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 Abstract

While inelastic mechanical behaviour of crystalline materials is well-understood 

in terms of lattice defects, bulk metallic glasses (BMGs) pose significant 

challenges in this respect due to their disordered structure. They can be 

produced by rapid cooling from the liquid state (among other technique) and, 

thus can be frozen as vitreous solids. Due to the absence of a long-range order 

in atomic structure and a lack of defects such as dislocations, BMGs generally 

show unique mechanical properties such as high strength and elastic limit, as 

well as good fracture toughness and corrosion resistance. Typically, inorganic 

glasses are brittle at room temperature, showing a smooth fracture surface as a 

results of mode-I brittle fracture. At small scale, it was well documented that 

inelastic deformation of bulk metallic glasses is localised in thin shear bands. 

So, in order to understand deformation mechanisms of BMGs comprehensively, 

it is necessary to investigate formation of shear bands and related deformation 

process.  

In this thesis, a history of development of BMGs is presented, followed by a 

review of fundamental mechanisms of their deformation. A Zr–Cu-based BMG is 

characterised across several length scales (nano-, micro- and macro-scale) and 

various loading conditions (homogeneous and inhomogeneous loading states). 

At the macro-scale level, three-point bending was used to determine mechanical 

properties including the Poisson`s ratio (0.35) and the elastic modulus (E, 86 

GPa).  In this study, observations of fracture surfaces of the BMG exposed to 

three-point bending revealed features different from those observed in crystalline 

materials. Additionally, high-precision dynamical mechanical relaxation 
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measurements were performed with a DMA system at room and elevated 

temperatures.  A decrease in the storage modulus indicated the glass-transition 

temperature (Tg), which confirmed the amorphous structure of the BMG that was 

initially investigated using X-ray diffraction (XRD). This study demonstrated that 

the dynamic properties of the material were not sensitive to the strain rate at 

room and elevated temperature.  

Nano-indentation studies with a spherical indenter were carried out to 

characterise shear-band localisation on a surface of the BMG. Its initial 

deformation was also investigated with this method. The indentation cycle 

reflected elastic deformation with a yielding load of approx. 4 mN. Loading–

unloading cycles were carried out at higher load magnitudes with the aim of 

observing shear steps on the material’s surface and to investigate an indentation 

size effect. For designed cycling indentation, hardening phenomena were 

observed in nano-indentations.  Additionally, micro-indentation experiments were 

conducted using a spherical indenter with maximum load of 15 N. While shear-

band slips were observed on the surface at around 100 mN in the nano-

indentation test, this phenomenon in spherical micro-indentation was found at 

loads in excess of 10 N. Unfortunately, due to the nature of the experiment 

conducted, it was impossible to observe the nucleation and initial propagation of 

shear bands, as they occurred inside the material volume.  

Hence, an advanced technique was proposed to characterise a plasticity 

mechanism through the initiation and the evolution of localised shear bands 

beneath the indentation – wedge indentation- under incremental and single-cycle 

loading conditions. It was found that a semi-circular region of shear bands was 

formed beneath the indentation zone at 1 kN. With increasing load, secondary 
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shear bands developed inside the plastic region. This technique is particularly 

useful for development of appropriate constitutive models that characterise 

plastic behaviour of amorphous materials in a small-length scale. 

For a more details study, micro-pillars with diameters of 10 µm and 230 nm were 

fabricated using a focus ion beam (FIB) technique to assess their apparent yield 

strength. Preliminary results indicated that a number of shear bands increased 

with the sample size. In the range of the sample dimensions (200nm-10 µm) 

micro-compression tests showed that yield strength was dependent on the 

sample size. Additionally, the thesis describes detailed micro-pillar compression 

tests carried out on the BMG in different structural sates (as-cast and fracture 

surface). The results clearly demonstrate yield strength in the deformed BMG 

was two times lower than that of undeformed regions.  

Additionally, surface-decoration technique was employed to track formation and 

propagation of shear bands in the sample as a result of incremental loading. It 

was shown that shear bands formed in the localised deformation zone with a 

discrete character of their movement. Individual shear bands in the studied BMG 

were characterised to obtain better understanding of the effect of non-crystalline 

defects on shear-band-induced plasticity. The results clearly demonstrated that 

mechanical properties (including hardness and the Young`s modulus) in the 

deformed BMG were lower than those of undeformed regions. No compositional 

or structural changes were found in shear-band areas of the studied BMG. 

Digital image correlation (DIC) was employed to measure local strains during 

wedge-indentation experiments. Based on the DIC analysis, a numerical model 

was developed representing the material response of the studied amorphous 
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alloy. A good agreement between the obtained modelling results and the 

experimental data was shown. 
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1 Introduction 

1.1 Motivation 

Bulk metallic glasses (BMGs) are relatively new materials that are increasingly 

being used for various applications thanks to their unique and remarkable 

properties. These properties make BMGs ideal candidates for various 

applications such as MEMS (micro-electromechanical systems), miniaturised 

biomedical devices and implants as well as micro-robotics devices. In the last 

few decades, research have led to the discovery and development of new BMGs 

in a variety of multi-component alloy systems with easy verification during 

conventional solidification resulting in thickness values of several centimetres 

and weights up to several kilograms [1,2].  BMGs also received much scientific 

and technological attention thanks to their prominent mechanical properties such 

as a high ratio of elastic limit to the Young’s modulus and higher fracture 

toughness, when compared to their crystalline counterparts of similar 

compositions. On average, specific strength of metallic glasses is more than 

twice than that of their crystalline counterparts. Metallic glasses also absorb less 

energy in stress-induced deformation compared with crystalline materials [3]. 

This is typically attributed to the absence of a long-range order in their atomic 

structure and a lack of defects such as dislocations, which control ductility in 

traditional metallic materials. Figure 1-1(a) compares mechanical properties of 

different types of materials, showing that metallic glasses display a combination 

of strength of crystalline materials with elasticity of polymers. Figure 1-1(b) 

presents failure strength, 𝜎𝜎𝑓𝑓 , against the Young’s modulus, 𝐸𝐸 , for all types of 

metallic glasses, such Zr-, Mg-, Fe- and Co- based metallic glass, and several 
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commercial metals.  As shown in this figure, the highest fracture strengths can 

be found in Fe- and Co-based BMGs, where values above 5 GPa were reported. 

 

Figure  1-1 (a) Comparison of characteristics of metallic glasses and counterpart 

materials. (b) Relationship between fracture strength and Young’s modulus for variety of 

metallic glasses. The data for several commercialised crystalline alloys are indicated for 

comparison [4] 

 

(a) 

(b) 
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Typically, inorganic glasses are brittle at room temperature, exhibiting a smooth 

fracture surface as a result of mode-I brittle fracture. BMGs have nearly no 

plasticity in macro-scale under tensile and compressive deformations, and their 

mechanical behaviour is very sensitive to internal and surface flaws such as 

microcracks and voids. The cause of this limited macroscopic plasticity in BMGs 

compared to the conventional metals is the absence of grain structure and an 

extreme localisation of plastic flow into narrow shear bands that initiate strain-

softening. As shown in Figure 1-2 (a), metallic glasses fail on the plane of 

maximum shear stress under tension loading, which is at 45° to the tension axis. 

The resulting fracture surfaces have two distinct regions - smooth and veined. 

For BMGs, at temperatures significantly lower than their glass transition (Tg), 

observed plastic deformation is spatially and temporally inhomogeneous and 

carried by highly localised, narrow shear bands [2]. 

(a) 

(b) 

Figure  1-2 (a) Shear band formation in metallic glass samples in uniaxial tension. (b) 

Fracture process of BMGs specimen in tension with formation of smooth and veined 

regions [2]. 
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Significant efforts were made to develop glassy metals, capable to distribute 

shear bands uniformly or to hinder their propagation in order to enhance their 

deformability. Some recent experiments on sub-micron and nano-sized metallic-

glass specimens showed that the process of shear localisation became more 

stable and less catastrophic, compared to that in large-size samples [5]. 

The study was focused to study deformation of behaviour of Zr-Cu based BMGs. 

These BMGs have attracted attention due to extremely high-yield strength (close 

to theoretical value), high hardness and elastic modulus make them a good 

candidate for BMG structural applications. On the contrary to other type of BMGs, 

they showed large compressive plastic strain and strain hardening-type 

phenomena due to chemical heterogeneities and Cu [3]. 

Zr-Cu-MGs with relatively high thermal stability and low critical cooling rates 

resulted in considerable improvements in specimen`s sizes from µm to mm (Any 

MGs with sizes in excess of 1mm is called BMGs). Zr-Cu-based BMGs have 

outstanding glass forming ability (GFA) compared to other type of BMGs such 

that rapid solidification is unnecessary and BMGs thus have become obtainable 

with conventional copper-mold casting. In addition, there is no noticeable room 

temperature aging for Zr-Cu-based BMGs, thus these BMGs can be use at room 

temperature for long time. 

1.2 Historical background 

Based on the periodicity of an identical unit in the structure, materials can be 

classified as crystalline and non-crystalline. Metals, alloys and some ceramic 

materials are the examples of crystalline materials. The arrangements of atoms, 
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ions or molecules making up the solid define its physical structure. In crystalline 

solid, its atoms are arranged in a pattern repeating itself in three dimensions and, 

hence, form a solid with a crystal structure [6]. So, it is often convenient to 

subdivide these structures into small repeating entities called unit cells while 

describing them. It is this representative unit cell that possesses most of the 

properties the structure shows under loading conditions, as it is considered the 

smallest unit of the arrangement of atoms. Most elemental metals (about 90%) 

crystallise upon solidification into three densely packed crystal structures: body-

centred cubic (bcc), face-centred cubic (fcc) and hexagonal close-packed (hcp) 

(Figure 1-3). Crystallographic slip is the governing mechanism of plastic 

deformation in metals and alloys and it happens by means of the motion of 

dislocations. Dislocation motion is analogous to the distortion process of pack of 

cards in case when it is pushed from one end. The dislocations may be 

introduced in materials during plastic deformation, during solidification and as a 

result of thermal stresses owing to rapid cooling [7]. Mechanical properties of 

these materials are mostly governed by the nature, density of the dislocation and 

their movement.  

 

Figure  1-3 Different crystalline structures of metals: (a) cubic body centred (bcc); (b) 

cubic face centred (fcc); (c) hexagonal close-packed (hcp) [6]. 
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Non-crystalline solids were conventionally called ‘amorphous’ solids, with glass 

and polymer being significant representatives. Natural glass existed from the 

early times of the earth and man-made (non-metallic) glasses were fabricated in 

Egypt and Eastern Mesopotamia from 3500 BC. In contrast, amorphous metals 

or metallic glasses were first reported only around 1960s. These glasses were 

processed using solid-state amorphisation [8] via hydrogen absorption [9,10], 

mechanical alloying [11], or heat treatment enabling anomalous diffusion in 

crystalline bi-layers [12]. In 1960, Klement and co-workers fabricated a metallic 

glass (Au-Si alloy) by rapid quenching from 1300ºC to room temperature with a 

high cooling rate of 106 K s−1 [13]. From the late 1980s, metallic glasses were 

manufactured in a variety of multi-component alloys with cooling rates less than 

 100 K s−1  and thickness of several centimetres. The first commercial metallic 

glass, Zr41.2Cu12.5Ni10Ti13.8Be22.5 alloy named Vitreloy 1, was produced by 

Johnson and Peker in 1992 with a critical cooling rate of  1 K s−1. Over the last 40 

years, critical casting thickness was increased by more than three orders of 

magnitude, and high quantity of amorphous components was formed, as shown 

in Figure 1-4. Inoue and co-workers [14] suggested three empirical rules for 

stabilising a supercooled metallic liquid. Firstly, the multi-component system 

should include three or more elements as the presence of several elements 

causes a significant extension of the supercooled liquid region before 

crystallisation. Secondly, there should be a considerable difference (greater than 

~12%) in the atomic sizes of the main constituent elements. The atomic size 

differences result in a highly dense random packed structure in amorphous 

phases. Finally, the elements should have negative heats of mixing with each 

other; these increases the energy barrier at the solid-liquid interface and 
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accelerate atomic diffusivity. Hence, the supercooled liquid temperature is 

extended due to slowing local atomic rearrangements and a low crystal 

nucleation rate. A variety of BMGs such as Fe-based, Cu-based etc. were 

synthesized employing these rules. 

 

Figure  1-4 Increase in critical casting thickness for various glass-forming alloys over 50 

years [15]. 

Elastic properties of metallic glasses can be derived from the properties of 

constituent metallic element and the other dependent on the particular glassy 

configuration prepared using a modified rule of mixture as suggested by Liu and 

Ma [16,17]; as the elastic properties of metallic glass cannot be predicted with 

the conventional rule of mixture in individual alloy systems. Widely various 

properties have been stated for metallic glasses of different alloy compositions, 

or the metallic glasses of the same composition but with different processing 

history. This approach originated from the motion of disordered atomic structures 

in metallic glasses and their intrinsic local heterogeneities. The internal structure 

of metallic glasses was initially reported as dense random packing of hard 
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spheres. Research over the years has found that while atomic packing is indeed 

dense, it cannot be random. Unlike the well-defined long-range order in 

crystalline metals, the atoms inside metallic glasses are in a range of distinctly 

local atomic configuration at the level of nearest neighbour coordination.  In 

general, metallic glasses can be considered as having short- and medium- range 

orders in the matrix with excess of solvent atoms. Systems with short-range 

orders can be modelled as solute-centred clusters, while those medium-range 

orders are always characterized as interconnected clusters. Liu and co-workers 

[16] proposed that metallic glasses can be treated as hybrids composed of dual 

phases of clusters/superclusters and solvent matrix.  

As shown in Figure 1-5, a stiff phase (𝑆𝑆) represents the clusters/superclusters 

and (𝑀𝑀) shows a solvent matrix with lower stiffness. In Figure 1-5(b), BMG is 

considered as a homogenous material, in which the local stress is distributed 

uniformly among different constitute atoms. As shown in Figure 1-5(d), the two 

phases are supposed to sustain equal stress under an applied elastic loading; 

however, their strain responses may differ. As a result, the global elastic moduli 

of metallic glasses (𝐺𝐺)  can be calculated according to the modified rule of 

mixture under iso-stress conditions [16]: 

1
𝐺𝐺

=
𝑉𝑉𝑚𝑚𝑀𝑀𝑓𝑓𝑀𝑀

𝐺𝐺𝑀𝑀𝑉𝑉𝑚𝑚
+
𝑉𝑉𝑚𝑚𝑆𝑆𝑓𝑓𝑆𝑆

𝐺𝐺𝑆𝑆𝑉𝑉𝑚𝑚
 

1-1 

where 𝑉𝑉𝑚𝑚𝑀𝑀 and 𝑉𝑉𝑚𝑚𝑆𝑆 are the molar volumes of the matrix and clustres/superclusters, 

respectively, 𝐺𝐺𝑀𝑀and 𝐺𝐺𝑆𝑆 are their elastic moduli and 𝑓𝑓𝑀𝑀 and 𝑓𝑓𝑆𝑆 are the fractions 

of the two phases, where they are considered to follow the relation 𝑓𝑓𝑀𝑀 + 𝑓𝑓𝑆𝑆 = 1. 
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Unlike the conventional rule of mixture, the hybrid model with dual phases 

provides a relation to validate the calculated value of the elastic modulus with its 

experimental value. The model helps to predict and design the elasticity of 

metallic glasses much more precisely based on their alloy compositions. In 

addition, this model is capable of describing the softening phenomena in BMGs, 

when the global modulus 𝐺𝐺 decreases due to increasing base metal contents.  

The Poisson`s ratio (υ) of BMGs is closely related to some factors such as its 

toughness and glass-forming ability. The Poisson`s ratio (υ) inversely scales with 

the ratio of shear modulus to bulk modulus (B) correlating with the degree of 

plasticity or brittleness. Metallic glasses with a Poison`s ratio of higher than 0.31-

0.32 shows high fracture toughness [18]. Yujie and co-worker [19] proposed a 

general relation between υ of BMGs and fracture energy for two types of Zr-based 

metallic, Zr41Ti14Cu12.5Ni10Be22.5 (Vitreloy 1) and (Cu50Zr50)95Al5 . These metallic 

glasses showed significant toughness and less likely to develop into cracks due 

to the υ value was higher than a critical value of 0.31-0.32. Higher (υ) is an also 

result in more uniform plastic deformation without significant heating inside shear 

bands during operation. Hence, these effects extend before failure, which is 

similar to the effect of (υ) for polycrystalline metals. The measured toughness 

value was considered as an intrinsic property of metallic glasses; however, they 

could be affected by extrinsic factors, such as the presence of brittle oxide 

inclusions [20]. The choice of composition can significantly influence the pattern 

of shear banding and, consequently, mechanical properties of the metallic 

glasses. It is obvious that the shear-band spacing and shear offset are important 

factors in shear-band pattern and they were typically decreased with a higher 
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value of 𝜈𝜈  of BMGs. This prediction was verified in a limited number of 

experiments. 

 

Figure  1-5 Schematics of ideally homogeneous BMG (a) and their strain responses to 

applied elastic shear stress 𝝉𝝉 (b), and, dual- phases BMG (c)  as well as their strain 

responses to applied elastic shear stress 𝝉𝝉  (d). The compliant solvent matrix M and stiff 

clusters/superclusters S are supposed to sustain equal stress s, but display different 

strain 𝜸𝜸, which conforms to the iso-stress condition [16]. 

1.3 Application potential 

The lack of room-temperature plasticity in BMGs noticeably restricts their 

industrial and structural applications, where reliability is essential. However, their 

unique properties attract a lot of attention and make them suitable for many 

potential applications, where specific functionalities are required and/or 

components are small. Metallic glasses demonstrate soft magnetic properties (i.e. 

high permeability and low coercivity). These magnetic properties of metallic 

glasses can be improved by inducing nanocrystallisation and adjustment of the 

grain size, which lead to the first large-scale application of Fe-based ribbons as 
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low-loss magnetic cores in transformers, magnetic readheads or as components 

in electronic article surveillance systems. BMGs have also found applications in 

sports equipment, such as golf club heads, baseball bats or parts of tennis 

rackets due to their unique impact properties compared to conventional metals 

[21]. BMGs are also capable of storing high densities of elastic energy, which led 

to utilisation of their efficient energy transfer characteristics this spheres for shot-

peening purposes are ideal. A high elastic strain limit of BMGs resulted in their 

use for Coriolis mass flowmeters, pressure sensors and strain gauges with 

properties superior to conventional crystalline parts. Metallic glasses are also 

suitable for medical applications, such as implants and surgical instruments, due 

to biocompatibility and self-sharpening effect of BMGs. Generally good hardness 

and peculiar tribological properties of metallic glasses make them attractive as 

coating materials. And, indeed, there have been efforts to fabricate amorphous 

coatings, for example by low-temperature spraying or radio-frequency magnetron 

sputtering. 

As mentioned previously, micro-materials have created an increasing demand 

for miniature parts. Semiconductor fabrication technologies are limited to silicon 

and related materials, which are not mechanically suitable for many requested 

applications. Lithography, electroplating and moulding techniques have been 

used to manufacture precision metal microparts [22], but complexity and 

resulting costs of these technologies limit their commercial viability. In addition, 

they are strong, highly elastic and exhibit enhanced plasticity at small scales. 

They can also be fabricated thermoplastically, similar to plastics at low 

temperature. Recently, BMG processing methods have been developed to 

create precise and various geometries on different length scales, which helps to 
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fabricate complex BMG microstructures in an accurate manner with materials 

showing unique properties [23]. Figure 1-6 compares the surface finishing of 

metallic glasses and steel moulds used in microinjection moulding (µIM) for mass 

production of polymer containing micro- and nano-features with a size of 100 nm. 

The smooth surface finish on the metallic glass can be clearly seen due to its 

lack of crystalline structures. 

     

Figure  1-6  Comparison between surface finishing of metallic glasses (a) and steel 

moulds (b) [24]. 

More critical than limited plasticity at room temperature, which to some extent 

hampers their structural application, the production costs of BMGs are generally 

much higher than those of conventional crystalline alloys. This is due to their 

fabrication method often involving high-purity elements and expensive vacuum-

processing techniques. Thus, the most prominent future applications of BMGs 

might be microcomponents made in large quantities with very specific 

functionality. 

(a) (b) 
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1.4 Aim  and objectives 

The aim of this research is to undertake extensive experimental studies of a Zr-

Cu-based metallic glass to obtain understanding of its elastic and inelastic 

deformation behaviour under various loading conditions from a macroscale to a 

nanoscale. As localised shear-band formation is responsible for an inelastic 

deformation mode, this study focused on characterisation of shear bands as well 

as their initiation, formation and evolution.  

Objectives: 

In order to achieve the aim of this study, several objectives were identified: 

• Effect of size and structural states on deformation characteristics of the 

BMG under imposed homogeneous loading states using 

microcompression techniques. 

• Characterising surface shear-band localisation surface of the BMG using 

nano/micro indentation and Field Emission Gun Scanning Electron 

Microscopy (FEG/SEM). 

• A study of deformation characteristics of the BMG under imposed 

inhomogeneous loading states using an experimental technique named 

wedge- indentation to investigate deformation behaviour in the material`s 

volume including initiation, formation and evolution of shear bands. 

• Characterisation of shear bands in the BMG using combination of 

experimental techniques including nano-indentation and characterisation 

techniques including X-ray Diffraction (XRD), FIB/SEM and Transmission  
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electron microscopy (TEM) to investigate initiation, formation and 

evolution of shear bands. 

1.5 Research methodology 

A schematic of the overall layout of this thesis including its research 

methodology is given in Figure 1-7. The thesis covers seven main areas: 

introduction, literature review, experimentations, conclusions and future work. 

Apart from sections dedicated to introduction, conclusions and future work, each 

area is presented in more than one chapter. With above mentioned aims and 

objectives, the experimental programme is comprised of two main parts: an 

analysis of deformation behaviour of BMGs and shear-band characterisation. To 

explore the deformation behaviour, several experiments were carried out to 

characterise various behaviours of BMGs at different length scales (nano, micro 

and macro) and various loading conditions (homogeneous and inhomogeneous 

loading states. Therefore, the experimentation section is divided into parts 

dealing with nano, micro- and macro-scale experiments.  In the part covering the 

macro-scale level, three-point bending and dynamic mechanical analysis (DMA) 

were performed to determine mechanical properties at room and elevated 

temperatures. Next, indentation tests including those at both nano- and micro-

scales were conducted to characterise the resulting elastic-plastic deformation 

under imposed inhomogeneous loading conditions. Loading-unloading tests 

were conducted in the nano-indentation experiments, with an incrementally 

increased load to study indentation size effect (ISE) in the Zr-Cu-based metallic 

glass. Scanning Electron Microscopy (SEM) was used to assess shear-band 
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evolution in the BMG material with the aim of observing shear steps on the 

material surface.  

