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Abstract 

With the introduction of the technological age, increasing mechanisation has led to labour 

saving devices which have all-but engineered physical activity out of our lives and sedentary 

behaviour has now become the default behaviour during waking hours. Interventions that 

previously focused on improving levels of physical activity are now attempting to 

concurrently increase levels of physical activity and decrease time spent in sedentary 

behaviour. One method that has shown promise in interventions to increase physical activity 

and healthy eating in adults is the behaviour change technique of self-monitoring. There is 

now a robust set of literature indicating self-monitoring as the most promising behaviour 

change technique in this area. Self-monitoring is tied inherently into the recent rise in 

wearable technology. These new devices have the ability to track a variety of behavioural and 

physiological parameters and immediately make the information returnable to the user via 

connected mobile applications. The potential pervasive nature of these technologies and their 

use of robust behaviour change techniques could make them a useful tool in interventions to 

reduce sedentary behaviour. Therefore the overall purpose of this three study dissertation was 

to identify and validate technology that can self-monitor sedentary behaviour and to 

determine its feasibility in reducing sedentary behaviour. 

Study 1 

Purpose: The aim of this study was to review the characteristics and measurement properties 

of currently available self-monitoring devices for sedentary behaviour and/or physical 

activity. Methods: To identify technologies, four scientific databases were systematically 

searched using key terms related to behaviour, measurement, and population. Articles 

published through October 2015 were identified. To identify technologies from the consumer 

electronic sector, systematic searches of three Internet search engines were also performed 

through to October 1P

st
P, 2015. Results: The initial database searches identified 46 devices and 

the Internet search engines identified 100 devices yielding a total of 146 technologies. Of 

these, 64 were further removed because they were currently unavailable for purchase or there 

was no evidence that they were designed for, had been used in, or could readily be modified 

for self-monitoring purposes. The remaining 82 technologies were included in this review (73 

devices self-monitored physical activity, 9 devices self-monitored sedentary time). Of the 82 

devices included, this review identified no published articles in which these devices were 

used for the purpose of self-monitoring physical activity and/or sedentary behaviour; 

however, a number of technologies were found via Internet searches that matched the criteria 
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for self-monitoring and provided immediate feedback on physical activity (ActiGraph Link, 

Microsoft Band, and Garmin Vivofit) and sedentary behaviour (activPAL VT, the LumoBack, 

and Darma). Conclusions: There are a large number of devices that self-monitor physical 

activity; however, there is a greater need for the development of tools to self-monitor 

sedentary time. The novelty of these devices means they have yet to be used in behaviour 

change interventions, although the growing field of wearable technology may facilitate this to 

change. 

Study 2 

Purpose: The aim of this study was to examine the criterion and convergent validity of the 

LumoBack as a measure of sedentary behaviour compared to direct observation, the 

ActiGraph wGT3X+ and the activPAL under laboratory and free-living conditions in a 

sample of healthy adults. Methods: In the laboratory experiment, 34 participants wore a 

LumoBack, ActiGraph and activPAL monitor and were put through seven different sitting 

conditions. In the free-living experiment, a sub-sample of 12 participants wore the LumoBack, 

ActiGraph and activPAL monitor for seven days. Validity were assessed using Bland-Altman 

plots, mean absolute percentage error (MAPE), and intraclass correlation coefficient (ICC). 

T-test and Repeated Measures Analysis of Variance were also used to determine any 

significant difference in measured behaviours. Results: In the laboratory setting, the 

LumoBack had a mean bias of 76.2, 72.1 and -92.3 seconds when compared to direct 

observation, ActiGraph and activPAL, respectively, whilst MAPE was less than 4%. 

Furthermore, the ICC was 0.82 compared to the ActiGraph and 0.73 compared to the 

activPAL. In the free-living experiment, mean bias was -4.64, 8.90 and 2.34 seconds when 

compared to the activPAL for sedentary behaviour, standing time and stepping time 

respectively. Mean bias was -38.44 minutes when compared to the ActiGraph for sedentary 

time. MAPE for all behaviours were <9%, and the ICC were all >0.75. Conclusion: The 

LumoBack has acceptable validity and reliability as a measure of sedentary behaviour.  

Study 3 

Purpose: The aim of this study was to explore the use of the LumoBack as a behaviour 

change tool to reduce sedentary behaviour in adults. Methods: Forty-two participants (≥25 

years) who had an iPhone 4S or later model wore the LumoBack without any feedback for 

one week for baseline measures of behaviour. Participants then wore the LumoBack for a 

further five weeks whilst receiving feedback on sedentary behaviour via a sedentary vibration 

from the device and feedback on the mobile application. Sedentary behaviour, standing time, 
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and stepping time were objectively assessed using the LumoBack. Differences in behaviour 

were determined between baseline, week 1 and week 5. Participant engagement with the 

LumoBack was determined using Mobile app analytics software. Results: There were no 

statistically significant differences in behaviour between baseline and the LumoBack 

intervention period (p>0.05). Participants engaged most with the Steps card on the 

LumoBack app with peaks in engagement seen at week 5. Conclusion: This study indicates 

that using the LumoBack on its own was not effective in reducing sedentary behaviour in 

adults. Self-monitoring and feedback may need to be combined with other behaviour change 

strategies such as environmental restructuring to be effective. 

 

General Conclusion 

This thesis found that there are currently an abundance of technologies which self-monitors 

physical activity but a lack of devices which measuring sedentary behaviour. One such device, 

the LumoBack, has shown to have acceptable validity as a measure of sedentary behaviour. 

Whilst the use of the LumoBack as a behaviour change tool did not elicit any significant 

changes, its ability to be a pervasive behavioural intervention and the use of user-defined 

nudging can make the LumoBack, and other similar low cost, valid objective sedentary 

behaviour self-monitors key components in multi-faceted interventions.  
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Physical activity has a long standing and established beneficial relationship with health. 

Indeed, increasing levels of physical activity has been shown to have a beneficial relationship 

with a number of non-communicable health related outcomes (1–3) including all-cause 

mortality (4), coronary heart disease (5), high blood pressure, stroke (6), type 2 diabetes (7), 

metabolic syndrome (8), certain site-specific cancers (9–11), and depression (12,13) with 

even small increases in physical activity having beneficial effects on health (14). In spite of 

the large evidence base supporting the health benefits of physical activity, population levels 

of physical activity are low (15). Moreover, the prevalence of sufficient physical activity is 

slow to improve and is worsening in some countries (16). According to the World Health 

Organisation, approximately 3.2 million deaths each year are attributable to insufficient 

physical activity and recent estimates suggest that the cost of physical inactivity to health-

care systems was (international) $53.8 billion worldwide in 2013, of which $31.2 billion was 

paid by the public sector (17). Furthermore, objective data using accelerometers suggests 

there is low compliance with guideline fulfilling physical activity (e.g. 150 minutes of 

moderate to vigorous physical activity [MVPA] per week (18)), at around five percent in 

British (19) and American adults (20), and approximately 15% in Canadian adults (21,22).  

The current levels of physical inactivity are partly related to insufficient participation in 

physical activity due to reduced amounts of leisure time physical activity and partly related to 

increases in sedentary behaviours during occupational and domestic activities (23). 

Increasing automation at work and travel combined with more attractive sedentary options for 

leisure time is engineering physical activity out of daily life and reducing physical activity 

levels (24). Therefore, the nature in which we execute aspects of our daily lives have changed 

in no small part due to these advancements in technology (25), which, in turn, has led to 

substantial reductions in the demands for physical activity (26). Consequently, this transition 

has led to increases in a distinct but related health related behaviour – sedentary behaviour.  

Sedentary behaviour is a prominent, insidious behaviour, which has been linked to 

deleterious effects on cardio-metabolic biomarkers associated with an array of non-

communicable diseases, independent of MVPA, including type 2 diabetes (27), 

cardiovascular disease (28,29) and some site-specific cancers (30). Combine this with large 

segments of the day now being spent in sedentary behaviours (31) accurate and objective 

exposure measurement is essential to identify causal associations with health outcomes, to 

quantify precisely the magnitude of these associations and to describe dose-response 

relationships. Moreover, accurate measurement is required to document patterns of, and 
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changes in, sedentary behaviour between and within individuals over time (32,33). This is 

currently conducted effectively in the physical activity portion of the movement continuum (a 

model used to conceptualise the part sedentary behaviour plays as a distinct behaviour in our 

daily physical activity. Theorising sedentary behaviour as distinct from a lack of physical 

activity is important due to the unique nature of sedentary behaviour), however, it is less well 

conducted at the sedentary behaviour segment of the continuum.  

 

With sedentary behaviour now being seen as a distinct risk factor for health (28), it has 

necessitated a paradigm shift in the way interventions are conducted. Previously, 

interventions targeted increasing physical activity or reducing sedentary behaviour; however, 

interventions are now targeted at concurrently decreasing the amount of time spent in 

sedentary pursuits as well as increasing levels of physical activity (34,35). Whilst 

interventions to reduce sedentary behaviour have used a variety of methodologies, from 

educational programmes (36) to environmental restructuring (traditionally via sit-stand desks 

in office-based workers (37–40)), one method of decreasing sedentary behaviour, which is 

particularly promising is utilising the behaviour change technique of self-monitoring (41). 

Self-monitoring has a growing base of consistent evidence demonstrating its beneficial effect, 

when in conjunction with other self-regulatory behaviour change techniques, on levels of 

physical activity and healthy eating (42). Furthermore, a recent systematic review has found 

self-monitoring to be a particularly promising intervention modality for reducing sedentary 

behaviour in adults (41). Consequently, its use as a modality for inducing beneficial changes 

on sedentary behaviour warrants further investigation.  

 

Current research grade measurement technologies do not have the ability to readily self-

monitor and provide feedback on sedentary behaviour, however, there are a plethora of new 

commercially available technologies, which can measure (with varying levels of accuracy) a 

number of both behavioural parameters, most prominent of which is step tracking, distance 

travelled and estimated caloric expenditure, and physiological parameters, such as heart rate 

and breathing rate. Furthermore, these consumer trackers have a mobile application (mobile 

app) associated with them, which are used for self-monitoring, providing feedback, goal-

setting and monitoring of progression towards goals. Moreover, mobile phones and smart 

tablets are now a pervasive accessory to a majority of individuals and consumer trackers are a 

fast and rapidly growing area of consumer electronics. Traditionally, these consumer activity 

tracker measure areas related to physical activity; however, as already alluded to, sedentary 
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behaviour is the dominant daily behaviour; it is, therefore, worthy to investigate whether 

these devices can be an appropriate intervention tool to decrease levels of sedentary 

behaviour.  

 

1.2 General Aim  

Therefore the aim of this thesis is to identify and validate technology that can self-monitor 

sedentary behaviour and to determine its ability to reduce sedentary behaviour. 
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2.1 Sedentary Behaviour  
Sedentary behaviour (from the Latin ‘sedere’ which means ‘to sit’) is defined as any waking 

behaviour characterized by an energy expenditure ≤1.5 METs (Metabolic Equivalent and is 

equal to 3.5ml/kg/minute of oxygen consumption) while in a sitting or reclining posture 

(43,44). Therefore, sedentary behaviour would not include active sitting behaviours such as 

riding a bike, since it involves an energy expenditure of over 1.5 METs. Sedentary behaviour 

has been previously conceptualised as reflecting the low end of the physical activity 

continuum (i.e. being physically inactive). However, physical inactivity is now defined as an 

individual who does not meet physical activity guidelines (e.g. in adults not meeting 150 

minutes of MVPA per week in bouts of 10 minutes or more (18) would be defined as 

inactive). Evidence is now suggesting that sedentary behaviour has quantitatively different 

effects on human metabolism and health outcomes (44–48), with these effects largely 

occurring independent of MVPA (28).  

The movement continuum, (49) illustrated in Figure 2.1, helps to conceptualise the part 

sedentary behaviour plays in our daily physical activity, theorising sedentary behaviour as 

distinct from a lack of physical activity is important due to the unique nature of sedentary 

behaviour. Approaches needed to reduce sedentary behaviour may be different to those 

designed to increase physical activity. For example, Prince et al (35) in a meta-analysis of the 

effectiveness of controlled interventions with a focus on physical activity and/or sedentary 

behaviour for reducing time spent sedentary in adults, found consistent evidence that large 

meaningful reductions in time spent sedentary can be expected from interventions with a 

focus on reducing sedentary behaviour. Those interventions with a physical activity or a 

combined physical activity and sedentary behaviour component produced less consistent 

findings and generally resulted in modest reductions in sedentary time than sedentary 

behaviour intervention in isolation (35). Given that the majority of interventions included in 

the systematic review focused on increasing physical activity (e.g. increasing MVPA) and 

reductions in sedentary behaviour were a secondary outcome, there is a scientific rationale for 

why this might be occurring. A systematic review conducted by Mansoubi and colleagues (50) 

showed that, in studies conducted using objectively measured sedentary time and physical 

activity, there were small to medium inverse associations between sedentary time and MVPA 

and medium to large inverse associations between sedentary time and light intensity physical 

activity (50). Given that light physical activity typically involves standing and light 

ambulation; these incidental behaviours tend to be more prevalent when an individual is not 
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sedentary, as opposed to moderate to vigorously active, which is likely to occur through more 

structured activity in adults. (50).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 - The Movement Continuum, illustrating the different aspects of physical 
behaviours throughout the day. Adapted from Tremblay et al (2010)  
 
2.2 Prevalence of Sedentary Behaviour 
Sedentary behaviours are a ubiquitous component of modern society. This has been 

exemplified in a study analysing five decades of energy expenditure data from the U.S. 

Bureau of Labor Statistics which found a steady shift towards more sedentary occupations 

since 1960 in the USA (51). The use of sophisticated physical activity monitors (that provides, 

valid and reliable, duration, amount, frequency and time of data on sedentary and activity 

time) in population-based studies has provided insights into how adults spend their day, and 

more specifically, the large contribution that sedentary behaviour makes to overall waking 

hours (52). For example, analysis of accelerometer data from over 600 participants (aged >20 

years) in the 2003-2006 US National Health Nutrition Examination Survey (NHANES) found 

that mean accelerometer-derived sedentary time across 10 year age categories ranged 

between 7.3 and 9.3 h/day, with older adults generally the most sedentary (31). In 

proportional terms, it can be estimated that 60-70% of adults total waking hours are spent 

sedentary (31,48). In contrast, MVPA accounted for only 5% of the total time across the 

sample, with the remainder being spent in light intensity physical activity (20). Further 

epidemiological data, using objective methods of measurement indicated that adults spend 

approximately 55-70% of their waking hours engaged in sedentary time (21,31,48,53), with 

one study reporting greater than 9 hours per day, on average, spent sedentary (54). However, 

these population studies have traditionally utilised accelerometers as their measurement 

Sleep Sedentary Behaviour  Light Activity  Moderate Physical Activity  Vigorous Physical activity  

METS - + 
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modality, which measure inactivity rather than posture. More recently, The Maastricht Study 

(55), measured the physical activity and sedentary behaviour levels of 2,449 participants 

between the ages 40-75 years using the activPAL (PAL technologies ltd, Glasgow, UK). This 

study revealed that participants spent between 58.7-63.0% of their day sitting and lying, 

providing similar prevalence levels to studies utilising accelerometers. 

Looking to the future, a study by Ng and Popkin (56) assessed time-use in physical activity 

and sedentary behaviour using detailed historical self-report data from 1965-2005 and used 

this to interpolate to 2020 and 2030. The results from their forecast suggest that time spent in 

leisure sedentary pursuits will increase to over 51 hour/week by 2030 (56). Given the high 

prevalence of this behaviour it is important to understand its relationship with health. 

 

2.3 Sedentary Behaviour and Health Outcomes 

While this is a relatively new area of health-behaviour research, compared to research 

investigating the effects of physical activity on health, the effects of prolonged sitting have 

been observed since the 1950’s. Jerry Morris’ London bus drivers and conductors study 

demonstrated that there was a two-fold increase in the risk of myocardial infarction in the 

sedentary bus drivers compared to their active conductor colleagues (57). Since its 

emergences as a distinct risk factor for chronic disease, there has been an increasing body of 

research describing the effect of sedentary behaviour on health outcomes in adults (58).  

Thorp and colleagues (59) systematically reviewed longitudinal studies (since 1996) 

reporting the relationship between self-reported sedentary behaviour and device-based 

measures of sedentary time with health-related outcomes in adults 18 years and older. The 

review identified 48 longitudinal studies; of these, 46 incorporated self-reported measures of 

total sitting time; TV viewing time only; TV viewing time and other screen-time behaviours; 

and TV viewing time plus other sedentary behaviours. The findings from this review 

indicated a consistent relationship of self-reported sedentary behaviour with mortality and 

with weight gain from childhood to the adult years. However, mixed findings were observed 

for associations with disease incidence, weight gain during adulthood, and cardio-metabolic 

risk. Of the three studies that used device based/objective measures of sedentary time, one 

study showed that markers of obesity predicted sedentary time whereas inconclusive findings 

have been observed for markers of insulin resistance (59), with similar findings being 

reported by Proper and colleagues (60) when systematically reviewing the literature on the 

relationship between sedentary behaviours and health outcomes. 



9 
 

Moreover, a systematic review and meta-analysis examining the association between 

sedentary behaviour and diabetes, cardiovascular disease and cardiovascular and all-cause 

mortality found eighteen studies (16 prospective, two cross-sectional; all self-reported 

sedentary behaviour). When comparing the greatest time spent sedentary to the lowest, there 

was a 112% increase in the relative risk (RR) of diabetes (RR: 2.12; 95%CI: 1.61, 2.78), a 

147% increase in the RR of cardiovascular events (RR: 2.47; 95% CI: 1.44, 4.24), a 90% 

increase in the risk of cardiovascular mortality (RR: 1.90; 95% CI: 1.36, 2.66) and a 49% 

increase in the risk of all-cause mortality (RR: 1.49; 95% CI: 1.14, 2.03). The effects reported 

were largely independent of MVPA, suggesting that the deleterious effects of higher levels of 

sedentary behaviour are not mediated through lower amounts of MVPA (28). Furthermore, an 

update of this systematic review published by Bauman and colleagues (29) corroborated these 

results and found that there is moderately consistent evidence for an association between total 

sitting time and all-cause mortality, even when adjusted for or stratified by self-reported 

leisure time physical activity (29). More recently, Biswas and colleagues (61) conducted a 

systematic review and meta-analysis to quantify the association between sedentary time and 

hospitalisations, all-cause mortality, cardiovascular disease, diabetes and cancer in adults 

independent of physical activity. The review found 47 articles (44 prospective designs, 46 

self-reported). Significant associations were found with all-cause mortality (HR, 1.240 [95% 

CI,1.090 to 1.410]), cardiovascular disease mortality (HR, 1.179 [CI, 1.106 to 1.257]), 

cardiovascular disease incidence (HR, 1.143 [CI, 1.002 to 1.729]), cancer mortality (HR, 

1.173 [CI, 1.108 to 1.242]), cancer incidence (HR, 1.130 [CI, 1.053 to 1.213]), and type 2 

diabetes incidence (HR, 1.910 [CI, 1.642 to 2.222]). Despite the marked heterogeneity in the 

research designs and the assessment of physical activity and sedentary time, the authors 

concluded that prolonged sedentary time was independently associated with deleterious 

health outcomes regardless of physical activity (61).  

Further research has been published on the relationship between high levels of sedentary 

behaviour and all-cause mortality. A meta-analysis looking only at the association between 

all-cause mortality and daily total sitting, it was reported that each hour of daily sitting is 

associated with an overall 2% increased risk of all-cause mortality. However, this relationship 

was nonlinear, with a 5% increased risk for each one-hour increment for adults sitting >7 

hours/day and dose response modelling suggesting a 34% higher mortality risk in adults 

sitting 10 hours/day, after taking levels of physical activity into account. The authors also 

calculated an overall weighted population attributable fraction (the proportional reduction in 
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population disease or mortality that would occur if exposure to a risk factor were reduced to 

an alternative ideal exposure scenario) for all-cause mortality for total daily sitting time of 

4.9%, after adjustment for physical activity (62). The results from these studies show 

increasing evidence of the detrimental effect of sedentary behaviour on all-cause mortality. 

Theoretically, prolonged sedentary behaviour should be related to a reduction in total energy 

expenditure, and hence might contribute to weight gain due to the energy imbalance. A 

number of cross-sectional (63–66) and large cohort (67–69) studies have shown significant 

increases in weight among those at the highest levels of sedentary behaviours. However, a 

more recent longitudinal study has shown a mixed pattern, suggesting that obesity was 

associated with subsequent sedentary behaviour, but that sitting did not show a prospective 

association with weight gain (70). Furthermore, a review into whether dietary intake is 

associated with sedentary behaviour in adults, indicated that there is a clear small-to-

moderate association with elements of a less healthy diet including lower fruit and vegetable 

consumption; higher consumption of energy-dense snacks, drinks and fast-foods; and higher 

total energy intake and sedentary behaviour (largely self-report measurement of TV viewing) 

(71), which may further contribute to the energy imbalance and subsequent weight gain.  

Sedentary behaviour has also been shown to have a relationship with various site specific 

cancers. A review of 18 articles evaluating the research on sedentary behaviour and cancer 

found a statistically significant, positive association with colorectal, endometrial, ovarian and 

prostate cancer risk (30). The review of the literature further comments on the potential 

biological pathways by which sedentary behaviour may influence site-specific cancer risk. It 

hypothesizes the role of adiposity and metabolic dysfunction as mechanisms operant in the 

association between sedentary behaviour and cancer. 

Research is further increasing concerning the possible links between sedentary behaviour and 

indices of psychological well-being. Typically, in addition to depression and cognitive 

function, these associations include generic measures of well-being, such as health-related 

quality of life. Teychenne and colleagues (13) conducted a systematic review on depression 

and sedentary behaviour in adults. Seven observational (five cross-sectional and two 

longitudinal) and four intervention studies were included. Of the observational studies, six 

out of the seven studies showed a positive association between sedentary behaviour and 

depression, showing that higher sedentary behaviour was associated with greater depression. 

The one of the seven observational studies also showed similar findings for time spent surfing 
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the internet, but reported negative associations for depression with hours spent emailing and 

using chat rooms. This suggests that the type of sedentary behaviour may be an important 

moderator of any association between sedentary behaviour and depression (13). 

A recent harmonised meta-analysis of data from more than 1 million men and women as part 

of the Lancet Physical Activity series however, found that high levels of physical activity 

(35.5 MET-h per week or approx. 60-75 of moderate intensity physical activity per day) seem 

to eliminate the increased risk of death associated with high sitting time (72). While this 

amount of physical activity is beyond the level of most physical activity recommendation, 60-

75 minutes of moderate intensity physical activity is congruent with the level of physical 

activity showing maximum mortality benefit in a large meta-analysis (73).  That said, large 

scale nationwide surveillance studies have indicated that small amounts of the population are 

meeting national physical activity guidelines (e.g. 4% women and 6% men meeting physical 

activity guidelines in England (19))  so using 60-75 minutes of moderate intensity physical 

activity per day as a public health message should be treated with caution.  

The majority of the evidence to date has focused on the link between total sedentary time 

and/or individual sedentary behaviours, in particular TV viewing, and health. However, 

emerging evidence is suggesting that the nature in which sedentary behaviour is accumulated 

may also be important. For example, it might be informative to know if periods of sitting are 

prolonged or whether they take place in a more sporadic form. Healy et al. (74) found that 

objectively assessed breaks in sedentary time were beneficially associated with waist 

circumference, BMI, triglycerides and 2-h plasma glucose, and these associations were 

independent of total sedentary time and MVPA (74). Similarly, Henson et al. (75), in a study 

of adults at risk of diabetes found that breaks in sedentary time were inversely associated 

with measures of adiposity but no other cardio-metabolic outcomes. Increasing the number of 

breaks from sedentary time may be important for health, independent of total sedentary time 

(75). Furthermore, a recent systematic review and meta-analysis aimed at investigating the 

relationship between breaks in sedentary time and cardio-metabolic health (13 studies 

included – seven observations [all objectively measured – six ActiGraph, one Actical], six 

experimental) found that breaks in sedentary time of at least light intensity physical activity 

may have a positive effect on glycaemia but not on lipidemia in adults. The results from this 

review suggests that breaking prolonged sitting with light intensity physical activity breaks 

may be adequate for counteracting some acute detrimental effects of sedentary behaviour on 

cardio-metabolic health. In contrast, the evidence from observational studies involved in this 
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review tends to suggest that there is no detrimental association of prolonged sitting on these 

same cardio-metabolic health markers. Furthermore, the observational studies found 

consistent associations were not found between breaks in sedentary behaviour and any of the 

cardio-metabolic markers other than with BMI (76). From this overview, there appears to be 

a growing wealth of evidence correlating prolonged sedentary behaviour with detrimental 

cardio-metabolic health markers, it is important therefore to have an understanding of what 

physiologically might be occurring to cause these detrimental cardio-metabolic effects. 

2.4 Physiology of Sedentary Behaviour 

There is increasing evidence surrounding the physiological mechanism underpinning the 

reasoning for sedentary behaviour being detrimental to one’s health. The current theory on 

sedentary behaviour physiology posits that the unloading of large skeletal muscles in the back, 

trunk and legs associated with sitting is thought to lead to a cascade of events, which 

consequently leads to metabolic deregulation (46). The biological plausibility for sitting and 

poor health outcomes has come from two key areas of research: bed rest studies in healthy 

human participants (77–86) and hind limb suspension in rats (45–47). 

Bed rest studies have consistently found that prolonged muscle inactivity (1-3 weeks) incurs 

a series of pathophysiological responses, including glucose intolerance and impaired lipid 

metabolism (77). Although, the physiological mechanisms remain unclear, analysis of 

skeletal muscle that have been biopsied pre and post exposure to prolonged sedentariness 

suggest a down regulation of key enzymes involved in glucose and lipid metabolism (29), in 

particular a reduced activity of GLUT4 [a glucose transporter (87,88)] and lipoprotein lipase 

[LPL – an enzyme that facilitates the uptake of free-fatty acids into skeletal muscle and 

adipose tissue (45,46)]. For example, studies in rats that have been immobilised (and not 

allowed to stand or ambulate) have shown a 22% decrease in plasma HDL cholesterol (so 

called ‘good cholesterol’ they act as cholesterol scavengers, picking up excess cholesterol in 

the blood stream and taking it to the liver where it is broken down. i.e. increased HDL = 

decreased “bad” cholesterol) on the first day of immobilisation. Furthermore, the rats’ 

quadriceps (used in postural support) lost more than 75% of their ability to siphon off the fat 

circulating in the lipoproteins from the bloodstream when incidental activity was reduced 

(47). One important factor to consider is that these studies involving bed rest and rodent 

models involved a large amount of unbroken time spent sedentary, far more than might be 

spent by healthy free-living adults, and therefore, these findings might not be wholly 
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generalisable to human physiology (29,77); however, it has been suggested that it may be a 

helpful short-term model to investigate the effects of sedentary living (78). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.2 - Theoretical model linking sedentary behaviour and health risks even in the 
presence of sufficient physical activity. Adapted from  Bauman et al (2013)  
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Figure 2.2 provides a theoretical model of how these physiological effects of 

decreasing/breaking up sitting time may happen even in the presence of meeting physical 

activity guidelines. As Figure 2.2 shows, sedentary behaviour increases muscle inactivity, 

which in turn leads to a deregulation in lipoprotein lipase activity and GLUT 4 activity 

leading to the biomarker profile of hyperglycaemia, hyperinsulinaemia and hyperlipidemia. 

As previously seen an increase in sedentary behaviour has been seen to increase the risk of 

weight gain or obesity. A study in adults conducted under the following conditions: 1) An 

active, no-sitting condition (energy intake matched to expenditure), 2) Low energy 

expenditure (sitting), with no reduction in energy intake (energy surplus) and; 3) Sitting with 

energy intake reduced to match low expenditure (energy balance), measured ghrelin (the so 

called appetite stimulating hormone) and leptin following a meal, and found ghrelin was 

lower in the sitting group compared to the standing group, with no change in appetite. When 

intake was reduced (i.e., the sitting but energy balanced group), the decrease in ghrelin when 

sitting was attenuated, hunger increased, and fullness decreased. Sitting but in energy balance 

led to an increase in ghrelin in the men but attenuated the leptin (the “satiety hormone,” used 

to help regulate energy balance by inhibiting hunger) response, reduced ghrelin, increased 

hunger, and decreased fullness in the participants. This led to the conclusion by the authors 

that prolonged sitting may promote excess energy intake through a hormonal response, 

leading to weight gain (89). 

 

Although there is some overlap in energy expenditure between sitting and standing activities, 

it is invariably true that standing activities have slightly higher energy expenditure than 

sitting activities. Indeed, when undertaking the same task, such as typing, standing will 

always have higher energy expenditure than sitting because of greater muscle activation, 

driven by posture controlling muscles (29,45,46,77). Therefore, it is plausible that over recent 

decades, the reduction in standing and light movement throughout daily living and 

occupational activities has contributed in some part to the modern obesity epidemic. It has 

been shown that the reduction in occupational energy expenditure over the last five decades 

directly maps onto the obesity epidemic in the United States (51). Others have also noted that 

the sales of energy-saving devices, which have helped facilitate increasing sedentary 

behaviour, correlated with increasing levels of obesity, whereas changes in energy intake do 

not (90). Even in today’s environment, differing occupational roles can have a substantial 

effect upon daily energy expenditure. For example, it has been hypothesised that compared 
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with a highly sedentary deskbound worker, a waiter or hospital nurse could expend up to 800 

kcal/day more (91). Even a fairly modest increase in energy expenditure of 200 kcal/day 

would equate to over 4kg of weight loss over the course of a year; assuming an unchanged 

energy intake [based on a 90kg man (92)]. 

More recently, experimental studies have begun to look at the acute physiological effects of 

sedentary behaviour in adults. One such study investigated the effects of 1 day sitting 

(17houts/day objectively assessed) on whole body insulin sensitivity with a strict diet. 

Fourteen young non-obese fit men and women completed three 24-hour conditions:  

1) An active, no-sitting condition (energy intake matched to expenditure).  

2) Low energy expenditure (sitting), with no reduction in energy intake (energy 

surplus).  

3) Sitting with energy intake reduced to match low expenditure (energy balance). 

Their findings showed that an acute bout of prolonged sitting resulted in a 31% reduction in 

insulin sensitivity. These findings were attenuated when participants undertook their 

subsequent experimental condition in which sitting was reduced and displaced with walking 

and standing (93). However, reducing energy intake to match energy expenditure during a 

prolonged bout of sedentary behaviour reduced the deleterious impact on insulin sensitivity 

by roughly 50%. 

As previously stated, the breaking up of sedentary behaviour has been shown to reduce the 

prolonged effects of sitting on cardio-metabolic health. Research into the physiological 

advantages of breaking up sitting time is now growing with studies showing that breaks in 

sedentary behaviour has beneficial cardio-metabolic effects. Dunstan et al. (58) examined the 

acute cardio-metabolic effects of breaking up sedentary behaviour; 19 middle-aged 

overweight and obese adults undertook 3 experimental conditions: 

1) Uninterrupted sitting (approximately 7 hours) 

2) Sitting interrupted with light-intensity walking every 20 minutes 

3) Sitting interrupted with moderate intensity walking every 20 minutes. 

Compared with uninterrupted sitting, plasma glucose was reduced by 23% in activity break 

conditions. Of note, there were no significant differences in plasma glucose between the light 

and moderate intensity conditions (58). These findings were corroborated in another small 

randomised controlled cross-over study (94). This study, conducted in healthy, normal weight 

adults, compared the effects of prolonged sitting (9 hours), continuous physical activity 

combined with prolonged sitting (1 × 30 minutes bout of walking) and regular light intensity 
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walking breaks on postprandial metabolism (walking for 1 minute 40 seconds every 30 

minutes). The results showed that regular activity breaks (with a 39% reduction in the 

glucose area under the postprandial curve) were more effective than continuous physical 

activity at decreasing postprandial glycaemia levels (94). This points to the added value of 

breaking up sedentary behaviour regularly throughout the day, rather than in a single bout, 

which has also been noted in other experimental (95) and epidemiological (74,75,96) studies. 

Further evidence suggests that increased standing, without walking, may have a significant 

effect on metabolic health. A randomised controlled trial examined the effect of 30 minute 

bouts of sitting and standing through the provision of sit-stand desks compared with 

prolonged sitting, on metabolic health in overweight/obese office workers during an 8-h 

working day. The glucose area under the postprandial curve was 11% lower in the sit-stand 

desk condition, although the difference in insulin failed to reach significance (97). This is 

consistent with a nonrandomised office-based study that found that glucose levels were 

reduced by 43% following an afternoon of standing compared with seated computer work 

(98). However, not all standing-based studies have yielded significant results, particularly in 

healthy, young adults (99,100).  

Saunders and colleagues (86) attempted to systematically review interventions which have 

examined the impact of uninterrupted sedentary behaviour lasting <7 days (operationally 

defined as an “acute” bout) on insulin sensitivity, glucose tolerance and lipid, glucose and 

insulin levels in adults (86). The results indicated moderate quality evidence suggesting the 

acute bouts of uninterrupted sedentary behaviour lasting 2 hours to 7 days results in rapid and 

deleterious change in triglyceride levels, insulin sensitivity, and glucose tolerance. However, 

of the 29 articles found, 21 were bed rest studies and all except one of the 29 studies had a 

study duration of less than a day. Despite the fact that prolonged period of bed rest are not 

generalisable to everyday life, the metabolic impact of prolonged bed rest has received more 

attention than the metabolic impact of prolonged sitting. Furthermore it is unclear whether 

prolonged sitting and prolonged bed rest have a comparable impact on markers of cardio-

metabolic risk (86). 

Breaks in sedentary time have further been examined in relation to a number of other 

physiological outcomes including C-reactive protein (inflammatory marker associated with 

increased risk of several major diseases, including coronary heart disease and vascular 

mortality (101,102). Inflammation may be an adjunct pathway, along with reduced muscular 



17 
 

contractions, through which prolonged sedentary time may impact on cardiovascular disease 

risk, depressive symptoms and skeletal muscle gene expression (101,102). 

More recently, a review of the prospective experimental studies regarding the beneficial 

effects of breaking up prolonged sitting time on cardiometabolic risk factors, found that 

breaking up sitting time and replacing it with light-intensity physical activity and standing 

may be a stimulus sufficient enough to induce acute favourable changes in the postprandial 

metabolic parameters in physically inactive and type 2 diabetic participants. The exact 

frequency, intensity and type of activity will differ according to different subject 

characteristics, especially with respect to subjects’ habitual physical activity with more 

intense breaks needed for healthy samples (103).  

Given these findings, it is highly likely that, accurate measurement and innovative solutions 

are needed to promote reduced sedentary behaviour, for the betterment of cardio-metabolic 

health. 

2.5 Measurement of Sedentary Behaviour  

Valid and objective measurement of sedentary behaviour is of vital importance to assess the 

interaction between sedentary behaviour and health outcomes, namely because of the inherent 

disadvantages associated with subjective forms of measurement, notably their moderate 

reliability and slight to moderate validity (104), and susceptibility to social desirability bias 

(105). Furthermore, objective measurements can be used to quantify precisely the magnitude 

of the association between behaviour and health, to describe dose-response relationships and 

to document patterns of, and changes in sedentary behaviour between individuals over time 

(104) allowing for causal associations with health outcomes to be recognised (32,106). 

However, the majority of the research on sedentary behaviour to date has largely used proxy 

or self-reported measures although an increasing number of researchers are using objective 

methods as they become more readily available. There are numerous methods used to 

measure sedentary behaviour. In order to avoid confusion, throughout this thesis sedentary 

time will be defined as measurement of time spent sedentary using accelerometers whilst 

traditionally using a cut-point of ≤100 count per minute (CPM) whereas sedentary behaviour 

will be used when measured using posture sensors and/or subjective self-reported 

assessments.  
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2.5.1 Subjective Measurement 

Questionnaires are historically the most commonly reported method of capturing sedentary 

behaviour, the majority of which are self-administered, although in-person, telephone 

interviews and diaries have also been used (107,108). To date, the majority of studies using 

self-report measures have centred on capturing daily TV viewing time as a proxy marker of 

overall sedentary behaviour (107,108). Many of the questionnaires used to capture TV 

viewing time have not reported reliability and validity data. Those that provided data in 

adults, showed that reliability coefficient were generally fair to high (test-retest r=0.32-0.93), 

but concurrent validity was highly variable (r=0.19-0.80) (107). In addition, the measurement 

of TV viewing time as an indicator of total sedentary behaviour is challenging, as this 

behaviour does not appear to be representative of overall time spent in sedentary behaviour 

(109,110). Consequently, the interpretation of overall sedentary behaviour from the 

assessment of TV viewing to make inferences should be interpreted with caution.  

 

Other self-report questionnaires have focused more on global measures of sedentary 

behaviour, such as total daily sitting time, but similarly, the measurement properties of many 

such instruments have not been adequately demonstrated (111). The international physical 

activity questionnaire (IPAQ) was designed to provide an internationally standardised method 

of measuring physical activity and sedentary behaviour in surveillance studies (112). The 

sedentary item in the IPAQ has been shown to have moderate reliability (Spearman p>0.7 for 

test –retest data) but poor to moderate convergent validity ([the extent of the agreement with 

another non-criterion measure that should assess the same physical activity or sedentary 

parameter based on face and content validity (113)] Spearman rho<0.5) when compared with 

objectively measured sedentary behaviour (112).  

 

Recent work has attempted to develop more refined measurement tools that assess multiple 

sedentary behaviours (e.g. TV viewing, reading, socializing) and/or domain-specific 

behaviours (e.g. sitting at work or at home and motorized transport) (111,114,115). These 

show promise, but further development and validation work is required. One study reported 

that when compared with accelerometer-assessed sedentary time, a single-item question 

significantly underestimated sitting time, whereas a domain-specific questionnaire, with 

multiple items, more accurately assessed average sedentary behaviour (116). However, the 

single item questionnaire had preferential limits of agreement, demonstrating smaller 

measurement error (both random and systematic), possibly because of fewer responses 
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required. This may suggest that more detailed questionnaires will be needed for sedentary 

behaviour prevalence and surveillance studies, whereas single item questionnaires may be 

more appropriate for health-related epidemiology research, where ease of use and the ability 

to rank behaviours of interest are the dominant requirements. 

 

The methodologies (e.g. recall period vs questionnaire response format) and mode of 

administration (e.g. interviewer vs self-administer) of existing self-report instruments are 

particularly diverse. Assessment of test-retest results in adults does not clearly demonstrate 

that one recall period is superior to another (104). There is evidence, however, that 

concurrent validity (assessment of convergent or criterion validity when measures taken at 

same time (113)) may be better in adults when participants recall a typical day compared with 

a 7-day recall period. However, these observations originate from studies in different 

populations and use different referent measures (107). In addition, adults appear better able to 

recall sedentary behaviour for weekdays than weekends, perhaps because of greater 

capriciousness in behavioural configurations at the weekend (111,116). 

 

The strengths of self-report questionnaires include being cost effective, readily accessible to 

the majority of the population and have a relatively low participant burden (104). Self-report 

tools can also be used to identify the type of behaviour and the context in which it occurs, 

information that may be used to inform intervention design. However, as technology 

continues to advance, global positioning systems when combined with accelerometry can 

determine where activity takes place outdoors (117), yet, as the majority of time is spent 

indoors (118,119), further technological developments such as Real Time Location Systems 

and Radio Frequency Identification can be used to provide objectively measured detailed data 

on the context (such as temporally patterned location information, which can be matched to 

objective measures of behaviour) in which behaviours occur indoors (120). 

 

An important limitation of self-report measures is that they consistently demonstrate poor 

validity (104,107). A major obstacle to establishing validity is the absence of an accepted 

‘gold standard’(i.e. most valid) reference measure of sedentary behaviour (106). The use of 

one form of self-report to validate another is inappropriate because of the problem of 

propagation of uncertainty, the hypothesis that the unique variances of the associated 

indicators overlap. In other words, the specific nature of the shared variables remains 

unknown when one self-report measure is used to validate another (104). A further limitation 



20 
 

of self-report is that they are susceptible to influence by cultural norms and perceived social 

desirability (104,105) for example, accomplishing linguistic and conceptual consistency in 

the translation of self-report tools is problematic, restricting the comparability of data 

collected in different populations who have different cultural and linguistic customs. Given 

the significant limitations of using subjective methods of quantifying sedentary behaviour, 

more accurate and objective methods have been sought (104).  

2.5.2 Objective Measurement of Sedentary Behaviour 

The use of objective measurement methods to determine levels of sedentary behaviour may 

be a relatively new area, however, the objective measurement of sitting time can be traced 

back to the late 1960’s. Bloom et al (121) used the 90P

o
P angle change at the knee that occurs 

with changes in position between sitting and standing to design a gravity-activated switch. 

The switch, after several modifications, was reduced in size making it possible to place it in a 

normal watch mechanism, which was then placed inside a watchcase. Since the switch works 

by gravity, and the position of the watch on the leg varies from person to person, an 

adjustable watch holder was made. This holder was pivot anchored to the strap band; 

therefore, once the clock is placed above the knee, the clock may be rotated in its holder to be 

certain that it stops on sitting down and starts on standing. The watch would be wound each 

time it was worn and set at 12:00. At the end of data collection, the watch was removed and 

its time would be recorded. A reading of 5:15 would indicate five hours and fifteen minutes 

of standing. Participants were fitted with the watch and readings were taken for various 

periods of time (2-35 days; 85% completed 6 days or longer). Results from the study found 

that obese participants spent 15% less time each day on their feet. The obese participants also 

spent significantly more time in bed and sitting than their lean counter-parts (121). Whilst 

this is a rudimentary method of measuring sedentary behaviour by not providing strong data 

on the temporality or intensity of behaviour, the clear advantage of using objective measures 

of behaviour should be apparent. With the advancements of technology over the last five 

decades since the Bloom and Eidex study, there are currently more novel objective measures 

of sedentary behaviour becoming available. 

2.5.2.1 - Pedometers 

Pedometers are a well-known and well-used method of physical activity measurement and 

behaviour change. Traditionally, pedometers have a lever arm that moves with each stride; 

making electrical contact compressing a piezoelectric crystal, with the electrical impulse 

generated recorded as a step. Pedometers have been used, sparingly, as a proxy measure of a 
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sedentary lifestyle, defined by Tudor-Locke and colleagues (122) as a pedometer step count 

below 5000 steps/day. However, there are a number of limitations with this method. Firstly, 

they fail to produce any information on the length of time spent sedentary. Secondly, an 

individual could be in a non-sedentary job (e.g. bar staff) and could stand for prolonged 

period of time without accruing 5000 steps a day. This could lead to a misconception as to 

whether an individual has a sedentary lifestyle or not (122). Therefore, this sedentary lifestyle 

index is more a measure of physical inactivity than sedentary behaviour, which is the main 

reason why pedometers have been used sparingly as a measure of sedentary behaviour. 

2.5.2.2 - Accelerometer 

Accelerometers are small lightweight technologies that are usually worn on an elasticated belt 

positioned on the hip or lower back, which measure the frequency and amplitude of 

acceleration at the body segment to which they are attached and often integrate this 

information in the form of movement ‘counts’ (123). They can be used to estimate the total 

amount of sedentary time through the accumulation of low movement counts at specified cut 

points. They can also be used to detect short incidental breaks in sedentary time, defined by 

periods where movement counts exceed the specified cut point threshold set for sedentary 

time, which may not be feasibly be recorded by self-report measures (74). In addition, as the 

collected information is time stamped, specific segments of the day or week can be extracted, 

such as time at work. 

 

Key issues in the use of accelerometry for the assessment of sedentary behaviour is that they 

do not measure posture, they only estimate sedentary time though lack of movement counts. 

Other issues include device initialization, post-processing, signal feature extraction and 

inference of specific outcome variables (124). There is a lack of consensus as to the most 

appropriate accelerometer data-processing protocol, restricting the comparability between 

studies and obstructing evidence synthesis. Nevertheless, accelerometers are now being used 

to assess sedentary time in research studies.  

 

Previously, it was necessary to specify the sampling frequency (epoch) during device 

initialization, but in newer accelerometer modes that record raw accelerometer data, the 

epoch is overlaid during post-processing. A significant effect of epoch length on 

accelerometer determined sedentary time has been reported, but findings are inconsistent and 

the most appropriate sampling frequency for determining sedentary time has yet to be 
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established (125,126). In general, however, it is beneficial for researchers to collect data in as 

short an epoch as possible, as this provides information on exposure at the highest possible 

resolution. Furthermore, data collected in shorter epochs can be summed into longer epochs, 

facilitating the process of directly comparing findings across studies. Importantly, data 

collected using longer epochs cannot be subdivided into short time frames. In the absence of 

a consensus regarding ideal epoch length, data collection using the smallest possible epoch, 

although potentially leading to the requirement of supplementary data processing procedures, 

allows for data to be re-integrated and compared between studies that would not otherwise be 

possible. 

 

The monitoring period for accelerometer-based assessments of sedentary time has typically 

been seven days (31,127,128) with participants included in subsequent analysis if they 

provided data for at least 3-5 days usually including at least one weekend day. However, 

Matthews et al. (129) recommend that at least 7 days of monitoring may be required to obtain 

reliable estimates of habitual time spent inactive by adults.(129).  

 

In studies with adults, a minimum of 10 hours of wear time has typically been required 

(31,127,130). Identification of non-wear time is typically conducted by selecting a period of 

consecutive zero counts about which it is deemed that the device must have been removed. 

