4.  

 

Accident contributory factor % of accidents involved in 

Loss of control  19 

Failure to judge another person’s speed 

and/or path 

16 

Travelling too fast for conditions 10 

Overtaking 8 

Exceeding the speed limit 5 

All above factors 58 

Table 4 Contribution of speed to accidents in Leicestershire, 2004 to 2009 
(Leicestershire County Council, 2011) 
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Speed is still a major contributory factor accounting for 58 per cent of road traffic 

accidents from 2004 to 2009 in Leicestershire even though improvements have been 

attained for the years after 1998. ‘Travelling too fast for conditions’ and ‘exceeding 

the speed limit’ as contributory factors accounted for 24 per cent of road traffic 

accidents from 1994 to 1998 compared with results from Table 4 which shows the 

same contributory factors accounting for 15 per cent (Leicestershire County Council, 

2011). Using the 2001 to 2004 road accident figures as a baseline for achieving the 

2006 to 2011 targets, a 26 per cent reduction in the total number of killed and 

seriously injured casualties was attained which was in line with the set target of 26 

per cent. A 40 per cent reduction in the number of children killed and seriously 

injured was achieved against a target of 33.3 per cent. The number of motorcyclists 

killed and seriously injured was reduced by 23 per cent in comparison to a reduction 

target of 20 per cent.   

Both Nottinghamshire and Leicestershire have seen improvements in road safety. 

Managing vehicle speed was identified as one of the key target areas to focus on 

since speeding vehicles were noted (Nottinghamshire County Council, 2010; 

Nottingham City Council, 2011; Leicestershire County Council, 2011) to cause road 

traffic accidents and can be intimidating to pedestrians, cyclists and members of the 

communities. Leicestershire remains committed to the use of speed cameras given 

the effective role it has played historically in assisting to address the problem of 

excessive and inappropriate speed. Since speed has been identified as a contributory 

factor in the geographic areas of study, speed will not be isolated as the only accident 

contributory factor to consider instead accidents will be assessed based on the level 

of severity.    

4.3 Accident Prediction Model Methodology 
The aim of this research is to develop an optimisation model that addresses the 

problem of where to locate a road side speed control device such as a speed camera 

or a vehicle activated sign. In order to develop the model a mathematical formulation 

of the problem was required.  

The mathematical formulation for the model involved the need for an appropriate 

accident prediction model. It is important to state that road traffic accidents result 
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from a combination of a complex set of variables. Determining or controlling for all 

variables that are deemed to have played a role in a particular accident tends to be 

difficult if not impossible. The accident prediction model used in this research does 

not account for any human factors that may have resulted in the accident and it also 

does not contain all road geometry parameters. Using human factors in the 

classification of road traffic accidents is beyond the scope of this research. Chapter 3 

has detailed information about accident prediction models and a sound justification 

for choosing the one used in this research is described. The accident prediction 

model developed in Chapter 5 relates the frequency of accidents at a specified level 

of severity to various road characteristics. 

4.3.1 Road accident categories and terminologies 
Some terminologies associated with road accidents are provided to allow for better 

understanding and interpretation of data. The following definitions and explanations 

are from the 2010 UK Road Casualties, Annual Report (Department for Transport, 

2010).  

An Accident involves personal injury occurring on a public highway (including 

footways) in which at least one road vehicle or a vehicle in collision with a 

pedestrian is involved and which becomes known to the police within 30 days of its 

occurrence.  

Different classifications are used to describe road accident casualties as follows; 

Casualty: A person killed or injured in an accident. Casualties are sub-divided into 

killed, seriously injured and slightly injured.  

Killed: Human casualties who sustained injuries causing death less than 30 days 

(before 1954 about 2 months) after the accident. Confirmed suicides are excluded. 

Serious injury: An injury for which a person is detained in hospital as an ‘in-patient’, 

or any of the following injuries whether or not they are detained in hospital: fractures, 

concussion, internal injuries, crushing, burns (excluding friction burns), severe cuts, 

severe general shock requiring medical treatment and injuries causing death 30 or 

more days after the accident.  
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Slight injury: These are injuries of a minor character such as a sprain (including neck 

whiplash injury), bruises or cut which are not judged to be severe or slight shock 

requiring roadside attention. This definition includes injuries not requiring medical 

treatment.  

As well as casualties, the accidents are also categorised as fatal, serious and slight. A 

fatal accident is an accident in which at least one person is killed and other casualties 

may have serious or slight injuries. A serious accident is an accident in which at least 

one person is seriously injured but no person (other than a confirmed suicide) is 

killed. A slight accident is one in which at least one person is slightly injured but no 

person is killed or seriously injured. 

4.3.2 Road accident data 
The STATS 19 data for the UK was the main source of road accident data since it is 

the most up to date and reliable source of data available in the UK.  Road accident 

data for the years 2008 to 2012 inclusive was used. The STATS 19 road accident 

data provides a lot of information about an accident. To allow for plotting of the road 

accidents onto the map, the geographical location (‘x’ and ‘y’ coordinates) of the 

accidents in terms of easting and northing coordinates in the British National Grid 

coordinate system was used.  

4.3.3 Traffic flow data 
The Department for Transport freely makes available AADT flow figures for most 

major roads and some minor roads in England and Wales on its website (Department 

for Transport, 2013a).Data for the years 2008 to 2012 was used. Vehicle flow data in 

the form of Annual Average Daily Traffic (AADT) was also obtained from 

Nottinghamshire County Council and Leicestershire County Council. 

Nottinghamshire and Leicestershire have been chosen as areas of interest in this 

research. This is because local councils in these regions have a history of 

collaboration with Loughborough University. Also these regions have VASs and 

speed cameras installed along some of their roads which are of interest in this 

research. The roads are also within modest travel distances for the researcher. The 

AADT data obtained was already categorised by all moving vehicles with the 

proportion of heavy goods vehicles (HGVs) also provided. AADT flows are 

equivalent to Annual Average Daily Flow (AADF) figures.   
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4.3.4 Road geometry data and maps 
The main types of roads used in the accident prediction model were ‘A’ roads. This 

choice was made because A-Roads are close to the top end of the road classification 

system, no accident prediction model was identified for A-roads, speed cameras and 

vehicle activated signs are mounted along these roads and most of the data required 

for this class of road was available. A considerable amount of road accidents occur 

along these roads. A proportion of both high speed and moderate speed roads was 

considered appropriate. A-roads are classified as major roads and are intended to 

provide large-scale transport links within or between areas (Department for 

Transport, 2012).  

The OS (Ordnance Survey) VectorMap Local for Nottinghamshire and Leicestershire 

was downloaded from EDINA digimap. These maps were provided at a scale of 

1:10,000 with tile sizes being 5 x 5 km. The maps contain detailed national mapping 

of roads, railways vegetation, boundaries, hydrology, land areas, buildings and 

contours. Data is represented by points, lines, polygons and text. Road names and 

Department for Transport numbers are used to identify road alignment features. An 

OS Terrain 50 DTM map to a scale of 1:50,000 with tile sizes of 10 x 10km of the 

area of interest was also downloaded and superimposed on the OS VectorMap. 

EDINA digital maps provide contour maps, vector maps, land and height data and 

OS MasterMap Integrated Transport Network (ITN) map of the UK road network. 

The maps were in different scales and for the contour maps, the level of accuracy of 

the 5 metre vertical contours was ±2.5m and that of the 10 metre vertical interval 

contours was ±5m. Road segments were connected by links and nodes allowing for 

the easy identification and location of a section of road.  

Junctions along the roads were physically identified using the legend from the maps 

used.  

The road curvature represented by curve radius and the slope of the road are used in 

this research. The road geometry parameters were calculated using a mathematical 

formula used by Deublein et al (2013).  

The radius of the road was calculated using a method which makes use of the x and y 

coordinates of three consecutive points. The slope of two vector lines between the 
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three points is calculated followed by the calculation of the centre and radius of 

circle. Finally there is the smoothing of radius of radii calculated by means of 

average points calculated. The mathematical relation for calculating the radius is 

given by the as  

Radius = sqrt(x1 – xc)^2 + (y1 – yc))^2) 

The slope of the road was also obtained by a mathematical formula that requires the 

input of a predefined set of altitude points which is the ‘z’ value and uses the Rise 

divided by Run approach. The formula is given as ((z2 – z1)/d)*100. These 

calculations were executed in the MATLAB software. 

4.3.5 Bicycle route 
Bicycle route data was obtained from the England cycle route plans (Cycle-routes, 

2016). For all A-roads used in the accident prediction model, the x and y coordinates 

for the sections of roads were compared with the cycle route plans to identify and 

map out the length of routes.  

4.3.6 Average speed and road speed limit 
Average vehicle speeds on locally managed A-roads by road name and direction of 

travel in England represented in miles per hour was obtained for the years 2008 to 

2012 (Department for Transport, 2016). Designated road speed limits were also 

obtained from the STATS 19 road accidents data.  

4.3.7 Model variables 
In determining the variables to be used in the accident prediction model careful 

consideration was given to the ultimate purpose for which the accident model was 

being developed. Considering that the accident prediction model was to be used in 

the optimisation model in Chapter 6, the choice of variables was very important. An 

accident prediction model capable of predicting the frequency of accidents at the 

required level of severity was desired. In addition to this, in Chapter 2 it was 

essential to identify parameters that were readily available and shown in the literature 

to contribute to road traffic accidents. In road accident prediction models a 

relationship exists between the predictor variables and the dependent response 

variables. The predictor variables used were road direction (i.e. north-south or south 

north), number of lanes, slope, radius, AADT, HGV, speed limit and homogeneous 
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segment length. These were used in predicting the dependent response variables 

which were the number of fatal and serious accidents combined as well as the 

number of slight accidents. 

4.3.8 Data preparation 
The data had to be in a format suitable for use in the model development. In order to 

achieve this all data obtained was checked to ensure it was the correct data required 

and this was carried out using ArcGIS which is a geographical information systems 

design and management software.  First, EDINA digital maps comprising contour 

maps, vector maps, land and height data and OS MasterMap Integrated Transport 

Network (ITN) map of the UK road network was obtained for Nottinghamshire and 

Leicestershire. The OS (Ordnance Survey) VectorMap Local for Nottinghamshire 

and Leicestershire was also obtained from EDINA digimap. The purpose for 

downloading this data was to use the map as a backdrop map to other data to be 

subsequently added. An OS Terrain 50 DTM map of the area of interest was also 

obtained and superimposed on the OS VectorMap. This data was used for surface 

analysis of the roads to generate x and y coordinates and height values in the form of 

z values. Since the maps provided by EDINA contained all types of roads, there was 

the need to remove roads which were not of interest and only leave the roads of 

interest which were A-Roads.  

Once the maps had been put together and checked against Google maps for any 

ambiguity, the road accident data was plotted onto the OS VectorMap. The STATS 

19 road accidents data for the years 2008 to 2012 inclusive was used. Information in 

the form of speed limit, year and date of accident, number of casualties and accident 

severity level were available from the data. The easting and northing coordinates of 

road accidents for the roads of interest were plotted to identify the location along a 

given road segment. In plotting the road accident coordinates onto the map, it was 

found that some coordinates fell outside the road segment. This is because data errors 

may have arisen in both the road accidents data and the geographical maps since 

these data come from two different sources. In order to reduce any ambiguity in the 

plotted road accident data and to guarantee a degree of accuracy, the plotted map was 

compared to the already available mapped out road accidents from Nottinghamshire 
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insight mapping (Nottingham City Council, 2013) and a crash mapping resource 

(Crashmap, 2014) and the results were found to tally for most cases. 

Also, road accidents that fell outside the road segment lengths being considered were 

omitted from the analysis and these accounted for about 7% of the data. Figure 11 

shows a map with road accidents along selected roads used shown.  

Vehicle flow data obtained in the form of Annual Average Daily Traffic (AADT) 

(Department for Transport, 2013a) which had x and y coordinates in the form of 

easting and northing to British National Grid coordinate system was plotted onto the 

map. The AADT also had the direction of travel indicated so it was possible to assign 

the correct flow data to the correct direction of road travel. The length over which the 

AADT applies was also provided. It was assumed that the AADT remained the same 

for the segment of road starting from the count location to the next count location 

where it changed to a new value. Figure 12 shows a map with AADT count points 

for the selected roads shown. The roads data was separated by direction of travel. 

Data containing the x, y and z values of the roads was combined with the accident 

data and then with the AADT data. 
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Figure 11 2008 to 2012 road accidents 
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Figure 12 AADT count points 

 

4.3.9 Site selection 
The length of A-roads investigated within Nottinghamshire and Leicestershire 

regions in this research was approximately seven hundred and ninety kilometres long 

(790 km) for both directions of travel. These were randomly selected ensuring they 

had adequate data required for further analysis. To enable the model to be developed 

and tested, the dataset was split into two randomly selected road segments. The first 

set of 75 percent of the roads was only used for the model development and was not 
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included in the testing of the model. The remaining 25 percent of the roads segments 

excluded from the model development was used to test the model. Figure 13 shows 

the proportion of roads used to develop and test the model.  

 
Figure 13 Roads selected in Nottinghamshire and Leicestershire 

 



 

118 

 

4.3.10 Model parameters 
The parameters to be used in the negative binomial accident prediction model is 

presented in this section.  The road direction, number of lanes, slope, radius, Annual 

Average Daily Traffic, Heavy Goods Vehicle, speed limit, homogeneous segment 

length, Average speed, Presence of cycle lane, length of cycle lane, presence of a 

junction or not, Number of junctions and number of pedestrian crossings were the 

main predictor variables used in the models. The various predictor variables used for 

developing the model are provided in Table 5  

All the predictor variables given in Table 5 was used in developing the accident 

prediction  models for fatal and serious accidents combined and a separate one for 

slight accidents. Predictor variables found not to be statistically significant and 

highly correlated in the models were removed. The models were refined by re-

running them without those variables. After obtaining a suitable model with predictor 

variables found to be statistically significant and having no variables correlating with 

each other, the model was further refined using the empirical Bayes approach. This 

was done based on reasons given in Chapter 3 and this chapter. 
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Predictor variable Symbol  Values taken Description 
Road direction 
[1, 2, 3, 4] 

Dxn 1 = South-North 
2 = North-South 
3 = East-West 
4 = West-East 

This represents the direction 
of travel along the road i.e. 
north-south, south-north, east-
west and west-east. 

Number of lanes 
[1,2,3] 

Lanes 1= single 
carriageway 
2 = dual carriageway 
3 = 3 lanes  
 

This refers to the number of 
lanes per driving direction  

Slope (%) 
 

PercentSlope  - This refers to the upward or 
downward longitudinal slope 
of the road 

Radius (m) 
 

LogRadius - 
 

This refers to the radius of the 
road segment. The logarithm 
of the radius was used. 

AADT  (veh/day) LogAADT - This refers to the Annual 
Average Daily Traffic per 
driving direction. This also 
refers to the traffic flow and 
the logarithm of this variable 
was used.  

HGV (%) PercentHGV - This refers to the percentage 
composition of Heavy Goods 
Vehicle in the AADT per 
driving direction. 

Speed limit 
(miles/hr) 
 

Speed Limit - This refers to the speed limit 
of road section  

Homogeneous 
segment length (m) 

HSegLength - This refers to the length of 
homogeneous segment of road 
having all variables within the 
segment of road remaining 
constant. 

Average Speed 
(miles/hr) 

Avg.Speed - This is the average speed of 
vehicles along the road. 

Presence of cycle 
lane. 
Yes 
No 

PresofCR 0 - No 
1 - Yes 
 

This indicates the presence or 
absence of a cycle lane along the 
homogeneous segment 
considered.  

Length of cycle lane 
(m) 

CRteSUM - This refers to the length of cycle 
lane present along the 
homogeneous segment. 

Presence of junction 
Yes 
No 

Jtn 0 - No 
1 - Yes 
 

This refers to the presence of 
absence of junctions along the 
section of road considered. 

Number of junctions JtnsSum - This is the sum of junctions along 
the homogeneous segment of 
road considered. 

Number of 
pedestrian crossings 

PedCrossing - This is the sum of pedestrian 
crossing points along the 
homogeneous segment of road. 

 
Table 5 Description of model variables 
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Table 6 and Table 7 provide information about the roads used. 

 

Road 

Number 

Number of 

junctions 

Length of 

cycle lane 

(m) 

Length of 

road (m) 

Number of 

Fatal and 

Serious 

accidents 

Number of 

slight 

accidents 

A614 131 0 59629 29 131 

A6097 132 0 33320 24 63 

A6003 194 0 51192 15 38 

A57 136 0 36520 8 23 

A1133 130 0 38400 11 33 

A6514 142 3960 15660 23 175 

A6200 85 0 4720 24 82 

A46 182 0 149860 81 387 

A42 26 0 46782 17 71 

A52 361 14280 104520 82 517 

A1 60 0 64060 36 127 

A6211 161 0 13840 10 44 

A6130 166 0 7420 14 123 

A6117 170 0 12400 17 71 

A6030 155 0 12560 8 103 

A6005 535 4740 30220 35 187 

A6002 225 6380 20700 29 99 

A47 460 0 87920 46 333 

Table 6 Characteristics of A-roads investigated 
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Road 
Number 

Number of 
lanes 

Log AADT Percent HGV Speed limit 
 

Average Speed Log Radius Slope 

Min Max Min Max Min Max Min Max Min Max Min Max Min Max 
A614 1 1 3.71 4.07 3 8 30 60 39.2 40.8 1.17 6.54 -0.04 0.04 
A6097 1 1 3.90 4.03 5 6 30 70 36.3 38.3 1.44 6.80 -0.04 0.04 
A6003 1 1 3.50 3.56 6 6 30 60 45.9 49.6 1.14 8.09 -0.10 0.10 
A57 2 2 3.53 4.06 7 10 30 60 40.1 42.1 1.34 6.02 -0.08 0.08 
A1133 1 1 3.53 3.55 5 7 30 60 36.9 41.1 1.89 6.63 -0.02 0.02 
A6514 2 2 4.17 4.52 2 4 30 40 16.1 18.5 1.25 7.39 -0.02 0.02 
A6200 2 2 3.91 4.06 1 1 30 40 17.9 18.2 1.46 4.80 -0.06 0.06 
A46 1 2 4.10 4.53 7 12 30 70 26.8 41.3 1.40 7.61 -0.03 0.04 
A42 2 2 3.75 4.46 8 15 60 70 19.5 26.9 1.91 7.04 -0.04 0.04 
A52 2 3 3.93 4.60 3 8 30 70 16.2 43.1 1.46 7.17 -0.07 0.06 
A1 2 2 3.17 4.57 12 23 30 70 26.5 42.4 2.94 7.06 -0.04 0.04 
A6211 1 1 3.62 4.02 1 3 30 40 20.4 21.1 1.21 6.45 -0.09 0.09 
A6130 2 2 3.84 3.94 1 2 30 30 13.3 13.9 1.87 5.19 -0.02 0.02 
A6117 2 2 3.63 3.86 2 3 30 40 22.0 23.2 1.23 5.41 -0.05 0.05 
A6030 1 1 3.81 3.90 2 4 30 30 17.3 17.6 1.49 5.06 -0.05 0.05 
A6005 2 2 3.78 4.29 1 2 30 40 18.6 19.9 1.22 6.19 -0.01 0.01 
A6002 1 1 3.85 4.17 2 5 30 60 22.5 25.2 1.27 6.65 -0.03 0.03 
A47 1 1 3.60 4.20 2 13 30 60 16.2 33.7 1.47 6.99 -0.07 0.07 

Table 7 Further characteristics of A-roads investigated 
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4.3.11 Negative Binomial Empirical Bayes model 

A Negative Binomial Generalised linear modelling approach was used to obtain 

regression approximations of predicted accidents for A-roads and an empirical Bayes 

approach used to refine the predictions.  

Overdispersion arises when var(Yi) is greater than E(Yi) and for the Poisson 

distribution var(Yi) = E(Yi). The number of incidents Y for a given event may be 

Poisson with mean Z. The mean could be treated as a random variable which can be 

assumed to have a mean μ and index øμ in  the population where E(Z) = μ and var(Z) 

= μ/ø resembling the Poisson distribution. A combination of these leads to the 

negative binomial distribution  

Pr(Y = y, μ, ø) = Γ(y + øμ)øøμ   y = 0, 1, 2, …… ……Equation 14 

  y! Γ(øμ)(1+ø)y+øμ 

 

where E (Y) = μ and var (Y) = μ (1+ø)/ø are the mean and variance respectively.  

 

The Negative Binomial regression model is of the form  

log𝜇𝜇 = β0+ β1Dxn + β2Lanes + β3Slope + β4Radius + β5AADT + β6HGV + β7Speed Limit 

+ β8HSegLength + β9AvgSpeed + β10Jtns + β11CycLength + β12JtnsPresent + 

β13PedCrossing + β14PresofCR                                                                               ………Equation 15 

 

 

The Empirical Bayes estimate of the total accidents in the before period MB is 

computed by means of the weighted averages of the forecasts from the Negative 

Binomial model (μB) and the observed accidents (XB) as given in equation  16 

    

MB = αμB + (1 – α)XB                     ………Equation 16 

 

Using the forecasted accidents (μB) and the dispersion parameter (θ) of the predictive 

model given in equation 17, the weights (α) can be computed (Hirst et al., 2004). 

α = 1/(1 + μBθ)                     ………Equation 17 

4.3.12 Software applications 

Data used in the accident prediction model was prepared using ArcGIS, ArcMap 

Version 10.1 to enable visualisation of the data to be carried out and IBM SPSS 



 

123 

 

Statistics Version 22.0 was used to develop the model. Matlab Version R2014a was 

later used in the analysis of the optimisation model making use of genetic algorithms 

and pattern search optimisation methods.  

4.4 Optimisation model Methodology 
One of the most important and difficult decisions encountered by planners, engineers 

and designers is to identify the appropriate place to physically locate a road side 

speed control device in order to satisfy a set of objectives. The primary objective of 

the decision maker will be to reduce road accidents through the reduction of vehicle 

speeds. Speed cameras and vehicle activated signs as road side speed control devices 

are deployed at locations where speeding is a problem as well as where a specified 

number of road accidents are recorded. Engineers, planners and decision makers 

need to take a number of factors into consideration before deciding on where to place 

a speed camera or vehicle activated sign and these may involve satisfying multiple 

objectives. Some of the objectives are conflicting in nature requiring an approach 

such as the use of optimisation techniques that is best able to address such issues. 

The methodology used in developing the model is discussed in this section. 

4.4.1 Roads Identification 
To allow for convenience in data collection and site visits, Local Authorities that 

have already installed or intend installing vehicle activated signs and speed cameras 

in the geographical region close to Loughborough University were chosen. The 

Nottinghamshire and Leicestershire regions were selected for reasons given earlier in 

the chapter.  For a site to be included in the research it had to meet some criteria as 

set out below; 

• It must be an existing speed camera/VAS site provided by the responsible 

local authority. 

• It must be a site proposed by the responsible local authority to have a speed 

camera/VAS installed in the future. 

• The site must have available road accident data (STATS 19 road accident 

data). 

• The site must have traffic flow data i.e. Annual Average Daily Traffic 

(AADT) or Annual Average Hourly Traffic (AAHT) to be converted to 

AADT or other.  



 

124 

 

Even though there will be many locations satisfying the criteria outlined above, other 

factors such as ease of obtaining the other data types may rule out the selection of 

some proposed sites. Sample sites were selected and visited by the researcher. The 

site visits were checked with data available from other sources such as Google earth 

maps. A site risk assessment sheet is provided in Appendix A. 

4.4.2 Choice of optimisation model 
In Chapter 2 a review of optimisation techniques was carried out. The choice of 

technique used will be restricted to genetic algorithms and pattern search for reasons 

given in section 2.4.  Even though no literature has been found on the use of these 

techniques in locating speed cameras and vehicle activated signs, there is some 

literature on these techniques for locating ambulances, fire stations, schools and 

hospitals. These two techniques will be compared as they have proved useful in other 

research areas.  