In nano- and micro-indentation experiments, by their very nature, shear bands in 

the BMG can be observed only after they intersected a free surface of the 

sample. Hence, wedge-indentation test was developed and designed in-house to 

overcome limitations of nano-indentation to observe the evolution of shear bands 

of BMGs beneath the indenter, also allowing for simplified analytical and 

numerical modelling schemes. The primary motivation of wedge indentation 

studies was to characterise the initiation of shear bands in the materials and 

correlate this to the initiation of plastic deformation in indentation. The wedge-

indentation technique was also used to study evolution of various sets of shear 

bands at the volume of the studied materials. Additionally, this thesis 

summarises an investigation on different techniques to prepare micropillars of 

the BMG and the results of microcompression tests on as-cast and deformed 

regions of the specimen to evaluate their deformation behaviour. The possibility 

of size-dependent strength in micro-pillars of BMG was investigated under 

imposed homogeneous loading states. 

Shear-banding is one of the primary mechanisms of plastic deformation in BMGs. 

Hence, in order to investigate the nature of plastic deformation in the studied 

BMG, shear bands were directly characterised using various experimental 

techniques including surface decoration, microstructural analysis (SEM, EDS, 

TEM) and nano-indentation. The surface-decoration method was employed to 

track formation and propagation of multiple shear bands in wedge-indentation 

experiments. The nano-indentation technique was carried out on fracture 
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surfaces and individual shear bands to study a dilatation mechanism and 

properties of shear bands, respectively. In the latter, quantitative strain analysis 

of plastic deformation of the BMG under wedge indentation was implemented 

using a digital image correlation (DIC) technique and the obtained results were 

compared with finite-element simulations. 
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Figure  1-7 Overall thesis layout and research methodology.



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

 

C
ha

pt
er

 1
:  

In
tr

od
uc

tio
n 

18 
 

1.6 Thesis structure 

The thesis is divided into 9 chapters; a brief description of the remaining 

chapters of this thesis is given below: 

o Chapter 2   Deformation behaviour of BMGs 

A review of the main deformation mechanisms of metallic glasses is provided, 

highlighting theories proposed for inhomogeneous plastic flow and explaining an 

effect of temperature and strain rate on plastic flow. This is followed by 

discussion of a length-scale dependency of mechanical behaviour of BMGs 

under various loading conditions. Additionally, characterisation of shear bands 

and indentation techniques for evaluating mechanical properties and plastic 

deformation of metallic glasses is summarized in this chapter. Finally, current 

understanding of the constitutive models of deformation is presented together 

with modelling challenges.  

o Chapter 3 Experimental characterisation techniques 

Experimental and characterisation techniques employed in this work are 

explained in this chapter including X-ray diffraction (XRD), electron microscopy, 

focussed ion beam (FIB), dynamic mechanical analysis (DMA), Laser 

interferometry and nano-indentation. The calibrations required for nano-

indentation are presented in this chapter. 

o Chapter 4 Basic characterisation of BMG 

Macroscale characterisation is presented in order to determine the Young’s 

modulus used in the modelling part. In addition, nano- and micro-indentation 
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tests conducted on the Zr-Cu-based metallic glass to study plastic deformation, 

shear-band evolution, hardening or softening phenomenon and an indentation 

size effect (ISE) are discussed in this chapter. 

o Chapter 5 Experiments under imposed inhomogeneous loading: 

Wedge indentation  

A robust experimental technique named wedge indentation is developed for 

characterisation of deformation behaviour through evolution of localised shear 

bands in the volume of materials. This technique is used to implement single and 

incremental loading conditions to investigate systematically initiation, formation 

and evolution of shear bands. In addition, application of 2D full-field optical 

displacement measurements for quantitative validation of finite-element (FE) 

simulations in the BMG. The DIC method is used to study local plastic 

deformation in the Zr-Cu-based metallic glass under conditions of wedge 

indentation and compared with 2D FE simulation results. 

o Chapter 6 Uniaxial compression experiments 

This chapter summarises an investigation of different techniques used to prepare 

micropillars of the Zr-Cu-based metallic glass. The possibility of size dependent 

strength in the BMG was investigated on micro-pillars. Micro-compression tests 

were also conducted on as–cast and deformed specimens to understand directly 

the effect of multiple shear bands on elastic-plastic deformation of the BMG.  

o Chapter 7 Characterisation of shear bands 

A surface-decoration technique was adapted to investigate formation and 

evolution of shear bands in wedge indentation experiments at sub-micron length 
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scales.  Shear bands were microstructurally characterised using XRD and TEM. 

Mechanical properties of individual shear bands in the Zr-Cu-based metallic 

glass were investigated using an indentation technique in order to obtain a better 

understanding of the effect of non-crystalline defects on shear-band plasticity. 

o Chapter 8 Conclusions and future work 

The outcomes and conclusions drawn from this research are presented in this 

chapter. Suggestions and recommendations for the possible future research are 

also introduced.  
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2 Deformation behaviour of BMGs 

2.1 Microscopic Process relevant to deformation behaviour of metallic 
glass 

As mentioned above, the lack of long-range order in metallic glasses makes their 

plastic deformation fundamentally different from that of crystalline solids, where 

deformation can generally be explained based on the underlying dislocation 

dynamics. While at low temperatures crystal dislocations allow changes in the 

atomic structure at low level of energy and stress, atomic rearrangements in 

amorphous metals are a relatively high-energy/stress process. A number of 

mechanistic theories have been proposed to describe the plastic flow and 

deformation behaviour of metallic glasses.  

Some early approached employed dislocation theory to describe plastic 

deformation [25]. In them, shear was as result of a glide of a discrete 

microscopic dislocation line with local differences in the magnitude and direction 

of a Burgers vector. Resistance to glide originates from a work of dilatation 

normal to the glide plane. The energy required for dilatation and, consequently, 

allowing motion of the dislocation should exceed a barrier determined using 

similar thermally-activated equations derived as in STZs and the free-volume 

theory. It should be considered that the dislocation theory cannot be used to 

determine mechanical properties of metallic glasses in the manner common to 

crystalline solids. While hardness of crystalline materials increases as the result 

of an increase in the defect density, metallic glasses does not show any strain 

hardening, even at high shear band densities because of the increasing free-

volume content or entropy. This shows that the dislocation model is not 
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appropriate to describe plastic deformation in metallic glasses. Plastic 

deformation in MGs was also described using idea of free volume and shear 

transformation zone (STZ) proposed in the Argon and Spaepen`s model, which 

were based on the atomic motion [26,27] . 

2.1.1 Free volume 

A free volume is referred to the atomic volume in excess of the ideal densely 

packed, but still disordered, structure. The initial free volume in a glass is fixed at 

the glass transition temperature, when the atomic configuration is frozen as the 

liquid solidifies. The free volume in glassy materials was first proposed by Cohen 

and Turnbull [28], developed later by Spaepen [27] to be used for BMGs. As 

mentioned previously, metallic glasses are produced by rapidly quenching of a 

metallic melt at certain rates to prevent crystallisation.  The total volume of such 

a metallic glass liquid is divided into two parts:  atoms of various sizes and so 

called “holes”, or “voids”. The “free volume” concept is related to “holes” or 

“voids”, which is the key to a diffusive arrangement of atoms. The possibility for 

an atom to jump into an adjacent hole (free volume) depends on the atom and 

the hole sizes.  Free volume is considered to be pressure dependent in BMGs 

and the following equations can be used to describe an average free volume per 

atom subjected to hydrostatic pressure [27]: 

𝜈𝜈𝑓𝑓 = 𝛼𝛼𝜐𝜐𝑚𝑚(𝑇𝑇 − 𝑇𝑇0) − 𝛽𝛽𝜐𝜐𝑝𝑝∆𝑃𝑃 2-1 

where 𝑇𝑇0 is temperature at which the free volume disappears; 𝛼𝛼 is the coefficient 

of thermal expansion at zero pressure; 𝜐𝜐𝑚𝑚 is the mean atomic volume at zero 

pressure, 𝛽𝛽 is the mean compressibility, which is a function of the Poisson`s ratio 
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and atomic volume [27]. 𝜐𝜐𝑝𝑝  is the mean atomic volume for the pressure 

increment ∆𝑃𝑃 .  

The free volume may be related to one atom, which can jump from one site to 

another with a coincident collapse of the original cage of the neighbouring atoms. 

Secondly, free volume may be related to more than one atom, and the motion of 

the atoms together will lead to shear flow [29]. In bulk metallic glasses such as 

Vitreloy 1, the shear flow can be associated with the motion of more than one 

atom. In addition, the free volume can be varied by external shear stress.  Shear 

localisation and shear failure plays a key role in general deformation of metallic 

glasses. The concept of free volume was applied to model a non-linear thermo-

mechanical behaviour of other amorphous solids such as polymers [30].  

Spaepen developed a free-volume model for the metallic glasses based on the 

free volume theory proposed by Cohen and Turnbull [28].  According to Cohen 

and Turnbull, the probability 𝑝𝑝 of the existence of an atom with a free volume 

between 𝜐𝜐 and 𝜐𝜐 + 𝑑𝑑𝜐𝜐 is: 

p(ν)dυ =
η
υf

exp �−
ηυ∗

υf
�dυ 

 

2-2 

where  η is the geometrical factor between 1 and 0.5, 𝜐𝜐𝑓𝑓  is the average free 

volume per atom and  𝜈𝜈∗ is the critical volume. The shear flow rate is the result 

of a competition between the thermal activation barrier and the shear stress 

driven potential [27] :  



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

 

C
ha

pt
er

 2
:  

D
ef

or
m

at
io

n 
be

ha
vi

ou
r o

f B
M

G
s 

24 
 

�̇�𝛾 = 2∆𝑓𝑓𝐽𝐽 exp �−
𝜆𝜆𝜐𝜐∗

𝜐𝜐𝑓𝑓
� sinh �

𝜏𝜏Ω
2𝑘𝑘𝑇𝑇

� exp �
∆𝐺𝐺𝑚𝑚

𝑘𝑘𝑇𝑇
�, 

2-3 

Where ∆𝑓𝑓  is the fraction of sample volume, Ω is the atomic volume, 𝑘𝑘 is the 

Boltzmann constant, 𝑇𝑇 is the temperature, ∆𝐺𝐺𝑚𝑚 is the activation energy, 𝐽𝐽 is the 

Debye frequency (frequency of atomic vibration), and 𝜏𝜏  is the applied shear 

stress. Thus, steady-state deformation in metallic glasses is a competition 

between the creation of free volume by external shear stress that squeeze an 

atom into avoid smaller than itself, and its annihilation by diffusion jumps of 

atoms towards its metastable equilibrium as shown schematically in Figure 2-1. 

The excess free volume is made when an atom with effective hard sphere 

volume 𝜈𝜈∗  is squeezed into a neighbouring hole with a smaller volume 𝜐𝜐  by 

applied stress 𝜏𝜏. The applied stress provides enough energy to overcome the 

energy barrier ∆𝐺𝐺𝑚𝑚  for the motion. This lead to shear softening because of 

dilatation and decrease viscosity in the shear band as shear-band can sustain a 

large amount of shear induced excess free volume. 
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Figure  2-1 Schematic of the free volume flow stress [27].The application of a shear 

stress 𝝉𝝉 biases the energy barrier by an amount ΔG=𝝉𝝉Ω-ΔGm, where Ω is the atomic 

volume and ΔGm is the energy required to fit an atom with volume υ* in a smaller hole of 

volume υ. 

This free-volume model demonstrates a simple and clear description for the 

strain softening and, hence, heterogeneous deformation of metallic glasses at 

low temperatures, and has been broadly used to describe qualitatively different 

mechanical properties. However, this model did not make clear the motion and 

rearrangement of constitute atoms within shear-bands during plastic flow as a 

single atomic jump is not able to accommodate shear strain. Furthermore, the 

deformation mechanism of metallic glasses characterized with computer 

simulations, creep tests and nano-indentation measurements include multiple 

atoms rather than a single-atom motion [31-33]. 

2.1.2 Shear transformation zone  

Argon and co-workers [26] proposed a model to describe the plastic deformation 

of metallic glasses employing flow units that were much larger than an atomic 

size flow units, which is related to atomistic simulations and sheared bubble raft 

experiments. As shown in Figure 2-2, according to this model shear 

transformation takes place by reorganization of a local cluster of randomly 

closed-packed atoms referred to as “shear transformation zones” (STZs), which 

are thermally activated around high free volume regions under inelastic transition 

[34-36]. Similar to the Spaepen’s model, local shear transformations can result in 

local dilatation and, hence, strain softening. 
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Figure  2-2 : Schematic of deformation mechanism of STZ [26] 

With shear stress 𝜏𝜏 , the strain rate obtained from a superposition of many 

individual STZ operations is then given as: 

γ̇ = α0ν0γ0. exp �− ΔF0
kT
� sinh �τγ0Ω0

kT
�, 2-4 

where  𝛼𝛼0 is the constant incorporating the fraction of material being able to 

undergo shear transformation, 𝜐𝜐0 is the natural frequency (attempt rate) of the 

STZs, Ω0 and 𝛾𝛾0 are the volume and shear strains of an individual STZ and Δ𝐹𝐹0 

is the (Helmholtz) free energy for STZ activation and is considered as: 

Δ𝐹𝐹0 = �
7 − 5𝜈𝜈

30(1 − 𝜈𝜈) +
2(1 + 𝜈𝜈)
9(1 − 𝜈𝜈)𝛽𝛽

2 +
1

2𝛾𝛾0
𝜏𝜏0
𝜇𝜇(𝑇𝑇)� 𝜇𝜇

(𝑇𝑇)𝛾𝛾02Ω0, 
2-5 

where 𝜇𝜇(𝑇𝑇) and 𝜈𝜈 are the temperature-dependent shear modulus and Poisson`s 

ratio of the glass, respectively, and 𝜏𝜏0 is the ideal shear strength of the STZ, i.e., 

the thermal stress needed to activate the shear transformation. Parameter 𝛽𝛽  is 

the numerical constant that explains the volumetric dilatation of the STZ related 

to its shear distortion, and is about unity for an amorphous metal. 𝛾𝛾0 is usually 

taken to be of order of ~ 0.1. Ω0 is generally believed to encompass between 
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around ~ 100 atoms based on simulations and a variety of indirect experiments 

measurements [8,26]. This suggests that STZs can be considered as a 

deformation unit in MGs and the size and energy of them may vary for each type 

of glass with various compositions. There is a difference between the free 

volume and STZs models, though they share many common features. Firstly, 

both mechanisms demonstrate characteristics of forward jumps or STZ 

operations compete with backward one. Secondly, they are associated with 

mechanical dilation, and, finally both mechanisms are thermally activated, and 

exhibit similar energy scales.  

2.1.3 Deformation map 

At macro level, the deformation mechanism of metallic glasses based on the free 

volume and STZs theory can occur homogenously or inhomogenously 

depending on the values of strain rate, temperature and applied stress. Thus, the 

deformation map of metallic glasses was developed based on that for crystalline 

materials proposed by Ashby and Frost [37]. Such maps were used to explain 

different modes and mechanisms of plastic deformation of the crystalline 

materials as a function of shear stress, temperature and structure. The steady-

state constitutive flow law explains each deformation using equation of the type  

γ̇ = f(τ, T, structure), 2-6 

where �̇�𝛾  is the strain rate and “structure” presents all the relevant structural 

parameters of the material. The steady-state condition indicates that the external 

parameters such as stress and temperature are used to determine the structural 

parameters, which are constant during the course of the flow. Spaepen [31] 
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suggested a deformation map showing a transition from a homogeneous 

behaviour to an inhomogeneous as a function of temperature and strain rate 

(see Figure 2-3). Based on this deformation map, homogeneous deformation 

happens at low stresses, which a strong function of strain rate, and high 

temperatures, as indicated by the strain rate contours. Moreover, 

inhomogeneous deformation takes place at high stress levels and low 

temperatures and it is insensitive to the strain rate. This deformation map can be 

used for melt-spun metallic glass ribbons as MGs show wide range supercooled 

liquid regions. 

 

Figure  2-3 Schematic deformation map for metallic glass with various deformation 

modes [31]. 
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Schuh and co-workers [38] modified the deformation-mechanism map to 

incorporate other observations. They indicated deformation modes with two 

complementary deformation maps using the concept of STZ. Figure 2-4 (a) 

represents normalised stress as a function of temperature similar to that 

proposed by Spaepen [31]. Figure 2-4 (b) is in a coordinates of shear strain rate 

and temperature and follows the analysis suggested by Megusar et al. [39].  The 

most important aspect is that the deformation map presents a boundary, at which 

a transition occurs from the homogeneous mode at high temperature and low 

stresses and strain rates to the inhomogeneous mode of deformation at low 

temperature and higher levels of stress and strain rate.  As shown in Figure 2-4, 

Schuh and co-workers modified the deformation map with inclusion of strain rate 

contours instead of putting a single dividing line to show this transition. In the 

map, the homogeneous regime is divided into “elastic”, “Newtonian”, and “non-

Newtonian” sub regions. The transition from Newtonian to non-Newtonian occurs 

at 10−5s−1; the non-Newtonian flow is observed at strain rates below this value. 

However, it is important to mention that at high enough shear rates, the non-

Newtonian flow as well as shear localisation can happen at high temperatures 

even in the supercooled region. The pressure dependence is also shown in 

Figure 2-4(a) as iso-pressure contours for a single value of shear stress. The 

pressure effect on inhomogeneous behaviour can be more clearly observed in 

Figure 2-4(b) with iso-pressure contours for various applied shear stresses. This 

figure presents  the effect of shear strain rate on shear banding and serrated flow 

patterns as the high strain rate and lower temperature result in shear bands of 

smaller offset that are more finely spaced. The deformation map developed by 

Schuh et al. [38] does not consider the evolution of glass structure during the 
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deformation and cannot be used to explain the fracture behaviour. However, this 

map can be employed to compare the mechanical response of different metallic 

glasses at the same absolute temperature (e.g. room temperature) but at 

different homologous temperatures. 

 

 

Figure  2-4 Map showing deformation mode as function of strain rate and temperature (a) 

normalized stress versus normalized temperature (b) strain rate versus normalized 

temperature plane[38].  

(a) 

(b) 
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2.2 Indentation studies of metallic glasses 

During 1970s and 1980s, it was difficult to measure the mechanical properties of 

metallic glasses due to limitation of small specimen sizes produced. Thus, 

standard microhardness measurement was a common technique to assess 

mechanical strength of thin ribbons of metallic glass. In recent years, depth-

sensing indentation experiments have been used to characterise mechanical 

properties across various length scales. Nanoindentation experiments play a 

major role in analysis and elucidation of the mechanisms of plastic flow in 

metallic glasses as this technique can be used to gain insight into the nuances of 

deformation their behaviour. The underlying reason for ubiquitous use of the 

indentation technique is its relative experimental simplicity. Experiments can be 

performed several times on a single specimen including the possibility to probe 

different volumes of materials via an appropriate choice of load and tip geometry 

[40]. 

 

Figure  2-5 Schematic of indentation of bulk materials [41]. 
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In indentation experiments, an applied load and a penetration depth into the 

studied material are simultaneously recorded, and a load-penetration depth 

curve is produced (see Figure 2-5). This curve contains a wealth of information 

related to the deformation behaviour of materials and can be used to determine 

mechanical properties such as hardness and elastic modulus [42]. Indenters are 

classified based on their shape and geometry. These are conical, spherical, 

Berkovich (consisting of 3 planer sides), Cube corner indenter (consisting of 3 

planer sides with mutually perpendicular faces arranged in a geometry like the 

corner of a cube) and Vickers indenter (consisting of four planer sides). Figure 

2-6 shows these different types of indenter used in experiments and analyses. 

Spherical indenters (Figure 2-6 (a)), have been widely used for brittle materials 

where a small deformation is preferable. In spherical indentation, the contact 

stresses are initially small and produce only elastic deformation; later, a 

transition from elastic to plastic deformation occurs, allowing assessment of 

yielding and work-hardening of the indented material. Sharp indenters such as 

Vickers and Berkovich are preferred for indentation at nano-scale, as minimising 

the effect of friction. In contrast to them, cube-corner indenters have relatively 

small face angles, useful in producing small, well-defined cracks around imprints 

in brittle materials. These cracks can be used to estimate fracture toughness at a 

very small scale. For the cube-corner indenters, the projected area of contact is 

the same as that for the Berkovich indenter. 
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Figure  2-6 Geometries of indenters used in instrumented indentation [43]. 

Due to their specific mechanical behaviour, the initiation of localised plastic 

deformation in MGs is captured in nanoindentation be analysis of pop-in events. 

The pop-in behaviour depends on the type of metallic glass and its free-volume 

content as well as the specifics of experimental procedures such as the 

indenter’s tip shape and applied loading rates. Generally, the size of pop-ins 

increases with the depth of indentation based on the strain accommodated by 

the indenter [33,44]. For instance, the cube-corner indenter produces larger pop-

in events than the Berkovich tip thanks to its lower included angle and higher 

generated stress [45]. 

As shown in Figure 2-7, the pop-in behaviour differs with composition of MGs. 

For instance, Pd-based glasses show sharp and well defined pop-ins, whereas 

Zr-based metallic glasses demonstrate ripples rather than displacement bursts. 

This variation from glass to glass is expected because of their varied chemical 

nature and different states of short- or medium-range ordering. A large number 
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of studies showed that the pop-in behaviour was changed in MG with the same 

composition when varying the deformation rate [38,44]. As illustrated in Figure 

2-7(b), low indentation rates show more displacement burst compared to high 

indentation rates, due to the activation of single shear as a result of plastic 

deformation [46] . 

 

(a)                                                                (b) 

Figure  2-7 (a) Example of indentation P-h curves for different MGs, showing discrete 

pop-ins, or flow serration. (b) Example of rate-dependence of serrated flow beneath 

nanoindenter in Pd-based metallic glass [46]. 

In other studies, an intrinsic change in plasticity of MGs was reported at high 

homologous temperatures (T/Tg), as the degree of flow serration was 

significantly reduced. Furthermore, there was an evidence of creep during 

unloading or constant-load hold with an increasing penetration depth when 

metallic glasses were indented at high homologous temperatures [47,48]. 