These segments of zero counts are then removed from further analysis. In studies concerned 

with estimating sedentary time, non-wear criteria have varied from 10 to 60 minutes of 

consecutive counts (31). Using strings of zero counts to indicate non-wear time, however, this 

is problematic because a continuous zero reading may occur during periods of sedentary 

behaviour (131). Continuous zero counts may be recorded when a participant is sitting or 

lying still (while wearing the device), potentially resulting in the erroneous removal of 

sedentary time data because of misclassification as non-wear time. Improved methods of 

identifying non-wear time are therefore needed. One possible solution is to combine motion 

sensing with physiological assessments (such as heart rate (HR) (132), wherein the absence 

of physiological data may be used to signify non-wear time. Another potential solution is for 

devices to develop an electronic log of non-wear within the data stream.  

 

ActiGraph (ActiGraph LLC, Pensacola, FL) and Actical accelerometers [(Respironics, 

Philips, N.V.) (uniaxial models)] defined sedentary time commonly using a count threshold 

of <100 counts per minute (CPM) in adults (31,48,127,133). However, despite the 
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widespread use of this cut point, this value was not empirically derived, and studies reporting 

the validity of this cut point in adults are limited (31,134). Kozey-Keadle and colleagues (134) 

assessed the criterion validity (the extent of the agreement between a measure and another 

already held as being a standard) of a number of ActiGraph GT3X cut points (50, 100, 150, 

200 and 250 CPM) for defining sedentary time against direct observation in a small sample of 

adults (n=20). Findings indicated that the ActiGraph 100 CPM cut point underestimated 

sedentary time by 4.9%. The cut point with the lowest bias was 150 CPM, which 

overestimated sedentary time by 1.8%. Another study investigated sedentary behaviour cut 

points for the Actical accelerometer (hip mounted), using the activPAL (thigh mounted; PAL 

technologies Ltd, Glasgow, UK) device as the criterion measure. It was concluded that a 

threshold of 0 counts/15s epoch provided the most accurate estimates of sedentary time. 

However, recognising the potential difficulties a zero-count cut point would raise in terms of 

distinguishing non-wear time, the authors recommend a threshold of 0-5 counts/15s epoch 

during the period when the device can be deemed to have been worn (135). However, the 

most common method of determining sedentary time using accelerometers is still the <100 

CPM cut point. 

 

A key limitation of traditional (count based) accelerometers as a measure of sedentary 

behaviour is that they assess intensity of movement and thus are less able to distinguish 

between postures, such as sitting and lying or standing still. Consequently, periods of 

standing still may be misclassified as sedentary behaviour and vice versa (116,136). Newer 

models of the ActiGraph include an inclinometer function, which classifies participant’s 

posture into four categories (device removed, standing, lying, and sitting). Preliminary 

evidence, however, indicated that the validity of this function is limited and may be 

influenced by point of attachment (137). Furthermore, a recent study in adults reported 

excellent accuracy for the ActiGraph GT3X+ (attached to the thigh) when classifying sitting, 

standing and stepping (the majority of the activities were correctly classified more than 90% 

of the time for both monitors) during a laboratory-based protocol (138). In addition, the 

ActiGraph (attached to the thigh) provided similar estimates of sedentary time compared to 

the activPAL (64% versus 62%) under free-living conditions (138). Carr and Mahar (139) 

reported that the hip-based ActiGraph correctly classified 90% of time spent sedentary 

(defined as sitting and standing still) when using ≤150 CPM. However, the ActiGraph 

inclinometer function was less accurate in determining posture, classifying less than 70% of 

the time correctly as sitting, standing, or walking (139), providing further evidence of a point 
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of attachment influence on the validity of the inclinometer function in the ActiGraph. 

However, it may not be pragmatic to have participants wear the ActiGraph at the thigh for 

prolonged periods of time. 

2.5.2.3 – Heart Rate and Accelerometry 

The assessment HR  as a method for the studying of behaviour has a long history (140,141). 

Most epidemiological efforts, however, have concentrated on estimating total energy 

expenditure or time spent at moderate to vigorous intensity level, typically using the flex-

heart rate (flex-hr) method (142). The individually established flex-hr point (a discriminatory 

threshold between rest and exercise) determines when data from free-living behaviour are 

translated as energy expenditure at rest or according to an established regression line from an 

exercise test. In free-living conditions, it has been shown that most time is spent below the 

flex-hr point (143). Subsequently, time below flex-hr has been used to estimate sedentary 

time and furthermore it has been found to be associated with insulin resistance (144). This 

measure of sedentary time generally has high specificity but low sensitivity (104). 

 

Several studies have investigated the utility of combined HR and movement sensing to 

accurately assess physiological intensity across a wide range of behaviours (145–148). 

Defining sedentary behaviour in caloric terms (e.g. time spent at 1.5 METS or below) enables 

sedentary outcome variables to be derived from these methods. Combining accelerometry 

with heart-rate could be used to increase the accuracy of behavioural measurements above 

just accelerometry alone. This can be achieved by using the combination of the 

biomechanical and physiological information to determine whether the monitors have been 

worn. 

2.5.2.4 – Posture Sensors 

The activPAL is a small lightweight electronic device worn under clothing, attached directly 

to the skin on the midline of the anterior aspect of the thigh. The activPAL determines 

posture on the basis of thigh acceleration, including the gravitational component and uses 

proprietary algorithms to classify time as sitting/lying, standing or stepping. Information on 

cadence, number of steps taken, sit-to-stand and stand-to-sit transitions and estimates of 

energy expenditure are also provided (104).  

 

The activPAL has been shown to be a reliable and valid measure of step counts in adults 

(149–154). However, relatively few studies have explored the criterion validity of the 
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activPAL for measuring sedentary behaviour (134,136,155). In one validation study, a mean 

percentage difference of 0.19% (limits of agreement: -0.68% to 1.06%) between the 

activPAL monitor and direct observation for total time spent sitting was reported (155). More 

recently, Kozey-Keadle and colleagues (134) examined the validity of the activPAL in 

assessing sedentary behaviour and detecting reductions in sitting. The activPAL output was 

highly correlated with direct observation (rP

2
P=0.94) and accurately identified investigator 

manipulated reduction in sitting time. These studies provide promising preliminary evidence 

that the activPAL may be a valid tool for the assessment of sedentary behaviour in adults 

(134). Similar to other accelerometer-based methods, the activPAL does not provide 

information on the type of behaviour being undertaken or the social or environmental context 

in which it occurs. 

 

More recently, a new method of distinguishing posture is using a pressure sensor placed 

either in a foot-based monitor or in a seated cushion. The foot-based sensor typically utilises 

a combination of discrete resistive pressure sensors in combination with a triaxial 

accelerometer to provide raw sensor data to be analysed by proprietary algorithms and 

software. This software is used to identify specific postures and activities such as sitting, 

standing, walking, running, cycling and stair climbing, with an average of 98% accuracy. 

Energy expenditure was also determined with better than 95% accuracy (156–158). The 

technology can then be embedded in an insole of a shoe or even into the fabric of socks with 

a smartphone based biofeedback and coaching application also available. 

 

The seat-based sensor comprises a cushion containing a medical grade pressure sensor which 

acts as a switch to detect transitions of greater than three seconds to and from the seat and 

typically a microcontroller which records a time stamp for each transition. Data tends to be 

downloaded either using proprietary software packages or to a smartphone app for data-

analysis and feedback. For such a device like the one described here, the smallest mean 

difference, compared with direct observation, for sitting time and transitions was 0.30 ± 0.21 

minutes and –0.46 ± 0.78 respectfully. During free-living, both the cushion sensor compared 

to the activPAL (set to record events greater than 3 seconds) showed excellent levels of 

agreement with direct observation for sitting time (0.999 and 0.990 respectively) and 

transitions (0.997 and 0.928 respectively). (159). 
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Whilst these two methods to measuring sedentary time might be novel, their feasibility to be 

used to measure sedentary behaviour for prolonged periods in a free-living setting has yet to 

be tested. Logically, their utility as measures of sedentary behaviour is most certainly going 

to be hampered by the fact that when sitting in numerous different locales over the course of 

the day individuals will require several of the seat-based sensors to capture all the different 

seated areas. As for the foot-based pressure sensor, unless participants were willing to use the 

same pair of shoes or purchase numerous pairs, it is unlikely that the shoe-based method is an 

appropriate tool for sedentary behaviour for use across prolonged periods of time (e.g. weeks) 

2.5.2.5 – Multi-unit Sensors  

The utility of multi-site/multi-sensor devices has been examined widely in the clinical setting 

[e.g. mobility assessment in older adults (160)], but their potential in other study types (e.g. 

interventions and epidemiological studies) is largely unknown. Typically, these devices use 

multiple accelerometers, inclinometers or physiological sensors attached at various points on 

the body. Sensor signals are then integrated to enable classification of different postures and 

types of movement. A number of such devices have been developed and examined for their 

accuracy in detecting posture and activity (both activity type and energy expenditure) in 

controlled laboratory settings (161–166). However, the validity and feasibility of using these 

devices under free-living conditions has not been comprehensively tested. Limitations in 

battery and memory capacity and the computational and analytical complexity associated 

with processing multi-unit sensor data also limits their applicability in a free-living setting. 

Furthermore, wearing multi-site sensors will increase the level of participant burden. 

 

These devices may, however, be valuable as criterion measures in the validation of other 

sedentary behaviour measurement tools. For example, the Intelligent Device for energy 

Expenditure and Activity (IDEEA; MiniSun, Fresno, CA, USA) has demonstrated 98% 

accuracy in classifying 32 different types of activity and postures under laboratory conditions 

(161). Matthews et al (31) reported data from a small unpublished data set, which was 

conducted as part of their research in which the convergent validity of the ActiGraph 7164 

100 CPM cut point for sedentary behaviour was compared against the IDEEA monitor in 19 

free-living adults. The ActiGraph and IDEEA monitors displayed similar values for time 

spent sedentary (8.63 and 8.53 hours/day, respectively), there was a moderate association 

between the two devices (r=0.59) (31).  
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2.5.2.6 – New and Emerging Technologies 

Moore’s law (167) continues to predict with some accuracy that electronic devices will 

become smaller, more sophisticated and cheaper every 12-24 months. Technology for data 

capture, processing and storage often outpaces our ability to describe it in the scientific 

literature. It is also highly feasible that disposable omnidirectional accelerometers with 

inclinometric or gyroscopic capabilities will soon cost less than printing, sending, collecting 

and entering paper surveys (104). Because of this rapid innovation, new commercially 

available technologies to assess and track behaviour are proliferating. Corporations such as 

Fitbit (Fitbit, Inc, San Francisco, CA) , Jawbone (Jawbone, San Francisco, CA), and Misfit 

Shine (Misfit, Inc, San Francisco, CA) are at the forefront of this market, with wearable 

technology recognised as a leading technological trend in 2014/15 by many technological 

commentators and experts (168). 

 

A major decision made by commercial users will concern the accuracy of the device verses 

the interface and usability of the device. Researchers are often concerned with evaluating the 

accuracy of the device whereas users are often more interested in the perceived usefulness 

and ease of use of the technology. Both these components could be highly related to wear 

compliance. To date, there is limited scientific research regarding the reliability and validity 

of these commercially available activity monitors as a measure of physical activity and 

sedentary behaviour. Furthermore, the research is limited to their use as measures of time 

spent physically active and not time spent sedentary (169).  

 

To date, the Fitbit devices have received the majority of attention, with a number of studies 

scrutinising the validity of various outputs (170–179). Dannecker and colleagues (158) 

examined the ability of the original Fitbit (now superseded by a number of FitBit iterations) 

to measure active energy expenditure among 19 healthy young adults, and found that it 

underestimated 4-hour energy expenditure by 28% compared with indirect calorimetry (a 

criterion energy expenditure measure). More recently, Takacs and colleagues (170) examined 

the ability of the Fitbit “One” to count steps during treadmill walking among 30 healthy 

adults. Participants ambulated at five different speeds for five minutes at each speed, wearing 

three Fitbit devices (at each hip and in the front pocket of the dominant side). Using direct 

observation as the criterion, excellent validity (0.97-1.00) and inter-device reliability (99% 

agreement) were reported, regardless of walking speed or device wear site.  
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Given the large number of activity monitors now commercially available, methodologies 

which evaluate them simultaneously are required in order to determine the relative utility of 

these devices in comparison to both their commercial and research counterparts. A recent 

study compared the validity of the Fitbit Ultra (now superseded), Nike Fuelband and a 

traditional pedometer (Yamax SW-701) in people with stroke and traumatic brain injury (n = 

50) during a two minute walk test. It was found that the Fitbit Ultra was the most accurate 

device (95% agreement with direct observation), followed by the Yamax (85%), and the Nike 

Fuelband (66% accuracy), highlighting that validity in wearable technologies can vary widely 

(180). Lee, Kim and Welk (181) also examined the validity of eight consumer-level devices 

for estimating energy expenditure in healthy young adults (n = 60). During a 69 minute 

protocol in a laboratory setting, the consumer-level devices were compared against an 

indirect calorimetry criterion. The devices were ranked based on percent accuracy, as follows: 

BodyMedia FIT (90.7% accuracy), Fitbit Zip (89.9%), Fitbit One (89.6%), Jawbone UP 

(87.8%), ActiGraph GT3X (87.4%), DirectLife (87.2%), Nike Fuelband (87%) and Basis BI 

Band (76.5%). To date, it appears that no studies have scrutinised a large number of devices 

simultaneously for other variables provided by the devices (e.g. sleep time and MVPA), and 

very few studies thus far have examined the devices in free-living conditions. 

 

Many consumer-level devices have displays (usually LED/LCD) for immediate feedback and 

associated mobile and internet-based applications, providing users with feedback on a variety 

of metrics including (but not limited to) step count, calories burned, stairs climbed, distance 

travelled, active time and sleep. Some devices also offer the ability to interact with other 

users via online social networks and platforms which has been shown to have potential 

positive benefits for health behaviour change (182). Several manufacturers claim their 

devices accurately capture physical cactivity levels whilst worn on various body sites (e.g. 

Misfit Shine can be worn on a necklace, wrist band, bra or waist band). Furthermore, such 

devices typically cost 50-100 US dollars, making them considerably cheaper than research-

grade activity monitors Considering these features and their agile nature, consumer-level 

activity monitors, coupled with smartphone technology, have vast potential to enhance user 

experience and utility (183).  

 

These devices, however, have been created for the consumer market, battery life is a key 

component to allow for prolonged usage without the need to recharge. Because of this, 

compromises have needed to be made elsewhere, mainly in sampling frequency. 
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Traditionally, research grade accelerometers can measure acceleration at hertz level 

frequency, sometimes in excess of 100Hz. Whilst consumer activity trackers do also measure 

acceleration at hertz level frequencies, they do not make this readily available, as the data 

needs to be aggregated to minute level data to be transferred to the phone app via Bluetooth. 

This might have ramifications in terms of the level of acuity gained from higher resolution 

sampling frequency data. Furthermore, wearable technology traditionally connects to a 

mobile phone application for data feedback, which means that (depending on the device) the 

raw data are not available to the user.  

 

The current method of objectively measuring sedentary behaviour is utilising research grade 

accelerometers and posture sensors. However, the priorities of the manufacturer of these 

research devices is not participant comfort or providing immediate feedback, instead they 

prioritise high resolution data collection, therefore reducing their ability to be used as an 

effective behaviour change tool. The current consumer electronic realm has manufacturers 

attempting to reach a compromise between high resolution data collection and the ability to 

provide immediate feedback to the wearer (something that is important to the consumer). 

Furthermore, due to the inherent ability of these devices to self-monitor and provide feedback, 

they provide a unique opportunity to be deployed as intervention modalities for behaviour 

change in reducing sedentary behaviour. 

 

2.6 Health Behaviour Change 

Understanding how behaviours are effected by different behaviour change techniques is 

important in developing interventions (184–186). Altering the incidence of any particular 

behaviour requires a change in their capability, motivation or opportunity to engage in the 

behaviour (185,187,188). Capability refers to the psychological and physical abilities to 

perform behaviour, and includes knowledge and skills. Motivation involves all the processes 

that energise and direct behaviour, including not just goals, plans and beliefs but also 

‘automatic’ processes involving emotions, habits and impulses. And finally, opportunity 

involves all factors that are external to the individual that may influence engagement with an 

activity, ranging from the physical environments in which people spend time to the social 

cultural influences that dictates how we perceive and think about behaviour change 

interventions. It is important for designers of interventions to understand how these factors of 

capability, motivation and opportunity vary as a function of particular behaviours, target 

populations and contexts (185,189–191). 
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There is growing recognition that attempts to change behaviour should draw on theories of 

behaviour and behaviour change. In the United Kingdom, the Medical Research Council 

recommends beginning the development of any complex intervention by identifying relevant 

theories to advance an understanding of the likely process of change before conducting any 

exploratory piloting and formal testing (192–194). However, there is also a legitimate 

question as to how far explicit use of theory promotes the design of effective behaviour 

change interventions. In fact, interventions that have purportedly been informed by theory 

have not necessarily been found to be more effective than those that have not. Some reviews 

have found a positive association (191,195–198), but others have found no association, or, 

even a negative association (199). Some reviews have reported a mixture depending on the 

measure of effectiveness (200,201). 

 

One factor that may contribute to this mixed picture is the way the theory has been used as a 

stepping off point for ideas versus being used in a systematic manner to develop intervention 

content. Unfortunately, it has been found that the reported use of theory in intervention 

design is generally inadequate. Another crucial factor is the choice of appropriate theory. For 

example, if behaviour is fundamentally under influence of habitual or emotional factors then 

a theory that focuses exclusively on beliefs and reflective thought processes may not be 

appropriate when informing intervention design.  

 

2.6.1 Behaviour Change Techniques and Their Associated Theory 

In order to improve the effectiveness of interventions to change behaviour, such as physical 

activity and/or sedentary behaviour, it is necessary to replicate and accumulate evidence 

across empirical studies. This is not straightforward, as interventions to change health-related 

behaviours are usually complex, comprising many, often interacting components (194). 

Systematic reviews of the effects of physical activity interventions on behaviour or health 

outcomes often conclude that both the interventions as well as the effect sizes are extremely 

heterogeneous (202–204). While some interventions are indeed highly effective in changing 

behaviour and relevant health outcomes, others fail to achieve such effects. Replication, 

accumulation and application of evidence depend on the ability to reliably specify the details 

of intervention content both for primary research and for secondary evidence syntheses.  
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Michie and colleagues (205) believed that the current reporting of interventions in published 

evaluations fell short of the detail required for reliably identifying intervention content 

(42,206,207) and hence they limit the possibility of identifying the effective components 

within interventions (42). Reporting of intervention content is often brief and imprecise with 

interventions being broadly characterised as, for example, ‘behavioural counselling’, 

‘cognitive behavioural therapy’ or ‘motivational strategies’. In some cases, reporting does not 

mention content but, instead, describes mode of intervention delivery such as ‘face to face’ or 

‘telephone delivered’ or in terms of number of intervention sessions. Where details of 

intervention content is provided, such as in published intervention protocols, terminology is 

variable across intervention descriptions; the same label may be applied to different 

behaviour change techniques or different levels applied to the same technique. An example of 

the former is ‘behavioural counselling’ described both as ‘educating patients about the 

benefits of lifestyle change, encouraging them, and suggesting what change could be made’ 

and ‘feedback on self-monitoring record, reinforcement, recommendations for change, 

answers to questions, and general support’. Therefore, standardised definitions of techniques 

were required. In an attempt to improve the reporting of use of theory in intervention design, 

a 19 item ‘Theory Coding Scheme’ has been developed (208). The scheme assesses whether 

theory was mentioned, how theory was used in intervention development, whether theory had 

an indirect influence on an intervention, how theory was used to explain intervention effects 

on outcomes and the implications for future theory development. This initiative created the 

‘Taxonomy of Behaviour Change’ which describes 93 behaviour change techniques (209).   

 

Michie and colleagues (42) then applied this taxonomy of behaviour change techniques to 

assess the effectiveness of behaviour change interventions designed to promote physical 

activity and healthy eating and investigate whether theoretically-specified behaviour change 

techniques improve outcomes. Active behaviour change interventions were only included, 

instead of both active and/or passive intervention techniques because active behaviour change 

techniques have been found to be more effective than passive interventions in other areas and, 

because of the sustained behaviour change necessary to translate dietary and physical activity 

in health benefits, self-regulatory processes are likely to be central to health-enhancing 

change (42). Moderator analysis, using both univariate and multivariate meta-regression, 

revealed that the number of theoretically-derived self-regulation techniques, in particular self-

monitoring of behaviour was associated with improved effectiveness. Furthermore, 

interventions combining self-monitoring with one or more of four other self-regulation 
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techniques, namely, prompting intention formation or goal setting, specifying goals in 

relation to particular contextualized actions, providing feedback on performance and 

reviewing previously-set goals in light of that feedback were significantly more effective than 

interventions not including self-monitoring and one other self-regulatory techniques from 

Control theory (pooled effect sizes for healthy eating: 0.54 versus 0.24; physical activity: 

0.38 vs. 0.27; all interventions: 0.42 vs. 0.26) (42). Additionally, a further meta-regression 

investigating behavioural change interventions for obese adults with additional risk factors or 

co-morbidities, found self-monitoring to be a significant moderator of intervention 

effectiveness on weight (210). 

  

The most well-known objective measurement of self-monitoring physical activity is the use 

of the pedometer. A systematic review to evaluate the association of pedometer use with 

physical activity and health outcomes among outpatients revealed pedometer users increased 

their physical activity by 26.9% over baseline. Furthermore, when all studies were combined, 

pedometer users significantly decreased their body mass index by 0.38 kg/mP

2
P (95% CI, 0.05-

0.72; P = .03). Intervention participants also significantly decreased their systolic blood 

pressure by 3.8 mm Hg (95% CI, 1.7-5.9 mm Hg, P < .001) (211). The basic premise 

underlying the use of pedometers to increase physical activity is that the immediate visual 

feedback of cumulative step counts increases individual’s awareness of how their personal 

behavioural choice affects their physical activity. Used as part of a guide and repetitive self-

monitoring, feedback and goal-setting process, the pedometer is able to provide up-to-the-

minute information which can be used to adjust these behavioural choices to achieve physical 

activity objectives. 

 

The focus, however, of this thesis surrounds how sedentary behaviour can be influenced by 

self-monitoring. Gardner and colleagues (41) reviewed interventions to reduce sedentary 

behaviour and the behaviour change techniques that they used within the interventions. 

Interventions which used self-monitoring (n=15; of which n=13 used a self-reported measure 

of sedentary behaviour) were defined as “particularly promising” behaviour change 

techniques, with a promise ratio (metric devised as a measure of the behaviour change 

techniques contribution to the intervention promise) of 4.0, which was the highest promise 

ratio of all behaviour change techniques investigated (41). There is a logical basis for these 

findings. Interventions have been found to be more effective if they involve techniques that 

behaviour change theory predicts would act synergistically. Carver and Scheier’s Control 
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Theory (212) specifies action control processes underpinning behaviour regulation. The 

theory proposes that setting goals, monitoring behaviour, receiving feedback and reviewing 

relevant goals in the light of feedback are central to self-management and behavioural control. 

 

The accuracy with which self-monitoring is effective is dependent on the schedule of which 

the behaviour is monitored, the competitions from concurrent responses, and the valences of 

the target behaviour  (213–215). Thus there are restrictions on the use of self-monitoring 

when precise numerical data about target behaviour are required. However, if certain 

conditions are met, self-monitoring data can still be used to provide estimates of behaviour or 

to monitor relative change in behaviour over time. Self-monitoring also serves as a number of 

functions that do not require absolute accuracy in recording. Self-monitoring can be used to 

obtain qualitative information that is relevant to diagnosis and treatment planning. For 

example, participants might self-monitor the antecedents and consequences of a target 

behaviour or to record their emotional states while engaging in the behaviour. Self-

monitoring can also serve to increase participant’s motivation for change. Baseline data, 

collected before treatment implementation, can provide an incentive for future change. Later 

in the intervention, the achievement of a criterion can be graphically displayed and can 

provide a visual guide for the administration of reinforcement (216). Self-monitoring is 

closely related to two linked psychological theories: Control Theory and Self-Regulation 

Theory. These are discussed below and examples are provided with how these theories can be 

used.  

 

2.6.1.1 Control Theory 
Control theory aims to provide a model of human functioning and behavioural regulation, 

explaining people’s moment to moment actions, behaviour change and maintenance of 

physical health. The core component of the theory is a negative feedback loop, which 

functions to reduce or eliminate perceived discrepancies between current behaviour and a 

comparison value (such as a goal behaviour state). 

 

A person perceives their current condition via an input function (e.g. pedometer determined 

step count) and compares that perception against a particular standard (e.g. 10,000 steps goal) 

through a mechanism termed a comparator. If the person perceives a difference between their 

current condition and the reference value they attempt to reduce the discrepancy by 

performing a behaviour (termed output function – e.g. increase their step count). Performance 
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of the behaviour, in turn, has an impact on the environment, thus leading to changes in a 

person’s perceptions of their current condition, and a new comparison with the reference 

value, and so on. Behaviour is governed by a closed loop of control which continuously 

functions to minimise discrepancies between a person’s current situation and a particular 

standard of comparison. 

 

There are two further influences on behaviour that are external to this closed loop. The first is 

disturbance, which refers to factors external to the system affecting a person’s current 

condition. Disturbance does not affect the components of the model directly. However, it can 

modify perceptions entering the system via input function and lead to increased or decreased 

discrepancy from the standard. The second factor is the desired condition or comparison 

standard that is external to the closed loop, and is termed the reference value. The reference 

value arises from a hierarchy of systems of interconnected feedback loops. Each of these 

relates to superordinate (at the higher end of the hierarchy) or subordinate (at the lower end of 

the hierarchy) goals, where achievement of subordinate goals is necessary for the attainment 

of superordinate goal. The reference values for each level of control are set by the level above 

and at the highest level the reference value is derived from prior knowledge and experience. 

See Figure 2.3 for a diagrammatical representation of Control theory. 
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Figure 2.3 – Control theory’s negative feedback loop. Adapted from Carver and Scheier (1982) 

Comparator 
(e.g. Less 2,500 steps) 

Reference Value 
(e.g. 10,000 steps) 

Impact on Environment 
(e.g. Increase step count – to new Input Function) 

Output Function (Behaviour)  
(e.g. Decide to increase steps) 

Input Function (Perception) 
(e.g. 7,500 steps) 

Disturbance 
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2.6.1.2 Self-regulation theory 
Self-Regulation Theory proposes that behaviour is determined by three sources of control: a 

person’s immediate environment, their biological systems and cues (arising from the person’s 

cognitive and behavioural goals). These three factors interact to determine behaviour with the 

relative importance of each changing at different times and in different contexts [e.g. sitting 

behaviour might be primarily controlled by the biological system (need to sit for rest) at one 

point, but at another, environmental facts (such as the comfortable chair being in the vicinity) 

might become important]. According to the theory, adequate self-regulation can reduce the 

influence of fluctuations in biological and environmental factors upon behaviour, allowing 

for a more consistent pursuit of personally set goals over time and across contexts. 

 

The theory is based upon the assumption that everyday behaviour consists of chains of 

behavioural responses, where each response is cued by the preceding response until an 

activity (e.g. driving to work) is completed. Such behavioural sequences relate to a mode of 

cognitive processing termed automatic processing. Self-regulation processes apply other 

cases – such as where learned behaviour chains are not available, are interrupted or become 

ineffective, or where choices between alternative responses need to be made. These self-

regulation processes involve a qualitatively different mode of cognitive processing: 

controlled processing. Controlled processing requires continuous decision-making between 

response alternatives and attentional focus.  

 

The self-regulation process first involves a self-monitoring stage, in which a person closely 

and deliberately monitors their own behaviour. Through past experience, people will develop 

expectations about acceptable behaviour within the relevant domain (e.g. a person self-

monitoring their time spent sitting). These expectations form standards by which a person can 

judge their own behaviour. In the second stage, which is termed the self-evaluation stage, a 

person makes a comparison between the information about their own behaviour gathered 

during the self-monitoring stage and the standards for that behaviour. If self-monitoring has 

been insufficient or inaccurate, or if standards are unrealistic or poorly defined, effective self-

regulation will be undermined at this stage. The third stage of self-reinforcement involves a 

person’s reaction to the information gained during the self-evaluation stage, specifically their 

cognitive and emotional reactions of satisfaction or dissatisfaction thereby serving a 

motivational purpose. If a person notices no discrepancy between the standard and their own 
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behaviour (or if their behaviour exceeds the standard), they will not be motivated to change 

their behaviour. However, if their behaviour falls short of the standard, the resultant 

dissatisfaction will result in attempt to change behaviour. During these attempts the self-

regulation process is repeated until the standard is met or until efforts to change behaviour are 

abandoned. In cases where behaviour falls short of the standard and discrepancies are very 

large or are reacted to with self-punishment, the resultant emotions could lead to motivation 

to avoid rather than motivation to change behaviour (216). See Figure 2.4 for a 

diagrammatical representation of Self-regulation theory.  

 

 
Figure 2.4 – Self-Regulation Model Kanfer (1991) 
Note: Self-monitoring stage – person closely and deliberately monitors their own behaviours, self-evaluation 
stage where a person makes a comparison between the information about their own behaviour from the self-
monitoring phases and the self –reinforcement involves a person’s reaction to the information gathered in the 
self-evaluation stage; Perf = performance Kanfer (1991) 

 

The resemblance between these ideas should be evident. The processes themselves are nearly 

identical; the existence of a reference value, the self-reflective comparison between that value 

and one’s present state and the attempt to match the one with the other. Both these theories 
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discuss the process of self-regulation as involving self-imposition of behavioural standards, 

observations of one’s own actions (i.e. self-monitoring), and evaluation of the actions by 

comparing them with the standards. In addition, both discuss the importance of the person’s 

expectancies of being able or unable to alter behaviour in the direction of the standard, 

viewing them as critical determinants of whether the person continues to strive or gives up 

the attempt. The importance of expectancies in the behaviour change process has also been 

verified empirically (217,218). Whilst self-monitoring of sedentary behaviour is possible, 

there are no real standards [apart from the recent Canadian guidelines (219)] that can be 

employed. However, the use of prompts or cues to alert people to prolonged bouts of 

sedentary behaviour will help individuals to keep track of their behaviour and make the 

appropriate evaluations of their actions. 

 

2.7 Sedentary Behaviour Interventions in Adults 

The majority of previous sedentary behaviour interventions have focused on reducing the 

behaviour in children and adolescents (220). However, there is a growing breadth of literature 

on interventions attempting to reduce sedentary behaviour in adults (34,41),  but these are 

mostly small scale studies (221). Early interventions that have been suggested to change 

sedentary behaviour were most often physical activity interventions that assessed sedentary 

behaviour as a secondary outcome. For example, Chau et al. (222) conducted a systematic 

review on interventions to reduce sitting in the workplace. They included six studies in the 

review and found no evidence for intervention effectiveness as far as reducing sedentary 

behaviour was concerned. This finding is perhaps unsurprising given that all of the included 

studies were designed to increase physical activity and did not have a clear focus on 

sedentary behaviour reduction. In addition, the studies relied on self-reported measures of 

sedentary or sitting behaviour, of which only one specifically assessed occupational sitting 

(222).  

 

More recently, studies have used a variety of approaches to target sedentary behaviour more 

directly and these provide better evidence on whether changing sedentary behaviour is 

possible and, if so, what are likely to be effective strategies, with the majority of these studies 

having been focused on office workplaces. A pilot quasi-experimental control study 

conducted on 18 adult office workers (aged 20-65 years) in Australia aimed to examine the 

efficacy of an intervention to reduce office workers’ sitting time using commercially 

available sit-stand workstations. Intervention efficiacy was determined by change in time 
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spent sitting, standing, and stepping at the workplace and during all waking time from 

baseline to 1 week and 3 months. Sedentary behaviour was objectively measured using the 

activPAL. Changes in fasting cholesterol, high density lipoprotein, triglycerides, and glucose 

levels were also assessed from baseline to 3 months. The intervention group reduced sitting 

time following one week by 143 minutes/day at the workplace and 97 minutes/day during 

waking time and these effects were maintained over the three month period. The intervention 

group saw significantly increased HDL cholesterol, however, no significant difference were 

observed in other biomarkers (223).  

 

Another randomised controlled trial intervention, again in an office/workplace setting in the 

UK investigated the effects of point of choice prompting software on work computers, to 

reduce long uninterrupted sedentary periods and total sedentary time at work. The software 

reminded the participants to stand every 30 minutes during the 5-workday intervention period. 

An advice window reminding participants to take a break appeared on the monitor, for 1 

minute every 30 minutes from the time the PC was switched on. Sedentary behaviour was 

measured using the activPAL. The results indicated that there was a reduction in the number 

and duration of sedentary bouts at work during the intervention phase compared to that at 

baseline. However, there were no significant differences in total sedentary behaviour between 

the control and the intervention group (224), suggesting a compensatory effect happening 

outside the workplace. A limitation of this study is the lack of information on the time 

participants spent at their PC. For example, the software would prompt the participant to 

stand every 30 minutes. However, this would not take into account whether the person might 

have been standing under their own volition at or away from their desk.  

 

More recently Healy and colleagues (225) published data on reducing sitting time in office 

workers using a multicomponent intervention (225). The intervention emphasised three key 

messages: “Stand Up, Sit Less, Move More” and comprised organisational, environmental 

and individual elements. Relative to the controls, the intervention group significantly reduced 

workplace sitting time (mean change [95%CI]: −125 [−161, −89] min/8-h workday), with 

changes primarily driven by a reduction in prolonged sitting time (−73 [−108, −40] min/8-h 

workday). Workplace sitting was almost exclusively replaced by standing (+127 [+92, +162] 

min/8-h workday) (225). 
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Furthermore, a recent systematic review and meta-analysis into the evidence for activity 

permissive workstations on sedentary time, health-risk biomarkers, work performance and 

feasibility indicators in office workplaces found that the installation of workstations can lead 

to substantial reductions in sedentary time without impacting negatively on work-related 

outcomes; and that they are acceptable to workers. The study found no significant changes in 

health related outcomes; however, this was based on evidence from short-term studies with 

weak-to-moderate designs and/or insufficient statistical power, making it difficult to ascertain 

any conclusive findings (37). 

 

Other systematic reviews have been conducted into the effect of workplace interventions to 

reduce sitting time, with some findings showing effective interventions effects (34,222,226), 

while the others are not (37,227). Inconsistency in the findings can be explained by 

differences in inclusion criteria between the different studies (e.g. studies included in the 

Martin et al. (34) review were only randomised controlled trials), as well as differences in the 

study strategies and implementation. 

 

Very few interventions seeking to reduce sedentary behaviour in adults have been undertaken 

outside of the work place context. A novel randomised control trial (RCT) intervention 

examined the effects of a TV lock-out system to reduce TV viewing time on energy intake, 

energy expenditure, energy balance, body mass index and sleep in 36 overweight and obese 

adults (228). The lock-out system (BOB TV Time Manager; Hopscotch Technology, Boulder, 

Colorado) was attached by plugging the TV cord into the monitor and a four digit code was 

given to each household member to activate the system to turn on the TV. The system 

recorded total minutes per day of viewing per participant code. After the baseline 

measurement period, the intervention group had a weekly limit of 50% of their objectively 

measured TV viewing time form baseline placed on them. Activity behaviour was measured 

using the SenseWear Pro 3 Armband (BodyMedia Inc., Pittsburg, PA, USA). Although not 

statistically significant, both groups reduced their energy intake (-125kcal/day [95% CI. -303 

to 52] vs -38kcal/day [95% CI. -265 to 190] p=0.52) for intervention and control groups 

respectively. The intervention groups significantly increased energy expenditure 

(119kcal/day [95% CI. 23 to 215]) compared to the controls (-95kcal/day [95% CI. -254 to 65] 

p=0.02). Energy balance was negative in the intervention group between phases (-

244kcal/day [95% CI. -459 to -30]) but positive in controls (57 kcal/day [95% CI. -216 to 

330]) p=0.07. The intervention group showed a greater reduction in BMI (-0.25 [95% CI. -
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0.45 to -0.05] vs -0.06 [95% CI. -0.43 to 0.31] in controls) (p=0.33). There was no change in 

sleep (228). 

 

One published feasibility study, ‘Stand Up For Your Health’, has shown favourable results in 

adults aged 60 years and older (n=59; (229)). This trial used a 45 minute face to face meeting 

to assist participants to reduce sitting time and to increase breaks in sedentary behaviour. The 

intervention was informed by Social Cognitive Theory and behavioural choice theory, and 

focused on building self-efficacy (via goal setting), self-control (via self-monitoring and goal-

setting), outcome expectancies (via barriers and benefits), reinforcement (via rewarding 

behaviour change) and preference (via identifying enjoyable non-sedentary pursuits). During 

the intervention participants: 

1) reviewed their accelerometer-assessed sedentary time from the previous day; 

2) received normative feedback on their self-reported sedentary time, using 

graphs to compare to an average Australian of a similar age and gender; 

3) completed a goal-setting exercise to reduce sedentary time and increase the 

number of breaks in prolonged sedentary time, and  

4) formulated a behaviourally specific action plan. 

Generic strategies to reduce and break up sedentary time were suggested, and participants 

identified strategies specific to their circumstances. The participants were also encouraged to 

self-monitor their sitting behaviour using a tracker. Sedentary time was derived from the 

ActiGraph accelerometer and defined as <100 CPM. At the end of the first week of data 

collection participants received the intervention and were then monitored for another week. 

During the post-intervention week there was a small but significant reduction in sedentary 

time of 3.2% and an increase in the number of breaks from sedentary time. Participants 

reduced their sedentary time mainly during the day, and increased their breaks in sedentary 

time in the evening. This intervention is promising but full randomised trials with 

representative sample are required before a definitive conclusion about its effectiveness can 

be made (229).  

 

More recently, Martin et al. (34) systematically reviewed and meta-analysed the effect of 

interventions which included sedentary behaviour as an outcome measure in adults. The 

review found clear evidence that it is possible to intervene to reduce sedentary behaviour in 

adults by 22 mins/day in favour of the intervention group. Moderate to high quality evidence 

on the efficacy of lifestyle interventions for reducing sedentary behaviour suggests that this 
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may be a promising approach. Interventions focusing on sedentary behaviour only result in 

the greatest reduction in sedentary time (42 min/day), however this was based on only two 

studies of low to medium quality. Findings also suggests that intervention duration up to 3 

months and interventions targeting men and mixed genders can produce significant 

reductions in sedentary behaviour (34). 

 

The results from this systematic review are consistent with those of Prince et al. (35) in 

relation to the effect of physical activity and sedentary behaviour intervention and 

interventions focusing on sedentary behaviour only, despite there being no overlap of 

included studies in the latter. However, in contrast, the systematic review by Martin and 

colleagues (34) found no evidence of a beneficial effect on sedentary behaviour from 

interventions focused on increasing physical activity. This difference in findings could be 

attributed to the differences in the definitions of lifestyle interventions and physical activity 

interventions between the two systematic reviews (34,35). 

 

With the mixed picture of interventions effectiveness in reducing sedentary behaviour, the 

increasing amount of commercially available technology which inherently contains different 

behaviour change techniques, allows them to be potentially useful in interventions to reduce 

sedentary behaviour and increases physical activity. 

 

2.7.1. New and Emerging Technology and Behaviour Change 
The wearables market is a newly established digital health market segment. Whilst they are 

not as well adopted as mHealth apps (mobile health - a term used for the practice of medicine 

and public health supported by mobile devices; mHealth apps are often free), and their 

wearable counter-part come at a premium, which has helped sales in this new market grow at 

a fast rate. According to early estimates, health and fitness wearables account for just 30% of 

the total wearables market, at £1.5 billion in 2014, growing to £3.1 billion by 2018 (230). 

Over 3 million wrist-worn wearable devices such as fitness bands and smartwatches are 

estimated to have been sold in the UK in 2015, up 11% from unit sales in 2014. In 2015, 63% 

of wrist-worn wearable devices sold were fitness bands, compared to 37% which were 

smartwatches. Currently one in seven of the UK population own any kind of wearable device 

(231,232). Consumers age 16-34 years show the strongest interest in wearables, being about 

three times more likely than those aged 35+ years to own a fitness band. Indeed, 13% of 
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British people aged 16-34 years currently own a fitness band compared to 4% of those over 

age 35 years (232). 

 

Whilst wearable technology is increasing rapidly in popularity at the moment, wearable 

computers for personal advantage have been around for decades. The first documented 

occurrence of wearable technology is of Ed Thorpe’s and Claude Shannon’s cigarette pack-

sized pocket computer that was designed to predict roulette wheels in the early 1960’s. The 

computer itself consisted of 12 transistors that allowed its wearer to time the revolutions of 

the ball on the roulette wheel and determine where it would end up. Wires led down from the 

computer to switches in the toes of each shoe, which let the wearer covertly start time to the 

ball as it passed a reference mark. Another set of wires led up to an earpiece that provided 

audible feedback in the form of musical cues – eight different tones represented an octant in 

the roulette wheel. When everything was in sync, the last tone heard indicated where the 

person at the table should place their bet. The system provided the wearer with a 44% edge in 

roulette.  

 

Modern day consumer wearables can deliver personalised, immediate and goal orientated 

feedback on specific tracking data obtained via sensors and provide long lasting wear without 

requiring continual charging (e.g. > 7days battery life). Their small form factor makes them 

easier to wear continuously, and whilst smartphones are still required to process the incoming 

data for most consumer wearables, it is conceivable that in the near future all processing 

functionality will be self-contained. 

 

At present, wearables are more likely to be purchased by individuals who already lead a 

healthy lifestyle and want to quantify their progress (233). The majority of wearable 

manufacturers (e.g. FitBit, Jawbone, and Garmin) stress the potential of their devices to 

become an “all-in-one” platform for improving physical performance and positive habit 

formation. Wearable manufactures utilise a range of digital persuasive techniques and social 

influence strategies to increase user engagement, including the gamification of activity with 

competition and challenges, publication of visual feedback on performance utilising social 

influence principles, or reinforcements in the form of virtual rewards for achievement. 

 

The most successful vendors will likely be those that give consumers a clear path for action-

taking and behaviour change with their products and services (234). Consumers can be 
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directed through a road map designed to increase their engagement as the technology 

continues to benefit them. This road map could include the steps of getting the consumer to 

try quantified tracking with the solution, see the value provided by the solution, continued 

engagement, change behaviour, and maintain the behaviour change. Since even the simple act 

of tracking has been shown to have an impact, individuals can start with this light touch 

behaviour. Some of the benefits of self-tracking alone in affecting behaviour change have 

been seen in weight loss diary keeping (234,235) and home power consumptions. Electricity 

consumption was reduced when individuals could self-monitor and obtain feedback about 

their resource use: 7-10% reductions with smart meters and other feedback (236,237), and a 

32% reduction with feedback plus incentives (238). If wearable tracking can be made 

extremely easy (ideally automated), fun (with gamification and social engagement), and even 

remunerative (with rebates and cost-savings), then there could be significant growth in the 

types of things individuals are willing to track and wearable data streams as a result. 

 

But do wearables make people healthier through increasing physical activity? Currently 

empirical data in this area are lacking. Lewis et al. (239) systematically reviewed the 

literature on the efficacy and feasibility of interventions using electronic activity monitor 

systems within published physical activity literature. Of the 11 studies, four used 

commercially available devices for individuals to use (Gruve, PAM, Fitbit), the rest were 

only available through distributors and traditionally to researchers. Feedback from the 

electronic activity monitoring systems was administered for differing monitoring periods. 

Those interventions involving commercially available monitors showed significant pre-post 

intervention increases in physical activity, whilst also displaying significant pre-post 

decreases in sedentary behaviour although sedentary behaviour was not the main outcome. 

Encouragingly, the interventions involving the Gruve and Fitbit had an 80% or better 

retention rate potentially due to their better aesthetics and comfort of wear. 

 

Research projects using wearable technology that have integrated behaviour change–based 

text messages in their interventions have resulted in considerable increments in physical 

activity in adults (240). This is the case of interventions where participants who were 

provided with physical activity tracking and received feedback through automated and 

tailored text messages increased their daily step-count by 2,334 steps/day (25%) compared 

with those randomised to physical activity alone. Total physical activity time and aerobic 

time also increased in the text receiving group by 21 and 13 min/day, respectively when 
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compared to the blinded and unblinded – no text groups (240). In another study by 

Compernolle et al. (241), participants in the intervention arm were given information on how 

to increase steps, a digital pedometer with 7 day memory, and were granted access to tailored 

web-based step advice (241). A recommended 10,000 daily step goal was used. The 

intervention resulted in an increase of 1,056 daily steps in the intervention group compared 

with a reduction of 256 daily steps in the control group using only a blinded pedometer (241).  

 

The majority of interventions using wearable technology or consumer electronic devices have 

been aimed at increasing physical activity, in no small part, due to the fact that most 

consumer electronic devices track steps as their main tracking outcome. There is therefore a 

dearth of research examining the use of consumer electronic devices examining their ability 

to decrease sedentary behaviour which needs to be addressed in the future. 

 

2.8 General Summary 
Sedentary behaviour has a clear and established inverse relationship with markers of cardio-

metabolic and psychological health. Accurate measurement of sedentary behaviour is 

therefore of vital importance. The majority of measures of sedentary behaviour have been 

conducted using self-reported questionnaires however, these are open to a variety of biases. 

More objective measures have therefore been sought. In search of objective measures of 

sedentary behaviour; researchers are now using accelerometers to quantify sedentary time. 