4.4.3 Identification of model objectives  
As with any optimisation model there needs to be the identification of objectives to 

be achieved. A mathematical formulation of all objectives to be achieved in the 

model was done by expressing each of the objectives identified into a meaningful 

formula.  

The objectives of the mathematical formulation should contribute to minimise road 

traffic crashes and the costs associated with deploying road side speed control 

devices. This section therefore focuses on developing a procedure to solve the 

problem of locating a road side speed control device. In summary, the main objective 

of this section is to create an initial search algorithm that incorporates engineering 

judgment. This is being done to help planners and engineers to view the whole 

process of locating a speed control device as practical and realistic as possible and 

eventually deliver good solutions. 

This mathematical formulation should be inputted into the optimisation technique 

(genetic algorithms and pattern search) in addition to the constraints and processed 

for output results.  

The objectives identified are to 

• minimise the total set-up cost of a speed control device 

• minimise the maintenance cost of a speed control device 
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• minimise the total lost cost of an accident 

Detailed explanation and mathematical formulations for these objectives have been 

given below. 

4.4.4 Minimise the total set-up cost of a speed control device 
Minimise the total set up cost 𝑆𝑆𝑐𝑐 of a speed control device (speed camera or VAS). 

This cost includes supply/purchase costs, installation costs and costs associated with 

relocation/diversion/bypassing of underground utilities. Every decision maker needs 

to establish the amount of budget available in order to know how much to invest in 

providing speed control devices. This objective is formulated as 

𝑀𝑀𝑎𝑎𝑎𝑎 𝑎𝑎1  = ∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ×  𝑆𝑆𝑐𝑐        ………..Equation 18 
𝑆𝑆𝑢𝑢𝑢𝑢   is the decision variable such that if a speed device is set up on an x-y coordinate 

system (u, v), then 𝑆𝑆𝑢𝑢𝑢𝑢  = 1  if a speed device is set up otherwise 𝑆𝑆𝑢𝑢𝑢𝑢  = 0  and  

∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ≥ 1         ……….Equation 19  

4.4.5 Minimise the maintenance cost of a speed control device 

Minimise the maintenance cost 𝑀𝑀𝑐𝑐 of a speed control device (speed camera or VAS) 

given as 

𝑀𝑀𝑎𝑎𝑎𝑎 𝑎𝑎2 = ∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ×  𝑀𝑀𝑐𝑐           ………..Equation 20  

4.4.6 Minimise the total lost cost of the severity and frequency of an accident  

Minimise the total lost cost of accidents within a length of road. This cost is 

dependent on the number of accidents occurring. It is assumed, few or no speed 

control devices will result in more road accidents within a given road section. In the 

absence of any speed control device, the total lost cost equates to 𝑇𝑇𝐿𝐿𝐿𝐿. The 𝑇𝑇𝐿𝐿𝐿𝐿 can be 

reduced if more speed control devices are installed. However, since every decision 

maker has a budget to work to it is not possible to provide speed control devices 

beyond an optimal number. Also, beyond the optimal number of speed control 

devices to be provided, the set-up, operating and maintenance costs will increase. It 

is therefore necessary to establish a balance between set up costs, operating costs, 

maintenance costs and the lost costs of accidents.  The expression for minimising the 

total lost cost of accidents is given as 

𝑀𝑀𝑎𝑎𝑎𝑎 𝑎𝑎3 = 𝑇𝑇𝐿𝐿𝐿𝐿 × 𝑁𝑁    where 𝑁𝑁 = 𝑆𝑆𝑢𝑢𝑢𝑢          …………….Equation 21 
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𝑇𝑇𝐿𝐿𝐿𝐿 =  𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0+𝛽𝛽1.𝑫𝑫𝑫𝑫𝑫𝑫𝑖𝑖+𝛽𝛽2.𝑳𝑳𝑳𝑳𝑫𝑫𝑳𝑳𝑳𝑳𝑖𝑖+𝛽𝛽3.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑳𝑳𝑖𝑖+𝛽𝛽4.𝑹𝑹𝑳𝑳𝑹𝑹𝑹𝑹𝑹𝑹𝑳𝑳𝑖𝑖+𝛽𝛽5.𝑨𝑨𝑨𝑨𝑫𝑫𝑨𝑨𝑖𝑖+𝛽𝛽6.𝑯𝑯𝑯𝑯𝑯𝑯𝑖𝑖
+𝛽𝛽7.𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑳𝑳𝑹𝑹𝑺𝑺𝑹𝑹𝑺𝑺𝑖𝑖+𝛽𝛽8.𝑯𝑯𝑺𝑺𝑳𝑳𝑯𝑯𝑳𝑳𝑳𝑳𝑫𝑫𝑯𝑯𝑺𝑺𝑯𝑯𝑖𝑖+𝛽𝛽9.𝑨𝑨𝑨𝑨𝑯𝑯𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑖𝑖+𝛽𝛽10.𝑱𝑱𝑺𝑺𝑫𝑫𝑳𝑳𝑖𝑖+𝛽𝛽11.𝑪𝑪𝑪𝑪𝑪𝑪𝑳𝑳𝑳𝑳𝑫𝑫𝑯𝑯𝑺𝑺𝑯𝑯𝑖𝑖 

+𝛽𝛽12.𝑱𝑱𝑺𝑺𝑫𝑫𝑳𝑳𝑱𝑱𝑱𝑱𝑳𝑳𝑳𝑳𝑳𝑳𝑫𝑫𝑺𝑺𝑖𝑖+𝛽𝛽13.𝑱𝑱𝑳𝑳𝑹𝑹𝑪𝑪𝑱𝑱𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑫𝑫𝑯𝑯𝑖𝑖+𝛽𝛽14.𝑱𝑱𝑱𝑱𝑳𝑳𝑳𝑳𝑺𝑺𝑷𝑷𝑪𝑪𝑹𝑹𝑖𝑖)

 

                            ……………Equation 22 
 
TLC calculates the accident frequency on a link of road based on various parameters. 

In order to differentiate between the various kinds of accidents that occur on a road 

network, fatal, serious and slight accidents will be differentiated using the expression 

for TLC. 

 TLCfs is the total lost cost from fatal and serious accidents combined 

TLCsli is the total lost cost from slight accidents 

Dxn is the direction of travel along a road eg. north-south  

Lanes is the number of lanes per driving direction 

Slope is the percentage of upwards and downwards longitudinal gradient (slope) of 

the road for the direction of travel being considered. 

Radius is the radius of curve 

AADT is the annual average daily traffic for the direction of travel being considered.  

HGV is the proportion of heavy goods vehicles travelling in the section of road under 

consideration. 

SpeedLimit is the speed limit of the road in miles/h. 

HSegLength refers to the length of homogeneous segment of road being considered.  

AvgSpeed is the average speed of the road  

Jtns refers to the number of junctions in a homogeneous segment 

CycLength refers to the cycle path length 

JtnsPresent refers to the presence or absence of a junction within the homogeneous 

segment 

PedCrossing refers to the presence or absence of a pedestrian crossing within the 

homogeneous segment 

PresofCR refers to the presence or absence of a cycle route within the homogeneous 

segment 

4.4.7 The objective function  
The objective function relates to the accident prediction model developed in Chapter 

5. This accident prediction model contains parameters such as direction of travel, 

number of lanes, slope, radius, AADT, percentage HGV, speed limit of the road, 
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Average speed, number of junctions, length of cycle route and homogeneous 

segment length.  

This study assumes that once a speed camera etc is installed, it will serve the purpose 

of reducing road traffic accidents within a given road link through the reduction of 

vehicle speed.  In developing a model for locating speed control devices ie. speed 

cameras and vehicle activated signs (VAS), there are a number of objectives that 

must be satisfied. 

The main objective in this research for the decision maker (DM) is to optimise the 

location of a speed control device by minimising the total number of accidents 

occurring within a road link. This is because the other objects indirectly are 

incorporated into the objective for minimising the number of accidents. The set up 

cost and maintenance costs of a speed control device do not affect the location of the 

speed camera as is proposed in optimising the objective of minimising accidents. 

Also by minimising the total number of accidents, the optimisation model is being 

developed to provide the best ‘x’ number of locations to place a speed control device. 

Depending on the budgetary allocation for the responsible authority, the required 

number of speed control devices can be mounted.  In achieving this objective, a 

number of sub-objectives must be satisfied to achieve the main objective. The 

approach adopted in this research is similar to that of Tzeng and Chen (1999) but 

revised in terms of the input parameters and constraints imposed on the objective 

function to suit the problem at stake.  

The objective function aims to minimise the functions f1 to f3. The level of 

importance assigned to each goal will have to reflect the criteria for decision making 

by the designated decision makers (mostly local authorities and the police in this 

case).  The sum of objectives is given as 

Minimise  Z = f1 + f2 + f3             ……………Equation 23 

 

Minimise  Z = ( ∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ×  𝑆𝑆𝑐𝑐 ) + (∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ×  𝑀𝑀𝑐𝑐) + ∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ×

 𝑎𝑎𝑒𝑒𝑆𝑆(𝛽𝛽0 + 𝛽𝛽1.𝑫𝑫𝑫𝑫𝑫𝑫𝑖𝑖 + 𝛽𝛽2.𝑳𝑳𝑳𝑳𝑫𝑫𝑳𝑳𝑳𝑳𝑖𝑖 + 𝛽𝛽3.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑳𝑳𝑖𝑖 + 𝛽𝛽4.𝑹𝑹𝑳𝑳𝑹𝑹𝑹𝑹𝑹𝑹𝑳𝑳𝑖𝑖 + 𝛽𝛽5.𝑨𝑨𝑨𝑨𝑫𝑫𝑨𝑨𝑖𝑖 + 𝛽𝛽6.𝑯𝑯𝑯𝑯𝑯𝑯𝑖𝑖
+𝛽𝛽7.𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑳𝑳𝑹𝑹𝑺𝑺𝑹𝑹𝑺𝑺𝑖𝑖 + 𝛽𝛽8.𝑯𝑯𝑺𝑺𝑳𝑳𝑯𝑯𝑳𝑳𝑳𝑳𝑫𝑫𝑯𝑯𝑺𝑺𝑯𝑯𝑖𝑖 + 𝛽𝛽9.𝑨𝑨𝑨𝑨𝑯𝑯𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑖𝑖 + 𝛽𝛽10. 𝑱𝑱𝑺𝑺𝑫𝑫𝑳𝑳𝑖𝑖 + 𝛽𝛽11.𝑪𝑪𝑪𝑪𝑪𝑪𝑳𝑳𝑳𝑳𝑫𝑫𝑯𝑯𝑺𝑺𝑯𝑯𝑖𝑖)

 

        ……….Equation 24 
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The optimum number of speed control devices will be determined from the third 

objective function which is to minimise the cost of road traffic accidents. This 

objective has been chosen to provide a starting point and sound justification for 

reducing road traffic accidents and more especially to reduce vehicle speeds. Cost 

has been identified to be a parameter that will not directly affect the location of the 

speed control device but will rather contribute to determine how many speed control 

devices can be mounted. The incorporation of the cost function into the model has 

been taken into account by setting up the model to provide the best ‘x’ number of 

locations to place the speed control device. The objective function can thus be 

represented in the following equation. 

Minimise  Z =  
∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  ×

𝑎𝑎𝑒𝑒𝑆𝑆(𝛽𝛽0 + 𝛽𝛽1.𝑫𝑫𝑫𝑫𝑫𝑫𝑖𝑖 + 𝛽𝛽2.𝑳𝑳𝑳𝑳𝑫𝑫𝑳𝑳𝑳𝑳𝑖𝑖 + 𝛽𝛽3.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑳𝑳𝑖𝑖 + 𝛽𝛽4.𝑹𝑹𝑳𝑳𝑹𝑹𝑹𝑹𝑹𝑹𝑳𝑳𝑖𝑖 + 𝛽𝛽5.𝑨𝑨𝑨𝑨𝑫𝑫𝑨𝑨𝑖𝑖 + 𝛽𝛽6.𝑯𝑯𝑯𝑯𝑯𝑯𝑖𝑖
+𝛽𝛽7.𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑳𝑳𝑹𝑹𝑺𝑺𝑹𝑹𝑺𝑺𝑖𝑖 + 𝛽𝛽8.𝑯𝑯𝑺𝑺𝑳𝑳𝑯𝑯𝑳𝑳𝑳𝑳𝑫𝑫𝑯𝑯𝑺𝑺𝑯𝑯𝑖𝑖 + 𝛽𝛽9.𝑨𝑨𝑨𝑨𝑯𝑯𝑺𝑺𝑺𝑺𝑳𝑳𝑳𝑳𝑹𝑹𝑖𝑖 + 𝛽𝛽10. 𝑱𝑱𝑺𝑺𝑫𝑫𝑳𝑳𝑖𝑖 + 𝛽𝛽11.𝑪𝑪𝑪𝑪𝑪𝑪𝑳𝑳𝑳𝑳𝑫𝑫𝑯𝑯𝑺𝑺𝑯𝑯𝑖𝑖)

 

                                    ..…..Equation 25 

4.4.8 Model constraints  
The Highways Agency (2002) Design Manual for roads and bridges guidance to 

speed limits and their geometric parameter requirements was used as a guide to 

outlining the constraints for the objective function. Other constraints have also been 

included. These constraints have all been formulated mathematically.  

The constraints to be considered in addition to the above mentioned objectives are set 

out as follows;  

Firstly, there should be at least one speed control device (speed camera or VAS) 

along the length of road under consideration given as 

𝑁𝑁 = ∑ ∑ 𝑆𝑆𝑢𝑢𝑢𝑢 ≥ 1𝑢𝑢𝑢𝑢                …………..Equation 26 
Where 𝑁𝑁 is the desired number of speed control devices.  

Secondly, a speed control device (speed camera or VAS) should not be located 

within obstacles such as driveway, property entrances, on underground utilities, 

water-body, on pedestrian walkway such that pedestrian movements will be 

disrupted or be less safe etc.  This constraint is given by the following equation  

𝑆𝑆𝑢𝑢𝑢𝑢 =0 ⍱ (u, v) є Ψ                 …………..Equation 27
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Ψ belongs to the set of all obstacle coordinates to be avoided in order to identify a 

suitable location to place a speed control device (speed camera or VAS). In the 

unlikely event that a speed control device is located in the path of an obstacle, 

another solution will be randomly generated and checked to ensure it is out of an 

obstacle location and at a preferred location.  

Thirdly, if more than one speed control device (speed camera or VAS) is to be used, 

an appropriate distance 𝑎𝑎12𝑎𝑎  must be between speed device 1 and 2. The distance 

between device 1 and 2 should be such that the distance 𝑎𝑎12𝑙𝑙  is not too long so that 

the effects desired is not achieved  nor too short a distance 𝑎𝑎12𝑠𝑠  to cause an overlap of 

desired effects of devices.  Let {𝑆𝑆𝑢𝑢𝑢𝑢}  denote a set of speed control devices to be set 

up with 1 and 2 taken from 𝑆𝑆𝑢𝑢𝑢𝑢 . Tzeng and Chen (1999) used 4 different inequality 

expressions containing𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟 , 𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙  and 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠   to denote the fuzzy constraints. To 

simplify their equations, the following expression is used to represent the constraint. 

𝑎𝑎12𝑠𝑠 ≤ |𝑢𝑢1 − 𝑢𝑢2| + |𝑣𝑣1 − 𝑣𝑣2| ≤ 𝑎𝑎12𝑙𝑙                …………..Equation 28 
Where u and v values are expressed in the x-y coordinate system for location 1 and 2.  

Fourthly, for a given speed limit of road the Highways Agency (2002) requires 

certain radius and sight distances to be achieved. Sight distance measurements are 

not easy to obtain so the radius requirements have been used as a surrogate for 

achieving sight distance. Also for certain speed limits and number of lanes, there is a 

requirement for certain gradients to be achieved. The various geometric requirements 

have been mathematically formulated and used as constraints to the objective 

function. These constraints are given as follows;    

Sum of fatal and serious accidents; sumFaSerAccd>=3 
Sum of Slight accidents; sumSliAccd >=15 
Summation of distance over which optimisation is executed; sumDIST >=1000m;  
sumDIST<=3000 
 
Lanes >=1, Lanes <=2, Speed Limit >=20, Speed Limit <=30, Slope >=-0.06, Slope 
<=0.06,  Radius >=360  
     
Lanes >=1, Lanes <=2, Speed Limit >=20, Speed Limit <=30, Slope <= -0.005, 
Slope>= -0.06, Radius>=360  
  
Lanes>=1, Lanes <=2, Speed Limit >30, Speed Limit <=40, Slope >=-0.06, Slope 
<=0.06, Radius >=510  
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Lanes >=1, Lanes <=2,  Speed Limit >30,  Speed Limit <=40,  Slope <= -0.005,  
Slope >= -0.06, Radius >=510  
      
Lanes >=1, Lanes <=2, Speed Limit >40, Speed Limit <=50, Slope >=-0.06, Slope 
<=0.06, Radius >=1020  
      
Lanes >=1, Lanes <=2, Speed Limit >40, Speed Limit <=50, Slope <= -0.005, 
Slope >= -0.06, Radius >=1020  
      
Lanes >=1,  Lanes <=3,  Speed Limit >50,  Speed Limit <=60,  Slope >=-0.06, Slope  
<=0.06, Radius >=1440  
      
Lanes >=1,  Lanes <=3,  Speed Limit >50, Speed Limit <=60, Slope <= -0.005,  
Slope >= -0.06,  Radius >=1440  
      
Lanes >=1, Lanes<=4, Speed Limit >60, Speed Limit<=70, Slope >=-0.06, Slope 
<=0.06, Radius >=2040  
      
Lanes>=1, Lanes <=4, Speed Limit >60, Speed Limit <=70, Slope <= -0.005, 
Slope >= -0.06, Radius >=2040  
      
Lanes >=2, Lanes <=4, Speed Limit >50, Speed Limit <=60, Slope >=-0.04, Slope 
<=0.04, Radius>=1440  
      
Lanes >=2, Lanes<=4, Speed Limit >50, Speed Limit <=60, Slope <= -0.005, 
Slope >= -0.04, Radius >=1440  
      
Lanes >=2, Lanes <=4, Speed Limit >60, Speed Limit <=70. Slope >=-0.04, Slope 
<=0.04, Radius >=2040  
      
Lanes >=2, Lanes <=4, Speed Limit >60, Speed Limit<=70, Slope <= -0.005, 
Slope >= -0.04, Radius >=2040  
      
The optimisation code used in running the genetic algorithm and pattern search is 
given in Appendix B and Appendix C.  

4.5 Application of optimisation model to selected roads 
Elvik, Christensen and Amundsen (2004) in their evaluation of the Power Model 

stated that “if government wants to develop a road transport system in which nobody 

is killed or permanently injured, speed is the most important factor to regulate” and 

that speed limit and their enforcement are very important road safety measures.  

A-roads used in the optimisation were initially split into regular 20m intervals from 

beginning to the end of road. The interval was chosen so as not to omit any detail in 

parameters along the segment of road. The easting and northings extracted from the 
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split points along the road were used in the optimisation. Road sections for 

optimisation modelling were considered for lengths greater than 1000m but less than 

or equal to 3000m. This length was considered appropriate because for shorter 

lengths of roads, accident numbers were almost negligible. Another reason for 

choosing this length of road was because the rules and guidance for the national 

safety camera programme as stated in the Department for Transport (2006) provides 

suggestions for route lengths that need to be considered for fixed speed camera sites. 

In addition to these reasons, other studies on the effectiveness of speed cameras have 

identified distances within this range as being effective for managing speeds 

(Retting, Kryychenko and McCartt, 2008; Høye, 2015;  Høye, 2015a).  

The roads are split into homogeneous segments in which all parameters or variables 

within that homogeneous segment remains the same. Once a parameter changes a 

new homogeneous road segment begins. Accidents are assumed to remain constant 

over the homogeneous segment of road. The north-south direction of travel was 

indicated as NS, the south-north direction of travel along the road was represented as 

SN, the east-west direction of travel along the road was represented as EW and the 

west-east direction of travel represented as WE. The objective which minimises the 

costs associated with road traffic accidents was used to optimise the model. The 

optimisation model was executed such that for road segments from 1000m to 3000m 

in length the sum of fatal and serious accidents occurring over that stretch of road 

must be greater than or equal to 3 or 15 for slight accidents. Genetic Algorithms and 

Pattern Search were the two main optimisation techniques used in this research. 

These were chosen based on an initial investigation into types of optimisation 

techniques applied to facility location problems. These forms of optimisation 

techniques have been widely used in other areas of research where they have been 

found to adequately optimise parameters dealing with large data sets.  Even though 

no optimisation method was identified to have been applied to a problem similar to 

that being investigated in this research, other areas of facility location problems were 

identified. Both pattern search and genetic algorithms belong to the same family of 

global optimisation. The choice of these two optimisation methods in this research 

allows for meaningful comparisons to be made. Pattern search and genetic 

algorithms allow customisations to the algorithms to be made by modifying options.  
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Unlike other optimisation methods, genetic algorithm offers the opportunity to vary 

options such as the crossover and mutation in order to obtain better results. This 

added advantage of providing variety to the search in genetic algorithms helps 

prevent early convergence (Salhi and Gamal, 2003). Convergence occurs when 

parents are unable to produce offspring who are of better quality than the parents. 

Also genetic algorithm was chosen because it has been found to have been applied to 

a lot of real life problems in facility location. (Cheung, Langevin and Villeneuve, 

2001; Indriasari et al., 2010).  

For genetic algorithms, the optimisation was run for 100 generations in most 

instances with a few run for 200 generation using a population size of 20. A 

crossover fraction of 0.8, a Gaussian mutation and adaptive feasible mutation was 

used as they are flexible and support both fine tuning of solutions and searching the 

domain (Heitzinger, 2002).   

Road segments were considered such that they were assessed at lengths starting from 

the first location along the road of interest to the desired length of 3000m. The next 

length started at 20m away from the previous start point to the desired length of 

3000m of the road. This explanation is illustrated in Figure 14. 

 

Road number is A600NS and A600SN where NS represents North-South and SN represents 
South-North 
 

 

    20m    20m 

       eg. Length of road =3000m  

        eg. Length of road =3000m  

Figure 14 Sample road segments considered for optimisation 
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4.6 Data validation 
As mentioned earlier in this chapter the main source of data was the national STATS 

19 database for road accident data with vehicle flow data being obtained from the 

responsible Local Authorities, the Police and the Department for Transport.  

The STATS 19 road accident data is the most complete, detailed and reliable single 

source of data that has been compiled from police completed records of injury 

accidents that have occurred in Great Britain. It must be borne in mind that despite 

every effort made to ensure that records are up to date, not all injury accidents are 

recorded by the police. This is because the police are not always called to the scene 

of an accident.  However, when road accidents are compared with death registrations, 

very few road accident fatalities are not reported to the police (Department for 

Transport, 2012a; Department for Transport, 2010)). A comparison of fatalities 

recorded in STATS 19 and the national death registration due to land transport 

accident is shown in Figure 15.  

 

 
Figure 15 Comparison of STATS19 fatalities with death registration from the Office 

of National Statistics (2008-2012) 
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Differences are however observed for serious injury accidents when STATS 19 is 

compared with hospital admissions data from the Hospital Episode Statistics (HES) 

(Department for Transport, 2010; Department for Transport, 2011) suggesting there 

is an underreporting of road casualties in Great Britain. In 2011, there were 38.6 

thousand recorded emergency admissions to hospitals in England due to road traffic 

accidents in comparison with 20.1 thousand serious injuries reported in STATS 19. 

In 2010 there were approximately 36 thousand recorded emergency admissions to 

hospital in England as compared to 20 thousand serious injuries recorded in 

STATS19. This clearly shows a gap existing in non-fatal casualties’ data recorded by 

the police. Despite the shortfall in data from STATS19, it is still the official reliable 

data source for road traffic accidents in England.  