More recently, a flattened indenter’s tip was used to perform micro-compression 

tests on micro-pillars patterned with Focused Ion Beam (FIB). Micro-compression 

of metallic glasses helps to run uniaxial testing with high resolution without 
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imposing strain gradients to study the effect of individual shear banding [49-51]. 

Still, a size-dependent behaviour was reported by many researchers in micro-

compression studies in MG micropillars with a reported correlation between a 

size and mechanical properties such as maximum plastic strain before failure 

and yield. The length scale dependent behaviour will discussed in details in 

section 2.3. 

2.2.1 Pile-up and sink-in 

Two main modes of deformations are observed in indentation. The loaded 

material is displaced with compression along the radial direction, imparting 

further displacement perpendicular to the indent surface. These combined 

movements force the material around the indenter either to pile up (upwards) or 

sink-in (downwards) [52]. Both phenomena are schematically illustrated in Figure 

2-8. The extent of these changes depends on the 𝐸𝐸/𝜎𝜎𝑌𝑌  and strain–hardening 

properties of the materials [53]. Alcala et al. [54] investigated the piling-up and 

sinking-in using Vickers and spherical indentation tests. The study demonstrated 

that sinking-in predominated in materials with a strain-hardening modulus larger 

than 0.2. Circular patterns around the indent representing layers of overlapped 

displaced materials are not considered as cracks. The non-strain hardening 

features of metallic glasses were further proved by an upward flow of the 

material (i.e. pile up) along the indenter’s face. Metallic glasses seem to deform 

in an elastic-perfectly plastic manner (Figure 2-9). 
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Figure  2-8 Schematic of pile-up and sink-in effects in indentation(a), pile-up contact 

area (b) and sink-in contact area (c) [54]. 

The piling-up and sinking-in phenomena are of interest, since they affect the 

accurate determination of contact areas and, thus, the assessment of hardness 

and the elastic modulus. For instance, sink-in patterns reduce the contact area, 

while pile-up patterns increase it, and neglecting them can result in significant 

errors, when extracting properties from the experimental data. Fischer-Cripps 

[43] argued that the errors could be as high as 60%. An Oliver and Pharr 

approach takes into account the sink-in effect but not the pile-up effect; thus, 

Martin and Troyon [55] pointed out that it can grossly underestimate the true 

contact area. To determine the actual contact area, different techniques have 

been suggested. Atomic force microscopy (AFM) was recently employed to 

determine the actual contact area for Berkovich indenter tips, assuming 

simplified pile-up geometry. However, this procedure considered a residual 

imprint, i.e. an accurate continuous measurement of the elastic recovery was not 

possible. To overcome this limitation, numerical techniques such as a finite-
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element (FE) method can provide a helpful alternative in development of 

accurate models for indented materials. 

 

Figure  2-9 (a) Pile-up around indenter in MG. (b) Pile-up profile around indenter [54]. 

So, in indentation tests on metallic glasses, the pile-up height should be 

measured, and added to the measured indentation depth to calculate a 

representative contact area using the standard Oliver-Pharr scheme. This 

method is usually employed to measure hardness and to characterise the 

indentation size effect (ISE). Another important factor is the effect of residual 

stress on morphology of pile-up in indentation as reported in the literature for 

different types of materials, using both experiments and finite element modelling 

[56,57]. The results showed that the amount of free volume in the materials and 

the stress state beneath the indenter change the pile-up morphology and 

formation: a large amount of free volume can induce stable and homogeneous 

flow in nanoindentation at low temperature [58]. As shown in Figure 2-10, there 

is a confined plastic zone due to compressive stress, leading to extensive pile-up 

formation. In a tensile state, there was no indication of pile-up formation. It was 
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observed in tests that activation of shear bands on the shear plane underneath 

the indenter was increased under tension and decreased under compression.  

 

Figure  2-10 Effect of tensile (a) and compressive (b) residual stress on plastic-zone size, 

pile-up behaviour and shear-band activity [58]. 

2.2.2 Indentation size effect (ISE) 

Homogeneous and isotropic materials are expected to possess unique values of 

hardness and modulus. However, experimental results show a variation in 

hardness and modulus with indentation depth. It is now well known that size 

plays a significant role in the overall mechanical response of material. The 

apparent variation in the perceived material properties such as hardness and 

elastic modulus with the depth of indentation h and indenter radius R is known as 

indentation size effect (ISE) [59].  

A number of studies argued that ISE depended on the level of strain and the 

magnitude of strain gradient in the loaded material. The characteristic features of 

plastic deformation in conventional metals are formation, motion and storage of 

dislocations. The level of indentation hardness of such materials is observed to 

increase with a decrease in the indentation depth owing to the nucleation of 

dislocations in the plastic zone. In conventional metals, the most popular strain-



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

 

C
ha

pt
er

 2
:  

D
ef

or
m

at
io

n 
be

ha
vi

ou
r o

f B
M

G
s 

39 
 

gradient-based ISE mechanism was proposed by Nix and Gao [60], who 

assumed a density of dislocation together with a Taylor`s dislocation 

strengthening model employing a concept of geometrically necessary 

dislocations (GNDs). The depth dependence on hardness can be obtained from 

this model in the following form: 

 𝐻𝐻
𝐻𝐻0

= �1 + ℎ∗

ℎ
 , 2.7 

where 𝐻𝐻 is the hardness for the given indentation depth ℎ, 𝐻𝐻0 is the hardness in 

the limit of the infinite depth and ℎ∗ is the characteristic length depending on the 

indenter’s shape, shear modulus and 𝐻𝐻0. Experimental results for cold-worked 

polycrystalline copper and single-crystal silver showed that ISE is more 

pronounced in metals with a low value of intrinsic hardness. Hence, little and 

significant ISEs are expected for soft and hard crystalline materials, respectively. 

Since the Nix-Gao model is based on dislocation strengthening, it is expected 

that ISE does not occur in materials with a non-crystalline (amorphous) structure 

because of the absence of dislocations and strain hardening. However, some 

researchers reported ISE-like behaviours in Zr-Cu, Pd- and Fe-based metallic 

glasses [61,62]. There are different hypothesises described ISE mechanisms in 

MGs. Firstly, Lam and Chong [63] and, more recently, Yang [33] used the Nix-

Gao model to describe ISE in MGs based on the strain-gradient plasticity. The 

concept of non-crystalline flow defects including shear clusters or excess free 

volume were used instead of dislocations. An increase in these defects at low 

indentation depths is mainly responsible for ISE in MGs, as the increase in 

dislocations is in metals in the Nix-Gao model. Hence, it is claimed that plasticity 
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in metallic glasses is induced by a strain gradient, which should be 

accommodated by these defects. However, this model has drawbacks as an 

increase in a free volume would lead to softening rather than hardening in MGs 

[64,65] that the model cannot characterise. 

Secondly, ISE can be explained based on a strain-softening behaviour [1] and 

dependency of hardness on in indentation-imposed strain as proposed by Van 

Steenberge et al. [62]. Vincent et al. [66] conducted micro-hardness tests on Zr-

Cu based metallic glass at four different loads of 1, 2, 3 and 5 N and nano-

indentation experiments with a maximum load 80 mN. The hardness values from 

nanoindentation were higher than those reported from micro-indentation. In 

addition, a decrease in hardness with increase in the load level was observed. 

This phenomenon can be described based on [59], where metallic glasses 

showed strain softening in plastic deformation rather than strain hardening due to 

shear localisation. In shallow indentations, a plastic zone is quite small to have 

sufficient STZs and, hence, shear bands operate at limited locations resulting in 

an increase in hardness. For large penetration depths, a continuous process of 

accumulation of excess free volume during deformation can induce strain 

softening, and this softening is the source of ISE. Hence, a relationship between 

hardness and a strain rate based on the classical metallic flow equations 

developed by Spaepon [31] and Argon [26] was introduced:   

 𝐻𝐻(≈ 3√3 𝜏𝜏)  ∝  sinh−1 �𝛼𝛼�̇�𝛾 𝐶𝐶𝑓𝑓� � , 2.8 
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 , where 𝜏𝜏 is the shear stress, α is a constant, �̇�𝛾 is the shear strain rate and 𝐶𝐶𝑓𝑓 is 

the concentration of flow defects. According to this equation, the strain rate 

reduces in indentation tests under a constant loading rate, and the high 

indentation strain rate at low indentation depth can induce an increase in 

hardness.  

However, both stress and strain should not vary significantly in penetration of a 

sharp indenter according to the classical contact mechanics. Jang and co-

workers systematically studied ISE in a Zr-Cu-based BMG through 

nanoindentation with Berkovich indenters with different angles from 35º to 70º. 

As shown in Figure 2-11, the variation of hardness changed with indentation 

depth. The sharper indenters produced smaller contact radius and, thus a 

localised highly-stressed or plastic zone, which led to lower activities of STZs. 

Lower activation of STZs resulted in higher hardness values, as confirmed in 

Figure 2-11. The authors showed that the mentioned hypothesis cannot be used 

to explain the angle effect on hardness as the use of sharp indenters resulted in 

higher hardness value. 

 The phenomenon of ISE can also be explained by occurrence of STZs [38]. In 

this hypothesis, the STZ population controls the indentation size or the volume of 

indentation-induced elastic/plastic deformation. In low-depth indentation, a highly 

stressed volume beneath the indenter is too small to generate a sufficient 

number of STZs; thus, the shear bands are forced to operate in a confined zone, 

leading to higher hardness values for lower loads.  In contrast, in high-depth 

indentation, a large volume of plastic zone is formed resulting in activating a 

large population of STZs and shear bands. The STZ hypothesis can be used to 
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describe the angle effect on hardness, as higher hardness is expected for sharp 

indenters.  

 

Figure  2-11 Analysis of hardness data according to Nix-Gao model: plots of hardness 

vs. penetration depth [66]. 

Choi and co-workers [59] studied the existence of ISE in Zr-Cu-based BMGs by 

employing spherical nanoindentation experiments with varying tip radii (𝑅𝑅 ) of 

2.91, 5.75 and 31.5 µm. The load, at which a first pop-in event occurred in Zr-

based MGs, was measured for three tip radii and in two different structural states: 

as-cast and structurally relaxed. The experimental results showed the existence 

of ISE, with shear yield stress increasing with a decrease in the tip radius. Figure 

2-12 shows variations in the average values of 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 with 𝑅𝑅 for both as-cast and 

annealed specimens, where  𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥  increases with reducing 𝑅𝑅  for both states. 

Larger volumes of metallic glass were affected as 𝑅𝑅  grew, increasing the 

possibility of finding weaker regions in the bulk materials; as a result, lower 

stress was needed to initiate plasticity. Additionally, structural relaxation 

decreased availability of potential sites for STZ operation with annihilation of free 
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volume in the metallic glass; thus, the annealed specimen exhibited 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 higher 

at the first pop-in. 

 

Figure  2-12 Variation in maximum shear stress at first pop-in with tip radius for as-cast 

and annealed Zr-based metallic glass [59] 

Greer and co-worker [67] studied four types of metallic glasses including two-Pd 

based and two Zr-based MGs using nanoindentation with a spherical indenter tip 

radius of 10 µm and collected experimental data from the literature detailing 

indentation with such tips (180 nm < 𝑅𝑅 < 31.5 µm) to investigate the relation 

between the indenter’s tip radius and indentation pressure at yield. Clear signs of 

ISE were found as normalised yield pressure increased at the elastic limit when 

smaller tip radii were used: it was around three times higher than that in the 

macroscopic regime using the Hertzain equation to calculate yield pressure and 

stress. The increases in yield pressure and yield strain were independent of 

glass composition. The experiments demonstrated that yield pressure reached 

maximum when the tip radius decreased to 10 nm and below due to fewer 

structural defects. Greer and co-workers showed that the magnitude of the 

indentation size effect was inversely correlated with yield strain.  
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Still, existence of ISE is debated. Haung et al. [68] studied two types of Ti-based 

metallic glasses - ribbon-shaped and in a bulk form - to investigate the ISE effect. 

Ti-based ribbon specimens demonstrated that of lower hardness compared to 

bulk ones because of a higher amount of free volume. Hardness was observed 

to decrease, in both ribbon and bulk MGs, with increasing in the indentation 

depth. However, the perceived ISE disappears when the pile-up effect is 

accounted for with the Oliver-Pharr analysis.  

2.2.3 Wedge-Indentation  

A wedge-indentation experiment was designed to overcome limitation of nano- 

and micro-indentation to observe the initiation and propagation of shear bands 

under the indenter surface [125]. This technique has been used for variouse type 

of materials such as biomaterials (bone), conventional metals and polymers. In 

nano- and micro-indentation experiments, by their very nature, shear bands in 

the BMG can be observed only after they intersected the free surface of the 

sample.  

In 1989, Donovan [126,127] used serial sectioning and etching in order to 

investigate plastic flow and fracture of Pd-based metallic glass loaded with 

traditional spherical and Vickers indenters at the load of 10 kg. In the sectioning 

method, the deformed specimens were etched in solution of three parts HCl, one 

part of HNO3 and two parts H2O and sectioned through the indentation in two 

orientations: “horizontal” sections parallel to the original surface of the specimens 

and “vertical” sections perpendicular to the original surface. In the study, it was 

explained that the plastic zone (shear bands) had a core region immediately 

beneath the contact zone, where the shear bands typically terminated before 
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they reached the free surface. The cracks seen in the etched section were 

related to the regions of high tensile strain with excess of free volume [127]. 

Ramamurty and co-workers [23,128,129] proposed a technique named `Bonded 

interface` to investigate shear-band propagation on a plane along the indentation 

axis in BMGs. In this technique, a pre-cut specimen is loaded along the direction 

in the plane of the cut with two halves of the specimen bonded along this 

interface by frictional forces. This technique was employed for brittle materials 

such as ceramics and oxide glasses in order to study the deformation 

mechanism underneath the indenter [112,130]. Zhang and co-workers [131] 

employed the bonded-interface technique on Vitreloy 106 in order to study the 

effect of increasing the load on shear-band propagation. At small indentation 

loads, plastic deformation was primarily accommodated by semi-circular shear 

bands surrounding the indentation. At higher loads, secondary and tertiary shear 

bands were formed inside the plastic zone. The same technique was used to 

observe the primary shear bands (PSBs) and secondary shear bands (SSBs) 

caused by the indentation in Zr-Cu-based metallic glasses [132]. As presented in 

Figure 5-1, PSBs with a high density were formed near the tip of the indenter and 

SSBs emanated radially from the tip. The SSBs intersected with the PSBs, but 

rarely approached the top surface of the indent. Based on the above 

observation, it was reasonable to claim that a hemispherical region of shear 

bands with different patterns was formed beneath the indent. 

The bonded-interface technique was also employed at high temperatures on a 

Zr-Cu-based BMG to study plastic deformation characteristics in a subsurface 

deformation zone under a Vickers indenter and to find the reason for increased 

pressure-sensitivity of plastic flow with temperature [45]. Unlike the constant-
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deformation zone, the shear-band spacing in the deformation zone increased 

with temperature as larger shear bands were formed due to the movement of a 

large number of STZs. The bonded-interface technique has an inherent problem 

with traction-free surfaces created when the specimen was split. As noted by 

Ramamurty et al. [128], an adhesive layer joining the sections together may 

relieve the elastic constraint for plastic flow, which would otherwise be present in 

bulk indentations. This may alter the size or shapes of the deformed zone and 

even the indentation mechanism itself [131]. This was noted by Mulhern [133], 

who found that the relaxation could affect the size of the deformed zone and the 

slope of the strain gradient but would not affect the contours of equal strain 

significantly. In contrast to the bonded-interface method, the wedge indentation 

would not require the material to be split open for observation of shear bands at 

the volume of the material. In this respect, the wedge-indentation test has an 

advantage over the bonded-interface technique, since it requires no adhesive 

and completely eliminates limitation due to the presence of interface [134]. In 

addition, wedge indentation can be used to apply incremental loading on any 

type of material to study the evolution of deformation mechanisms in materials by 

increasing the load.  
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Figure  2-13 Primary and secondary shear bands created during indentation of Zr52.5 Cu 

7.9 Ni 14.6 Al10Ti5 BMG [131]. 

2.3 Length-scale effect 

Modern advanced manufacturing processes often need to control component`s 

dimensions and material`s microstructure down to a nanometre level. In addition, 

recent advances such as focused ion beam (FIB), which is a technique for 

specimen preparation, or nanoindentation allowed materials characterisation at 

micron and sub-micron length scales. These developments help to achieve or 

design new material systems for these scales as an alternative to traditional 

strengthening techniques (Figure 2-13) and it is necessary to investigate 

mechanical properties and deformation mechanisms of MGs to understand their 

length-dependency and its effect on structural integrity. 

 

 

Figure  2-14: Micro-truss structure at various length scales as concept of “architectured 

material” [2]. 
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Various research groups produced contradicting conclusions on the length-scale 

effect, based on different experiments performed on various BMG systems. The 

magnitude of yield stress measured for a large number of Cu- and Zr-based 

micropillars are plotted in Figure 2-14 as a function of the effective pillar diameter 

[3]. Apparently, the yield stress is independent of pillar diameter over the studied 

size scale due to a lack of dislocation sliding. In addition, it was claimed that MG 

strength is controlled by interatomic bonding, and there is a rarely linear 

relationship with the elastic modulus. However, it was shown that there was a 

considerable size effect leading to increase yield stress of micrometre sized 

specimens of Mg-based and Zr-based metallic glasses. Other groups carried out 

micro-compression experiments on metallic glass micropillars and reported a 

correlation between a reduced size and several mechanical properties including 

maximum plastic strain before failure, yield strength and deformation mode; 

however, most of them were inconsistent as can be seen in Table 2-1, an 

imperfect geometry, including tapering and top curvature of cylindrical pillars, is 

the main reason for the lack of agreement in micro-compression tests [2]. 

Moreover, when the sample size is reduced to nanometre scale, surface 

diffusion may contribute to plastic deformation and yielding, resulting in a 

decrease in strength.  Schuster and co-workers [49] also confirmed that there 

was no size-dependent strength and deformation mode in compression of a Pd-

based metallic glass. However, this finding is in contrast to other studies showing 

dramatic size effects in increasing the yield stress of micrometer sized Mg-based 

and Zr-based metallic glasses [3]. 
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Figure  2-15 Yield stress versus pillar diameter for Cu- and Zr- based metallic glasses 

with trend line indicated [3]. 

As reported by Shimizu [3] that the critical lengths to nucleate and develop shear 

bands is 100 nm. If the specimen length is smaller than the critical length, shear 

bands are localised in the form of necking during plastic deformation of MG 

samples are in tension. Greer and co-workers showed that Zr-based MG nano-

pillars with 100 nm diameter could attain ceramic-like strength (2.25 GPa) and 

metal like ductility (25%) simultaneously for non-tapered, free stranding nano-

tension specimens for their in-situ uniaxial tension [23]. Shear banding 

developed and distributed deformation was observed in the form of non-localised 

flow followed by necking. However, it was found that the yield strength of metallic 

glass nanopillars showed size independency up to 500 nm diameters with 

changing deformation modes.  
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Table 2-1 Literature on size effect of strength in metallic glasses [3]. 

Reference BMGs Strength size dependence 

Lee et al. (2007) 
 Mg-based metallic glass Dramatic increase 

Lai et al. (2008) 
 Zr-based metallic glass Dramatic increase 

Volkert et al. (2008) 
 Pd-based metallic glass Slight reduction 

Schuster et al. (2008) 
 Pd-based metallic glass Slight reduction 

Dubach et al. (2009) 
 Zr-based metallic glass No change 

Jang and Greer  (2010) 
 Zr-based metallic glass Small increase 

Bhrathula et al. (2010) 
 Zr-based metallic glass Yes 

Dehosson et al. (2009) Zr-Cu-based metallic glass No change 

 

As results a phenomenological model of two competing processes was proposed 

to explain the unique size-dependency including highly localised and 

homogeneous deformation mechanisms, related to the micro pillar diameter and 

the level of applied stress. These characteristics of plasticity impart distinct 

features to the mechanical behaviour of BMGs, such as flow softening, pressure 

sensitivity and ductile-to-brittle transition [69]. Thus, studying the influence of 

plasticity at microscopic length scales becomes essential for the development of 

robust modelling frameworks for BMGs.  
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2.4 Shear bands characterisation 

Shear bands with a characteristic thickness of the order of 10-20 nm are 

responsible for deformation of MGs at low temperature and/or high stress. Most 

of the early work on shear  bands in MGs involved inferences about their 

structure and behaviour from macroscopic observations. It was shown that 

deformation occurred preferentially at the pre-existing shear bands [70,71]. It 

was also found that shear bands were subjected to preferential etching [72], 

indicating a structural change in the deformed material such as increased free-

volume content and/or chemical reordering. Both effects were omitted by 

annealing MGs below Tg plastic can also be improved deformation by repeating 

rolling-annealing cycles [73].  

Shear bands induce softening in metallic glasses, and they are usually believed 

to be a contributor to plastic flow by reducing viscosity. Shear banding is a 

universal feature that can be also found in various materials such as polymers, 

fine-grained alloys and granular media.  Shear induced dilatation is metallic 

glasses is very similar to that in soils, in which the shear deformation of randomly 

packed structures occurs in excess of free volume and leads to the formation of 

voids within the shear bands [74]. A direct consequence of this dilatation can be 

observed when a person walks on a wet beach: the water disappears 

underneath the foot because of the shear induced dilatation of the sand grains 

[31].  In addition, X-ray diffraction (XRD) of specimens exposed to indentation 

also provide indirect evidence of dilatation in MGs. Structural relaxation 

experiments near to Tg presented indirectly an increase in the free volume with 

an increasing degree of inhomogeneous deformation, consistent with the 
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dilatation measurements described above [75]. Investigation with Positron 

annihilation spectroscopy (PAS) also indicated that plastic deformation in MGs 

induced dilatation in the structure as the deformation resulted in an increase in 

positron lifetimes, consistent with a greater degree of open volume in the 

structure [76]. Suh and co-workers [77] observed two various types of free 

volume including shallow and deep positron traps. They illustrated that the deep 

traps could be removed by annealing and, thus, these traps might be related to 

potential STZs of particularly low activation energy.  It is also possible to obtain 

insights into local chemical environment around the free volume using PAS 

measurements. For instance, it was shown that free volume sites consisted of Zr 

and Cu in a Cu-Zr-Ti metallic glass, while in Zr-Ti-Al-Ni-Cu metallic glass; the 

open volume sites included Ti and Zr atoms at expense of Cu and Ni.  