However, accelerometers also have their own pitfalls. They assess intensity of movement and 

thus are less able to distinguish between postures (a key variable in the definition of 

sedentary behaviour) such as sitting and lying. In lieu of this limitation, posture sensors are 

being used to quantify sedentary behaviour. However, there is currently a paucity of sensors 

used in published research, which accurately measures sedentary behaviour to its current 

definition.  

Interventions aimed at reducing sedentary behaviour currently show a mixed picture. They 

are either interventions that aim to increase physical activity and measure sedentary 

behaviour as a secondary outcome, or these interventions tend to target office workers to 

reduce desk-based sedentary behaviour. However, it has been shown in the literature that 

utilising the self-regulatory behaviour change technique of self-monitoring could be a 

promising avenue to decreasing sedentary behaviour. The boom in commercially available 

behavioural trackers provides a unique opportunity to utilise these devices to both accurately 
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and objectively measure sedentary behaviour and also to utilise them as an intervention 

modality for reducing sedentary behaviour as they inherently allow their users to self-monitor 

and receive feedback on behaviour.  

2.9 Aims 
Therefore the aim of this thesis is to identify and validate technology that can self-monitor 

sedentary behaviour and to determine its ability to reduce sedentary behaviour. 

2.9.1 Aim of Study 1 
The purpose of this study was to, by way of a systematic review, scope the current 

technologies that could be used to self-monitor and provide feedback on time spent in 

physical activity and/or sedentary behaviours. Secondly, the study aimed to quantify the level 

of self-monitoring and feedback attributes of these technologies.  

2.9.2 Aim of Study 2 
From the systematic review, a technology was chosen based on its ability to self-monitor and 

provide feedback on sedentary behaviour. The purpose of this study, therefore, was to 

determine the validity and reliability of the LumoBack Posture Sensor (LumoBody Tech, Inc, 

Palo Alto, CA) as a measure of sedentary behaviour under both laboratory and free living 

conditions. 

2.9.3 Aim of Study 3 
Having determined the validity of the LumoBack in Study Two, the LumoBack was 

repurposed to be a device that provides feedback (in the form of prompts/cues) on time spent 

sedentary. The aims of this study therefore were: 

1. To determine whether a repurposed LumoBack Posture Sensor can reduce sedentary 

behaviour in a sample of healthy adults over the course of five weeks.  

2. To quantify the engagement of the participants with the technology determined by 

time engaging with the mobile application associated with the LumoBack.  

In an attempt to understand potentially why individuals engaged with the intervention, 

investigation of health outcome data was also determined to quantify to whether those with 

the “most to gain” (health-wise) were more engaged. 
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This study has been published as an original article in a peer-reviewed journal (Sanders, J. P., 

Loveday, A., Pearson, N., Edwardson, C., Yates, T., Biddle, S. J., & Esliger, D. W. (2016). 

Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review. 

Journal of Medical Internet Research, 18(5), e90). With the exception of some minor wording 

and/or format changes, it is presented in its published form. The introduction section below 

may repeat aspects of the literature review directly pertinent to the purpose of the study. 

 

JPS was involved in concept and design, acquisition of data, analysis and interpretation of 

data. Additionally JPS drafted the manuscript. AL was involved in the acquisition of data by 

checking for bias and inter-rater reliability as well as revising it critically for important 

intellectual content. NP was involved in the concept and design of the review as well as the 

initial acquisition of data, and revising it critically for important intellectual content. CE, TY, 

and SJHB were involved in the concept and design of the review as well as being involved in 

revising it critically for important intellectual content. DWE was involved in the concept and 

design, analysis and interpretation of the data, as well as revising it critically for important 

intellectual content. 

 
3.1 Introduction 
Modern environments and technological advancements have radically altered the way we live 

our lives (25). The need to undertake purposeful physical activity has all but disappeared and 

sedentary behaviour, defined as ‘any waking behaviour in a sitting or reclining posture with 

an energy expenditure ≤1.5 metabolic equivalent’ (43) is the dominant behaviour. Low levels 

of moderate to vigorous physical activity (MVPA) have been consistently associated with the 

risk of developing chronic diseases, such as type 2 diabetes, cardiovascular disease, and some 

cancers (242). In addition, increasing the total level of daily movement, such as the number 

of steps taken, has also been strongly inversely associated with the risk of developing chronic 

diseases (203,243). There is also mounting evidence that the amount of time spent sedentary 

is an important determinant of health status independent of physical activity levels. For 

example, Wilmot and colleagues (28) found that when comparing those with the highest 

levels of sedentary behaviour with the lowest, independent of physical activity levels, there 

was a 112%, 147%, 90% and 49% increase in the relative risk of type 2 diabetes, 

cardiovascular disease, cardiovascular mortality and all-cause mortality, respectively (28). 

Moreover, how sedentary behaviour and physical activity are accumulated throughout the day 

may also be important, with frequent breaks to sedentary behaviour associated with a 
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healthier metabolic profile (74). This has necessitated a paradigm shift, which focuses on 

both the accumulation of MVPA (the traditional focus of lifestyle interventions), and the 

importance of postural allocation throughout the waking hours.  

 

Over the last decade, there has been a plethora of tools that have been developed to support 

sedentary behaviour and physical activity behaviour change, of which the greatest growth has 

been seen in self-monitoring tools. Self-monitoring, defined as ‘a person closely and 

deliberately monitors their own behaviour’ (209,216) and ‘allowing the modification of their 

behaviours to achieve predetermined goals or outcomes’ (244), for behaviour change has a 

strong theoretical foundation. Self-regulation theory posits that self-monitoring precedes self-

evaluation of progress made towards one’s goal and self-reinforcement for progress to be 

made (216)10T.10T Furthermore, Control Theory proposes that self-monitoring of behaviour, setting 

goals, receiving feedback, and reviewing relevant goals in the light of feedback work 

synergistically and are central to self-management and behavioural control (42,212). Self-

monitoring, therefore, can increase an individual’s personal responsibility, promote 

independence and, by taking an active rather than physical activity passive role, individuals 

can create their own pathways towards goal achievement (245). When included in behaviour 

change interventions, self-monitoring has proven to be an effective behaviour change strategy 

across a variety of behaviours including smoking, diet and physical activityP

 
Pand as such is 

considered a foundation of lifestyle behaviour change interventions (42,246).  

 

Traditionally, self-monitoring of physical activity and sedentary behaviour occurred via paper 

based journal methods (246); however, more recently the pedometer became a popular 

method of self-monitoring for interventions designed to increase physical activity with 

individuals who used pedometers increasing their physical activity by 26.9% from baseline 

(211). Subsequently, advances in technology have led to an explosion of bodily worn 

electronic devices becoming available that go beyond simply measuring and providing 

feedback on the number of steps per day (e.g., Fitbit, Jawbone). Along with physical activity, 

electronic devices are also starting to measure sitting time, providing real-time feedback, as 

well as encouraging interruptions in prolonged sitting. It has been suggested that the use of 

these electronic approaches to self-monitor might lessen the burden of traditional methods 

and may improve adherence to self-monitoring and thus result in greater achievement 

towards behavioural goals (247).  
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This increased availability of electronic self-monitoring devices provides an opportunity for 

researchers to utilise these novel technologies as an aid for behaviour change in physical 

activity and sedentary behaviour on a large scale. Furthermore, wearable technologies are 

increasingly being integrated into healthcare systems. Recent reports from the National 

Information Board in a review of the National Health Service in the United Kingdom (UK) 

indicate the need for “citizens” to start playing a more active role in their healthcare, by 

accessing, entering and uploading data into their own online medical record. Under these new 

plans citizens will be able to access and download their detailed GP records as well as 

contributing to it with information held by their personal wearable technology or biosensors 

(248,249). In addition, as more health care providers in the United States move to a value-

based care system (i.e., “reward points” for positive lifestyle alterations which can be 

redeemed for discounts on a range of products and/or activities) mobile technologies that 

promote health and well-being by engaging in important health behaviours (e.g., increased 

MVPA) will continue to grow and have the potential to be an integral piece of future health 

care systems. In light of this, a review of the current tools used to self-monitor physical 

activity and/or sedentary time has the potential to be a valuable resource to researchers, 

clinicians, healthcare providers and the general public. 

 

Therefore, it seems timely to review the characteristics and measurement properties (e.g., 

wear location, integrated sensors, outcomes measured), of currently available self-monitoring 

devices, both consumer marketed and those used in research settings, that have been (or could 

be) utilised in, or developed for, real time self-monitoring of sedentary behaviour and/or 

physical activity.  

3.2 Methods 

3.2.1 Searches 
The search strategy was built around three groups of key words: behaviour (i.e. physical 

activity and sedentary behaviour), measurement, and population. A detailed description of the 

keywords used and method of combination can be found in Appendix 1.1 (page 211). For the 

purposes of this study, tools were deemed to measure sedentary behaviour if they could 

measure the users sitting and/or reclining posture. Scopus, MedLINE, Web of Science and 

Institute of Electrical and Electronic Engineers (IEEE) databases were searched using these 

key terms from the inception of the databases to October 1, 2015. In addition, manual 



51 
 

searches of personal files were conducted as were screening of reference lists of primary 

studies. 

 

3.2.2 Internet Search Engines 
Due to the rapid release of technology in the consumer electronic (CE) area, a grey literature 

search of relevant websites was conducted for technologies that allow the self-monitoring of 

physical activity and sedentary behaviour but may not have made it into the published 

research to date. Keywords based on the same groups as the database searches were used to 

search the internet engines Google, Bing and Yahoo. Searches were extracted for later review 

using a specialised browser plug-in [SEOquake (35TUwww.seoquake.co.ukU35T) a browser plugin 

software providing the search engine optimisation metrics]. The first 200 search results from 

each search engine were extracted for further review; this was a pragmatic approach as it was 

deemed that results after the first 200 were either not relevant (i.e. did not meet 

inclusion/exclusion criteria) or were repetitive. This ensured that the results were unaffected 

by the changing algorithms of web search engines. Searches were completed on October 1, 

2015. 

3.2.3 Study Inclusion and Exclusion criteria 
Two sets of inclusion criteria were developed for research articles and websites. For inclusion 

in the review, studies were required to i) include adults aged ≥ 18 years; ii) be published in 

English; iii) describe a device that objectively self-monitors physical activity, physical 

inactivity and/or sedentary behaviour/sitting and can, or has the potential to, provide feedback 

to the user. Traditionally, there would also be a criteria based around study type; however, in 

order to obtain the widest variety of device, this wasn't included. 

  

For inclusion in the review, i) websites from manufacturers were included only, therefore 

blogs or consumer review pertaining to technologies of interest were excluded and ii) devices 

that had the ability to self-monitor and were available to purchase at the time of the review 

were included.  

3.2.4 Data Extraction 
Potentially relevant articles were selected by i) screening titles, ii) screening abstracts, and iii) 

if abstracts were not available or did not provide sufficient data, the entire article was sought 

and screened to determine whether it met the inclusion criteria. Relevant websites were 

selected by i) screening web page titles and ii) screening devices on relevant web pages to 

http://www.seoquake.co.uk/
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determine whether it met the inclusion criteria. Data were extracted on standardised forms 

developed for this review. 

 

Information on the devices was extracted from papers and cross-referenced with device 

manufacturer information. Validity data on each device was not extracted, instead papers 

with relevant validity data, where available (151,153,158,168,170,171,176,177,181,250–260), 

have been referenced in the data table as the authors chose to focus this review on the 

characteristics of the devices to allow the reader to make a judgement about their efficacy as 

self-monitoring tools. 

 

A 10% sub-sample of potentially relevant articles retrieved for full paper screening were 

extracted by a second author (AL) to determine inter-rater agreement. Inter-rater agreement 

was high (Cohen’s Kappa = 0.81). If any discrepancies arose, these were resolved by 

discussion between authors. 

3.2.5 Self-monitor Scoring  
Each device was designated a self-monitoring code;  

• YRPA R: Yes – Self-monitors Physical Activity; 

• YRPIR: Yes – Self-monitors Physical Activity/Physical Inactivity (i.e self-monitoring 

and feedback on lack of movement); 

• YRSBR: Yes – Self-monitors Sedentary behaviour. 

The different attributes of the self-monitoring devices were based on Control Theory (212), 

specifically the ability to receive feedback (defined as the provision of informative and 

actionable insights on the performance of the behaviour) and the ability to set goals (defined 

as agreeing on a goal/target defined in terms of the behaviour to be achieved, (209). Aspects 

included the different types of feedback; vibratory, auditory, omnipresent - in the form of 

colours or lights - or potentially via push notifications. Also included, was the timing of the 

feedback (i.e., immediate or delayed). Other features included the way in which the data are 

portrayed (e.g., numeric data/graphical representation of the data). Additionally the platform 

pervasiveness was also included (i.e., how many different devices can the data be viewed on 

and on what operating systems). Each of these aspects were broken in to what feedback 

attributes were available on either the device or the backend platform (defined as the smart 

device/software that the technology connects to). Other attributes included were goal setting 

capability of the device and whether the device or associated software could be customised  
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by the end user via some method, usually an application programming interface or software 

development kits. Table 3.1 provides a detailed description of each self-monitoring attribute. 

Each attribute is split into whether the attribute is present on the device itself (denoted as a 

D_ ) or whether it is present on the backend platform (i.e. smartphone/tablet etc; denoted with 

BP_). 

 

Each device was given a score between 1 and 6 for each attribute of behaviour change. This 

score was used to describe two factors i) whether or not that device contains that behaviour 

change attribute and ii) to what extent it does or does not contain the attribute. Below is the 

self-monitoring scoring system that has been used for each attribute; 

1) Yes  

2) Yes – Difficulties (e.g. proximity to computer) 

3) Yes – Lack of evidence to suggest this 

4) No – But present in future iterations  

5) No – But possible (with Application Programming Interface or Software 

Development Kit) 

6) Not described/Not featured 

This scoring system is meant to be a descriptive tally of the behaviour change attributes and 

not a judgement on the effectiveness of the various features.  
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Table 3.1 - Description of the self-monitoring attributes coded 
Self-
monitoring 
Attribute 

Description 

Auditory Feedback on behaviour provided verbally from device (e.g. via Sensoria – 
voice over feedback regarding ground contact from smartphone/smart 
mp3). 

Vibratory Haptic feedback on pre-determined behavioural thresholds provided using 
vibrations (e.g. LumoBack) 

Omnipresent Feedback that is visible all the time, usually in the form of a changing 
progression bar which changes with advancement towards pre-determined 
goals (e.g. FitBit Flower) 

Push 
Notification 

The delivery of information regarding behavioural goals from a software 
application to a computing device without a specific request from the user. 

Immediate Whether the data/feedback are immediate in its return to the user (e.g. 
LumoBack). 

Delayed Whether the data/feedback are delayed in its return to the user (e.g. 
ActiGraph). 

Numeric Data are returned in the form of numbers/figures or statistics.  
Graph Data are returned in the form of graphical representation. 
Written/Text 
Feedback 

Data are returned in the form of textual feedback. 

‘Ometer  Data are returned in the form of a growing or shrinking picture/image 
based upon completion towards a pre-determined goal (e.g. UbiFit 
Garden). 

Application What Operating System the mobile application can it be accessed on for 
viewing the data/feedback. 

Software If a piece of computing software is present for use at viewing the data – 
what operating system can it be accessed on.  

Website Can the data/feedback be view on a website? 
Goal Setting 
Capability  

Can pre-determined goals be set by the user? 

3.3 Results  
3.3.1 Review Statistics 
Database searches identified 49,956 articles (Figure 3.1), of which 462 were deemed to be 

potentially relevant and thus retrieved for full text analysis. Papers (n=337) were excluded for 

a number of reasons: 

1) Pedometer Studies: Pedometer studies were excluded if no evidence could be found 

that the pedometer in question provided temporally stamped data;  
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2) Prototypes: that were not commercially available or where no data currently existed 

for the prototype and only proof of concept information was available;  

3) Health Outcome: papers were excluded if they examined the relationship between 

behaviour (e.g. sedentary behaviour and/or physical activity) and a particular health 

outcome (e.g. blood pressure, lipid profile) and the measurement tool of choice was 

not the main focus of the paper; 

4) Miscellaneous: articles were excluded if the purpose of the study was to examine a 

new algorithm or data processing procedure for device analysis. 

The remaining 125 studies (on 46 devices) and 90 websites yielded 146 devices (see 

supplementary table 1 http://www.jmir.org/2016/5/e90/) that were then selected for detailed 

scrutiny. Of these 64 were further removed because there was no evidence that they were 

designed for, have been used in, or could readily be modified for real-time self-monitoring 

purposes or that they are not currently available for purchase (see supplementary Table 2 

http://www.jmir.org/2016/5/e90/). 

 

The remaining 82 (261–341) technologies were included in this review. Seventy three (261–

332) technologies measured/self-monitored physical activity, of which 16 

(265,267,277,278,280,284–288,303,308,312,313,316,325,329–331) provided some measure 

of physical inactivity (see Table 3.2 and 3.4). Nine (333–341) technologies measured self-

monitored sedentary behaviour. (see Table 3.3 and 3.5), 8 (333,334,336–341) of which 

measured both physical activity and sedentary behaviour. Figure 3.2 (page 78) displays the 

number of self-monitoring attributes apparent in each of the devices found to measure/self-

monitor physical activity. Figure 3.3 (page 79) documents the popularity of the self-

monitoring attribute. Figure 3.4 (page 80) displays the number of self-monitoring attributes 

apparent in each of the devices found to measure/self-monitor sedentary behaviour. Figure 

3.5 (page 80) documents the popularity of the self-monitoring attributes with sedentary time 

self-monitoring devices. 
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Figure 3.1 – Study/website selection 
 

Database searches yielded articles (n=49,956) 
1. MedLINE = 17,840 
2. Scopus = 22,923 
3. Web of Science = 4,971 
4. Institute of Electrical and Electronics Engineers = 4,222 
 

Identified articles from database search (n=2,159) 

Excluded based on abstract 
(n=1,697) 

Full text articles retrieved for eligibility (n=462) 

Excluded – did not fulfil the 
inclusion criteria (n=337) 
1. Pedometers (n=48) 
2. Prototypes (n=35) 
3. Health Outcomes (n=48) 
4. Miscellaneous (New 

algorithm etc.; (n=206) 

Articles in systematic review (n=125) 

Included website (n= 90) 

Total papers/websites included in systematic review (n=215) 

Removed based on title eligibility 
(n=47,797) 

Duplicates (n= 2374) 

 

Yielding 146 unique devices 
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Name Manufacturer Size Weight Battery 
Life 

Placemen
t 

Sampling 
rate / 

Epoch 
Length 

Data 
Storage Sensor Interface Wireless 

Software 
for Data 

Processing  
SDK Outcome 

(Calculated) 
Self-

Monitoring Cost* Reference  

ActiGraph 
Link  

ActiGraph 
LLC, 

Pensacola, FL 

3.5 x 3.5 x 
1cm 14g 

14 days 
(wireless 
disabled, 

30Hz 
sample 

rate, gyro 
disabled, 

sleep 
mode) 

wrist, 
waist 

30-
100Hz 

240 
days/ 
4GB 

Triaxial 
Accelerometer, 

Gyroscope, 
Magnetometer 

USB Yes, BLE 

Actilife 
Software/ 
ActiLife 
Mobile 

Application 

No 

Energy 
Expenditure, 

activity 
intensity level, 
body position 
and amount of 

sleep 

YPA $275 (261) 

ActiGraph 
wGT3X+ 

BT 

ActiGraph 
LLC, 

Pensacola, FL 

4.6 x 3.3 x 
1.5cm 19g 

25 days 
(wireless 
disabled, 

30 Hz 
sample 

rate) 

Ankle, 
Waist, 

thigh or 
wrist 

30-
100Hz 

120 
days at 
30Hz 

Triaxial 
Accelerometer, 
Ambient Light 

Photodiode 
and 

inclinometer 

USB Yes, BLE 

Actilife 
Software/ 
ActiLife 
Mobile 

Application 

No 

Energy 
Expenditure, 

activity 
intensity level, 
body position 
and amount of 

sleep 

YPA $225. (262) 

Adidas Fit 
Smart  

Adidas 
International 

Trading  

3.4 x 1.2 x 
(1.8 or 2.0)cm  

47 - 
50g 5 days Wrist ? 

up to 10 
hours 

workout 
data  

Accelerometer, 
Mio 

Continuous 
optical heart 

rate  

USB  Yes, BLE 

Adidas 
MiCoach 
train and 
run app 

No 

Heart rate, 
calories, 

pace/speed, 
distance and 

stride rate 

YPA £145 (263) 

Amiigo Amiigo, Inc. 
One size – 

Micro 
Adjustable 

? 3 days Wrist and  
shoe clip ? 6 days 

Triaxial 
Accelerometer, 
pulse oximeter, 

temperature 
sensor 

BLE  Yes, BLE Amiigo 
App No 

Activity 
Recognition, 
resting heart 
rate, calories 
burned, step 

counting, 
exercise 

tracking, sleep 
tracking. 

YPA $179 (264) 

                 

Table 3.2 - Devices that self-monitor physical activity 
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Apple 
Watch  

Apple Inc., 
Cupertino, 
CA, USA 

two case sizes 
heights 3.8 or 

4.2 cm  
? ? Wrist  ? ? 

Triaxial 
Accelerometer, 

GPS, Heart 
Rate Sensor 

Lightening 
USB Yes, BLE Apple iOS No 

Total Body 
Activity, step 

counting, 
calories burned, 

numbers of 
times stand up 

YPI £215 (265) 

Archos 
Activity 
Monitor 

ARCHOS  5.9 x 2.9 x 
1.0 8g 7 days Wrist 1 Min 7 days Triaxial 

Accelerometer USB Yes, BLE 
ARCHOS 
Connected 
Self App 

No 
Steps, calories 

burned, walking 
distance  

YPA £50 (266) 

Basis Peak  

BASIS 
Science, Inc., 

San 
Francisco, 

CA 

? ? 4 days  Wrist  ? ? 

Triaxial 
Accelerometer, 
Optical Heart 
Rate Sensor, 

Galvanic Skin 
Response, and 

Skin 
Temperature 

Wireless 
sync Yes, BLE 

Basis - 
Fitness, 

Sleep and 
Stress 
tracker 

No 

Steps, Calories 
Burned, Heart 

Rate, 
Perspiration, 

Skin 
Temperature 

YPI $200 (267) 

Bowflex 
Boost 

Nautilus, Inc. 
Vancouver 

WA 
? ? 11 days Wrist ? 11 days Triaxial 

Accelerometer No Yes, BLE Bowflex 
Boost App No 

Activity Level, 
Calories, 

distance, steps 
and sleep 

YPA £83 (268) 

Epson 
Pulsense 

100 
Wristband  

Epson 
America, Inc. ? ? ? Wrist ? 20 days  

Triaxial 
Accelerometer, 

Heart rate 
Monitor 

USB Yes, BLE 

Pulsense 
Mobile 

App and 
Website 

Yes 

Heart rate zone, 
steps, calories 
burned, sleep 

patterns  

YPA $129 (269) 

Epson 
Pulsense 

500 watch  

Epson 
America, Inc. ? ? ? Wrist ? ? 

Accelerometer, 
Heart rate 
Monitor 

? Yes, BLE 

Pulsense 
Mobile 

App and 
Website 

Yes 

Heart rate zone, 
steps, calories 
burned, sleep 

patterns  

YPA $199 (269) 

Fitbit 
Charge Fitbit UK 

14 - 23.1 cm 
in 

circumference 
? 7 days  Wrist 60 

seconds 7 days Triaxial 
Accelerometer ? Yes, BLE Fitbit App No 

Steps taken, 
distance 
travelled, 

calories burned, 
floors climbed 

and active 
minutes. 

YPA £100 (270) 

Fitbit Flex  

Fitbit, Inc. 
San 

Francisco, 
CA 

14 - 20.9 cm 
circumference 
- 1.3cm width  

? 5 days Wrist  60 
seconds 30 days  Triaxial 

Accelerometer 

Wireless 
Sync 

Dongle 
Yes, BLE 

Fitbit Flex 
App  and 

Fitbit 
Website  

No  

Calories 
Burned, 

distance travels, 
steps, and sleep 

quality. 

YPA £80 
(146,159,1

64,165, 
169,252) 
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Fitbit One 

Fitbit, Inc. 
San 

Francisco, 
CA 

4.8 x 1.9 x 
9.6cm  8g 10-14 

days 
Waist, 
wrist 

60 
seconds 

7 Days 
@1min 
epoch                                                            

23 days  
overall 

data 

Triaxial 
Accelerometer 
and Altimeter 

USB Yes, BLE Fitbit App No 

Steps, Distance, 
Calories 

Burned, and 
Floors Climbed. 

YPA £80 (156,158, 
163,253) 

Fitbit 
Surge  Fitbit UK 

15 - 23.1 cm 
in 

circumference 
? 7 days Wrist 60 

seconds 7 days 

Triaxial 
accelerometer, 

Triaxial 
gyroscope, 

Optical Heart 
rate monitor, 

digital 
compass, 
altimeter, 

ambient light 
sensor, 

vibration 
motor  

? Yes, BLE Fitbit App No 

Steps taken, 
distance 
travelled, 

calories burned, 
floors climbed 

and active 
minutes, heart 

rate, GPS 
tracking, multi-
sport tracking, 
sleep tracking 

YPA £200 (273) 

Fitbug 
Orb  Fitbug Ltd  5 x 5 x 5 cm ? 4 months  Anywher

e ? ? Accelerometer Wireless 
Sync  Yes, BLE 

Fitbug 
Activity 
App and 
Fitbug 
website 

No 

Calories burned, 
total activity, 
total steps, 

aerobic steps  

YPA $50 (274) 

FlyFit  FlyFit, Inc.  2.9 x 1.7 x 
1.0cm <100g 

5-7 days 
with off-

sync 
mode or 
8 hours 

with real-
time sync 

Ankle ? ? Triaxial 
Accelerometer ? Yes, BLE 

FlyFit 
Mobile 

App 
No 

Steps, step 
speed, step 

distance, stairs 
climbed, 

calories burned, 
bike distance, 
bike speed,  

YPA 
$199 - 

pre order 
price 

(275) 

Free Wavz  Free Wavz ? 16g 6-8 hours 
Ear-

phone/pl
ug 

? ? 

Triaxial 
Accelerometer, 
Infra-red and 

red pulse 
oximeter 

? Yes, BLE 
Free Wavz 

Mobile 
App 

No 

Step, Heart 
Rate, O2 

saturation, 
average speed, 
distance, and 

calories burned. 

YPA $219 (276) 

Garmin 
VivoFit Garmin Ltd 12-21cm 25.5g 1 year or 

greater Wrist ? 1Month ? USB Yes, BLE 
Garmin 
Connect 

App 
No 

Daily Step 
Count, goal 
countdown, 

distance, 
calories, heart 
rate and heart 

rate zone. 

YPI £100 (277) 
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Garmin 
Vivo 

Smart 
Garmin Ltd 12.7 to 22.1 

circumference 
18.7 - 
19.0g 7 days Wrist ? 

3 weeks 
of 24/7 
activity 

data or 2 
weeks if 

heart 
rate 

monitor 
is used 1 
hour per 

day  

Accelerometer 
and Heart Rate 

Monitor 
(optional) 

Wireless 
Sync  Yes, BLE 

Garmin 
Connect 
App and 

Garmin on 
Computer 

No 
Step Counts, 
calories and 

distance  
YPI $170-200 (278) 

GoBe 
Activity 
Monitor 

HealBe 
GoBE ? ? 3 days  Wrist  ? ? 

Triaxial 
Accelerometer, 

heart rate 
sensor, and 
impedance 

sensor 

Wireless 
Sync Yes, BLE 

GoBe Body 
Manager 
Mobile 

App 

No 

Calorie Intake, 
Calories 
Burned, 

Hydration 
Levels, Heart 
Rate, Blood 

Pressure, Stress 
Levels, 

Distance 
Travelled. 

YPA $300 (279) 

GOQii 
Band  GOQii ? ? 4-5 days Wrist ? ? Accelerometer Wireless 

Sync  Yes, BLE 
GOQii 
Mobile 

App 
No 

Steps, distance 
travelled, 

calories burned, 
time spent 

active, sleep 
quality  

YPI £70 (280) 

Hexoskin 
Hexoskin, 
Montreal, 
Quebec. 

Shirt Size 41g 14 hours Shirt 64Hz 157 
hours 

3 x heart rate 
sensor, 2 x 

breathing rate 
sensors, 
Triaxial 

accelerometer 

USB Yes, BLE Hexoskin 
App No 

Heart rate, 
Heart Rate 
Variability, 

Breathing Rate, 
Breathing 

Volume, Steps, 
cadence and 

calories burned, 
sleep. 

YPA $400 (281) 

iBitz GeoPalz, 
LLC, CO 

4.8 x 3.0 x 
2.0cm ? ? Waist or 

shoe 60sec 30 days Triaxial 
Accelerometer BLE  Yes, BLE iBitz Unity 

App No 

Steps, calorie 
burned, 

distance, 
average speed 

YPA £20 (282) 

iHealth 
Wireless 
Activity 

and Sleep 
Tracker 

iHealth Lab 
Inc. ? ? 5-7 days  Wrist, 

Waist 
60 

seconds 14 days Accelerometer Wireless 
Sync Yes, BLE 

iHealth 
MyVitals 

App 
No 

Steps, calories 
burned and 

distance 
travelled  

YPA $60 (283) 
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Jawbone 
UP 

JAWBONE, 
San 

Francisco, 
CA 

14 – 20cm in 
circumference  19-23g 10 days Wrist ? 10 Days Triaxial 

Accelerometer 

3.5mm 
headphone 

port 
No 

UP by 
Jawbone 

App 
No 

Distance, 
calories burned, 
active time, and 
active intensity 

YPI £65 (156,163, 
265) 

Jawbone 
UP2 

JAWBONE, 
San 

Francisco, 
CA 

22 x 1.15 x 
0.3-0.85 cm  25g 10 days  Wrist ? 9 

Months 
Triaxial 

Accelerometer USB Yes, BLE 
UP by 

Jawbone 
App 

No 

Steps, exercise 
and calories 

burned, sleep 
tracking, food 

logging 

YPI £90 (285) 

Jawbone 
UP24 

JAWBONE, 
San 

Francisco, 
CA 

small - 5.2 x 
3.5cm, 

Medium - 6.3 
x 4.0, Large - 

6.9 x 4.3 

19g, 
22g, or 

23g 
14 days Wrist ? ? Triaxial 

Accelerometer USB Yes, BLE 
UP by 

Jawbone 
App 

No 

Steps, Activity 
Classification, 

Calories 
Burned. 

YPA £130 (164,165, 
267) 

Jawbone 
UP3 

JAWBONE, 
San 

Francisco, 
CA 

22 x 1.15 x 
0.3-0.85 cm  29g 7 days  Wrist ? 9 

Months 

Triaxial 
Accelerometer, 

heart rate 
sensor, 

respiration and 
galvanic skin 

response 
sensors 

Magnetic 
USB Yes, BLE 

UP by 
Jawbone 

App 
No 

Steps, exercise 
and calories 

burned, sleep 
tracking, food 
logging, heart 

rate.   

YPI £130 (287) 

Jawbone 
UP4 

JAWBONE, 
San 

Francisco, 
CA 

22 x 1.15 x 
0.3-0.85 cm  29g 7 days  Wrist ? 9 

Months 

Triaxial 
Accelerometer, 

heart rate 
sensor, 

respiration and 
galvanic skin 

response 
sensors 

Magnetic 
USB Yes, BLE 

UP by 
Jawbone 

App 
No 

Steps, exercise 
and calories 

burned, sleep 
tracking, food 
logging, heart 

rate.   

YPI $200 (288) 

Ki Fit  Ki 
Performance  

6.2 x 5.5 x 
1.3cm unit + 

4 cm diameter 
Ki Fit Display 

45.5g 5-7 days 

Upper 
Arm 

Armband 
+ Wrist  

? 14 days 

Triaxial 
Accelerometer, 

Heat Flux 
sensor, Skin 
Temperature 

sensor,  
Galvanic skin 

response 
sensor 

USB Yes, BLE  

BodyMedia 
App and 
Online 

Activity 
Manager 

No  

Tracks calories 
burned, 

moderate and 
vigorous 

activity, steps, 
sleep, and goals 

YPA 
£269 + 
£60 for 
display 

(289) 

LEO  Gesture Logic  3.7cm in 
diameter ? ? Thigh ? 

2GB of 
flash 

memory  

Triaxial 
Accelerometer, 
Bioimpedence, 

Heart Rate 
Sensor, Muscle 

Tracking 
sensor 

Wireless 
Sync Yes, BLE 

LeoHelps 
Mobile 

App 
No 

Steps, Calories 
Burned, Heart 
Rate, Activity 
Recognition, 

Cadence, 
Muscle 

Monitoring, 
Hydration 

Levels, Lactic 

YPA $299 (290) 
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Acid Levels. 

LG 
Activity 
Tracker 

LG 
Electronics, 

18 x 1.7 x 
1.0cm 45g 2-3 days Wrist ? ? 

Triaxial 
Accelerometer, 

Altimeter 
? Yes, BLE LG Fitness 

App No 

Steps, Distance, 
Speed, Calories, 

pace and 
elevation.  

YPA $150 (291) 

LifeBeam 
Hat LifeBEAM ? ? ? Head  ? ? 

Triaxial 
Accelerometer, 
optical Heart 
rate sensor 

Wireless 
Sync 

Yes, BLE 
& ANT+ 

Compatible 
with a 

number of 
Health and 

Fitness 
Apps 

No 

Calories 
Burned, 

Cadence and 
steps, Heart 

Rate 
measurement  

YPA $99 (292) 

LifeTrak 
Core C200 Salutron Inc.,  

Watch head 
size - 5.3 x 
2.8, Strap 
length - 
21.7cm 

? 1 year  Wrist ? 

7 days 
of 

hourly 
data 

Accelerometer 
and Heart Rate 

Monitor 
(optional) 

? ? ? No 

Steps, heart 
rate, calories 

burned, 
distance. 

YPA $59.99 (293) 

LifeTrak 
Core C210 Salutron Inc.,  

Watch head 
size - 5.3 x 
2.8, Strap 
length - 
21.7cm 

? 1 year Wrist ? 

7 days 
of 

hourly 
data 

Accelerometer 
and Heart Rate 

Monitor 
(optional) 

? ? ? No 

Steps, heart 
rate, calories 

burned, 
distance, sleep 

tracking 

YPA $70 (294) 

LifeTrak 
Move 
C300 

Salutron Inc.,  ? ? 1 year Wrist ? 7 days 

Triaxial 
Accelerometer 

and Optical 
Heart Rate 

Sensor 

USB Yes, BLE 

LifeTrak 
App and 

Compatible 
with many 
different 

Health and 
Fitness 
Apps 

No 
Steps, calories 
distance and 

heart rate 
YPA $80 (295) 

LifeTrak 
Zone C410 Salutron Inc.,  

Watch head 
size - 5.3 x 
3.0, Strap 
length - 
21.7cm 

? 1 year Wrist ? 

7 days 
of 

hourly 
data 

Accelerometer 
and Heart Rate 

Monitor 
(optional) 

? Yes, BLE LifeTrak 
App No 

Steps, heart 
rate, calories 

burned, 
distance, sleep 

tracking 

YPA $100 (296) 

LUMOlift  
LUMO Body 

Tech, Inc., 
Palo Alto, Ca 

4.45 x 2.5 x 
1.2cm 11.5g 5 days  Chest ? 4 weeks Triaxial 

Accelerometer 
Wireless 

Sync  Yes, BLE LUMOlift 
App No 

Calories 
Burned, Steps, 

Sitting and 
Standing 
Postures  

YPI $100 (297) 



63 
 

Magellan 
EchoFit 

MiTac Int 
Corp 

4.6 x 4.9 x 
1.3cm  44g 6 - 11 

months Wrist ? ? 

Accelerometer 
and Heart Rate 

Monitor 
(Optional) 

? Yes, BLE 

Echo 
Utility 
App, 

Compatible 
with a 

number of 
Health and 

Fitness 
Apps 

No 
Steps, distance , 
calories burned, 
sleep, elevation 

YPA $100 (298) 

Microsoft 
Band Microsoft  1.1 x 3.3cm ? 48 hours  Wrist  ? ? 

Optical Heart 
rate sensor, 

triaxial 
accelerometer, 

triaxial 
gyroscope, 

GPS, Ambient 
light sensor, 

Skin 
Temperature 
sensor, UV 

sensor, 
Capacitive 

sensor, 
Galvanic skin 

response. 

Magnetic 
USB Yes, BLE Microsoft 

Health No 

Heart Rate 
Monitor, steps, 
pace, calorie 

tracking, sleep 
tracking. 

YPA $200 (299) 

Misfit 
Flash 

Misfit 
Wearables 

San 
Francisco, 

CA 

2.85 x 0.8 x 
2.85 cm  6.0g 6 months  

Necklace
, Wrist, 
Waist, 
Shoe 

? 30 days Triaxial 
Accelerometer BLE  Yes, BLE Shine App No 

Step count, 
distance moved, 

calories 
expended, sleep 

quality and 
duration  

YPA $50 (300) 

Misfit 
Shine 

Misfit 
Wearables 

San 
Francisco, 

CA 

2.75 x 0.33 x 
2.75 cm 9.4g 6 months  

Necklace
, Wrist, 
Waist, 
Shoe 

? 30 days Triaxial 
Accelerometer BLE  Yes, BT Shine App No 

Step count, 
distance moved, 

calories 
expended, sleep 

quality and 
duration  

YPA $100 (156,164, 
165,282) 

Moto 360  Motorola 
Mobility  

4.6 diameter 
x 1.1 height 

cm 
? 1 day  Wrist ? 

4GB 
internal 
storage 

+ 
512MB 
RAM 

Triaxial 
Accelerometer 

and Optical 
Heart Rate 

Sensor 

? Yes, BLE ? No Heart rate and 
steps YPA $250 (302) 

My 
Wellness 

Key 

Technogym 
Gambettola 

Italy 

8.5 x 2.0 x 
0.7cm 18.7g ? Waist 16Hz 30 days  Uniaxial 

Accelerometer 

USB as part 
of the 
device 

No 
Online 

Activity 
Manager 

No 

Energy 
Expenditure and 

Activity 
intensity level 

YPI 

Price 
available 

on 
Request 

(252–
254,303) 
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New 
Balance 

Body 
TRNr 

New Balance,   ? ? ? Wrist  ? 30 days  Triaxial 
Accelerometer 

Wireless 
Sync Yes, BLE 

New 
Balance 

SmartTRNr 
No  Steps, distance, 

calories burned  YPA $60 (304) 

New 
Balance 

Life TRNr 
New Balance  ? ? ? Wrist  ? 7 days  

Triaxial 
accelerometer 
and Heart Rate 

Monitor 

Wireless 
Sync Yes, BLE 

New 
Balance 

SmartTRNr 
No  

Steps, distance, 
calories burned, 

heart rate 
YPA $80 (305) 

Nike+ 
Fuelband 

SE 
Nike  14.7 - 19.7cm 27 - 

32g 4 days  Wrist ? ? 

Triaxial 
Accelerometer 
and ambient 
light sensor. 

USB Yes, BLE 
Nike+ 

Fuelband 
App 

No 

Nike fuel, steps, 
calories, 

distances, and 
time  

YPA £89 
(156,163–
165,241, 

287) 

Omate X Omate 4.5 x 4.1 x 
1.12cm ? 7 days  Wrist ? 

128MB 
Internal 
Storage 
+ 32MB 

RAM 

Triaxial 
Accelerometer 

and Triaxial 
Gyroscopes 

USB Yes, BLE 

Compatible 
with a 

number of 
Health and 

Fitness 
Apps 

No Steps YPA $149 (307) 

PAM 
AM200 

Doorwerth, 
Netherlands 

5.8 x 4.2 x 
1.3cm 28g >1 year Waist 

1 second 
to 1 

minute 

3 
Months 

Uniaxial 
Accelerometer  

Micro -
USB No 

PAM 
Coach 

Computer 
Application 

No PAM Points YPI €79 (308) 

PAM 
AM300 

Doorwerth, 
Netherlands 

6.8 x 3.3 x 
1.0cm 20g >1 year Waist ? ? Triaxial 

Accelerometer 
Micro -

USB No 

PAM 
Coach 

computer 
and Mobile 
Application 

No 

physical activity 
score per day, 

number of 
minutes in three 

different 
intensity zones 

YPA €99 (309) 

Pavlok 
Behavioral 
Technology 

Group 
? few Oz 4 days Wrist  ? ? ? Micro -

USB Yes, BLE 
Pavlok 
Mobile 

App 
No Activity and 

Sleep Tracking YPA $175 (310) 

Pebble Pebble 
Technology 

5.03 x 3.2 x 
0.8 cm 38g 7 days  

Wrist/ 
Bike 

handlebar 
? 7 Days 

Triaxial 
accelerometer 

and light 
sensor 

USB Yes, BLE Pebble App - 

Speed, Distance 
and Pace data, 

walking, 
running, biking 

and sleep.  

YPA $99 (311) 

Polar 
Loop  Polar Electro,  ? ? ? Wrist ? ? Accelerometer USB Yes, BLE 

Polar Flow 
app and 

Polar Flow 
Web 

Service  

No 
daily activity, 

calories burned, 
steps taken, 

YPI £85 (176,312) 
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Polar 
V800 Polar Electro,  ? ? ? Wrist ? ? 

Accelerometer 
and Heart Rate 

Monitor 
(optional), 
altimeter, 

barometer, 
GPS 

Custom 
USB Yes, BLE 

Polar Flow 
app a and 

Polar Flow 
Web 

Service  

No 

daily activity, 
calories burned, 

steps taken, 
distance and 

heart rate 

YPI £400 (313) 

Razer 
Nabu Razer. Inc. ? ? 7 days  Wrist ? ? Accelerometer 

and Altimeter USB Yes, BLE Fitness for 
Nabu app Yes 

Calories Burnt, 
Step Taken, 

Floors climb, 
distance 

travelled, hours 
slept 

YPA ? (314) 

Razr 
Nabu X Razer. Inc. ? ? 7 days  Wrist ? ? Accelerometer 

and Altimeter USB Yes, BLE Fitness for 
Nabu app Yes 

Calories Burnt, 
Step Taken, 

Floors climb, 
distance 

travelled, hours 
slept 

YPA ? (315) 

RT6 Stayhealthy  5.1 x 5.1 x 
1.3cm 51g 48hours 

@ 10Hz Waist 5-20Hz 25-103 
hours 

Triaxial 
Accelerometer 

and Triaxial 
Gyroscopes 

USB No 

Stay 
Healthy 
Assist 

Software 

No Energy 
Expenditure YPI 

Price 
available 

on 
Request 

(316) 

Samsung 
Gear Fit  SAMSUNG 2.3 x 5.7 x 

1.2cm 27g 3-5days  Wrist ? ? 

Accelerometer, 
Heart rate 

sensor, 
gyroscope 

? Yes, BLE 
On-board 
Samsung 

OS 
No  

Pedometer; 
Exercise; Sleep; 

Heart Rate;  
YPA $150 (317) 

Spree 
Hothead 

Technologies, 
Inc. 

? ? 
8 Hours 
@ non-
stop use 

Head  ? ? 

Triaxial 
Accelerometer, 
Optical Heart 
Rate sensor 

and 
temperature 

sensor 

? Yes, BLE Spree Apps No 

Body 
Temperature, 
Heart Rate, 
Movement  

YPA $199 (318) 

Stay 
healthy 
Activity 
Monitor  

StayHealthy  5.1 cm x 5.1 
cm x 1.3 cm 51g 14-20 

Days Waist  10Hz 
6mins 

3.6 
years 

Triaxial 
Accelerometer USB  No 

Stay 
Healthy 
Assist 

Software 

No Energy 
Expenditure YPA 

Price 
available 

on 
Request 

(319) 

Striiv 
Band  Striiv, Inc.  ? ? 7 days  Wrist  ? ? Accelerometer  ? Yes, BLE Striiv App No 

Steps, Miles, 
Calories, 

Minutes of 
Activity 

YPA $70 (320) 

Striiv 
Fusion Striiv, Inc.  ? ? 5 days Wrist  ? ? Triaxial 

Accelerometer Micro USB BLE Striiv App No Steps, Calories 
Burned, sleep 

YPA $60 (321) 
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monitor 

Striiv 
Fusion Bio Striiv, Inc.  ? ? 5 days Wrist  ? ? 

Triaxial 
Accelerometer 

and optical 
heart rate 
monitor 

Micro USB BLE Striiv App  No 
Steps, Calories 
Burned, sleep 

monitor 
YPA $80  (322) 

Striiv 
Fusion 

Lite 
Striiv, Inc.  ? ? 5 days Wrist  ? ? Triaxial 

Accelerometer Micro USB BLE Striiv App No 
Steps, Calories 
Burned, sleep 

monitor 
YPA $100 (323) 

Striiv 
Touch  Striiv, Inc.  ? ? 5 days Wrist  ? ? Accelerometer ? Yes, BLE Striiv App No 

Steps, Miles, 
Calories, 

Minutes of 
Activity 

YPA $100 (168,324) 

Suunto 
Ambit3 

Amer Sports 
Company 

5.0 x 5.0 x 
1.7cm 92g 

2-3 days 
with GPS 
- 30 days 
in time 
mode 

Wrist  

Heart 
rate 10 

seconds, 
GPS 10 
seconds 

? Accelerometer, 
GPS USB Yes, BLE  

Suunto 
Moves 

count App 
No  

Steps, Heart 
rate, speed, pace 

and distance/ 
YPI £450 (325) 

Sync Burn  SYNC ? ? 1 year  Wrist  ? 7 days  Accelerometer Wireless 
Sync  Yes, BLE  

Map My 
Fitness 
Mobile 

App 

No  

Calories 
Burned, Heart 

Rate, % of Max 
HR, distance 

tracking, steps,  

YPA $38 (326) 

Sync Elite  SYNC ? ? 1 year  Wrist ? 30 days Accelerometer Wireless 
sync  

Head 
Phone 
Jack  

Map My 
Walk No 

Step tracking, 
distance, 

calories burned, 
activity time 

and fat burning, 
pace tracking, 

speed, auto 
stride length 

YPA $18 (327) 

Sync Fit  SYNC ? ? 1 year  Wrist  ? 7 days  Accelerometer ? ? ? No 

Calories 
Burned, Heart 

Rate, % of Max 
HR, distance 

tracking, steps,  

YPA £70 (328) 

TracmorD
/ Philips 

DirectLife 

Philips New 
Wellness 
Solutions 

3.2 x 3.2 x 
0.5cm 12.5g 3 weeks 

Lower 
Back or 

in pocket 
? 22 

Weeks Triaxial USB No 
The 

DirectLife 
Program 

No 

Energy 
Expenditure, 
minutes spent 

walking, 
minutes spent 

running. 