In geographically mapping the various road accident severity levels to road segments, 

use is made of other available resources such as Crashmap.co.uk and 

Nottinghamshire insight mapping (Crashmap, 2014; Nottingham City Council, 2013). 

These resources are available for comparing with the plotted easting and northing 

coordinates provided in STATS 19.  

For the road characteristics data, EDINA digital maps data are compared with 

Google maps. In checking the level of accuracy of these maps, the lengths of road 

segments were measured in both data sources with an average difference between the 

two data sources being 0.036km. The difference in values of road segments 

measured from the two sources was assessed using the statistical t-test and results 

indicate statistical insignificance at a confidence level of 95%. The use of EDINA 

maps, Google maps and site visits to roads in close proximity to the researcher were 

carried out to validate road characteristics data such as number of lanes, location of 

junctions and location of existing signs obtained from EDINA and Google maps. For 

A-roads, the vehicle speed data obtained from the local authorities was checked 

against the Department of Transport’s online traffic count data (Department for 

Transport, 2013a). For non-A-roads data available from data.gov.uk is used. 
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5 Results (I): Accident prediction model 

5.1 Results and discussion 
In this chapter, an Empirical Bayes Negative Binomial Model for accident prediction 

was developed to establish a relationship between road traffic accidents and 

identified factors along selected A-roads in the United Kingdom. Results and a 

discussion of findings from the models are presented in this Chapter. Considering 

that fatal accidents do not occur that often, the frequency of these is minimal in the 

dataset. Modelling only fatal accidents would have resulted in the model not being 

significantly represented. In order to avoid this problem, fatal and serious accidents 

were combined and modelled together. Table 8 gives results of the significance of 

the parameter estimates for all the parameters initially used in the negative binomial 

model at 5 percent significance level. Parameters identified to be non-significant in 

the model were removed from the model and rerun. 

 
Parameter 

Fatal and Serious accidents model Slight Accidents model 
Sig Sig 

(Intercept) 0.000 0.000 
Jtn 0.000 0.000 
PresofCR 0.307 0.052 
Dxn 0.000 0.000 
PedCrossing 0.487 0.546 
JtnsSUM 0.294 0.002 
Lanes 0.282 0.021 
PercentHGV 0.540 0.044 
Speed Limit 0.015 0.000 
HSegLength 0.000 0.000 
LogAADT 0.002 0.000 
LogRadius 0.000 0.000 
CRteSUM 0.596 0.653 
Avg. Speed 0.277 0.746 
Percent Slope 0.078 0.075 

Table 8 Parameter estimates for initial models 

5.2 Negative Binomial model results  
Results of the continuous variables obtained from the rerun Negative binomial model 

(for both fatal and serious accidents and slight accidents) are given in Table 9 and 

Table 10.  The minimum value, maximum value, mean and standard deviation of the 

variables are provided in the Tables. In Table 11, information on categorical 

variables used in the refined accident prediction models are shown. 
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The parameter estimates are given in Table 12 and Table 13 and a level of 

significance of 5% (˂ 0.05) is used in reporting the results. 

  N Minimum Maximum Mean Std. Deviation 
Dependent 
Variable 

FaSer 4177 0 5 0.08 0.34 
 

     
       
Covariate Speed limit 4177 30 70 57.97 12.09 

HSegLength 4177 40 1220 144.73 110.33 
LogAADT 4177 3.17 4.60 4.01 0.32 
LogRadius 4177 1.14 8.09 4.24 1.26 

Table 9 Continuous variable information of Fatal and Serious (FaSer) accidents 
 

  N Minimum Maximum Mean Std. Deviation 
Dependent 
Variable 

Slight 4177 0 5 0.08 0.34 
 

     
       
Covariate Jtns 4177 0 7 0.38 0.75 

Lanes 4177 1 3 1.67 0.50 
Percent HGV 4177 1 23 8.21 4.44 
Speed Limit 4177 30 70 57.97 12.09 
HSegLength 4177 40 1220 144.71 110.33 
LogAADT 4177 3.17 4.60 4.01 0.32 
LogRadius 4177 1.14 8.09 4.24 1.26 

Table 10 Continuous variable information of Slight accidents 
 

Model Variable Category N Percent 
 
 

Fatal and 
Serious 

Jtn 0 3111 74.5 
 1 1066 25.5 
Dxn 1 1579 37.8 
 2 1553 37.2 
 3 512 12.3 
 4 533 12.8 

 
 
 

Slight 

Jtn 0 3110 74.5 
 1 1066 25.5 
PresofCR 0 4015 96.1 
 1 161 3.9 
Dxn 1 1578 37.8 
 2 1553 37.2 
 3 512 12.3 
 4 533 12.8 

Table 11 Categorical variable information of Fatal and Serious accidents and Slight 
accidents 
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Parameter B(Estimate) Std. Error Sig. 
Exp(B) 

(Odds Ratio) 
95% Wald Confidence Interval 
Lower Upper 

Intercept -6.434 0.870 0.000 0.002 -8.140 -4.728 
Jtns=0 -0.944 0.124 0.000 0.389 -1.188 -0.701 
Jtns=1 0 - - 1 - - 
Dxn=1 0.103 0.168 0.000 1.109 0.225 0.432 
Dxn =2 -0.398 0.181 0.000 0.672 -0.752 -0.044 
Dxn =3 -0.867 0.238 0.000 0.420 -1.331 -0.401 
Dxn =4 0 - - 1 - - 
Speed limit -0.020 0.005 0.000 0.980 -0.029 -0.011 
HSegLength 0.003 0.0004 0.000 1.003 0.002 0.003 
LogAADT 1.511 0.206 0.000 4.530 1.107 1.914 
LogRadius -0.178 0.050 0.000 0.837 -0.277 -0.079 
(Scale) 1      

Table 12 Parameter estimates for fatal and serious accidents on A-roads 
 

Parameter B(Estimate) Std. Error Sig. 
Exp(B) 

(Odds Ratio) 
95% Wald Confidence Interval 

Lower Upper 
Intercept -6.957 0.609 0.000 0.001 -8.150 -5.767 
Jtns=0 -0.566 0.114 0.000 0.568 -0.790 -0.343 
Jtns=1 0 - - 1 - - 
PresofCR =0 -0.495 0.128 0.000 0.609 -0.747 -0.244 
PresofCR =1 0 - - 1 - - 
Dxn=1 0.204 0.107 0.000 1.226 0.006 0.413 
Dxn =2 0.043 0.111 0.000 1.044 0.174 0.260 
Dxn =3 -0.357 0.121 0.000 0.700 -0.593 -0.120 
Dxn =4 0 - - 1 - - 
JtnsSUM 0.189 0.058 0.001 1.208 0.076 0.302 
Lanes 0.238 0.104 0.022 1.269 0.034 0.442 
PercentHGV -0.021 0.009 0.028 0.980 -0.039 -0.002 
Speed limit -0.022 0.003 0.000 0.978 -0.028 -0.017 
HSegLength 0.002 0.0003 0.000 1.002 0.001 0.003 
LogAADT 2.004 0.158 0.000 7.417 1.694 2.313 
LogRadius -0.212 0.027 0.000 0.809 -0.266 -0.158 
(Scale) 1      

Table 13 Parameter estimates for slight accidents on A-road 
 

The Odds Ratio is a relative measure of effect and enables the intervention group to 

be compared with the non-intervention group. It can also be explained to be a 

measure of the relationship between an exposure and an outcome.  From Table 12 it 
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can be interpreted that the odds of an accident occurring along a road without the 

presence of a junction (Jtns = 0) is 0.389 times that of a road with junctions (Jtns = 

1).  In Table 13, for the same parameter it can be interpreted that the odds of an 

accident occurring along a road without the presence of junctions (Jtns = 0) is 0.568 

times that of a road with junctions (Jtns = 1). It can also be seen from Table 13 that 

the odds of an accident occurring along a road without a cycle route (PresofCR = 0) 

is 0.609 times that along a road with a cycle route (PresofCR = 1).  

In Table 12 and Table 13 the 95 percent Wald Confidence Interval for the parameters 

shows the lower and upper limits. Values obtained for the lower and upper limits of 

the confidence interval suggest the Negative Binomial is more suitable for modelling 

the parameters as compared to the Poisson model since the limits predominantly do 

not include zero. 

Information about the Goodness of Fit values for the Negative binomial models 

generated for fatal and serious accidents and slight accidents is provided in Table 14. 

The Value/df figure for the Pearson Chi-Square for both the fatal and serious 

accidents model (1.116) and the slight accidents model (2.385) are greater than 0.05 

signifying that the model fits the data well. Also, the Value/df figures generated for 

the deviance is found to be far less than 1 for the fatal and serious accidents model 

(0.334) and closer to 1 for the slight accidents model (0.757) also indicating that the 

slight accidents model  fits the data well. 

 

Fatal and serious accidents model 
 Value Df Value/df 
Deviance 1391.771 4168 0.334 
Pearson Chi-Square 4652.459 4168 1.116 

Slight accidents model 
 Value Df Value/df 
Deviance 3151.852 4163 0.757 
Pearson Chi-Square 9927.312 4163 2.385 

Table 14 Goodness of Fit for fatal and serious accidents and slight accidents 
 

The Omnibus Test results given in Table 15 for the fatal and serious accidents model 

and the slight accidents model indicate the overall models are statistically significant.  
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Model Likelihood ratio 
Chi-square 

df Sig 

Fatal and Serious 
accidents model 

218.553 8 0.000 

Slight accidents  
model 

1002.145 12 0.000 

Table 15 Omnibus Test 
 

Presence of Junctions (Jtn)(Table 12 and Table 13): Junctions along roads are 

noted in literature to influence road accident numbers and are also identified as 

particularly high risk locations (Clarke et. al.,1998; Golias, 1992; Mountain et al, 

1996; Vorko-Jović, 2006; Greibe, 2003).  The model developed showed a negative 

relationship between the absence of junctions and fatal and serious accidents. A 

similar observation was made for slight accidents with a negative relationship 

existing between the absence of junctions and slight accidents. At significance level 

less than 0.05 there was evidence provided by the data that the presence or absence 

of junctions has an effect on the number of fatal and serious accidents (p = 0.000) as 

well as slight accidents (p = 0.000).   

Cycle Route (PresofCR) (Table 12 and Table 13): The effect of the presence of a 

cycle route on fatal and serious accidents was found to be statistically insignificant 

so this parameter was removed from the model. A negative relationship however 

existed between the presence of a cycle route and slight accidents. At significance 

level less than 0.05 there was evidence (p = 0.000) provided by the data that the 

presence of a cycle route has an effect on the number of slight accidents. Despite this 

finding, the effect of cycle paths on cycle safety is unclear from published literature 

with the comparison of individual cycle path evaluations revealing a broad range of 

outcome on road traffic accidents (Phillips et. al., 2011). A meta-analysis of 14 

European studies revealed that the introduction of cycle paths do not result in a 

remarkable overall change in cycle accident numbers (Elvik et al., 2009). The 

introduction of cycle paths in Sweden was linked with changes in the number of road 

traffic accidents varying from a 44% reduction to an 82% increase as reported in 

Phillips et. al (2011). A similar broad ranged variation has been published in other 

countries with much uncertainty about the effect of cycle paths on road traffic 

accidents (Kim et al., 2007; Forester, 2001; Pucher, 2001). A likely explanation for 
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the outcome observed to date is that the success of cycle paths relies on the design 

and the precise context for introducing them (Phillips et. al., 2011).   

A great proportion of car-bicycle accidents comprising cyclists who come from a 

direction inconsistent with the normal car traffic flow were noted in road traffic 

accidents involving cyclists (Koustanaї et al., 2008). However the geographic 

location where data about the accidents were obtained had very few cycle tracks.   

Direction (Dxn) (Table 12 and Table 13): For road direction 1, a positive 

relationship existed between the direction of travel and fatal and serious accidents as 

well as slight accidents. For road direction 2 a negative relationship existed between 

the direction of travel and fatal and serious accidents with a positive relationship 

existing between the direction of travel and slight accidents. For road direction 3, a 

negative relationship existed between the direction of travel and fatal and serious 

accidents as well as slight accidents. 

At significance level less than 0.05 there was evidence for fatal and serious accidents 

(p = 0.000) and for slight accidents (p = 0.000) provided by the data that the direction 

of travel has an effect on the number of fatal and serious accidents as well as slight 

accidents.  

Li, Zhu and Sui (2007) recommended differentiating directions of travel in order to 

assess relative crash risks since more than thirty percent of roadways investigated in 

their study showed statistically significant different risk values for different 

directions. This is because different directions of the roadway may have dissimilar 

risk values resulting from the characteristics of traffic (such as traffic volume), road 

conditions (such as road geometry), environmental conditions (such as lighting 

conditions, presence of hard shoulder) and other risk indicating variables. Based on a 

two-sample t-test, more than thirty percent of roads investigated had statistically 

significant different risk values for different directions (Li, Zhu and Sui, 2007). The 

need to distinguish directions in the analysis of relative risk can contribute to the 

prevention of averaging outcomes between opposite travel directions and thus 

produce more valid outcomes for each direction of travel. 
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Number of Junctions (JtnSUM) (Table 12 and Table 13): The effect of the number 

of junctions on fatal and serious accidents was found to be statistically insignificant 

and this parameter was removed from the model. Results however show that the 

number of junctions along a segment of road has a positive effect on slight accidents. 

There was evidence provided by the data that at significance level less than 0.05 the 

number of junctions has a strong effect on the number of slight accidents (p = 0.000).  

Lanes (Table 12 and Table 13): Results show that the effect of the number of lanes 

on fatal and serious accidents was statistically insignificant and was thus excluded 

from the model. However, the number of lanes was found to have a positive effect on 

slight accidents. There was evidence provided by the data that at significance level 

less than 0.05 the number of lanes has an effect on the number of slight accidents (p 

= 0.022).  This finding is consistent with the results of a study carried out by Wang, 

Quddus and Ison, (2011a) on major roads in the UK where the number of lanes was 

statistically significant and positively associated with slight injury accidents. This 

indicates that more slight injury accidents are likely to arise on roads with more 

lanes.  

A number of researchers are of the view that an increase in accident rates occurs with 

an increase in the number of lanes (Kononov, Bailey and Allery, 2008) with other 

studies indicating dissimilar views. Kononov, Bailey and Allery (2008) found a 25 

percent increase in accident rates between four and six-lane freeways and 40 percent 

between six and eight-lane freeways in Colorado. By comparing slopes of safety 

performance functions (SPFs) for different number of lanes in California, Colorado 

and Texas, it was observed that increasing the number of lanes on urban freeways 

initially contributes to improve safety that declines with an increase in congestion. A 

possible explanation to this is that with an increase in the number of lanes, there is a 

rise in the chances for conflicts associated with lane change. The increase in 

manoeuvrability relating to the availability of other lanes leads to an increase in 

average speed of traffic and difference in speed.  

Accident rates were found to increase with an increase in the number of lanes by 

Garber (2000). Other studies have also indicated the association between road traffic 

accidents and the number of lanes. Abdel-Aty and Radwan (2000) noted that with an 
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increase in the number of lanes on urban roadway sections, crash rates increased. 

Milton and Mannering (1998) also established that an increase in the number of lanes 

in rural Washington State resulted in more road traffic accidents. Noland and Oh 

(2004) were able to find that an increase in the number of lanes increased traffic-

related accidents and fatalities. Golob and Recker (2001) on the other hand identified 

the position of lanes i.e. left and interior lanes to rather have an influence on the 

collision type. Council and Stewart (2000) also found that the conversion of two-lane 

roads to four lanes contributed to a 40 to 60 percent reduction in crashes.  

HGV (Table 12 and Table 13): The effect of the percentage of Heavy Goods 

Vehicles (HGVs) on fatal and serious accidents was statistically insignificant and 

hence it was excluded from the model. For slight accident numbers, the percentage of 

Heavy Goods Vehicles was found to have a negative effect. At significance level of 

less than 0.05 the data provided enough evidence (p = 0.028) to suggest that the 

percentage HGVs has an impact on the number of slight accidents. 

Other researches (Shankar, Milton and Mannering, 1997; Miaou, 1994; 

Anastasopoulos and Mannering, 2009) have indicated that an increase in HGVs 

results in a decreased frequency of overtaking vehicles and lane changing behaviour 

leading to a reduction in the number of accidents. De Palma, Kilani and Lindsey 

(2008) also found that HGVs inflict more congestion than accident costs in 

comparison to light goods vehicles. In another study in Australia (Mitchell, Driscoll 

and Healey, 2004), rigid trucks and prime movers were found to be more likely to be 

involved in non-vehicular collisions on a curve in the roadway on national and state 

highways as well as other rural roads with high speed appearing to be a factor in 

many of the incidents for this category of vehicles. In addition to the above findings, 

accident statistics also show that large trucks present a serious safety problem, 

particularly with regard to the severity of accidents in which they are involved 

(Khorashadi et al., 2005; Evgenikos et al., 2016 ). 

Speed limit (Table 12 and Table 13): The speed limit observed was found to have a 

negative effect on the number of fatal and serious accidents. The same observation 

was made for slight accidents. At less than 0.05 significance level there was enough 
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evidence (p = 0.000) provided by the data to suggest that speed limit has an effect on 

fatal and serious accidents numbers and on slight accident numbers.  

Aljanahi, Rhodes and Metcalfe (1999) in their study of the Tyne and Wear, UK 

region showed a stronger relationship existed between accidents and the traffic speed 

variability but the speed limit of the road was not considered. However, Ossiander 

and Cummings (2002) analysing the effects of increasing speed limits on a rural 

freeway in the USA found speed variance not to have been affected by the increase 

in speed limit. Even though the fatal crash rate increased due to the increase in speed 

limit, the total crash rate showed little change. The generally low numbers of 

recorded fatal accidents could be attributed to this. Results from the study by Taylor, 

Baruya and Kennedy (2002) showed the frequency of all injury accidents rose 

quickly with the mean speed of traffic. Since only 60km/h roads were considered in 

the Taylor, Baruya and Kennedy (2002) study, comparison with other classes of 

roads having different speed limits cannot be made. In another study by Taylor, 

Lynam and Baruya (2000) the frequency of road traffic accidents was found to 

increase with traffic speed and higher speeds showed a quick increase in accident 

frequency. Even though greater speed variation along a road may be related to an 

increase in road accidents this has not been proved experimentally due to lack of data 

and the possible difficulties in the analysis involved (Thomas et al., 2012). 

Homogeneous Segment (HSegLength) (Table 12 and Table 13): The homogeneous 

segment length of road was found to have a positive effect on the number of fatal 

and serious accidents. The same observation was made for slight accidents. At less 

than 0.05 significance level there was enough evidence (p = 0.000) provided by the 

data to suggest that the homogenous segment length has an effect on fatal and 

serious accidents numbers and on slight accident numbers. 

AADT (Table 12 and Table 13): The logarithm of the AADT was found to have a 

positive influence on fatal and serious accident numbers and on slight accident 

numbers. At less than 0.05 significance level there was evidence (p = 0.000) 

suggested by the data that AADT has an influence on the number of fatal and serious 

accidents and also on the number of slight accidents. 
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A study by Hau (1992) showed that traffic density determines speed and not vice-

versa. Ceder and Livneh (1978) also provided some understanding into the 

relationship between accident and average daily traffic on interurban road sections by 

fitting a power function model. The total accident density was found to increase with 

an increase in average daily traffic (ADT) which is consistent with the findings 

obtained in this study. Another study by Martin (2002) found crash incidence rates 

increased steadily as traffic increased on 2 and 3 lane motorways with traffic levels 

of about 3000 vehicles/hour. The work of Golob and Recker (2001) revealed that the 

severity of accidents was influenced more by the volume of traffic than by speed.  

Radius (Table 12 and Table 13): The logarithm of the radius of curvature was found 

to have a negative influence on both fatal and serious accidents and slight accidents. 

This finding is undeviating from other studies (Milton and Mannering, 1998; Haynes 

et al., 2007). At less than 0.05 significance level there was evidence provided by the 

data that the radius has an effect on the number of fatal and serious accidents (p = 

0.000) and slight accidents (p = 0.000). Milton and Mannering (1998) found an 

increase in horizontal curve radius to decrease the number of accidents which is in 

agreement with results from this research. Haynes et al. (2007) also found that 

collision numbers were negatively related to road curvature with the cumulative 

angle being most strongly related to fatal road crashes. In the work of Berhanu 

(2004) a decrease in road curvature showed decreases in accidents. A possible 

explanation can be attributed to the urban environment used where traffic speed is 

likely to be low and allows for more driver reaction time to reduce speed on curved 

sections of the road and thereby have better control of the vehicle. The study by 

Berhanu (2004) also recognised that drivers tend to speed on straight sections of a 

road than within bends but there is still the possibility of accident risk being 

increased at areas of increased road curvature. 

Multicollinearity (Table 16 and Table 17): Multicollinearity arises when high 

correlations exist within predictor variables resulting in unstable and unreliable 

estimates of regression coefficients (Allison, 2012). The highest correlation of 

parameter estimates was noted to be -0.317 (Table 16) occurring between the 

logarithm of the Radius (LogRadius) and homogeneous segment length (HSegLength) 

for fatal and serious accidents. For slight accidents the highest correlation between 
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variables was -0.59 (Table 17) occurring between the logarithm of the annual 

average daily traffic (LogAADT) and the number of lanes (Lanes). The highest 

correlation figure obtained was -0.59 suggesting that multicollinearity is not an issue 

for the predictor variables. The correlation of parameter estimates are given in Table 

16 and Table 17 for fatal and serious accidents and slight accidents.  
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 Intercept Jtns=0 Jtns=1 Dxn=1 Dxn=2 Dxn=3 Dxn =4 SpeedLimit  HSegLength LogAADT LogRadius 

Intercept 1.000           
Jtns=0 0.146 1.000          
Jtns=1 . .          
Dxn=1 -0.175 -0.046 . 1.000        
Dxn =2 -0.162 -0.027  0.693 1.000       
Dxn =3 -0.049 0.031. . 0.499 0.462 1.000      
Dxn=4 . . . . . . .     
SpeedLimit -0.124 -0.257 . -0.121 -0.132 0.030 . 1.000    
HSegLength -0.003 0.221 . -0.059 -0.063 -0.052 . -0.244 1.000   
LogAADT -0.940 -0.130  0.065 0.068 -0.072 . -0.087 0.053 1.000  
LogRadius -0.139 -0.155 . 0.059 0.042 0.070 . -0.096 -0.317 -0.035 1.000 

Table 16 Correlation of parameter estimates for fatal and serious accidents on A-roads 
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 Intercept Jtns=0 Jtns=1 
Presof
CR=0 

Presof
CR=1 Dxn=1 Dxn=2 

 
Dxn=3 Dxn =4 

Jtns 
SUM 

 
Lanes 

Percent
HGV 

Speed 
Limit 

HSeg 
Length LogAADT LogRadius 

Intercept 1.000                
Jtns=0 -0.044 1.000 .              
Jtns=1 . . .              
PresofCR=0 -0.373 0.046 . 1.000             
PresofCR=1 . . . . .            
Dxn=1 -0.067 -0.044 . -0.102 . 1.000           
Dxn =2 -0.065 -0.026 . -0.135 . 0.752 1.00          
Dxn =3 -0.153 0.040 . 0.108 . 0.485 0.461 1.000         
Dxn=4 . . . . . . . . .        
Jtns -0.184 0.781 . 0.099 . -0.042 -0.022 0.033 . 1.000       
Lanes 0.336 -0.022 . -0.099 . 0.306 0.309 -0.124 . -0.056 1.000      
PercentHGV 0.082 0.000 . -0.062 . -0.244 -0.264 0.031 . 0.083 -0.286 1.000     
SpeedLimit -0.101 -0.022 . -0.155 . -0.008 0.010 -0.024 . 0.068 0.090 -0.458 1.000    
HSegLength 0.023 -0.026 . -0.037 . -0.050 -0.062 -0.082 . -0.186 0.004 -0.105 -0.156 1.000   
LogAADT -0.898 -0.080 . 0.242 . -0.099 -0.096 0.055 . 0.023 -0.599 0.058 -0.088 0.036 1.000  
LogRadius -0.118 -0.121 . 0.019 . 0.091 0.081 0.140 . -0.007 -0.011 -0.035 -0.024 -0.298 -0.027 1.000 

Table 17 Correlation of parameter estimates for slight accidents on A-roads 
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Figure 16 shows the relationship between the observed and the residual (observed - 

predicted) values of accidents on A-roads tested and validated using the Negative 

Binomial model developed. The pattern shown in Figure 16 for both slight accidents 

and fatal and serious accidents, indicate residuals increase with increase in observed 

accident numbers.   