The direct structural characterisation of shear bands around deformed regions 

was carried out to understand the nature of shear banding [78].  More recently, 

deformation-induced nanocrystallisation was observed in a number of BMGs with 

large plastic deformation [79-81]. These changes occurred in shear bands not 

only induced by bending or compression of metallic glass [79,82], but resulted 

from their nanoindentation or microhardness testing [83,84], ball milling or cold 

rolling [85,86]. Many researchers employed transmission electron microscopy 

(TEM) observation, which provide nanoscale resolution to exhibit more details on 

the structural evolution of the localised shearing which cannot be detected with 

optical microscopy and SEM, showing the presence of nanocrystals inside the 

shear bands. TEM were also employed to observe coalescence and 

spontaneous formation of nanometer-scale during deformation. It is also agreed 

that these in situ nanocrystals would lead to arrest or self-lock of shear bands 
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and, therefore, prevent runaway failure along the shear band. As shown in 

Figure 2-15, there is a nanosized band along the shearing direction. The bands 

include a large number of nanocrystalls that shows a bright spots in the dark-field 

image. The nanocrystals with a size of 5 nm are only visible within the shear 

bands and cannot be found in the regions out of the shear bands, which shows 

that the deformation process is related to localised shear deformation. The index 

of the ring pattern indicates that deformation-induced nanocrystals have a simple 

face-centred cubic (FCC) structure. 

 

Figure  2-16   TEM micrograph and SAED patterns of shear in deformed Ni-based 

metallic glass: (a) dark-field TEM image of 100 nm  wide shear band with a high density 

of nanocrystals:(b) and (c) nanodiffraction patterns taken from regions within shear 

bands and out of shear bands, respectively [87]. 

There are a number of suggestions for the mechanisms of deformation-induced 

nanocrystallisation in metallic glasses. One possibility is the localised heating of 

shear bands: it was suggested that significant adiabatic heating inside shear 

bands contributed to a viscosity decrease in them [88]. However, several 

experiments indicate that this mechanism was solely responsible for 

crystallisation in shear bands for BMGs with good glass-forming ability and a 
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wide super-liquid region. There are other factors such as an ultrahigh shear 

strain rate and an excess free volume produced by deformation along the shear 

bands that may cause in-situ crystallisation [89,90]. However, crystallisation was 

observed in some metallic glasses but not in others. Schuh and co-workers 

proved that there is no obvious long-range order in the area beneath Berkovich 

indenter for a Zr-based metallic glass. In addition, Greer and co-worker 

postulated when the crystals observed in shear bands region, at least sometimes, 

can be artifacts of a TEM specimen preparation technique [2] as some of the of 

the observed crystallisation in the deformed area was because of the thin sample. 

This hypothesis was confirmed by Wilde and Rosner [91], who found no 

crystallisation in shear bands for Al88Y7Fe5 glass at ambient temperature. They 

claimed that compositional changes were observed within the shear bands and 

the observed variations in the resulting densities in various parts of one shear 

bands, were associated with propagation of each individual shear band. They 

found a mixture of amorphous or medium-range ordered domains within shear 

bands due to local variations in chemical composition and densities in shear 

bands. Certainly, the local structures are directly affected by both the free 

volume and local chemical composition. Thus, the question, whether there is any 

propensity for crystallisation is still open. In addition, the above discussion 

highlights the importance of local imaging methods for the characterisation of 

shear bands and their major role in deformation of BMGs that reported in the 

literature. 
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2.5 Modelling of deformation in BMGs 

Degradation of elastic properties is related to accumulation of damage in brittle 

materials and primarily caused by evolution of micro cracks. Degradation of 

mechanical properties is a unique feature of brittle material behaviour. Both 

mode and stability of crack growth in brittle materials strongly depend on the sign 

and magnitude of applied stress. Weakening of effective elastic properties of a 

solid by a distribution of micro cracks and other defects was accounted in several 

analytical models by Nemat-Naseer et al. [92]. Various models were proposed 

for brittle fracture of materials [93] by Glucklich et al. [94] , Brace and Bombolaski 

et al. [95], Brandtzaeg et al.  [96] namely; energy model, stress model, sliding 

crack model and lattice model, respectively. In all these approaches the material 

was assumed to be linear elastic and the analyses were limited to static or quasi-

static conditions. Continuum damage mechanics models have were also used to 

study brittle materials with some critical drawbacks (see [93]), while 

micromechanical damage models are often computationally inefficient and 

impractical.  

For metallic glasses, regardless of the experimental evidences of shear band 

initiation, the origin of shear band remains ambiguous. Theoretical investigations 

were conducted for shear -band initiation and evolution by Steif et al. [97], Huang 

et al. [98] and Jiang and Dai [99]. Ruan et al. [100] suggested a new model 

incorporating atomic structural change and free-volume generation but it lacks 

experimental validation. In this, the material was assumed to be viscoelastic to 

derive high- temperature stress–strain relationships and extension to low 

temperature scheme is a significant challenge.  
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Most acclaimed modelling strategies for BMG, mentioned in previous sections, 

such as free- volume theory of Argon and Spaepen and the STZ-based 

deformation mechanism are formulated for the atomistic domain and could not 

be employed in the continuum approach. For instance, as mentioned by Argon et 

al. [26] that the theory was based on free-volume regions typically conceived to 

be 5 atoms diameters across  and Ghosh and Cheng [101] proposed a free 

volume-based constitutive model that accounts for transition from 

inhomogeneous to homogeneous deformation and non-Newtonian to Newtonian 

viscosity. The simulation results exhibit hydrostatic pressure dependence but for 

a certain range of temperature and strain rates. However, it does not clarify the 

size effect exhibited by metallic glasses. Molecular dynamics (MD) based 

simulations also provide deeper understanding of deformation mechanisms of 

metallic glasses, but for the nano scale. For instance Chu et al. [102]. employed 

the MD scheme to conduct nano-indentation simulations of Cu47Zr47Al6 metallic 

glass and Wang et al. [93] used it to simulate nano-indentation of (Cu50Zr50)100-x 

Alx thin film to study the effect of different Al content on material properties. Shi 

et al. [103] also adopted MD to perform 2D and 3D simulations of nano-

indentation of metallic glasses [104]. However, MD analysis is limited to high 

deformation rates (>107s-1) and requires a considerable computational time. So, 

the use of continuum based constitutive models can support a study of the size 

effect exhibited by metallic glasses ([105]). 

Finite-element analysis also contributed to the analysis of mechanical behaviour 

of BMG by Gao [106] and Chen et al. [107] and several contributors. Based on 

their studies, deformation of BMG was simulated at room temperature employing 

the free-volume method and considered only the effect of free volume on 
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deformation. Later, Yang et al. (2006) induced the evolution temperature into the 

study, while some researchers considered the effect of hydrostatic stress as well. 

Still, these works focused only on some facts of mechanical behaviour of BMGs 

and under certain deformation conditions. As mentioned by Thamburaja et al. 

[105]; these models were limited to relatively low strain rates and neglected the 

material failure of more advanced scheme with contributions of free volume, 

temperature, and hydrostatic stress was considered by Li  et al. [108] as it also 

incorporated a failure criterion based on a critical free-volume concentration. 

However, as mentioned earlier, a single simulation still struggles to represent the 

entire pattern of deformation and failure in BMG [108]. 

2.6 Summary  

In the first part of this chapter, the fundamental mechanisms of deformation and 

fracture of metallic glasses were reviewed. These include the effect of low and 

high strain rates, temperature and pressure on the deformation mechanisms. In 

the second part, introductory information about the main aspect of indentation 

experiments was reviewed. A Critical review about the main aspects of 

indentation size effects, pile-up and sink-in and the length-scale dependency of 

metallic glasses was studied to understand their deformation mechanism and 

mechanical properties at small scale, which are essential for the development of 

robust modelling frameworks for BMGs. 

As shear bands play decisive role in controlling plasticity and failure at room 

temperature, an overview of shear bands characterisation was summarised, 

regarding key materials-science issues of shear bands in metallic glasses. A few 

of them is now solved and there are some key issues that remain puzzling such 
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as crystallisation inside the shear bands during plastic deformation and local 

imaging methods  for shear bands characterisations. Their resolution would 

definitely result in better understanding and control of shear bands, possibly 

leading to improved mechanical properties for metallic glasses.  

Continuum-based approaches to study the deformation behaviour of metallic 

glasses are essential for the macro scale engineering applications. Since 

metallic glass shows pressure- dependency, many studies were carried out to 

elucidate the mechanical deformation of the BMG with available continuum 

approaches that are pressure-dependent. It was shown that most common 

pressure-dependent continuum models in the literature did not agree with the 

macro scale behaviour of the BMG and the molecular dynamics approaches with 

the free volume theory is not adequate for the macro scale problems. 
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3 Characterisation techniques 

3.1 X-ray diffraction (XRD) 

An X-ray diffraction method is a rapid analytical technique primary used for 

phase indentation of crystalline materials. It can provide information about a 

degree of crystallinity, lattice parameters (the average spacing between layers or 

rows of atoms) and crystal structure of an unknown material. Samples with lower 

thicknesses, like thin films, require a longer time for the signals to be counted, 

otherwise the substrate effect dominates. Bragg [109] identified that if the atoms 

are arranged in a particular order inside the material then inter-planner spacing 

between them can be considered as grating for X-rays, since their wavelength is 

comparable to the spacing, and diffraction phenomenon could be observed. 

According to the Bragg`s law,  

𝑛𝑛𝜆𝜆 = 2𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛𝜃𝜃, 3-1 

where 𝑑𝑑  is the spacing between the atomic layers in a crystal, 𝜆𝜆  is the 

wavelength of the incident X-ray beam, 𝑛𝑛 is any integer and 𝜃𝜃 is the angle 

between the plane and the source of X-rays. In crystalline materials, strong 

diffraction peaks can be seen at the particular angles, if Bragg’s law is satisfied. 

Although, atoms inside amorphous and glassy solids do not have long-range 

periodicity, their diffraction patterns detect one or two broad maxima, which 

confirm their disordered structure. It shows that there are not enough planes to 

produce a destructive interface, so a broadened peak is observed. For example, 

Fe-based glassy metals show broad maxima in the range of 2𝜃𝜃 = 40° − 50ᵒ and 

for Ti-based glassy metals, the maximum is in the range between 30º-50º.  
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Figure  3-1 Bruker D-8 Diffractometer used for XRD analysis. 

The amorphous nature of the supplied beam samples was initially investigated 

employing X-ray diffraction (XRD), ( Bruker D-8 Diffractometer, Bruker AXS 

GmbH, Karlsruhe, Germany ), Figure 3-1, using Cu-kα as a source of radiation 

with wave length of 1.5406 Å. The amorphous nature of the supplied beam 

samples of metallic glass (MG) was initially investigated using X-ray diffraction. 

All the sample were analysed at a step size of 0.02° increment in 2θ with a step 

time of 1 s. XRD patterns were recorded for 2θ in the range of 20 º to 90˚ .  

Specimens were cut from the supplied beam samples with a low-speed diamond 
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disc under constant water irrigation to minimise the undesired mineral formation 

on the surface of the specimen. 

3.2 Electron microscopy and ion beam technique 

Electron microscopy is a scientific technique to examine objects on a very fine 

scale by using the energy electrons. A wave nature of accelerated electrons is 

responsible for a diffraction phenomenon, which can be applied to study the 

surface morphology as well as the internal structure of the materials depending 

on their thickness. Such energetic electrons can be excited by using high 

voltages applied to filaments or field emission guns and focused by 

electromagnetic lenses to spot sizes of several nanometres to enlarge the image 

by several thousand times, while bombardment of heavy ions on the surface of 

materials can be used to form different types of shape or produce deep holes 

into materials. This technique helps to look at the nanometer scale for 

understanding the material at the very fundamental level.  

3.2.1 Scanning electron microscopy (SEM)/ Focused ion beam (FIB) 

Scanning electron microscopy (SEM) is a useful technique, which can provide 

very useful information about surface morphology, fracture mechanisms and a 

shape and a size of grains, and size of the particle of the sample at nanoscale.  

Field-Emission-Gun SEM (FEG-SEM) provides better brightness compared to a 

thermionic-emission-gun SEM, because of the higher beam current in a small 

diameter of the beam. This device offers a significant signal-to-noise ratio when 

compared with conventional SEM. In this study, SEM (Leo 1530VP Cambridge 

SEM, LEO Elektronnenskopie GMbH, Oberkochen, Germany) and FEG-SEM 

(Leo 1530VP FEGSEM, LEO Elektronnenskopie GMbH, Oberkochen, Germany) 
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(as shown Figure 3-2 (a) and (b) respectively) were used at different 

magnifications to investigate shear-band initiation and evolution. An in-lens 

detector was used to record the images at 5 kV accelerating voltage and a 

working distance of ~ 5 mm. Sample preparation for FEG-SEM and SEM 

required a high-surface quality, which was challenging to obtain for BMGs 

samples. Polishing was carried out based on the procedure described in Section 

3.6.1 until the samples appeared sufficiently clear to be analysed in FEG-SEM.  

It is worth mentioning that for the polishing process, the samples were 

embedded in a non-conductive resin; however, FEG-SEM demands a conductive 

sample. Thus, a thin layer of conductive metal, silver paste was used to prevent 

charge- accumulation effects and shield the specimen from potential damage by 

direct exposure to electron beam.  In the absence of this conductive layer, a 

high-energy beam of electrons would rapidly charge up on the surface of the 

specimens to the point that no observation would be possible. 

 

(a) 
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Figure  3-2 (a) Cambridge SEM and (b) Leo 1530VP FEGSEM. 

Focused Ion Beam (FIB) is a technique employed for particle deposition and 

removal of materials from the specimens. It could be used as a milling machine 

to prepare three-   dimensional shapes at nanoscale in a short time. FIB uses 

heavy ions to image the sample in the chamber instead of a focused beam of 

electrons as used in SEM. A dual-beam system, including a SEM and FIB, offers 

capabilities to image the surface using electrons from SEM with FIB used for 

material removal.  Heavy ions such as delivered by a Ga-based liquid-metal ion 

source (LMIS), are used for milling thanks to a low melting temperature (30ºC) 

and low vapour pressure. When applying a high positive voltage to the liquid 

metal, it takes a conical shape and its apex continues to grow till evaporation of 

the metal takes place. Micro-scaled pillars for microcompression tests and TEM 

samples that are thin foils with 100 nm thickness, of studied BMGs were 

fabricated using the dual FIB system. A schematic diagram of the dual-beam 

SEM/FIB is presented in Figure 3-3  along with photograph of the instrument 

used for this work.  

(b) 
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3.2.2 Transmission electron microscopy  

A transmission electron microscope (TEM) is composed of a vertical column, 

which consists of  an electron gun (thermionic or field emission), electromagnetic 

lenses, few apertures and a sample holder. TEM is a microscopy technique, 

where an electron beam interacts with an ultra-thin specimen when electrons 

accelerate, due to a high potential difference, in a fine and very small tube. The 

interaction can cause transmittance, diffraction or absorption. An image is 

formed, which is magnified 50-100 times, from the focused transmitted electron 

onto an objective lens. For further magnification a series of intermediate and 

projector lenses are used and projected on a fluorescent screen. 

 

 

(a) 
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Figure  3-3 (a) Schematic diagram of dual-beam SEM/FIB system; (b) dual beam SEM/ 

FIB (Nova 600 Nanolab by FEI Company). 

A schematic diagram of TEM with different components is presented in Figure 

3-4. The microstructure of the BMG samples was determined using TEM (JOEL 

JEM 2000FX, JEOL Ltd. Tokyo, Japan) at 300 kV. An Energy dispersive   

spectroscopy (EDS) system, referred to as EDS or EDAX, is attached to the TEM; 

it is used to identify the elemental composition of materials. The EDS technique 

is non-destructive and specimens of interest can be examined in situ. The data 

generated by EDS analysis include spectra showing peaks corresponding to the 

elements making up the true composition of the sample analysed.  EDS was 

employed to determine the composition of the studied as-cast and deformed 

BMG. 

(b) 
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Figure  3-4 Schematic diagram of TEM. 

The selected area electron diffraction (SAED) was performed using TEM. The 

samples were subjected to a parallel beam of high-energy electrons. In this case, 

electrons were treated as waves, rather than particles. Because the wave length 

of high-energy electrons is a fraction of a nanometer, and the spacing between 

atoms in a solid is only slightly larger, the atoms act as a diffraction grating to the 

electrons. Some fractions of electrons were scattered at particular angles, 

determined by the crystal structure of the sample, while others passed through 

the sample without deflection. This resulted in ordered spots corresponding to 

the planes of crystal structure. Hence, this technique was used to confirm the 

amorphous structure of the Zr-Cu-based metallic glasses. 
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3.3 Dynamic mechanical analysis 

Dynamic Mechanical Analysis (DMA) is used to measure mechanical and 

viscoelastic properties of materials as a function of temperature, time and 

frequency. In DMA, a sinusoidal mechanical stress is applied to a specimen, and 

the resulting sinusoidal strain is acquired via a transducer. Materials that can be 

analysed with this technique include thermoplastics, thermosets, composites, 

elastomers, ceramics and metals. Two types of module are calculated using a 

ratio of stress to strain storage and loss moduli. The storage modulus, 𝐸𝐸′ , 

represents the energy stored elastically and reversibly, and the loss modulus, 𝐸𝐸′′, 

measures the energy dissipated as heat and irreversibly lost. The ratio of the 

loss modulus to the storage modulus can be explained in terms of the phase 

difference,𝛿𝛿, between the maximum stress and strain. This is the ratio of energy 

lost, (dissipated as heat) to the energy stored per cycle, and is referred to as the 

relaxation or damping factor: 

𝑇𝑇𝑎𝑎𝑛𝑛𝛿𝛿 =
𝐸𝐸′′

𝐸𝐸′
. 3-2 

 The loss or storage moduli, measured as a function of temperature or frequency 

can yield to find valuable information such as glass transition temperature (Tg) 

and sub-Tg transitions [110]. Figure 3-5 (a), presents the typical storage and loss 

moduli of Vitreloy bulk metallic glass (Zr46.75Ti8.25Cu7.5Ni10Be27.5) determined from 

473 K to 750 K at frequency of 1 Hz. From 500 K to glass transition temperature 

(603 K), both moduli increased slowly and gradually, however, the storage 

modulus dropped significantly to reach zero value at higher temperature, 

showing a typical liquid characteristic. Figure 3-5 (b) shows the storage and loss 
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moduli as function of frequency at 653 K. As the frequency increased, an 

asymmetrical peak was also revealed in the loss-modulus graph, and the storage 

modulus increased from zero to a constant value. Hence, the measurement of 

dynamic mechanical properties is a powerful tool for monitoring the structural 

evolution during glass transition and crystallization of metallic glasses. 

 

Figure  3-5 Storage and loss moduli of Vitreloy BMG determined in heating (a) and 

isothermal (b) processes (changing the frequency 𝝎𝝎 ) [111]. 

A METLLER Toledo DMA/SDTA861e was used to investigate the effect of 

temperature and frequency on the mechanical properties of the Zr-Cu-based 

metallic glasses. Both displacement and force of specimens under dynamic 

loading can be measured using this equipment associated with comprehensive 

and well-proven STARe software.  The force and frequency ranges can be 

between 1 mN to 40 N and 0.001 Hz to 10000 Hz, respectively.   
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Table 3-1  METLLER Toledo DMA/SDTA861e specification. 

 Range Technical resolution Sensitivity 

Temperature -150-500ºC 0.003 K 0.5 K 

Force 0.001-40 N 0.15 mN 1 mN 

Displacement ±1.6 mm 0.6 nm 5 nm 

Stiffness 10-106 N/m - 0.2% 

Tan delta 0.0001-100 0.00001 0.001 

Frequency 0.001-1000 Hz 0.00001 0.0001 

 

There are six different deformation modes, which can be used to analyse 

dynamic characteristics of the specimens including shear, three-point bending, 

dual and single cantilever as well as tension and compression modes. There are 

some requirements for the size of the samples for all these experiments to obtain 

reliable and accurate results. The three-point bending mode is the most 

appropriate method for hard sample of metals and alloys. This is due to the 

absence of clamping as the ends of the sample rest on two knife-edges and an 

oscillatory force is applied to the middle by a moving knife edge. 

In this study, beam-shape specimens of 40 mm length, 6 mm width and 2 mm 

thickness were prepared, and these dimensions were kept constant for 

qualitative comparisons in storage modulus (E` ) and to reduce the edge effect. 

The samples were loaded in a 3-point bending mode with a frequency range of 

0.2-1 Hz. The DMA spectra were recorded for a range of room temperature to 
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500˚C. The temperature was increased at 3°C/min and readings were taken 

every 4 seconds to yield accurate tan δ and E` curves over the desired 

temperature range. Accuracy of measurement of the temperature and frequency-

dependent modulus with the DMA were within 2%. From the measurement of the 

in-phase and out-of-phase responses of the sample, the storage and loss moduli 

were determined. 

3.4 Laser interferometry 

Zygo NewView 5000 is a non-contact instrument that uses white-light 

interferometry to acquire topography of a measuring surface. With the software 

MetroPro (produced by Lambda Photometrics), it allows for the acquisition of 

high-resolution 3D contour plots to characterise the surface structure of the test 

area. The instrument allows very accurate measurements of surface contours in 

a fraction of time needed for a contact instrument.   

Table 3-2 Zygo NewView 5000 specification. 

Objectives 5,10, 50X 

Vertical resolution 0.1-20 nm 

Lateral resolution 0.64-2.6 µm 

Vertical scan rate ≤100 µm/s 

Max roughness 100 µm 

 

The excellent vertical resolution of the instrument allows for high-resolution 

characterisation and analysis of the measured surface. Measured 3D plots were 
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then elaborated in TalyMap Platinum software to obtain the needed 

measurements. 

3.5 Nano-indentation  

The NanoTest Platform III system (see Figure 3-6), manufactured by Micro 

Materials Wrexham, UK, was used for the depth-sensing Indentation (DSI) 

experiments. Figure 3-6 shows a schematic view of the NanoTest 600 unit used 

for the experiments. The sample stage can be manipulated using precise DC 

motors having a displacement resolution of 17.3 nm in the X, Y and Z directions. 