YPI $199 (146,231, 
232,310) 
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? = Unknown, Hz = Hertz, ANT+ - A proprietary wireless technology, Oz = Ounces, GPS = Global Positioning System, @ = at, SpO2 = Arterial Oxygen Saturation, BLE = Bluetooth low energy, 
USB = Universal Serial Bus YPAR R: Yes = Self-monitors Physical Activity. YPI: Yes = Self-monitors Physical Activity/Physical Inactivity (i.e self-monitoring and feedback on lack of movement). 
YSB: Yes = Self-monitors Sedentary behaviour. *Price has been rounded to the nearest Great British Pound, US Dollar or Euro. 
 

 

 

 

 

 

 

 

 

 

Vivago Vivago 
Wellness ? ? ? Wrist 40Hz / 

1min ? Triaxial 
accelerometer USB ? ? No Energy 

Expenditure YPI €439 (258,330) 

Wello 
graph 

Wellograph 
Co., Ltd 

4.2 x 3.2 x 
1.25cm 55g 7 days  Wrist ? 

4 
months 
@ non-
stop use 

Tri-LED heart 
rate sensor, 9-
axis motion 

sensor 

Micro USB Yes, BLE 
The 

Wellograph 
App 

No 
Activity, BPM, 

Exercise, 
Fitness, Steps  

YPI $349 (331) 

Withings 
Pulse Withings, Fr 4.3 x 2.2 x 

0.8cm 8g 2 weeks Waist, 
Wrist ? ? 

Triaxial 
Accelerometer 

and Optical 
Heart Rate 
Sensor and 

SpO2 sensor  

Micro-USB Yes, BT 
Withings 

Health 
Mate App 

No 

Steps taken, 
Floors Climbed, 

Distance 
travelled, 
Calories 

Burned, HR, 
Blood Oxygen 

level, Sleep 
quality and 

duration 

YPA £100 (156,165, 
313) 
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3.3.2 Physical Activity Self-monitoring Technologies 
The device with the highest number of feedback attributes was the MicroSoft Band (299) 

with 18 of the 28 feedback possibilities that were coded. The most common feedback 

attribute used in the devices found was joint numeric and graphical data feedback on the 

associated backend platform, with 94% of the devices that self-monitor physical activity 

displaying these attributes. The least common form of feedback attribute was auditory 

feedback from the device (D_Auditory). This particular type of feedback was only present in 

2% of cases (Figure 2.4). 

3.3.3 Sedentary Time Self-monitoring Technologies 
The device with the highest number of feedback attributes was the LumoBack posture sensor 

and feedback coach (338) with 13 of the 28 feedback possibilities that were coded. The most 

common feedback attribute used in the devices found was joint numeric and graphical data 

feedback on the associated backend platform, with 81% of the devices that self-monitor 

sedentary time displaying these attributes. The least common form of feedback attribute was 

push notification of feedback from the device of sedentary time on the device. This particular 

type of feedback was present in none of the devices found. 
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Table 3.3 - Devices that self-monitor sedentary behaviour 
 

Name Manufacturer Size Weight Battery 
Life Placement 

Sampli
ng rate / 
Epoch 
Length 

Data 
Storage Sensor Interface Wireless 

Software 
for Data 

Processing  
SDK Outcome 

(Calculated) 
Self-

Monitoring *Cost  Reference 

Activ8 
VitaMove, 
Veldhoven, 
Netherlands 

3.4 x 
3.0 x 
1.0cm 

20g 50days 

Trouser 
Pocket or 

thigh 
using 
elastic 
strap 

12.5Hz 1-5days  Triaxial 
accelerometer USB No PC 

Application No 

Posture and 
movement 
recognition 

(lying, sitting, 
standing, 
walking, 
cycling, 

running) and 
energy 

expenditure 

YSB € 99 (333) 

ActivPAL 
VT 

PAL 
Technologies 
Ltd, Glasgow, 

UK 

5 x 
3.5 x 
0.7cm 

15g 10days 

Midline of 
the 

anterior 
aspect of 
the thigh 

20Hz (1 
second 

to 1 
min) 

16MB 
(10days) 

Triaxial 
accelerometer 

Micro 
USB No activPAL 

Software No 

Time spent in 
sitting/lying, 
upright and 

stepping 
activities, step 

counts, stepping 
cadence, 

activity score 

YSB £380 (139,141, 
236–238,315) 

Darma Darma Inc. 
40 x 
40 x 
3cm 

? One 
Month  Seat ? 128MB Patented fibre 

optic sensors ? Yes, BLE 
Darma 
Mobile 

App 
No 

Posture, Time 
spent sitting 
Heart Beat, 
Respiration, 
Stress Level 

YSB $149 (342) 

Foot 
Logger  3L Labs  ? ? 24 

hours Insole  ? 50,000 
footprints 

Triaxial 
Accelerometer, 

pressure 
sensor, 
optional 
sensors 

available 

USB Yes, BLE  

LASIS - 
Life Log 

Acquisition 
and 

Analysis 
Service 
using 
Insole 
Sensor 

No  

Activity 
tracking, 
balancing 

assessment, 
failing accident, 

time spent, 
walking running 
sitting standing.  

YSB 
Price 

Available 
on Request 

(336) 
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Gruve 

Gruve 
Technologies, 
Inc., Anoka, 

MN. 

? ? ? Waist ? ? NEAT 
Activities 

Micro-
USB No 

Interactive 
Gruve 

Website 
No 

Sedentary Time 
(calculated from 

lack of 
movement), 

light intensity 
and moderate 

intensity 
physical activity 

and Energy 
Conservation 

Point 

YSB $180 (337) 

LumoBack 
LUMO Body 

Tech, Inc., 
Palo Alto, Ca 

4.15 x 
10 x 

0.8cm 
25g 5-

7days 
Lower 
Back ? One 

month 

Posture 
Sensors and 

Triaxial 
accelerometer 

USB  Yes, BLE LumoBack 
App Yes 

Slouch vs. 
straight 

tracking, sit 
time vs. active 
tracking, stand 

up tracking, 
sleep position 

tracking 

YSB $70 (163,165, 
324) 

Moticon 
OpenGo Moticon Shoe 

Insole  ? ? Insole  100Hz ? 

13 Pressure 
sensors, 
Triaxial 

Accelerometer, 
Temperature 

Sensor 

USB Yes, 
ANT  

Beaker 
Software  Yes  

Current 
Applications - 
Gait Analysis, 

motion analysis  

YSB 
Price 

Available 
on Request 

(344) 

OM 
Everyday OM Signal Under

Shirt ? 2-3 
days  Shirt ? ? ? ? Yes, BLE OM Mobile 

App No 

Heart Rate, 
Breathing Rate, 

activity 
intensity, steps 

walked, calories 
burned and 

posture  

YSB $199 (340) 

Sensoria 
Fitness 

Heapsylon, 
Redmond, 

WA 

Sock 
of 

shoe 
size 
and 

anklet 

? ? Sock and 
Ankle ? 18 days 

Pressure 
Sensors (Sock) 

and Triaxial 
Accelerometer 

(Anklet) 

USB and 
BLE Yes, BT Sensoria 

App Yes 

Steps, speed, 
calories, 
altitude, 
distance, 

cadences, foot 
landing 

technique, and 
weight 

distribution of 
the foot 

YSB $199 (345) 

? = Unknown, Hz = Hertz, ANT+ - A proprietary wireless technology, Oz = Ounces, GPS = Global Positioning System, @ = at, SpO2 = Arterial Oxygen Saturation, BLE = Bluetooth low energy, 
USB = Universal Serial Bus YPAR R: Yes = Self-monitors Physical Activity. YPI: Yes = Self-monitors Physical Activity/Physical Inactivity (i.e self-monitoring and feedback on lack of movement). 
YSB: Yes = Self-monitors Sedentary behaviour. *Price has been rounded to the nearest Great British Pound, US Dollar or Euro. 
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Table 3.4 – Self-monitoring attributes of devices that measure physical activity 
 

Name Type Timing Feedback in Backend Platform Goal 
Setting 

Capabilities 
Device Backend platform Device Backend 

Platform 
Device Backend Platform 
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Te
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Fe

ed
ba

ck
 

‘O
m

et
er

 

Application Software Website 

iO
S 

A
nd

ro
id

 

W
in

do
w

s 

M
ac

 

PC
 

ActiGraph 
Link 

6 6 1 6 6 6 2 6 1 6 1 1 1 6 6 6 1 1 6 6 6 6 6 1 1 6 6 

ActiGraph 
wGT3X+BT 

6 6 6 6 6 6 2 6 6 6 1 1 6 6 6 6 1 1 6 6 6 6 6 1 1 6 6 

Adidas Fit 
Smart 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 1 1 

Amiigo 6 6 6 5 6 6 1 6 6 1 1 1 6 6 6 6 1 1 5 5 1 1 1 6 6 6 1 

Apple Watch 6 1 1 1 6 6 1 1 1 6 1 1 1 1 6 1 1 1 1 6 1 6 6 1 6 6 1 

Archos 
Activity 
Monitor 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

Basis Peak 6 6 1 4 6 6 1 4 1 6 1 1 1 1 1 6 1 1 1 6 1 1 6 6 6 6 1 

Bowflex 
Boost 

6 6 1 6 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 1 6 6 6 1 1 

Epson 
Pulsense 100 
Wristband 

6 6 1 1 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 4 6 6 6 1 1 
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Epson 
Pulsense 500 

watch 

6 6 1 6 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 4 6 6 6 1 1 

Fitbit Charge 6 6 1 6 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 1 6 6 6 1 1 

Fitbit Flex 6 6 1 6 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 1 6 6 6 1 1 

Fitbit One 6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 1 1 1 6 6 1 1 6 6 6 1 1 

Fitbit Surge 6 6 1 6 6 6 1 6 1 6 1 1 1 1 6 6 1 1 6 6 1 1 1 6 6 1 1 

Fitbug Orb 6 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 1 1 6 1 1 1 6 6 6 1 1 

FlyFit 6 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 1 1 6 1 1 1 6 6 6 1 1 

Free Wavz 1 6 6 6 6 6 1 6 1 6 1 1 6 6 6 6 1 1 6 6 4 4 6 6 6 6 1 

Garmin 
VivoFit 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 1 1 1 6 6 1 1 6 6 6 1 1 

Garmin 
VivoSmart 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 1 1 1 6 6 1 1 6 6 6 1 1 

GoBe 
Activity 
Monitor 

6 6 6 6 6 6 6 6 6 6 1 1 6 6 6 6 1 1 6 6 1 1 6 1 1 6 1 

GOQii Band 6 1 1 1 6 6 1 6 1 1 1 1 1 6 1 6 1 1 1 6 1 1 6 6 6 6 1 

Hexoskin 6 6 6 6 6 6 1 5 6 6 1 1 6 6 6 6 1 1 6 6 1 1 1 6 6 6 1 

iBitz 6 6 6 6 6 6 6 5 6 6 1 1 6 6 6 6 1 1 6 1 1 6 6 6 6 6 1 

iHealth 
Wireless 

Activity and 
Sleep 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 
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Tracker 

Jawbone UP 6 1 6 6 6 6 1 5 6 6 1 1 6 6 6 6 1 1 5 5 1 1 1 6 6 6 1 

Jawbone 
UP2 

6 1 1 6 6 6 1 1 1 1 1 1 6 6 6 1 1 1 6 6 1 1 1 6 6 6 1 

Jawbone 
UP24 

6 1 6 6 6 6 1 5 6 6 1 1 6 6 6 6 1 1 5 5 1 1 1 6 6 6 1 

Jawbone 
UP3 

6 1 1 6 6 6 1 1 1 1 1 1 6 6 6 1 1 1 6 6 1 1 1 6 6 6 1 

Jawbone 
UP4 

6 1 1 6 6 6 1 1 1 1 1 1 6 6 6 1 1 1 6 6 1 1 1 6 6 6 1 

Ki Fit 6 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 1 1 6 6 1 1 6 1 1 1 1 

LEO 6 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 1 1 6 6 1 1 6 1 1 6 1 

LG Activity 
Tracker 

6 1 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

LifeBeam 
Hat 

6 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

LifeTrak 
Core C200 

6 6 1 6 6 6 6 1 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

LifeTrak 
Core C210 

6 6 1 6 6 6 6 1 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

LifeTrak 
Move C300 

6 6 1 6 6 6 1 5 1 1 1 1 1 1 6 6 1 1 6 6 1 1 6 6 6 6 1 

LifeTrak 
Zone C410 

6 6 1 6 6 6 1 5 1 1 1 1 1 1 6 6 1 1 5 5 1 1 6 6 6 6 1 

LUMOlift 6 5 6 7 6 6 1 1 1 1 1 1 6 6 6 6 1 1 6 6 1 1 6 4 4 6 1 

Magellan 
EchoFit 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 
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Microsoft 
Band 

1 1 1 1 6 6 1 1 1 1 1 1 1 6 1 6 1 1 6 6 1 1 1 6 6 6 1 

Misfit Flash 6 6 1 6 6 6 1 5 1 1 1 1 6 6 6 1 1 1 6 1 1 4 6 1 6 6 1 

Misfit Shine 6 6 1 6 6 6 1 5 1 1 1 1 6 6 6 1 1 1 6 1 1 4 6 1 6 6 1 

Moto 360 6 6 1 6 6 6 6 6 1 1 6 6 1 1 6 6 6 6 6 6 6 1 6 6 6 6 1 

MyWellness 
Key 

6 6 1 6 6 6 1 6 1 1 1 1 6 6 6 1 1 1 6 6 6 6 6 1 1 6 1 

New Balance 
Body TRNr 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

New Balance 
Life TRNr 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

Nike+ 
Fuelband SE 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

Omate X 6 6 1 1 6 6 1 1 1 1 1 1 1 1 6 6 1 1 6 6 6 6 6 6 6 6 6 

PAM AM200 6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 6 6 6 6 1 6 1 

PAM AM300 6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 6 6 6 6 1 6 1 

Pavlok 6 1 6 6 6 6 1 1 1 1 1 1 6 6 6 6 1 1 6 6 1 1 6 6 6 1 1 

Pebble 4 4 1 6 6 6 6 6 1 1 6 6 1 1 6 6 6 6 6 6 1 1 5 5 5 6 1 

Polar Loop 6 6 1 6 6 6 1 6 1 1 1 1 1 1 6 6 1 1 1 6 1 1 6 6 6 1 1 

Polar V800 6 6 1 6 6 6 1 6 1 1 1 1 1 1 6 6 1 1 1 6 1 1 6 6 6 1 1 

Razer Nabu 6 1 1 1 6 6 1 1 1 1 1 1 1 6 1 6 1 1 6 6 1 1 6 6 6 6 1 



75 
 

Razr Nabu X 6 1 1 6 6 6 1 1 1 6 1 6 1 6 6 6 1 1 6 6 4 1 6 6 6 6 1 

RT6 6 6 1 6 6 6 6 6 1 1 2 1 1 6 6 6 1 1 6 6 6 6 6 6 1 6 6 

Samsung 
Gear Fit 

6 6 1 1 6 6 1 6 1 6 1 1 1 6 6 6 1 1 6 6 6 1 6 6 6 6 1 

Spree 6 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

Stayhealthy 
Activity 
Monitor 

6 6 1 6 6 6 6 6 1 1 2 1 1 6 6 6 1 1 6 6 6 6 6 6 1 6 6 

Striiv Band 6 6 1 6 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 1 6 6 6 6 1 

Striiv Fusion 6 6 1 1 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 4 6 6 6 1 

Striiv Fusion 
Bio 

6 6 1 1 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 4 6 6 6 1 

Striiv Fusion 
Lite 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 4 6 6 6 1 

Striiv Touch 6 6 1 6 6 6 1 6 1 6 1 1 6 6 6 1 1 1 6 6 1 1 6 6 6 6 1 

Suunto 
Ambit3 

6 6 1 6 6 6 1 6 1 6 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

Sync Burn 6 6 1 6 6 6 1 6 1 6 1 1 1 1 6 6 1 1 6 6 1 1 6 6 6 6 1 

Sync Elite 6 6 1 6 6 6 1 6 1 6 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

Sync Fit 6 6 1 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 6 6 1 1 6 6 6 6 1 

TracmorD 
(Philips 

DirectLife) 

6 6 1 6 6 6 6 6 1 1 6 1 6 6 6 6 1 1 6 6 6 6 6 1 1 6 1 
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Vivago 6 6 1 6 6 6 6 6 1 6 6 6 1 1 6 6 6 6 6 6 6 6 6 1 6 6 6 

Wellograph 6 6 1 1 6 6 1 1 1 1 1 1 1 1 6 6 1 1 6 6 1 1 6 6 6 6 1 

Withings 
Pulse 

6 6 1 6 6 6 1 6 1 1 1 1 1 6 6 6 1 1 6 6 1 1 6 6 6 6 1 

1=Yes, 2 = Yes – Difficulties (e.g. proximity to computer) 3 = Yes – Lack of evidence to suggest this 4=No – But present in future iterations 5 = No – But possible (with Application Programming 
Interface or Software Development Kit) 6= Not described/Not featured 
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Table 3.5 – Self-monitoring attributes of devices that measure sedentary behaviour 
Name Type of Feedback Timing Of 

Feedback 
Feedback in Backend Platform Goal Setting 

Capabilities 

Device Backend Platform Device Backend 
Platform 

Device Backend Platform 
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Application Software Website 

iO
S 

A
nd

ro
id

 

W
in

do
w

s 

M
ac

 

PC
 

Activ8 6 1 1 6 6 1 1 5 1 1 6 1 6 6 6 1 1 1 6 5 6 5 6 6 6 1 1 

ActivPAL VT 6 1 6 6 6 6 6 6 1 6 6 1 6 6 6 6 1 1 6 5 6 5 6 6 1 6 6 

Darma 6 6 6 6 1 6 1 1 6 6 1 6 6 6 6 6 1 1 1 0 1 0 6 6 6 6 1 

FootLogger 6 6 6 6 5 5 5 5 6 6 5 5 6 6 6 6 5 5 5 4 1 0 6 6 6 6 5 

Gruve 6 1 1 6 6 6 6 6 1 6 6 1 6 6 6 1 1 1 6 5 6 5 6 6 1 1 1 

LumoBack 6 3 6 6 6 6 1 1 1 6 1 1 6 6 6 6 1 1 1 1 1 1 3 6 6 6 1 

Moticon 
OpenGo 

6 6 6 6 5 5 5 5 6 6 5 5 6 6 6 6 5 5 5 4 5 4 5 4 5 5 5 

OM Everyday 6 6 6 6 6 6 1 1 6 6 1 6 6 6 6 6 1 1 6 5 1 0 6 5 6 6 1 

Sensoria 
Fitness 

1 6 6 6 6 6 6 1 1 1 1 1 6 6 6 6 1 1 5 4 1 0 6 5 6 6 1 

1=Yes, 2 = Yes – Difficulties (e.g. proximity to computer) 3 = Yes – Lack of evidence to suggest this 4=No – But present in future iterations 5 = No – But possible (with Application Programming 

Interface or Software Development Kit) 6= Not described/Not featured 



78 
 

0 2 4 6 8 10 12 14 16 18 20

Microsoft Band
Apple Watch
GOQii Band
Razer Nabu
Polar Loop
Polar V800
Wellograph
Basis Peak
Fitbit One

Garmin VivoFit
Garmin VivoSmart

LifeTrak Move C300
LifeTrak Zone C410

Misfit Flash
Misfit Shine

Pavlok
Adidas Fit Smart

Epson Pulsense 100 Wristband
iHealth Wireless Activity and Sleep Tracker

LG Activity Tracker
Archos Activity Monitor

Bowflex Boost
Epson Pulsense 500 watch

Fitbit Charge
Fitbit Flex

LifeTrak Core C200
LifeTrak Core C210

LUMOlift
Magellan EchoFit
MyWellness Key

New Balance Body TRNr
New Balance Life TRNr

Nike+ Fuelband SE
Omate X

Sync Burn
Withings Pulse

Amiigo
Jawbone UP

Jawbone UP24
Ki Fit

PAM AM 200
PAM AM 300

Samsung Gear Fit
Striiv Band

Striiv Touch
Suunto Ambit3

Sync Elite
Actigraph Link

Fitbug Orb
FlyFit

Hexoskin
LEO

GoBe Activity Monitor
Pebble

RT6
TracmorD (Philips DirectLife)

Free Wavz
iBitz

LifeBeam Hat
Spree

Actigraph wGT3X+BT
Moto 360

Sync Fit
Vivago

Self-monitoring attributes 

D
ev

ic
es

 th
at

 c
an

 b
e 

us
ed

 to
 se

lf-
m

on
ito

r p
hy

si
ca

l a
ct

iv
ity

  

Figure 3.2 - Technologies found that can be used to self-monitor and provide feedback 
on physical activity ordered by number of self-monitoring attributes that were found 
to be present in the technologies 
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Self-monitoring attributes 

Figure 3.3 - Proportion of devices that can be used to self-monitor and provide 
feedback on physical activity which have the specific self-monitoring attributes 
Each attribute is split into whether the attribute is present on the device itself (denoted is a 
D ) or whether it is present on the backend platform (i.e. smartphone/tablet etc; denoted with 
BP ) 
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Figure 3.4 - Technologies found that can be used to self-monitor and provide feedback on sedentary time 
ordered by number of feedback elements that were found to be present in the technologies 
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Figure 3.5 - Proportion of sedentary behaviour devices that can be used to self-monitor and provide 
feedback on sedentary time which have the specific self-monitoring attributes   
Each attribute is split into whether the attribute is present on the device itself (denoted is a D ) or whether it 
is present on the backend platform (i.e. smartphone/tablet etc; denoted with BP ) 
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3.4 Discussion 
The present systematic review sought to identify current measurement technologies available 

that could be used for real time self-monitoring of sedentary behaviour and/or physical 

activity. The review identified 125 papers on 46 devices and 90 websites, giving a combined 

total of 146 technologies that monitor sedentary behaviour and/or physical activity. Of these, 

82 devices were considered capable of self-monitoring sedentary behaviour and/or physical 

activity. These devices can be used by researchers, clinicians and the general public.   

 

Technologies that self-monitor physical activity mainly come from the consumer health and 

fitness market. In general, these devices consist of an accelerometer for activity measurement 

(steps, calories burned, distance travelled) with varying secondary sensors including, 

gyroscope, inclinometer, lux sensors, skin sweat sensors and many more that will provide 

additional pieces of information. However, these devices will provide feedback only on 

physical activity, and increases in physical activity do not automatically lead to decreases in 

sedentary time (35). Additionally, more and more of these devices are providing feedback on 

not only the amount of physical activity, but the length of time spent inactive.  

 

There are devices from both the commercial and research sectors that self-monitor sedentary 

behaviour. These devices tend to measure sedentary behaviour in two differing ways. Firstly, 

posture sensors measure sedentary behaviour either through accelerometry in conjunction 

with gravitational components and proprietary algorithms (e.g. activPAL) or through the 

alignment of the area of the body surrounding the pelvic area (i.e., pelvic alignment is 

different depending on standing sitting and lying). The other way in which technologies tend 

to measure sedentary behaviour is via pressure sensors. These pressure sensors are either 

located in a sock, shoe or chair. When placed in a sock or shoe the pressure can determine 

standing when there is pressure on the sensor and when there is less pressure the wearer is 

sitting or lying. Located on the chair, there is a simple binary outcome that suggest when the 

pressure sensor is active the user is sitting and when inactive there is no sitting behaviour at 

that site. 

 

Both physical activity and sedentary behaviour devices usually provide either via vibratory 

feedback (e.g. Jawbone UP) or via an omnipresent display on the device (e.g. Garmin 

Vivofit). These devices tend to, but not exclusively, connect to a mobile application for 

feedback on the nature of the physical activity and sedentary behaviour. For physical activity, 
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this usually takes the form of energy expenditure or proprietary company points (e.g. Nike 

Fuel). For sedentary behaviour, this usually takes the form of time spent sitting (e.g. 

LumoBack). These mobile applications allow the wearer to receive real time continuous 

feedback along with goal-setting capabilities and customisation of type and timing of 

feedback, an aspect not traditionally offered by research devices.  

 

With the plethora of devices now available, with differing attributes and cost, it is 

unsurprising that these devices are growing in popularity. However, and perhaps 

paradoxically, there are a small number of devices specifically designed to measure sitting 

time. Furthermore, the small number of devices that do provide feedback on sitting were 

either not originally designed for its measurement (e.g. LumoBack) or are still mainly 

research tools to be used in scientific studies (e.g. activPAL VT). 

 

Self-monitoring technologies need to provide real-time feedback on aspects of physical 

activity and sitting that are personalised and relevant to the individual (i.e., the attributes of 

real-time feedback must resonate with the individual and not simply information that has 

been presupposed for them). Additionally, the immediate feedback should be of a low 

cognitive load so that it can resonate immediately with the end user (346,347). For example, 

the Fitbit One has a growing flower as a feedback indication of progression towards a user 

defined goal. Using a pictorial representation of this nature will resonate easier with the user 

(348,349). However, more detailed information on, for example, the temporal patterning of 

the behaviour should be accessible from a mobile application, website or software. 

The likelihood of the feedback being acted upon could be increased if it is provided in a 

manner that is context aware. In other words, the feedback must be given at a time when it 

can be acted upon by the user. For example, to reduce sitting provide feedback whilst 

watching television rather than sitting in an exam or during a prolonged dental procedure. If 

these attributes could be integrated into a single device it would help facilitate its use by 

differing populations regardless of technological ability. These devices need to have a 

substantial battery life and memory capacity, as well as keeping the costs reasonable. For this 

to occur there is a need for co-operative work across different research disciplines and 

commercial fields, to develop these context-aware, personalised feedback devices. Not every 

user will have the same needs, and the presentation of actionable information will need to be 

tailored to fit individual needs. In addition, simply providing more medical data to patients 
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not only fails to guarantee improved outcomes but also could potentially lead to negative 

consequences (350). Activity trackers have had a poor evidence of prolonged use, with a 

conservatively estimated one-third discontinuing use by 6 months after initiation (351). A 

recent study of several tools to encourage medication adherence in older adults, a major area 

of focus of mHealth developers, found that the most common descriptors participants used to 

describe their experience with the devices were “frustrating” and “challenging” (352). In 

another study of the usage of a dietary app to promote healthy eating, investigators found that 

fewer than 3% used the app for at least one week and fewer than 10% of these individuals 

made positive changes in their diet (353). Users require consumer-friendly devices and apps 

that are self-reinforcing and enjoyable to use. These goals might be accomplished with the 

use of incentives, gamification, and social networks to promote managed competition among 

peers or family members. This review demonstrates that there are a plethora of feedback 

attributes enabling users to customise their experience by choosing the device with best 

works for them.  

 

In order for the promise of wearable technology to be fully realised, consumers, providers, 

and health care systems must be able to trust the reliability, privacy and security of their data 

as well as the devices that collect and share it. Although regulatory oversight is often 

considered to be an impediment to the rapid dissemination of innovative technologies, the 

existence of potential scams which could harm the end user necessitates some level of 

oversight. Globally, there is a great deal of uncertainty around wearable technology 

regulation; there are numerous countries that have no regulatory framework, whereas the 

others that do have a framework are still in their infancy and being actively refined (354,355).  

 

Wearable technology users are also concerned about the privacy and ownership of their 

health data. In the era of big data, it is critical that the terms of ownership of personal data, 

most especially medical data, be unambiguously stated – not buried in the universally unread 

and then accepted terms of use agreements – with users required to explicitly consent 

whenever their data are sold or transmitted to others (356).  

 

One of the benefits of mHealth is easier accessibility to pertinent health care data, but this 

increased availability to both consumers and providers creates the potential for substantial 

security risks. Because of the small size of the device it becomes easier to inadvertently lose 

or be easier to steal, which may mean that the information stored on the device becomes 



84 
 

accessible to others. As consumer demand for wearable sensors increase, health care 

providers will face the possibility of being inundated by a torrent of patient data. This will 

create a number of difficult challenges, including the potential requirement for 24/7 oversight, 

the need to summarize multi-parameter, continuously collected data into a usable and 

clinically meaningful format, and liability challenges (357).  

 

The strengths of this review are the systematic approach taken and the comprehensive range 

of technologies that have been found. However, there are some limitations. Due to the nature 

of papers included, it was not possible to present data on the validity and reliability of the 

devices in their ability to measure sedentary behaviour. Similarly, due to the fact that 

objectively self-monitoring is in its infancy, there are gaps in the literature as to whether these 

devices truly work as self-monitors, consequently, we cannot comment on how useful or 

valid they are in these settings. However, validity data are important. Users of self-

monitoring technologies must be able to trust in the feedback that is being returned to them; 

otherwise they may become disenfranchised with the tool and the behaviour change tool. 

Therefore, incorporating important valid data with the feedback tools means additional value 

can be added to the consumers and potentially more potent behaviour change.  

3.5 Conclusion 
In conclusion, the authors believe that this review is the first of its kind to systematically 

describe the wide plethora of devices that self-monitor and provide feedback on physical 

activity and sedentary behaviour. There has been an explosion in the number of devices that 

measure physical activity and there is a greater need for the development of tools that 

specifically measure sitting time. Co-operative work between engineers, computer scientists 

and academics in relevant fields is needed to develop these technologies that provide real 

time, personalised, context aware feedback to aid in the reduction in sitting time, and its 

detrimental effect on cardio-metabolic health independent of physical activity. This could 

potentially lead to the use of these devices in a healthcare setting; both as part of the 

increasing value-based care systems that are starting to arise in the United States or as a 

diagnostic tool in which is beginning to be implemented in the National Health Service in the 

UK. 

 

The plethora of devices and differing feedback attributes allows the user to choose which 

device and which attribute works best for them. However, there is not currently a “one size 
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fits all devices” which means individuals may have to choose more than one device to 

measure different parameters of the behaviour or to determine the most resonating feedback 

attribute for them.  

 

This scoping review provides a record of a large breadth of devices with information on their 

capabilities both in terms of their ability to measure behaviour and to provide feedback to the 

user, therefore providing a foundation for clinical, research, and public health use. These self-

monitoring tools are becoming ever more present in daily life as well as becoming integrated 

into health systems throughout the world. Future studies are needed to further investigate the 

validity of these devices and their feasibility to in increasing physical activity and/or 

decreasing sedentary behaviour and the public health impact this may produce.  

 

From this review, it was determined that the LumoBack was the device which contained the 

highest volume of attributes as well as the ability to measure sedentary behaviour to the 

definition. Therefore in chapter 4, the LumoBack will be validated for measuring sedentary 

behaviour. 
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4.1 Introduction 
Sedentary behaviour (measured by posture sensors and questionnaires), is a distinct risk 

factor for cardio-metabolic health, which may be additional to the risks associated with lack 

of moderate-vigorous physical activity (MVPA (28,29,59,60,358). However, the optimal 

amount, frequency and distribution of sedentary behaviour are still a matter for debate. 

Reliable and valid measurements of sedentary behaviour are therefore essential to draw 

appropriate conclusions about their influences on health. Early studies measuring sedentary 

behaviour predominantly used self-report tools (52,59,104). However, self-reported 

measurement tools are prone to recall and response bias, social desirability, and under- or 

over-reporting (104). Additionally the reproducibility and validity of self-reported sedentary 

behaviour are variable (107,359). 

Accelerometry has been proposed as a method to objectively quantify sedentary time 

(measured by accelerometry) in addition to physical activity (360). Briefly, activity 

monitoring using accelerometers measures the intensity of the behaviour based on 

acceleration at the point the accelerometer is attached to the body. Accelerometers, which 

measure activity using accelerometric counts determine sedentary time as less than 100 CPM 

(48); however, the most accurate cut-point is yet to be universally agreed upon and may vary 

between different population groups (361). A problem with this approach is the inability to 

discriminate between differing postures (a key component of the sedentary behaviour 

definition (43)). In other words, if a person is sitting or standing still, these could both be 

interpreted as sedentary time using the accelerometer cut-point method. This will cause 

measurement problems for interventions where participants are encouraged to replace sitting 

with standing (134).  

In one study (52), 86 participants (87% women; mean age 52.7 years, SD 8.6 years) 

simultaneously wore an ActiGraph (ActiGraph, LLC, Pensacola, FL, USA) activity monitor 

and activPAL (PAL Technologies Ltd, Glasgow, UK) for 7 consecutive days (52). For this 

analysis, only valid days that had similar estimated wear times for both devices (±30 minutes) 

were considered. Sedentary time derived from the ActiGraph activity monitor (<100 CPM) 

was compared to sedentary behaviour from the activPAL (sitting and lying down) over an 

average of 4.5 observed days per person, and an average wear time of 14.3 ± 1.5 hours per 

day for each device. On average, recorded sedentary time was lower for the ActiGraph 

activity monitor (8.7 [SD=1.6] hours/day, or 60.9%) than for the activPAL (99 [SD=1.8] 

hours/day, or 63.4%; both p=0.01), but the correlation between the measures was relatively 
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high (ρ = 0.76, p<0.01). Interestingly, Bland-Altman analysis showed a small mean 

difference (-0.34 hours) and wide 95% limits of agreement (2.11 to -2.79 hours (52). In 

another study, 32 participants wore an ActiGraph GT1M and activPAL for one day (136). For 

similar amount of wear time (15.1 ± 1.9 vs 15.0 ± 2.0 for ActiGraph and activPAL 

respectively) the ActiGraph (sedentary time defined as <100 CPM) had statistically higher 

levels of sedentary time (650.6 ± 111.8 minutes/day) compared to the activPAL (518.5 ± 

147.8 minutes/day). This indicates that the ActiGraph activity monitor has minimal bias 

overall, but can both substantially over- and under-estimate sedentary time compared with the 

activPAL (136). These two validity studies imply that ActiGraph activity monitors provide 

useful estimates of sedentary time and that are sufficiently accurate to rank individuals by 

their level of sedentary time. However, given the limitations of accelerometry, development 

and testing of new measures of sedentary behaviour are required. The activPAL, an 

inclinometer enabled monitor, is able to measure different postures, such as lying, sitting, and 

upright postures, which has been shown to be a valid measure of behaviour in both laboratory 

and free-living settings (151–153,255,256,362,363). Additionally, posture sensors are 

emerging in the commercial market aimed at measuring various behaviours, some of which 

have the ability to measure posture, one such device is the LumoBack posture sensor (338). 

The LumoBack (LumoBody Tech, Inc, Palo Alto, CA) is a small (4.15 x 10 x 0.8cm, 25g) 

and flexible posture sensor, worn on the lower back. The LumoBack and other newer 

consumer electronic (CE) technologies in this area, has the ability to empower the wearer to 

self-monitor their behaviour. Furthermore, the systematic scoping review in Chapter Three 

(page 46) identified that there is currently a lack of sedentary behaviour self-monitoring 

devices compared to their physical activity self-monitoring counterparts. Of the nine 

sedentary behaviour self-monitoring devices, the LumoBack was seen as one of the more 

promising tools with its ability to measure body posture (as opposed to the absence of activity 

like accelerometers, or being seat based), to provide real-time feedback of behaviour to a 

mobile application, to utilise a vibratory functionality to provide prompt/cues for immediate 

feedback, and open source Software Development Kit (SDK) and Application Programming 

Interfaces (API), along with being relatively inexpensive compared to its research grade 

counterparts, makes the LumoBack worthy of validating for use as a sedentary behaviour 

measurement self-monitoring tool.  

Therefore the aim of this study was to examine the criterion and convergent validity of the 

LumoBack in measuring sedentary behaviour, by comparing the validity of the LumoBack to 
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direct observation, the ActiGraph wGT3X+ and the activPAL under laboratory conditions as 

well as examining the convergent validity of sitting time, standing time and stepping time of 

the LumoBack compared to the activPAL3 and ActiGraph wGT3X+ in a sub-sample of 

healthy adults in a free-living setting. 

4.2 Methods 

4.2.1 Design 

Data were collected in a controlled, laboratory environment. Data from the LumoBack were 

compared to direct observation (as the gold standard) as well as activPAL (worn on the thigh: 

hereafter referred to as activPAL) and ActiGraph wGT3X+ (worn on the waist: hereafter 

referred to as ActiGraph). In the laboratory measurement, the participants were instructed to 

follow a strict activity and posture protocol in a fixed setting. A sub-sample of participants 

wore the LumoBack, activPAL and ActiGraph for a period of seven days as part of the free-

living component of this study. 

4.2.2 Participants 

A convenience sample of 34 apparently healthy adults (45% male, mean age 27.1 ± 5.5 years, 

mean BMI = 23.8 ± 3.5 kg/mP

2
P) participated in the laboratory study. A sub-sample of 12 

healthy adults who participated in the laboratory study participated in the free-living study 

(58.3% male, mean age 26.8 ± 4.6 years old, mean BMI = 24.2 ± 3.2 kg/mP

2
P). This sub-

sample was chosen based on which of the individuals in the laboratory study had an iOS 

compatible device. The participants read an information sheet and completed a Health 

Screening Questionnaire, and Informed Consent form before measurements took place. Study 

documentation can be found in Appendix 2 (page 213).  

4.2.3 Procedures 

In the laboratory experiment, preliminary data were collected from the participants including 

their age, weight, standing height (enabling BMI to be calculated), and sex. For standing 

height, the participants were asked to stand upright, barefoot, with their back to the vertical 

backboard of the stadiometer (Leicester Portable health measure). The heels of the feet were 

placed together with both heels touching the back of the vertical board. The participant’s feet 

were pointed slightly outward at approximately a 60 degree angle. The participants head was 

maintained in the Frankfort Horizontal Plane position (the head is in the Frankfort plane 

when the horizontal line from the ear canal to the lower border of the orbit of the eye is 
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parallel to the floor and perpendicular to the vertical backboard) while the investigator 

lowered the horizontal bar snugly to the crown of the head with sufficient pressure to 

compress the hair. The participants were asked to inhale deeply and to stand fully upright 

without altering the position of their heels. The act of taking a deep breath helps straighten 

the spine to yield a more consistent and reproducible stature measurement. The measurement 

was recorded to the nearest 0.1 cm (364). For measurement relating to weight and BMI, the 

Tanita Body Composition Analyser BC-418 (Tanita, West Drayton, UK) was used. 

Participants were asked to remove all footwear and any extra weight (heavy jumpers, coins in 

pockets, belts etc.). Participants were asked to step on the weight platform, making sure to 

place their heels on the posterior electrodes, and the front part of their feet in contact with the 

anterior electrodes. The participants were then asked to hold onto the grips of the analyser 

until the measuring process had completed. Body weight was measured to the nearest 0.1kg. 

Following these anthropometric measurements, the devices were fitted to the participants. 

The activPAL was fitted on the midline anterior aspect of the participant’s right thigh affixed 

with medical dressing, whilst the ActiGraph was worn on the right hip. The LumoBack was 

fitted to the lower back with the Lumo logo facing outward, and in the centre of the back. 

Exact position was not necessary due to the calibration feature of the LumoBack. As such, 

each participant was asked to go through this calibration process before the commencement 

of the study protocol. The LumoBack was connected to the mobile application (app) via low 

energy Bluetooth (BLE). The mobile application possesses an avatar which assumes the 

posture of the wearer. Calibration of the device takes place by having the participant assume 

the posture shown by the avatar. Participants would hold this position while the mobile 

application calibration functions were enabled, signified by five mild vibrations from the 

LumoBack. Calibration was indicated to be completed by a push notification (see Table 3.3 

and 3.5) as part of the app. Once calibration was complete, the participant was asked to walk 

for a distance of approximately 20 metres and then to sit down on a chair (which was used for 

all sitting activities) so as to ascertain whether the calibration process had been performed 

correctly. This was determined by the avatar on the mobile application displaying in real time 

the postures and activities of the participants. Due to the lack of download feature from the 

device or the mobile application at the time of testing, data were recorded during the 

laboratory experiment on customised data recording sheets (See Appendix 2.4 page 221). 

Once the device had been fitted and the LumoBack had been calibrated, the participants were 

instructed to undergo seven different seated activities (Table 4.1). Each of these activities 
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lasted for five minutes with between 30-60 seconds in between activities. Time spent in each 

activity was recorded on the activity log sheet. At the time of data collection, study 

investigators were not aware of a method to download LumoBack data; therefore, a 

methodology of direct observation of the sitting time minimum card (min card; see Chapter 5 

page 120) on the LumoBack app via a secondary investigator was used to record the data 

from the LumoBack. A sub sample of this group was asked to wear the LumoBack, 

ActiGraph and activPAL for a period of seven days. Traditionally, in validation studies, 

participants would be provided with a diary log for participants to document when they 

removed the ActiGraph and activPAL so as to remove non-wear time from the analysis. 

However, when a LumoBack is removed and placed on charge or laid horizontally on a flat 

surface with the Lumo logo facing up, this is recorded in the data as non-wear. Therefore, 

participants were instructed to remove all devices at the same time and place the LumoBack 

on charge to create an electronic log of wear time. 

4.2.4 Activity Monitors 
The LumoBack is a small (4.15 x 10 x 0.8cm, 25g) and flexible posture sensor, worn on the 

lower back. Designed to measure an individual’s posture, the LumoBack has personalised 

built in calibration algorithms which adapt to each person’s body shape and movement 

behaviour. These are used to create a recommended optimal back posture model. The 

embedded posture sensors feed data to machine learning algorithms that continuously track 

the amount of time spent lying (used to infer sleeping), sitting, standing and stepping. The 

monitor connects wirelessly via BLE to an app, which includes an avatar that mimics the 

postures and daily activities of the wearer in real time. The LumoBack was worn on the lower 

back just above the waist using an elastic belt. The LumoBack measures posture based on the 

waist angle of the wearer, the device must be calibrated to each individual before use as the 

tilt is different from individual to individual.  
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Table 4.1 - A description of the sitting activities carried out 

Activity Picture Description  

1. Sitting on chair with feet flat 

on floor 

 

Sitting upright in a chair with trunk at approximate right angles to upper legs as well as approximate 90º right angles at 

the knees, with hands placed on the anterior aspect of the upper legs. Feet flat on floor. 

2. Sitting on chair with legs 

crossed (right over left) 

 

Sitting upright with trunk at approximate right angles to upper legs with knee of the right leg resting on the anterior aspect 

of the left knee, with hands resting on top of right knee. Left foot flat on floor. 

3. Sitting on chair with right foot 

resting on left thigh 

 

Sitting upright with trunk at approximate right angles to upper legs with the left knee at a right angle, with the lateral side 

of the right ankle resting on the left knee with the anterior aspect of the hands resting on the anterior aspect of the left leg 

and the medial aspect of the right thigh. 

4. Sitting on chair with legs 

stretched out forwards 

 

Sitting upright at the edge of a chair with legs stretched out straight, and feet flat on floor with the anterior aspect of the 

hands resting on the anterior aspect of the upper leg. 

5. Sitting with feet backwards 

underneath chair 

 

Sitting upright in a chair with trunk at approximate right angles to upper legs as well as approximate acute angle of less 

than 90º at the knees, with hands placed on the anterior aspect of the upper legs. 

6. Sitting with upper body 

movement (computer) 

 

Sitting upright in a chair with trunk at approximate right angles to upper legs as well as approximate right angles at the 

knees whilst typing on a computer, copying from a passage. 

7. Sitting playing games on a 

phone 

 

Sitting upright in a chair with trunk at approximate right angles to upper legs as well as approximate right angles at the 

knees whilst playing the same mobile game application. 
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Table 4.2 - Characteristics of the activity monitors used 

 LumoBack ActiGraph activPAL3 

Manufacturer LUMObody Tech Inc, ActiGraph LLC PAL Technologies Ltd 
Size (cm) 4.15 x 10 x 0.8 4.6 x 3.3 x 1.5 5 x 3.5 x 0.7 
Weight (g) 25 19 15 
Placement Lower Back  Wrist, Waist, Thigh One third down 

midline of the anterior 
aspect of the thigh 

Sample Frequency  
(Hz) *  

25  100 20 

Epoch Length P

+ 5minutes 15 seconds 15 seconds 
Sensor Posture Sensors, 

Triaxial 
Accelerometers  

Triaxial 
Accelerometer, 
Ambient Light 
Photodiode 

Capacitative 
Accelerometer 

Waterproof Unknown 1m, 30mins Splash ProofP

++ 

Interface Bluetooth Low Energy  USB Micro USB 
Software LumoBack App ActiLife ActivPAL3 7.2.32 
Outcomes – Measured Lying, Sit time, 

Standing time, 
Stepping time Number 
of Stand up, Step 
counts 

Counts, Inclinometer 
determined posture 

Time Spent in 
Sedentary, Upright, 
and stepping activities 

Price $69.99 £225 £380 
*sample frequency – the number of times the raw acceleration is sampled. Hz is a measure of frequency – 
defined as one cycle per second. (i.e. 100Hz = 100 samples per second) P

+
PDevice offers more options; the 

options selected in this study is presentedP

  ++
PCan be fully water proofed using supplementary materials. 