 

 

Figure 16 Relationship between the observed and residual values (observed-
predicted) of accidents from Negative Binomial model 

 

-30

-25

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20

Re
si

du
al

s 
(O

bs
er

ve
d 

- P
re

di
ct

ed
) 

Observed number of slight accidents 

-1

0

1

2

3

0 1 2 3Re
si

du
al

s 
(O

bs
er

ve
d 

- P
re

di
ct

ed
) 

Observed number of fatal and serious accidents 



 

149 

 

5.3 Empirical Bayes model results 
Count models have the tendency to ignore spatial correlations which may influence 

results from the model estimates and usually tend to be corrected by using spatial 

models such as Bayesian hierarchical models which are supposed to control for 

spatial correlations. Even though Full Bayesian hierarchical models are able to 

handle problems associated with spatial correlation, for fatal and serious accidents 

this is not always the case. Wang, Quddus and Ison (2011) noted the pattern of 

residuals from fatal and serious accidents from count models to be similar to that 

obtained from a Bayesian spatial model. This may be attributed to the higher 

regression to mean effects associated with fatal and serious accidents as compared to 

slight accidents since the occurrence of fatal and serious accidents are rare. Full 

Bayesian hierarchical models are also disadvantaged in that they may not be easily 

transferable to other datasets with correlation results sometimes being difficult to 

interpret (Lord and Mannering, 2010).  However, quantifying road safety using the 

Empirical Bayes (EB) method has evolved over the years and it has been described 

as the preferred method to measuring the expected number of accidents (Elvik, 

2008). This is because EB methods were developed for the purpose of controlling for 

regression-to-the-mean effects in before and after studies that assess the impact of 

road safety measures as well as in identifying hazardous road locations (Elvik, 2008). 

The Empirical Bayes method works on the basis that the best estimate of safety is 

obtained by combining two sources of information; (i) the accident record for a given 

study unit (driver, intersection, road section, etc.), and (ii) an accident prediction 

model showing how various factors affect accident occurrence. Complexities are 

involved in developing good accident prediction models and the Empirical Bayes 

method is no exception. Discussions in Chapter 3 about the limitations associated 

with models such as the negative binomial model led to the improvement of the 

model by the Empirical Bayes approach. 

Roads data available for use was split into two portions with approximately 75% of 

the data used to develop the negative binomial model with the remaining 25% used 

to validate it. The negative binomial model developed was further developed into an 

empirical Bayes model. This section discusses results obtained from testing the 

model on the remaining 25% of the roads data. The length of roads used in validating 
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the Negative Binomial Empirical Bayes accident model was 185,040 metres. The 

roads comprised 1771 homogeneous segments, 159 fatal and serious accidents and 

960 slight accidents. There were 1872 junctions and 11120m of cycle routes along 

the roads investigated. A summary of results obtained for slight accidents and fatal 

and serious accidents combined from observed data, negative binomial model and 

empirical Bayes model are given in Table 18.  
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Road 

number 

Observed Negative 

Binomial 

Predicted 

Empirical Bayes 

Predicted 

Road 

number 

Observed Negative 

Binomial 

Predicted 

Empirical Bayes 

Predicted 

Sligh

t 

Fatal 

and 

serious 

Slight Fatal 

and 

serious 

Slight Fatal 

and 

serious 

Slight Fatal 

and 

serious 

Slight Fatal 

and 

serious 

Slight Fatal 

and 

serious 

A6211SN 12 4 23 4 20 4 A6211NS 32 6 37 12 34 11 

A6130SN 101 8 40 7 80 7 A6130NS 22 6 43 4 29 5 

A6117SN 53 14 48 11 52 12 A6117NS 18 3 43 7 34 7 

A6030SN 72 7 46 13 58 13 A6030NS 31 1 38 8 37 7 

A6005WE 116 18 262 37 154 32 A6005EW 71 17 270 24 116 22 

A6002SN 68 15 71 19 68 18 A6002NS 31 14 89 13 60 13 

A47WE 183 19 57 13 102 13 A47EW 150 27 99 35 130 34 

Table 18 Results of accident predictions 
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A paired t-test was carried out for the observed accidents, negative binomial model 

and empirical Bayes model. The t-test was carried out in order to determine if there 

is any statistical significance between observed accidents and either the negative 

binomial model or empirical Bayes model. A t-test was also carried out to determine 

any statistical significance between the negative binomial model and the empirical 

Bayes model results. The test was carried out separately for slight accidents and for 

fatal and serious accidents combined and a 5 percent significance level was used.  

The paired t-test compared  

• observed slight accidents to negative binomial slight accidents 

• observed slight accidents to empirical Bayes slight accidents 

• negative binomial slight accidents to empirical Bayes slight accidents 

• observed fatal and serious accidents to negative binomial fatal and serious 

accidents 

• observed fatal and serious accidents to empirical Bayes fatal and serious 

accidents 

• negative binomial fatal and serious accidents to empirical Bayes fatal and 

serious accidents 

The null hypothesis Ho tested were 

1. There is no difference between observed accidents and the accidents 

generated from the negative binomial model 

2. There is no difference between the observed accidents and the accidents 

generated from the empirical Bayes model 

3. There is no difference between the accidents generated from the negative 

binomial model and the empirical Bayes model 

The research (alternative) hypothesis HA tested were 

1. There is a difference between observed accidents and the accidents generated 

from the negative binomial model 

2. There is a difference between the observed accidents and the accidents 

generated from the empirical Bayes model 
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3. There is a difference between the accidents generated from the negative 

binomial model and the empirical Bayes model 

Results obtained from the t-test paired sample statistics are given in Table 19 with 

results of the t-tests given in Table 20. Abbreviations used were Obsvd for Observed, 

NB for Negative Binomial and EB for Empirical Bayes. 

Severity of 

accident  

Models 

compared 

Mean N Std. 

Deviation 

Std. Error 

Mean 

 

 

 

Slight 

 

 

Obsvd  0.54 1770 1.497 0.036 

NB 0.66 1770 1.416 0.034 

Obsvd 0.54 1770 1.497 0.036 

EB 0.55 1770 0.994 0.024 

NB 0.66 1770 1.416 0.034 

EB 0.55 1770 0.994 0.024 

 

Fatal and 

Serious 

 

Obsvd  0.09 1770 0.339 0.008 

NB 0.12 1770 0.108 0.003 

Obsvd 0.09 1770 0.339 0.008 

EB 0.11 1770 0.117 0.003 

NB 0.12 1770 0.108 0.003 

EB 0.11 1770 0.117 0.003 

Table 19 Results of t-test paired sample statistics for accidents 
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Severity of 

accident 

Models 

compared 

Mean Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of 

the Difference 

t df Sig. (2-tailed) 

 

Slight 

 

Obsvd - NB -0.115 1.798 0.043 -0.199 -0.032 -2.703 1769 0.007 

Obsvd - EB -0.008 0.696 0.017 -0.041 0.024 -0.505 1769 0.614 

NB – EB 0.107 1.333 0.032 0.045 0.169 3.381 1769 0.001 

 

Fatal and 

Serious 

Obsvd - NB -0.028 0.332 0.008 -0.043 -0.012 -3.534 1769 0.000 

Obsvd - EB -0.023 0.279 0.007 -0.036 -0.010 -3.398 1769 0.001 

NB – EB 0.005 0.061 0.001 0.002 0.008 3.652 1769 0.000 

Table 20 Results of t-test for accidents 
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Analysing Table 19 and Table 20, it can be seen that there is a significant difference 

in observed (Obsvd) slight accidents (M= 0.54, SD= 1.497) and slight accidents 

obtained from the Negative Binomial (NB) model (M=0.66, SD=1.416) condition; t 

(1769) = -2.703, p=0.007. For observed (Obsvd) fatal and serious accidents (M= 

0.09, SD= 0.339) and fatal and serious accidents obtained from the Negative 

Binomial (NB) model (M=0.12, SD=0.108) condition; t (1769) = -3.534, p=0.000 a 

significant difference was obtained. The same pattern of significance was observed 

between the Negative Binomial model and Empirical Bayes model for both slight 

accidents and fatal and serious accidents combined.  

For Negative Binomial (NB) fatal and serious accidents (M= 0.12, SD= 0.108) and 

fatal and serious accidents obtained from the Empirical Bayes (EB) model (M=0.11, 

SD=0.117) condition; t (1769) = 3.652, p=0.000 a significant difference was 

obtained. For Negative Binomial (NB) slight accidents (M= 0.66, SD= 1.416) and 

slight accidents obtained from the Empirical Bayes (EB) model (M=0.55, SD=0.994) 

condition; t (1769) = 3.381, p=0.001 a significant difference was obtained. 

For Observed slight accidents (M= 0.54, SD= 1.497) and the Empirical Bayes model 

slight accidents (M= 0.55, SD= 0.994), there was no evidence of a difference, 

condition; t (1769)= -0.505, p=0.614. However, for fatal and serious accidents, it is 

noted that there is a significant difference in observed accidents (M= 0.09, SD= 

0.339) and the Empirical Bayes model (M= 0.11, SD= 0.117) condition; t (1769) = -

3.398, p=0.001.  

Paired t-test values indicating significant difference between the samples tested was 

obtained in the case of slight accidents for the observed and negative binomial, 

negative binomial and empirical Bayes, and for fatal and serious accidents between 

observed and negative binomial, observed and empirical Bayes and negative 

binomial and empirical Bayes. These t-tests indicating significant difference had p-

values less than 0.05 and the 95 percent confidence interval obtained for these 

samples given in Table 20 are noted not to include zero. For t-test carried out for 

slight accidents between observed and empirical Bayes samples, where no significant 

different was found with p-value greater than 0.05 (p=0.614) the 95 percent 
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confidence interval (-0.041 to 0.024) was found to include zero further indicating no 

significant difference.  

 

 

Figure 17 Relationship between the observed and residual values (observed-
predicted) of accidents from Empirical Bayes model 
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In Figure 17, the relationship between the observed and the residual (observed - 

predicted) values of accidents on A-roads tested and validated using the Empirical 

Bayes method shows a pattern to be compared with Figure 16. For fatal and serious 

accidents, the pattern of residuals observed in Figure 17 is similar to the pattern of 

residuals in Figure 16. The pattern shows residuals increasing with observed 

numbers. A possible explanation for this can be attributed to the effect of high 

regression-to-mean in fatal and serious accidents due to the rarity of occurrence of 

this type of accident.  For slight accidents, the pattern shown in Figure 17 is different 

from that shown in Figure 16 showing a refinement in the model obtained from 

Empirical Bayes.  

5.4 Summary 
Roads used for the accident prediction model was 789,560 metres in total. 604,520 

metres was used in developing the model with the remaining 185,040 metres used for 

validating the model. A negative binomial model was developed and improved by 

means of an empirical Bayes method. The parameters initially used in developing the 

models were junctions presents (options being Yes or No), Presence of a Cycle route 

(options being Yes or No), direction of road (e.g. North-South), presence of 

pedestrian crossing (options being Yes or No), the sum of junctions within a 

homogeneous length of road, the number of lanes, percentage of heavy goods 

vehicles, speed limit, homogeneous segment length of road, logarithm of the Annual 

Average Daily Traffic (AADT), logarithm of the radius of the road, sum of cycle 

route, average speed and percentage slope. After running the initial models for fatal 

and serious accidents combined and slight accidents separately, model variables 

found not to be statistically insignificant were removed and the model was rerun. For 

the fatal and serious accidents mode, parameters found to be statistically significant 

are the presence of junctions, direction of travel along a road, speed limit, 

homogeneous segment length of the road, logarithm of the Annual Average Daily 

Traffic and the logarithm of the radius. For the slight accidents model, variables 

found to be statistically significant are the presence of junctions, presence of cycle 

route, direction of travel along a road, sum of junctions within a homogeneous length 

of road, number of lanes per driving direction, percentage heavy goods vehicles 

(HGV), speed limit, homogeneous segment length of road, logarithm of the Annual 

Average Daily Traffic (AADT) and the logarithm of the radius. The negative 
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binomial model developed was tested on 185,040 metres of roads independent of 

what was used in developing the model. The negative binomial model was further 

developed into an empirical Bayes model to enhance the predictive power as well as 

help deal with the effects of regression-to-the-mean. The residual plots (observed –

predicted) against observed accidents for the empirical Bayes model fatal and serious 

accidents combined was found not be very different from that obtained from the 

negative binomial model. However, the residual plots (observed –predicted) against 

observed accidents for the empirical Bayes model slight accidents was found to be 

different from that obtained from the negative binomial model showing an 

improvement in the empirical Bayes model predictions. When a paired t-test was 

carried out between data samples, apart from observed slight accidents and empirical 

Bayes slight accidents which showed no statistical difference, all other paired t-test 

sample data showed statistical difference at the 5 percent significance level with 95 

percent confidence interval limit values confirming the significance of values 

obtained.  
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6 Results (II): Optimisation model 

6.1 Introduction 
The facility location model in this research is done to obtain the optimum number 

and location for speed control devices (speed cameras and vehicle activated signs 

(VAS)). Consideration has been given to recommendations made by the Home 

Office, Highways Agency and from other available guidelines regarding the 

installation of speed cameras and vehicle activated signs. These recommendations 

and guidelines have been used as a starting guide and incorporated into the models as 

appropriate.   

The question to be answered is ‘where should a speed control device be placed so 

that the resulting benefits are reduction in road traffic accidents through vehicle 

speed reduction?’. To answer this question, results from the practical application of 

the objectives and constraints defined in Chapter 4 have been applied to some A-

roads within the Nottinghamshire and Leicestershire areas of United Kingdom. A-

roads used to validate the accident prediction models in Chapter 5 have been used in 

this chapter to test the optimisation model. Appendix D provides GIS plots of the 

variation of accidents along the roads used. A list of roads used in this chapter is 

given in Table 21.  

Road Start location (approximate) End location (approximate) 
A6211 A60 Mansfield road/A6211 

Thackerays Lane junction 
A6211 Colwick Loop road/A612 
Colwick Loop road junction 

A6002   A6007 Ilkeston Road/A6002 
Coventry Lane junction 

A6002 Sandhurst road/Hucknall 
Lane junction 

A6130 A6130 Castle Boulevard/Sherwin 
Road junction 

A6130 Gregory 
Boulevard/Mansfield Road junction 

A6117  A60 Leeming Lane South/A6117 
Old Mill Lane junction 

A617 Sherwood Way East/A6117 
junction 

A6030  A6 London road/Stoughton road 
junction 

A563 Troon Way/A6030 Victoria 
Road East  junction 

A6005  Hills road/Draycott road Castle Boulevard/Wilford Street 
A47    Normandy Way/Leicester road 

junction 
A47/A43 junction 

Table 21 Roads used in optimisation 
 

It should be mentioned that the optimisation model was developed on the basis of 

roads having accidents of a certain magnitude and severity. It is worth stating that the 
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optimisation model does not take into account roads used for construction purposes 

with the need to have speed cameras placed on them to reduce vehicle speeds for the 

safety of road workers.  

6.2 Pattern Search Results 
Pattern search optimisation normally depends on the smoothness of the cost function 

whereas genetic algorithms on the other hand may not converge with a smooth cost 

function (Wetter and Wright, 2003). Both pattern search and genetic algorithms can 

be used on dis-continuous and un-differentiable functions (Mathworks, 2015).  The 

pattern search algorithm evaluates a series of points approaching an optimal point. 

During each step, the algorithm searches a set of points referred to as a mesh around 

the present point. The present point acts as the calculated point from the previous 

step of the algorithm. If a point in the mesh is found by the pattern search which 

improves the objective function at the present point the new point is used as the 

present point for the following step of the algorithm. In pattern search the search 

seeks to obtain a better point than the present one. (A better point implies one with 

lower objective function value). 

The optimisation model developed for the A-roads made use of two main 

optimisation techniques of which Pattern Search was one. Fourteen different 

segments of A-roads (in Nottinghamshire and Leicestershire) were used in the 

pattern search optimisation models. Roads used have been split into south north 

(SN), north south (NS), east west (EW) and west east (WE) directions. The 

optimisation was carried out using the road centreline as the reference point.  

For all roads used in the optimisation, the fitness plots at each generation are given in 

Figure 18 to Figure 22. Computation times obtained from pattern search varied from 

a minimum of 13 minutes to a maximum of 595 minutes. Fitness plots obtained from 

the pattern search optimisation produced results indicating more progress in 

lowering the fitness value. The plots indicate the objective function value of the best 

point at each iteration with the objective function values typically improving quickly 

during the early stages of iteration and then it begins to level off as the optimal value 

is approached. A better point which is one with lower objective function value is 

always searched for and desired. In Figure 18, the A6002SN shows a gradual 

stepwise reduction in the function value to the end of iteration with a final function 
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value of 1.72 obtained around iteration 72. A gradual progress in the refinement of 

the fitness function is observed for the A6002SN. For the A6002NS in Figure 18, a 

similar observation was made however it is noted that the function value started at a 

much lower value of 0.08 at the start of iteration in comparison with a function value 

of 3500 at start of iteration for the A6002SN. 

 

 

 

Figure 18 Plot of best fitness values for A6002 
 

The A6130SN in Figure 19 shows a plot of the function value with the iteration. The 

fitness value for the A6130SN is observed to be lowered step by step from start of 

iteration to a point where the fitness value remains the same to the end with a value 
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of 2.76. There was however no optimal point located for the A6130NS. For the 

A47WE in Figure 19, pattern search produced a drop in function value after the first 

twelve iterations after which minor drops in fitness value was observed before 

terminating in a final function value of 2.67.  

 

 

 

 

Figure 19 Plot of best fitness value for A6130SN and A47WE 
 

The A6117SN and A6117NS in Figure 20 shows the refinement in function value 

from start of iteration to end. Both figures show the function value reaching a final 

reduced value from iteration 11. The profile of both plots are similar however the 
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A6117SN finishes off with a final function value of 7407.44 while the A6117NS 

finishes with a function value of 15120.8  

 

 

 

Figure 20 Plot of best fitness value for A6117 
 

The A6030SN and A6030NS in Figure 21 shows the function value plot against the 

number of iterations. The A6030SN shows a stepwise reduction in the function value 

in comparison to the plot shown for the A6030NS. The A6030SN has a final function 

value of 3.66 with the A6030NS having a final function value of 0.05 
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Figure 21 Plot of best fitness value for A6030 
 

The A6005WE and A6005EW shows the function value plot with the A6005WE 

having a final function value of 2.13. The A6005EW on the other hand produces a 

much lower function value of 1.01. 
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Figure 22 Plot of best fitness value for A6005 
 

6.3 Genetic Algorithm Results 
Genetic Algorithm was used as the other optimisation technique. The same roads 

used for the pattern search were used for the genetic algorithm.  

In order to get results closer to the actual minimum value, a number of operations 

can be applied to a genetic algorithm run. In this research, values were set for the 

population size, elite count, crossover fraction and number of generations. The elite 

counts are individuals in the present generation who have the best fitness value and 

they normally proceed to the next generation. In this research an elite count of 2 was 

used such that there should be two individuals good enough to proceed to the next 

generation for optimisation. The value of the elite count was chosen based on 
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recommendations from other research (Mathworks, 2015). An increase in the size of 

the population also allows the genetic algorithm to explore more points to achieve a 

better outcome.  As a guide the population size is normally set to be at least the value 

of the number of variables so that individuals in each population can spread to the 

space being explored. Based on these suggestions a population size of 20 was used. 

During crossover, children are generated as a result of blending a vector from a pair 

of parents. The cross over fraction used was 0.8. This value was chosen because 

studies carried out indicate that very good results are obtained when the crossover 

fraction is set from 0.4 to 0.8 (Mathworks, 2015). Also, crossover fraction values of 

0.6, 0.7, 0.8 and 0.9 were used to run all road sections used in the optimisation and a 

crossover fraction of 0.8 was found to improve the fitness value in most cases. Figure 

23 shows the fitness values obtained for the various crossover fractions (CrOvFr) of 

the roads.   

 

Figure 23 Plot of function values with crossover fractions 
 

Mutation however applies arbitrary modifications to individuals in the present 

generation to form a child. The adaptive feasible mutation was used. Taking into 

consideration the constraints applied to the models, this type of mutation was 

considered suitable. With the inclusion of constraints, this type of mutation randomly 

generates directions that are adaptive with respect to the last successful or 
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unsuccessful generations and choose a direction and step length that satisfies bounds 

and linear constraints (Mathworks, 2015). Mutation without crossover and vice versa 

is not an effective option for optimising functions in genetic algorithm. A balance in 

the choice of mutation and crossover values is required to obtain good results.  

The best fitness values given in the figures indicate the fitness of the best individual 

obtained so far till the current iteration. The mean fitness is the average of the fitness 

values throughout the entire population. For each generation, the population gets 

refined and new average population fitness values are obtained. The best fitness 

tends to get better as the iterations progress. This normally happens quickly initially 

as the individuals are away from the optimum solution point and then slows down as 

the algorithm identifies better solutions that are difficult to improve upon.   

Figure 24 shows the fitness function plot for the A6002SN obtained from genetic 

algorithm. There is a gentle drop in fitness value occurring from iteration 1 to 

iteration 5 with the plot showing that the fitness value does not improve any further 

after iteration 5. The A6130SN in Figure 24 displays the fitness value remaining 

constant for a very short period of iteration starting from the beginning to iteration 1 

and dropping very slightly at iteration 1. After iteration 1 the model does not provide 

any improvement in the fitness value up to the final point of iteration.  
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Figure 24 Results from Genetic Algorithm Optimisation 
 

 

In Figure 25 the A6117NS shows the fitness value remaining constant from iteration 

1 to iteration 14. There is a reduction in fitness value from iteration 14 to iteration 16 

and the fitness value remains constant from iteration 16 to the final iteration point 

indicating there is no further improvement in the fitness value. 
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Figure 25 Results from Genetic Algorithm Optimisation 
 

In Figure 25 the A47WE shows a steep drop in the fitness value from iteration 1 to 

iteration 10. From iteration 10 to iteration 15 there is very little refinement in the 

fitness value with the fitness value remaining constant from iteration 16 to the end of 

iteration of the model.  

The A6030SN in Figure 26 shows no improvement in the fitness value from the 

beginning to the end of iteration. A similar pattern of no improvement in the fitness 

value from start of iteration to the end of iteration can be noted in the A6005WE plot 

in Figure 26.  
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Figure 26 Results from Genetic Algorithm Optimisation 
 

A paired t-test was computed for the fitness values obtained from genetic algorithm 

and pattern search for the same road samples and the values obtained are given in 

Table 22 and Table 23.  

 

Models 

compared 

Mean N Std. 

Deviation 

Std. Error 

Mean 

Genetic 

Algorithm 

6323.56 120 9500.76 867.30 

Pattern 

Search 

1251.24 120 3710.05 338.68 

Table 22 Results of t-test paired sample statistics for optimisation function values 
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Models 

compared 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df Sig. (2-

tailed) 

Lower Upper 

Genetic 

Algorithm

– Pattern 

Search 

5072.32 10950.62 999.65 3092.91 7051.72 5.07 119 0.000 

Table 23 Results of t-test for optimisation function values 
 

Analysing Table 22 and Table 23, it can be seen that there is a significant difference 

in the function values for genetic algorithm (M= 6323.56, SD= 9500.76) and the 

function values obtained from pattern search (M=1251.24, SD=3710.05) condition; t 

(119) =5.07, p=0.000. 