The NanoTest system is supplied with a high-resolution microscope and a 

microscope monitor, which helps to define the exact positions of the indents in a 

sample. The high-resolution microscope had the ability to magnify in the range of 

4X, 10X, 20X and 40X. Before starting the test, the focal and measurement 

planes needed to be calibrated. The focal plane was the plane parallel to the Y-Z 

plane of the sample holder, in which the surface of the sample was in focus at 

the highest magnification. Whenever the sample was changed, it was brought to 

the focal plane before starting an indentation test. The measurement plane was 

the plane parallel to the Y-Z plane of the sample holder, in which the surface of 

the sample was approximately 50 µm away from the tip of the indenter.  A 

schematic of Nano Test platform III indentation system is shown in Figure 

3-6 .The Nano head consists of a pendulum with an indenter having a load range 

of 0.1–500 mN for nano-indentation, 1-20 N for micro-indentation and resolution 

of 0.1 µN. The pendulum can rotate on a frictionless pivot and is designed to be 

lightweight. The solid shaft of the pendulum is made of a ceramic, stiff enough to 

withstand the maximum load with negligible deflection. A coil is mounted at the 
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top of the pendulum and when the coil current is applied, it is attracted towards a 

permanent magnet, producing motion of the indenter towards the sample and 

into the sample surface. The parallel-plate capacitor measures the displacement 

of the indenter, as one of the plates is attached to ITS holder. Thus, when load 

was applied and as the indenter displaced into the sample, the capacitance 

changed and the displacement was measured by means of a capacitance bridge. 

 

Figure  3-6  Schematic of Nanotest platform III indentation system  

To minimise or reduce unwanted capacitance effects, the capacitance bridge unit 

is located close to the measuring capacitor. Below the capacitance plates, there 

is a counter-balance weight necessary to counter the mass of the coil and the 

indenter that is inserted into the diamond holder.  
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Table 3-3  Nanotest 600 specification.  

Load resolution ≤100 nN 

Force noise floor 100 nN 

Maximum displacement resolution 0.05 nm 

Thermal drift ≤0.004 nm/s 

Maximum displacement 80 µm 

 

3.5.1 Calibration 

Nano-indentation systems require calibration and calibration standards to ensure 

that the instrument is working correctly. Three calibration measurements are 

required for all nano-indentation systems including frame compliance, indenter 

area function, and cross-hair or targeting alignment.  It is expected that 

calibration standards show no pile-up or sink-in behaviour and very little creep.  

Standards should be economical and easily obtainable in an optically flat or 

highly polished condition. It is desirable that the standard materials show little or 

no ISE. Table 3-4 illustrates material properties of used calibration standard 

materials, when coupled with a diamond indenter [43]. 

Table 3-4 Material properties of commonly used calibration standard material when 

coupled with diamond indenter. 

Material  Elastic Modulus, 
E 

Poisson`s 
Ratio, ν Hardness Reduced 

Modulus,Er 
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Fused Silica 72 GPa 0.17 8.8 GPa 0.75 GPa 

Tungsten 412 GPa 0.28 ~ 6.6 GPa 0.75 GPa 

 

- Cross-hair calibration 

Cross-hair calibration [43] can be performed any time that indenter tips are 

exchanged in the system. This calibration process involves characterising 

precisely the movement of the sample stage in a way that the region of the 

sample at the microscope cross hair is re-positioned exactly in front of the 

indenter.  When the cross-hair calibration is completed correctly, it is possible to 

position indentation at a chosen location to an accuracy of about 1 µm. Hence, 

the only requirement of calibration standard is that it readily holds a clear 

indentation impression.  It is necessary that the standard calibration is very hard 

and stiff for the indenter area function calibration as loads at very low indentation 

depth are still large enough to be well within the force resolution of the 

indentation system. Thus, fused silica with superior on elastic isotropy is 

appropriate for this calibration. 

- Diamond Area Function (DAF) 

In indentation testing, the contact area at plastic depth (hp) is found from 

geometry. The DAF [112] is an essential calibration to obtain accurate 

nanoindentation data.  The area for each type of indenter can be measured from 

Table 3-5; however, the contact area is considered for the ideal indenter and this 

is impossible to achieve in practice. Crystal anisotropy of diamond indenters can 
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also affect the expected shape of the indent. Thus, it is necessary to apply a 

correction factor to the project area equations, shown in Table 3-5, in order to 

measure the actual contact area. The correction factor is the ratio of actual 

contact area to real contact area at the plastic depth (hp).  
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Table 3-5 Projected area, intercept correction and geometry correction factor for various types of indenters. 

Indenter type Projected area Semi angle (θ) Effective 
cone angle α 

Intercept 
factor 

Geometry 
correction factor β 

Sphere 𝐴𝐴 ≈  2𝜋𝜋𝑅𝑅ℎ𝑝𝑝 N/A N/A 0.75 1 

Berkovich 𝐴𝐴 = 3√3ℎ𝑝𝑝2 tan2 𝜃𝜃 65.3° 70.2996° 0.75 1.034 

Vickers 𝐴𝐴 = 4ℎ𝑝𝑝2 tan2 𝜃𝜃 68° 70.32° 0.75 1.012 

Knoop 𝐴𝐴 = 2ℎ𝑝𝑝2 tan 𝜃𝜃1 tan𝜃𝜃2 
𝜃𝜃1 = 86.25°, 
𝜃𝜃2 = 65° 77.64° 0.75 1.012 
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To calculate the area function, a series of 100 indentations is performed at 

varying maximum loads on fused silica standard specimens using the Berkovich 

Indenter, as shown in Table 3-6: 

Table 3-6 Indentation procedure of calculation of Diamond area function using 

Bekorvich indenter on fused silica standards specimens. 

Minimum load 
(mN) 

Maximum load 
(mN) 

Initial load 
(mN) 

Load time 
(s) 

Dwell time 
(s) 

0.5 1 0.005 10 5 

0.5 0.5 0.005 10 5 

1 5 0.01 10 5 

5 10 0.01 10 5 

10 25 0.01 10 5 

25 50 0.02 10 5 

50 100 0.02 10 5 

150 200 0.02 10 5 

200 200 0.02 10 5 

500 500 0.02 10 5 

 

Then, the actual contact area (𝐴𝐴) is used to determine elastic properties of the 

specimens. A typical force-displacement curve, which was used to calculate the 

elastic moduli and hardness of metallic glasses, is shown in Figure 3-7. 
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Figure  3-7 (a) Geometry of loading impression of radius 𝐑𝐑𝐑𝐑   performed with a rigid with 

a rigid indenter radius 𝑹𝑹𝑹𝑹. and (b) load vs displacement diagram for an elastic specimen 

loaded with spherical indenter showing both loading and unloading response [43]. 

When a flat specimen is loaded with a spherical indenter, there can be an initial 

elastic response at low loads followed by elastic-plastic deformation of the 

specimen`s material at higher loads [112]. As shown in Figure 3-7, the maxium 

penetration depth of a spherical indenter beneath the original specimen`s free 

surface is ℎ𝑡𝑡 at full load 𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥. When the load is removed, assuming no reverse 

plasticity, the unloading is elastic and at the complete unloading, there is a 

residual impression of depth ℎ𝑟𝑟.  As can be seen in Figure 3-7, the elastic depth 

(ℎ𝑠𝑠)  is the unloading distance from ℎ𝑡𝑡 to ℎ𝑟𝑟,  ℎ𝑠𝑠 = ℎ𝑡𝑡 − ℎ𝑟𝑟, according to the Hertz 

equation:  

𝑃𝑃 =
4
3
𝐸𝐸𝑟𝑟𝑅𝑅

1
2� ℎ𝑠𝑠

3
2� , 3-3 
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where 𝑅𝑅  is the tip radius and  𝐸𝐸𝑟𝑟  , is the reduced modulus, depending on 

deformation of the material and the diamond tip, determined from: 

1
𝐸𝐸𝑟𝑟

=
1 − 𝜈𝜈2

𝐸𝐸
+

1 − 𝜈𝜈𝑖𝑖2

𝐸𝐸𝑖𝑖
, 

3-4 

where 𝐸𝐸  and 𝐸𝐸𝑖𝑖 are the moduli of the specimen and the indenter, respectively, 𝜈𝜈 

is the  Poisson’s ratio of the specimens and 𝜈𝜈𝑖𝑖  is the Poisson’s ratio of the 

indenter. Calculation of the elastic moduli with Eq.3-4 assumed a spherical 

diamond tip with the elastic modulus of 1.141 TPa and the Poisson's ratio of 0.07. 

A well-established method proposed by Oliver and Pharr [43] was used to 

calculate elastic properties of materials in the nano-indentation tests. In this 

method, the initial portion of the unloading curve (𝑑𝑑𝑃𝑃 𝑑𝑑ℎ� ) is used to determine 

the plastic depth (ℎ𝑝𝑝).  The derivative of (𝑑𝑑𝑃𝑃 𝑑𝑑ℎ� )   at the point of initial unloading 

ℎ𝑡𝑡 can be calculated,  

𝑆𝑆(ℎ𝑡𝑡) =
𝑑𝑑𝑃𝑃
𝑑𝑑ℎ

= 2𝐸𝐸𝑟𝑟𝑅𝑅
1
2� ℎ𝑠𝑠

1
2� . 

3-5 

 

𝑑𝑑𝑃𝑃
𝑑𝑑ℎ�   can be used to determine the contact stiffness 𝑆𝑆 indicating resistance of 

the material to elastic deformation. By substituting Eq. 3-5 to Eq. 3-3, 

𝑃𝑃 = 2
3
𝑑𝑑𝑝𝑝
𝑑𝑑ℎ
ℎ𝑠𝑠. 3-6 

Then 
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ℎ𝑠𝑠 =
2
3
𝑃𝑃
𝑑𝑑ℎ
𝑑𝑑𝑃𝑃

. 
3-7 

Based on the Hertz equations for a spherical indenter, the depth of the contact 

area ℎ𝑚𝑚 beneath the specimen`s free surface is half of the elastic 

displacement ℎ𝑠𝑠: 

ℎ𝑚𝑚 =
ℎ𝑠𝑠
2

. 
3-8 

Hence,  

ℎ𝑚𝑚 = �
3
4
�

𝑃𝑃𝑡𝑡
𝑑𝑑𝑃𝑃

𝑑𝑑ℎ�
. 3-9 

From  Eq.3-9,  the radius of the circle of contact can be extracted from geometry: 

𝑎𝑎 ≈ �2𝑅𝑅𝑖𝑖ℎ𝑝𝑝. 3-10 

From Eq. 3-5, 𝐸𝐸𝑟𝑟 can also be calculated from slope of the initial unloading: 

𝐸𝐸𝑟𝑟 =
𝑑𝑑𝑃𝑃
𝑑𝑑ℎ

1
2𝑎𝑎

=
𝑑𝑑𝑃𝑃
𝑑𝑑ℎ

√𝜋𝜋
√𝐴𝐴

1
2

 , 
3-11 

, where 𝐴𝐴 = 𝜋𝜋𝑎𝑎2 is the area of contact. These parameters were computed from 

the unloading part of the force-displacement curves with Nanoindenter III 

software, according to the well-established method [45]. 
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The definition of hardness is the mean pressure under the indenter at maximum 

depth.  In a spherical indenter-tip indentation process, the hardness can be 

calculated from the corresponding P-h curves [43]: 

𝐻𝐻 = 𝑃𝑃
2𝜋𝜋𝜋𝜋ℎ𝑃𝑃

 . 3-12 

Plastic displacement (ℎ𝑃𝑃) can be found from 

ℎ𝑃𝑃 = ℎ𝑖𝑖 − 𝜀𝜀 × 𝑃𝑃
𝑆𝑆
 , 3-13 

where ℎ𝑖𝑖 is the recorded indenter displacement, ε is the shape function (equal to 

0.75  for a spherical indenter) and 𝑆𝑆 is the stiffness, which is obtained from the 

unloading curve of the indentation test.  

- Frame compliance 

The depth measured during the indentation process includes the depth of 

penetration of the indenter into the specimens along with any displacement of 

the instrument due to its deflection [43]. The compliance of the instrument, 𝐶𝐶𝑓𝑓, is 

defined as the deflection of the system divided by the load. The instrument`s 

compliance includes the compliance its loading frame, indenter shaft and the 

specimens mount. When the sample compliance is small (high-modulus sample), 

the instrument`s compliance makes up an appreciable fraction of the total 

measured deformation, so small errors in the machine compliance can affect the 

accuracy of determination of the sample modulus. The compliance of the 

indenter material, 1
𝑆𝑆
, is included in the reduced modulus 𝐸𝐸𝑟𝑟 , where the stiffness 

of the contact S is given as a rearrangement of Eq. 3-14: 
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𝑑𝑑ℎ
𝑑𝑑𝑝𝑝

=
1
𝑆𝑆

+  𝐶𝐶𝑓𝑓 . 
3-14 

Frame compliance calibration is required to determine the area function, and 

standard materials should have a low ratio of hardness to elastic modulus. 

Hence, a large and stiff contact can be easily obtained with a minimum error of 

indenter area function. Tungsten is ideal for this calibration as it behaves 

elastically isotropic under indentation.  For the case of spherical indenter as 

𝐴𝐴 =  2𝜋𝜋𝑅𝑅ℎ𝑝𝑝, the Eq.3-14 can be converted to 

𝑑𝑑ℎ
𝑑𝑑𝑝𝑝

= �
1

2𝐸𝐸∗𝑅𝑅𝑖𝑖
1
2
�

1

ℎ𝑝𝑝
1
2

+ 𝐶𝐶𝑓𝑓 . 
3-15 

There are three methods to calculate 𝐶𝐶𝑓𝑓  for the spherical indenter. The first 

technique is to plot 
𝑑𝑑𝑝𝑝
𝑑𝑑ℎ

  against  ℎ𝑝𝑝
−1

2�  obtained for an elastic unloading into 

elastic-plastic for a range of maximum indentation depth. The plot should be 

linear with the slope proportional to 
1
𝐸𝐸𝑟𝑟

 and an intercept, which gives the 

compliance of the instrument 𝐶𝐶𝑓𝑓  directly. The second method establishes 

instrument`s compliance, which includes testing of a range of specimen 

materials with a spherical indenter with a relatively large radius using repeated 

loading at a single location. Such repeated loading minimizes surface effects 

such as roughness and other irregularities. A relatively large indenter (𝑅𝑅) is used 

at reasonably high loads, where compliance effects are more readily observed 

and where indenter tip effects are minimized. Since the displacement of the 
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loading column is proportional to the load, the total displacement between two 

fixed points under a load P is 

𝛿𝛿 = �
3

4𝐸𝐸𝑟𝑟
�
2
3�

𝑃𝑃2 3� 𝑅𝑅1 3� +  𝐶𝐶𝑓𝑓𝑃𝑃. 
3-16 

The displacement, 𝛿𝛿, and load, 𝑃𝑃, are calculated by the indentation instrument. 

For any two loads 𝑃𝑃1and 𝑃𝑃2 resulting in deflection 𝛿𝛿1and 𝛿𝛿2, the following relation 

holds: 

𝐶𝐶𝑓𝑓 =

⎣
⎢
⎢
⎢
⎡𝛿𝛿1 − �𝑃𝑃1𝑃𝑃2

�
2
3�
𝛿𝛿2

𝑃𝑃1 − �𝑃𝑃1𝑃𝑃2
�
2
3�
𝑃𝑃2⎦
⎥
⎥
⎥
⎤
. 

3-17 

The third method is the current ISO standards for nanoindentation (ISO 14577), 

which was used for the compliance calibration in this project, and works well 

provided that the diamond area function (DAF) and depth calibration are known 

precisely. For this method, the Berkovich indenter and fused silica calibration 

standard is required. A series of indentations were conducted using the following 

parameters as presented in Table 3-7. 

Table 3-7 Experimental procedure for frame compliance calculation using Berkovich 

indenter on standard fused silica specimens based on ISO 14577. 

Minimum load 200 mN 

Maximum load 200 mN 

Loading time 20 s 
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Unloading time 20 s 

Dwell time at maximum load 5 s 

Thermal drift time 60 s 

Spacing between indentations 30 µm 

 

A series of automated calculations took place using Nanotest Platform III 

software to calculate the frame compliance of the system, and the calculated 

value was around 0.314 nm/mN. 

3.5.2 Sample preparation 

Zr48 Cu36 Al8 Ag8 (at%) alloy was used in this study and specimens with a length 

of 2 cm and a width of 1 cm were used in the test. The specimens were difficult 

to prepare, as high surface hardness, high modulus, and tendency to smear of 

BMG require careful preparation of metallographic samples. Specimens were cut 

from the supplied beam samples with a low-speed diamond disc (1000 rpm) 

under constant water irrigation to minimise the undesired crystal formation on a 

surface of the specimen. In order to avoid subjecting work-piece sample to 

thermal stress, the specimens were initially mounted in epoxy resin.  These 

resins when mixed with a hardener underwent setting with an exothermal 

reaction; the chemical-heat generation increased the temperature up to 60-70 

ºC. The selected resin was Buehler Epoxicure, which was available in the 

materials lab, set in soft silicon moulds. The resin did not have good edge 

retention so during the polishing, edge effects were unacceptably high. The 

same resin mixed with conductive Ni particles was also used for early SEM 
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analyses. A resin with lower shrinkage and better edge retention was needed; it 

was therefore necessary to switch to hot mounting.  

 

Figure  3-8 Embedding hot press 

The resin of choice of this was Buehler Bakelite. This resin offered higher 

performance than the cold-set Expoxicure granting better edge retention and 

lower shrinkage. The samples were embedded on a Struers mounting press, 

with a mounting pressure of 20 kN at 180ºC (see Figure  3-8). The mounted 

sample were polished using a semi-automatic polishing machine (TegraPol-25, 

Struers Ltd.), shown in Figure 4-8 (a) with a rotating sample holder (TegraForce-

5, Struers Ltd.) and an automatic feeding system for polishing media 

(TegraDoser-5, Struers Ltd.). As a typical polishing cycle, mounted samples were 

initially ground using a polishing disc with a grit size of 400 (35 µm), followed by 

600 (25 µm), 1200 (15 µm), and finally 5000 (3 µm). Subsequently, polishing was 

continued by using a diamond paste consisting of particles of 1 µm in size. After 

finishing each polishing step and before starting the next one, the mounted 

samples were removed from the specimen holder, cleaned with deionised water 

and dried with a heat gun. When the final stage was completed, in order to get a 

clean surface without any contamination, all the samples were subjected to 
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ultrasound in deionised water for two minutes, sprayed with ethanol and dried 

using a heat gun. A white- light 3D interferometry Zygo profilometer was used to 

determine surface roughness. The system offers fast, non-contact, high-

precision 3D metrology of surface features. The obtained results showed that 

samples were polished to a mirror-like finish with average roughness of around 5 

nm.   

 

Figure  3-9 (a) TegraPol-25, Struers Ltd. used for sample preparation. (b) Zygo 

micrograph for polished BMG sample showing roughness of 2-3 nm. 

3.6 Wedge-Indentation 

For the wedge-indentation test, the supplied beam samples were cut into 

specimens with length of 40 mm and width of 3 mm. An electrical Discharge 

Machining (EDM) system, by GF AgieCharmilles, was used to achieve the 

desired shape and dimensions of specimens required for the study. EDM is 

capable of precise machining of tools, fixtures and dies from hardened metals, 

steel, titanium or ceramics. The steps for sample preparation: 

1- Specimens were emerged in water in order to reduce the temperature and 

avoid splashing of debris.  

(a) (b) 
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2- The specimens were cut with brass wire of 0.25 mm diameter, which is used 

to cut hard metals for high-speed machining and cutting samples requiring 

superb surface precision. The motion of the metal wire was controlled by a 

computer with AC Cam Easy software. 

 

Figure  3-10 Micrograph of EDM with brass wire employed to prepared wedge 

indentation specimens. 

Afterwards, the samples were polished using manual polishing systems (Kemet 

300 Series and Metaserv), as shown in Figure  3-11; a semi-automatic polishing 

machine could not be used because of the particular shape of the specimens. 

For the polishing process, a clamp made of steel was designed and 

manufactured in-house.  Figure  3-12 illustrates the designed clamp and its 

dimensions used to polish the metallic glass samples. The mounted samples 

were manually grinded with increasing grit size up to 1200.  
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Figure  3-11 Kemet 300 Series (a) and Metaserv (b) polishing machines. 

The manual polishing included two steps: first, on Buehler Texmet 1500, with 6 

diamond pastes following by Buehler Microcloth with 1 μm diamond paste. The 

surface finish of the specimens was examined using an optical microscope. As 

shown in Figure  3-13 (b), some polishing artefacts were observed on the surface 

of the samples. Hence, it was suggested to modify the polishing procedure, and 

a use of 6 diamond paste as a polishing step was eliminated. As a result, 

samples were grinded with increasing grit size up to 5000 and then polished 

using only 1 μm diamond paste.  Figure  3-13 (a) showed that the surface finish 

of the samples was significantly improved. 

 

Figure  3-12  Polishing clamp and its dimensions. 

 

(a) (b) 

(a) (b) 
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Figure  3-13 Comparison of two polished surfaces prepared using different polishing 

procedures: without (a) and with (b) using a diamond paste with particles of 6 µm. 

After ensuring that the wedge indenter was flat enough, it was revealed during 

the indentation experiments that the sample surface was not flat enough due to 

the manual grinding and polishing procedure. As shown in Figure  3-14, uniform 

shear-band evolution was not observed on the sample`s top surface in the 

wedge-indentation experiments at loads less than 1 kN and the indenter did not 

touched completely the corners of the sample due to the sample is uneven 

surface. Therefore, an automatic surface grinder, OKAMOTO Grind-X ACC-

450DXA, was employed for initial grinding procedure (Figure  3-14). The beam-

shaped sample can be positioned in the holder of the surface grinder without any 

movement during the grinding procedure. The grinder used a rotating wheel to 

flatten the sample with the accuracy of 2 µm. The specimens were subsequently 

polished using 5000 grit size and 1 μm diamond paste in order to observe 

uniform shear bands on the top surface.  

(a) (b) 
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Figure  3-14 Shear band evolution during wedge indentation after manual grinding. 