 

The ActiGraph (ActiGraph, LLC, Pensacola, FL, USA) is a small lightweight and 

rechargeable activity monitor. It uses a triaxial accelerometer to collect motion data on three 

axes. The ActiGraph measures and records time-varying acceleration in the range of 0.05-

2.5Gs. The accelerometer output is digitised by a twelve-bit analog to digital converter at a 

rate of 100Hz. Once digitised, the signal passes through a digital filter that band-limit the 

accelerometer to the frequency range of 0.25–2.5Hz. Each sample is summed over an ‘epoch’, 

that is, a specific interval of time which typically corresponds to 60s, however, in the case of 

this study it was 15s. The output of the ActiGraph is given in ‘counts’. The counts obtained in 

a given time period are linearly related to the intensity of the participants physical activity 

during a given period. The ActiGraph was worn on the right in line with midline of the thigh, 

were initialised to measure acceleration at 100Hz, and the data were processed using ActiLife 

Software (version 6.11.8). A cut point of less than 100 CPM was used as a measure of 

sedentary time.  
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Figure 4 1- Anterior view of how the devices were worn. 
*LumoBack worn on the lower back the waist using an elastic belt.  

The activPAL is a lightweight activity monitor that is worn on the thigh, attached by medical 

dressing. The activPAL uses a triaxial accelerometer sampling at 20Hz to produce signals 

* 
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reflecting thigh inclination and movement. The activPAL software uses proprietary 

algorithms to classify an individual’s free-living activity into periods spent lying/sitting, 

standing and walking. This information can be used to estimate daily energy expenditure and 

changes in free-living activity. The activPAL was taped to the anterior aspect of the thigh, 

approximately a third of the way down from the waist. It was attached using the medical 

dressing ((PAL Technologies Ltd, Glasgow, UK). See Table 4.2 for summary of the 

characteristics of the activity monitors and Figure 4.1 for wear sites of each of the devices. 

4.2.5 Statistical Analysis 
Data from the activity log sheet was transcribed into both Microsoft Excel 2010 (Microsoft 

Excel, Redmond, Washington) and SPSS version 22 (IBM SPSS Inc, Chicago, IL) for data 

analysis. Total sitting time was computed from the sum of the seven individual sitting 

conditions. Total Sitting Time (minus sitting with feet under chair) was also computed. Total 

sitting time (minus sitting with feet under chair) was calculated because the LumoBack 

measures sitting time via, pelvic tilt/waist angle and alignment, therefore when sitting with 

feet under chair the waist angle is closer to 180º, similar to that of standing. This will lead to 

a systematic under-estimation of sitting time by the LumoBack during this condition and 

consequently has been removed from a selection of analyses. 

Validity was calculated using Bland-Altman plots to test for criterion validity of the 

LumoBack, ActiGraph and activPAL against direct observation, as well as convergent 

validity of the LumoBack against ActiGraph and activPAL. Bland Altman plots are 

conducted by plotting the difference (Y axis) between the methods calculated by: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝐷𝐷𝑀𝑀ℎ𝑜𝑜𝑜𝑜 𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷 − 𝑁𝑁𝐷𝐷𝑁𝑁 𝑀𝑀𝐷𝐷𝑀𝑀ℎ𝑜𝑜𝑜𝑜 𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷  

plotted against (X axis) the mean of both methods calculated by: 

𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷 =  
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝐷𝐷𝑀𝑀ℎ𝑜𝑜𝑜𝑜 𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷 + 𝑁𝑁𝐷𝐷𝑁𝑁 𝑀𝑀𝐷𝐷𝑀𝑀ℎ𝑜𝑜𝑜𝑜 𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷 

2
 

Limits of agreement were calculated as: 

95% 𝐿𝐿𝐷𝐷𝐿𝐿𝐷𝐷𝑀𝑀𝐿𝐿 𝑜𝑜𝐷𝐷 𝑀𝑀𝑎𝑎𝐷𝐷𝐷𝐷𝐷𝐷𝐿𝐿𝐷𝐷𝐷𝐷𝑀𝑀 = 𝑀𝑀𝐷𝐷𝑀𝑀𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ± (1.96 × 𝑆𝑆𝐷𝐷 𝑜𝑜𝐷𝐷 𝑀𝑀ℎ𝐷𝐷 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 

Reproducibility was assessed using Two-Way Mixed Intraclass Correlation (ICC). There was 

a lack of sufficient spread of data when performing interclass correlations on the individual 
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activities and direct observation therefore interclass correlations were only performed on the 

total sitting time measured by the LumoBack, ActiGraph and activPAL during the lab study.  

In addition mean absolute percentage error (MAPE), a measure of reproducibility of a 

method by comparing to a standardised method was calculated using the following equation: 

MAPE = |𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑅𝑅𝑀𝑀ℎ𝑜𝑜𝑜𝑜  𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅−𝑁𝑁𝑅𝑅𝑁𝑁 𝑀𝑀𝑅𝑅𝑀𝑀ℎ𝑜𝑜𝑜𝑜 𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅  |
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑅𝑅𝑀𝑀ℎ𝑜𝑜𝑜𝑜

 × 100 

Repeated Measures Analysis of Variance (ANOVA) with pairwise comparisons were used to 

determine whether there were any statistical differences in the amount of sitting time 

recorded by the LumoBack and direct observation. It was also used to determine any 

differences between the amounts of time spent sitting measured by the LumoBack and the 

ActiGraph and activPAL. Statistical significance level was set at 0.05.  

4.3 Results 

A convenience sample of 34 healthy adults participated in the laboratory study. A sub-sample 

of 12 healthy adults who participated in the laboratory study participated in the free-living 

study. Descriptive statistics of both samples can be found in table 4.3. Thirty one out of the 

34 participants who took part in the laboratory study were included in the analyses with three 

participant’s data were removed from the analysis, due to preliminary data mining suggesting 

a systematic device malfunction of one of the three devices.  

Table 4.3- Laboratory and Free-living Participants descriptive statistics* 

 Laboratory Mean 
(SD) – N=31 

Free-Living Mean 
(SD) N=12 

   
Age (Years) 27.1 (5.5) 26.8 (4.6) 
Male (%) 45.2 58.3 
Height (m) 1.7 (0.1) 1.8 (0.1) 
Weight (Kg) 69.2 (15.4) 76.1 (10.3) 
BMI (kg/mP

2
P) 23.8 (3.5) 24.2 (3.2) 

% Body Fat 28.0 (8.2) 28.2 (7.9) 
*There were no significant differences in participant characteristics between those taking part in the Laboratory validation 
only and those participants in both study components (P>0.05) 

4.3.1 Laboratory Assessment: Criterion- and Convergent- Validity  
Table 4.4 and Appendix figures 4.2-4.10 shows the Bland-Altman data and plots respectively 

for the LumoBack, ActiGraph and activPAL against direct observation to assess criterion 

validity. During the first three conditions (feet flat on floor, legs crossed (right over left) and 

right foot resting on left thigh) the LumoBack, ActiGraph and activPAL undercounted by 
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<1.1 seconds per five minute condition, with 95% CI of <±11 seconds compared to direct 

observation. 

During the legs stretched out forward condition, the LumoBack and ActiGraph under-

reported sitting time compared to direct observation. The activPAL also under-reported 

sitting time but to a greater extent than the LumoBack and ActiGraph.  

The LumoBack, ActiGraph and activPAL all under reported sitting time during the Sitting 

with Feet Back Under the Chair condition, with the LumoBack having the greatest mean 

difference of the three measurements. Furthermore, during the Sitting with Upper Body 

Movement (Computer) the LumoBack, ActiGraph and activPAL under reported sitting time. 

And finally, the LumoBack, ActiGraph and activPAL under reported sitting time during the 

Sitting Playing a Game on a Phone condition. 

Grouping all sitting activities together into a total sitting time condition, the LumoBack, 

ActiGraph and activPAL under-reported total sitting time. When the sitting with feet back 

under the chair was removed from the analysis, the LumoBack ActiGraph and activPAL all 

under-reported sitting time. 

Table 4.5 and appendix 4.7-4.14 shows the Bland-Altman data and plots respectively for the 

LumoBack vs ActiGraph and activPAL In general, during the first three conditions (feet flat 

on floor, legs crossed (right over left) and right foot resting on left thigh) the LumoBack had 

a mean difference of <1 seconds per five minute condition, with 95% CI of <±11.1 seconds 

compared to ActiGraph and activPAL. 

During the legs stretched out forward condition the LumoBack has a mean difference of 5.0 

(SD 17.3) seconds per 5 minute condition with upper limits of 39 seconds and lower limits of 

-29 seconds when comparing the LumoBack to the ActiGraph during this condition. However, 

compared to the activPAL the LumoBack has a mean difference of -153.54 with 95% CI of -

448.8, 141.7. Additionally, the LumoBack had a mean difference of 61.8 seconds compared 

to the ActiGraph, and mean difference of 54.2 seconds in the Sitting with Feet Back under 

chair condition. Furthermore, the LumoBack had a mean difference of 40.5 seconds 

compared to the ActiGraph, and mean difference of 43.4 seconds in the Sitting with Upper 

Body Movement (Computer) condition. In the final task, the LumoBack had a mean 

difference of 11.1 seconds compared to the ActiGraph, and mean difference of 0.7 seconds in 

the Sitting with Playing a Game on Phone. Finally, the LumoBack in total when accounting 
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for all activities had a mean difference 133.9 seconds when compared to the ActiGraph and 

mean difference of -38.1 seconds. However, when feet underneath chair was removed from 

the analysis the mean difference reduced to 72.1 seconds when compared to the ActiGraph, 

and a mean difference of -92.3 when compared to the activPAL. 
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Table 4.4 - Bland-Altman data assessing the criterion validity of the LumoBack, ActiGraph and activPAL to direct observation 

Sitting Posture 

(Seconds) 

LumoBack ActiGraph  activPAL 

Mean 

Difference 

Standard 

Deviation 

95% Limits of 

Agreement 

Mean 

Difference 

Standard 

Deviation 

95% Limits of 

Agreement 

Mean 

Difference 

Standard 

Deviation 

95% Limits of 

Agreement 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Feet Flat on Floor 

(300) 

0.86 4.1 -7.2 8.9 1.1 3.9 -6.6 8.8 0.0 0.0 0.0 0.0 

Legs Crossed (Right 

over Left) (300) 

0.1 3.08 -5.9 6.1 0.6 2.9 -5.1 6.2 0.0 0.0 0.0 0.0 

Right Foot Resting on 

Left Thigh (300) 

0.9 4.9 -9.51 10.4 0.0 0.0 0.0 0.0 0.5 1.8 -3.0 3.9 

Legs Stretched out 

Forward (300) 

5.5 17.8 -29.4 40.4 0.5 2.8 -4.9 6.0 159.3 151.1 -136.9 455.4 

Feet Underneath Chair 

(300) 

60.9 130.5 -194.8 316.6 1.0 3.9 -6.5 8.6 10.9 56.7 -100.2 122.0 

Upper Body Movement 

(Computer) (300) 

42.1 100.2 -154.3 238.4 1.6 6.1 -10.5 13.6 0.2 1.1 -2.0 2.4 

Playing game on phone 

(300) 

10.9 51.0 -89.1 110.9 0.5 2.8 -4.9 6.0 11.3 56.6 -99.7 122.3 

Total Sitting Time 

(2100) 

139.0 208.0 -268.7 546.8 5.3 9.2 -12.7 23.4 180.1 206.2 -222.0 586.2 

Total Sitting Time (- 

Feet Underneath Chair) 

(1800) 

76.2 138.3 -194.9 347.3 4.1 8.9 -13.2 21.5 171.2 172.0 -165.9 508.4 
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Table 4.5 - Bland-Altman data assessing the convergent validity of the LumoBack, to the ActiGraph and activPAL  
Sitting Posture (Seconds) ActiGraph activPAL 

Mean 

Difference 

Standard 

Deviation 

95% Limits of 

Agreement 

Mean 

Difference 

Standard 

Deviation 

95% Limits of 

Agreement 

Lower 

Limit 

Upper 

Limit 

Lower 

Limit 

Upper 

Limit 

Feet Flat on Floor (300) 0.2 5.6 -11.1 10.7 0.9 4.2 -7.2 9.1 

Legs Crossed (Right over Left) (300) -0.4 3.65 -7.6 6.7 0.1 3.1 -6.0 6.3 

Right Foot Resting on Left Thigh (300) 0.9 4.9 -8.6 10.4 0.5 3.8 -6.9 7.9 

Legs Stretched out Forward (300) 5.0 17.3 -29.0 39.0 -153.5 150.6 -448.8 141.7 

Feet Underneath Chair (300) 61.8 131.0 -195.0 318.6 54.2 126.0 -192.7 301.1 

Upper Body Movement (Computer) (300) 40.5 99.4 -154.3 235.4 43.4 101.8 -156.1 242.8 

Playing game on phone (300) 11.1 53.0 -92.7 114.9 0.7 79.8 -155.7 155.1 

Total Sitting Time (2100) 133.9 209.2 -276.2 543.9 -38.1 280.4 -587.6 511.4 

Total Sitting Time (- Feet Underneath 

Chair) (1800) 

72.1 137.1 -196.5 340.8 -92.3 222.2 -527.8 343.2 



101 
 

Table 4.6 provides the mean time and ICC from the laboratory experiment. Intraclass 

correlations comparing the total sitting time of the LumoBack and ActiGraph was 0.82 (95% 

CI: 0.63, 0.91) and 0.73 (95% CI: 0.47, 0.87) for the activPAL.  

Table 4.6 - Mean time measured by each device for Total Sitting time and the Intraclass 
Correlation Coefficients (ICC) 

Task LumoBack 

Seconds 

Mean(SD) 

ActiGraph 

Seconds 

Mean(SD) 

activPAL 

Seconds 

Mean(SD) 

ICC (Lower Bound, 

Upper Bound) 

LumoBack  

and 

ActiGraph  

LumoBack 

and 

activPAL 

Total Sitting 

Time 

1721.7(139.6) 1794.2(10.7) 1776.6(111.3) 0.82 

(0.63,0.91) 

0.73 

(0.47,0.87) 

Total Sitting Time is the sum of all seven sitting conditions in the laboratory setting of the validation.  

The mean absolute percentage errors of the LumoBack, relative to the actual time spent 

sitting, at each of the conditions during the laboratory study are shown in table 4.7. The 

MAPE was <4% for all conditions except for, feet underneath chair (MAPE: 24.3) and upper 

body movement (MAPE: 16.3). The MAPE for total sitting time was 7.0 and when the feet 

underneath the chair condition was removed the MAPE decreased to 4.3. The MAPE for the 

ActiGraph and activPAL are also presented in Table 4.7. 

 

Table 4.7 - Mean Absolute Percent Error of the LumoBack during each condition 
compared to direct observation, Mean (SD) 

Sitting Condition Mean Absolute 
Percentage Error of the 
LumoBack 

Mean Absolute 
Percentage Error of 
the ActiGraph 

Mean Absolute 
Percentage 
Error of the 
activPAL 

Feet Flat on Floor 1.0 (0.9) 0.4 (1.3) 0.0(0.0) 
Legs Crossed (Right over 
Left) 

0.6 (0.8) 0.2 (0.9) 0.0(0.0) 

Right Foot Resting on 
Left Thigh 

0.7 (1.5) 0.0 (0.0) 0.2 (0.6) 

Legs Stretched out 
Forward 

2.3 (5.6) 0.2 (0.9) 53.1 (50.4) 

Feet Underneath Chair 24.3 (40.7) 0.3 (1.3) 3.6 (18.9) 
Upper Body Movement 
(Computer) 

16.3 (35.5) 0.5 (2.0) 0.1 (0.4) 

Playing game on phone 3.8 (17) 0.2 (0.9) 3.5 (18.2) 
Total Sitting Time 7.0 (9.7) 0.3 (0.4) 12.0 (18.9) 
Total Sitting Time (minus 
Feet Underneath Chair) 

4.3 (7.7) 0.2 (0.5) 10.0 (9.4) 
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Repeated measures ANOVA were conducted to determine if there were any statistical 

differences in LumoBack measured time spent in sitting and the activPAL and ActiGraph 

during the laboratory conditions. The assumptions of sphericity were violated therefore this 

was corrected using the Greenhouse-Geisser estimates of sphericity. The results shows that 

there were no significant differences between sitting time measured by the LumoBack 

compared to the actual time spent sitting, ActiGraph and activPAL during the following 

conditions; Sitting on a Chair with Feet Flat on Floor, (FR(1.84,47.72)R = 1.16 p = 0.32), Sitting on 

a Chair with Legs Crossed (Right over Left), (FR(1.78,49.80) R= 0.50 p = 0.589), Sitting on a Chair 

with Right Foot resting on Left Thigh, (FR(1.03,28.95) R= 0.92 p = 0.35), Sitting playing on game 

on phone, (FR(1.59, 47.75)R = 1.338, p = 0.27).  

A one way within measure ANOVA indicated that measured sitting time was different during 

Sitting on Chair with Legs stretched out in front, (FR(1.02,29.69) R= 36.613, p <0.0005). Post-hoc 

Bonferroni analysis revealed that sitting time measured by the LumoBack was significantly 

higher than that of the activPAL (p<0.0005; 294.8 vs 141.4 seconds). There was also a 

significant difference in measured sitting time during the sitting with feet back under the 

chair, (FR(1.58,45.912) R= 4.52 p = 0.02). Post-hoc analysis revealed that sitting time measured by 

LumoBack was significantly lower than actual sitting time (p=0.02 239.1 vs 300.0 seconds) 

and ActiGraph measured time (p=0.02 239.1 vs 298.5 seconds respectively). In addition, the 

ANOVA analysis of the sitting with upper body movement conditions showed a significant 

difference in measured sitting time (FR(1.38,41.49) R= 4.45 p = 0.03). Post-hoc analysis indicated 

that sitting time measured by the LumoBack was significantly lower than the actual sitting (p 

= 0.02 257.9 vs 300.0 seconds respectively) and sitting time measured by the ActiGraph (p = 

0.02, 257.9 vs 297.58 seconds respectively).  

4.3.2 Free-Living Assessment: Convergent- Validity  
Table 4.8 displays the mean time and intraclass correlations from the free living experiment. 

Intraclass correlations comparing behaviours measured by the LumoBack and activPAL were 

0.87 (95 CI: 0.55, 0.96), 0.91 (95% CI: 0.70, 0.98), and 0.78 (95% CI: 0.24, 0.94) for 

sedentary behaviour, standing behaviour and stepping behaviour respectively. Furthermore, 

ICC comparing sedentary behaviour measured by the LumoBack and sedentary time 

measured by the ActiGraph were 0.80 (95%CI: 0.11, 0.95). 
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Table 4.8 - Mean time, Standard Deviation (SD) and Intra-class Correlations 
Coefficients (ICC) for Sedentary, Standing, and Stepping time and steps for the 
LumoBack compared to the activPAL and ActiGraph  
Behaviour  LumoBack 

Minutes 

Mean/ SD 

activPAL 

Minutes 

Mean/ SD 

ActiGraph Minutes 

Mean/ SD 

ICC (95% CI) 

LumoBack and 

activPAL 

LumoBack 

and 

ActiGraph 

Sedentary  524.1 
(70.4) 

530.5 
(54.2) 

562.6 (57.1) 0.87 (0.55, 0.96) 0.80 (0.11, 
0.95) 

Standing  232.2 
(85.3) 

229.7 
(63.6) 

N/A 0.91 (0.70, 0.98) N/A 

Stepping  83.3 (29.1) 79.6 (22.9) N/A 0.78 (0.24, 0.94) N/A 
Steps 8780.3 

(1096.6) 
8179.0 
(951.1) 

N/A 0.84 (0.44, 0.95) N/A 

N/A – ActiGraph does not measure these variables therefore they were not included in these analyses.  

Table 4.9 shows the results of the mean absolute percent error for the LumoBack as a 

measure of sedentary behaviour, standing, stepping and steps taken compared to the 

activPAL and ActiGraph during the free-living study. The MAPE for all condition ranged 

between 2.38 and 8.08 when comparing the LumoBack to the activPAL and was 5.07 when 

comparing the LumoBack and the ActiGraph. 

Table 4.9 - Mean Absolute Percent Error of the LumoBack compared to activPAL for 
each measurable behaviour, Mean(SD) 
Behaviour Mean Absolute Percentage Error 

LumoBack and activPAL LumoBack and ActiGraph 

Sedentary 2.38(3.23) 5.07 (1.81) 

Standing  6.88(12.32) N/A 

Stepping  8.54(14.81) N/A 

Steps Taken  8.08(15.33) N/A 

N/A – ActiGraph does not measure these variables therefore they were not included in these analyses.  

Repeated measures ANOVA was conducted to determine any significant differences in 

measured behaviours between the LumoBack, ActiGraph and activPAL for sedentary 

behaviour. The assumption of sphrecity was violated, therefore this was corrected using the 

Greenhouse Geisser estimates of sphercity. The results showed that there were significant 

differences between sedentary behaviour measured by the three devices, (FR(2,12.109)R = 8.0, 

p=0.014). Follow up bonferroni pairwise comparison indicated that the differences occurred 

when comparing the LumoBack to the ActiGraph (524.1 vs 562.6 mins, p=0.03) and the 

ActiGraph and the activPAL (562.6 vs 530.5mins p<0.005). In both comparisons, the 

ActiGraph over reported time spent sedentary in compared to the LumoBack and activPAL. 



104 
 

There were no significant differences in time spent sedentary when measured by the 

LumoBack and activPAL (524.1 vs 530.5mins, p>0.05). Paired sample T-test comparing 

behaviours measured by the LumoBack and activPAL in the free-living setting showed that 

there were non-significant difference in upright time [232.2 vs 229.7mins, tR(11)R = 0.2, p=0.85], 

stepping time [83.3, 79.55 mins, tR(11)R = 0.57, p=0.58] and steps taken [8780 vs 8179 steps, 

tR(11)R = 0.77, p=0.46]. 

Table 4.10 and Figures 4.11-4.12 are the Bland-Altman data and plots for the LumoBack and 

activPAL during the free-living component of the study. On average the LumoBack over 

reported sitting time by 4.6 mins (SD 21.8 95% CI; - 47.7, 38.4), under reported standing 

time by 8.9 mins (SD 20.3; 95% CI; -31.3, 49.1) and under reported stepping time by 2.3 

mins. Additionally the LumoBack under reported steps taken by 153 steps (SD 712; 95% CI -

1258, 1564). Furthermore, compared to the ActiGraph, the LumoBack under-reported 

sedentary time by 38.4 minutes (95% CI: -46.0, 122.7). 

.  
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Figure 4.1 - Bland-Altman plot comparing the LumoBack and the activPAL as a measure of Sedentary, Standing and Stepping time and Steps Taken 
Note: A: Bland-Altman of LumoBack vs activPAL for Total Sedentary Behaviour, B: Bland-Altman of LumoBack vs activPAL for Total Standing time, C: Bland-Altman plot of LumoBack vs 
activPAL fot Total Stepping time; D: Bland-Altman plot of LumoBack vs activPAL for Steps Takens, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% 
Limits of Agreement. 
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Figure 4.2 - Bland-Altman plot of total sedentary time of the LumoBack compared to 
the ActiGraph  
Note: Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 

 

-150.00

-125.00

-100.00

-75.00

-50.00

-25.00

0.00

25.00

50.00

75.00

100.00

125.00

150.00

0 250 500 750

Di
ffe

re
nc

e 
in

 S
ed

en
ta

ry
 ti

m
e 

(M
in

ut
es

) (
Ac

tiG
ra

ph
 se

de
nt

ar
y 

tim
e 

- 
Lu

m
oB

ac
k 

se
de

nt
ar

y 
be

ha
vi

ou
r)

 

Mean Sedentary Time (Minutes) (ActiGraph sedentary time and LumoBack sedentary 
behaviour) 



107 
 

 

 

 

 

 

 

 

 

 

 

 

 

Behaviour (Seconds) activPAL ActiGraph 

Mean Difference Standard Deviation 95% Limits of Agreement Mean Difference Standard Deviation 95% Limits of Agreement 

Lower Limit Upper Limit Lower Limit Upper Limit 

Sedentary  -4.6 21.8 -47.7 38.4 38.4 42.6 -46.0 122.7 

Standing 8.9 20.3 -31.3 49.1     

Stepping 2.3 8.8 -15.0 19.7     

Steps 152.9 712.8 -1258.6 1564.4     

Table 4.10 - Bland-Altman plots data comparing measured behaviour in minutes of the LumoBack to, ActiGraph and the activPAL in 
the free-Living setting 
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4.4 Discussion 

The aim of this study was to investigate the criterion- (direct observation) and convergent- 

(ActiGraph and activPAL) validity of the LumoBack as a measure of sedentary behaviour in 

a laboratory and free-living setting. The results from the laboratory study suggests that during 

the first four conditions, the LumoBack has acceptable criterion validity, with mean bias of 

<6 seconds per five minute condition. The tight confidence intervals of these conditions 

indicate that the LumoBack may be a reliable measure of sedentary behaviours during these 

conditions. The LumoBack, however, did significantly under-reported the time spent sitting 

during the feet underneath the chair condition and the upper body movement condition, by 

nearly 60 seconds. The feet underneath the chair condition discrepancy can be explained by 

the way in which the LumoBack measures postures. Briefly, the LumoBack measures posture 

by measuring the lower back (anterior pelvic tilt) angle of the wearer. This could be related to 

the participants anterior pelvic tilt angle deviating greater than 25 degrees from the calibrated 

seated angle therefore the LumoBack decision algorithms decided that the participant is 

standing (365). There is also a significant under-reporting occurring during the conditions 

following on from sitting with upper body movement which, could be a result of, anecdotally, 

participants tending to sit whilst typing on the computer with their legs behind the chair. This 

might be a result of there not being a ‘wash-out’ non-sedentary activity after the sitting with 

feet back under the chair condition. This would lead to the erroneous results for similar 

reasons as the previous condition. It is important to acknowledge that the extent to which this 

would affect misclassification of sitting time during a typical seven day period would depend 

on the prevalence of this type of sitting posture in daily life.  

The total sitting time mean bias showed that the LumoBack under reported across all the 

conditions by over 2 minutes when assessing its criterion validity. However, this is perhaps 

unsurprising because of the two conditions previously discussed. When the condition that had 

the most error was removed from the analysis (i.e. feet behind the chair), the mean bias 

decreased by almost a minute. However, the 95% confidence interval indicates that there is 

still variability in the measurements.  

When assessing convergent validity of the LumoBack compared to the ActiGraph, apart from 

the two conditions already discussed (sitting with feet back under the chair and upper body 

movement) the LumoBack showed acceptable convergent validity. When assessing the 

convergent validity of the LumoBack compared to the activPAL, during the condition of 

sitting with legs stretched out forward, the LumoBack over-reported compared to the 
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activPAL. However, the results of assessing the criterion validity of the activPAL suggest 

that it was the activPAL which was the erroneous measurement during this condition. Indeed, 

during this sitting position the angle of the thigh changes slightly (i.e. knee angle increases 

above 90 degrees and the front of the thigh dips), which causes a misclassification by the 

activPAL suggesting that the activPAL proprietary angular parameters for the classification 

of sitting require the thigh to be close to being parallel to the ground (138). It can be 

considered, therefore, that the activPAL was the device that was erroneous in this condition 

not the LumoBack. 

Apart from the two conditions previously discussed, there is MAPE, of less than 10%. Within 

the field of pedometry and accelerometry a MAPE of <10% is an acceptable cut off point for 

determining the accuracy of a device (366–369), and in the current laboratory study, when 

comparing the LumoBack as a measure of sedentary behaviour compared to the activPAL 

and the ActiGraph the LumoBack had a MAPE <10%.  

The LumoBack had acceptable convergent validity in the Free-Living component of the study, 

with a mean bias of -4.6mins for sedentary time, 8.9mins for standing time, and 2.3mins for 

stepping time, with a mean bias of 152 steps compared to the activPAL. Furthermore the 

MAPE for the LumoBack for all behaviours were <10% indicating acceptable agreement 

between the LumoBack and the activPAL as measures of sedentary, standing and stepping. 

The ICC further corroborate the agreement between the  LumoBack compared to the other 

devices by displaying good to excellent (as defined in (370)) correlations coefficients (ICC 

Total sitting time during laboratory study 0.73 and 0.87, 0.91, 0.78 for sedentary, standing 

and stepping time respectively during the free-living component of the study).  

When comparing the LumoBack to the ActiGraph in the free-living setting, the LumoBack 

under-reported time spent sedentary; however, it could be said that the ActiGraph in this 

instance is actually over-reporting as is the case with accelerometers when measuring 

sedentary time (104). Furthermore, the ICC showed acceptable agreement between the 

LumoBack and ActiGraph (ICC: 0.8), as well as a MAPE of 5.07, which is within the 

guidelines of <10%. 

The large discrepancy between the two LumoBack measurements in the laboratory and in the 

free-living can be accounted for by the error in the measurement induced in the laboratory 

permutations both for the LumoBack and the activPAL (e.g. the sitting with feet under the 

chair for the LumoBack and the feet stretched out straight for the activPAL). Both of these 
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permutations caused error in the measurement of LumoBack and activPAL and these two 

behaviours might not be as prevalent in the free-living setting.  

The results from the study presented in this chapter are corroborated by the findings from 

Rosenberger et al. (259). Briefly this study compared the output from commercially available 

wearable devices to the current standards for objective measurement of sleep, sedentary 

behaviour, light physical activity and moderate to vigorous physical activity (MVPA) over a 

24 hour period in a free-living setting. Adults wore nine devices for 24 hours: ActiGraph 

GT3X+, activPAL, Fitbit One, GENEActiv, Jawbone Up, LumoBack, Nike Fuelband, Omron 

Pedometer, and Z-machine. Comparisons to standards were made for sedentary behaviour 

using the activPAL. Mean error for sedentary behaviour was 9.5% for the LumoBack. 

Equivalence testing suggested that the LumoBack can accurately measure sedentary 

behaviour. Bland-Altman plots had a mean difference of 18 minutes for the LumoBack over 

the course of a 24 hour period, with the LumoBack also having the smallest standard 

deviation of all the devices measuring sedentary behaviour. Therefore, in this study presented 

by Rosenberger, the LumoBack was seen to be an accurate measure of daily posture. 

Additionally, the mean difference for the LumoBack as a measure of steps was 1,281 

compared to the Omron pedometer, with the ActiGraph being the only device to have a lower 

mean difference (679 steps) (259). In the present study the LumoBack performed better than 

in Rosenberger et al’s study (4.64mins compared to 18min respectively). The difference in 

sedentary behaviour mean bias may be attributable to the length of time the participants wore 

the device. In the study conducted by Rosenberger et al, participants only wore the 

LumoBack for 24 hours so any discrepancy would be greater when compared to the seven 

days in the current study. Additionally, the difference in sedentary time between the 

LumoBack and the ActiGraph in the present study, match those found in Rosenberger’s study. 

Furthermore, because participants only wore the device for one day in the Rosenberger study, 

there was less variability in the daily behaviours which could potentially be a limitation of 

their study. Another limitation of the Rosenberger’s study is the standards used in the study 

are based on common field-based measures and do not represent gold standards used in the 

laboratory 

Additionally, the LumoBack has been examined for its reliability as a measure of step counts 

in laboratory and free-living conditions (177). Thirty-three healthy adults walked twice on a 

treadmill for 30 minutes whilst wearing the LumoBack. Additionally, 56 healthy adults wore 

the LumoBack for one working day. Validity was evaluated by comparing each activity 
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tracker with the gold standard (Optogait system for laboratory and activPAL for free-living 

conditions). The MAPE for the LumoBack during laboratory conditions were -0.2, and -0.4 

in free-living conditions. Bland-Altman plots revealed a mean difference in step counts of 8 

during the laboratory study and 17 during the free-living section of the study (177) whereas 

the mean difference of the LumoBack compared to the activPAL as demonstrated in the 

present study was 152. The LumoBack in the study reported in this chapter did however, 

report a higher MAPE for steps taken than compared to Kooiman et al ( 8.08 vs 0.4 (177). 

Again this could be related to the length of wear of the participants between the two differing 

studies. Further research is needed to determine possible reasons for the discrepancy in these 

two studies. Despite the difference in the two studies, the LumoBack still shows acceptable 

validity as a measure of steps taken. 

The strengths of this study are the testing of a novel consumer product which has self-

monitoring and feedback-friendly attributes, including the ability to connect to an app for 

feedback on behaviour, goal setting, vibratory function and the open SDK and API for 

customisation. Additionally, this validation study has differing permutations in the sitting 

condition, which allowing for the determination of the validity of the LumoBack in a more 

ecologically-valid setting. Limitations of the current study included not having laboratory 

validated standing and stepping time which was not possible due to not having access to 

downloadable data during the laboratory portion of the study so sedentary activities had to be 

prioritised. Furthermore, the standards used in the free-living study are based on common 

field-based measures and do not represent gold standards used in the laboratory. Therefore, 

the test device (LumoBack) and the comparison devices (activPAL and ActiGraph) could 

introduce substantial error in to the comparison. Whilst this error is minimised by the 

activPAL being extensively validated under both field and laboratory conditions the risk is 

still present. Furthermore, the functions of the LumoBack and its ability to measure its target 

behaviours can change with software and hardware update, and consequently not every 

possible update can be evaluated with research at one particular point in time. Additionally, 

during the free-living study, participants were asked to calibrate the LumoBack sensor every 

time they placed the sensor back on their person, however, if participants did not perform this 

re-calibration, the sensors posture algorithms would still be set to their previous calibration 

potentially producing an erroneous measure of posture . Another limitation was that the free-

living assessment contained fewer participants owing to the burden of wearing multiple 

sensors for a long period of time. Furthermore, the large standard deviations demonstrated the 
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large variability within the data suggesting that further research is need to corroborate these 

findings. 

4.5 Implications and Conclusions 

The LumoBack demonstrated acceptable criterion and convergent validity when compared to 

direct observation, activPAL, and ActiGraph under laboratory conditions and acceptable 

convergent validity as a measure of sedentary behaviour, standing and stepping behaviours 

compared to the activPAL under free-living conditions. The results from this validation study, 

in combination with previous validation studies, conducted to determine the accuracy of the 

LumoBack ActiGraph and activPAL as measures of sedentary behaviour indicate that the 

LumoBack has similar validity to the activPAL and the ActiGraph may over-report sedentary 

time in ecologically-valid settings. The current information on its validity makes the 

LumoBack an attractive device, for use as a sedentary behaviour measurement tool. 

Additional work is warranted to determine if differing body types (e.g. longer leg lengths 

altering waist angles during differing sitting permutation) could influence the validity of this 

device. For this to occur, researchers will need to expand the analytical techniques that are 

currently used because of the volume and complexity of wearable data. The LumoBack 

should also be further validated in other age groups the sitting and gait patterns may differ 

and therefore alter the validity of the device.  

As seen from Chapter 3 (page 46), the LumoBack is capable of providing immediate 

feedback on its measured behaviours, this in combination with its inexpensive cost and 

potentially a wear site that is more conducive to participant compliance (lower waist) may 

make the LumoBack a more pragmatic and practical option than other devices which require 

surgical dressing to attach (e.g. activPAL) or devices that are attached to a chair and therefore 

require multiple units (e.g. Darma) to use. Furthermore, the LumoBack appears to be a more 

accurate measure of sedentary behaviour than the ActiGraph in free-living situations. The 

results from this study, in combination with the measurement (e.g. posture monitoring) and 

self-monitoring (mobile application and vibratory function for real time feedback) attributes, 

may make the LumoBack a useful tool in interventions aimed to reduce sedentary behaviour. 

.
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Chapter 5 - Repurposing the LumoBack 

Posture Sensor as a sedentary behaviour 

self-monitor and feedback tool 
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5.1 Introduction 

In the systematic scoping review from Chapter Three (page 46) it was revealed that the 

LumoBack was one of the most promising self-monitoring tools of sedentary behaviour. Next, 

the validation study in Chapter Four (page 84) found the LumoBack to be a valid measure of 

sedentary behaviour. However, the LumoBack in its original format provided vibratory 

feedback on sub-optimal sitting or standing posture (e.g. slouching) and was therefore not 

optimised for use as a sedentary behaviour self-monitor and feedback tool. As a result, the 

LumoBack needed modification before it could be used as a sedentary behaviour self-

monitoring device. Therefore, the purpose of this chapter is to serve as a bridge to describe 

the alterations made to the LumoBack device to make it suitable for use as a sedentary 

behaviour self-monitoring device in interventions aimed at reducing sedentary behaviour. 

5.2 Repurposing of the LumoBack App 

5.2.1 Original LumoBack Posture Sensor 

The LumoBack (LumoBody Tech, Inc, Palo Alto, CA), which is a small (4.15 x 10 x 0.8cm, 

25g) and flexible posture sensor which is worn on the lower back (see figure 5.1). Designed 

to measure an individual’s posture, it uses inertial sensors, which collects data at a constant 

25Hz (aggregated on data output to five minute proportional epochs) and is controlled 

through a mobile application (app) via a BLE connection that can be used by both iOS and 

Android operating systems. The LumoBack has personalised calibration algorithms built in 

which adapt to each person’s body shape and movement behaviour. These are used to create a 

recommended optimal back posture model. The embedded posture sensors feed data to 

machine learning algorithms that continuously track the amount of time spent lying (used to 

infer sleeping), sitting (including car mode), and standing and also functions as a pedometer, 

tracking its wearers’ number of steps. The monitor connects wirelessly via BLE to a mobile 

application syncing with the app, with data transferred between the LumoBack and the app at 

600 bytes/sec. The LumoBack app includes an avatar that mimics the postures and daily 

activities of the wearer in real time. The data from the sensor, along with the on board 

analytics allow the app to provide visual feedback to promote good posture. The on-board 

sensor feedback is a vibratory pulse which alerts the wearer to the need to correct their sub-

optimal back posture. There is also a push notification function within the app which can alert 

the user to a (user-defined) period of prolonged sitting time (371).  
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Figure 5.1 - The LumoBack Posture Sensor and mobile application 
From Top to Bottom: the LumoBack device and associated strap. The LumoBack app with avatar and minimum 
cards (Left to right: Posture Card, Stand Ups, Steps, Sit Time, Sleep) that are displayed on the app.  

Within the app, the data are presented on minimum (min) cards; there are five min cards each 

displaying a different piece of information. These min cards are: 

• Posture Score - measure of how much you slouch, vs sit/stand up straight – provided 

as a percentage of time in straight posture. 
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• Sit time - amount of time spent sitting. 

• Stand Ups – number of times per day that the wearer stands up.  

• Steps – number of steps taken, distance travelled, and calories burned.  

• Sleep – time spent sleeping (inferred from lying time). 

Each of these min cards, once tapped, opens up into a maximum (max) card (figure 5.2) 

which provides further detail on the information that has appeared on the min card. The 

posture max card provides a swingometer (dial) of good or bad posture throughout the day, 

along with tabs for total straight time and total slouch time. In the Sit time max card, presents 

the wearers sit time is presented as a pie chart breaking down the day/week/month wear time 

into standing, stepping, sitting and driving (excluding lying time). The Stand ups max card 

consists of a single bar of progression towards daily stand ups goal. The Steps max card 

consists of an arc which shows the advancement towards daily step goals. The Sleep max 

card is extremely similar to the sit time max card in that it comprises a pie chart breaking the 

lying time into time spent lying on the back/front/left/right. In addition to the pie 

chart/swingometer etc on the max cards, there is a temporal bar chart of the accumulation of 

the behaviour of interest throughout the day/week/month. As previously alluded to, the 

LumoBack provides vibratory feedback when the wearer is in a slouched sitting or standing 

posture. This vibration can be feedback in either a one off buzz or a continuous pulse and can 

be feedback after a user-defined period of user-defined severity of slouching. Additionally, 

the LumoBack can provide a push notification which reminds the user to stand up after a 

period of user defined sitting. 
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E 

 
Figure 5.2 - Examples of max cards. A Sit time Max card; B: Step Max Card; C: 
Posture Score Max Card; D: Sleep Max Card; E: Stand Ups Max Card 
 

Unfortunately, individuals, particularly during working hours, do not keep their phone readily 

available, it is usually turned off or kept out of sight so as to provide boundaries between 

work and non-work activities (372–374), which would negate the effect of the push 

notification as a feedback modality to aid in the behaviour change. Therefore, it was 

necessary to modify the LumoBack to create a firmware, application and device capable of 

repurposing the LumoBack to provide real time feedback of sedentary behaviour to the users. 

 
5.2.2 Modification to the LumoBack Mobile application 

5.2.2.1 Control Mode 

The first required development commissioned was the need for a control mode within the app. 

Due to the feedback continually being present on the app homepage, any period of 

measurement of physical activity or sedentary behaviour to acquire a baseline might be 

influenced by the presence of the feedback. This has been shown in pedometer studies 

assessing reactivity (375–377). Previous research has indicated that when comparing sealed 

and unsealed conditions of a pedometer study, the sealed condition when participants are 

aware of the device may elicit some degree of reactivity (375–379), therefore, a ‘control 

mode’ of the LumoBack app was developed and created (Figure 5.3). 
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Figure 5.3 - the differences between the original mobile app and the modified control 

mode  
From left to right, Left: normal LumoBack app, Middle: Turning off the min card in the LumoBack app settings, 
Right: New LU LumoBack app without control mode. 

 

As can be seen from Figure 5.3, the invention of the control mode made the min cards for all 

behaviours invisible to the user. This was, fundamentally, a cosmetic change. The min cards 

were still present, and the device is still relaying data to the app, the change just makes the 

data not viewable to the user. Because the LumoBack needs to be calibrated to the wearer’s 

body posture when it is worn and the Lumo avatar is integral in this process, the avatar was 

therefore not removed from the control mode. 

5.2.2.2 Sedentary Buzz 
In addition to the control mode, a change was made to the vibratory function of the device. 

Briefly, the LumoBack in its original format vibrated when the wearer was in a slouched 

posture, either during standing or sitting. The devices firmware was altered to allow for the 

posture buzz to be a sedentary buzz. Under this new firmware, the user can define the amount 

of sedentary behaviour (sitting and/or lying; in mins) after which a single, strong two second 

buzz will alert the user to their prolonged period of sedentary behaviour. The time before the 

sedentary buzz occurred could be set between one and 541 minutes (541 minutes was the 
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upper time limit within the system, this time would effectively turn off the sedentary buzz. 

This upper limit was allowed as it is implausible to sit for 9 hours in the target population of 

the thesis.  

   

  

Figure 5.4 - Setting up Sedentary buzz in the LumoBack terminal  
 
The sedentary buzz (Figure 5.4) was set up by altering small pieces of code in the mobile 

application terminal (coding log which is in the background of the application usually hidden 

from the general public). The investigator will change the time before the sedentary buzz 

occurred in the terminal using a simple piece of coding:  

Command: <sbt>  

Parameter <sedentary buzz delay in minutes>.  
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This would be followed up with another piece of coding:  

Command: <sbtget>  

Parameter <none>.  

This is necessary to make sure that the first piece of coding has been implemented correctly.  

The changes to the Lumo app were implemented by creating a new firmware (permanent 

software programmed into a read-only memory), with the new firmware connected to specific 

generated email addresses by Lumo BodyTech. When a specific email address is associated 

with a LumoBack device, the new firmware with the Sedentary Buzz supersedes the original 

LumoBack firmware.   

5.2.2.3 Mobile App Analytics 
There are three main steps to building a mobile application; firstly (and obviously) is building 

the mobile application, second is acquiring users for the app and finally is engaging and 

monetising users. To engage and monetise users mobile app developers utilise app analytics, 

which provide a plethora of details, including how many users have downloaded the app in 

total, how many of those users are active, how do users interact and engage with the app, 

which features do they most often use and which do they ignore and more. Mobile 

applications account for 89% of consumer media time on mobile devices (380). Companies 

investing in mobile app development use mobile app analytics to optimise their apps, without 

which developers risk their app reach and engagement being unclear. Using mobile app 

analytics companies can get insights related to three key metrics: business-related metrics 

(conversion, retention and engagement rates), app performance metrics (user’s experience 

with an app, knowing which pages have been viewed the most or least, which features of the 

app are mostly used or rarely used) and low-level metrics (information on any crash’s bugs or 

bad behaviour of the app). App performance metrics would be of particular interest from a 

public health perspective as it will provide insight into participants engagement with the 

intervention. One such type of mobile app analytic is Flurry Analytics. Flurry analytics 

enables users to analyse consumer behaviour through data observations. The platform 

provides features for user segmentation, consumer funnelling (describes the journey a 

consumer takes through an applications search system) and application portfolio analysis. In 

other words, Flurry analytics allows developers to see what their users are looking at on their 

app and for how long.  
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5.2.2.4 Data Aggregation and Download: Conversant Health 
As with most health and wellbeing mobile apps, the downloading of data is not always 

possible. However, due to the freely available Application programming interface (API; a 

method of connecting one website/software to another) have made it possible for data 

aggregation services to build websites and software (fee for services) whereby 

users/customers can download their data from wearable devices. One such company 

‘Conversant Health’ (35TUhttps://www.conversanthealth.com/U35T) was approached in order to 

facilitate the API integration from LumoBody Tech. Figure 5.5 displays the website which 

Conversant Health built for the intervention for the download of data.  