The minimum computation time obtained for genetic algorithm was 3 minutes with a 

maximum computation time being 22 minutes. Figure 27 to Figure 32 show the 

plotted easting and northing coordinates of optimised locations obtained from pattern 

search and genetic algorithm. Appendix E and Appendix F provides information on 

the easting and northing coordinate locations produced from pattern search and 

genetic algorithm for roads found to have optimum location points. The function 

values are provided in addition to the optimum location coordinate points. 
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Figure 27 Genetic Algorithm and Pattern Search plotted results for A6130 
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Figure 28 Genetic Algorithm and Pattern Search plotted results for A6117 
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Figure 29 Genetic Algorithm, Pattern Search and Existing plotted results for A47 



 

175 

 

 

Figure 30 Genetic Algorithm, Pattern Search and Existing plotted results for A6005    
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Figure 31 Genetic Algorithm and Pattern Search plotted results for A6030 
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Figure 32 Genetic Algorithm and Pattern Search plotted results for A6002 
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6.4 Model validation 
Some validation methods used for evolutionary algorithms include objective function 

evaluation, construct validity, statistical models, blinding techniques to eliminate 

bias, convergence and design validation (Langerman and Ehlers, 2006). Some of 

these validation methods have been applied to the optimisation in this thesis and are 

presented in this section. 

Design validation using statistical methods is being adopted as the method of 

validation for the optimisation techniques used. In validating the optimisation model 

there was the need to reconsider variables that will alter the number of road traffic 

accidents as well as the position of a speed control device. With the accident 

prediction model being the main determinant in predicting the number of accidents, 

some variables in the accident prediction model noted to have significance on the 

occurrence of an accident were altered. The main variables altered were the number 

of lanes, radius, speed limit, Annual Average Daily Traffic (AADT) and percentage 

heavy goods vehicles (HGV). An improvement in road infrastructure will result in a 

change in these variables. An increase in speed limit and the introduction of an 

additional lane will result in a change in the radius of the road. The introduction of an 

additional lane will have arisen from an increase in AADT with a possible increase 

in percentage HGV.  Altering these variables will change and shift accident numbers 

and severities from one location along a road network to another and these variables 

are also noted in literature to have a significant association with road accidents 

(McDonald, 2004; Bhatnagar, 1994; Golob, Recker and Alvarez, 2004; Taylor, 

Baruya and Kennedy, 2002). 

Variation in parameters applied include a 10mph increase in speed limit, the addition 

of one lane, a 2.4 percent increase in AADT, a 2 percent increase in percentage HGV 

and a 41% percent increase in radius. The speed limit of a road has a specified radius 

with which a road must comply with (Highways Agency, 2002), the percentage 

increase in radius resulting from an increase from one speed limit to another was 

noted and averaged and the value applied in this research.  The percentage increase 

in figures for the AADT and HGVs were chosen based on the 2014 road traffic 

estimates (Department for Transport, 2015). The adjusted parameter values were 

used with all other parameters remaining the same to remodel the accident 
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prediction. It was observed that accident numbers for fatal and serious accidents 

combined and for slight accidents changed. The predicted fatal and serious accidents 

was found to reduce compared with the validated fatal and serious accidents with the 

predicted slight accidents slightly increasing in comparison with the validated slight 

accidents.  The effect of changes in accident numbers was analysed using a paired t-

test statistical analysis. The purpose of the t-test was to determine if there is any 

statistical significance between the predicted empirical Bayes fatal and serious 

accidents and the validated empirical Bayes fatal and serious accidents.  

The first null hypothesis Ho being that there is no difference between predicted 

empirical Bayes fatal and serious accidents and validated empirical Bayes fatal and 

serious accidents. The first research (alternative) hypothesis HA tested was that there 

is a difference between predicted empirical Bayes fatal and serious accidents and 

validated empirical fatal and serious accidents.  

The second null hypothesis Ho being that there is no difference between predicted 

empirical Bayes slight accidents and validated empirical Bayes slight accidents. The 

second research (alternative) hypothesis HA tested was that there is a difference 

between predicted empirical Bayes slight accidents and validated empirical Bayes 

slight accidents. 

Results from the t-test analysis are given in Table 24 to Table 27. 

 

 

Models compared Mean N Std. 

Deviation 

Std. Error 

Mean 

Fatal and Serious Empirical 

Bayes (Predicted) 

0.112 1770 0.117 0.003 

Fatal and Serious Empirical 

Bayes (Validated) 

0.094 170 0.099 0.002 

Table 24 Results of t-test paired sample statistics for predicted and validated 
Empirical Bayes fatal and serious accidents 
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Models 

compared 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df Sig. 

(2-

tailed) 

Lower Upper 

Predicted – 

Validated 

(Fatal and 

Serious 

Empirical 

Bayes) 

0.02 0.02 0.00 0.017 0.019 45.48 1769 0.000 

Table 25 Results of t-test paired sample statistics for predicted and validated 
Empirical Bayes fatal and serious accidents 

 

Analysing Table 24 and Table 25, it can be seen that there is a difference in the 

predicted Empirical Bayes fatal and serious accidents (M= 0.112, SD= 0.117) and 

the validated Empirical Bayes fatal and serious accidents (M=0.094, SD=0.099) 

condition; t (1769) =45.48, p=0.000. 

 

Models compared Mean N Std. 

Deviation 

Std. Error 

Mean 

Slight Empirical Bayes 

(Predicted) 

0.550 1770 0.994 0.024 

Slight Empirical Bayes 

(Validated) 

0.552 1770 0.996 0.024 

Table 26 Results of t-test paired sample statistics for predicted and validated 
Empirical Bayes slight accidents 
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Models 

compared 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df Sig. 

(2-

tailed) 

Lower Upper 

Predicted – 

Validated 

(Slight 

Empirical 

Bayes) 

0.00 0.002 0.00 -0.002 -0.001 -30.34 1769 0.000 

Table 27 Results of t-test paired sample statistics for predicted and validated 
Empirical Bayes slight accidents 

 

Analysing Table 26 and Table 27, it can be seen that there is a significant difference 

in the predicted Empirical Bayes slight accidents (M= 0.550, SD= 0.994) and the 

validated Empirical Bayes slight accidents (M=0.552, SD=0.996) condition; t (1769) 

=-30.34, p=0.000. 
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Results obtained from a re-run of the optimisation using genetic algorithm and 

pattern search are given in Figure 33 to Figure 36. 

.  

 

 

 

Figure 33 Validated results for Genetic Algorithm Optimisation 
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Figure 34 Validated results for Genetic Algorithm Optimisation 
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Figure 35 Validated results for Pattern Search Optimisation 
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Figure 36 Validated results for Pattern Search Optimisation 
 

A paired t-test was performed for the function values obtained from genetic 

algorithm and pattern search for the initial optimised locations and validated 

locations. This test was conducted in order to establish if there is any statistical 

significance between the paired function values. The compared t-tests were between 

the function values for  

• Validated genetic algorithm and validated pattern search 

• Validated genetic algorithm and the initial optimised genetic algorithm 
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• Validated pattern search and the initial optimised pattern search  

The null hypothesis Ho were 

1. There is no difference between the validated genetic algorithm function 

values and the pattern search function values. 

2. There is no difference between the validated genetic algorithm function 

values and the initial optimised genetic algorithm function values. 

3. There is no difference between the validated pattern search function values 

and the initial optimised pattern search function values. 

The research (alternative) hypothesis HA were 

1. There is a difference between the validated genetic algorithm function values 

and the pattern search function values. 

2. There is a difference between the validated genetic algorithm function values 

and the initial optimised genetic algorithm function values. 

3. There is a difference between the validated pattern search function values and 

the initial optimised pattern search function values. 

Results obtained for these hypothesis tests are given in Table 28 to Table 33. The 

values for paired t-test computed for the fitness values obtained from validated 

genetic algorithm and validated pattern search for the same road samples are given in 

Table 28 and Table 29.  

 

Models 

compared 

Mean N Std. 

Deviation 

Std. Error 

Mean 

Genetic 

Algorithm 

(Validated) 

607649.34 80 1055520.75 118010.81 

Pattern 

Search 

(Validated) 

2.06 80 1.17 0.13 

Table 28 Results of t-test paired sample statistics for validated optimisation function 
values 
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Models 

compared 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df Sig. (2-

tailed) 

Lower Upper 

Genetic 

Algorithm 

(Validated) 

– Pattern 

Search 

(Validated) 

607647 1055521 118010 372752 842541 5.15 79 0.000 

Table 29 Results of t-test for validated optimisation function values 
 

Analysing Table 28 and Table 29, it can be seen that there is a significant difference 

in the function values for genetic algorithm (M=607649.34, SD=1055520.75) and the 

function values obtained from pattern search (M=2.06, SD=1.17) condition; t (79) 

=5.15, p=0.000. 

Computed paired t-test for the fitness values obtained from validated genetic 

algorithm and initial optimised genetic algorithm for the same road samples are 

given in Table 30 and Table 31.  

 

Models 

compared 

Mean N Std. 

Deviation 

Std. Error 

Mean 

Genetic 

Algorithm 

Validated 

607649.34 80 1055520.75 118010.81 

Genetic 

Algorithm 

Initial 

Optimised 

9323.98 80 10419.83 1164.97 

Table 30 Results of t-test paired sample statistics for validated and initial optimised 
genetic algorithm function values 
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Models 

compared 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df Sig. 

(2-

tailed) 

Lower Upper 

Validated

– Initial 

Optimised 
(Genetic 

Algorithm) 

598325 1059808 118490 362476 834174 5.05 79 0.000 

Table 31 Results of t-test for validated optimisation function values 
 

Analysing Table 30 and Table 31, it can be seen that there is a significant difference 

in the function values for validated genetic algorithm (M=607649.34, 

SD=1055520.75) and the function values obtained from the initial optimised genetic 

algorithm (M=9323.98, SD=10419.83) condition; t (79)=5.05, p=0.000. 

Computed paired t-test for the fitness values obtained from validated pattern search 

and initial optimised pattern search for the same road samples are given in Table 32 

and Table 33.  

 

Models 

compared 

Mean N Std. 

Deviation 

Std. Error 

Mean 

Pattern 

Search 

Validated 

2.06 80 1.17 0.13 

Pattern 

Search 

Initial 

Optimised 

2.80 80 1.00 0.11 

Table 32 Results of t-test paired sample statistics for validated and initial optimised 
pattern search function values 
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Models 

compared 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

95% Confidence 

Interval of the 

Difference 

t df Sig. (2-

tailed) 

Lower Upper 

Pattern 

Search 

Validated 

– Pattern 

Search 

Initial 

Optimised 

-0.73 0.67 0.07 -0.88 -0.59 -9.86 79 0.000 

Table 33 Results of t-test for validated and initial optimised pattern search function 
values 

 

Analysing Table 32 and Table 33, it can be seen that there is a significant difference 

in the function values for validated pattern search (M=2.06, SD=1.17) and the 

function values obtained from the initial optimised pattern search (M=2.80, 

SD=1.00) condition; t (79) =-9.86, p=0.000. 

6.5 Limitations of model 
The effect of driver behaviour has not been taken into account in the model since the 

focus of the research is aimed at using road feature characteristics. Also this model 

does not take into consideration the starting speed as well as changes in speed of 

vehicles along the link of road being investigated. The model assumes traffic to be 

free flowing and thus any effects of congestion are excluded. 

Another point worth discussing is the dependence of the density of the number of 

speed control devices proposed with its effectiveness. Even though the effectiveness 

of speed cameras at reducing vehicle speed has been proved in various studies, it is 

noted from some of these studies that additional input (density) of speed cameras did 

not convert into comparable reductions in fatal injuries with preventive effect found 

to remain stable at about 21% (Elvik, 2011; Carnis and Blais, 2013). Also, even 

though speed cameras do have longer term effects in reducing vehicle speeds it is not 

the same at all locations. Considering the punitive measures associated with this type 

of device it is not anticipated that drivers will get complacent. For vehicle activated 
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signs, despite the fact that they do not have punitive measures it is proposed that they 

be placed closer to locations where it is intended to reduce vehicle speeds in order to 

obtain maximum effect (Santiago-Chaparro, Chitturi and Noyce, 2012) rather than 

increasing the density when it is not desired. It is also worth stating that the density 

of speed control devices has cost implications. The model developed in this research 

was such that the best ‘x’ locations can be identified from the model so the density of 

these speed control devices can be effectively managed.  

Spatial variations in speed and accidents which deals with the effect of traffic 

diversion or spill over from nearby roads as a result of improvement in the link being 

considered are not included in the model. Other spatial variations which include 

changes in speed limits on nearby roads that will divert traffic away from the road 

being investigated have not been factored into the model. This is because data on 

such a phenomenon is not readily available to be evaluated. Jones, Sauerzapf and 

Haynes (2008) however mention there is little evidence to suggest that crash 

migration occurs in the vicinity of cameras.  
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7 Discussion of findings 

7.1 Introduction 
Road traffic accidents continue to be a public health problem and indications are that 

this is likely to increase if no action is taken to curb the situation. Speeding continues 

to be a contributory factor in most road accidents. In the UK, vehicle speeds are 

managed through the use of speed cameras and vehicle activated signs in addition to 

other engineering measures. These are measures that have been proved to be 

effective at controlling and managing vehicle speeds.  

The primary aim of this research was to develop an optimisation model to assist 

decision makers in determining the optimum location to mount a speed control 

device. This research developed an optimisation model using genetic algorithm and 

pattern search to optimally locate a speed camera or vehicle activated sign. This 

research started by carrying out a literature review of factors identified to contribute 

to road traffic accidents, accident prediction models and optimisation techniques. 

Some of the advantages and disadvantages of the accident prediction models were 

detailed out as well as a justification for choosing the one used. In the review of 

optimisation techniques, the applications of genetic algorithms and pattern search 

was discussed as well as the advantages, disadvantages and justification for adopting 

these techniques. Once accident causative factors had been identified, it became 

necessary to establish how data was to be obtained and used. An appropriate accident 

prediction model was required to be subsequently used in the optimisation model. 

With the absence of a suitable accident prediction model, there was the need to 

develop one. The accident prediction model developed included parameters 

identified in literature to contribute to road traffic accidents. It is worth reiterating 

that human factors are excluded from the model. The accident prediction models 

developed in Chapter 5 involved the accident frequency at a particular level of 

severity (slight or fatal and serious combined) to various road characteristics. A 

negative binomial model was first developed and this was improved upon using the 

empirical Bayes approach. The negative binomial empirical Bayes accident 

prediction models developed were for A-roads in the study area of Nottinghamshire 

and Leicestershire in the United Kingdom. Nottinghamshire and Leicestershire were 

chosen as the study area for this research mainly because local councils in these 
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regions have historically cooperated with Loughborough University on projects. In 

addition to this, these areas have speed cameras and vehicle activated signs installed 

along roads which are of interest in this research. The accident prediction model was 

tested on an independent set of A-roads to validate the model. After developing the 

accident prediction model, an optimisation model was then developed using pattern 

search and genetic algorithm. The optimisation model was to help determine the 

optimum location to place a speed control device such as a speed camera subject to a 

given objective and constraints.  

7.2 Accident prediction model  
Approximately seven hundred and ninety (790km) kilometres of A-roads within 

Nottinghamshire and Leicestershire were randomly selected and used ensuring that 

they had the required data necessary for further analysis. In order to ascertain the 

validity of the accident prediction models developed, approximately 75 percent of 

the roads was used in developing the model with the remaining 25 percent used in 

validating and testing the model. All roads were split into homogeneous segments 

where a homogeneous segment of road is the length of road within which all risk 

indicating variables remain constant allowing for a uniform risk along that segment 

of road. Once a variable changes, the road moves into the next homogeneous 

segment.  

The 75 percent of roads was made up of 604,523 metres (605km) of roads which 

comprised 4177 homogeneous segments, 350 fatal and serious accidents, 1,646 slight 

accidents, 1,580 junctions and 18,240m length of cycle route. The 25 percent of 

roads was made up of 185,000 metres (185km) of roads which comprised 1,771 

homogeneous segments, 159 fatal and serious accidents, 960 slight accidents, 1,872 

junctions and 11,120m of cycle route.   

The predictor variables used in the negative binomial accident prediction model were 

the road direction, number of lanes, slope, radius, Annual Average Daily Traffic 

(AADT), Heavy Goods Vehicle (HGV), speed limit, homogeneous segment length, 

average speed, presence of cycle lane, length of cycle lane, presence of a junction or 

not, number of junctions and number of pedestrian crossings. After the initial output 

of the slight accident prediction model and fatal and serious accidents combined 
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prediction model, it was noted that some of the variables used were not statistically 

significant. Variables found to be statistically significant (p < 0.05) in the slight 

accidents negative binomial model were presence of junctions (Jtn), direction of 

travel along the road (Dxn), the summation of junctions (JtnsSUM), number of lanes, 

percentage Heavy Good Vehicles (HGV), speed limit, homogeneous segment length 

of road (HSegLength), the logarithm of the Annual Average Daily Traffic 

(LogAADT) and logarithm of the radius (LogRadius). Variables found to be 

statistically insignificant (p > 0.05) were excluded from the model and rerun. For the 

fatal and serious accidents negative binomial model, variables found to be 

statistically significant were the presence of junctions (Jtn), direction of travel along 

the road (Dxn), speed limit, homogeneous segment length of road (HSegLength), the 

logarithm of the Annual Average Daily Traffic (LogAADT) and logarithm of the 

radius (LogRadius). Variables found to be statistically insignificant were also 

removed from the model and rerun.  

The categorical variables in the rerun fatal and serious accidents model were the 

presence or absence of junctions (Jtn) along a homogeneous segment of road and the 

direction of travel. It was noted that 74.5 percent of the homogeneous segments of 

roads had no junctions. Despite the fact that a lower proportion of homogeneous 

segments of roads had junctions, there was evidence that the presence of junctions 

has an influence on fatal and serious accidents and this is consistent with previous 

findings. A negative relationship existed between the presence of junctions and fatal 

and serious accidents.  Almost equal proportions of roads used were in the south-

north (37.8%) and north-south (37.2%) directions with the east-west (12.3%) and 

west-east (12.8%) directions also sharing a relatively equal proportion of roads in 

those directions of travel. The direction of travel was found to have an effect on the 

number of fatal and serious accidents.  

In the rerun slight accidents model, categorical values observed to be statistically 

significant were the presence or absence of junctions (Jtn), presence or absence of a 

cycle route (PresofCR) and direction of travel along a homogeneous segment of road. 

For the presence or absence of cycle route, a great proportion of homogeneous 

segments of roads had no cycle route with 3.9 percent of homogeneous segments of 

roads studied having cycle routes. However, it was found that at significance level of 
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0.05, the presence or absence of a cycle route did have an effect on the number of 

slight accidents.  

7.2.1 Fatal and serious accidents  
In the case of continuous variables for fatal and serious accidents, the speed limit, 

homogeneous segment length, logarithm of the Annual Average Daily Traffic and 

the logarithm of the radius of the road were represented as statistically significant in 

the rerun model. The speed limit of the road which was found to have a statistically 

significant effect on the number of fatal and serious accidents had a negative 

relationship with fatal and serious accidents. Some studies (Taylor, Lynam and 

Baruya, 2000; Ossiander and Cummings, 2002) have however indicated that higher 

speeds signify an increase in accidents which is not consistent with the findings 

obtained in this research and this can be explained to be the result of the small 

number of observations for fatal and serious accidents. The homogeneous segment of 

road which represents a length of road with all risk indicating variables remaining the 

same showed a negative relationship with the number of fatal and serious accidents. 

A less than 5 percent significance level was applied to the model and it was observed 

that there was sufficient evidence to suggest that the length of homogeneous segment 

of road has an influence on the number of fatal and serious accidents. The logarithm 

of the annual average daily traffic (AADT) which is sometimes referred to as the 

traffic flow was noted to have a positive effect on the number of fatal and serious 

accidents. This means with an increase in traffic volume, road accidents are likely to 

increase. This finding is similar to that obtained in studies by Ceder and Livneh 

(1978), Ceder (1982), Golob and Recker (2001), and Martin (2002). The logarithm 

of the radius was found to have a negative influence on the number of fatal and 

serious accidents implying that an increase in the radius of curvature results in a 

decrease in the number of accidents. There was also sufficient evidence at 95 percent 

significance level to suggest that the radius has an effect on the number of fatal and 

serious accidents.  An increase in road curvature is expected to provide adequate 

comfort to drivers when negotiating curves and thus reduce the incidence of an 

accident in comparison to shorter and tighter curves which are a discomfort to drivers 

and at high speeds vehicles tend to lose control resulting in road accidents. Findings 

observed in this research were shown by Milton and Mannering (1998) and Haynes 
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et al., (2007). A study by Berhanu (2004) however proved the opposite with a 

decrease in the radius of curvature showing a decrease in the number of accidents. 

The most generally used and important parameter in deriving operating speeds along 

horizontal curves has been identified as the curve radius (Bennett, 1994; Abdul-

Mawjoud and Sofia, 2008). Curve radii smaller than 400 metres cause road accidents 

with curve radii less than 600 metres shown to be over represented in roads accidents 

(Choueiri and Lamm, 1987; Johnston, 1982). McDonald (2004) noted a 34 percent 

increase in the frequency of accidents per sharp curve per kilometre for single 

vehicle accidents.  

The highest correlation of parameter estimates within the fatal and serious accidents 

model was found to occur between the logarithm of the radius and the length of 

homogeneous segment of road. A correlation value of -0.317 was obtained 

suggesting that multicollinearity is not an issue for the remaining explanatory 

variables. 

7.2.2 Slight accidents  
For the slight accidents model, the continuous variables represented were the sum of 

junctions within a homogeneous segment of road, number of lanes, percentage heavy 

good vehicles, speed limit, length of homogeneous segment of road, logarithm of the 

annual average daily traffic and logarithm of the radius. The summation of junctions 

within a homogeneous segment of roads studied indicates a positive relationship with 

the number of slight accidents. This implies that an increase in the number of 

junctions will result in an increase in the number of junctions. Even though Haynes 

et al. (2008) found that the number of junctions per kilometre had a negative 

association with crash rates, this finding is attributed to the small numbers of data 

used distributed over a large number of roads. Yagar (1984) also showed that 

junctions were statistically significant on speeds and accidents. The effect of the 

number of lanes on road traffic accidents has been adequately studied in literature 

with consistent results noted amongst researchers. Wang, Quddus and Ison (2011a), 

Kononov, Bailey and Allery (2008); Noland and Oh (2004); Garber (2000); Abdel-

Aty and Radwan (2000) and Milton and Mannering (1998) were all able to show that 

an increase in the number of lanes results in an increase in road traffic accidents. 

This research was able to also show that an increase in the number lanes results in 
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increased slight accidents with evidence also provided by the data that at a 

significance level less than 0.05 the number of lanes has an effect on slight accident 

numbers.   

Heavy goods vehicles are noted to be over represented in severe road accidents 

largely attributed to the high masses of these vehicles resulting in severe outcome for 

other road users who get involved in the accident (Evgenikos et al., 2016; 

Khorashadi et al., 2005). This observation was however not consistent with findings 

from the current research since the effect of road accidents on fatal and serious 

accidents was found to be statistically insignificant. For slight accident numbers, the 

percentage of heavy good vehicles was found to have a negative effect meaning that 

an increase in heavy goods vehicle results in a decrease in slight accidents. There 

was also enough evidence provided by the data at the 0.05 significance level to show 

that the percentage of heavy goods vehicles has an influence on slight accident 

numbers. This outcome has been discussed in other studies (Anastasopoulos and 

Mannering, 2009; Shankar, Milton and Mannering, 1997; Miaou, 1994) noting that 

an increase in heavy goods vehicles results in a decrease in the prevalence of 

overtaking vehicles and lane changing behaviour resulting in fewer accidents.     