 

Figure  3-15 OKAMOTO Grind-X ACC-450DXA surface grinder. 
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4 Basic characterisation of a Zr-Cu-based metallic glass 

4.1 Material specification 

A Zr-Cu-based alloy with a nominal composition of Zr48Cu36Al8Ag8 (at%) was 

critically evaluated. The alloy was initially produced by arc-melting on a water-

cooled copper mould under a high purity argon atmosphere at IFW Dresden, 

Institute for Complex Materials, Germany. The ingot was re-melted at least three 

times to obtain homogeneity. Furthermore, using the alloy ingot rectangular 

beam-shaped samples with a cross-section of 10 mm × 2 mm and a nominal 

length of 80 mm were prepared by suction casting into a copper mould.  

4.1.1 X-ray diffraction  

As shown in Figure 4-1 (a), the sample exhibited a broad diffuse peak without 

any detectable crystalline peaks on the XRD plot confirming its amorphous state. 

Similar results were observed for different parts (top, middle and bottom) of the 

specimens. However, as shown in Figure 4-1 (b), if the metallic glass is not 

completely amorphous, there are some sharp peaks showing crystalline phases 

in the sample. These peaks are related to metastable quasicrystalline phases 

formed in the metallic glasses as the composition of crystalline phases cannot be 

recognized by XRD. These phases only precipitate at the early stage of 

crystallisation in Zr-based metallic glasses at low volume fraction and the small 

particle size. In addition, the formation of quasicrystals phases is sensitive to the 

cooling rate during solidification of metallic glasses, the impurity contents and 

fabrication condition [113]. The position of peaks with higher intensity, like (100 

000) and (110 000) in the spectrum, almost overlap with those of the 
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intermetallics, such as Zr3Al3 and Zr2Cu, which may appear in multicomponents 

alloys. 

 

Figure  4-1 XRD patterns of  (a) Zr-Cu-based metallic glass used in the project and  (b) 

Zr-based metallic glass [113]. 

4.1.2 Electron diffraction pattern 

The microstructure of the as-cast BMG was further characterised using TEM. 

The TEM results confirmed the amorphous nature of the alloy as the first halo 

ring of a Selected Area Electron Diffraction (SAED) pattern did not show any 

presence of nanocrystals. The pattern is only comprised of a set of diffuse 

amorphous halo rings and no distinct evidence of thin crystalline rings was found 
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anywhere across the whole specimens, which agrees well with XRD. The 

HRTEM micrograph further revealed the amorphous nature of the specimen and 

nano-sized crystallites with a periodic lattice contrast cannot be found. It shows a 

maze-like structure with a uniform contrast through the image and any ordered 

atomic packing cannot be found. 

 

  

Figure  4-2 (a) TEM sample mounted to TEM grid and (b) the corresponding SAED 

pattern (c) HTTEM image of undeformed matrix 

The composition of the locations, where the SAED were obtained from, was 

tested in-situ with EDS. The present measurement shows that the elemental 

concentrations were closed to the nominal values of 47.9 at.% Zr, 36.5 at.% Cu, 

(a) (a) 

(b) (c) 
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7.9 at.% Al and 7.7 at.% Ag . However, there is a limit as to what percentage in 

composition EDS can detect and the variation from measurement is within  ± 1% . 

 

Figure  4-3 EDX graph obtained from TEM for Zr-Cu-based metallic glass. 

 

4.1.3 Dynamic Mechanical Analysis  

The glass-transition behaviour of the Zr-Cu-based BMGs was examined using 

DMA. Figure 4-4 exhibits the typical storage and loss moduli of the BMG 

determined in the range from 300°C to 450°C at heating rate of 3°C/min at the 

frequencies of 0.5, 1.0 and 2.00 Hz. The measured temperature scope contains 

its super liquid regions. During heating, the storage modulus decreases rapidly to 

zero within different temperature ranges at different loading frequencies. A 

decrease in the storage modulus and the accompanying maximum of the loss 

modulus indicate the glass-transition temperature (Tg). Hence, the glass 

transition of the MG is around 420°C based on the storage-modulus and loss-
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modulus graphs, which confirmed the amorphous structure of the studies 

metallic glass.  The maximum value of storage modulus and loss modulus are 

~80 GPa and 3.57 GPa, respectively. It can be seen that dynamic characteristics 

of the metallic glass are effectively independent of the frequency at room 

temperature. This study indicates that the dynamic properties of the material are 

not sensitive to the strain rate at room temperature. 

 

Figure  4-4 Temperature dependence of storage (a) and (b) loss moduli of 

Zr48Cu36Al8Ag8 determined with DMA at heating rate of 3°C/min. 

(b) 

(a) 
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4.1.4  Macroscale bending test 

Macroscopic three-point bending test was carried out, with the sample subjected 

to both tensile and compressive stresses. Simplicity of the bending test in 

determining elastic modulus is worth considering in comparison to tensile tests, 

which often suffer from fixation, gripping and alignment problems. To perform the 

three-point bending test, beam samples with a length of 40 mm, width of 10 mm 

and thickness of 2 mm were prepared. The bending tests were conducted using 

a standard tensile/compression testing machine. A biaxial strain gauge, Figure 

4-5, was attached to the specimen to measure strains along the axial and 

transverse directions during the loading process. The load was applied by the 

mechanical test system operating with a displacement rate of 0.5 mm/min. The 

macroscale bending tests consistently led to the elastic modulus (𝐸𝐸) of 95 GPa 

with the Poisson’s ratio (𝜈𝜈) of 0.35. The obtained elastic modulus was observed 

to be less than what is typically reported in literature ∼110 GPa. The latter 

magnitude was measured using ultrasonic techniques; this may be the reason 

for the discrepancy between the magnitudes. 

 

Figure  4-5 Specimen for three-point bending test with strain gauge attached. 
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As described previously, the elastic modulus can be derived from the properties 

of constituent metallic elements and the other dependent on the particular glassy 

configuration prepared using a modified rule of mixture as suggested by Liu and 

Ma [16,17]. As a result, the global elastic moduli of metallic glasses (𝐺𝐺) can be 

calculated for iso-stress conditions: 

1
𝐺𝐺

=
𝑉𝑉𝑚𝑚𝑀𝑀𝑓𝑓𝑀𝑀

𝐺𝐺𝑀𝑀𝑉𝑉𝑚𝑚
+
𝑉𝑉𝑚𝑚𝑆𝑆𝑓𝑓𝑆𝑆

𝐺𝐺𝑆𝑆𝑉𝑉𝑚𝑚
 , 

4-1 

where 𝑉𝑉𝑚𝑚𝑀𝑀and 𝑉𝑉𝑚𝑚𝑆𝑆 are the molar volumes of the matrix and clustres/superclusters, 

respectively, 𝐺𝐺𝑀𝑀and 𝐺𝐺𝑆𝑆 are their elastic moduli and 𝑓𝑓𝑀𝑀 and 𝑓𝑓𝑆𝑆 are the fractions 

of the two phases (considering   𝑓𝑓𝑀𝑀 + 𝑓𝑓𝑆𝑆 = 1  ). The above equation can be 

converted, if the molar volume of MGs is considered as the average of those of 

the two phases weighted by their fraction following  𝑉𝑉𝑚𝑚���� = 𝑉𝑉𝑚𝑚𝑀𝑀𝑓𝑓𝑀𝑀 + 𝑉𝑉𝑚𝑚𝑆𝑆𝑓𝑓𝑆𝑆: 

1
𝐺𝐺

=
1
𝐺𝐺𝑀𝑀

−
(𝐺𝐺𝑆𝑆 − 𝐺𝐺𝑀𝑀)𝑉𝑉𝑚𝑚𝑆𝑆𝑓𝑓𝑆𝑆

𝐺𝐺𝑀𝑀𝐺𝐺𝑆𝑆
 .

1
𝑉𝑉𝑚𝑚

 . 
4-2 

The shear modulus of two phases can quantitatively be expressed using the 

calculated values of BMGs 𝐺𝐺𝑐𝑐𝑚𝑚𝑡𝑡 by the conventional “rule of mixture” under iso-

stress condition, where 𝐺𝐺𝑀𝑀 = 𝐴𝐴𝐺𝐺𝑐𝑐𝑚𝑚𝑡𝑡  and 𝐺𝐺𝑆𝑆 = 𝐵𝐵𝐺𝐺𝑐𝑐𝑚𝑚𝑡𝑡   are for the solvent matrix 

and the clusters/superclusters, respectively, where 0 < 𝐴𝐴 < 1 and, generally,𝐵𝐵 >

1. Accordingly, the calculated shear modulus normalised by the experimental 

one 
𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐
𝐺𝐺

  can be described as  
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𝐺𝐺𝑐𝑐𝑚𝑚𝑡𝑡
𝐺𝐺

=
1
𝐴𝐴
−

(𝐵𝐵 − 𝐴𝐴)𝑉𝑉𝑚𝑚𝑆𝑆𝑓𝑓𝑆𝑆

𝐴𝐴𝐵𝐵
 .

1
𝑉𝑉𝑚𝑚

 
4-3 

Weng and Jiang [114] showed that the elastic properties of BMGs can be closely 

related to their molar volume by universal power relations. Hence, the elastic 

moduli vary almost linearly with the molar volume, when plotted in logarithmic 

scale.  The general trend can be described as 𝑉𝑉�𝑚𝑚 ∝  𝐺𝐺𝑚𝑚 and 𝑉𝑉�𝑚𝑚  ∝ 𝐾𝐾−𝑖𝑖 , where 

the constant exponents 𝑚𝑚  and 𝑛𝑛  are fitted as  𝑚𝑚 = 0.5184  and  𝑛𝑛 = 0.4173 , 

respectively. By using the mentioned relationship, Eq.4-3 can be converted into 

𝐺𝐺𝑐𝑐𝑚𝑚𝑡𝑡
𝐺𝐺

= 𝑎𝑎 − 𝑏𝑏𝐺𝐺𝑚𝑚, 4-4 

Where 𝑎𝑎 = 1
𝐴𝐴
 and 𝑏𝑏  scales with 

(𝐵𝐵−𝐴𝐴)𝑉𝑉𝑚𝑚𝑆𝑆𝑓𝑓𝑆𝑆

𝐴𝐴𝐵𝐵
 . In addition, the ratio between the 

calculated bulk modulus and the experimental one can be expressed as: 

𝐾𝐾𝑐𝑐𝑚𝑚𝑡𝑡
𝐾𝐾

= 𝑐𝑐 − 𝑑𝑑𝐾𝐾𝑖𝑖, 4-5 

Where 𝑐𝑐  and 𝑑𝑑  are the newly introduced parameters. Table 4-1 presents the 

fitted values of the parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 and 𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚𝑠𝑠 for Zr and Cu alloys. It can be 

observed that the characters of amorphous structures of MGs can be determined 

to a large extent by the nature of the corresponding base elements. In addition, 

the properties and behaviour of glassy materials can be characterised from the 

composite perspective. On the other hand, the present relationships provide the 

possibilities to predict accurately and design the elastic modulus of MGs from 

their composition. 
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Table 4-1 Fitted values for the parameters a, b, c, and d in Zr-Cu-based metallic glass 

and the molar volume of the corresponding based elements [16]. 

Metallic glass a b c d 𝑽𝑽𝒎𝒎𝒃𝒃𝒂𝒂𝒃𝒃(𝒄𝒄𝒎𝒎𝟑𝟑𝒎𝒎𝒎𝒎𝒎𝒎−𝟏𝟏) 

Zr (𝒇𝒇𝑩𝑩𝑩𝑩 < 𝟏𝟏𝟏𝟏 %) 3.1599 0.3435 2.8291 0.2809 14.02 

Zr (𝒇𝒇𝑩𝑩𝑩𝑩 < 𝟏𝟏𝟏𝟏 %) 3.2553 0.3340 3.1328 0.3163 14.02 

Cu 2.6686 0.2580 2.4942 0.2296 7.11 

 

To calculate 𝐸𝐸, the conventional rule of mixture is used by considering the iso-

stress assumption (Eq. 4-6 ) to calculate 𝐺𝐺𝑐𝑐𝑚𝑚𝑡𝑡 and 𝐾𝐾𝑐𝑐𝑚𝑚𝑡𝑡 and then substitute them 

into 4-4 and 4-5 to predict precisely the shear and bulk moduli of BMGs. 

1
𝑃𝑃

= �
𝑉𝑉𝑚𝑚𝑖𝑖

𝑃𝑃𝑖𝑖𝑉𝑉𝑚𝑚
 (𝑑𝑑𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑡𝑡𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑) 

4-6 

In addition, the elastic constants for isotropic materials are related according to 

𝐸𝐸 = 2𝐺𝐺(1 + 𝜈𝜈) = 3𝐾𝐾(1 − 2𝜈𝜈) , where 𝐸𝐸  and 𝜈𝜈  are the Young`s modulus and 

Poisson`s ratio, respectively. Hence, all the elastic properties can be determined 

as soon as 𝐺𝐺and 𝐾𝐾 are quantified independently. In Zr48Cu36Al8Ag8 (at%), both Zr 

and Cu can be considered as the base elements according to the percentage of 

Zr and Cu in the metallic glass composition. The Young`s modulus was 

determined based on its constituent elements.The Young`s modulus of 

Zr48Cu36Al8Ag8 (at%) was calculated using the above equations; the modulus 

value was approximately 92 GPa. This measured value is comparable with the 

results obtained in the 3-point bending and DMA experiments. It was also found 
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that the compliant solvent matrix for the studied BMG was copper (Cu), as the 

diffraction equations (from Eq.4-4 and Eq. 4-5) cannot be solved for the Zr-based 

element. 

The fracture-surface morphology on both tension and compression sides of 

specimens tested in three-point bending was studied.  Figure 4-6 shows SEM 

images of the failure pattern and fracture-surface morphology of the Zr-Cu-based 

BMG. In compression mode, the fracture surface is typically smooth with periodic 

bands in the direction of fracture. Formation of a vein pattern indicates that 

fracture occurred in compression mode while river patterns are related to the fast 

tensile fracture mode. The differences in fracture surfaces are associated with 

the influence of the normal stress and the dominance of shear stress in tension 

and compression modes, respectively. A shear band zone can be found in both 

tension and compression sides as shown in Figure 4-6. Some branches of these 

structures can be found at the sites where the propagation direction deviates 

from the case of the maximum shear stress. This behaviour is distinctly different 

from the case of propagation of principle shear bands along slip plan, which was 

widely reported in the literature [64,115,116]. 

The process of shear bands formation makes the material softer thanks to 

dilataion of shear bands and temperature rise inside them [117]. Hence, shear 

bands play the weakening role in materials, showing lower strength and stiffness 

compared to the undeformed BMG matrix. Thus, it is important to characterise 

fracture surface using the indentation technique, which will be presented in 

Chapter 7.  
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Figure  4-6 (a) Schematic of fracture surface observation of fracture surfaces of 

Zr48Cu36Al8Ag8 metallic glass under three-point bending loading mode (b) SEM 

observation of the fracture surface in compression and tension mode. High 

magnification images clearly show the presence of vein pattern on fracture surface and 

slip steps associated with shear bands. 
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4.2 Micro/nano scale characterisation of Zr-Cu-based metallic glass 

4.2.1 Nanoindentation  

4.2.1.1 Experimental Procedure 

All the tests on BMG specimens for measuring the elastic modulus and hardness 

were performed at room temperature (23ºC). Both load- and displacement-

controlled nanoindentation tests were performed. A holding (dwell) time was set 

60s to allow negligible creep displacement. A thermal shift correction was used 

so that absolute values of a thermal drift rate were usually well below 0.05 nm/s. 

In this present study to capture the first pop-in, a spherical indenter was used 

with a radius of 5 µm with a conical shape with a spherical tip Figure  4-8 (b). 

Obviously, only the indenter’s tip was used to penetrate the specimen surface in 

indentation tests. 

 

Figure  4-7 Experimental arrangement for indentation test of MG. 
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Figure  4-8 Tip of spherical indenter used for nanoindentation testing with nominal tip 

radius of 5 µm. 

4.2.1.2 Results and Discussion 

To investigate initial elastic deformation, a maximum load of 10 mN was applied 

with a loading rate of 0.1 mN/s to specimens in the nanoindentation test.  The 

estimated yielding load was 3 mN for a typical Zr-based BMG for a 5 μm 

spherical tip following the work of Packard and co-workers [118]. Figure  4-9 

showed the response of the BMG to nano-indentation loading, holding and 

unloading cycle with maximum loads of 2 mN and 3.5 mN, respectively. It can be 

seen that the loading and unloading responses are similar below 4 mN, with no 

obvious disparity between the two, implying pure elastic deformation. 
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Figure  4-9 Typical load-displacement plot for Zr-based BMGs at loading rate of 0.1 

mN/s: (a-b) purely elastic deformation.  

A presented load-displacement plot for 16 mN (Figure  4-10) is a typical example 

for several tests, showing closely correlated pop-in events. A significant plastic 

event was observed at around 4 mN (see Figure  4-10), which was considered to 

be the first pop-in event.  It is associated with an initiation and propagation of an 

individual shear band underneath the indenter tip. As can be seen in Figure  4-10, 

other pop-in events were found to occur at ~5 mN, ~7 mN and ~9 mN. 
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Figure  4-10 Typical load-displacement response of Zr48Cu36Al8Ag8 at loading rate 0.1 

mN/s showing initial deformation. 

In order to assess the evolution of shear bands in the BMG material, loading–

unloading cycles were carried out at higher load magnitudes with the aim of 

observing shear steps on the material’s surface. Such steps in spherical 

indentation of BMG were found at loads in excess of 100 mN. Features of shear 

bands at various loads in a range from 130 mN to 275 mN are shown in 

Figure  4-11 (a-d). The shear bands originated from the periphery of residual 

impression and moved outwards in direction of shear stresses on the free 

surface. The shear bands were not straight, but spiral in shape. This is because 

along the lines of shear bands, directions of the radial, hoop and, thus, shear 

stresses changed constantly in a spiral fashion [119]. It can be seen in 

Figure  4-11 (a-d) that these bands were not cracks but overlapping layers of an 

upwardly displaced material. Owing to a volume- conserving nature of plasticity, 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 4
:  

B
as

ic
 c

ha
ra

ct
er

is
at

io
n 

of
 a

 Z
r-

C
u-

ba
se

d 
m

et
al

lic
 g

la
ss

 

106 
 

deformation in elastic-perfectly plastic solids occurred in form of pile-ups of the 

material against the faces of the indenter. These pile-ups were seen as discrete 

steps due to the inhomogeneous nature of plastic deformation in MGs (see 

Figure  4-11 (f)).  

 

 

(a) (b) 

(c) (d) 

(f) 
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Figure  4-11 SEM images of evolution of shear-band patterns with incremental loading-

unloading at loading rate of 2 mN/s: (a) 130 mN; (b) 190 mN; (c) 220 mN; (d) 235 mN. 

(f) Respective load-displacement curves. 

Subsequent fractographic analysis also revealed the evolution of shear bands on 

the surface with increasing magnitudes of load/displacement (Figure  4-11). In 

other words, the number of shear bands increased dramatically with increasing 

load. Interestingly, the spacing between the semi-circular shear bands was not 

constant. As can be clearly seen in Figure  4-11((a-d)), there were concentrations 

of shear-bands at four corners of indentation imprints, with several intersecting 

shear bands. Incidentally, the elastic modulus obtained from the unloading part 

of the load–displacement curves indicates that E = 86 GPa in other tests is 

accurate. 

The incremental loading-unloading experiments were also performed to 

investigate a hardening (or softening) effect on yield stress, hardness and an 

elastic modulus as this technique allows for measurements of these parameters 

at different indentation depths for the same location in the specimen. These 

experiments were performed using a spherical tip with 5 µm diameter in the load 

range from 7 mN to 27 mN with the same loading rate – 0.1 mN/s. Unloading 

was performed with the rate of 0.1 mN/s down to a prescribed limit of 20% of the 

load peak in the previous cycle. As shown in Figure  4-12, pop-in events took 

place in each reloading stage at higher levels than those in the previous cycle, 

demonstrating an increase in the first pop-in from ~4 mN to ~21 mN. 
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Figure  4-12 Indentation load-depth plots for Zr48Cu36Al8Ag8 under incremental loading-

unloading nanoindentation at load rate of 0.1 mN/s. 

As mentioned earlier, the pop-in events depend on composition and a free-

volume content of MGs as well as on parameters of the experimental procedure 

such as a tip shape and applied loading rates. The maximum shear stress (𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥) 

at the first-pop-in corresponds to the critical shear strength of the onset of 

plasticity in the indented material. In spherical indentation, 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥 occurs at a 

distance of approximately half the contact radius, directly below the rotational 

axis of the contact and can be calculated as [59]: 

𝜏𝜏max = 0.31(6𝐸𝐸𝑟𝑟
2

𝜋𝜋3𝜋𝜋2
𝑃𝑃𝐼𝐼)1/3, 4-7 

where 𝑃𝑃𝐼𝐼  is the load at the first pop-in, 𝑅𝑅  is the indenter radius and 𝐸𝐸𝑟𝑟  is the 

reduced modulus, which was around 95 GPa. There was a significant rise – 

some 50%) – in the average value of 𝜏𝜏max as the first pop-in load increased from 

~4 mN to ~15 mN. Initially, the maximum shear stress was approximately 2 GPa 
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for in the former load, increasing to around 3.45 GPa at the latter one. This is the 

evidence of the hardening effect caused by multiple loading-unloading cycles; 

the reason for this phenomenon is explained below.  

 

Figure  4-13 Indentation load-displacement curve for Zr-based MG for incremental 

loading-unloading at loading rate of 2 mN/s. 

Subsequently, multiple unloading-reloading experiments were performed using a 

loading rate of 2 mN/s to investigate variations of hardness and the elastic 

modulus with depth in MG specimens. The maximum applied indentation depth 

ranged between 200 nm and 2000 nm and 20 partial unloads down to 20% of the 

peak load at each step were applied in these tests. As discussed previously, a 

large plastic zone was formed under the indenter tip in indentation [63,120]. This 

zone contained a high density of shear bands, which is ideal for investigation of 

deformation-induced hardening and softening effects [120]. Our results show the 

dependence of hardness on the penetration depth indicating a work-hardening 
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phenomenon in the studied metallic glass, especially at nano-scale (see 

Figure  4-13). It is clear (Figure  4-13) that the onset of yielding upon each 

reloading always took place at a higher load than in the previous cycle, 

apparently suggesting the hardening effect. In addition, the level of hardness 

increased from 3.7 GPa to 5.7 GPa with a sharp enhancement in the first 10 

cycles and a slight rise in the subsequent 10 cycles. This can be described 

employing ideas of a free-volume evolution proposed originally by Spaepen 

[120]. According to this model, the change of free volume (which is a thermally 

activated process) is a competition between the free-volume accumulation in a 

stress-biased system and the free-volume annihilation by local rearrangements 

of atoms. During the unloading process, the latter is the dominant process 

thanks to a sudden reduction of the applied stress. This results in relaxation of 

the free volume, leading to an immediate arrest of propagating shear bands and 

a significant temperature decrease inside shear bands because of their arrest. 