 
Figure 5.5 - Conversant Health platform built for the DeSIT intervention 

As new participants come in to the study, the investigator would register the participant into 

the Conversant system. Registration information could include any information that the 

investigator deem necessary (e.g. User ID, DOB, study registration data etc). Subsequently, 

the investigator would link the LumBack posture sensor to their account (via a Lumo 

BodyTech provided website). Every evening, the Conversant Health platform would query 

the Lumo API for all data between the time of their last sync and the current time, storing it 

into the Conversant Health databases. If the user is new (e.g. there was no previous sync 

time), it would use their registration date. Additionally, participant laboratory information 

could be added to the system via a participant data entry form. An upload function was also 

compiled on the system to allow for upload of additional auxiliary information (as long as the 

uploaded information had the participants registered information attached to it (i.e. their user 

ID). Every 15 minutes, the Conversant platform would aggregate the downloaded 

https://www.conversanthealth.com/
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data/uploaded data respective of each participant, as per the specification of the study 

protocol. These aggregations were then published and available for study investigators to 

download (in this instance all in CSV downloads).  

5.3 Summary 

In summary, the LumoBack was altered to create a control mode (no feedback on the mobile 

app) for baseline measurement and sedentary buzz for the intervention period. Additionally, 

access to mobile app analytics was also developed to measure exposure to the intervention 

and engagement with the app during the intervention period. Finally, data integration, 

aggregation and download capability was also developed to allow seamless downloading of 

data without further participant burden. Table 5.1 is a summary of the changes commissioned 

to alter and configure the LumoBack into a new sedentary behaviour self-monitoring and 

feedback tool. Preliminary evaluation of these commissioned changes showed that the 

changes were achieved, therefore making the repurposing successful.  
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Table 5.1 – Summary table of commissioned changes to the LumoBack Mobile Application 
Need Challenge  Commissioned Change 

Control Mode Need control mode in LumoBack app to prevent 

salient behaviour change information being available 

at baseline.  

Creation of a cosmetic change to the application 

user interface, whereby the min card removed from 

the user interface so that participants could access 

their behavioural data.  

Sedentary Buzz LumoBack, in its original format, possessed 

vibratory feedback based on bad posture rather than 

prolonged sedentary behaviour.  

A new firmware was created to enable a sedentary 

buzz (vibratory feedback) after a user-defined 

period of time.  

Mobile Application Analytics To assess the feasibility of the interventions using the 

LumoBack, engagement with the mobile app was 

necessitated. 

Flurry app analytics were integrated into the new 

Loughborough University LumoBack app allowing 

data to be collected on how often participants 

engaged with the LumoBack app (e.g. how often do 

they tap on the sit time min card, how long they 

spend on the sit time max card). 

Data Integration Aggregation and Download Due to the commercial device not having the 

extensive data analysis and downloading capability 

of research grade device, a service was sought for the 

integration, aggregation and download capability for 

LumoBack data.  

Conversant Health created a platform with the 

ability to integrate LumoBack data for download 

and analysis, as well as study management and 

flurry analytics data aggregation.  
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6.1 Introduction 

As an increasing body of evidence suggests that sedentary behaviours are associated with 

poor health outcomes (28), increased attention is being paid to the development of 

intervention methods that focus on reducing sedentary behaviour and increasing physical 

activity levels (34,35). Self-monitoring has been proposed as a promising avenue by which 

behaviour change can occur (41) and its use in interventions is on the rise. Furthermore, 

evidence from meta-regression studies (42,210) revealed that interventions aimed at 

increasing physical activity self-monitoring with one or more of four other self-regulation 

techniques, were significantly more effective than interventions not including self-monitoring 

(41,42,210). 

Along with the rise in self-monitoring, there has been a rise in commercial wearables and 

activity trackers. The rise in commercial activity trackers comes through their ability to create 

data and generate information on behaviour as well as being able to easily make meaning and 

take action from these devices (234,381). Research also suggests that individual self-

monitoring devices, such as pedometers, are a common element of successful physical 

activity interventions (211,382,383), and can increase physical activity (384–386) and 

decrease sedentary time (384,385). Recent advances in technology have seen the emergence 

of more sophisticated commercial activity trackers that go beyond just simple step counting 

to incorporate many of the strategies known to support behaviour change (387). Such 

strategies, including the provision of detailed, real-time feedback, long-term tracking, 

prompts/cues, and goal setting, as well as the measurement of multiple behaviours, give 

commercial trackers the potential to be effective behaviour change tools (244,387). Their 

potential as low cost behaviour change support tools has been recognised by workplace 

wellness programs in the US, where activity trackers are distributed to encourage employees 

to increase physical activity with the aim of getting healthy and therefore reducing their 

insurance premiums (388,389). However, as seen in Chapter Three (page 48), there is a lack 

of sedentary behaviour based commercial trackers.   

There is minimal research on the feasibility, acceptability and effectiveness of commercial 

activity trackers as intervention tools, traditionally interventions utilise research grade 

pedometers. A recent review aiming to synthesise the efficacy and feasibility results of 

electronic activity monitoring systems (pedometers were not included in this review as it did 

not meet the authors’ definition of an electronic activity monitoring systems) within 

published physical activity interventions, highlighted the large heterogeneity in the small 
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group of research studies and the mixed quality of research (239). Five of the 11 studies 

included in the review showed significant improvements in physical activity, and three of the 

studies found significant improvements in sedentary behaviour in the activity monitoring 

system (239) suggesting that interventions utilising wearable technology may be an effective 

intervention modality to decrease sedentary behaviour and increase physical activity. 

The mixed picture of intervention success of commercial activity trackers may be due to the 

fact that some cannot adequately measure exposure to the intervention. There is a need to 

accurately and objectively measure the exposure to the intervention modality to better 

understand the intervention effect on the study population. For example, in office-based 

standing desk interventions, self-reported log diaries would be provided to participants to 

document when they are at work as a means of measuring their exposure to the intervention. 

However, this methodology is open to bias, potentially diluting the intervention effect, 

subsequently, making the finding potentially invalid. Objective measurement of the exposure 

is therefore important to accurately quantify treatment effects. 

As already alluded to, there is little evidence investigating the use of activity trackers to target 

sitting and standing. Furthermore interventions focusing on increasing physical activity do 

not necessarily result in changes in sitting (34,35), likewise activity trackers that focus on 

steps and activity may not necessarily elicit changes in sitting (38). The LumoBack device 

was identified in Chapter 3 (page 46) as a potentially promising tool for individuals to self-

monitor sedentary behaviour. Additionally, the LumoBack has been shown to be an 

acceptably valid measure of sedentary behaviour both in the current dissertation (see Chapter 

4 page 84) as well as previously published literature (177,259). Therefore, the aims of this 

study were: 

• To determine whether a repurposed LumoBack Posture Sensor can reduce sedentary 

behaviour in a sample of apparently healthy adults over the course of five weeks. 

• To quantify the engagement of the participants with the technology determined by 

time engaging with the mobile app associated with the LumoBack.  

In an attempt to understand why individuals engaged with the intervention, investigation of 

health outcome data were used to quantify whether those with the “most to gain” (assessed by 

Metabolic Syndrome risk factor levels) were more engaged. 
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6.2 Methods  

6.2.1 Participants 
A convenience sample of participants were recruited using Loughborough University (UK) 

departmental mailing lists, consenting participants from previous research studies, physical 

and online university notice boards, as well as word of mouth. In total, 42 participants (≥25 

years and over) who owned and could operate an iPhone 4S or later model of Apple iPhone, 

who also had no underlying circumstances which would prevent them from being active were 

recruited into the study. 

6.2.2 Procedures 
Participants attended three visits at Loughborough University’s, National Centre for Sport 

and Exercise Medicine. Procedures were approved by the Loughborough University Ethics 

Approval Sub-Committee. When a person expressed an interest in the study, the participant 

information sheet was sent to the potential participant, which included full details of what the 

study entailed. Upon confirmation of participation in the study an appointment for the initial 

visit was made. At the initial visit, participants were offered the opportunity to re-read the 

participant information sheet (Appendix 3.1 page 258) and additionally, written informed 

consent was obtained. During visit one, participants were given a LumoBack and the 

initialisation and calibration process was explained. The initialisation process involved the 

assignment of each participant to a pre-determined username and password. The new 

firmware was linked to these specific login credentials, thereby initiating the new sedentary 

buzz firmware update. After initialisation, the participants were instructed on the appropriate 

wear of the LumoBack (i.e. worn like a belt centred on the lower back). Following this the 

participants were taken through the calibration process which involved following a number of 

on screen instructions depicted in Figure 6.1. 

 

Post calibration participants were asked to walk approximately 20 meters before sitting down 

on a chair. This allowed the investigator to assess whether the calibration process was 

successful by monitoring the Lumo avatar on the mobile application (app) to make sure it 

mimicked the participant's’ behaviour. Participants were then instructed to wear the 

LumoBack configured in control mode (i.e. no haptic feedback), during waking hours for 7 

days, whilst going about their normal routine. Each night when participants removed the 

LumoBack they were instructed to plug it in to a fully supplied charger. Although the battery 

did not require daily charging, this instruction was given because when placed on or removed 
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from charge, the LumoBack records the act in the data log. This is noteworthy because 

activity monitoring studies require participants to log on/off wear times in a diary, which is 

burdensome and given its subjective nature, open to inaccuracies or biases (390). 

Additionally, if the LumoBack was removed and placed on a flat surface with the logo visible, 

and the unit left idle the device would go into an “inactive” data state. Therefore, in lieu of 

the traditional wear time log diary, participants were provided with an information sheet 

(Appendix 3.2) which explicitly described methods by which they should remove the 

LumoBack. If the participant did not place the LumoBack on charge, they were encouraged 

to place the LumoBack in the inactive position.  

During the second visit, the LumoBack assigned to the participant was altered from control 

mode to intervention mode (i.e. haptic feedback via a sedentary vibration or ‘buzz’). The 

sedentary buzz was set so that the LumoBack would vibrate after 30 minutes of continuous 

sitting. The decision to use 30 minutes of continuous sitting as the trigger for the buzz was a 

pragmatic one. There is no consensus in the literature as to how often individuals should 

break up their long bouts of sedentary behaviour. However, there is both epidemiological 

evidence to suggest that individuals spend up to 75% of their workday sedentary, with much 

of this accumulated in prolonged bouts of >20-30 minutes (19,391). Furthermore, a series of 

experimental studies have found that there can be advantageous cardio-metabolic effects of 

breaking up siting time with either standing or light intensity activity (58,74,94,392). Whilst 

the studies differ on the frequency of the breaks (every 20 minutes or every 30 minutes), a 

pragmatic approach was taken to choose 30 minutes as a sit buzz of 20 minutes may be too 

frequent and may induce disenfranchisement from use of the LumoBack. 

Furthermore, during the second visit, a series of cardio-metabolic measures were taken 

including, body composition, blood pressure, and a lipid and glucose profile. The participants 

wore the LumoBack again for another 4 weeks before returning to the lab for a third and final 

session where the same cardio-metabolic measures were taken. Figure 6.2 is a schematic of 

the study procedures. 
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Figure 6.1 - Calibration process of the LumoBack 

Sequence of steps 
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6.2.3 Measurements 

6.2.3.1 Sedentary behaviour variables  
Sedentary behaviour [comprising lying time, sitting time (including car time)], standing time, 

and stepping time were measured using the custom repurposed LumoBack Posture sensor.  

6.2.3.2 Cardio-metabolic outcomes 
Participants arrived at the lab after an overnight fast of ≥12 hours. Lipid profile and glucose 

was determined using the Alere Cholestech LDX analyser (Alere Inc., Waltham, MA). The 

LDX analyser measures total cholesterol and HDL cholesterol by an enzymatic method based 

on method formulation of Allain et al  and Roeschlau et al (393). It measures triglycerides by 

an enzymatic method based on the hydrolysis of triglycerides by lipase to glycerol and free 

fatty acids and finally the LDX measures glucose by an enzymatic method that uses glucose 

to gluconolactone and hydrogen peroxide (393). The accuracy of Cholestech LDX 

measurements of total cholesterol (TC), calculated LDL, HDL, and triglycerides was 

compared to laboratory analyses, giving correlations of 0.91, 0.88, 0.77, and 0.93 respectively 

(all P<0.01). A study comparing CardioChek PA and Cholestech LDX with a standard 

venous blood sample tested in a laboratory, showed that the Cholestech LDX analyser 

demonstrated slightly better reproducibility than the CardioChek PA analyser when compared 

with laboratory gold standard analysis; however, the study was limited by the small sample 

size (n = 34) with no known risk factors, and did not determine superior accuracy of either 

device. In a comparative study of 100 samples, correlation coefficients between the Point-of-

Care (POC) and laboratory methods were >0.9 for Cholestech and >0.84 CardioChek. This 

translates into machines that are fairly accurate. However, at levels near decision thresholds 

of diagnosis and treatment, the machines may over-estimate triglycerides and HDL, and 

under-estimate LDL (394,395). There is a growing wealth of both epidemiological and 

experimental evidence now that shows the deleterious effect of sedentary behaviour, and 

therefore beneficial effects of breaking up sedentary behaviour, on lipid profile and glucose 

(58,75,94,97,99,392,396–399). Finger-stick blood measurement was taken from the middle 

finger on the non-dominant hand of the participant, with the puncture taking place 

approximately 5mm from the edge of the nail bed. A blood sample of 40 μl was used for the 

test. 

Height was measured using a stadiometer (Leicester Portable Height measure). The 

participants were asked to stand upright back to the vertical backboard of the stadiometer. 

The heels of the feet were placed together with both heels touching the back of the vertical 
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board. The participant’s feet were pointed slightly outward at approximately a 60 degree 

angle. The participants head was maintained in the Frankfort Horizontal Plane position (the 

head is in the Frankfort plane when the horizontal line from the ear canal to the lower border 

of the orbit of the eye is parallel to the floor and perpendicular to the vertical backboard) 

while the investigator lowered the horizontal bar snugly to the crown of the head with 

sufficient pressure to compress the hair. The participants were asked to inhale deeply and to 

stand fully upright without altering the position of their heels. The act of taking a deep breath 

helps straighten the spine to yield a more consistent and reproducible stature measurement. 

The measurement was recorded to the nearest 0.1cm (364). For measurement relating to 

weight and BMI, fat mass, visceral fat mass and fat free mass, the Tanita Body Composition 

Analyser MC-780MA (Tanita, West Drayton, UK) was used. Participants were asked to 

remove all footwear and any extra weight (heavy jumpers, coins in pockets, belts etc.). 

Participants were asked to step on the weight platform, making sure to place their heels on 

the posterior electrodes, and the front part of their feet in contact with the anterior electrodes. 

The participants were then asked to hold onto the grips of the analyser until the measuring 

process had completed. Body weight was measured to the nearest 0.1kg. 

Before blood pressure measurement could be taken the correct sized blood pressure cuff was 

determined. This was conducted by measuring the arm circumference of the participants. 

Participants were asked to stand upright facing away from the investigator, with their weight 

evenly distributed on both feet and their right arm bent at 90P

o
P at the elbow and their palm 

facing up. Holding the zero end of a measuring tape at scapula, the tape was extended to 

down the centre of the posterior surface of the arm to the tip of the olecranon process (elbow), 

making sure to mark the midpoint. The arm circumference measurement was taken at the 

upper arm by wrapping the measuring tape around arm perpendicular to the long axis of the 

upper arm. Participants were asked to sit, with both feet on the floor and to rest their right 

arm on a table top level with their heart, with their arm stretched out and palm facing 

upwards. The cuff was placed on the bare upper arm approximately one inch above the bend 

in the elbow, with the tubing falling over the front centre of the arm. The cuff was tightened 

evenly around the arm. The participant was then given five minutes to sit quietly. Three 

measures of systolic and diastolic blood pressure were taken using an Omron blood pressure 

monitor, with one minute of rest between each reading to get a stable and accurate average 

reading.  
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Three waist and hip measurements were taken, again in an attempt to get a stable reading. 

Waist circumference was measured in a horizontal plane, midway between the inferior 

margin of the ribs and the superior border of the iliac crest. The hip measurement was taken 

at the widest lateral extension of the hips. Waist and hip measurement was taken to the 

nearest 0.1cm. A health report was provided to the participant upon exit from the study (see 

Appendix 3.3). 

6.2.3.3 Mobile Application Analytics Flurry App Analytics  
App analytics allow for real-time data on user engagement with the app, and importantly for 

the use in interventions, there is no additional burden on the participant. The downloading of 

customised LumoBack app was already connected to app analytics software which meant the 

investigators could tunnel directly into the app use data. A mobile app analytics platform was 

used to determine user engagement by quantifying the number of bouts and time spent on the 

five min/max cards (the tiles present on the app during the sedentary buzz phase of the trial 

see chapter 5 120) within the app. App analytics were determined using Flurry App analytics 

(Flurry, Yahoo, San Francisco, US).  
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Figure 6.2 - DeSIT study procedure schematic 
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6.2.3.4 Data Treatment and Analysis 
LumoBack data were aggregated by the customised platform designed by Conversant Health 

under the specification of the study investigators. The DeSIT platform was able to provide 

three real-time interrogative analyses. These interrogative analyses included a flag in the 

system if a participant had >10 hours per day of non-wear/inactive time, the expectation of 

data for all expected time-points from the start of the study to the end point, and a biological 

implausibility notification to alert the study investigators if the LumoBack has been recording 

a behaviour for a prolonged period of time (i.e. >10 hours on one day). These were used as a 

method to signal to the investigator that there may be an issue with the participants 

involvement in the study and may require further attention. The minimum wear-time criteria 

for a participants data to be considered viable for analyse was set at >1 valid day of data, 

whereby a valid day was deemed to be achieved by >10 hours per day (i.e., 600 minutes) of 

wear time was recorded for the LumoBack. These wear time criteria were selected based on 

the wear time criteria typically applied in ActiGraph studies (20).  

Repeated Measures ANCOVA were used to determine if there were any significant 

differences in sedentary behaviour, standing time and stepping time as measured by the 

LumoBack, across the three time points (control period, week 1, week 5), when controlling 

for the global average wear time of the device. Participant mobile app analytics data were 

used to determine the number of bouts and duration of time spent per week on the specific 

tiles in the LumoBack app. From this a tap engagement ratio: 

𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 𝑇𝑇𝑆𝑆𝑇𝑇𝑅𝑅 𝐵𝐵𝑜𝑜𝐵𝐵𝑀𝑀𝐵𝐵 
𝑇𝑇𝑜𝑜𝑀𝑀𝑀𝑀𝑇𝑇 𝐵𝐵𝑜𝑜𝐵𝐵𝑀𝑀 𝑅𝑅𝑜𝑜𝑅𝑅 𝑀𝑀𝑇𝑇𝑇𝑇 𝑀𝑀𝑆𝑆𝑇𝑇𝑅𝑅𝐵𝐵 

  

and time engagement ratio: 

𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷 𝑇𝑇𝐷𝐷𝐿𝐿𝐷𝐷 
𝑇𝑇𝑜𝑜𝑀𝑀𝑀𝑀𝑇𝑇 𝑀𝑀𝐷𝐷𝐿𝐿𝐷𝐷 𝐿𝐿𝑆𝑆𝐷𝐷𝐷𝐷𝑀𝑀 𝑜𝑜𝐷𝐷 𝑀𝑀𝑇𝑇𝑇𝑇 𝑀𝑀𝐷𝐷𝑇𝑇𝐷𝐷𝐿𝐿  

 

were calculated. Furthermore, using the SPSS visual binning tool, participant’s engagement, 

determined by total tile taps from the mobile app analytics tool, into equal quartiles based on 

the scanned cases. Using these groupings mixed measures ANOVA on a sub-sample of 

participants (those in the highest quartile against those in the lowest quartile) was used to 

determine if there were any significant interactions between behaviour and engagement group. 

In an attempt to determine why individuals engaged with the LumoBack, health outcome data 

were used to determine the number of Metabolic Syndrome (MetS) risk factors, using the 
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International Diabetes Federation (IDF) classification (see table 6.1) each participant had. 

Participants were dichotomized into whether they had ≤1 MetS risk factor or ≥2 MetS risk 

factors. Level of engagement between the two groups was compared.  

Statistical data analysis was conducted using IBM SPSS 22.0 (IBM SPSS Inc, Chicago, IL) 

with alpha level set at 0.05. LumoBack data aggregation was performed by Conversant 

Health, with wearable activity data were processed using KineSoft 3.3.80 (KineSoft, 

Loughborough, UK). 

Table 6.1 - International Diabetes Federation (IDF) metabolic syndrome definition 
Central Obesity Waist Circumference: Ethnicity – specific values, plus any two for 

the following:  

Raised Triglycerides ≥ 1.7 mmol/l (150 mg/dl) or specific treatment for this lipid 

abnormality 

Reduced HDL - Cholesterol < 1.03 mmol/l (40mg/dl) in males 

<1.29 mmol/l (50mg/dl) in females 

Or specific treatment for this lipid abnormality 

Raised Blood Pressure  Systolic: ≥  130 mmHg 

Or  

Diastolic: ≥ 85mmHg 

Or treatment of previously diagnosed hypertension  

Raised Fasting Plasma Glucose  Fasting plasma glucose ≥ 5.6 mmol/l (100 mg/dl) or previously 

diagnosed Type 2 diabetes If > 5.6 mmol/l or 100 mg/dl, oral 

glucose tolerance test is strongly recommended but is not 

necessary to define presence of the syndrome 

6.3 Results 

6.3.1 Participants 
Forty-one participants (53.7% female, 44.1 ± 11.3 years, BMI: 25.7 ± 3.7 kg/mP

2
P) took part in 

the study. 94.6% of the study population were White British, with all participants educated to 

at least A-level, with 83.8% completing an undergraduate university degree, and all in full 

time employment.  

6.3.2 Sedentary Behaviour and Physical Activity  
Table 6.2 shows the mean wear time of the LumoBack (min/day) at baseline, week 1 and 

week 5.  
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Table 6.2 - Mean Wear time (mins/day) for the LumoBack at baseline, week 1 and week 
5 
  Baseline Week 1 Week 5 

Wear Time [mins/day (SD)] 887 (46) 867 (61) 853 (64) 

 
Table 6.3 shows the sedentary behaviour, standing time and stepping time as measured by the 

LumoBack at baseline, week 1 and week 5 for the study population. Sedentary behaviour, as 

measured by the LumoBack, was highest at baseline, which decreased at week 1 after the 

sedentary buzz was activated, and was decreased again at week 5. At baseline, standing time 

was 197.2 mins/day, 195.3 mins/day at week 1 and 194.8 min/day at week 5. Furthermore, 

stepping time at baseline was 93.9min/day at week 1 this decreased to 89.2mins/day and 

increased at week 5 to 107.0 mins/day. When controlling for LumoBack wear time, the 

results of the repeated measures ANOVA revealed that sedentary behaviour was not 

significantly different between baseline, week 1 and week 5 [FR(2,56)R=0.212, p=0.809]. 

Furthermore, there were no significant differences in standing time [FR(2,56)R=1.036, p=0.362] 

and stepping time [FR(2,56)R=2.714, p=0.075] among the three time points.  

Table 6.3 – LumoBack measured behaviours at Baseline, week 1 and week 5 [Estimated 
Marginal Mean Minutes (SE)] 
Behaviour  Baseline  Week 1  Week 5  P ValueP

+
P  

Sedentary Behaviour 595.9 (17.2) 584.1 (16.2) 550.7 (17.3) .809 

Standing Time 197.2 (12.2) 195.3 (13.9) 194.8 (12.4) .362 

Stepping Time 93.9 (6.9) 89.2 (5.9) 107.0 (8.9) .075 

 + Repeated Measures ANOVA controlled for Global Average Wear Time of LumoBack. 

6.3.3 Mobile App Analytics 
Table 6.4 shows the temporal trend of participants LumoBack app usage. During week 1, the 

frequency of sit time card taps was 4.5 with a total duration of 2 minutes of time spent on the 

sit time card. Compared to week 1, there was a reduction in frequency of sit time card taps by 

36.2%, 30.0%, and 28.8% in weeks 2, 3, and 4 respectively. With total time spent on the Sit 

time tile reducing by 10.5%, 8.5%, and 15.9% compared to week 1 in weeks 2, 3 and 4 

respectively. Week 5 saw the frequency of sit time tile tap return to the level of week 1 with 

4.3 taps per week, however compared to week 1 the total time spent on the sit time tile 

increased by 17.9%, spending 2.3 minutes on the sit time tile.  
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Compared to week 1, where the average number of taps on the Posture score card was 3.4, 

and the total duration was 0.9 minutes, frequency and time on spent on the Posture score tile 

decreased steadily during week 2, 3, and 4 to an average tile tap of 1 tap per week, and 0.3 

minutes spent on the posture score. Similar to the sit time tile, there was a slight increase in 

week 5 compared to the preceding weeks in terms of frequency of taps on the Posture Card; 

however total times decreased to 0.2 minutes. 

In week 1, participants on average tapped on the Step tile 7.5 times, and spent on average a 

total of 3.9 minutes on the tile. Following a similar pattern to the previous two tiles, in that, 

frequency decreases in weeks 2, 3, 4, and 5 respectively. Participants on average tapped on 

the Stand Ups tile 3.1 times and spent on average a total of 0.9 minutes on the tile in week 1. 

Engagement with the stand ups tile decreased from week 1 in weeks 2, 3, 4, and 5 

respectively. Finally, in week 1, participants on average tapped on the sleep tile 1.5 times and 

spent on average a total of 0.4 minutes on the tile per week. Compared to week 1, in week 2, 

3, 4 and 5 respectively. Furthermore, total time spent on the sleep tile decreased, compared to 

week 1, in weeks 2, 3, 4 and 5.   

Table 6.4 shows the number of time participants swiped on the Lumo avatar on the app. 

Briefly, a person would swipe up or down on the LumoBack app if the avatar was not 

displaying correctly what the participant was doing. This would in turn feed into the machine 

learning algorithms to enable the LumoBack to correct its biomechanical model. Participants 

swiped up on the app 2.8, 1.1, 1.1, 0.9, 1.3 times and swiped down on the app, 1.4, 0.9, 0.6, 

0.5, and 0.4 times in weeks 1, 2, 3, 4, and 5. 

Table 6.4 - Average time spent on min/max card and average number of bouts on each 
min/max card [minutes spent (number of bouts)] 
Min/Max Card Week 1 Week 2  Week 3 Week 4 Week 5 

Sit Time 2.0 (4.5) 1.8 (2.9) 1.8 (3.1) 1.7 (3.2) 2.3 (4.3) 

Posture Score 0.9 (3.4) 0.4 (1.8) 0.3 (1.3) 0.3 (1.0) 0.2 (1.4) 

Steps  3.9 (7.5) 2.6 (5.1) 2.4 (4.8) 3.7 (5.4) 3.8 (5.7) 

Stand Ups 0.9 (3.1) 0.4 (1.8) 0.5 (2.0) 0.5 (1.6) 0.4 (1.3) 

Sleep 0.4 (1.5) 0.1 (0.8) 0.1 (0.6) 0.1 (0.5) 0.1 (0.6) 

Swipe Up to Stand * 2.8 1.1 1.1 0.9 1.3 

Swipe down to Sit * 1.4 0.9 0.6 0.5 0.4 
*Swipe Up to Stand and Swipe down to Sit only have bout information as it is an event monitoring metric 
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Figure 6.3 shows the tap engagement ratio and time engagement ratio. This ratio analysis will 

allow for the interpretation of time spent on a particular tile relative to total time on app. Tap 

engagement ratio shows that participant spent proportionally greater bouts and time on the 

steps tile than any other tile. However, the greatest increase in engagement with the app was 

in the sit time card with tap engagement starting in week 1 at 0.225 and increasing to 0.320 in 

week 5, whilst time engagement ratio increased from 0.272 in week 1 to 0.348 in week 5. 

A mixed measures ANOVA was used to determine whether there were any interaction effects 

between engagement group and sedentary behaviour, standing time and stepping time. When 

a sub-sample of participants were placed into engagement groups, when controlling for 

LumoBack wear time, the ANCOVA revealed no significant interaction effects between 

engagement groups and sedentary behaviour [FR(2,28)R=1.883, p=0.1], standing time 

[FR(2,28)R=0.286, p=0.753], and stepping time [FR(2,28)R=0.347, p=0.71] See Table 6.5). 

Table 6.5 – Sub-sample (n=20) of LumoBack measured behaviours at Baseline, week 1 
and week 5 grouped by level of engagement [Estimated Marginal Mean Minutes (SE)] 
 Low Engagement High Engagement 
Behaviour Baseline  Week 1  Week 5  Baseline  Week 1  Week 5  P ValueP

+ 

Sedentary 
Behaviour 

640.2 
(30) 

617.3 
(30.1) 

558.6 
(35.8) 

562.4 
(28.3) 

588.5 
(28.4) 

561.2 
(33.7) 

.171 

Standing 
Time 

181.5 
(22.9) 

169.7 
(26.3) 

178.5 
(14.8) 

208.3 
(21.7) 

190.7 
(24.9) 

186.6 
(13.9) 

.753 

Stepping 
Time 

84.9 
(10.1) 

65.7   
(9.7) 

108.7 
(20.6) 

98.2 
(10.1) 

82.2   
(9.2) 

117.0 
(19.4) 

.710 

+ Mixed Measures ANOVA controlled for Global Average Wear Time of LumoBack. 
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Figure 6.3 – Tap and Time Engagement ratio during the intervention for all five 
min/max cards on the LumoBack app 
Tap Engagement Ratio = (𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷 𝐵𝐵𝑜𝑜𝑢𝑢𝑀𝑀𝐿𝐿) / (𝑇𝑇𝑜𝑜𝑀𝑀𝑀𝑀𝑇𝑇 𝐵𝐵𝑜𝑜𝑢𝑢𝑀𝑀 𝐷𝐷𝑜𝑜𝐷𝐷   ), Time Engagement ratio = 𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑇𝑇𝐷𝐷𝑇𝑇𝐷𝐷 
𝑇𝑇𝐷𝐷 ) / (𝑇𝑇𝑜𝑜𝑀𝑀𝑀𝑀𝑇𝑇 𝑀𝑀𝐷𝐷𝐿𝐿𝐷𝐷 𝐿𝐿𝑆𝑆𝐷𝐷𝐷𝐷𝑀𝑀 𝑜𝑜𝐷𝐷 𝑀𝑀𝑇𝑇𝑇𝑇 𝑀𝑀𝐷𝐷𝑇𝑇𝐷𝐷𝐿𝐿) 

 

0.225 0.233 0.267 0.274 0.320 

0.172 0.143 0.108 0.083 
0.109 

0.376 0.412 0.406 0.467 
0.429 

0.154 0.149 0.167 
0.133 0.100 

0.073 0.063 0.052 0.043 0.042 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Week 1 Week 2 Week 3 Week 4 Week 5

Ta
p 

En
ga

ge
m

en
t R

at
io

 

Week 

Tap
Engagement
ratio - Sleep

Tap
Engagement
ratio - Stand
Ups

Tap
Engagement
ratio - Steps

Tap
Engagement
ratio - Posture
Score

Tap
Engagement
ratio - Sit time

0.272 
0.357 0.375 

0.275 
0.348 

0.004 

0.004 0.003 

0.004 

0.004 

0.536 

0.532 0.492 
0.616 

0.575 

0.130 
0.077 0.105 0.080 0.053 0.059 0.030 0.024 0.025 0.022 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Week 1 Week 2 Week 3 Week 4 Week 5

Ti
m

e 
En

ga
ge

m
en

t R
at

io
  

Week 

Time
Engagement
Ratio - Sleep

Time
Engagement
Ratio - Stand
Ups

Time
Engagement
Ratio - Steps

Time
Engagement
Ratio - Posture
Score

Time
Engagement
Ratio - Sit time



141 
 

6.3.4 Cardio-metabolic risk factors.  
Table 6.6 shows the cardio-metabolic risk factors at baseline and week 5 of the study. A two 

way, repeated measures ANOVA, controlling for age and sex, revealed no significant 

differences in number of risk factors when comparing baseline to week 5. 

 
Table 6.6 – Participant characteristics and cardio-metabolic health outcomes at baseline 
and week 5  
Characteristics  Baseline  Week 5 P-Value 
Female [n (%)] 22 (53.7)   
Age (years) 44.1 (11.3)P

1
P    

Anthropometric Measures    
Height (cm) 172.9 (8.2)   
Weight (kg) 80.2 (2.4) 78.5 (2.5) 0.332 
BMI (kg/mP

2
P) 26.2 (0.6) 25.7 (0.7) 0.311  

Fat Free Mass (kg) 55.3 (1.4) 53.7 (1.2) 0.215 
Fat Mass (kg) 23.9 (1.6) 23.4 (1.5) 0.568  
Visceral Fat % 28.3 (1.4) 29.0 (1.2) 0.208 
Waist Circumference (cm) 87.4 (1.7) 85.9 (1.8) 0.344 
Hip Circumference (cm) 96.4 (2.0) 96.0 (1.7) 0.607 
Waist – Hip Ratio 0.9 (0.1) 0.9 (0.1) 0.306 

Cardio-metabolic risk factors (mmol/L)    
Glucose 5.0 (0.1) 4.9 (0.1) 0.770 
HDL  1.3 (0.1) 1.3 (0.1) 0.140 
LDL  2.7 (0.1) 2.7 (0.1) 0.122 
Non-hdl  3.3 (0.2) 3.1 (0.2) 0.503 
TC/HDL 3.7 (0.3) 3.6 (0.2)  0.666 
Total Cholesterol  4.6 (0.2) 4.4 (0.2) 0.190 
Triglycerides  1.3 (0.2) 1.1 (0.1) 0.254 

Blood Pressure (mmHg)    
Systolic blood pressure  120.5 (1.7) 117.8 (1.4) 0.529 
Diastolic blood pressure  73.3 (1.1) 72.1 (1.1) 0.863 

P

1 
PEstimated Marginal Means (Standard Error) – controlled for age and sex 

6.3.5 Metabolic Syndrome by Engagement 
In terms of engagement with the Sit time card (see Table 6.6), those with ≥2 MetS risk 

factors, in general, had more engagement apps and spent more time per week compared to 

their ≤1 MetS risk factor counterparts. Indeed, those with ≥2 MetS risk factors spent more on 

the app compared to their ≤1 MetS risk factor counterparts at weeks 2, 3, 4, and 5 of the 

intervention period. In week 1, those in the lowest MetS group accrued slightly longer time 

on the app card compared to those in the highest group. A similar pattern occurs in the 

Posture Score card. Those with ≥2 MetS risk factors had more time and taps on Posture Score 

card in weeks 2, 3, and 5. Indeed, participants in the ≥2 MetS spent approximately 30 seconds 

more on the Posture Score Card with up to one extra tap on the Posture Score Card. 
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Again, those with ≥2 MetS risk factor had similar taps but longer time spent on the Steps card 

that those in the ≤1 MetS group. Those in the ≥2 MetS spent 35, 46, 68, and 158 seconds 

more on the Steps card than the ≤1 MetS group in weeks 1, 2, 3, and 4, indicating that the 

higher MetS group engaged to a greater degree than the lower MetS group. 

With regards to the Stand ups card those in the ≤1 MetS group had increased taps on the 

Stand Ups card in weeks 1 and 4, whilst accruing more time on the Stand Ups card in weeks 

1, 3, 4, and 5. Indeed, in weeks 3, 4 and 5, those in the lowest MetS groups spent 31, 17, and 

11 seconds more time on the Stand ups card, respectively. 
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Table 6.7 - Average time spent (mins/week) on min/max card and average number of bouts (bouts/week) on each min/max card [minutes 
spent on min/max card (number of bouts)] dichotomised into ≤1 MetS risk factor and ≥2 MetS risk factors 

Min/Max Card ≤1 MetS risk factor ≥2 MetS risk factors 

Week 1 Week 2  Week 3 Week 4 Week 5 Week 1 Week 2  Week 3 Week 4 Week 5 

Sit Time 2.0 

(4.8) 

1.4 

(2.7) 

1.3 

(3.0) 

1.4 

(3.0) 

1.9 

(4.2) 

1.8 

(4.0) 

2.4 

(3.1) 

2.5 

(3.4) 

2.0 

(3.4) 

3.0 

(4.3) 

Posture Score 1.1 

(3.6) 

0.3 

(1.4) 

0.2 

(1.1) 

0.3 

(1.0) 

0.3 

(1.4) 

0.7 

(3.2) 

0.5 

(2.3) 

0.4 

(1.5) 

0.2 

(0.9) 

0.2 

(1.6) 

Steps  3.6 

(7.3) 

2.3 

(4.8) 

1.9 

(4.6) 

2.7 

(5.0) 

3.8 

(6.1) 

4.2 

(7.8) 

3.1 

(5.4) 

3.1 

(5.0) 

5.3 

(6.1) 

3.9 

(5.1) 

Stand Ups 1.3 

(3.7) 

0.3 

(1.7) 

0.7 

(2.6) 

0.6 

(1.5) 

0.4 

(1.3) 

0.5 

(2.3) 

0.5 

(2.1) 

0.2 

(1.0) 

0.3 

(1.6) 

0.2 

(1.4) 

Sleep 0.2 

(1.3) 

0.2 

(0.6) 

0.2 

(0.5) 

0.3 

(0.4) 

0.3 

(0.6) 

0.3 

(1.6) 

0.3 

(1.0) 

0.2 

(0.7) 

0.3 

(0.6) 

0.3 

(0.4) 
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6.4 Discussion 

The aims of the current study were to assess whether there is any change in sedentary 

behaviour and/or physical activity when wearing the repurposed LumoBack posture monitor. 

Furthermore, in an attempt to understand why individuals engaged with the intervention, 

health outcome data were also used to quantify whether those with the “most to gain” (health-

wise, determined by assessing cardio-metabolic health) were more engaged. 

To the investigators’ knowledge there have been no previous studies investigating or 

examining the use of this device alone as a method of reducing sedentary behaviour or 

increasing physical activity. The goal behind the design and development of the LumoBack 

was to create a wearable device that could quantify posture with a view of correcting poor 

posture more efficiently and effectively than current alternatives (371). Due to the LumoBack 

application programming interface (API) and software development kit (SDK) being openly 

sourced and therefore making customisation readily possible, the LumoBack may offer 

valuable assistance with the goal to simply self-monitor sitting and physical activity 

behaviour during an intervention. However, the findings from the current study suggest that 

the customised LumoBack did not elicit a change in sedentary behaviour over a 5 week 

intervention. Although there are reductions in sedentary behaviour (measured by LumoBack) 

by almost 45 minutes between baseline and week 5, these changes were not statistically 

significant and may be explained by the reductions in wear time reported by the two devices. 

Furthermore, the LumoBack-measured behaviour showed no significant changes in standing 

time or stepping time, although stepping time did increase from ~94 mins/day at baseline to 

107 mins/day at week 5. The poor compliance may indeed be the reason for not finding an 

intervention effect. 

The finding that self-monitoring of sedentary behaviour did not elicit a behavioural change is 

corroborated with other studies in this area (400,401). For example, Project STAND, an 

educational intervention where participants were provided with a Gruve device 

(GruveTechnology, Inc, Anoka, MN), showed no significant differences in accelerometer 

determined sedentary time, nor any statistically significant findings in sedentary behaviour 

determined by the activPAL (400). More recently, an intervention by Ellingson et al. (401) 

used  the activPAL VT (abbreviation for vibrotactile) with a sedentary buzz of 30 minutes 

(similar to the current study) in a population of thirty young adults and found no significant 

within- or between-group differences in total minutes of objectively-measured sedentary 

behaviour or physical activity (401). However, Barwais et al. (402) conducted a four-week 
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randomised control trial to reduce sedentary behaviour and increase physical activity levels in 

sedentary adults. This study by Barwais and colleagues found that an online self-monitoring 

system [Gruve (GruveTechnology Inc)] (386) lead to greater than 20% reductions in self-

reported sedentary behaviour over a four week period. However, as these findings were based 

on self-reported sedentary behaviour, rather than the objective data, conclusions need to be 

interpreted cautiously.  

In the present study, engagement with the app was measured to determine if participant 

exposure to the intervention and those who engaged more with the app would also decrease 

their sedentary behaviour to a greater degree. Sedentary behaviour, when measured by the 

LumoBack, was lower in the high engagement group, and corroboratively, there was higher 

standing time and stepping time in the higher engagement group than the lower engagement 

group, with decreased sedentary behaviour seemingly displaced by stepping time. This is not 

surprising when findings from the app analytics showed that people were most engaged with 

the steps min card rather than the stand ups or sit time (which has information on standing 

time). Participants had the greatest number of engagement bouts and time spent on the steps 

min card, whilst also spending proportionally more time on steps each week compared to any 

other min card. However, the largest increases in proportional engagement were seen in the 

sit time min card, suggesting that there may be a delay in learning/participants educating 

themselves about the importance of reducing sedentary behaviour and what the important 

metrics are in determining sedentary behaviour. Furthermore, those with the ‘most-to-gain’ 

(i.e. those in the highest MetS risk factor group) appeared to engage generally more with both 

engagement bouts and time spent on cards, suggesting that those who were in the unhealthiest 

category engaged more with the intervention than those who were in the healthier category. 

There are a number of possible explanations for the non-significant results of this study. 

Firstly, due to this study being a proof of principle/feasibility study, it was challenging to 

appropriately determine the power necessary to detect a statistically significant difference. 

Nonetheless, these data can be used to suitably power future research. Secondly, sedentary 

behaviour is a highly variable behaviour. Indeed, data suggest that anywhere from 55-70% of 

the day can be spent sedentary (31,96). Furthermore, due to large proportions of the day 

being spent sedentary, small changes (relative to the total time) will make it difficult to 

achieve statistical significance. Thirdly, sedentary behaviour is an inherently insidious 

behaviour, which may be difficult to shift. Unlike physical activity, which is infrequent, short 

in bout length and usually requires planning, sedentary behaviour is a regular activity lasting 
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potentially several hours in length, and ubiquitous in nature. Our environment is queued up to 

facilitate sedentary behaviour (403). Living and office spaces are constructed in such a way 

to make sitting the dominant behaviour. Given this, sedentary behaviour may be a difficult 

behaviour to displace due to its permeating presence. Environmental changes may be useful 

in aiding this displacement (39,404). Indeed, a systematic review of behaviour change 

strategies used within interventions that sought to reduce sedentary behaviour in adults found 

that interventions based on environmental restructuring were the most promising (41). 

Furthermore, provision of sit-stand desks has been shown to be effective in reducing sitting 

time in adults (37). In addition, motivation to change will involve conscious decision making 

as well as less conscious ‘automatic’ processes. The latter involve acting in accordance with 

basic likes and dislikes and with rather little deliberation. Automatic processing will involve 

habitual reactions to the environment and acting out of habit (405). This is highly likely for 

sedentary behaviours where chairs are provided and sitting is the norm. Whether it is possible 

to create a situation where not sitting is seen as ‘enjoyable’, and hence the default option, has 

not been tested.  

Likewise, in the systematic review of behaviour change strategies, self-monitoring was the 

behaviour change technique that was shown to be particularly promising (41). Behaviour 

change theory is now suggesting that self-monitoring is just one (albeit an important one) of 

many ways that could change behaviour (42,187,209,210). Whilst the current study gave 

participants a small but better understanding about sedentary behaviour, and the adverse 

health effects associated with it, as well as the ability to explore the behaviour change 

technique of self-monitoring, when they leave contact with the investigator, they were 

essentially on their own to embed the strategies in to their lives. Without environmental 

restructuring or other behaviour change strategies, it may be difficult to incorporate and 

embed self-monitoring into individual lifestyles. There is also a need to assess how self-

monitoring in accordance with overt changes in the environment may change the outcomes of 

interventions. Combinations of multiple behaviour change techniques and strategies might be 

particularly important in individuals who do not see themselves as being at risk of the 

deleterious health effects of prolonged sitting. A recent cluster randomised control trial study 

by Healy and colleagues (40) implemented a multicomponent intervention employing 

organisational, physical environmental and individual behaviour change methods to reduce 

sedentary behaviour. The workplace-delivered multicomponent intervention was successful 

at reducing workplace and overall daily sitting time in both the short and long-term (40). 
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Consequently, interventions may be better constructed when using a combination of 

environmental restructuring and self-regulatory techniques.  

Fourthly, the LumoBack is a wearable outlier, in so far as, many wearable devices currently 

on the market are worn on the wrist (approximately 55% of wearables are worn on the wrist 

and approximately 60% of wearables are worn on the wrist hand or arm), it might therefore 

be the case that devices which are worn around the waist (which make up approximately 3% 

of the market (406), might not be suitable for behaviour change. Whilst the wrist might not be 

the best location for activity recognition (407,408), the large number of wearables worn on 

the wrist, in accordance with scientific literature, seems to suggest that this is the best place 

for user adherence (409), therefore, the LumoBack (worn around the waist on the lower back) 

might not be a wear-site conducive to participant adherence or engagement. Indeed, exit 

questionnaire data from this study revealed that 59.5% of participant found that a wear site at 

the waist was not an important contributing factor in whether or not they chose a wearable, 

compared to the 67.6% who indicated that using a wearable that can be worn at the wrist was 

important, of which 56.8% indicated that wearing a device at the wrist was very important.  

Fifthly, results from the mobile app analytics demonstrate that individuals were most engaged 

with the Steps card on the LumoBack app. Indeed, over half the time in each week spent on 

the LumoBack was spent engaging with the steps min card. This is not surprising when 

considering that the majority of consumer activity trackers measure physical activity, 

traditionally in the form of steps (see scoping review from chapter 3 page 48), and that 

knowledge of the potentially adverse health effect of sedentary behaviour and sedentary 

behaviour guidelines are low (410). Indeed most mass media campaigns and population level 

information has been focused on increasing MVPA (411), so it is not surprising that people’s 

perceptions of sedentary behaviour are not in keeping with what is known in the literature. 