The speed limit of the road was observed to have a statistically significant result on 

the number of slight accidents with a negative effect also observed. Johansson (1996) 

showed that reduced speed limits can reduce accident numbers that involve minor 

injuries and vehicle damage. Aljanahi et al., (1999) also arrived at a similar result to 

Johansson (1996) by finding that the number of accidents would reduce if there is a 

lowering of speed limit. Ossiander and Cummings (2002) were also able to show that 

an increase in speed limit leads to a high fatality rate. Even though these studies 

show results contrary to what was obtained in the current research, it is worth stating 

that the negative relationship observed between the speed limit and the number of 

slight accidents was not huge (-0.022). 

The length of homogeneous segment of road was found to have a positive effect on 

slight accident number showing that an increase in homogeneous segment of road 

will results in an increase in slight accidents. The model data also showed strong 

evidence that the length of homogeneous segment of road has an effect on the 
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number of slight accidents. The use of homogeneous road segments in road accident 

modelling has been used in studies by Milton and Mannering (1998), Abdel-Aty and 

Radwan (2000) and Li et al., (2007). Li et al., (2007), discussed the need to capture 

the risk levels of different road segments by differentiating the risks into separate 

directions of the road.   

In order to reduce the large variations existing within values for the Annual Average 

Daily Traffic (AADT), a logarithm of the variable was used. The logarithm of the 

AADT was noted to have a positive effect on the number of slight accidents. There 

was evidence suggested by the data that at a 0.05 significance level the logarithm of 

the AADT has an effect on the number of slight accidents.  

A logarithm of the radius was also used to decrease the extent of variations occurring 

in the values for the radius. The logarithm of the radius (LogRadius) was found to 

have a negative effect on slight accident numbers with evidence suggesting that at a 

0.05 significance level, the logarithm of the radius has an effect on the number of 

slight accidents.  

7.2.3 Other statistical tests  
An investigation into the correlation coefficients between independent variables was 

carried out with a value of -0.59 obtained as the highest value of correlation 

occurring between the logarithm of the annual average daily traffic and the number 

of lanes. The value obtained for the correlation suggests that multicollinearity is not 

an issue in the model for slight accidents. Residual plots usually evaluate if the 

observed error or residuals (observed – predicted) is uniform with stochastic error. It 

is possible to find out if residuals are predictable with random errors in which case 

the residual plots offers an opportunity to enhance the model if residuals indicate 

model to be symmetrically inaccurate. For the fatal and serious accidents model, 

there was a pattern of increasing residuals as the observed number of accidents 

increased. For the slight accidents model a similar outcome was observed with about 

3 points indicating the likelihood of the presence of outliers. The Goodness of fit for 

both the fatal and serious accidents model (1.116) and the slight accidents (2.385) 

models had Value/df values for the Pearson Chi-Square to be greater than 0.05 which 

indicate a good fit of the model to the data. Parameters which were statistically 
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insignificant during the initial development of the models were removed to allow for 

better accuracy of the models.  

To refine and improve upon the results obtained from the Negative Binomial model, 

an empirical Bayes method was used. The empirical Bayes approach helps control 

for regression-to-the-mean effects. The observed, negative binomial predicted and 

empirical Bayes accidents predicted for fatal and serious accidents combined and 

slight accidents was compared. A paired t-test method was used by comparing the 

observed data to each of the accident prediction models and also comparing the two 

accident prediction models. Observed slight accidents were compared to slight 

accidents from the negative binomial model; observed slight accidents were 

compared to empirical Bayes slight accidents and negative binomial slight accidents 

were compared with empirical Bayes slight accidents. The same pairs of comparison 

were carried out for fatal and serious accidents combined. The null hypothesis was 

that there was no difference between the two pairs of results being compared and the 

alternative hypothesis being that there is a difference between the two pairs of results 

being compared. All paired results using the t-test showed a significant difference for 

both slight accidents only and fatal and serious accidents combined with the 

exception of observed slight accidents (M= 0.54, SD= 1.497) and the empirical 

Bayes slight accidents (M= 0.55, SD= 0.994) which showed no evidence of a 

difference under the condition t (1769) = -0.505, p=0.614. The 95 percent confidence 

interval (-0.041 to 0.024) for the t-test carried out between observed slight accidents 

and the empirical Bayes slight accidents was noted to contain the number zero 

implying no significant difference.  

A residual plot for fatal and serious accidents generated by the empirical Bayes 

method showed residuals (observed – predicted) increasing with increasing fatal and 

serious accident numbers with a very little improvement in the residuals. For the fatal 

and serious accidents empirical Bayes model, residuals varied from -0.5 to 2.7 (see 

Figure 17) which was found to be slightly lower than the residuals obtained from the 

fatal and serious accidents negative binomial model which ranged from -0.8 to 2.9. 

There was a refinement in the residual plots obtained for the slight accidents from the 

empirical Bayes method in comparison to that obtained for slight accidents from the 

negative binomial model. Residuals were found to range from -1 to 9 (see Figure 17) 
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for the slight accidents empirical Bayes model which are much lower as compared to 

residual values ranging from -28 to 17 obtained for the slight accidents negative 

Binomial model (see Figure 16). In addition to this, the increasing pattern in the 

residuals is observed to have been removed to a large degree. This indicates the 

extent to which the model has dealt with the effect of regression-to-the-mean. The 

empirical Bayes model for the slight accidents can thus be said to be better than the 

slight accidents negative Binomial model with respect to the model fit for slight 

accidents.   

7.3 Optimisation model 
Optimisation problems apart from having a number of objectives, some of which 

may be conflicting are also normally constrained by some limitations. In Chapter 6 

Genetic Algorithms and Pattern Search optimisation techniques were used to 

optimise the location of speed control devices ie. speed cameras with the main 

objective being to minimise the costs associated with fatal and serious accidents and 

slight accident numbers. Three main objectives were derived with the first being to 

minimise the total set-up cost of a speed control device. The second objective was to 

minimise the maintenance cost of a speed control device. The final objective was to 

minimise the total lost cost associated with an accident at the required level of 

severity. The optimal number of speed control devices in the form of speed cameras 

in this research was obtained by using the first and third objective which minimises 

total set-up cost as well as minimise the costs associated with the number of 

accidents at the required level of severity. The task of minimising the costs 

associated with the number of accidents at the required level of severity directly 

affects and includes the total set-up cost. This is because the available amount of 

money will affect the possible number of speed control devices which can be 

deployed. The optimisation was set up to provide information for twenty locations so 

depending on set-up cost constraints, the first ‘x’ numbers of locations can be used. 

The set of possible coordinate points given as (x,y) was used to denote the 

chromosome in the genetic algorithm and the same (x,y) search locations were used 

for the pattern search.  

Rules and guidance for the National Safety Camera Programme for England and 

Wales as recommendations provided by the Department for Transport (2006) on 
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speed  were used in addition to road design standards as specified in the Design 

Manual for Roads and Bridges (Highways Agency, 2002). This approach was 

adopted because it represents a more practical and considered way to address the 

optimisation problem. Also these are guidance notes that have been approved by 

industry and this research was able to combine the relevant standards together to help 

determine the optimum location to place a speed control device.  The examples used 

in this research show that the method can be adopted and used by planners, engineers 

and decision makers to optimally locate speed cameras or vehicle activated signs for 

speed reduction. The number of accidents at specified levels of severity was required 

to be obtained over a given length of road varying from 1000m to 3000m. This 

length of road was chosen because it was found that at lower lengths of road the 

number of fatal and serious accidents combined or slight accidents required was not 

achievable. Additionally, the guidelines for mounting speed cameras was used as a 

guide (Parliamentary Office of Science and Technology, 2004) as well as research 

revealing the distance over which these speed control devices are effective Li, 

Graham & Majumdar (2013), Høye (2014), Høye (2015), Høye (2015a). Other 

criteria in the form of radius, gradient, number of lanes and speed limit had to be 

satisfied in addition to the number of fatal and serious accidents combined or slight 

accidents. The number of fatal and serious accidents combined was to be greater than 

or equal to 3 with the number of slight accidents being greater than or equal to 15. 

7.3.1 Pattern Search  
Results of proposed coordinate locations obtained on plotted maps for pattern search 

were found to be mostly located referenced to the road centreline as was expected. 

The A6002SN shows the fitness function remained stable from iteration 0 to 

approximately iteration 7 after which there was a drop in the function value up to 

iteration 12. From iteration 12, the fitness function value dropped from a value of 

30000 to about 15000 after which this value remained stable from iteration 12 to 

iteration 32. After iteration 32 the function value gradually dropped over short 

iteration periods of about 2 iteration intervals. The gradual drop occurred over 

approximately three instances of 2 iteration interval periods. At about iteration 45, 

the fitness function value remained stable and there was no further improvement in 

the function value. The A6002NS shows the fitness function starting at a low value 
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of 0.08 and remaining stable for the first 8 generations. After that, the fitness value 

drops to 0.06 from iteration 8 to 11 with another drop occurring from iteration 11 to 

13 at a function value of 0.05. This is followed by a final drop in fitness value to 0.02 

and this value remained stable from iteration 13 to the final iteration point of 27.  

The A6130SN presents the function value from iteration 0 to approximately iteration 

5 remaining stable with a reduction in fitness value occurring between iteration 5 and 

iteration 10. After iteration 10, the function value drops to about half its value at 

iteration 10 maintaining this function value from iteration 11 to iteration 30. At 

iteration 30 the function value experiences another drop to about half its value at 

iteration 11 to a value of approximately 75000. The function value remained constant 

over a relatively short period of iteration from iteration 30 to iteration 34. A slight 

drop in function value occurred after iteration 34 with the function value remaining 

relatively stable over a short iteration period from iteration 35 to iteration 38. At 

iteration 39 another very small drop in function value occurred continuing with no 

reduction in function value to iteration 40 and no further refinement in function value 

being observed after iteration 40.  The A47WE shows a relatively stable function 

value from the start of iteration to iteration 9 after which there is a steep drop in the 

function value from iteration 10 to iteration 14.  From iteration 14, the function value 

remains constant up to iteration 18 where a drop in function value occurs. From 

iteration 19 to iteration 21 the function value remains constant and another slight 

drop in function value occurs at iteration 22. The function value remains constant 

over a very short period from iteration 22 to iteration 24 after which the model 

experiences no further improvement in the function value. 

The A6117SN shows the fitness value remaining constant from the start of iteration 

to an iteration point of 5 after which there is a drop in fitness value from 22500 to 

7400 between iteration 5 and iteration 11. From iteration 11 to the end of iteration, 

the function value remained stable at a value of approximately 7400. The A6117NS 

reveals the function value drop gradually from the start of iteration to iteration 5. 

From iteration 5, a steep drop in function value occurs up to iteration 10. The drop 

remains stable over a relatively short period from iteration 10 to about iteration 12. A 

slight drop in function value occurs again at iteration 12 and remains constant over 

another relatively short period from iteration 12 to iteration 14. From iteration 15, the 
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function value stays constant with the model not providing any further improvement 

in the function value. 

The A6030SN displays the function value remaining constant from the beginning of 

iteration to approximately iteration 8 after which the function value experiences a 

slow reduction from iteration 8 to iteration 10. From iteration 10, a steep drop in 

function value occurs and this was followed by a constant function value from 

iteration 10 to iteration 30. From iteration 30 to iteration 41, a drop in function value 

occurs four times on average at 3 iteration intervals terminating in a constant 

function value from iteration 41 to the end of iteration. The A6030NS displays the 

function value starting off at a value of 0.55 occurring at the start of iteration to 

iteration 4. At iteration 4, there is a slight drop in function value to 0.5 occurring 

between iteration 4 and iteration 7.5. The function value drops from 0.5 to 0.05 at 

iteration 7.5 and this function value remains constant to the end of iteration. 

In the A6005WE, the plot shows the function value staying constant from the start of 

iteration to iteration 9. The function value experiences a drop in value from iteration 

9 to iteration 14. The function value remains constant from iteration 15 to iteration 

35 after which a stepwise drop in function value occurs. The short iteration stepwise 

drop in function value terminates at around iteration 50 where the model fails to 

produce any further improvement in the function value to the end of iteration. The 

A6005EW shows the function value starting at a figure of 2.5 from the beginning of 

iteration to iteration 5. From iteration 5, there is a drop in the fitness value to a value 

of 1.05 up to iteration 11. After iteration 11 there is another slight drop in the fitness 

value to 1.008 after which it remains stable and unchanged to the end of iteration. 

The A6005WE shows a better gradual refinement in the function value from start of 

iteration to completion in comparison to the A6005EW which even though produces 

a very low final fitness value than the A6005WE does not gradually refine the fitness 

value. 

Computation times obtained from pattern search varied from a minimum of 13 

minutes to a maximum of 595 minutes. The large variation in computation time was 

observed in the different lengths of road sections used. The shorter road segments 

run for a shorter period of time with the longer road segments taking more 
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computation time. The A47 investigated is the third longest road used in this research 

with a total length for both directions of traffic being 87920m so the high 

computation time can be accounted for by this. Generally, pattern search plots 

produced were found to start from a high function value and progress towards a 

refined lowered function value. The initial optimised function values from pattern 

search are compared with the validated function values from pattern search using a t-

test. The null hypothesis tested was that there is no difference between the initial 

optimised pattern search function values and the validated pattern search function 

values. The alternative hypothesis was that there is a difference between the initial 

optimised pattern search function values and the validated pattern search function 

values. Results using the t-test showed a significant difference in the function values 

for the validated pattern search (M=2.06, SD=1.17) and the initial optimised pattern 

search function values (M=2.80, SD=1.00) under the condition t(79)= -9.86, p=0.000. 

The 95 percent confidence interval was from -0.88 to -0.59.  

7.3.2 Genetic Algorithm  
The genetic algorithm optimisation was carried out on the same roads used for the 

pattern search. However for roads such as the A6002NS, A6030NS, A6005EW and 

A6117SN no optimal solutions were obtained. Results of proposed locations 

identified and plotted on maps for genetic algorithm were found not to be reference 

to the road centreline as proposed. Results obtained from genetic algorithm were also 

found to be inconsistent in certain instances with some proposed locations for the 

speed control devices placed more than 100m away perpendicularly from the road 

centreline. Consistent with other studies (Whitley et al, 1998; Wetter and Wright, 

2003; Basak et. al, 2013) carried out, a crossover fraction of 0.8 was found to be able 

to better lower the function value. The fitness value for the A6002SN was found to 

drop to its final value over just five generations after which there was no refinement 

in the fitness value. Other roads such as the A6130SN also showed very little 

refinement in the fitness value from start of generation to the end. The A6117NS 

started with a fitness value which progressed constantly over fifteen generations after 

which the fitness value dropped and remained steady for another approximately 30 

generations. After this there was a very slight drop in the fitness value after which 

there was no further refinement in fitness value over the rest of the generations. The 
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A47WE showed a steep stepwise refinement in the fitness value from start to 

generation 10. From generation 10, there was a very gradual drop in the fitness value 

up to generation 20 after which no further improvement in the fitness value was 

obtained. The A6030SN and the A6005WE show a small refinement in the fitness 

value from the beginning of the generation to the end of the generation. The results 

obtained for genetic algorithm can be attributed to the large search space and many 

generations for optimisation. 

The initial optimised function values from genetic algorithm are compared with the 

validated function values from genetic algorithm using a t-test. The null hypothesis 

tested was that there is no difference between the initial optimised genetic algorithm 

function values and the validated genetic algorithm function values. The alternative 

hypothesis was that there is a difference between the initial optimised genetic 

algorithm function values and the validated genetic algorithm function values. 

Results using the t-test showed a significant difference in the function values for the 

validated genetic algorithm (M=607649.34, SD=1055520.75) and the initial 

optimised genetic algorithm function values (M=9323.98, SD=10419.83) under the 

condition t(79)=5.05, p=0.000. The 95 percent confidence interval was from 362476 

to 834174. The computation time obtained for genetic algorithm varied from 3 

minutes to 22 minutes. This short computation time is partially attributed to the 

function values being unrefined for a greater part and in most cases throughout the 

iteration period. 

7.3.3 Comparing Pattern Search and Genetic Algorithm 
Pattern Search and Genetic Algorithms were the two main types of optimisation 

techniques used in this study and it is necessary that the results obtained from these 

methods are compared and discussed for any similarities or differences. Generally it 

was observed that pattern search produced lower fitness function values than genetic 

algorithm with refinement in fitness function value being observed in later 

generation stages for pattern search than in genetic algorithm. 

The validated function values from genetic algorithm are compared with the 

validated function values from pattern search using a t-test. The null hypothesis 

tested was that there is no difference between the validated genetic algorithm 
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function values and the validated pattern search function values. The alternative 

hypothesis was that there is a difference between the validated genetic algorithm 

function values and the validated pattern search function values. Results using the t-

test showed a significant difference in the function values for the validated genetic 

algorithm (M=607649.34, SD=1055520.75) and the validated pattern search function 

values (M=2.06, SD=1.17) under the condition t(79) = 5.15, p=0.000. The 95 percent 

confidence interval was from 372752 to 842541. The computation time obtained for 

genetic algorithm varied from 3 minutes to 22 minutes with that for pattern search 

varying from 13 minutes to 595 minutes.  This short computation time observed in 

genetic algorithm can be explained to be the result of non-refinement in the fitness 

values from generation to generation. Pattern search did perform better than genetic 

algorithm in producing better and lower fitness values and this is also reflected in the 

computation times achieved. 

It can be commented that pattern search optimisation made more progress in refining 

the fitness function in comparison with the genetic algorithm optimisation for most 

roads considered in this research. Lower fitness values were thus obtained from 

pattern search in comparison with genetic algorithm indicating better output and 

performance of pattern search.  

Six main sets of results are discussed in this section from six different roads. The 

easting and northing values have been plotted and shown in Figure 27 to Figure 32. 

The first two (Figure 27 and Figure 28) will discuss results looking at two roads 

modelled using both genetic algorithm and pattern search highlighting some of the 

issues identified with the results. The next two (Figure 29 and Figure 30) results 

discuss roads modelled using genetic algorithm and pattern search with existing 

speed camera locations also shown. The last two (Figure 31 and Figure 32) will 

discuss roads modelled using pattern search and genetic algorithms. 

In Figure 27 and Figure 28, the A6130 shows some easting and northing plotted 

values from the genetic algorithm optimisation run being far away from the expected 

road centreline reference point. Distance from the centreline of the A6130 road to the 

west of the identified genetic algorithm location was in excess of 300m. This shows 

some of the inconsistencies identified in the genetic algorithm optimisation. Given 
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that genetic algorithms operates on the basis of natural selection, identifying the best 

individuals with better fitness value to proceed to the next generation is often a 

challenge to genetic algorithm and individuals in the current population with low 

fitness are often chosen as elite to proceed to the next generation. There is no 

guarantee that the genetic algorithm will find the global optimum location. Genetic 

algorithm however has the advantage of being able to solve problems where the 

objective function is discontinuous, non-differentiable, stochastic or highly nonlinear 

since the method does not depend on the error surface of the function. It is also able 

to solve problems and give multiple solutions. The A6117 in Figure 28 produced 

pattern search optimisation location points outside the expected location points. 

However, despite the fact that genetic algorithm has been found not to  perform well 

in this research, the optimised genetic algorithm locations of A6117 in Figure 28 are 

observed to be  referenced to the road centreline. 

In Figure 29 and Figure 30, plotted easting and northing results obtained from 

pattern search for the A47 and A6005 were found to be similar to those obtained 

from genetic algorithm. In Figure 29 and Figure 30 pattern search, genetic algorithm 

and existing easting and northing locations for speed cameras are plotted. For the 

A47 where existing speed camera locations were identified, it was observed that the 

location was not close to that obtained from the genetic algorithm with a distance in 

excess of 20 kilometres apart between an existing speed camera location and a 

genetic algorithm obtained location. The optimised pattern search location was closer 

to the existing speed camera location as compared to the location obtained for 

genetic algorithm. A distance of approximately 470m and 540m at two different 

pattern search locations were observed from an existing location.  

For the A6005 in Figure 30, some existing camera locations were found to be close 

to results obtained from pattern search. The minimum distance apart between a 

pattern search location and an existing camera location was found to be 

approximately 20m at two separate locations with other greater distances apart also 

observed. The least distance of separation found between a genetic algorithm and 

pattern search location along the A6005 was approximately 160m. The similarities 

in the locations established by pattern search indicate that the variables used in the 

optimisation in this research are somewhat consistent with what other decision 
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makers may have obtained without the use of an optimisation technique. This finding 

is positive and suggests the possibility for the use of optimisation techniques in 

settings like this in the future. It is however suggested that this thesis be viewed as a 

good starting point to what could potentially become a very valuable tool to decision 

makers in deciding on the optimum location to place a speed camera or vehicle 

activated sign to satisfy a set of objectives and constraints.  

In Figure 31 and Figure 32 results obtained for the A6030 and A6002 show the 

locations obtained for pattern search optimisation in comparison with genetic 

algorithm optimisation results. It can be observed that the pattern search results are 

referenced to the road centreline as is expected however for genetic algorithm it can 

be observed that results are not strictly referenced to the road centreline with some 

results found to be outside the confines of the road.  

It was also observed that results obtained for the pattern search optimisation were 

found to be consistent in terms of function values obtained after subsequent runs for 

all the roads considered but this was not the case for genetic algorithm. This can be 

attributed to the characteristic features of pattern search which searches through a 

pattern under a given set of conditions and constraints.  Genetic algorithm works 

using population and elite counts so if the population is not good enough to meet the 

requirements desired, the next generation of parents will not be ‘healthy’ enough to 

produce good ‘offspring’. Despite the use of large search space and many 

generations by genetic algorithm, the search space used in this research has been 

found to be not large enough for genetic algorithm to use in searching for optimum 

solutions. In addition to this, checking for convergence in genetic algorithm is 

difficult so a specified number of generations was used in running it. Pattern search 

is however able to obtain better execution for a relatively smaller search space. 

Diversity in population which is the average distance between individuals affects the 

performance of genetic algorithm (Mathworks, 2015). The larger the average 

distance between individuals the higher the diversity and vice versa. However if the 

diversity is too high or low the performance of the genetic algorithm is affected. 

Other parameters affecting diversity are the initial range of the population and the 

amount of mutation. Even though mutation in addition to lower and upper bounds 

was applied to the genetic algorithm results obtained did not show much diversity. 
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There are some distinctive characteristics when comparing the approach adopted in 

this thesis with existing methods of speed camera or vehicle activated sign location; 

this research clearly considers one of the main aims of installing a speed camera or 

vehicle activated sign which is to reduce the number of accidents as the main 

objective function. Secondly recommendations from government guidelines are that 

speed cameras should only be considered where other engineering measures have 

failed. In addressing this, constraints set to the objective function were such that a 

given speed limit of road had to meet the criteria for variables such as the radius, 

number of lanes etc. This approach was considered more practical and realistic to the 

decision maker than existing methods in use whereby a speed camera can be 

mounted where improvements in engineering measures may be the lacking action 

required to improve safety and not the introduction of a speed camera. The procedure 

adopted in this research can be modified to suit other problems. This is because this 

research optimised locations based on the assumption that engineering measures are 

adequate and roads meet the desired standards as set out in the respective design 

guidelines (Highways Agency, 2002). In the case where a decision maker decides to 

place a speed camera or vehicle activated sign along a road which does not meet all 

the design requirements, the model can be altered to accommodate the objectives and 

constraints to be proposed. 