As a result, hardness increased due to decreasing temperature magnitude and 

free volume [121]. At the next reloading step, previously generated shear bands 

remained arrested resulting in an increase in hardness. However, with the onset 

of initiation and propagation of multiple shear bands, the increased free volume 

in the propagating shear bands caused a reduction of hardness, known as the 

recovery phenomenon. The measured hardness was a combined response of 

propagating and arrested shear bands as well as the undeformed region in the 

material [44]. 

A strain rate is a more suitable parameter to describe inhomogeneous 

deformation according to the classic free-volume theory [122]. A constant loading 
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rate can be converted into a representative strain rate using the following 

equation [122]: 

𝜀𝜀̇ =
�̇�𝑃

 2𝑃𝑃
 , 

4-8 

Figure 4-16 presents a P-h curve obtained with the loading rate of 2 mN/s for a 

termination load of 16 mN, with the inset presenting the corresponding 

conversion from the loading rate to the strain rate. The discrete serrated flow can 

be observed for indentation depths in excess of 50 nm, where the strain rate is 

below 0.02 s-1. In other words, lower strain rates promote more pronounced 

serrations, and high rates supress the serrated flow. Hence, the pop-in events for 

this metallic glass, demonstrated as the stepped P-h curve, showed significantly 

strong rate-sensitivity. The serration flow behaviour can be analysed using the 

notions of free volume and localised heating mode. 
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Figure  4-14 Representative P-h curve for loading rate of 2 mN/s demonstrating discrete 

serrated flow (The inset shows a conversion from the loading rate to the strain rate). 

Several researchers showed that temperature rises (from 0.1 K to ~ 1000 K) 

occured inside shear bands. Such temperature rises resulted in appearance of 

droplets on fracture surfaces. Therefore, it is important to study the mechanism 

of shear-band softening to understand whether a temperature rise or/and free-

volume increase was the underpinning mechanism. Both mechanisms cause a 

lower viscosity of metallic glasses resulting in shear-band propagation and 

formation. Eshelby and Pratt [123] proposed the following equation to predict a 

temperature rise inside a shear band: 

∆𝑇𝑇 =
𝜏𝜏�̇�𝛾𝑏𝑏ℎ
2𝜋𝜋𝑘𝑘 �

𝜋𝜋𝑘𝑘∆𝛾𝛾
𝐶𝐶𝑝𝑝�̇�𝛾𝑏𝑏

 , 
4-9 

Here, shear yield stress  𝜏𝜏  is 925 MPa for the studied BMG, which is half of 

compression yield strength (1850 MPa), assuming an angle of 45º to the loading 

axis. The shear strain rate �̇�𝛾𝑏𝑏  inside the shear band is estimated to be 103 

𝑑𝑑−1{{415 Neuhäuser, H 1978}}. The shear-band thickness ℎ, thermal conductivity 

𝑘𝑘  and specific heat capacity 𝐶𝐶𝑝𝑝  are ~ 10 nm, 20 w/(m K ) and 0.33 J/(g K), 

respectively [38]. The average displacement burst ∆ℎ for each serration was 2 

nm. Plastic deformation was considered to proceed in the plane of the shear 

band; the shear strain ∆𝛾𝛾 = ∆ℎ/ℎ  can be calculated as 0.20. Hence, the 

temperature rise was around 0.04 K after substituting the above data into Eq.4-9, 

similar to experimental measurements of the local temperature rise under quasi-

static loading [124]. It was shown that the temperature rise is negligible at low 

strain rates; therefore it could conclude that the onset of serration was controlled 
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by the free-volume creation and annihilation leading to formation of shear bands. 

Under high-strain-rate deformation the temperature rise might occur and affect 

shear-band propagation.  

To study high strain rates, an impact regime of nanoindentation was 

implemented employing a pendulum-based impact test with the Nano Test 

system using a diamond spherical probe of radius 𝑅𝑅 = 5 µm. The operating 

principles of the experimental set are outlined in [125]. This regime can be used 

for analysis of low cycle-fatigue, work hardening and dynamic hardness. In this 

experiment, the pendulum is moved away from the specimen by a known 

distance and then released to produce a single impact. Successive impacts can 

be performed at a single point until failure occurs. In most cases, an initial period 

is characterised by damage generation, with cracks developing and expanding, 

but in which no appreciable increase in penetration depth in observed. 

Figure  4-15 illustrates that there is an evidence of strain hardening as there is a 

significant increase in displacement (penetration depth) in the first 30 seconds, 

where the cracks coalesce, and a slight enhancement afterwards. Additionally, 

these results indicate that the Zr-Cu-based MG is an elastic-perfectly plastic 

material since the material demonstrates linear elasticity followed, as the load 

increases to the yield point, constant stress at strains increased.  
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Figure  4-15 Typical displacement-time plot of impact results for Zr-based BMGs (a) for 

60 s; (b) for 300 s. 

4.3 Micro-indentation 

Micro-indentation experiments were conducted using a spherical indenter with 

diameter 50 μm at loading rates of 2 mN/s with maximum load of 15 N. While 

shear-band slips on the surface were observed around 100 mN in nano-

indentation test, this phenomenon in spherical micro-indentation was found at 

loads in excess of 10 N (Figure  4-16). Based on the Herztain elastic equation for 

a spherical indenter [43], mean pressure is inversely related to the contact radius 

and, hence, the radius affects the initial yield pressure, which is revealed on a 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 4
:  

B
as

ic
 c

ha
ra

ct
er

is
at

io
n 

of
 a

 Z
r-

C
u-

ba
se

d 
m

et
al

lic
 g

la
ss

 

115 
 

pressure-depth curve as pop-in events that occur at yield load and 

corresponding displacement. In addition, yielding of metallic glasses was initiated 

at locations of maximum shear stress (𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥)  in the volume. As proposed by 

Greer and co-workers [2], the normalised yield pressure increased with a 

decreasing indenter tip radius (see Figure  4-16). They found by using indenter 

tips with various radii that the plastic-flow mechanism was changed, with 

deformation controlled by heterogeneous nucleation of shear bands for small 

indenters changing to propagation of already nucleated shear bands at a larger 

scale. A clear size effect can be observed (Figure  4-16 (b)) as smaller radii give 

higher levels of normalised yield pressure. 

 

  

(a)
   

(a)
   

(b)
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Figure  4-16 a) SEM images of micro-indents in Zr48Cu36Al8Ag8.  There are no shear 

bands around the indent with 10 N load. b) Normalised yield pressure versus indenter tip 

radius for various metallic glasses [2]. 

These subsequent cycles of loading-unloading in indentation implemented with 

the aim of assessing the process of evolution of shear bands in the Zr-Cu based 

metallic glass are exhibited in Figure  4-17. The maximum indentation depth 

ranged from 6 µm to 18 µm, and three partial unloads down to 20% of the peak 

load at each step were applied in these cycles. As can be seen in Figure  4-17, a 

shear band moving from the top right corner (denoted A in Figure  4-17) crossed 

a shear band coming from the top left corner (denoted B); however, the 

subsequent nucleated shear bands were arrested by the same shear bands 

originating from the top left to top right corner. Instability of the shear bands were 

observed in the form of nucleation of several secondary shear bands from the 

primary ones during the course of deformation. A high density of shear bands 

was found.  

 

Figure  4-17 (a) Representative load-displacement curves; (b) SEM images of micro-

indentation in Zr48Cu36Al8Ag8 with loading rates 2 mN/s  for maximum load of 15 N. 

(b)
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4.4 Summery and conclusion 

Experimental techniques employed in the current work are described in this 

chapter. The used nano-indentation system in this study and the required 

calibration standards including frame compliance, indenter area function, and 

cross-hair or targeting alignment were explained in details. In the present study, 

initial macroscale characterisation of Zr48 Cu36 Al8 Ag8 was illustrated in order to 

determine mechanical properties such as the elastic modulus (𝐸𝐸), the Poisson’s 

ratio (𝜈𝜈) and glass-transition temperature (Tg). The value of the elastic modulus 

(𝐸𝐸) was confirmed using the modified rule of mixture. In addition, the amorphous 

nature of the supplied beam samples of the MG was investigated using X-ray 

diffraction and TEM techniques, which did not show any presence of crystalline 

structure in the materials. The composition of the locations, where the TEM were 

obtained from, was tested in-situ with EDS. It was also shown that dynamic 

characteristics of the metallic glass are effectively independent of the frequency 

at room temperature. In this study, observation of fracture surface of the of the 

Zr-Cu-based BMG under three-point bending revealed failure that are different 

from those observed in crystalline materials. 

Indentation techniques were extensively used initially to examine the elastic 

deformation of the studied BMG alloy, followed by a systematic analysis of 

initiation and evolution of shear-band localisation in the indented material. 

Increasing yield strength of the Zr-Cu-based metallic glass was investigated by 

recourse to spherical indentation experiments employing the incremental loading 

technique. The load at the first pop-in was converted into the maximum shear 

stress underneath the indenter with the help of Hertz`s spherical contact 
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mechanics. The temperature rise, calculated as 0.04 K for the low strain rate, 

was negligible to have an effect on the deformation mechanism. 
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5 Experiments under imposed inhomogeneous loading: Wedge 
indentation  

5.1 Design and manufacture of wedge indenter 

All parts for wedge indentation studies were designed and manufactured in-

house (Figure  5-1 and Figure  5-2). The connection fixture, made from stainless 

steel, was directly bolted between the indenter and the Instron machine. As the 

indenter is easily replaceable in the case of mechanical failure, High Speed Steel 

(HSS) was used to manufacture it.   

 

Figure  5-1 (a) Connection fixture (indenter holder) and (b) wedge indenter and its 

dimensions. 

A fixture was designed and manufactured in-house with the capability of applying 

the load incrementally on the same point of a specimen. The fixture could not 

move on its own during operation; a spring was installed at one end to ensure 

the sample remains at the same position.  

(a) (b) 
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Figure  5-2 Fixture prototype. 

The designed loading jig allowed for a sample-wedge self-adjustment of system 

with one degree of freedom to minimize misalignment. However, there is still 

misalignment in the system during the indentation experiment, which is 

consistent for all the experiments.  Figure  5-3 shows the residual indentation 

imprint corresponding to 1 kN wedge indentation. The shear band patterns 

exhibit asymmetry due to the minor misalignment between the wedge indenter 

and the specimen. 
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Figure  5-3 SEM image of residual indentation imprint after wedge-indentation 

experiment under 1 kN single loading condition showing asymmetrical shear-band 

pattern due to misalignment of system. 

In the wedge-indentation experiments, load up to a maximum of 3 kN can be 

applied to the BMG samples. Therefore, the fixture and the wedge indenter 

which would remain undamaged under high loads were essential. Finite element 

analysis with the ABAQUS software was used to determine the displacement of 

the fixture, when subjected to a surface load and a line load; the former 

represents the load applied by the wedge and the latter represents a general 

load of 3 kN applied to the surface of the fixture. For the simulation, the fixture 

was fixed using fixed boundary conditions on the bottom face (Figure  5-4) as this 

face was expected to be stationary throughout the whole indentation process. 

The fixture made of stainless steel was considered to be an elastic isotropic 

material. All the mechanical properties of the steel (Table 5-1 ) were obtained 

from the supplier.  

Table 5-1 : Mechanical properties of stainless steel. 

Material Density (𝛒𝛒) Young`s modulus(𝐄𝐄) Poisson's ratio (𝛎𝛎) 

Steel 7.85  kg/m3 210 GPa 0.3 
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Figure  5-4 Boundary condition for FE simulation of wedge indentation fixture. 

The colours represent the magnitude of the U2 (Y) direction; this orientation was 

selected because the load would be effectively applied along the Y direction in 

the experiments.  For the line load of 3 kN, it can be seen that the fixture 

displaces with a maximum of −1.26 × 10−2 mm in the U2 direction (see 

Figure  5-5). For the four corner and centre loads, the maximum displacement in 

this direction is approximately −1.77 × 10−2 mm (see Figure  5-6). The models 

suggested that for loads of up to 3kN, the fixture was unlikely to deflect 

significantly to cause any damage; however, this deflection would modify a force-

displacement graph in the wedge- indentation test results. 

Bottom face: fully fixed u1=0, u2=0, u3=0 
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Figure  5-5 Displacement in mm distribution along loading direction for line load of 3 kN. 

 

Figure  5-6 Displacement filed along loading direction for four corner loads. 
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Finite-element analysis with the ABAQUS software was also applied to 

determine the deformation of wedge indenter made from high speed steel (HSS) 

during wedge indentation experiment. The simulation results illustrated that there 

is no deformation on the indenter at the maximum applied of 4 kN.  

5.2 Wedge-indenter characterization  

Prior to carrying out the experiment, it was required to characterize the wedge 

indenter as its properties would be used in complex calculations in order to 

identify the level of yield stress corresponding to shear band initiation. The 

parameters include the indenter radius, 𝑠𝑠, the height of the cap, ℎ, the hight of 

the flank in contact with the wedge indenter, 𝑎𝑎, in addition to the angle of the 

assembled wedge indenter (Figure  5-7). These values were required to calculate 

the contact surface of the indenter tip with a specimen (𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡) in the indentation 

experiments to estimate the applied force for shear-band initiation. These 

parameters were measured using Infinite Focus Alicona Ltd. (Figure  5-8), a non-

destructive 3D measurement system with an optical technology based on focus 

variation. Three different positions including two corners and the middle of the 

indenter tip, as shown in Figure  5-9 (a), were used to measure the parameters 

mentioned above. These values were 60.50, 60.72º, 60.55º, respectively, and 

the mean value of these three angles was 60.60º. 
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Figure  5-7 Schematic illustrating cross-section of wedge indenter. 𝜹𝜹 is the height of the 

tip in contact with the sample and L is the length of the flank side in contact with sample. 

 

 

Figure  5-8 (a) Alicona Infinite Focus; (b) experimental setup used to charaterise 

manufactured wedge indenter. 

(a) (b) 
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Figure  5-9  3D profiles of wedge indenter including its left corner (a), the middle of 

indenter (b) and (c) the right corner obtained with Alicona optical microscope. 

 

Figure  5-10 Diagram obtained with Alicona Infinite Focus showing indenter radius, 𝒓𝒓, 

height of cap, 𝒉𝒉, height of flank in contact with wedge indenter, 𝒂𝒂, in addition to angle of 

assembled wedge indenter. 

As presented in Figure  5-10, the indenter radius, 𝑠𝑠, the height of the cap, ℎ, and 

the height of the flank in contact with the wedge indenter, 𝑎𝑎, were 26.6 µm, 9.1 

µm and 17.5 µm, respectively. The average values of these parameters at the 

three mentioned positions were 24.47 µm, 8.4 µm and 15.87 µm. A stress value 

(a) (b) (c) 
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for the first pop-in was required to be calculated to estimate the applied force in 

wedge indentation for initiation of first shear bands. As presented in Figure  4-10, 

the first pop-in occurred at applied force of 4 mN in nano-indentation 

experiments showing indentation depth of 0.060 µm. The contact area between 

the spherical indenter and each specimen was considered as spherical cap 

(Figure  5-11). An area of this spherical cap is 𝐴𝐴𝑐𝑐𝑚𝑚𝑝𝑝 = 2𝜋𝜋𝑠𝑠ℎ , where 𝑠𝑠  is the 

indenter radius and  ℎ  is the indentation depth. Hence, the total area of the 

contact and required stress for the first pop-in are 1.88 µm2 and 2.12 × 109 N/m2, 

respectively.  

 

Figure  5-11 Schematic of spherical cap showing contact area between spherical 

indenter and BMG specimen. 

 It was also necessary to determine the contact area with the sample in the 

wedge-indentation experiments in order to predict an approximate force needed 

to initiate the formation of shear bands. The force applied could be calculated 

using the following equation: 

𝐹𝐹𝑚𝑚𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑠𝑠𝑑𝑑 = 𝜎𝜎 ∗ 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 𝑖𝑖𝑖𝑖 𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡 , 5-1 
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where 𝐹𝐹 is the applied force on the sample and 𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 𝑖𝑖𝑖𝑖 𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑚𝑚𝑐𝑐𝑡𝑡 is the total area in 

contact with the surface of sample. As shown in Figure 5-14, the wedge indenter 

had two parts including an indenter tip and a cone side in which the total contact 

surface depends on the total height of the tip that contact with the sample (𝛿𝛿 ). If 

𝛿𝛿 is larger than the height of the indenter tip (ℎ ), then the total surface contact 

can be calculated using: 

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐴𝐴𝑚𝑚𝑟𝑟𝑐𝑐𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠 + 2 ∗ 𝐴𝐴𝑓𝑓𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓. 5-2 

Therefore, denoting the width of the sample as w, the area of the arc is: 

𝐴𝐴𝑚𝑚𝑟𝑟𝑐𝑐 𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠 = 𝑙𝑙𝑠𝑠𝑛𝑛𝑔𝑔𝑡𝑡ℎ 𝑖𝑖𝑓𝑓 𝑎𝑎𝑛𝑛 𝑎𝑎𝑠𝑠𝑐𝑐 × 𝑤𝑤𝑑𝑑𝑑𝑑𝑡𝑡ℎ 𝑖𝑖𝑓𝑓 𝑑𝑑𝑎𝑎𝑚𝑚𝑝𝑝𝑙𝑙𝑠𝑠 = 2𝜋𝜋𝑠𝑠 × �
2𝛼𝛼

360
� ∗ 𝑤𝑤,  5-3 

where 𝛼𝛼 = 𝜃𝜃 = arccos �𝑟𝑟−ℎ
𝑟𝑟
�  and h and a can be obtained using the data from the 

Alicona test. As shown in Figure 5-14, the flank side area can be calculated 

using: 

𝐴𝐴𝑓𝑓𝑡𝑡𝑚𝑚𝑖𝑖𝑓𝑓 𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠 =  𝐿𝐿 × 𝑤𝑤 =
𝛿𝛿 − ℎ

cos (90 − 𝜃𝜃) 
× 𝑤𝑤 

5-4 

Therefore the total area is  

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 = 2 �𝜋𝜋𝑠𝑠 �
2𝜃𝜃

360
𝑑𝑑𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑� +

𝛿𝛿 − ℎ
cos(90 − 𝛼𝛼)�𝑤𝑤. 

5-5 

If the total height of the tip in contact with the sample is less than the height of 

the arc part, i.e. 𝛿𝛿 < ℎ, then the total area is: 

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 = 𝐴𝐴𝑚𝑚𝑟𝑟𝑐𝑐 𝑠𝑠𝑖𝑖𝑑𝑑𝑠𝑠 = 2𝜋𝜋𝑠𝑠 �
2𝜃𝜃

360
(𝑑𝑑𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑)�𝑤𝑤 5-6 
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5.3 Shear-band initiation 

The aim of this experiment was to characterise initiation of the first plastic event 

in order to calculate the yield stress of the bulk metallic glass investigated in this 

study. It was found that the required load would be around 500 N using Eqs.5-1 

and 5-6, where the values for the total contact area and required stress were 

23.636 mm2 and 2.12 × 109 N/m2, respectively; hence, testing was carried out 

using the beam-shaped samples with the length of 40 mm, width 3 mm and 

thickness of 2 mm in a compression mode with a constant displacement rate of 

0.05 mm/min using the wedge-indentation technique and the load value in the 

range from 200 N to 500 N. To avoid contact problems at low loads, the surfaces 

of the wedge indenter were ground using a surface grinder in an attempt to make 

the edge more uniform while maintaining the 60º angle.  
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Figure  5-12 Evolution of shear-band pattern with load under wedge-indentation for 

different loads: (a) 400 N, (b) 300 N, (c) 200 N and (d) 150 N. 

The new wedge had an edge radius of 8 μm and height of 5 μm. Evolution of 

deformation pattern on the front surface of the specimen is presented in 

Figure  5-12. The plastic depth increased from 5 µm to 13 µm by increasing the 

load from 200 N to 500 N, and serrated semi-circular slip-steps formed by shear 

 (a) 

 (b) 

 (c) 

 (d) 
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bands were observed. The results showed that the nucleation and initial 

propagation of shear bands occurred for loads less than 200 N. There was no 

shear-band formation at 100 N load. For 200 N, the indentation depth was 22.17 

µm before unloading, as obtained from the F-D curve. The yield stress calculated 

with Eq. 4.6 was used to determine the contact area (a) as   𝛿𝛿 > ℎ.  

Atotal = 2.257 × 10−7m2 

σ =
Fapplied
Atotal

=
200

2.257 ∗ 10−7
= 0.886GPa 

At 100 N, the yield stress was ~ 0.7 GPa, therefore, it could be estimated that the 

required stress to initiate shear bands formation was in the range of 0.7-0.9 GPa. 

5.4 Comparison between glass and metallic glass  

A purpose of this experimental study was to compare characteristics of fracture 

in traditional soda lime silica glass and the studied Zr-Cu-based metallic glass, 

using the wedge- indentation technique at room temperature. The experiments 

were aimed at comparison of deformation mechanisms in these two materials at 

small scale as both have amorphous microstructure. A relationship between 

mechanical behaviour and fracture features can assist in elucidating the fracture 

mechanism. Wedge-indentation was applied to both glass and metallic glass 

bars with dimensions of 40 mm × 4 mm × 2 mm using loads 500 N, 1 kN, 1.3 kN 

and 2 kN to create a range of crack sizes. Fractography studies showed that 

fracture surfaces of materials failing in a brittle manner from surface cracks are 

characterised by a sequence of three distinct fractographic features including 

mirror, mist and hackle regions depending on the loading mode. For instance, no 
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mist region was observed on fracture surfaces failed in the mixed mode [64]. A 

side view of wedge indentation into the glass sample is presented in Figure 5-20; 

here, classical concentric cone cracks were observed. The contact radius at 

maximum pressure lied just within the outermost surface ring in this figure, 

confirming that cone fractures were formed in the region of weak tension outside 

a subsurface compression zone. In addition, no detectable deformation was 

observed beneath the contact circle; essentially, the material behaved as an 

ideally homogeneous solid. As shown in micrographs of subsurface damage at 

higher magnification in Figure  5-13(c), hackle markings on the fracture surfaces 

of soda glass appeared as lances. Observation of the fracture surfaces indicated 

that the propagating crack did not experience any energy- dissipation process 

such as plasticity or crack bridging, which could result in retarding the crack 

growth in a substantial manner. As shown in Figure  5-14, significant differences 

were found in appearance of the fracture surfaces of the brittle-glass and the 

metallic-glass specimens at microscale. In contrast to silicate glass, BMG was 

not brittle and its specimens demonstrated the ability to deform plastically, with 

many semi-circular shear bands created beneath the indenter. Shear bands 

bifurcated with increasing distance from the indenter tip, indicating branching 

mechanism contributing to energy dissipation, which led to plastic deformation at 

microscale. 
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Figure  5-13 Optical micrographs of indented soda lime silica glass after applying 1.3 kN 

showing cone (a) hackle and (b and c) fractures. 