However, daily MVPA (if meeting guidelines) only accounts for approximately 2-3% of our 

daily behaviour (20) (which also includes sleep, sedentary and light physical activity), whilst 

epidemiological data show that sedentary behaviour accounts for approximately two-thirds of 

the day (26,31,96). Consequently, a greater focus and education on sedentary behaviour 

guidelines [where available e.g. new Canadian 24 hours guideline (219)] and the associated 

adverse health effects might be needed.  Furthermore, unpublished data from the Mi-LAB at 

Loughborough University found that when individuals were presented with 20 feedback 

options (on a single A3 sheet of paper) and were requested to place four stickers on the four 

options that they thought would be most useful to monitor their health (no restrictions on 
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placing a certain amount on each topic, free to pick four from a single topic e.g. MVPA if 

desired), steps were the most frequently selected (n=20 of 33) as one of the top four feedback 

options to monitor their health (Unpublished Data). A participant’s greater interest in steps, 

combined with the low levels of knowledge around sedentary behaviour, may partially 

explain the lack of significant behaviour change seen in this intervention. On the other hand, 

the largest increases in min card bouts and time were seen with the sit time card across the 

weeks of the intervention. This suggests that it takes a longer period of time for participants 

to become engaged with the issue of reducing sedentary behaviour and with the metrics 

associated with sedentary behaviour (411). These might be more cognitively loading than the 

traditional step count metric. Therefore, more educational information might be needed from 

the outset of interventions; making participants knowledgeable of the detrimental effects of 

sedentary behaviour making feedback from the LumoBack having greater salience.  

Finally, whilst the systematic scoping review in Chapter 3 (page 48) found the LumoBack to 

have a number of self-monitoring and feedback attributes, feedback is an inherently 

personalised element, and feedback should be tailored to the individual. In the current study, 

we took the pragmatic decision to set the sedentary buzz of the LumoBack at 30 minutes. 

Two other studies which have used vibrating self-monitoring tools set at 30 and 60 minutes, 

also found no statistically significant changes in time spent in sedentary behaviour (36,401). 

This might suggest two issues: firstly, that perhaps vibratory feedback is not the most 

powerful feedback mechanism by which to act, despite its low cognitive loading, some 

individuals may be better suited to auditory feedback, or to omnipresent feedback like the 

FitBit Flower, and secondly, that the amount of time after which the sedentary buzz occurs 

needs to be a personalised and tailored time (i.e. participants decide whether to have the buzz 

at 20 minutes or 30 minutes). Future intervention should aim to take a person centred 

approach in the development of feedback. 

There are a number of strengths associated with this study. Firstly, this study is, to our 

knowledge, the first to use a novel, commercially-available piece of wearable technology, 

which has been validated as a measure of posture. Secondly, the usage of mobile app 

analytics to measure the user’s engagement with the LumoBack is also a novel component to 

measure the exposure to the intervention and one that should be utilised and investigated 

further in future interventions. Thirdly, this study commissioned and deployed a scalable 

online platform for the aggregation and download of LumoBack data. Whilst the company 

behind this platform is no longer running, there are a number of alternatives available which 
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can be used in lieu of the current system, which can be initiated and deployed in a short space 

of time and accessed from most devices connected to the internet. Fourthly, this study 

deployed the LumoBack as a continuous, pervasive intervention which is different from other 

intervention such as sit-stand desk which only work in their context of their deployment or 

educational programmes which traditionally occur in organised workshops. Finally, the 

LumoBack contains an objective measure of wear and non–wear time which is something 

that previously would have relied upon algorithms or diary logs to track. This is of particular 

importance when assessing sedentary behaviour given that the missing data from poor 

wear/non-wear recording at both the beginning and end of the day is likely to be sedentary 

behaviour. 

There are also a number of limitations associated with this study. Firstly, the participants in 

this study were a sample of mostly white-British, highly educated (due to it being a broadly a 

sample of convenience), which therefore may make these findings non generalisable to the 

general population. Secondly, there was no environmental change associated with this 

intervention, which, as already alluded to, may have meant that individuals who are 

motivated to change, may have lacked the capacity to do so when the prompt occurred. 

Thirdly, POC testing is not the gold standard for measuring lipid profile and glucose and 

more clinical laboratory techniques should be utilised in the future. Finally, there was no 

follow up beyond the five week intervention study, which may have given us an indication of 

how behaviour changed after commencement of the study. Fourthly, the need for individuals 

to own a iPhone to participate in this study decreases the generalizability of the study, as not 

everybody has a iPhone in the general population. Finally the study may not be long enough 

to allow for an effective behaviour change to take place. 

6.5 Conclusion 
In conclusion, self-monitoring of sedentary behaviour using the LumoBack on its own may 

not be sufficient to change behaviour. Future studies should look to assess different feedback 

methods and modalities in an attempt to optimise the salience of the feedback and to make it 

more likely to be heeded by the participants. Furthermore, follow up interventions should 

look to assess the use of real time sedentary behaviour feedback in conjunction with other 

behaviour change strategies and techniques (e.g. environmental restructuring) as part of 

multi-faceted designs that target reductions in sedentary behaviour. Furthermore, the use of 

mobile app analytics to determine intervention exposure and engagement not only as a ratio 
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of app time, but also as part of mobile use as a whole, should be further investigated. Finally, 

further research should look to conduct interventions over a longer period of time, longer 

than 5 weeks, as 5 weeks may not be long enough to instil behaviour change. Indeed small 

changes in behaviour may be more sustainable and prevent further increases in sedentary 

behaviour. These research directions show strong potential to add value to wearable 

technologies and increase their potency in lifestyle behaviour change interventions.  
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This thesis presents three studies and development of the user interface which each contribute 

novel and important components to the evidence informing the use of commercially available 

technologies as measurement and behaviour change tools in sedentary behaviour research in 

adults. The overall purpose of this three study thesis was to review, validate, develop, and 

apply a novel commercially available technology to generate new insights in its ability to be 

used as a behaviour change tool for self-monitoring sedentary behaviour with the intent of 

reducing such behaviour. This thesis has presented a systematic review, which scoped the 

current technologies that could be used to self-monitor and provide feedback on time spent in 

physical activity and/or sedentary behaviour, as well as quantifying the level and frequency 

with which self-monitoring attributes appears in these technologies. Using the information 

from the systematic scoping review, the LumoBack was identified as the most promising 

technology for monitoring and providing feedback on sedentary behaviour. Therefore, the 

second component of this thesis was to ensure that the LumoBack could provide accurate and 

reliable measures of sedentary behaviour. Having determined the validity and reliability of 

the LumoBack, the third and final study presented in this thesis was to determine whether a 

repurposed LumoBack Posture Sensor can reduce sedentary behaviour in healthy adults.  

7.1 Summary of main findings 
In Chapter Three, a systematic review was conducted to scope the current standing of 

wearable technologies that are available that can self-monitor physical activity and/or 

sedentary behaviour. The review identified 82 pieces of technology, 73 of which self-

monitored physical activity, the majority of which originate from the consumer electronic, 

health and fitness market. These devices tended to consist of an accelerometer for activity 

measurement (steps, calories burned, distance travelled) with varying levels of secondary 

sensors that provide additional metrics for behavioural and physiological measurement. 

Fortuitously, a greater number of these devices are now providing not just feedback on 

activity time, but also time spent in periods of inactivity which is now the fourth leading risk 

factor for chronic disease (23). Unfortunately, there is a dearth of monitors that measure 

sedentary behaviour, with only nine having been identified in the scoping review. However, 

unlike activity monitors that measure activity traditionally using one methodology (i.e. 

accelerometry), the commercially available postural allocation monitors utilise a variety of 

methods to determine sedentary behaviour, including inclinometry and pressure sensors. Both 

these types of devices usually utilise proprietary algorithms to convert the raw signals from 

the sensors to provide metrics of use. They also provide feedback, the majority of the time, 



153 
 

either via vibratory feedback (e.g. LumoBack) or via an omnipresent display on the device 

(e.g. Garmin Vivofit). These devices tend to, but not exclusively, connect to an app for 

feedback on physical activity and sedentary behaviour. For physical activity, this usually 

takes the form of energy expenditure or proprietary company points (e.g. Nike Fuel). For 

sedentary behaviour, this usually takes the form of time spent sitting/lying (e.g. LumoBack) 

These mobile apps allow the wearer to receive real-time continuous feedback along with 

goal-setting capabilities and customization of type and timing of feedback; this is an aspect 

not traditionally offered by research devices. 

From the systematic review, the LumoBack was identified as the most promising sedentary 

behaviour self-monitor due to its numerous feedback attributes and its ability to measure 

sedentary to the current definition and therefore warranted further investigation into its 

validity. In Chapter Four, an experiment was conducted to determine the validity of the 

LumoBack Posture Sensor compared to direct observation, ActiGraph and the activPAL in 

the laboratory and ActiGraph and activPAL in free-living settings. In both the laboratory and 

free-living setting the LumoBack was seen to be acceptably valid as a measure of sedentary 

behaviour, standing behaviour or stepping behaviour when compared to the activPAL and 

ActiGraph. Given the feedback attributes and immediacy of the self-monitoring capabilities 

of the LumoBack, it may be a potentially useful tool for behaviour change with a view to 

reducing sedentary behaviour.  

In its original format the LumoBack was not optimised to provide feedback on sedentary 

behaviour. Therefore the LumoBack was repurposed to provide vibratory feedback on 

sedentary behaviour. This included collaborating with Lumo BodyTech Inc. to repurpose the 

vibratory function of the LumoBack, originally used to signal sub-optimal posture, and use it 

as a feedback modality for prolonged user-defined sedentary behaviour. Other alterations 

included creation of a control mode for the app, which meant that the user did not have access 

to the feedback on the device, as well as the ability to track user LumoBack app usage.  

Now that the LumoBack had been repurposed, Chapter Five describes a proof of principle 

intervention whereby 42 participants were asked to wear the LumoBack for a period of six 

weeks, (one week of control period, five weeks of intervention) in an attempt to determine 

whether self-monitoring sedentary behaviour could change behaviour. The results indicated 

that the LumoBack as a sedentary behaviour self-monitor may not be sufficient on its own as 

a behaviour change modality to change behaviour. Furthermore, user engagement analysis 
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showed that individuals were mostly interested in the steps card of the LumoBack app with 

peaks in interest displayed around the time of the laboratory visits. Furthermore, those with 

the ‘most-to-gain’ (i.e. high Metabolic Syndrome risk factor group) engaged to a greater 

degree than those in the low Metabolic Syndrome risk factor group. This chapter suggests 

that there is a need for multi-faceted interventions employing multiple behaviour change 

strategies and techniques to change the insidious behaviour that is sedentary behaviour. 

7.2 General Discussion 
Despite almost six decades of research showing clear evidence that engagement in moderate 

to vigorous physical activity (MVPA) reduces the likelihood of developing an array of non-

communicable diseases, and the decade of work that shows increasing sedentary behaviour is 

detrimental to your health, surveillance studies have shown that population levels of 

sedentary behaviour are high (48,51,54,127,412) and the levels of guideline fulfilling MVPA 

are low (19,20,31,48). It is therefore apparent that current interventions are not creating the 

substantial changes that are needed to improve population level health and new intervention 

modalities are required. Self-monitoring as a behavioural modality for beneficially altering a 

range of behaviours and health outcomes is increasing (247,353,413–417), including its use 

in physical activity and sedentary behaviour interventions (38,41,42,210). 

Wearable technology offers potential for continuous and personalised real-time feedback, 

which has not been possible up until now. Indeed, new research finds that over 3 million 

wrist-worn wearable devices such as fitness trackers and smartwatches are estimated to have 

been sold in the UK in 2015, which is up 118% from unit sales in 2014. Furthermore, 1 in 5 

people plan on purchasing a piece of wearable technology in the next 12 months (231). 

Moreover, an estimated 48 million devices were sold worldwide (418), which is expected to 

rise in the coming years. Partner these figures with figures now showing that 76% of adults 

own a smartphone, there is a real sense that wearable technology might be the pervasive 

entity which can have a real influence on behaviour, certainly given the breadth of devices 

that are available in the current market which is apparent in Chapter Two. Wearables are 

inherently tied into the behaviour change technique of self-monitoring, with the majority of 

wearable also able to providing feedback on behaviour, able to allow for goal-setting, and 

importantly, able to provide feedback in light of these goals all of which, in combination have 

been shown to provide greater behaviour control (42,185,210,212).  
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Previous reviews have sought to provide an overview of research grade devices 

(104,123,419–421), or discussion on a particular commercial tracker (422,423) and how 

useful they are at measuring aspects of physical activity. This is presumably because of the 

sheer size of the consumer activity tracker market. There is also a dearth of reviews into the 

measurement tools of sedentary behaviour (52,104). Chapter Three took on the ambitious 

project of attempting to review both the research grade and commercial activity monitors that 

could be used to self-monitor physical activity and/or sedentary behaviour. The over 

whelming outcome from the review was the large number of devices that self-monitor and 

provide feedback on physical activity and there is a scarcity of devices that measure and self-

monitor sedentary behaviour in the current definition. Indeed, no current device measures all 

three aspects of the current sedentary behaviour definition, however there are some promising 

devices.  

There is a logical explanation for the absence of sedentary behaviour devices and a 

flourishing of physical activity devices. The majority of mass media campaigns that are 

currently used by health promoters are used to disseminate physical activity messages (411). 

Couple this with the well-published 10,000 steps goal (424–426), it is unsurprising that most 

commercial activity trackers are based around measuring physical activity, traditionally in the 

form of steps, as this is a metric that is easily understood and of low cognitive bearing to the 

public. Sedentary behaviour is less well understood by the public despite the growing media 

interest and often gets confused with physical inactivity (44). This is apparent in certain 

physical activity monitoring devices (e.g. Apple Watch) that claim to measure sitting time but 

it is expected that this is to be time spent inactive as only accelerometers are present in these 

devices. It may be more appropriate therefore to increase the educating of populations around 

sedentary behaviour as well as increasing the “popularity” or salience of sedentary behaviour 

in the same way that mass media campaigns such as ‘Change4Life’ have done for physical 

activity.  

It should also be noted that this fast-paced innovation of commercial trackers provides an 

obstacle to researchers, as the speed with which research can be conceptualised, developed, 

investigated and disseminated is of a slower pace. Although the review in Chapter Three was 

published in a peer-reviewed journal in Q1 2016, in the time between publication and this 

thesis going to print there have been a slew of new devices which may be of interest to 

researchers, which can monitor a wide variety of behavioural and physiological outcomes. 
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This will necessitate researchers and commercial sector entities working in partnership in this 

ever evolving area to make sure research can remain as up to date and relevant as possible. 

With the increase in these commercial activity trackers, there has been an increase in the 

number of validation studies assessing their ability to measure a multitude of metrics 

(168,170–173,175–178,181,422) with some showing encouraging results for their validity to 

measure physical activity (168,181), whilst others have shown to over-estimate or under-

estimate certain metrics (174,179). Undeniably, Rennie and Wareham (33,106) determined 

that for the currency of use in behavioural research to matter to both researchers and the 

public, accurate measurement of behaviour is necessary. Furthermore, accuracy and precision 

is imperative if consumer devices are to be used in research aiming to determine dose-

response relationships between behaviour and disease outcomes (427). Ttherefore, robust 

validations to determine the validity and reliability of these novel commercial devices is of 

paramount importance. The study presented in Chapter Four showed that the LumoBack has 

acceptable validity as a measure of sedentary behaviour, standing behaviour, stepping 

behaviour, as well as steps taken in adults. These findings are corroborated by previous 

studies (175,177); however, the validation in this thesis was the first to validate the 

LumoBack over the course of the traditional seven day free-living validation protocol. 

Commercial activity trackers are likely to be used more frequently for research purposes 

given their low cost, wear acceptability, immediate feedback capacity, and ease of syncing 

wirelessly with smartphones or smart devices for data retention. Therefore, free-living 

evaluations of these devices with robust comparative measures are imperative to better 

understand the accuracy and precision of these devices in estimating behaviours.  

With commercial devices becoming progressively more user-friendly, further work is needed 

before broad use in intervention studies can be realised. Behavioural lifestyle interventions 

that are delivered face-to-face and incorporate behavioural change strategies have been 

successful in interventions aimed at increasing physical activity behaviours (428). However, 

these types of interventions are labour intensive, expensive and require behaviour change 

experts. It is possible that consumer devices that allow for self-monitoring and the 

incorporation of previously-determined successful behaviour change strategies, could replace 

the high study burden of face-to-face interventions.  

Previous research has been focused on increasing MVPA, however as epidemiological 

evidence suggests the levels of guideline fulfilling MVPA in the population are still low 
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(19,21,22,49). Interventions aimed at reducing sedentary behaviour may provide the ‘biggest 

bang-for-our-buck’ in terms of a public health strategy, as decreasing sedentary behaviour is 

likely lead to increases in light physical activity (due to these two being highly and inversely 

correlated (50)) which can be a gateway to more beneficial MVPA. Self-monitoring of 

behaviour and outcomes have been shown to be effective in a number of behavioural and 

health-related interventions (211,246,413,415–417,429,430) and may be a useful intervention 

modality to reduce sedentary behaviour. At the time of this thesis, to the authors knowledge, 

there were only three other interventions utilising activity trackers to reduce sedentary 

behaviour (400–402), and in fact, one of the devices used was the activPAL VT (a research 

grade device), whilst the other two studies used the Gruve. Only one of these studies showed 

pre-post reductions in sedentary behaviour; however, these were self-reported reduction in 

sedentary behaviour, therefore, these results should be taken with caution. The results of the 

study found in Chapter Five corroborate the findings of these studies suggesting that self-

monitoring on its own did not induce a behaviour change in the study population. The result 

of the engagement analysis showed that individual were more engaged with steps on the 

LumoBack app which is not surprising given the level of information that is disseminated 

nationally on increasing steps. Further strategies may need to be incorporated into 

interventions along with self-monitoring, which also aim to increase the level of knowledge 

surrounding sedentary behaviour making feedback metrics less cognitively loading.  

At the same time as commercial activity trackers increasing in popularity, there is 

preponderance of other ‘ables’ coming on to the market. These include, Nearables (smart 

everyday items with small, wireless computing devices attached to them), Hearables (smart 

headphones designed for a range of purposes including wireless transmission to 

communication, medical monitoring and fitness tracking), Ingestibles (small pill size pieces 

of technology which mainly serve the two primary functions of wireless patient monitoring 

and diagnostic imaging), Embeddables (consisting of microchips that can be implanted into 

or onto the human body for the purpose of monitoring or affecting the body’s biometrics), 

Adhearable (which are usually used for sports, drug-delivery or patient monitoring), and 

Trainables (an adjunct of wearables designed to provide accurate real time feedback to allow 

individual to take an active role in their monitoring with the aim of maximizing behaviour 

change). Despite all these devices having differing applications and measuring different 

biometrics the one thing all of these types of ‘ables have in common is that they are designed 

to have the ability to self-monitor. In addition, given the plethora of ‘ables, which measure an 
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array of both behavioural and physiological metrics, individuals will have the ability to 

monitor the acute health benefits or disadvantages to positive or negative health behaviours 

respectively. This inter-connectivity of such a range of devices means that citizens are 

coming upon a time where they can become an active rather than passive nexus of their 

health. 

Furthermore, this increase in availability of electronic self-monitoring technologies provides 

an opportunity for researchers to utilise them on a large scale for behaviour change by 

integrating them into corporate wellness programmes and health care systems. Recent reports 

from the National Information Board in a review of the National Health Service (NHS) in the 

United Kingdom (UK) indicated the need for “citizens” to start playing a more active role in 

their health care by accessing, entering, and uploading data into their own online medical 

record. Under these new plans, citizens will be able to access and download their detailed 

medical records as well as contribute to it with information from their personal wearable 

technology or biosensors (248,249). And more recently still, the current UK Secretary for 

Health has announced that data from approved health apps will feed directly into personal 

health records, NHS England publishing a library of apps and devices in areas related to 

mental health and other chronic diseases by March 2017 (431). In addition, as more health 

care providers in the United States move to a value-based care system (i.e., “reward points” 

for positive lifestyle alterations that can be redeemed for discounts on a range of products 

and/or activities), mobile technologies that promote health and well-being by engaging in 

important health behaviours (e.g., decreased sedentary behaviours) will continue to grow and 

have the potential to be an integral piece of future health care systems.  

Other advantages of wearable technologies are their relatively low cost compared to their 

research grade counterparts, being compatible with a smart phone, and having an array of 

behaviour change techniques. Lyons et al (387)conducted a content analysis to determine the 

number of behaviour change techniques implemented in 13 consumer devices (387). The 

most common strategies implemented were self-monitoring, feedback provision, adding 

objects to the environment, and goal setting. Furthermore, the industry is developing at such a 

fast pace that very quickly the current wearables will be obsolete and there will be new and 

innovative ways of measuring behavioural and physiological parameters of health.  

There are some concerns with the increased use of commercial activity trackers. The 

innovation and development of these technologies now form part of the Internet of Things, a 
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development of the internet in which everyday objects have network connectivity, allowing 

them to send and receive data. This will mean that current fitness trackers now have the 

ability to double as a smart watch which can also be used to monitor home energy, put 

favourite TV shows on record, or turn a coffee machine on in the morning. All of these 

developments can be seen as ways to engineer activity out of our lives. This is part of the 

Megatrend (pattern or a movement which has a major impact on business and society as a 

whole) of de-industrialisation which is exemplified by the fact that in the 60’s 36% were 

employed in manufacturing and 49% were employed in services whereas as of 2011, 8% 

were employed in manufacturing and 81% were employed in services (432). This shows that 

the increase in modern technological advances has led to a services based economy which is 

epitomised by sedentary lifestyles. It may therefore seem counter intuitive that a portion of 

the Internet of Things which is part of the problem can also be a part of the solution.  

Furthermore, the ‘dirty secret of wearables’ is that a third of users stopped utilising their 

wearable technology six months after purchase (433). A possible reason for this is that habit 

formations may have taken place (research suggest the average time for habits to form is 66 

days (405)) so it may be the case that individuals no longer need the devices for behaviour 

change as it has already occurred. This is unlikely though as population levels of sedentary 

behaviours are high, and levels of MVPA are still low. Another option could be that the 

information provided by some activity monitors are inaccurate as can be seen with the recent 

lawsuit filed against Fitbit (434) for the inaccuracy of their heart rate function in their Fitbit 

Charge HR. Inaccuracy in the measurement may lead individuals to become disenfranchised 

with the device and stop using it; however, as self-monitoring theory (213) tells us that as 

long as a device is relatively accurate with good reliability it can still be a useful self-monitor. 

One other option is that there needs to be improvements in the fundamental consumer value 

proposition. After a period of usage, information from wearables which have remained the 

same from the beginning can make users either get jaded of the stagnated information, or they 

find the information adds nothing as they are already familiar with it and therefore 

participants may require newer layers of information. Whichever the reason, it is clear that 

developments need to be implemented in order to keep people from disregarding wearables 

after a period of time and making there persuasive and pervasive behaviour change tools. 
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7.3 Future direction 
There are essential research priorities that are apparent to build upon the findings in this 

thesis. There is a greater need for collaborative work between computer scientists, 

behavioural scientists, engineers and public health researchers in order to create technologies 

that may have a better uptake. A cursory search of Fitbit, Jawbone, Misfit, Garmin, Hexoskin 

and Withings advertised career opportunities has indicated that there is only one position 

between all of these companies that currently advertise looking for a behavioural scientist to 

help advance the salience of wearables to their users. Furthermore, the co-operative work 

between commercial companies and researchers should look to design methods of measuring 

all aspects of the sedentary behaviour definition, not just postural allocation, but also the 

energy expenditure and whether the individual is awake in order to obtain the most accurate 

estimate of sedentary behaviour possible. 

One of the limitations of current commercial activity trackers is the trade-off between raw 

data measurement and availability of the data for other feedback and battery life related 

requirements. If researchers are going to continue to increase their use of commercial trackers, 

they will require access to greater granularity of data that researchers are accustomed to in 

research grade devices, for data processing and analysis. It is difficult to see how this might 

occur as to accommodate raw data storage and feedback greater than seven day battery life 

would require an increase in the size of the device, and the main customer of commercial 

activity trackers (the general public) has no appetite of the acuity of data which researchers 

require.  

A major issue with current activity tracker use is the problem around stickiness. This is the 

concept describing the ability of the tracker to remain useful and therefore be used for a 

prolonged period without being discarded as is currently the case for a lot of wearable users. 

There are two ways this might occur. Firstly, to integrate activity trackers into other smart 

wearable systems. This would mean that when there is a trough in the practice of positive 

health behaviours the activity tracker remains useful for other reasons and will continue to be 

used, so that when there is a peak in the practice of positive health behaviours, their device is 

already being used and can be engaged with easily. Secondly, activity tracker developers 

should look for a means to evolve data feedback over time so users remain engaged with the 

device because they are receiving new pieces of information, thereby keeping their attention. 

However, it is unlikely this is to occur from the activity tracker company side as there are few 
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ways to monetise this, so there is little incentive for the wearable company to pursue this 

avenue. 

Likewise, work should look to focus on creating personalised feedback that are relevant to 

the individuals (i.e. real-time feedback of information must resonate with the individual and 

not be information that has been presupposed for them, as well as being aware of the 

environment in which the person is in so that the feedback can be acted upon). In a review of 

personal health technology for cardiovascular disease prevention, Franklin et al (435)reported 

that studies using self-monitoring tool are most effective for health behaviour change when 

they are combined with personalised feedback (435). This type of intervention has been 

coined as ‘lifestyle medicine’ by making individuals the centre of their health (436). 

Evidence suggests that personalised feedback following objective measurement may increase 

their awareness of physical activity levels (437,438), which may in turn stimulate intention to 

increase physical activity, which ultimately may lead to positive changes in behaviour 

(439,440) and may be part of the mechanism underlying the effectiveness of pedometers 

(211). Furthermore, research using fMRI to examine neural processes associated with 

affirmation effects during exposure to health messages and feedback, found self-affirmation 

(affirming core values of the individual) may exert its effect by allowing individuals to see 

the self-relevance and value in the message. In other words, for a health-message to be 

heeded by the individual, it must be presented in the method that resonates with individuals 

beliefs on what is important to them (441).  

Personalised feedback, however, may elicit negative effects on participant’s behaviours, if the 

behaviour is seen to be acceptable it may lead to false assurances and a subsequent deviation 

from appropriate behaviour. Furthermore, interventions utilising personalised strategies and 

feedback may cause heterogeneity within the data making it harder to determine the 

effectiveness of interventions. Despite these limitations, further investigation should look into 

combining self-monitoring with context aware personalised feedback. 

There is also an additional need for feedback to become context aware. It is important that the 

feedback or behavioural nudge occurs in a timely manner and aware of the environment and 

situation to which the user is in. For example, if a participant is using the repurposed 

LumoBack to provide vibratory feedback on sedentary behaviour, it is important that this 

occurs in an environment where this advice can be heeded, and not in one where is cannot 

(for example a dentist chair). The increase in the number of technologies that can measure 
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location and context is increasing and proliferating (120) and their use in combination with 

self-monitoring devices may provide context-aware feedback. The combination of context 

aware personalised feedback may increase the salience of the feedback and the likelihood of 

it being heeded by the user. 

Historically, people have always needed to be physically activity (e.g. hunter-gatherer, 

preponderance of manual jobs). However, with the technological revolution there is less need 

to be physically active. Currently, being physically inactive and sedentary is the unconscious 

easy option. Work should be conducted to create a situation whereby being physically active 

is the easy choice to make. One option might be to use a combination of behavioural and 

physiological trackers which can show the acute and immediate health benefits of increasing 

activity and reducing sedentary behaviour. This might be a more potent message to relay 

because temporal discounting literature shows that we are more likely to make an immediate 

decision if we can see the immediate rewards, rather than making an immediate decision for a 

future reward (i.e. relaying the message of ‘be physically active now to reduce the post-

prandial glucose excursion’ over the message of ‘be physically active to reduce the risk of 

developing type 2 diabetes in 20-30 years’ time’) (442–444). 

Finally, interventions should look to layer behaviour change strategies and techniques in to 

multi-component interventions such as the organisational intervention in office workers in 

Australia (38) which is deploying sit-stand desk whilst also utilising the LumoBack to self-

monitor sedentary behaviour. These types of multi-component interventions may have the 

potential to aid beneficial behaviour change.  

7.4 Final Comments 
This thesis presents evidence from three studies regarding the review, validation, 

development and implementation of a commercially available tracker for the measurement of 

sedentary behaviour. Whilst the results in this thesis are preliminary and require further 

investigation, they indicate that there is cause for concern around the lack of devices that are 

capable of measuring sedentary behaviour in its current definition. Those devices that can 

measure sedentary behaviour only do so to a certain degree of the current sedentary 

behaviour definition, namely the postural allocation segment. Having said that, those that do 

measure sedentary behaviour such as the LumoBack, by measuring postural allocation have 

been shown to be valid and reliable when tested and the validation conducted as part of this 

body of work has corroborated these past findings. As commercial trackers continue to 
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expand, it is likely that researchers will continue to use these devices as measurement tools, 

and behaviour change tools. The final study in this thesis developed and implemented one 

such commercial device (LumoBack) as a behaviour change tool in an attempt to reduce 

sedentary behaviour. Whilst the results did not reach significance, self-monitoring devices 

should be utilised as part of a pack of behaviour change strategies and techniques which can 

help to facilitate changes in sedentary behaviour. However these findings may be related 

specifically to the LumoBack device, as previous research has demonstrated that self-

monitoring in combination with other control theory components is the most robust behaviour 

change technique for altering physical activity and sedentary behaviour  
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Appendix 1.1 - Search Strategy example – MEDLINE (search result in brackets) 
UBehaviour 

1. MH "sedentary lifestyle" (1,560) 

2. AB "Sedent* behav*" OR TI "sedent* behav*" (1,390) 

3. AB Sedent* OR TI Sedent* (15,246) 

4. AB "TV View*" OR TI "TV view*" (432) 

5. AB "Video games" OR TI "Video games" (683) 

6. AB "screen time" OR TI "screen time" (344) 

7. AB "sedentary lifestyle" OR TI "sedentary lifestyle" (1,531) 

8. AB "computer use" OR TI "computer use" (953)  

9. AB "couch potato" OR TI "couch potato"  (24) 

10. AB "light activit*" OR TI "light activit*" (186) 

11. AB "physical activ*" OR TI "physical activ*" (48,221) 

12. AB "physical inactiv*" OR TI "physical inactiv*" (3,371) 

13. AB "physical fit*" OR TI "physical fit*" (5,022) 

14. MH Exercise OR TI exercise OR AB exercise (180,875) 

15. AB "moderate-vigorous physical activ*" OR AB "moderate£vigorous physical 

activ*" OR AB "moderate#vigorous physical activ*"  (67) 

16. TI "moderate-vigorous physical activ*" OR TI "moderate£vigorous physical activ*" 

OR TI "moderate#vigorous physical activ*" (5) 

17. TI MVPA OR AB MVPA (728) 

18. TI "energy expenditure" OR AB "energy expenditure" (15,039) 

19. MH "motor activity" OR AB "motor activity" OR TI "motor activity" (51,841) 

20. MH "activities of daily living" OR AB "activities of daily living" OR TI "activities of 

daily living" (51,841) 

21. AB Posture OR TI Posture (18,409) 

22. S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR 

S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19 OR S20 (356,020) 

 

UMeasurement 

1. AB Validation OR TI Validation OR MH Validation (84,533) 

2. AB Reliability OR TI Reliability (87,609) 

3. AB "activ* monitor*" OR TI "activ* monitor*"  (2,213) 

4. AB "objective measur*" OR TI "objective measur*"(8,708) 
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5. AB "device*" OR TI "device*" (201,464) 

6. AB Sensor OR TI Sensor OR MH Sensor (40,263) 

7. AB "wear* monitor*" OR TI "wear* monitor*" (45) 

8. AB Methodolog* OR TI Methodolog* (161,958) 

9. AB Assessment OR TI Assessment (499,305) 

10. AB "Motion Sensor*" OR TI "Motion Sensor*" (334) 

11. AB "Physiological Sensor*" OR TI "Physiological Sensor*" (89) 

12. AB "Ambulatory monitor*" OR TI "Ambulatory monitor*" (1,933) 

13. S22 OR S23 OR S24 OR S25 OR S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR 

S32 OR S33 (1,001,341) 

Together S35 AND S36 (41,991) 

Limiters – English Language, Human, All Adult 19+ years  

Total Number = (17,840) 

Appendix 1.2 – Links to online supplementary journal material relating to systematic 
review 
The below link directs to the online ome of the articles were there is access to online 

supplementary material including the search strategy and all supplementary tables. 

35TUhttp://www.jmir.org/2016/5/e90/U35T 

 

 

 

http://www.jmir.org/2016/5/e90/
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Appendix 2.1: Laboratory Setting: Participant Information Sheet 
 

 

 

 

PARTICIPANT INFORMATION SHEET 

‘The validity of three devices for measuring sitting and changes in posture: A laboratory 
and free living study. 

You are being asked to take part in a research study. Before you decide, it is important for 
you to understand why the research is being done and what it involves. This information 
sheet is designed to help you decide whether you would like to participate in this study. 
Please take time to read the following information carefully to decide whether or not you 
wish to take part and discuss it with friends, and relatives. Please ask if you would like more 
information.  

What is the purpose of the research? 

The effects of excessive sedentary behaviour (i.e., sitting with low energy expenditure) on the 
health of the population is an increasing concern and has become a focus of much research in 
recent years. Recent evidence suggests that spending high amounts of time sedentary, 
independent of time spent in physical activity, is associated with an increased risk of type 2 
diabetes, cardiovascular disease, cancer and mortality. Recent research has also demonstrated 
that regularly breaking up prolonged sitting can have beneficial effects on health. 

It is really important that researchers have accurate devices to measure sitting so that they can 
fully understand the negative effects of sitting as well as the positive effects of breaking up 
sitting by changing to an upright position. Over the past couple of years several new devices 
and device functions have become available that may be useful in measuring sitting time and 
changes in posture (i.e., going from a sitting position to a standing position). The aim of this 
study is to examine the accuracy of several objective methods (activPAL, ActiGraph, 
GENEActiv and LUMOback) for estimating lying, sitting and upright time and detecting 
changes in posture. 

Do I have to take part?  

It is up to you to decide; participation is voluntary. We will describe the study and go through 
the information sheet with you. We will then ask you to sign a consent form to show that you 
have agreed to take part. You will be given a copy of the signed consent form. You are free to 
withdraw at any time without giving a reason.  

What will happen to me if I take part? 
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Visit 1: At the first visit you will have the opportunity to discuss the study with us and ask 
any questions you may have before being asked to sign our consent form. We will then 
measure your height, weight, body fat percentage and waist circumference and ask you to 
answer some questions about yourself, for example your date of birth, your postcode and 
ethnicity. You will then get to try out some of the activities that you will be asked to do 
during the experiment. This first visit should take no longer than 30 minutes. At the end of 
this visit we will arrange your full study visit (at a time and date convenient for you). 

Visit 2: We will again explain the procedure for the experiment and then we will fit the 
measurement devices. You will be fitted with the following; one activPAL to wear on the 
thigh, three ActiGraph monitors (one on the wrist, waist and thigh), three GENEActiv 
monitors (one on the wrist, waist and thigh) and one LumoBack to wear on the lower back. 
You will then be required to complete a circuit of 16 activities in the exercise laboratory. The 
activities will range from lying down, watching TV, typing, standing still, washing pots, and 
light walking. Each activity will last for 5 minutes. This visit should last for no more than 2 
hours. Once this has been completed you will be asked to wear the measurement devices 
(excluding the LumoBack) for two full days in your daily life and complete a log of any 
times that you remove the devices as well as times that you went to bed and got out of bed. 
After the two days you will be asked to return the monitors so that the data can be 
downloaded and processed.  

What do the monitors look like?  

 

ActiGraph G3TX+                   activPAL                GENEActiv         LumoBack 

 

 

 

 

 

 

 

 

What do I have to do if I want to take part in this study? 

If you decide to take part in the study we will contact you to arrange a convenient time and 
date for you to sign a consent form and we will arrange a date for the study measures to begin. 

What are the possible benefits of taking part? 

http://www.google.co.uk/imgres?q=activPAL+pictures+of+wearing&um=1&hl=en&sa=N&biw=1920&bih=875&tbm=isch&tbnid=cW4g93OIXNN_wM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S1350453308001653&docid=Q9CD-kW22N5cQM&itg=1&imgurl=http://ars.els-cdn.com/content/image/1-s2.0-S1350453308001653-gr12.jpg&w=226&h=339&ei=PvEDUJjuO4m2hAeKwPXyBw&zoom=1&iact=hc&vpx=1578&vpy=99&dur=78&hovh=271&hovw=180&tx=85&ty=140&sig=114929812475149083754&page=1&tbnh=115&tbnw=79&start=0&ndsp=54&ved=1t:429,r:9,s:0,i:100
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You are unlikely to directly benefit from participating in the study however it will be possible 
for you to view your free-living data from the devices following completion of the study (this 
will show you how long you spend sitting, standing and walking).  

Will my taking part in the study be kept confidential? 

All information that is collected about you during the course of the research will be kept 
strictly confidential. Data will be stored either in locked filing cabinets or in password 
protected databases which are only accessible by members of the research team. Any 
information about you which is disseminated will have your name and address removed so 
that you cannot be recognised from it. Information collected will not be used for any other 
purpose than that explained here. 

What are the risks of taking part?  

Taking part involves minimal risk for you, just the inconvenience of taking the time to 
participate in the study.  

What will happen to the results of the research study?  

The results of the study may be published in a professional journal, but you will not be 
identified by name in any publications. You will be informed about the results of the study 
when it has finished. 

Who is organising and funding the research? 

This study is being organised and co-ordinated by the Leicester-Loughborough Diet, 
Lifestyle and Physical Activity Biomedical Research Unit.   

Who has reviewed the study?  

This study was reviewed by the Loughborough University ethics committee. 

Contact for Further information:  

Thank you for taking the time to read this information sheet. We will be pleased to discuss 
any questions or concerns that you may have.  

If you have any further questions about this research or would like to take part please contact 
the team on 0116 258 8929 (Sarah Bunnewell)/01509 228173 (Myanna Duncan) or email us 
at 35TUsarah.bunnewell@uhl-tr.nhs.ukU35T  / 35TUM.Duncan@lboro.ac.ukU35T  

 

 

 

 

mailto:sarah.bunnewell@uhl-tr.nhs.uk
mailto:M.Duncan@lboro.ac.uk
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Appendix 2.2 Informed Consent 
 

 

 

 

Study ID Label  

 

 
Principal Investigator: Dr Charlotte Edwardson  
Contact: Diabetes Research Centre, University of Leicester, Leicester General Hospital, LE5 4P2  
  

 

CONSENT FORM version 1 27/08/2013 

Title of project:  Assessing the validity of three objective measures of sedentary 
behaviour in laboratory and free living environments. 

  Please 
Initial 

Every Box 
 

I confirm that I have read and understand the participant information sheet 
dated 27/8/2013 (Version 1) for the above study and have had the opportunity 
to ask questions.  

 

 

I understand that my participation is voluntary and that I am free to withdraw 
at any time, without giving any reason, without my medical care or legal rights 
being affected. 

 

 

   
 
 
____________________ _____________ _________________ 
Name of participant   Date   Signature 
  
 
____________________ _____________ _________________ 
Researcher    Date   Signature  
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Appendix 2.3 Health Screening Questionnaire 
 

 

 

 

 

 

Health screening questionnaire 

Principal Investigator:  Dr Charlotte Edwardson 
 
It is important that volunteers participating in this study are currently in good health 
and have no significant medical problems. This is to ensure (i) your own continuing 
wellbeing and (ii) to avoid the possibility of individual issues affecting the research 
outcomes. Please complete this brief questionnaire to confirm your fitness to 
participate. 

1. At present, do you have any health problem for which you are: 

(a) on medication, prescribed or otherwise ............  Yes 
 No  

(b) attending your general practitioner ...................  Yes  No  

(c) on a hospital waiting list ...................................  Yes  No  

 
2. Have you ever had any of the following: 

(a) Asthma  ............................................................  Yes  No  

(b) Diabetes  ..........................................................  Yes  No  

(b) Heart problems  ................................................  Yes  No  

(c) Problems with bones, joints or muscles  ...........  Yes  No  

(d) Disturbance of balance/ coordination  ...............  Yes  No  

(e) Severe memory problems  ................................  Yes  No  

 
3.    Do you have a heart pacemaker fitted? Yes  No  

 
4. Has any, otherwise healthy, member of your family under the age 

 of 35 died suddenly during or soon after exercise? Yes  No  

Participant ID:  

The validity of three devices for measuring sitting and changes in 
posture: A laboratory and free living study. 
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Appendix 2.4: Activity Log Sheet 
UActivity Log Sheet 

 

ID:                     Gender:               DOB:      /     /             Study Date:      /     / 

Height (m):                            Weight (kg):                       BMI: 

Activity  Start Time End Time Time taken for 
Activity 

Baseline sitting LumoBack  Post LumoBack sitting time  

Lying completely flat on 
back 

     

Lying on back with legs 
bent 

     

Lying on side with legs 
straight 

     

Lying on side with legs 
bent 

     

Sitting on chair with feet 
flat on floor (TV) 

     

Sitting on chair with legs 
crossed (TV) 
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Sitting on chair with right 
foot resting on left thigh 

(TV) 

   
  

Sitting on chair with legs 
stretched out forwards 

(TV) 

   
  

Sitting on chair with feet 
backwards under chair 

(TV) 
   

  

Sitting with upper body 
movement (computer) 

   
  

Sitting playing games on 
tablet/smart phone    

  

Standing still    
  

Washing pots    
  

Cleaning/dusting    
  

Hoovering /sweeping    
  

Self-paced free living walk    
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Appendix 2.4 Free Living Setting: Participants Information Sheet 
 

 

 

 

PARTICIPANT INFORMATION SHEET 

 

‘The validity of LumoBack posture sensor for measuring sitting and changes 
in posture: A free living study. 

 

You are being asked to take part in a research study. Before you decide, it is important for 
you to understand why the research is being done and what it involves. This information 
sheet is designed to help you decide whether you would like to participate in this study. 
Please take time to read the following information carefully to decide whether or not you 
wish to take part and discuss it with friends, and relatives. Please ask if you would like more 
information.  

 

What is the purpose of the research? 

The effects of excessive sedentary behaviour (i.e., sitting with low energy expenditure) on the 
health of the population is an increasing concern and has become a focus of much research in 
recent years. Recent evidence suggests that spending high amounts of time sedentary, 
independent of time spent in physical activity, is associated with an increased risk of type 2 
diabetes, cardiovascular disease, cancer and mortality. Recent research has also demonstrated 
that regularly breaking up prolonged sitting can have beneficial effects on health. 

 

It is really important that researchers have accurate devices to measure sitting so that they can 
fully understand the negative effects of sitting as well as the positive effects of breaking up 
sitting by changing to an upright position. Over the past couple of years several new devices 
and device functions have become available that may be useful in measuring sitting time and 
changes in posture (i.e., going from a sitting position to a standing position). The aim of this 
study is to examine the accuracy of LumoBack for estimating lying, sitting and upright time 
and detecting changes in posture. 

 

Do I have to take part?  
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It is up to you to decide; participation is voluntary. We will describe the study and go through 
the information sheet with you. We will then ask you to sign a consent form to show that you 
have agreed to take part. You will be given a copy of the signed consent form. You are free to 
withdraw at any time without giving a reason.  

 

What will happen to me if I take part? 

If you decide to take part in this study, you will be asked to come to physical activity and 
sedentary behaviour measurement lab in the new NCSEM building. In the first instance you 
will have the opportunity to discuss the study and ask any questions that you may have before 
being asked to sign the consent form. 

A series of anthropometric measurement will then be taken including height, weight, BMI 
and body fat percentage.  

You will be asked to wear the three devices; one activPAL to wear on the thigh, one 
ActiGraph monitors one on the waist, and one LumoBack to wear on the lower back for a 
period of 7 days. You will be asked to completer the a log of any times that you remove the 
devices as well as time that you went to bed and got out of bed. After the seven days, you will 
be asked to return the monitors so that the data can be downloaded and processed. 

 

What do the monitors look like?  

 

ActiGraph G3TX+                   activPAL                     LumoBack 

 

 

 

 

 

 

 

 

 

 

http://www.google.co.uk/imgres?q=activPAL+pictures+of+wearing&um=1&hl=en&sa=N&biw=1920&bih=875&tbm=isch&tbnid=cW4g93OIXNN_wM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S1350453308001653&docid=Q9CD-kW22N5cQM&itg=1&imgurl=http://ars.els-cdn.com/content/image/1-s2.0-S1350453308001653-gr12.jpg&w=226&h=339&ei=PvEDUJjuO4m2hAeKwPXyBw&zoom=1&iact=hc&vpx=1578&vpy=99&dur=78&hovh=271&hovw=180&tx=85&ty=140&sig=114929812475149083754&page=1&tbnh=115&tbnw=79&start=0&ndsp=54&ved=1t:429,r:9,s:0,i:100
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What do I have to do if I want to take part in this study? 

If you decide to take part in the study we will contact you to arrange a convenient time and 
date for you to sign a consent form and we will arrange a date for the study measures to begin. 

 

What are the possible benefits of taking part? 