This research can be described as work in progress; however it has demonstrated the 

huge potential evolutionary algorithms can play in managing vehicle speeds through 

the use of speed cameras or vehicle activated signs. The use of optimisation 

techniques in other fields of engineering and outside engineering is quite evident. In 

the field of transport safety this has been absent for some time. It is hoped that this 

research will generate more interest into the field of transport safety where there is 

high potential for benefits.  

Improvement in vehicle technology in recent times means the presence of speed 

adaptation devices in vehicles may affect how people respond to speed cameras or 

vehicle activated signs. Intelligent Speed Adaptation (ISA) mainly considers two 

areas; the use of an advisory system where the driver receives a warning or through 

an intervention system where there is an automatic control of the driving systems of 

the vehicle aimed at lowering the vehicle speed (Jamson, Chorlton & Carsten, 2012; 
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Chorlton & Conner, 2012; Chorlton et al., 2012; Lai & Carsten, 2012). The former 

approach is currently what vehicle activated signs and other variable message signs 

provide on roads however as to whether these are always adhered to remains to be 

answered. The latter approach is more likely to be associated with in-vehicle 

technology. New generation of vehicles are likely to have this technology depending 

on the take-up rates of these new technologies (Fildes et al, 2013) and it is notable 

that there are still pools of “old generation” cars on the roads that will not have this 

technology and until this hurdle is overcome, vehicle speed management in the form 

of out of vehicle technology still needs to be used. 

7.4 Methodological reflections  
Limitations are always identified in studies carried out and this research is no 

exception. The limitations associated with each study or work carried out has been 

discussed in the respective chapters. The rest of this section makes mention of some 

other findings associated with the research. 

7.4.1 Validity of findings  
Improving road safety is not only a subject of national interest but cuts across 

nations. The Empirical Bayes accident prediction model developed in this research 

was tested against an independent sample of roads with further statistical analysis 

carried out to reveal the validity of the results. The use of pattern search and genetic 

algorithm also enabled two optimisation techniques to be compared and validated. 

This revealed some similarities and differences between the techniques used with 

statistical analysis also carried out to validate the results. Even though various 

accident prediction models have been developed over the years no literature has been 

found which tries to translate the derivation of the accident prediction model into use 

through the application of an optimisation technique as undertaken in this research. 

Considering that this is the first research of its kind in terms of this application it is 

anticipated that interest in this subject matter will continue to grow, rather than 

decline. This research presents a valid insight and use of a technique that has great 

potential to influence the decision making process of planners, engineers, decision 

makers etc. in identifying an optimum location to place a speed camera or vehicle 

activated sign based on a set of objectives and constraints. The original contribution 

of this research to the literature will raise some interesting debate among researchers 
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in the near if not immediate future with more literature expected to be generated in 

this area for knowledge transfer.  

7.4.2 Reliability of findings  
The choice of accident prediction model developed and used in this research was also 

subjective. It became almost impossible to identify an accident prediction model 

previously developed in the UK and containing the prediction variables desired for 

the purposes of this research. Developing an accident prediction model requires 

careful attention into how the variables are identified and derived. Variables used in 

the accident prediction model were carefully computed, checked and used. The 

reliability of the variables were deemed fit for the model.  

The selection of the optimisation techniques used was influenced by a literature 

review on the subject matter into other research areas of engineering given that none 

was found for the area of speed camera or vehicle activated sign usage.  Optimisation 

techniques used in areas such as fire station location and ambulance location were 

identified as close enough to be emulated in this research. It is noted however that 

results obtained from the two methods used are quite similar in some instances with 

differences also noted. It is expected that other techniques will be investigated in 

future to validate against methods already used.   

7.4.3 Policy implications  
Every year about 1.2 million people die from road traffic accidents and as many as 

50 million are injured on a world-wide level. Speed has been identified in studies 

(Perez at al., 2007; World Health Organisation , 2013) as a contributor to road traffic 

accidents. The World Health Organisation (2013) mentions speeding as a major road 

safety problem in all countries and mechanisms aimed at lowering speed can result in 

remarkable reductions in road traffic injuries. Excessive speed is also mentioned as a 

worldwide problem impacting the whole road network (motorways, highways, rural 

and urban roads). It is considered important for engineers, planners and decision 

makers to contribute to vehicle speed reduction to help reduce road traffic accidents. 

The output from this research has provided an increased understanding into the 

contribution of algorithms in improving road safety through speed reduction. It has 

been demonstrated that speed cameras and vehicle activated signs can be optimally 

located along roads to attain vehicle speed reduction. There are notable benefits to be 
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derived from reducing vehicle speeds with its consequent effect on road safety being 

enormous. This is because in addition to the suffering caused to families, road traffic 

accidents can cause poverty to society in the form of medical care and rehabilitation 

costs as well as funeral expenses and the loss of the bread winner (World Health 

Organisation, 2009; Gabbe et al., 2014). A 1km/h reduction in vehicle speed has 

been shown to lead to a 3 percent reduction in accident risk (Finch et al., 1994) so 

that if vehicle speeds can be effectively managed road traffic accidents can be 

reduced to the benefit of society. 

One of either  exceeding the speed limit or travelling too fast for the conditions was 

reported in 10 percent of all accidents and these types of accidents accounted for 23 

percent of all fatalities in 2013 (Department for Transport, 2014). It is obvious that 

the effect of speed on road traffic accidents and its severities is significant and it is 

considered essential that vehicle speeds are reduced in order to improve road traffic 

accidents. Speed cameras and vehicle activated signs have been shown in various 

studies to be effective at reducing vehicle speed (Pilkington and Kinra, 2005; 

Champness, Sheehan and Folkman, 2005; Jone, Sauerzaf and Haynes, 2008). 

Additional advantages can be derived from encouraging existing initiatives aimed at 

reducing vehicle speeds. An example is the use of vehicle activated signs to display 

real time information to drivers to warn of a hazard or relay information about 

vehicle speed to the driver. Informing drivers in advance of the warning to provide 

enough driver-reaction time will have a positive impact on road safety. It is therefore 

essential that these devices are optimally located. A similar measure can be used for 

speed cameras by providing real time information to drivers about the presence of a 

speed camera ahead and the need to check vehicle speed.  

Apart from developing the optimisation model to optimally locate speed cameras or 

vehicle activated signs, this research also discussed the contribution of accident 

prediction models in the optimisation model to aid in improving road safety by 

planner, engineers and policy makers. Chapter 2 discussed in detail factors affecting 

road traffic accidents and Chapter 3 provided a literature on accident prediction 

models and their limitations. It is essential to state again that there is no exact 

accident prediction model and engineers, planners and decision makers need to 
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weigh the pros and cons of any proposed accident prediction model against the 

outcome desired as well as any cost and benefit implications that may arise in using a 

particular chosen method.  
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8 Conclusions and further research 

8.1 Conclusions 
Road traffic accidents continues to be a public health problem and indications are 

that this is likely to increase if no action is taken to curb the situation (World Health 

Organisation, 2013). Speeding continues to be a contributory factor in most road 

accidents. In UK, vehicle speeds are managed through the use of speed cameras and 

vehicle activated signs in addition to other engineering measures. These measures 

have been proved to be successful at controlling vehicle speeds and reducing road 

traffic accidents. Regarding installations of speed control devices (speed cameras and 

vehicle activated signs), there are guidelines which provides some information about 

the circumstances and conditions under which these speed control devices should be 

used. The decision of where a speed control device should be eventually located is 

that of the responsible engineer or designated person to make and this can be 

subjective. It is one of the most important and difficult decisions encountered by 

planners, engineers and decision makers. This thesis aimed at contributing to speed 

reduction by developing a model to help decision makers determine the optimum 

location for a speed control device in order to minimise road traffic accidents based 

on a set of objectives and constraints.  A summary of relevant results obtained from 

the research carried out are presented as follows; 

8.1.1 Accident prediction model  
• 790 kilometres of A-Roads in Nottinghamshire and Leicestershire was 

investigated.  

• 75 percent of a random selection of these roads was used in developing the 

model with the remaining 25 percent used in validating the model. 

• The 75 percent of roads comprised 4177 homogeneous segments, 350 fatal 

and serious accidents, 1,646 slight accidents, 1,580 junctions and 18,240m 

length of cycle route.  

• The 25 percent of roads was made up of 185,000 metres (185km) of roads 

comprising 1,771 homogeneous segments, 159 fatal and serious accidents, 

960 slight accidents, 1,872 junctions and 11,120m of cycle route. 
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• The key parameters used in developing the model were related to road 

geometry and other traffic characteristics with no human factors included in 

the accident prediction model. 

• A Negative Binomial model was initially developed for fatal and serious 

accidents combined and slight accidents separately. 

• The Negative Binomial model was refined to an Empirical Bayes Negative 

Binomial regression model in order to take account of the regression to the 

mean effect. 

• The predictor variables used in the negative binomial accident prediction 

model were the road direction, number of lanes, slope, radius, Annual 

Average Daily Traffic (AADT), Heavy Goods Vehicle (HGV), speed limit, 

homogeneous segment length, average speed, presence of cycle lane, length 

of cycle lane, presence of a junction or not, number of junctions and number 

of pedestrian crossings. 

• Variables found to be statistically significant (p < 0.05) in the slight accidents 

negative binomial model were the presence of junctions (Jtn), direction of 

travel along the road (Dxn), the summation of junctions (JtnsSUM), number 

of lanes, percentage Heavy Goods Vehicles (HGV), speed limit, 

homogeneous segment length of road (HSegLength), logarithm of the Annual 

Average Daily Traffic (LogAADT) and logarithm of the radius (LogRadius) 

with variables found to be statistically insignificant (p > 0.05) excluded from 

the model and rerun. 

• For the fatal and serious accidents negative binomial model, variables found 

to be statistically significant were the presence of junctions (Jtn), direction of 

travel along the road (Dxn), speed limit, homogeneous segment length of 

road (HSegLength), logarithm of the Annual Average Daily Traffic 

(LogAADT) and logarithm of the radius (LogRadius). Variables found to be 

statistically insignificant (p > 0.05) were excluded from the model and rerun. 

• Categorical variables used in the rerun fatal and serious accidents model were 

the presence or absence of junctions (Jtn) along a homogeneous segment of 

road and the direction of travel. 
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• For the continuous variables for fatal and serious accidents, the speed limit, 

homogeneous segment length, logarithm of the Annual Average Daily Traffic 

and logarithm of the radius of the road were represented as statistically 

significant in the rerun model. 

• The rerun slight accidents model had categorical values observed to be 

statistically significant being the presence or absence of junctions (Jtn), 

presence or absence of a cycle route (PresofCR) and direction of travel along 

a homogeneous segment of road. 

• The slight accidents model had continuous variables represented in the model 

to be the sum of junctions within a homogeneous segment of road, number of 

lanes, percentage Heavy Goods Vehicles (HGV), speed limit, length of 

homogeneous segment of road, logarithm of the Annual Average Daily 

Traffic and logarithm of the radius. 

• A paired t-test was used to compare the negative binomial slight accidents 

with the empirical Bayes slight accidents and there was a significant 

difference. For Negative Binomial (NB) slight accidents (M=0.66, SD=1.416) 

and slight accidents obtained from the Empirical Bayes (EB) model (M=0.55, 

SD=0.994) condition; t (1769) =3.381, p=0.001 a significant difference was 

obtained. 

• A paired t-test was used to compare the negative binomial fatal and serious 

accidents with the empirical Bayes fatal and serious accidents and results 

showed a significant difference. For Negative Binomial (NB) fatal and 

serious accidents (M=0.12, SD=0.108) and fatal and serious accidents 

obtained from the Empirical Bayes (EB) model (M=0.11, SD=0.117) 

condition; t (1769) = 3.652, p=0.000 a significant difference was obtained. 

8.1.2 Optimisation model  
• Fourteen segments of roads were optimised. 

• Genetic Algorithm and Pattern search optimisation techniques were used. 

• For both genetic algorithm and pattern search, no optimal solution was 

obtained for the A6211. 

• Results of proposed locations identified and plotted on maps for genetic 

algorithm were found not to be referenced to the road centreline as should be 
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expected. Results obtained from genetic algorithm were also found to be 

inconsistent in certain instances with some proposed locations for the speed 

control devices placed more than 100m away perpendicularly from the road 

centreline. 

• Proposed coordinate location points obtained on plotted maps for pattern 

search were found to be mostly located referenced to the road centreline as 

was expected. 

• Results obtained for the pattern search optimisation were found to be 

consistent in terms of function values obtained after subsequent runs for all 

the roads considered but this was not the case for genetic algorithm. 

• The pattern search optimisation was noted to be able to lower the function 

value much better than the genetic algorithm optimisation. 

• The A47 and A6005 had existing speed camera locations along and the 

positions were found to be closer to results obtained from pattern search than 

for genetic algorithm. 

• Computation time obtained for genetic algorithm varied from 3 minutes to 22 

minutes with that for pattern search varying from 13 minutes to 595 minutes. 

• The A47 investigated is the third longest road used in this research with a 

total length for both directions of traffic being 87920m and this had the 

highest computation time of 595 minutes. 

• T-test analysis show a significant difference in the function values for the 

validated pattern search (M=2.06, SD=1.17) and the initial optimised pattern 

search function values (M=2.80, SD=1.00) under the condition t (79) = -9.86, 

p=0.000 

• Results from t-test showed a significant difference in the function values for 

the validated genetic algorithm (M=607649.34, SD=1055520.75) and the 

initial optimised genetic algorithm function values (M=9323.98, 

SD=10419.83) under the condition t(79)=5.05, p=0.000. 

• T-test results show a significant difference in the function values for the 

validated genetic algorithm (M=607649.34, SD=1055520.75) and the 

validated pattern search function values (M=2.06, SD=1.17) under the 

condition t (79)=5.15, p=0.000.   
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• In this research pattern search optimisation performed better than the genetic 

algorithm optimisation. 

8.2 Contribution to knowledge 
No clear approach to identifying an appropriate location to place a speed control 

device using optimisation techniques was available at the start of this research. Even 

though there is some information available for other areas of study such as in fire 

station location there was nothing available in the area of road safety for speed 

management using speed cameras or vehicle activated signs. The work presented in 

this thesis is an original and useful contribution to vehicle speed management for the 

installation of speed cameras or vehicle activated signs. The key contributions to 

knowledge are as follows; 

• The development of a new Empirical Bayes Negative Binomial regression 

Model for A-roads in the United Kingdom incorporating road geometry and 

traffic characteristics to predict road traffic accidents at specified injury 

severity levels. The use of the Empirical Bayes Negative Binomial regression 

Model in the prediction of road traffic accidents having predictor variables 

relevant to that desired for this research was absent with the development of 

the new model proving useful for subsequent work carried out in this thesis.  

• The use of genetic algorithms and pattern search optimisation techniques in 

this thesis is considered unique since no literature has been found on the 

application of these optimisation techniques in the area of transport safety.  

• The use of Geographical Information Systems (GIS) in this thesis enables 

decision makers to visually assess proposed speed control device locations 

and make informed decisions about the suitability of the location.  

• The developed model can be used for road safety management. The use of 

Geographical Information Systems means road accidents can be better 

managed for both non-accident and existing accident sites. Existing non-

accident prone sites with no known accident records can be checked for 

future accidents and such sites can have speed control devices proposed 

offering better speed management to improve road safety. For existing sites, 

the model can be used to better plan and implement the locations for 

mounting speed control devices. Considering that homogeneous segments of 
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road were used in the accident prediction model, accidents along each 

homogeneous segment can be calculated and plotted to better understand the 

characteristics of the types of accidents and locations at which the accidents 

are occurring. The Geographical Information Systems interface will allow 

accident sites to be geo-referenced and better studied.  

• Road safety management can be incorporated into the wider area of 

infrastructure management. Considering that road designs are expected to be 

optimal both in terms of monetary value as well as in the purpose for which it 

is expected to serve, designers can use accident prediction models to identify 

unsafe locations in proposed designs and amend the design before the road 

gets built in order to save both time and money. With the use of accident 

prediction models, various alternative designs can be assessed and discounted 

or accepted leading to the optimum design being chosen. On the other hand 

accident prediction models can also be incorporated into Road Safety Audit 

measures to determine accident prone areas in order to recommend corrective 

measures.  

8.3 Further Work 
A number of areas have been identified for future work to be carried out on and these 

are discussed below. 

• Pattern search and genetic algorithms are the main types of optimisation 

techniques used in this research. Even though pattern search produced more 

consistent and practical solutions to the optimisation problem, genetic 

algorithms did not in some instances. It is proposed that other optimisation 

techniques are investigated to identify any similarities or differences in 

results obtained.  

• An accident prediction model that better predicts fatal and serious injury 

accidents will aid in providing a more concise estimation of these types of 

accidents.  It is worth stating that accidents occurring at higher levels of 

severity can sometimes be caused under rare circumstances or conditions 

such as inclement weather and lack of knowledge about the road terrain and 

environment which are described as confounding factors and are mostly 

difficult to control.   
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• The accident prediction model used in the optimisation model was developed 

using A-roads in Nottinghamshire and Leicestershire, UK. Motorways and B-

roads and other classes of roads in UK and other countries can be developed 

and compared.  

• Decision makers are normally attracted to the aesthetics of the decision 

making process instead of the technicalities. The comprehension, 

development and application of the methodology used in developing the 

optimisation model will require a lot of software coding effort for engineers, 

planners, decision makers etc. which may not appeal to such professionals. 

The development of software materials in the form of a Graphical User 

interfaced decision making process will make the decision making process 

more flexible and user friendly. This proposal can be considered in another 

research. 
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 Appendices 

Appendix A: Site visits risk assessment 
 
 

   Special Considerations 
  

Loughborough Design School  
Research Site Visits risk assessment 
 
Project: PhD Research 
Date: as required/to be confirmed 
Project manager: Dr. Richard Frampton and Dr. Andrew Morris 
Risk Assessment by: Agnes Wallace-Frimpong 

 

 
m  Ethical Committee Approval 

needed 

m CRB clearance needed 

m  External staff / partners involved 
 

 

 
Tick  Hazard Potential Harm Likelihoo

 
Severity Risk Control measures and Actions 

1. Travel to and from sites by car (hire car, personal car etc) 
 Driving Discomfort/injury 2 4 8 • Driver must have full driving licence 

• Any points on the driver’s licence must 
be made known to insurance company 
but to colleagues if necessary. 

• Driver must have enough rest prior to 
driving 

• Driver must try and make seat and 
posture comfortable prior to setting off. 

• Personal car must have insurance for 
business purposes 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
• Ensure conditions for car use are 

complied with 
• Where possible, share driving task ie. 

take turns to drive 
• Ensure seat belts are worn at all times 

when driving 
• Non-driver must be encouraged to wear 

seat belt 
• Driving should be in accordance with 

the highway code rules 
 

 Breakdown 
 
Road traffic Accident 
 
Break in to car  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Stress, delay, anxiety 
 
Injury, death, anxiety 
 
Stress, delay, loss of 
valuable items  
 
 
 
 
 
 
 
 
 
 
 
 
 

2 
 
3 
 
2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 
 
7 
 
4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 
 

21 
 

8 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Allow adequate time for journeys 
• Inform colleagues when setting off and 

let them know when you arrive at your 
destination 

• Organise journeys such that as much 
work as is possible can be carried out 
on successful journey days to make up 
for unsuccessful/unfruitful days 

• Ensure hired car has good breakdown 
assistance 

• In the case of personal cars, there 
should be adequate breakdown 
assistance 

• Ensure car is well locked, windows 
rolled up for all doors, keep items that 
can be burgled out of sight of passers-
by, park car in a safe place where you 
can keep an eye on it from time to time.  
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
 Break/Interruption in 

communication 
Stress, delay, loss of 
valuable items 

2 
 

4 8 • All researchers must carry a fully 
charged mobile phone at all times with a 
spare one as well if possible. 

• In the case of pay-as-you-go phones, 
there must be enough credit available 

2. Travel to and from sites by public transport (bus, train, taxi etc) 
 Breakdown 

 
Accident 
 
Personal safety 

Stress, delay, anxiety 
 
Injury, death, stress, delay 
 
Stress, injury, death 

2 
 
3 
 
2 

4 
 
7 
 
4 

8 
 

21 
 

8 

• Allow enough time for journeys 
• Organise journeys such that as much 

work as is possible can be carried out 
on successful journey days to make up 
for unsuccessful/unfruitful days 

• Travel with another colleague if possible 
• Avoid lone working as much as 

possible: if this is unavoidable, 
arrangements must be made with a 
colleague in the Design school for site 
worker to call colleague from time to 
time eg. every 1 hour 

• If travel tickets are to be bought in 
advance do that through reputable 
companies 

• If mode of travel is by taxi, ensure a 
reliable company is used 

• Avoid late night travel/working 
• Inform colleagues about journey details 
• Ensure enough rest has been obtained 

before journey to avoid stress and lack 
of concentration 
 

 Break/Interruption in Stress, delay, loss of 2 4 8 • All researchers must carry a fully 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
communication valuable items  charged mobile phone at all times with a 

spare one as well if possible. 
• In the case of pay-as-you-go phones, 

there must be enough credit available 
3. Traffic conditions 

 Accident 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Traffic Noise 
 
 
 
Objects being thrown 
by motorists at 
researchers, verbal 
abuse and 
aggressive 
behaviours by 
passing motorists 

Injury, death 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ability of researchers to 
communicate 
 
 
Stress, anxiety, injury 

3 7 21 • Avoid stepping into live traffic 
• Ensure the right Personal Protective 

Equipment (PPE) is worn and it is 
comfortable 

• Walk facing traffic as much as is 
possible 

• Use walkways where this is available 
• Keep personal/survey items well 

secured to avoid it falling into 
carriageway 

• Acquaint selves with road layout and 
geometric constraints before 
commencing actual study. 

• Work away from live traffic as much as 
is possble 
 

• Try and get nearer to aid good 
communication and avoid shouting from 
a distance 

 
• Avoid confrontations with passing 

motorists 
• Keep survey items out of reach of 

passing motorists 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
 

 
4. Personal Safety and Personal Welfare 

 Accidents (slips, 
trips, falls, 
electrocution etc) 
 
Harassment 
 
Assault and attack by 
members of the 
public 
 
 

Stress, anxiety, injury, 
death 
 
 
Stress, injury, anxiety  
 
Stress, injury, death 
 
 
 

3 4 12 • Ethical committee approval obtained to 
collect data 

• Appropriate insurance obtained if 
possible 

• Documentation of any pre-arranged 
appointments with other parties not in 
LDS 

• Any necessary safety training/induction 
must be obtained. 

• Appropriate personal protective 
equipment (PPE) and clothing must be 
worn 

• If necessary, appropriate first aid 
training must be carried out and 
equipment made available 

• Before the visit, try to find out about the 
area to be visited by asking someone 
with local knowledge about the area 

• Do not create any suspicion to 
community members 

• Where possible explain in lay-man’s 
language what the whole project is 
about when asked in order to allay any 
fears  

• If confrontation arises just walk away 
and leave vicinity as soon as possible 

• Report to Police in extreme 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
circumstances 

• Ensure breaks are taken to have some 
food/refreshment to renew energy 

• Avoid lone working as much as 
possible: if this is unavoidable, 
arrangements must be made with a 
colleague in the Design school for site 
worker to call colleague from time to 
time eg. every 1 hour 

• Avoid working in areas with known bad 
reputation. Where this is unavoidable 
lone working should be omitted.  

• Work within sight of other colleagues 
(avoid working down alleyways  out of 
sight from public view/other colleagues) 

• Consider the use of two-way radio if 
working some distance apart where two 
or more researchers are involved. 

• Where possible each researcher should 
have a key to the vehicle 
 

 Break/Interruption in 
communication 

Stress, delay, loss of 
valuable items 

2 4 8 • All researchers must carry a fully 
charged mobile phone at all times with a 
spare one as well if possible. 