You are unlikely to directly benefit from participating in the study however it will be possible 
for you to view your free-living data from the devices following completion of the study (this 
will show you how long you spend sitting, standing and walking).  

 

Will my taking part in the study be kept confidential? 

All information that is collected about you during the course of the research will be kept 
strictly confidential. Data will be stored either in locked filing cabinets or in password 
protected databases which are only accessible by members of the research team. Any 
information about you which is disseminated will have your name and address removed so 
that you cannot be recognised from it. Information collected will not be used for any other 
purpose than that explained here. 

 

What are the risks of taking part?  

Taking part involves minimal risk for you, just the inconvenience of taking the time to 
participate in the study.  

 

What will happen to the results of the research study?  

The results of the study may be published in a professional journal, but you will not be 
identified by name in any publications. You will be informed about the results of the study 
when it has finished. 

 

Who is organising and funding the research? 

This study is being organised and co-ordinated by the Loughborough-Leicester Diet, 
Lifestyle and Physical Activity Biomedical Research Unit.  

  

Who has reviewed the study?  

This study was reviewed by the Loughborough University ethics committee. 
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Contact for Further information:  

Thank you for taking the time to read this information sheet. We will be pleased to discuss 
any questions or concerns that you may have.  

 

If you have any further questions about this research or would like to take part please contact 
James Sanders (35TUJ.Sanders2@lboro.ac.ukU35T)  

mailto:J.Sanders2@lboro.ac.uk
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Appendix 2.5 Activity Monitors Logbook for iOS users  
 

 

 

 

 

 

 

 

 

Activity monitor instructions 

& 

Daily logbook 

 
 

 

 

 

 

 

 

Please keep this booklet in a safe place so that you can return it to us at the 
end of the two day monitoring period when you come back the laboratory. 

If you have any questions or concerns, please contact: 

James Sanders 
35TUJ.Sanders2@lboro.ac.ukU35T 

07538330734 

The validity of three devices for measuring sitting and 
changes in posture: A free living study’. 

Participant ID: ______________ 

ActiGraph Numbers: 

__________       

activPAL Number:  

_____________ 

LUMOback: 

                            

 

mailto:Sarah.Bunnewell@uhl-tr.nhs.uk
http://www.google.co.uk/imgres?q=activPAL+pictures+of+wearing&um=1&hl=en&sa=N&biw=1920&bih=875&tbm=isch&tbnid=cW4g93OIXNN_wM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S1350453308001653&docid=Q9CD-kW22N5cQM&itg=1&imgurl=http://ars.els-cdn.com/content/image/1-s2.0-S1350453308001653-gr12.jpg&w=226&h=339&ei=PvEDUJjuO4m2hAeKwPXyBw&zoom=1&iact=hc&vpx=1578&vpy=99&dur=78&hovh=271&hovw=180&tx=85&ty=140&sig=114929812475149083754&page=1&tbnh=115&tbnw=79&start=0&ndsp=54&ved=1t:429,r:9,s:0,i:100
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1. General Information 

UHow long do I wear the monitors for? 
• Please wear all monitors for 7 full days removing them on the morning of day 7 
• Please wear the monitors continuously (i.e. for 24 hours/day) 
• If you wish to remove the monitors before you go to bed please put them on as soon 

as you wake up in the morning 

 

 

 

 

UWhat else do I need to do? 

• It is important that you fill in this logbook for all 7 days that you are wearing the 
monitors 

• This helps us match the monitor data to your waking hours and patterns during the 
day 

 
UReturning your activity monitors and logbook 

Please return the activity monitors (and any unused adhesive patches) and completed logbook 
to James Sanders (NCSEM PhD area) 

 

 

2. How to wear the activPAL thigh monitor 

The activPAL is to be worn midline on the anterior aspect of 
the right thigh using medical dressing. 

 

The monitor should be positioned so that the man on the 
monitor is standing upright. 

 

 

3. How to wear the ActiGraph monitors  

The ActiGraph will be attached using adjustable elastic 
straps and should be positioned so that the small black 

WARNING:  

Please do not wear the devices when showering, bathing, or performing water-based 

activities. 

 

http://www.google.co.uk/imgres?q=activPAL+pictures+of+wearing&um=1&hl=en&sa=N&biw=1920&bih=875&tbm=isch&tbnid=cW4g93OIXNN_wM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S1350453308001653&docid=Q9CD-kW22N5cQM&itg=1&imgurl=http://ars.els-cdn.com/content/image/1-s2.0-S1350453308001653-gr12.jpg&w=226&h=339&ei=PvEDUJjuO4m2hAeKwPXyBw&zoom=1&iact=hc&vpx=1578&vpy=99&dur=78&hovh=271&hovw=180&tx=85&ty=140&sig=114929812475149083754&page=1&tbnh=115&tbnw=79&start=0&ndsp=54&ved=1t:429,r:9,s:0,i:100
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cap is facing upwards. The hip monitor is to be worn on the right hand side of the body on the 
midaxillary line of the hip. 

 

4. How to wear the LumoBack 

The LumoBack will be attached using adjustable plastic straps. The LumoBack should we 
worn on base of the back with the logo outward facing, and readable.  
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5. Placement of the activity monitors 
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4. How to fill in the daily logbook 

• The logbook is divided into 7 days. Please complete each day’s questions as accurately 

as possible. 

 

• Record the exact times if you can - or to the nearest 5 minutes. 

 

• Start by writing the date in the top row. 

 

• Then record the time that you woke up, and the time that you put the monitors on for the 

first time that day (only if you removed it to go to bed). Tick which monitors you wore 

overnight and if you did not wear one of them overnight then records what time you put 

it back on at in the morning. If you did not put on one of the monitors at all that day then 

please cross the corresponding box instead of recording a time. 

 

• Next, record any times you removed the monitors for more than 15 minutes. Record 

removal time in ‘Off’ columns and the time that you put back on the monitors in the ‘On’ 

column. Also mark whether this time was ‘am’ or ‘pm’ in the row below and your reason 

for removal. Please DO NOT include removal times related to night time sleeping here – 

only record removal times during waking hours. 

 

• If you have any other comments, please note them down. 

 

NOTES: 

• Midnight = 12am; midday = 12pm 

• Sleep and awake times are very important. 

 
5. LumoBack FAQ’s 
 
Wearing the sensor 

1. Place the LUMO on your lower back, either directly on your skin or over a thin layer 
of clothing. The LUMO logo and circular Touch button should be facing out.  

2. Wrap the belt around your waist directly above your hip bones, and secure the Velcro 
near your belly button. 

3. If your belt doesn’t fit snuggly around your waist, take it off and adjust the Velcro 
straps inside the belt. 
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Checking the LumoBack charge. 
Tap the Touch Button to view charge level:  
Green - The sensor has more than one day of charge remaining.  
Orange - The sensor has one day or less of charge remaining. Recharge soon 
 
Charging the LumoBack 

1. Plug the sensor into a USB power source using the included cable.  
2. It takes about 2 hours to charge the sensor completely.  
3. A complete charge will last for about 5 days of continuous use 
 

When to calibrate your sensor.  
The LumoBack sensor works for everybody, but only if it is calibrated correctly. This process 
stores your good posture position on the sensor and determines when the sensor will vibrate, 
indicating bad posture.  
 

When should you calibrate? 
1. When you first setup your sensor. 
2. When your sensor is vibrating, but you are in good posture. 
3. When you put the sensor on a little bit differently than when you calibrated 

previously. 
 
How do I clean my Lumo? Is it water resistant? 
You can simply take a damp cloth or a wipe and wipe the sensor down.  Also, if needed you 
can remove the Velcro straps from the actual sensor moulding and you can hand wash the 
belt straps and line dry. 
   
LumoBack is not completely water resistant.  While it is ok to have moisture and sweat from 
normal use and activities, you can NOT submerge the Lumo Back sensor in water or shower 
with it, etc.  It has a Lithium battery and other hardware components that can be damaged if it 
gets wet. 
 
Removal of the LumoBack. 
Night Removal 
When removing the LumoBack at night please take it off immediately before you go to sleep 
and place it on charge using the charging plug and cord provided in your pack. It is best to 
place this on your bed side table so as a reminder to put it on the when you wake up in the 
morning 
It is important that you place the device on charge every night so that we can have a data 
stream to note removal time. 
 
Removal for water-based activities 
Please remove the device immediately before and immediately after the water based activities 
– making sure to place the device horizontal on a flat surface with Lumo sign facing upwards. 
 
Connectivity issues. What do I do? 
Please try the following: 

1. Turn the Bluetooth on your iOS device off and then on again through the iOS Settings 
icon.  Go to Settings>Bluetooth>On/Off in your iOS device. 

2. Kill the app:  first double-click on the home screen of your iOS device, then hold down the 
LumoBack icon in the tray for 3 seconds, then press the red delete button. 
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3. Restart the LumoBack app. 
4. If this doesn't work, try turning off your iOS device completely, and then turn it back on. 

 
Please make sure your battery is charged as the app works best when it is charged. 
 
The LumoBack will still be collecting data during this time even if it isn’t connected to the 
app. 
 
Any other problems please contact me. The details can be found on the title page. 
 
 



226  

 Example Day 1 Day 2 Day 3 
Date DD/MM DD/MM 

 
DD/MM DD/MM 

Did you WEAR THE MONITORS TO BED Ulast 
night? 

• ULumoBack  
• UActiGraph 
• UActivPAL 

 

 
 Yes  No  
 Yes  No 
 Yes  No 

 
 Yes  No 
 Yes  No 
 Yes  No 

 

 
 Yes  No 
 Yes  No 
 Yes  No 

 

 
 Yes  No 
 Yes  No 
 Yes  No 

 

What time did you WAKE UP today? 
 

U              7          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the monitors on? 
 

U         7:15          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you go to bed today? 
 

U         10             USUamUSU / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

If you Uremove the monitor for more than 15 mins please report below: 

The reason for removing the LumoBack  
 

Showering    

What time did you remove the LumoBack? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the ActiGraph  
 

Showering    

What time did you remove the ActiGraph? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

Showering    

What time did you remove the activPAL? U         7:30          am / U                         am / U                         am / U                         am / 
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 USUpm pm pm pm 
What time did you put the activPAL back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the LumoBack  
 

Showering    

What time did you remove the LumoBack? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the ActiGraph  
 

Showering    

What time did you remove the ActiGraph? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

Showering    

What time did you remove the activPAL? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

 

 

 

 Day 4 Day 5 Day 6 Day 7 
Date DD/MM 

 
DD/MM 

 
DD/MM DD/MM 
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Did you WEAR THE MONITOR TO BED Ulast 
night? 

• ULumoBack  
• UActiGraph 
• UActivPAL 

 

 
 Yes  No  
 Yes  No 
 Yes  No 

 
 Yes  No 
 Yes  No 
 Yes  No 

 

 
 Yes  No 
 Yes  No 
 Yes  No 

 

 
 Yes  No 
 Yes  No 
 Yes  No 

 

What time did you WAKE UP today? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the monitor on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you go to bed today? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

If you Uremove the monitor for more than 15 mins please report below: 

The reason for removing the LumoBack  
 

    

What time did you remove the LumoBack? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the ActiGraph  
 

    

What time did you remove the ActiGraph? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

    

What time did you remove the activPAL? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 
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The reason for removing the LumoBack  
 

    

What time did you remove the LumoBack? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the ActiGraph  
 

    

What time did you remove the ActiGraph? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

    

What time did you remove the activPAL? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

 

 
If you have any other comments please note them here. 
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Appendix 2.6 Activity Monitors Logbook for Android users  
 

 

 

 

 

 

 

 

 

Activity monitor instructions 

& 

Daily logbook 

 
 

 

 

 

 

 

 

Please keep this booklet in a safe place so that you can return it to us at the 
end of the two day monitoring period when you come back the laboratory. 

If you have any questions or concerns, please contact: 

James Sanders 
35TUJ.Sanders2@lboro.ac.ukU35T 

07538330734 

The validity of three devices for measuring sitting and 
changes in posture: A free living study’. 

Participant ID: ______________ 

ActiGraph Numbers: 

__________       

activPAL Number:  

_____________ 

LUMOback: 

                            

 

mailto:Sarah.Bunnewell@uhl-tr.nhs.uk
http://www.google.co.uk/imgres?q=activPAL+pictures+of+wearing&um=1&hl=en&sa=N&biw=1920&bih=875&tbm=isch&tbnid=cW4g93OIXNN_wM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S1350453308001653&docid=Q9CD-kW22N5cQM&itg=1&imgurl=http://ars.els-cdn.com/content/image/1-s2.0-S1350453308001653-gr12.jpg&w=226&h=339&ei=PvEDUJjuO4m2hAeKwPXyBw&zoom=1&iact=hc&vpx=1578&vpy=99&dur=78&hovh=271&hovw=180&tx=85&ty=140&sig=114929812475149083754&page=1&tbnh=115&tbnw=79&start=0&ndsp=54&ved=1t:429,r:9,s:0,i:100
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2. General Information 

UHow long do I wear the monitors for? 
• Please wear all monitors for 7 full days removing them on the morning of day 7 
• Please wear the monitors continuously (i.e. for 24 hours/day) 
• If you wish to remove the monitors before you go to bed please put them on as soon 

as you wake up in the morning 

 

 

 

 

UWhat else do I need to do? 

• It is important that you fill in this logbook for all 7 days that you are wearing the 
monitors 

• This helps us match the monitor data to your waking hours and patterns during the 
day 

 
UReturning your activity monitors and logbook 

Please return the activity monitors (and any unused adhesive patches) and completed logbook 
to James Sanders (NCSEM PhD area) 

2. How to wear the activPAL thigh monitor 

The activPAL is to be worn midline on the anterior aspect of 
the right thigh using medical dressing. 

 

The monitor should be positioned so that the man on the 
monitor is standing upright. 

3. How to wear the ActiGraph monitors  

The ActiGraph will be attached using adjustable elastic 
straps and should be positioned so that the small black 
cap is facing upwards. The hip monitor is to be worn on 
the right hand side of the body on the maxillary line of 
the hip. 

 

4. How to wear the LumoBack 

WARNING:  

Please do not wear the devices when showering, bathing, or performing water-based 

activities. 

 

http://www.google.co.uk/imgres?q=activPAL+pictures+of+wearing&um=1&hl=en&sa=N&biw=1920&bih=875&tbm=isch&tbnid=cW4g93OIXNN_wM:&imgrefurl=http://www.sciencedirect.com/science/article/pii/S1350453308001653&docid=Q9CD-kW22N5cQM&itg=1&imgurl=http://ars.els-cdn.com/content/image/1-s2.0-S1350453308001653-gr12.jpg&w=226&h=339&ei=PvEDUJjuO4m2hAeKwPXyBw&zoom=1&iact=hc&vpx=1578&vpy=99&dur=78&hovh=271&hovw=180&tx=85&ty=140&sig=114929812475149083754&page=1&tbnh=115&tbnw=79&start=0&ndsp=54&ved=1t:429,r:9,s:0,i:100
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The LumoBack will be attached using adjustable plastic straps. The LumoBack should we 
worn on base of the back with the logo outward facing, and readable.  
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5. Placement of the activity monitors 
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4. How to fill in the daily logbook 

• The logbook is divided into 7 days. Please complete each day’s questions as accurately 

as possible. 

 

• Record the exact times if you can - or to the nearest 5 minutes. 

 

• Start by writing the date in the top row. 

 

• Then record the time that you woke up, the time you got out of bed and the time that you 

put the monitors on for the first time that day (only if you removed it to go to bed). Tick 

which monitors you wore overnight and if you did not wear one of them overnight then 

record what time you put it back on at in the morning. If you did not put on one of the 

monitors at all that day then please cross the corresponding box instead of recording a 

time. 

 

• Next, record any times you removed the monitors for more than 15 minutes. Record 

removal time in ‘Off’ columns and the time that you put back on the monitors in the ‘On’ 

column. Also mark whether this time was ‘am’ or ‘pm’ in the row below and your reason 

for removal. Please DO NOT include removal times related to night time sleeping here – 

only record removal times during waking hours. 

 

• If you have any other comments, please note them down. 

 

NOTES: 

• Midnight = 12am; midday = 12pm 

• Sleep and awake times are very important. 
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5. LumoBack FAQ’s 
 
Wearing the sensor 

4. Place the LUMO on your lower back, either directly on your skin or over a thin layer 
of clothing. The LUMO logo and circular Touch button should be facing out.  

5. Wrap the belt around your waist directly above your hip bones, and secure the Velcro 
near your belly button. 

6. If your belt doesn’t fit snuggly around your waist, take it off and adjust the Velcro 
straps inside the belt. 

 
Checking the LumoBack charge. 
Tap the Touch Button to view charge level:  
Green - The sensor has more than one day of charge remaining.  
Orange - The sensor has one day or less of charge remaining. Recharge soon 
 
Charging the LumoBack 

4. Plug the sensor into a USB power source using the included cable.  
5. It takes about 2 hours to charge the sensor completely.  
6. A complete charge will last for about 5 days of continuous use 
 

When to calibrate your sensor.  
The LumoBack sensor works for everybody, but only if it is calibrated correctly. This process 
stores your good posture position on the sensor and determines when the sensor will vibrate, 
indicating bad posture.  
 

When should you calibrate? 
4. When you first setup your sensor. 
5. When your sensor is vibrating, but you are in good posture. 
6. When you put the sensor on a little bit differently than when you calibrated 

previously. 
 
How do I clean my Lumo? Is it water resistant? 
You can simply take a damp cloth or a wipe and wipe the sensor down.  Also, if needed you 
can remove the Velcro straps from the actual sensor moulding and you can hand wash the 
belt straps and line dry. 
   
LumoBack is not completely water resistant.  While it is ok to have moisture and sweat from 
normal use and activities, you can NOT submerge the LumoBack sensor in water or shower 
with it, etc.  It has a Lithium battery and other hardware components that can be damaged if it 
gets wet. 
 
Removal of the LumoBack. 
Night Removal 
When removing the LumoBack at night please take it off immediately before you go to sleep 
and place it on charge using the charging plug and cord provided in your pack. It is best to 
place this on your bed side table so as a reminder to put it on the when you wake up in the 
morning 
It is important that you place the device on charge every night so that we can have a data 
stream to note removal time. 
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Removal for water-based activities 
Please remove the device immediately before and immediately after the water based activities 
– making sure to place the device horizontal on a flat surface with Lumo sign facing upwards. 
 
Known Android Issues and advice.   
If you experience an issue in discovering your LumoBack Sensor or connecting to your 
LumoBack Sensor, it is recommended that you apply the following suggestion on your 
android device: 

• Turn off  Wi-Fi 
 

• Turn off Bluetooth 
 

• Turn on Bluetooth 
 

• Turning off Wi-Fi is key to getting a clean connection on your android device.  
 
To avoid reconnecting to your sensor often, when leaving the app, we advise you to press the 
"Home" button on your Android phone. This will keep the application running in the 
background while you continue to use other features of your phone. While you can also exit 
from the app by pressing the "Back" button on your android phone, your sensor will be 
disconnected from the application in that case. 
 
Your sensor will continue to function entirely on its own (giving posture feedback and 
collecting activity data) even when it is not connected to the app. 
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 Example Day 1 Day 2 Day 3 
Date DD/MM DD/MM 

 
DD/MM DD/MM 

Did you WEAR THE MONITOR TO BED Ulast 
night? 
 

 Yes  No   Yes  No  Yes  No  Yes  No 

What time did you WAKE UP today? 
 

U              7          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the monitor on? 
 

U         7:15          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you go to bed today? 
 

U         10             USUamUSU / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

If you Uremove the monitor for more than 15 mins please report below: 

The reason for removing the LumoBack  
 

Showering    

What time did you remove the LumoBack? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the ActiGraph  
 

Showering    

What time did you remove the ActiGraph? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

Showering    

What time did you remove the activPAL? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 
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The reason for removing the LumoBack  
 

Showering    

What time did you remove the LumoBack? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

 Example Day 1 Day 2 Day 3 
Date DD/MM DD/MM 

 
DD/MM DD/MM 

The reason for removing the ActiGraph  
 

Showering    

What time did you remove the ActiGraph? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

Showering    

What time did you remove the activPAL? 
 

U         7:30          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 
 

U         7:45          am / 
USUpm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

 

 

 Day 4 Day 5 Day 6 Day 7 
Date DD/MM 

 
DD/MM 

 
DD/MM DD/MM 

Did you WEAR THE MONITOR TO BED Ulast 
night? 

 Yes  No  Yes  No  Yes  No  Yes  No 
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What time did you WAKE UP today? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the monitor on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you go to bed today? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

If you Uremove the monitor for more than 15 mins please report below: 

The reason for removing the LumoBack  
 

    

What time did you remove the LumoBack? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the ActiGraph  
 

    

What time did you remove the ActiGraph? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

    

What time did you remove the activPAL? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the LumoBack  
 

    

What time did you remove the LumoBack? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the LumoBack back U                         am / U                         am / U                         am / U                         am / 
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on? 
 

pm pm pm pm 

 Day 4 Day 5 Day 6 Day 7 
Date DD/MM 

 
DD/MM 

 
DD/MM DD/MM 

The reason for removing the ActiGraph  
 

    

What time did you remove the ActiGraph? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the ActiGraph back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

The reason for removing the activPAL  
 

    

What time did you remove the activPAL? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

What time did you put the activPAL back 
on? 
 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 

U                         am / 
pm 
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Appendix 2.7 - Sitting on chair with feet flat on floor (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.8 - Sitting on chair with legs crossed (right over left) (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.9 : Sitting on chair with right foot resting on left thigh  (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.10 - Sitting on chair with legs straight out in front  (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.11 - Sitting with feet back under chair  (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits 
of Agreement. 
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Appendix 2.12 - Sitting with upper body movement (computer) (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.13 - Sitting playing game on phone   (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.14 – Total Sitting time (All Activities)  (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement. 
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Appendix 2.15 – Total sitting time (All activities – Sitting with feet back under chair removed)  (Actual sitting vs devices) 
Note: A: Bland-Altman of LumoBack vs Direct Observation, B: Bland-Altman of ActiGraph vs Direction Observation, C: Bland-Altman plot of activPAL vs Direction Observation; 
Intersection between Green dotted line and 0 on Y axis  denotes the desired point of the data, Black solid line shows the mean difference, Red lines denotes the upper and lower 95% Limits of 
Agreement  
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Appendix 2.16 – Bland-Altman plot: Sitting on Chair with Feet Flat on Floor 
(LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.1. -  Sitting on Chair with Feet Flat on Floor 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.17 – Bland-Altman plot: Sitting on chair with Legs Crossed (Right over 
Left) (LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.2 - Sitting on Chair with Legs Crossed (Right over Left) 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.18 – Bland-Altman plot: Sitting on Chair with Right Foot resting on Left 
Thigh (LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.3 - Sitting on Chair with Right Foot resting on Left Thigh 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.19 – Bland-Altman plot: Sitting on Chair with Legs Straight out in Front 
(LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.4 - Sitting on Chair with Legs Straight out in Front 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.20 – Bland-Altman plot: Sitting on Chair with Feet Back under Chair 
(LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.5 - Sitting on Chair with Feet Back under Chair 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.21 – Bland-Altman plot: Sitting on Chair with Upper Body Movement 
(Computer) (LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.6 - Sitting on Chair with Upper Body Movement (Computer) 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.22 – Bland-Altman plot: Sitting on Chair Playing Game on Phone 
(LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.7 - Sitting on Chair Playing Game on Phone 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.23– Bland-Altman plot: Total Sitting time (All Activities) (LumoBack vs 
activPAL/ActiGraph) 

 

 
Figure 6.8 – Total Sitting Time (All Activities) 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 2.24 – Bland-Altman plot: Total Sitting time (All Activities – Sitting with Feet 
Back under Chair) (LumoBack vs activPAL/ActiGraph) 

 

 
Figure 6.9 – Total Sitting Time (All Activities – Sitting with Feet Back under Chair) 
Note: A: Bland-Altman of LumoBack vs ActiGraph, B: Bland-Altman plot of LumoBack vs activPAL; Green 
dotted line denotes the desired line of data points, Black solid line shows the mean difference, Red lines denotes 
the upper and lower 95% Limits of Agreement. 
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Appendix 3.1: DeSIT Participant Information Sheet 
 

 

 

DeSIT: Decreasing Sedentary Time using Innovative Technology: A Proof of Principle 
Intervention  

Participant Information Sheet 

Main Investigator 

Name:  James Sanders (PhD Student),  

Address: Sir John Beckwith Building, SSEHS, Loughborough University, Loughborough, 
LE11 3TU  

Email Address: 35TUJ.Sanders2@lboro.ac.ukU35T  

Contact number:  01509 226452 

Other Investigators 

Name: Dr Dale Esliger 

Sir John Beckwith Building, SSEHS, Loughborough University, Loughborough, LE11 3TU  

Email Address: 35TUD.Esliger@lboro.ac.ukU35T  

Contact number:  +44 (0) 1509 223280 

What is the purpose of the study? 

Modern environments and technological advancements have radically altered the way we live 
our lives. The need to undertake purposeful physical activity has all but disappeared and 
sedentary behaviour, defined as ‘any waking behaviour in a sitting or reclining posture with 
an energy expenditure ≤1.5metabolic equivalent’ is now the main behaviour.  

There is mounting evidence that the amount of time spent sedentary is an important 
determinant of health status independent of physical activity levels. Additionally, it is 
estimated that 60-70% of the average waking day is spent in sedentary pursuits and as little as 
3-5% of the population achieve the recommended levels of moderate-to-vigorous physical 
activity.  

 

Over the last decade, there has been a plethora of wearable technologies that have been 
developed to support physical activity and sedentary behaviour behaviour change, of which 
the greatest growth has been seen in self-monitoring tools. Self-monitoring for behaviour 

mailto:J.Sanders2@lboro.ac.uk
mailto:D.Esliger@lboro.ac.uk
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change has a strong theoretical foundation and as such, when used in interventions, self-
monitoring in conjunction with feedback, has been proven to be an effective behaviour 
change strategy across a variety of behaviours including smoking, diet and physical activity 
and is considered a foundation of lifestyle behaviour change interventions. With the 
increasing amount of wearable technology, it has been suggested that use of electronic 
approaches might lessen the burden of traditional methods (diaries, and questionnaires etc.) 
and may improve adherence to self-monitoring and thus result in greater achievement 
towards behavioural goals.  

Therefore, the purpose of this study is to assess the potential beneficial effects of using 
wearable technology to reduce sedentary behaviour  

Who is doing this research and why? 

This study is being conducted by as part of JS’s PhD research, supervised by Dr Dale Esliger. 
This study is part of a Student research project supported by Loughborough University. 

Are there any exclusion criteria? 

You will not be able to take part in the study if you are in one of the following criteria:  

- Younger than 30 or older than 69 

- Are pregnant 

- Not willing to give signed consent 

- Cannot adhere to the study protocol 

- Do not have an iPhone 4S or later smartphone  

Will I be required to attend any sessions and where will these be? 

Yes. Should you agree to participate in the study, we will book your appointment in a time of 
your choosing before 12pm (midday). You will be required to attend in total four laboratory 
based sessions. The first lasting approximate 10-20mins and 3 more lasting approximately 
30-45mins. These sessions will take place in the Physical Activity and Sedentary Behaviour 
Measurement Lab in the National Centre for Sport and Exercise Medicine.  

Is there anything I need to do before the sessions? 

Participants are asked to be over-night fasted and asked to please drink a glass of water at 
least 1 hour before your allocated laboratory session. This will help with us acquiring an 
accurate measurement from the finger stick blood test. 

For Lab sessions 1-4 you will also be required to bring with you, your iPhone 4S or later 
smartphone 

What will I be asked to do? 
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If you decide to take part within the study then you will be asked to attend 4 laboratory 
appointments at Loughborough University over a 9 week period. These appointments will be 
held in the Physical Activity and Sedentary Behaviour Measurement lab in the National 
Centre for Sport and Exercise Medicine.  

Lab session #1 

At the first testing session, we will explain the study procedures and answer any question you 
may have before asking you to sign an informed consent form and a health screening 
questionnaire. You will then be fitted and set-up with your wearable technology. See fig 1. 

 

 

 

 

Figure 1 – ActiGraph wGT3X+BT (Red) LumoBack Posture Sensor (Black). 
 

The red device (ActiGraph accelerometer) is a small instrument (4.6cm x 3.3cm x 1.5cm, 19g) 
that sits on a provided elastic belt around your waist and can be worn discretely under 
clothing and will be used to measure you physical activity throughout the week.  

The black device (LumoBack Posture sensor) is also a small instrument (4.15 x 10 x 0.8cm, 
25g) also using a provided elasticated belt, will be worn on the lower back either on the skin 
or over a thin layer of clothing and will be used to measure your sitting time of the 
measurement period. The LumoBack connects to the LumoBack mobile app which will be 
provided to you should you agree to participate in the study. 

You will be required to wear these devices for a period of 7 days, only removing them during 
sleep, bathing and water based activities.  

 

At the end of this first visit we will arrange for your next lab visit for the following week. 

Lab Session #2 

Pre-testing requirements (lab 2-4) 

Participants are asked to be over-night fasted and asked to please drink a glass of water at 
least 1 hour before your allocated laboratory session. This will help with us acquiring an 
accurate measurement from the finger stick blood test. 

We will again run through the study test procedures. A series of screening measurements will 
be taken. These will consist of height, weight, BMI, body fat%, waist circumference, grip 
strength and blood pressure as well as a finger stick blood test. This will consist of a small 
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finger prick blood sample (0.04ml) which will be analysed for blood cholesterol, lipid 
concentrations and blood glucose levels.  

The activity monitors you had worn previously will be collected and downloaded. The black 
device will be reinitialised to provide vibratory (short buzz) feedback to you after prolonged 
sedentary behaviour.  The black device will then be returned to you.  

You will be asked to wear the black device for the following 4 weeks, only removing it 
during sleep, bathing and water based activities. A diary will be provided to document the 
removal/replacement of the device. 

Lab Session #3  

Lab sessions 3 will follow an identical format to lab session 2. 

Lab Session #4 

Lab session 4 will follow an identical format to lab sessions 2 and 3. The only exception is 
that as this will be the final session the black device will be collected in by the research team 
and not returned to you. A series of questions will be asked about you experiences whilst 
using and wearing the device. 

How long will it take? 

Lab session #1 will take 10-20mins. Each lab session thereafter will take approximately 30-
45mins. And the total time of the study will be 9 weeks. Please see figure 2.  

Once I take part, can I change my mind? 

Yes.  After you have read this information and asked any questions you may have we will ask 
you to complete an Informed Consent Form, however if at any time, before, during or after 
the sessions you wish to withdraw from the study please just contact the main investigator.  
You can withdraw at any time, for any reason and you will not be asked to explain your 
reasons for withdrawing. 
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Deployment, familiarisation 
and checks: 

ActiGraph and LumoBack 
monitor placed onto the 

participant 

Baseline  

Monitors worn  
ActiGraph – waist 
LumoBack – Lower back  

Screening and consent: 
Eligibility assessed 

Lab 
Session #1 

Lab 
Session #2 

Study Start  

7 days  

Collection, download and 
redeployment  

ActiGraph collected and 
LumoBack monitor  vibratory 

feedback initialised  

Measurements  
- Anthropometrics 
- Body composition 
- Waist circumference 
- Hip circumference  
- Fingerstick blood test 
- Blood pressure 
- Grip strength 

Monitors worn  
LumoBack – Lower back  - 4 
weeks 
ActiGraph – Waist worn for one 
week 

Measurements  
- Anthropometrics 
- Body composition 
- Waist circumference 
- Hip circumference  
- Fingerstick blood test 
- Blood pressure 
- Grip strength 

Monitors continuing to be 
worn.  

LumoBack – Lower back  
ActiGraph – Waist – Worn for 
one Week 

Lab 
Session #3 

1+3 
weeks  

Measurements  
- Anthropometrics 
- Body composition 
- Waist circumference 
- Hip circumference  
- Fingerstick blood test 
- Blood pressure 
- Grip strength 

Monitors Collected in. 
LumoBack – Lower back  

Lab 
Session #4 

4 weeks  

Study 
Finish  
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Are there any risks in participating? 

There is a small, single finger prick to one finger on your non-dominant hand. As this will 
cause a small puncture just below the skin, there is a very small chance that you will 
experience a small amount of discomfort. However, the discomfort should only be 
momentary, and will not affect you from carrying on with your day.  

 

Will my taking part in this study be kept confidential? 

All information that is collected about you during the course of the research will be kept 
strictly confidential. Data will be stored either in locked filing cabinets or in password 
protected university managed PC’s which are only accessible by members of the research 
team. Any information about you which is disseminated will have any identifiable 
information removed so that you cannot be recognised from it. Information collected will not 
be used for any other purpose than that explained here. The data from this study will be kept 
for a maximum period of 6 years. Once the blood sample has been analysed it will be 
disposed of immediately. However, once the results of the study are published or a 
dissertation has been submitted (expected to be by December 2015), it will not be possible to 
withdraw your individual data from the research. 

What will happen to the results of the study? 

The results will be coded (for anonymity) and analysed by the research team. The results may 
be published in scientific journals and/or presented at relevant conferences. Furthermore, the 
results will be written up as part of JS’s PhD thesis. 

What if I am not happy with how the research was conducted? 

If you are not happy with how the research was conducted, please contact Ms Jackie Green, 
the Secretary for the University’s Ethics Approvals (Human Participants) Sub-Committee: 

Ms J Green, Research Office, Hazlerigg Building, Loughborough University, Epinal Way, 
Loughborough, LE11 3TU.  Tel: 01509 222423.  Email: 35TUJ.A.Green@lboro.ac.ukU35T 

The University also has a policy relating to Research Misconduct and Whistle Blowing which 
is available online at 35TUhttp://www.lboro.ac.uk/committees/ethics-approvals-human-
participants/additionalinformation/codesofpractice/U35T .   

I have some more questions; who should I contact? 

For any further questions please contact James Sanders and/or Dr Dale Esliger, whose contact 
details are shown at the top of this information sheet. 

Figure 2 – Study outline  

mailto:J.A.Green@lboro.ac.uk
http://www.lboro.ac.uk/committees/ethics-approvals-human-participants/additionalinformation/codesofpractice/
http://www.lboro.ac.uk/committees/ethics-approvals-human-participants/additionalinformation/codesofpractice/
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Appendix 3.2: LumoBack information sheet and FAQ 
 

 

 

 

 

 

 

 

 

 

 

Activity monitor instructions Manual  

 

 

 

 

 

 

 

If you have any questions or concerns, please contact: 

James Sanders 
35TUJ.Sanders2@lboro.ac.ukU35T 

07538330734 

 
 
 
 
 
 

DeSIT: Decreasing Sitting using Innovative 
Technology 

Participant ID: ______________ 

ActiGraph Numbers: 

__________       

LUMOback: 

                           . 

 

mailto:Sarah.Bunnewell@uhl-tr.nhs.uk
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3. General Information 

• Please wear the LumoBack for the duration of the study period 
• Please wear the ActiGraph for the next 7 day period 
• Please wear the monitors continuously only removing for sleep and water based 

activities. 
• If you wish to remove the monitors before you go to bed please put the LumoBack on 

charge, preferably in a place where you will remember to put it on in the morning (e.g. 
your bedside table) and remember to put them on as soon as you wake up in the 
morning. 

• If you decide not to put it on charge overnight – please place the LumoBack down 
horizontally on a flat surface with the Lumo logo facing upward – this will put the 
Lumo into Inactive mode after 5 mins and will allow the research team to determine 
wear and non-wear times. 

 

 

 

 

 
UReturning your activity monitors and logbook 

Please return the activity monitors (and any unused adhesive patches) and completed logbook 
to James Sanders (NCSEM PhD area) 

 

2. How to wear the ActiGraph monitors  

The ActiGraph will be attached using adjustable elastic 
straps and should be positioned so that the small black 
cap is facing upwards. The hip monitor is to be worn on 
the right hand side of the body on the midaxillary line of 
the hip. 

 

3. How to wear the LumoBack 

The LumoBack will be attached using adjustable plastic straps. The LumoBack should we 
worn on base of the back with the logo outward facing, and in a readable orientation.  

 

WARNING:  

Please do not wear the devices when showering, bathing, or performing water-based 

activities. 
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4. Placement of the activity monitors 
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5. Removal of the LumoBack. 
Night Removal 
When removing the LumoBack at night please take it off immediately before you go to sleep 
and place it on charge using the charging plug and cord provided in your pack. It is best to 
place this on your bed side table so as a reminder to put it on the when you wake up in the 
morning 
It is important that you place the device on charge every night so that we can have a data 
stream to note removal time. 
 
Removal for water-based activities 
Please remove the device immediately before and immediately after the water based activities 
– making sure to place the device horizontal on a flat surface with Lumo sign facing upwards. 
 
6. LumoBack FAQ’s 
 
Wearing the sensor 

7. Place the LUMO on your lower back, either directly on your skin or over a thin layer 
of clothing. The LUMO logo and circular Touch button should be facing out.  

8. Wrap the belt around your waist directly above your hip bones, and secure the Velcro 
near your belly button. 

9. If your belt doesn’t fit snuggly around your waist, take it off and adjust the Velcro 
straps inside the belt. 

 
Checking the LumoBack charge. 
Tap the Touch Button to view charge level:  
Green - The sensor has more than one day of charge remaining.  
Orange - The sensor has one day or less of charge remaining. Recharge soon 
 
Alternatively – touch the three horizontal bars on the top left corner of the app which will 
display the side menu will display the battery charge next to the Lumo tab. 
 
Charging the LumoBack 

7. Plug the sensor into a USB power source using the included cable.  
8. It takes about 2 hours to charge the sensor completely.  
9. A complete charge will last for about 5 days of continuous use 
 

When to calibrate your sensor.  
The LumoBack sensor works for everybody, but only if it is calibrated correctly. This process 
stores your good posture position on the sensor and determines when the sensor will vibrate, 
indicating bad posture.  
 

When should you calibrate? 
7. When you first setup your sensor. 
8. Everytime you put the sensor back on after any period of removal. 

 
How do I clean my Lumo? Is it water resistant? 
You can simply take a damp cloth or a wipe and wipe the sensor down.  Also, if needed you 
can remove the Velcro straps from the actual sensor moulding and you can hand wash the 
belt straps and line dry. 
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Lumo Back is not completely water resistant.  While it is ok to have moisture and sweat from 
normal use and activities, you can NOT submerge the LumoBack sensor in water or shower 
with it, etc.  It has a Lithium battery and other hardware components that can be damaged if it 
gets wet. 
 
Connectivity issues. What do I do? 
Please try the following: 

5. Turn the Bluetooth on your iOS device off and then on again through the iOS Settings 
icon.  Go to Settings>Bluetooth>On/Off in your iOS device. 

6. Kill the app:  first double-click on the home screen of your iOS device, then hold down the 
LumoBack icon in the tray for 3 seconds, then press the red delete button. 

7. Restart the LumoBack app. 
8. If this doesn't work, try turning off your iOS device completely, and then turn it back on. 
9. Alternatively – try turning the LumoBack on and off again – this can be achieve by touching 

the button on the device for a period of 5 seconds until the red light flashes. Perform the same 
action again to turn it back on. A green light should flash to let you know it is turned on 
again.  
 
Please make sure your battery is charged as the app works best when it is charged. 
 
The LumoBack will still be collecting data during this time even if it isn’t connected to the 
app. 
 
Any other problems please contact me. The details can be found on the title page. 
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Appendix 3.3 Participant Health report 
ID Number: U                                      . 

Lab Session:U                                       . 

DateU:                                                    . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you have any questions or concerns, please contact 

James Sanders (J.Sanders2@lboro.ac.uk) 

Dr Dale Esliger (D.Esliger@lboro.ac.uk) 

mailto:J.Sanders2@lboro.ac.uk
mailto:D.Esliger@lboro.ac.uk
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1) Body mass index (BMI) is a simple index of weight-for-height that is commonly used to 
classify overweight and obesity in adults. It is defined as a person's weight in kilograms 
divided by the square of his height in meters (kg/m2). 

BMI provides the most useful population-level measure of overweight and obesity as it is the 
same for both sexes and for all ages of adults. However, it should be considered a rough 
guide because it may not correspond to the same degree of fatness in different individuals. 

Raised BMI is a major risk factor for non-communicable diseases such as: 

• cardiovascular diseases (mainly heart disease and stroke), which were the leading 
cause of death in 2012; 

• diabetes; 
• musculoskeletal disorders (especially osteoarthritis - a highly disabling degenerative 

disease of the joints); 
• some cancers (endometrial, breast, and colon). 

The risk for these non-communicable diseases increases, with an increase in BMI. 

BMI (Kg/mP

2
P) 
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2) Body Composition 

2.1) Weight  

Weight (Kg) 

 

 

2.2) Body Fat percentage: Our body is composed of two types of fat: 

a) Essential Body Fat: necessary to maintain correct functionality of our body. The   
percentage body fat is 3-5% in men and 8-12% in women. 

b) Storage Fat: this is the fat accumulated in our body and used to protect internal 
organs as well as an energy reserve. 

In general, having excess body can lead to an increase in the stiffness of artery walls, 
therefore increasing the risk of developing cardiovascular diseases. 

Body Fat Percentage Body Fat Mass 

  

 

Classification Male Female 
Unhealthy Range (too low) 5% and below 8% and below 
Acceptable range (lower 
end) 

6-15% 9-23% 

Acceptable range (higher 
end) 

16-24% 24-31% 

Unhealthy Range (too high) 25% and above 32% and above 
 

2.3) Visceral Fat Percentage 

Visceral Fat Percentage Visceral Fat Mass 

  

 

Visceral fat is the fat that is in the internal abdominal cavity, surrounding the vital organs in 
the trunk (abdominal) area. Research shows that even if your weight and body fat remains 
constant, as you get older the distribution of fat changes and is more likely to shift to the 
trunk. Ensuring you, have healthy levels of visceral fat my reduce the risk of certain diseases 
such as heart disease, high blood pressure, and the onset of type 2 diabetes. 
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Low 
Risk  

High 
risk  

1-12 13-59 
 

2.4) Fat Free Mass Percentage 

Fat Free Mass % 

 

 

This feature indicates the weight of muscle in your body. The muscle mass displayed 
includes the skeletal muscles, smooth muscles (such as cardiac and digestive muscles) and 
the water contained in these muscles. Muscles play an important role as they act as an engine 
in consuming energy. As your muscle mass increase, your energy consumption increases 
helping you reduce excess body fat levels and lose weight in a healthy way. 

3) Waist Circumference (WC): This is an important indicator of how healthy we are. This is a 
proxy measure used to assess abdominal fat for chronic disease risk. A high waist 
circumference or a greater level of abdominal fat is associated with an increased risk of type 
2 diabetes, high cholesterol, high bloody pressure and heart disease. 

Waist Circumference 
(cm) 
 

 

3.1) Waist-to-Hip Ratio – having a larger waist circumference (when compared to having 
fat around the bottom or thighs) is an indicator of greater risk of developing heart disease, 
high blood pressre and diabetes 

Hip 
Circumference 
(cm) 

Waist-to-Hip 
Circumference 
(cm) 

  

 

Indicator Cut-off points (cm) Risk of metabolic 
complications Men Women 

Waist 
Circumference 

>94 >80 Increased 

Waist 
Circumference 

>102 >88 Substantially 
increased 

Waist-to-hip ratio ≥ 0.90 ≥ 0.85 Substantially 
increased 
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4) Blood Pressure 

Systolic Blood 
Pressure  

Diastolic Blood 
Pressure  

Resting Heart 
Rate  

   

 

When measuring blood pressure we obtain 2 reading  

a) Your systolic blood pressure: the highest pressure when your heart beats pushing the 
blood around your body. 

b) Your diastolic blood pressure: the lowest pressure when your heart relaxes between 
beats. 

 

5) Capillary Blood Test  

Blood Component mmol/l Desirable range 

Blood Glucose  3.9-5.5 

Triglycerides  <1.7 

HDL Cholesterol  >1.6 

LDL Cholesterol  <2.0 

Total Cholesterol  <4.0 

 

Triglycerides: It is a type of fat (lipid) fund in the blood. When you eat, your body converts 
any calories it doesn't need to use right away into triglycerides. The triglycerides are stored in 
your fat cells. Having a high level of triglycerides, a type of fat (lipid) in your blood, can 
increase your risk of heart disease. 
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Low Density Lipoproteins: These lipoproteins carry cholesterol throughout your body, 
delivering it to different organs and tissues. But if your body has more cholesterol than it 
needs, the excess keeps circulating in your blood. Over time, circulating LDL cholesterol can 
enter your blood vessel walls and start to build up under the vessel lining. Deposits of LDL 
cholesterol particles within the vessel walls are called plaques, and they begin to narrow your 
blood vessels. Eventually, plaques can narrow the vessels to the point of blocking blood flow, 
causing coronary artery disease. This is why LDL cholesterol is often referred to as "bad" 
cholesterol 

High Density Lipoproteins (HDL) Cholesterol: Often referred to as “good” cholesterol, 
they act as cholesterol scavengers, picking up excess cholesterol in your blood and taking it 
back to your liver where it's broken down. The higher your HDL level, the less "bad" 
cholesterol you'll have in your blood. 

Total Cholesterol: Your total blood cholesterol is a measure of the cholesterol components 
LDL (low-density lipoprotein) cholesterol, HDL (high-density lipoprotein) cholesterol, and 
VLDL (very low-density lipoprotein, which is the triglyceride-carrying component of lipids). 

Blood Glucose: This is the main sugar found in the blood and the body’s main source of 
energy. Keeping it within normal ranges is very important to prevent future health 
complications. 
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