• In the case of pay-as-you-go phones, 
there must be enough credit available 
on phone 

• Make sure there is good mobile phone 
signalling at location before starting 
work and if not move to a good location 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
to enable effective communication 

• A nominated colleague contactable by 
phone must be made aware of the 
destination of the researchers, how long 
they expect to be out for and an 
expected return time as well as phone 
numbers of all the researchers out on 
site and vice-versa 

• The nominated colleague must be kept 
informed by contacting initially before 
any work starts, when work is finished, if 
returning to the office or not, when the 
alternative location other than the office 
is reached safely and more importantly 
contacted regularly 

• Nominated colleague should keep 
written/documented record of all contact 
details this should include researcher/s 
involved, location, start time, end time, 
expected return time in addition to times 
regular calls are received  

• If nominated colleague does not receive 
call at agreed time for regular calls, 
colleague should try contacting 
researchers on site and if feasible make 
a trip to the site if not the Police must be 
contacted about situation. 

5. Ground Conditions 
 Uneven ground 

 
Slips, trips, falls and  
electrocution 

2 5 10 • Researchers to wear comfortable 
footwear 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
Soft ground 
 
Exposed cables 
 
Kerbing 
 
Signing 
 
 

• Walk and avoid running  
• Stay clear of excavations 
• Stay clear of exposed cables 
• Take extra care should you encounter 

soft/wet ground 
• In areas where there is kerbing, care 

should be taken not to slip, fall or trip 
into live traffic and ground 

• Care should be taken not to walk into 
erected signs by the road 

6. Environment 
 Inclement weather 

(windy, rainy etc) 
 
 
Nuisance (noise, 
dust etc) 
 
Wind blown debris 

Delay in carrying out 
works 
 
Books will get wet 
 
Inability to communicate 
well 
 
 
Debris getting into eye, 
harming vision etc. 

3 4 12 • Try and check weather forecast to help 
in planning site visits 

• Use waterproof clipboards to reduce the 
likelihood of writing book getting wet 

• In cold weather, regular breaks back in 
the vehicle should be taken in order to 
keep warm. Wear appropriate clothing 
and have some hot drinks/beverage to 
drink to keep warm. 

• In hot weather, appropriate clothing 
must also be worn and cold drinks must 
be taken regularly to avoid dehydration. 
Sun creams should be used as and 
when required  

• Ensure papers to be used for recording 
information is well secured on a clip 
board and not blown away by windy 
weather 

• Use appropriate personal protective 
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Tick  Hazard Potential Harm Likelihoo
 

Severity Risk Control measures and Actions 
equipment (PPE) 

• Avoid shouting from a distance to 
communicate 

• Step out of the way of any flying debris 
 
      •  
 
Risk assessment system: 
 
Likelihood of 
occurrence 

 Severity (effect on 
safety) 

 Risk Priority Number 
(RPN) = Occurrence x 
Severity 

No likelihood 0 No effect on safety 0 Single mode risk = RPN 
of  

Unlikely 1 Hardly noticeable effects 1 25 or more 
Possible 2 - 3 Insignificant effects 2 - 3  
Probable 4 - 6 Moderate effects 4 - 6 Multiple mode risk= 3 x 

RPN  
Likely 7 - 8 Severe effects 7 - 8 of 20 or more 
Almost inevitable 9 - 10 Very high severity 9 - 10  
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Appendix B: Matlab code used to run Genetic Algorithm for a typical 
road   
 

 

 

 

 

 

 

 

 

 

NOT AVAILABLE 
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Appendix C: Matlab code used to run Pattern Search for a typical 
road 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOT AVAILABLE 
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Appendix D: GIS plots of the variation of accidents along roads 

 

Appendix D1: A6002 Empirical Bayes Fatal and Serious Accidents (1 of 2) 

 

Appendix D2: A6002 Empirical Bayes Fatal and Serious Accidents (2 of 2) 



 

261 

 

 
Appendix D1: A6002 Empirical Bayes Slight accidents (1 of 2) 

 

 

Appendix D1: A6002 Empirical Bayes Slight Accidents (2 of 2) 
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Appendix D2: A6130 Empirical Bayes Fatal and Serious Accidents  
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Appendix D2: A6130 Empirical Bayes Slight Accidents  
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Appendix D3: A6117 Empirical Bayes Fatal and Serious Accidents  
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Appendix D3: A6117 Empirical Bayes Slight Accidents  
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Appendix D4: A47 Empirical Bayes Fatal and Serious Accidents (1 of 4) 
 

 

Appendix D4: A47 Empirical Bayes Fatal and Serious Accidents (2 of 4) 
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Appendix D4: A47 Empirical Bayes Fatal and Serious Accidents (3 of 4) 
 

 

Appendix D4: A47 Empirical Bayes Fatal and Serious Accidents (4 of 4) 
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Appendix D4: A47 Empirical Bayes Slight Accidents (1 of 4) 
 

 

Appendix D4: A47 Empirical Bayes Slight Accidents (2 of 4) 
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Appendix D4: A47 Empirical Bayes Slight Accidents (3 of 4) 
 

 

Appendix D4: A47 Empirical Bayes Slight Accidents (4 of 4) 
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Appendix D5: A6030 Empirical Bayes Fatal and Serious Accidents  
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Appendix D5: A6030 Empirical Bayes Slight Accidents  
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Appendix D6: A6005 Empirical Bayes Fatal and Serious Accidents  

 
 

 

Appendix D6: A6005 Empirical Bayes Slight Accidents  
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Appendix E: Easting, Northing and function value for optimised 
roads (Pattern Search) 
 

easting (x) northing(y) model road fval direction 
449897.412 338418.382 PS A6002 0.014884 NS 
452683.41 344812.38 PS A6002 0.555555 NS 
453362.41 345889.38 PS A6002 0.621422 NS 
452958.41 345438.38 PS A6002 0.676188 NS 
451486.41 342788.88 PS A6002 0.739838 NS 
451539.41 343149.88 PS A6002 0.817858 NS 
452523.41 344330.38 PS A6002 0.85473 NS 
450433.41 339264.88 PS A6002 0.856178 NS 
451551.41 342475.38 PS A6002 0.887755 NS 
452843.41 345199.88 PS A6002 0.951979 NS 
454160.41 346022.88 PS A6002 0.969422 NS 
451551.41 342435.38 PS A6002 1.040752 NS 
453327.41 345869.88 PS A6002 1.130645 NS 
453687.41 346066.88 PS A6002 1.167222 NS 
450931.41 340472.38 PS A6002 1.173683 NS 
450677.41 339812.88 PS A6002 1.183185 NS 
454271.41 345998.38 PS A6002 1.217347 NS 
450162.41 338822.38 PS A6002 1.248898 NS 
450878.41 340371.88 PS A6002 1.290745 NS 
453397.41 345908.88 PS A6002 1.299508 NS 

 

easting (x) northing(y) model road fval direction 
460761.9324 302209.1 PS A6030 0.048746 NS 

461589.9 305000.6 PS A6030 0.079797 NS 
461575.9 305124.1 PS A6030 0.089715 NS 
461281.9 305920.1 PS A6030 0.369902 NS 
461712.9 304553.1 PS A6030 0.464588 NS 
461397.9 305708.1 PS A6030 0.48055 NS 
461482.9 305605.6 PS A6030 0.976289 NS 
461672.9 304750.6 PS A6030 1.097991 NS 
461713.9 304458.1 PS A6030 1.455109 NS 
461546.9 305446.6 PS A6030 1.481592 NS 
461566.9 302672.6 PS A6030 1.618747 NS 
461525.9 305523.6 PS A6030 1.633629 NS 
461364.9 302449.6 PS A6030 1.654274 NS 
461524.9 302498.6 PS A6030 1.688849 NS 
461378.9 306168.6 PS A6030 1.836085 NS 
461534.9 302557.1 PS A6030 1.86623 NS 
461462.9 302436.6 PS A6030 1.896127 NS 
461245.9 302450.1 PS A6030 1.953092 NS 
461800.9 304085.6 PS A6030 1.970741 NS 
461786.9 303374.1 PS A6030 1.976654 NS 
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easting (x) northing(y) model road fval direction 
456164.9 339172.9 PS A6005 0.117955 EW 
450239.9 334071.9 PS A6005 0.271531 EW 
455590.9 339006.9 PS A6005 0.411269 EW 
456656.9 339258.9 PS A6005 0.48402 EW 
450860.9 334322.4 PS A6005 0.597261 EW 
453283.9 336518.9 PS A6005 0.778418 EW 
452184.9 335873.9 PS A6005 0.813155 EW 
454664.9 338064.9 PS A6005 0.843865 EW 
454495.9 337932.9 PS A6005 0.851369 EW 
449449.9 333896.9 PS A6005 0.871803 EW 
446104.9 333557.9 PS A6005 0.898945 EW 
454355.9 337823.9 PS A6005 0.914115 EW 
446143.9 333566.4 PS A6005 0.988712 EW 

445002.9541 333349.9 PS A6005 1.008444 EW 
451923.9 335669.4 PS A6005 1.030584 EW 
445434.9 333411.9 PS A6005 1.038183 EW 
449430.9 333890.9 PS A6005 1.067121 EW 
448282.9 334036.9 PS A6005 1.086266 EW 
451998.9 335723.9 PS A6005 1.095317 EW 
455639.9 339040.9 PS A6005 1.183525 EW 

 

 

 

easting (x) northing(y) model road fval direction 
454517 346537 PS A6002 1.719498 SN 
452962 345444.5 PS A6002 1.720109 SN 
451469 342918 PS A6002 1.720358 SN 
454432 346406.5 PS A6002 1.720483 SN 
452916 345363 PS A6002 1.721843 SN 
451472 341667.5 PS A6002 1.722676 SN 
451830 343691 PS A6002 1.723643 SN 
451659 343387 PS A6002 1.728799 SN 
453322 345867 PS A6002 1.731853 SN 
450477 339338.5 PS A6002 1.733089 SN 
450865 340345 PS A6002 1.736561 SN 
452970 345462.5 PS A6002 1.738774 SN 
453127 345720.5 PS A6002 1.740382 SN 
454008 346082.5 PS A6002 1.741116 SN 
451539 341920.5 PS A6002 1.742731 SN 
452615 344573 PS A6002 1.753084 SN 
452599 344520.5 PS A6002 1.753418 SN 
453620 346032.5 PS A6002 1.75644 SN 
452769 345036.5 PS A6002 1.756638 SN 
453287 345847.5 PS A6002 1.758375 SN 

 

 



 

275 

 

easting (x) northing(y) model road fval direction 
456113 341301 PS A6130 0 SN 
456400 341389 PS A6130 0 SN 
456472 341411 PS A6130 0 SN 
456544 341434 PS A6130 0 SN 
456695 341480 PS A6130 0 SN 

456883.7 341542.5 PS A6130 2.756458 SN 
455995 341265 PS A6130 1.26814 SN 
456491 341417 PS A6130 1.726304 SN 
456289 341355 PS A6130 2.300383 SN 
456132 341307 PS A6130 2.351602 SN 
455842 341218 PS A6130 2.606424 SN 
456308 341361 PS A6130 2.858565 SN 
456070 341288.5 PS A6130 3.056724 SN 
455815 341209.5 PS A6130 3.08855 SN 
456174 341320 PS A6130 3.29662 SN 
456510 341423 PS A6130 3.452593 SN 
456419 341395 PS A6130 3.461291 SN 
455976 341259 PS A6130 3.61266 SN 
456659 341469 PS A6130 3.627623 SN 
456678 341475 PS A6130 3.722367 SN 

 

 

 

easting (x) northing(y) model road fval direction 
455742 362602.0949 PS A6117 2771.213 SN 
455742 362602.0949 PS A6117 2812.49 SN 
455742 362607.8228 PS A6117 2831.823 SN 
455742 362613.5506 PS A6117 2892.433 SN 
455742 362596.3671 PS A6117 3037.052 SN 
455742 362613.5506 PS A6117 3093.442 SN 
455742 362617.605 PS A6117 3351.648 SN 
455742 362612.9319 PS A6117 3413.156 SN 
455742 362608.2587 PS A6117 3474.665 SN 
455742 362603.5855 PS A6117 3536.174 SN 
455742 362598.9124 PS A6117 3597.683 SN 
455742 362594.2392 PS A6117 3659.192 SN 
455742 362612.9318 PS A6117 4165.955 SN 
455742 362634.0914 PS A6117 4397.715 SN 
455742 362647.7702 PS A6117 4443.865 SN 
455742 362661.449 PS A6117 4490.016 SN 
455742 362675.1279 PS A6117 4536.166 SN 
455742 362688.7 PS A6117 4582.317 SN 
455742 362634.0914 PS A6117 5007.308 SN 
455742 362688.6696 PS A6117 7407.44 SN 
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easting (x) northing(y) model road fval direction 
455614.7297 362709 PS A6117 1458.112 NS 
455632.7643 362709 PS A6117 1487.045 NS 
455650.5287 362709 PS A6117 1515.5 NS 
455668.2931 362709 PS A6117 1543.955 NS 
455686.0574 362709 PS A6117 1572.41 NS 
455703.8218 362709 PS A6117 1600.864 NS 
455721.5861 362709 PS A6117 1629.319 NS 
455738.6581 362709 PS A6117 1661.286 NS 
455632.7644 362709 PS A6117 1663.109 NS 
455754.9494 362709 PS A6117 1697.214 NS 
455705.5968 362709 PS A6117 12973.46 NS 
455705.9287 362709 PS A6117 13035.17 NS 

455708.472 362709 PS A6117 13096.6 NS 
455711.8871 362709 PS A6117 13157.53 NS 
455716.6141 362709 PS A6117 13217.71 NS 
455722.2092 362709 PS A6117 13277.11 NS 
455728.6892 362709 PS A6117 13335.7 NS 
455735.1689 362709 PS A6117 13394.3 NS 
455741.6489 362709 PS A6117 13452.89 NS 

455757.4 362709 PS A6117 15120.84 NS 
 

 

 

easting (x) northing(y) model road fval direction 
464209 304196.3 PS A47 2.663251 WE 
469418 303487.8 PS A47 2.810815 WE 
475284 302127.8 PS A47 2.849202 WE 
475237 302164.8 PS A47 2.876509 WE 
474630 302673.8 PS A47 2.895373 WE 
469899 303351.8 PS A47 2.906668 WE 
475770 301658.8 PS A47 2.938712 WE 
465510 304026.3 PS A47 2.945825 WE 
465160 304037.3 PS A47 3.013989 WE 
465490 304025.3 PS A47 3.049839 WE 
472156 303154.3 PS A47 3.054322 WE 
471090 302994.8 PS A47 3.13508 WE 
465454 304023.3 PS A47 3.139494 WE 
466498 303943.3 PS A47 3.144187 WE 
473802 302872.8 PS A47 3.160747 WE 
472351 303110.8 PS A47 3.179533 WE 
474933 302355.8 PS A47 3.261387 WE 
466001 304042.8 PS A47 3.266192 WE 
468319 303630.8 PS A47 3.286827 WE 
475958 301509.8 PS A47 3.291955 WE 
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easting (x) northing(y) model road fval direction 
462313 307044.2 PS A6030 3.656524 SN 
461111 302431.5 PS A6030 3.680969 SN 
461812 303531.5 PS A6030 3.697823 SN 
461552 305306 PS A6030 3.757051 SN 
461531 305477.5 PS A6030 3.757434 SN 
460789 302220.5 PS A6030 3.768962 SN 
461544 305404 PS A6030 3.77131 SN 
461620 302859 PS A6030 3.772267 SN 
461294 305765 PS A6030 3.790873 SN 
461665 304730 PS A6030 3.791648 SN 
461431 306277 PS A6030 3.829171 SN 
461737 303211 PS A6030 3.879667 SN 
461693 306667.5 PS A6030 3.889836 SN 
461633 302897 PS A6030 3.89432 SN 
460907 302336 PS A6030 3.941818 SN 
461289 305941 PS A6030 3.94896 SN 
461539 305438.5 PS A6030 4.006766 SN 
461658 302973 PS A6030 4.01724 SN 
461683 304683.5 PS A6030 4.021997 SN 
461822 303834 PS A6030 4.042093 SN 

 

 

easting (x) northing(y) model road fval direction 
457150 339378 PS A6005 2.128415 WE 
453721 337115 PS A6005 2.129198 WE 
454336 337822.5 PS A6005 2.129573 WE 
456772 339291 PS A6005 2.131714 WE 
454819 338195.5 PS A6005 2.133537 WE 
450623 334292.5 PS A6005 2.134501 WE 
453932 337608.5 PS A6005 2.135092 WE 
452100 335813.5 PS A6005 2.135343 WE 
447727 333884 PS A6005 2.13595 WE 
454578 338009.5 PS A6005 2.136686 WE 
447413 333754.5 PS A6005 2.136703 WE 
451740 335501 PS A6005 2.137724 WE 
451978 335725.5 PS A6005 2.13791 WE 
452745 336146.5 PS A6005 2.13813 WE 
446343 333595 PS A6005 2.138836 WE 
451442 334618.5 PS A6005 2.140178 WE 
454057 337671.5 PS A6005 2.14216 WE 
452012 335749 PS A6005 2.143215 WE 
456966 339346 PS A6005 2.144631 WE 
450474 334236 PS A6005 2.14739 WE 
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Appendix F: Easting, Northing and function value for optimised 
roads (Genetic Algorithm) 
 

easting (x) northing(y) model road fval direction 
454499.5553 346373.5154 GA A6002 615.6459 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 
454500.5553 346371.0154 GA A6002 624.5469 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 
454499.5553 346373.5154 GA A6002 615.6459 SN 
454499.0553 346370.9529 GA A6002 625.3653 SN 
454499.5553 346371.4529 GA A6002 623.307 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 
454500.5553 346372.0154 GA A6002 620.8299 SN 
454499.5553 346372.0154 GA A6002 621.2175 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 
454498.5553 346371.4529 GA A6002 623.7155 SN 
454499.5553 346373.0154 GA A6002 617.5031 SN 
454500.0553 346372.4529 GA A6002 619.3953 SN 
454499.0553 346371.4529 GA A6002 623.5085 SN 
454499.3053 346371.0154 GA A6002 625.0321 SN 
454500.3053 346374.0154 GA A6002 613.4925 SN 
454499.3053 346373.0154 GA A6002 617.604 SN 

 

 

easting (x) northing(y) model road fval direction 
456718.97 341128.7895 GA A6130 26614.06 SN 
456718.97 341128.7895 GA A6130 26614.06 SN 
456718.97 341128.7895 GA A6130 26614.06 SN 

456718.095 341127.727 GA A6130 26692.41 SN 
456719.345 341128.352 GA A6130 26630.07 SN 
456717.845 341128.0551 GA A6130 26679.75 SN 
456718.97 341128.7895 GA A6130 26614.06 SN 

456717.845 341128.0551 GA A6130 26679.75 SN 
456718.095 341128.7895 GA A6130 26633.45 SN 
456718.97 341128.7895 GA A6130 26614.06 SN 

456719.345 341128.7895 GA A6130 26605.77 SN 
456718.97 341128.7895 GA A6130 26614.06 SN 
456718.97 341128.7895 GA A6130 26614.06 SN 

456718.095 341128.352 GA A6130 26657.73 SN 
456718.345 341128.352 GA A6130 26652.18 SN 
456719.97 341126.852 GA A6130 26699.7 SN 
456718.97 341129.2895 GA A6130 26586.3 SN 
456720.47 341128.352 GA A6130 26605.34 SN 
456719.47 341128.352 GA A6130 26627.32 SN 
456719.22 341129.2895 GA A6130 26580.77 SN 
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easting (x) northing(y) model road fval direction 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455746.0609 358270.8065 GA A6117 253.6931 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455750.1736 358343.2596 GA A6117 25.09363 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358374.7042 GA A6117 109.2205 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455765.5776 358326.3637 GA A6117 64.70292 NS 

455763.598 358353.4554 GA A6117 41.56041 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455758.6744 358347.1652 GA A6117 14.50744 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 
455757.2985 358343.2596 GA A6117 0.519337 NS 

 

 

 

easting (x) northing(y) model road fval direction 
499982.8064 301480.7554 GA A47 5.85895 WE 
499982.8064 301480.7554 GA A47 5.85895 WE 
499981.8114 301479.8992 GA A47 75.00491 WE 
499935.6724 301501.2781 GA A47 2940.949 WE 
499804.7587 301419.402 GA A47 10790.92 WE 
499973.5425 301489.0678 GA A47 707.5133 WE 
500054.3417 301417.2718 GA A47 5487.494 WE 

499983.601 301465.3722 GA A47 887.1941 WE 
500016.9746 301487.7437 GA A47 2002.105 WE 
500046.5508 301458.7594 GA A47 3870.114 WE 
499978.5631 301478.1644 GA A47 283.6171 WE 
499982.3261 301480.3017 GA A47 38.13428 WE 
499982.8064 301480.7554 GA A47 5.85895 WE 
499983.1395 301472.3101 GA A47 488.7135 WE 
499962.0997 301392.3591 GA A47 5206.566 WE 
499916.9307 301367.3347 GA A47 7518.991 WE 
499982.8064 301480.7554 GA A47 5.85895 WE 
499982.8064 301480.7554 GA A47 5.85895 WE 
499982.5231 301483.3758 GA A47 146.5575 WE 
499982.8064 301480.7554 GA A47 5.85895 WE 
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easting (x) northing(y) model road fval direction 
462268.5802 306839.0645 GA A6030 7219.869 SN 
462268.5802 306839.0645 GA A6030 7219.869 SN 
462268.0802 306839.0645 GA A6030 7223.53 SN 
462269.5802 306838.0645 GA A6030 7246.311 SN 
462268.5802 306839.0645 GA A6030 7219.869 SN 
462268.5802 306838.0645 GA A6030 7253.483 SN 
462268.0802 306838.5645 GA A6030 7240.328 SN 
462268.5802 306838.0645 GA A6030 7253.483 SN 
462268.5802 306838.0645 GA A6030 7253.483 SN 
462269.8302 306837.5645 GA A6030 7261.373 SN 
462269.5802 306838.0645 GA A6030 7246.311 SN 
462268.5802 306839.0645 GA A6030 7219.869 SN 
462268.5802 306838.0645 GA A6030 7253.483 SN 
462268.5802 306838.5645 GA A6030 7236.675 SN 
462268.5802 306837.0645 GA A6030 7287.104 SN 
462269.5802 306838.0645 GA A6030 7246.311 SN 
462268.0802 306839.0645 GA A6030 7223.53 SN 
462268.5802 306837.5645 GA A6030 7270.292 SN 
462269.8302 306838.0645 GA A6030 7244.543 SN 
462269.0802 306839.0645 GA A6030 7216.247 SN 

 

 

 

easting (x) northing(y) model road fval direction 
457016.97 339188.9094 GA A6005 1393.456 WE 
457016.74 339188.3469 GA A6005 1397.036 WE 
457018.04 339188.3469 GA A6005 1392.564 WE 
457016.97 339188.9094 GA A6005 1393.456 WE 
457018.04 339187.3469 GA A6005 1397.508 WE 
457016.99 339187.9094 GA A6005 1398.328 WE 
457016.74 339187.3469 GA A6005 1401.965 WE 
457016.97 339188.3469 GA A6005 1396.226 WE 
457016.99 339187.4719 GA A6005 1400.486 WE 
457016.99 339187.9094 GA A6005 1398.328 WE 
457016.41 339186.2219 GA A6005 1408.647 WE 
457016.99 339188.3469 GA A6005 1396.172 WE 
457016.97 339188.9094 GA A6005 1393.456 WE 
457015.47 339187.2219 GA A6005 1406.956 WE 
457016.99 339187.4094 GA A6005 1400.795 WE 
457016.74 339186.1594 GA A6005 1407.828 WE 
457017.74 339187.3469 GA A6005 1398.526 WE 
457015.97 339187.2844 GA A6005 1404.917 WE 
457019.04 339188.3469 GA A6005 1389.136 WE 
457017.74 339187.3469 GA A6005 1398.526 WE 
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