 

Figure  5-14 Optical micrographs of 1 kN wedge indentation. (a) As-cast Zr48Cu36Al8Ag8 

metallic glass and (b) soda lime silica glass. 

5.5 Incremental loading/unloading 

This testing was carried out on the beam-shaped samples with the length of 40 

mm, width of 4 mm and thickness of 2 mm with the wedge indenter in a 

(a) 

(b) 

(c) 

(a) (b) 
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compression mode with a constant displacement rate of 0.05 mm/min. The 

applied load was from 1 kN to 3 kN in increments of 1 kN. Scanning Electron 

Microscope (SEM) was used to observe shear-band propagation at the top and 

front surfaces as shown in Figure  5-15 (b). The indentation tests reported here 

were conducted at room temperature. Figure  5-16 compares the indentation 

width measured on the top surface for incremental and single loading modes. As 

shown in Figure  5-15 ((a-b)), the measured indentation imprints for single and 

incremental loading of 2 kN and 1- 2 kN proved that the wedge indenter targeted 

the same location that was used at the applied load of 1 kN. Difference in the 

indentation widths for two modes of loading was less than 5%. A similar situation 

occurred for single and incremental loading of 3 kN and 1-2-3 kN. Contrary to 

micro- and nano-indentation, the described results demonstrated that wedge 

indentation was capable of providing an incremental study of the shear-band 

propagation. 
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Figure  5-15 (a) Experimental set-up for wedge indentation and (b) schematic for shear-

band observation. 

(a) 

(b) 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 5
:  

Ex
pe

rim
en

ts
 u

nd
er

 im
po

se
d 

in
ho

m
og

en
eo

us
 lo

ad
in

g:
 W

ed
ge

 in
de

nt
at

io
n 

136 
 

   

 

Figure  5-16  SEM images of indentation width on top surface for single loading (a and c) 

and incremental loading (b and d) load levels are shown in respective images. 

SEM micrograph of front surface of a deformed region by a wedge indenter as 

results of incremental loading is given in Figure  5-17. In the deformed sample, 

the size of the plastic deformation zone with multiple shear bands increased with 

the maximum indentation depth, as expected. It can be noted (Figure  5-17) that 

the plastic depth increased from around 22 µm in the first increment (1 kN) to 

130 µm in the third increment (3 kN). The generated shear bands (Figure  5-17(a-

2 kN 1-2 kN 

1-2-3 kN 

3 kN 

(a) (b) 

(c) (d) 3 kN 
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c)) can be broadly categorized into two types including hemi-cylindrical (Primary 

shear bands) and secondary, radial shear bands. These results indicated some 

asymmetry due to misalignment of the wedge indenter. The hemi-cylindrical 

shear bands are a result of the out-of-plane plastic flow in BMGs [135], while the 

radial ones are related to plane-strain deformation indicating pressure sensitivity 

of BMGs to plastic deformation.  At the first increment of loading, 1 kN, only 

hemi-cylindrical slip-steps due to shear-band operations appeared underneath 

the wedge indenter (Figure  5-17(a)). Additionally, some branches could be found 

in the areas where the propagation direction did not coincide with that of the 

maximum shear stress. This behaviour was completely different from the 

propagation of principle shear bands along a straight slip plane, which was 

widely reported in the literature, for example [116,136]. Figure  5-17(b) shows the 

shear-band patterns the BMG corresponding to the second incremental loading 

(1-2 kN).  Here, secondary (radial) shear bands were formed in addition to hemi-

cylindrical ones to accommodate the increasing level of plastic strain. These new 

shear bands have branched in various directions indicating the absence of 

preferential slip bands for their formation [131]. This additional dissipation of the 

accumulated elastic energy by branching of shear bands led to strain hardening 

of the BMG sample. A shear-band pattern after the third increment (1-2-3 kN) is 

shown in Figure  5-17(c). As in the case after the second increment, many new 

shear bands were formed. The evolution of deformation pattern on the top 

surface of the indented sample (Figure  5-18 (a-c)) provided as additional insight 

into shear-band formation. The shear planes intersected with the sample`s 

surface to form steps along straight lines parallel to the imprint`s axis. Contrary 

to the front surface, no shear bands were observed on the top surface at 1 kN 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 5
:  

Ex
pe

rim
en

ts
 u

nd
er

 im
po

se
d 

in
ho

m
og

en
eo

us
 lo

ad
in

g:
 W

ed
ge

 in
de

nt
at

io
n 

138 
 

(Figure  5-18 (a)); the slip steps of the primary shear bands seemed to vanish, as 

they approached the indentation surface. In addition, the propagation of shear 

bands was along a hemi-cylindrical path until they reached the sample`s surface, 

further indicating that the nucleation of shear bands was easier than their 

evolution. Shear bands were initialized in “weak sites”, defined by the fluctuation 

of free volume or chemical heterogeneity. Such weak sites control the energy 

barrier for operation of shear bands. Thus, higher loads are required to activate 

new shear bands at the higher barrier energy for shear bands to maintain the 

continuous plastic deformation. The process of shear-band propagation on the 

surface (Figure  5-18 (a-c)) depends on the indenter shape, load and material`s 

microstructure as was discussed in details by Zhang et al. [131]. For better 

understanding of plastic deformation in the BMGs, individual shear bands were 

analysed using microstructural characterisation techniques such as TEM, 

nanoindentation and surface decoration as described in the next section. 
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Figure  5-17 Evolution of shear-band pattern with load on front surface of BMG sample 

under wedge indentation: (a) 1 kN, (b) 1-2 kN and (c) 1-2-3 kN 

(a) (b) 

(c) 
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Figure  5-18 SEM images of evolution of shear bands with incremental loading on top 

surface under wedge indentation: (a) 1 kN, (b) 1-2 kN and (c) 1-2-3 kN. 

5.6 Force-displacement curve 

The graphs of indentation load (P) versus indentation depth (h) diagram for 

single and incremental loading regimes are shown in Figure  5-19.  As can be 

seen in Figure  5-19 (a), single load including 1 kN, 2 kN and 3 kN were applied 

to the beam-shaped BMG specimens at three different independent locations. A 

smooth load-displacement curve, demonstrated a deviation from a linear-elastic 

deformation due to shear bands operations. Figure  5-19 (b) presents the 

incremental indentation test from 1 kN to 3 kN with the increment of 1 kN at the 

same location. As can be seen in this Figure  5-19 (b), the incremental loading 

1kN 1-2kN 

1-2-3kN 

(a) (b) 

(c) 
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did not affect the overall mechanical response of the BMG, indicating that the 

evolution of deformation can be examined with the incremental indentation test. 

As shown in the inset Figure  5-19 (b), the residual imprints of the indenter for the 

first (1 kN) and second (1-2 kN) incremental loading were approximately 22 µm 

and 50 µm, respectively. As shown on the force-displacement curve (Figure  5-19 

(b)), the initial displacements of the indenter in order to be reengaged with the 

specimen in the second (1-2 kN) and third (1-2-3 kN) incremental loading were 

also equal to 22 µm and 50 µm, respectively. Hence, it can be concluded that the 

incremental load-displacement curve is reasonable and repeatable, and the area 

underneath the P-h curve can be used to calculate the work done for the total 

deformation including elastic, plastic and damage deformations. 

 

(a) 
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Figure  5-19 Experimentally measured P-h curves for single (a) and (b) incremental 

loading modes. The insets show the indentation plastic depth for 1 kN (left) and 1-2 kN 

(right). 

5.7 Preliminary numerical modelling of BMGs 

For a better understanding of deformation processes in BMGs and their 

localisation in the form of shear bands, especially in bulk materials, numerical 

simulation work can be performed. A number of studies have demonstrated that 

plastic deformation in BMGs is pressure dependent [159]. The deviation of the 

shear-band`s inclination angle (SBIA) from the classical 45° is due to the effect 

of shear stress and the normal stress component. Several well-established 

macro scale models of brittle materials already exist.  

Johnson and Holmquist [160] proposed a constitutive relation for brittle materials 

known as JH-2. Details of this model could be found in Johnson Hulmquist et al. 

[160].  These models assume that the strength of materials such as ceramics 

(b) 
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and glass are dependent on pressure, strain rate and damage. As described in 

the literature, these models are suitable for dynamic loading conditions. 

Johnson-Holmquist-Beissel (JHB) model is an extension of the JH-2 model and 

its primary distinctive feature is the ability to include the effect of pre-stress and 

phase changes [161]. Another well-established model for brittle materials is the 

Drucker – Prager criterion, which is widely used for frictional materials that 

exhibit pressure–dependent yield stress and materials with higher compressive 

yield strength, when compared to yield in tension. This model can be used in 

quasi-static conditions such as in quasi-static tension, compression or 

indentation experiments. In this this section, an application of 2D full-field optical 

displacement measurements for quantitative validation of finite-element (FE) 

simulations using Drucker Prager plasticity model is presented.  

5.7.1 Drucker Prager Plasticity model 

The Drucker Prager model (D-P), was chosen to represent the material response 

of the studied metallic glass. The important factors of each plasticity model are 

the yield surface, the flow rule and the hardening/ softening rule. The initial yield 

surface determines when the plastic deformation begins and the flow rule 

controls the direction of the plastic deformation. Softening or hardening rule 

outlines how the yield surface develops with the plastic deformation [162]. D‐P 

yield function has been extensively used in recent years to study the deformation 

mechanism of pressure-dependent materials, such as concrete, polymers and 

foams. The simplicity of the model (including only two parameters) and capability 

of measuring shear strength as a function of hydrostatic pressure, makes it a 

popular choice for modelling of brittle materials.  A model was developed based 
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on wedge indentation experiments. Due to the nature of the experiments, it was 

reasonable to assume 2D plane strain as the specimen`s height was very large 

compared to its thickness. Hence, the strains along the length are small 

compared to the strains along the width and along the thickness of the sample i.e. 

the x and y directions. 

- Boundary condition and contact 

Fixed boundary conditions (constrained displacements and rotations) were used 

to fix the bottom of the BMG sample on all sides, while the indenter was set to 

move into the work piece sample via displacement imposed on the reference 

point along the vertical direction of the indenter`s surface (see Figure  5-20).  A 

surface to surface contact between the wedge and the top surface of the 

specimens was considered, as shown in Figure  5-20. The Coulomb’s friction law 

with a coefficient of friction 𝜇𝜇 = 0.03 was used to model the contact interaction 

between the indenter and the surface of the BMG sample. The value was chosen 

after carrying out some preliminary calibration tests. 

 

Figure  5-20 Surface to surface contact of wedge indenter and the specimen with 

displacement along the vertical direction. 
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- Material Properties 

The mechanical behaviour of the studied BMG was assumed to closely 

represent the linear Drucker-Prager material model. The Drucker Prager yield 

criterion is defined as: 

𝑓𝑓 = 𝑡𝑡 − 𝑝𝑝𝑡𝑡𝑎𝑎𝑛𝑛𝜃𝜃 − 𝑑𝑑 = 0,  5-7 

where, the pseudo-effective stress (t), is defined as  

𝑡𝑡 = 0.5𝑞𝑞 �1 +
1
𝑘𝑘
� − �1 −

1
𝑘𝑘
� �
𝑠𝑠
𝑞𝑞
�
3

, 
 5-8 

Here, 𝜃𝜃 is the friction angle of the material (the slope of the yield surface of the 

𝑝𝑝 − 𝑡𝑡 plane), 𝑑𝑑 is the effective cohesion parameter, 𝑝𝑝 is hydrostatic pressure, r is 

the third invariant of the deviatoric stress, K is the ratio of the yield stress in tri‐

axial tension to that in tri‐axial compression and q is von Mises equivalent stress. 

In metal plasticity, 𝑑𝑑 is equivalent to the current yield stress, 𝜀𝜀𝑠𝑠𝑒𝑒
𝑝𝑝𝑡𝑡 , which is given 

by equation,  

𝜀𝜀𝑠𝑠𝑒𝑒
𝑝𝑝𝑡𝑡 = �2

3
𝜀𝜀𝑖𝑖𝑖𝑖
𝑝𝑝𝑡𝑡𝜀𝜀𝑖𝑖𝑖𝑖

𝑝𝑝𝑡𝑡; 
 5-9 

The variable used by the linear Drucker-Prager yield function are shown in 

Figure  5-21: 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 5
:  

Ex
pe

rim
en

ts
 u

nd
er

 im
po

se
d 

in
ho

m
og

en
eo

us
 lo

ad
in

g:
 W

ed
ge

 in
de

nt
at

io
n 

146 
 

 

Figure  5-21 Finite Element model of wedge indentation with the expanded view of the 

indenter geometry and the mesh density of the material  

For linear Drucker Prager model, the flow potential (𝑔𝑔) is defined as:  

𝑔𝑔 = 𝑡𝑡 − 𝑝𝑝𝑡𝑡𝑎𝑎𝑛𝑛𝜓𝜓;  5-10 

where `𝜓𝜓`is the dilatation angle in the p-t plane. The original Druger-Prager 

formulation is recovered by setting 𝜓𝜓 = 𝜃𝜃  and 𝑠𝑠 = 1 . Table 8-1 lists all the 

relevant parameters used in the model [162].  

Table  5-2: Modelling parameters used in FEM simulations. 

Drucker-Prager Parameters     

Angle of 
friction (𝜽𝜽) 

Flow stress 
ratio 

Dilation angle Hardening Characteristics  

0.01 1 0.02   

 Shear damage parameters  Yield stress 
(MPa) 

Plastic strain 

Fracture strain Shear stress 
ratio 

Strain rate (s-1) 1900 0 

0.1 1 0.016 1900.4 0.015 
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- Damage Modelling 

Regarding the macroscopic behaviour of materials, it is important to discuss the 

mechanical effects due to material deterioration. The damage process brought 

by the internal defects leads it to final fracture so a proper understanding of the 

damage phenomena is important. Damage model proposed by Kachanov [167] 

and modified by Rabotnov [168] is used to represent damage of materials with 

distributed cavities in terms of internal state variables. Constitutive equations 

were then derived to describe the damage evolution and its behaviour (Murakami 

1988). 

A continuum - damage modelling approach offers the possibility to simulate 

mechanical behaviour of history - dependent materials which irreversibly 

degenerate under mechanical loads. The characterisation of damage relies on 

progressive stages - development, growth and coalescence of micro defects - 

leading to the formation and propagation of micro cracks and, eventually rupture. 

The increase of damage generally advances to local softening behaviour, such 

that the tangential stiffness becomes negative [167]. The influence of isotropic 

damage on elastic material’s behaviour can be described in terms of a parameter 

called damage (D). It is a monotonously increasing scalar quantity which lies in 

between 0 ≤ D ≤ 1 and expresses the extent of material degradation. 

Conforming to damage - mechanics approach, a constitutive relationship can be 

derived with pursuant to the Hooke’s elasticity matrix 𝐻𝐻 and the column of strain 

component 𝜀𝜀 as follows. 
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𝜎𝜎 = (1 − 𝐷𝐷)𝐻𝐻𝜀𝜀;  5-11 

An undamaged state is characterised by 𝐷𝐷 while the complete loss of stiffness is 

represented by  𝐷𝐷 = 1 .In ABAQUS progressive damage and failure can be 

assigned to the material in conjunction with several plasticity models, including 

Drucker - Prage. This capability is sustained by more specifications including 

damage- initiation criteria and a damage - evolution criterion. Progressive 

damage models in ABAQUS allow a smooth degradation of material stiffness in 

both quasi - static and dynamic conditions. 

For the fracture of metals, the damage - initiation criterion can be invoked by two 

criteria including ductile and shear. Once a distinct damage - initiation criterion is 

satisfied the material’s stiffness is degraded according to the damage - evolution 

law. Two mechanisms could cause fracture of a metal: ductile fracture and shear 

fracture. Ductile fracture is primarily due to the nucleation, growth and 

coalescences of voids whereas shear fracture is due to shear - band localization. 

These options should be chosen accordingly with the knowledge of deformation 

mechanisms of the chosen material. 

The shear nature of metallic glasses during their plastic deformation was initially 

established by Leamy et al [168] and there studies of the outer surface of bent 

samples demonstrated significant shear displacements with primary and 

secondary steps with no sign of tensile cracks. As shown in Figure 1-2 , the 

fracture surfaces consisted of two regions including a smooth sheared surface 

followed by localised necking resulting in characteristic pattern with vein pattern. 

Hence, the shear criterion should be chosen for the damage mechanism of 
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BMGs. The shear criterion can be invoked in both versions ABAQUS/Standard 

and Explicit - in affiliation with Drucker - Prager plasticity. 

Shear  Damage Criterion 

Shear criterion in D-P model  is used to predict the onset of damage due to 

shear band localisation. The ductile criterion needs the description of the 

equivalent plastic strain at the onset of damage, 𝜀𝜀�̅�𝐷
𝑝𝑝𝑡𝑡 , as a function of  shear 

stress ratio 𝜃𝜃𝐷𝐷 and effective strain rate 𝜀𝜀�̇�𝐷
𝑝𝑝𝑡𝑡. 𝜃𝜃𝐷𝐷 is defines as : 

𝜗𝜗𝐷𝐷 = (𝑒𝑒+𝐾𝐾𝐷𝐷𝑃𝑃)
𝜏𝜏𝑚𝑚𝑐𝑐𝑚𝑚

;  5-12 

𝐾𝐾𝐷𝐷  is a material parameters and 𝜏𝜏𝑚𝑚𝑚𝑚𝑥𝑥  is the maximum shear stress. The 

following equation should be satisfied for damage initiation, 

𝜔𝜔𝐷𝐷 = ∑ ∆𝜀𝜀�

𝜀𝜀𝐷𝐷
𝑝𝑝𝑐𝑐�𝜃𝜃𝐷𝐷,𝜀𝜀�̇𝑝𝑝𝑐𝑐�

= 1;  5-13 

Where 𝜔𝜔𝐷𝐷  is a state variable which increase with plastic deformation and 

proportional to the incremental change in equivalent plastic stress. 

- Mesh Topology 

The specimen under the wedge indentation should be discretised with sufficient 

refinement. Solid elements in ABAQUS can be used for linear analysis as well as 

complex nonlinear analysis including contact, plasticity and extensive 

deformations. The best element should be chosen for analysis based on the type 

of available solver in ABAQUS to provide accurate and reliable results. Although 

both triangular and tetrahedral elements can be used to discretise the specimen, 

these elements are stiff and an extremely refined mesh is required to obtain 
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accurate results to avoid volumetric locking in incompressible problems. In 

addition, first order tetrahedral elements C3D4 exhibit slow convergence with 

mesh refinement. Hexahedral and quadrilateral elements usually provide less 

accurate results, when they are initially distorted. Hourglassing is a phenomenon 

typically manifests as a patchwork of zig-zag or hourglass like element shapes, 

where individual elements are severely deformed, while the overall mesh section 

is undeformed. This occurs on hexahedral 3D solid reduced integration elements 

and on the respective tetrahedral 3D shell elements and 2D solid elements. 

Hourglass energy can be directly diagnosed by comparing energy contained in 

zero energy modes (hourglass energy) with the internal energy of the system. 

Hourglass energy should not exceed 5% of internal energy and can be controlled 

by refining the mesh. Based on the above consideration, a specimen with 

domain of 2mm ×2mm were discretised using 4-node bilinear element, reduced 

integration with hourglass control. A finer mesh was used to discretise the zone 

in proximity to the indenter in order to capture the stress variation accurately.  
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Figure  5-22 Finite Element model of wedge indentation with the expanded view of the 

indenter geometry and the mesh density of the material. 

The finite element model developed here is shown in Figure  5-22.  The mesh 

size was sufficiently fine to account for the local stress variation. The element 

size in the vicinity of the wedge indentation was 3.77 µm × 3.77 µm. As shown in 

Figure  5-22, the wedge tip radius (R) was 24 µm based on the measurement 

described in Chapter 5.  

5.7.2 Digital image Correlation 

The digital image correlation is an optical method applying a mathematical 

correlation analysis to study digital image data of specimens during mechanical 

testing [163]. This technique involves capturing consecutive images with a digital 

camera during the deformation to evaluate the change in surface characteristics 

and understand the behaviour of the specimens subjected to mechanical loading, 

which allows for a strain map of the entire specimen to be generated. This 

technique may be used to observe in-situ deformation experiments, or to 

measure residual stresses [164,165]. For precise DIC measurement deformed 

surface, three main features were required including the presence of a fine and 

high-contrast surface texture with distinctive features, use of large correlation 

patch sizes, and stability of the imaging conditions. With these three features, 

DIC can provide full-filled evaluations of the local surface displacement of 0.4 nm. 

There are two modes of DIC measurement including two-dimensional and three 

dimensional (3D) [166]. The 2D mode uses one camera and acquires images of 

flat surfaces, while 3D mode uses two cameras from images of which, a 3D 

image of bent surfaces is derived. The main focus of this section will be on 2D, 

since this mode has been used in current work.  
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In 2D analysis, the camera is directed to the test surface, which is loaded on the 

tensile machine and subsequently an appropriate load is applied. The 

deformation of the material occurs in-plane, therefore it is important that no out-

of-plane motion occurs, which might be interpreted as pseudo image deformation 

by software. From the deformation results, it is possible to read three different 

strain fields, 𝜀𝜀𝑥𝑥𝑥𝑥, 𝜀𝜀𝑥𝑥𝑥𝑥 and  the shear strain 𝜀𝜀𝑥𝑥𝑥𝑥. 

To achieve good testing conditions, there are three points requiring to be fulfilled: 

• The test piece should have a flat surface. 

• The surface should be at the right distance and angle with the 

objective/camera. 

• Out-of-plane movements should be minimized by correct setup. 

For the last two points, it is important to notice that vibration affects the image 

quality and that this vibration can come from the tensile machine and the camera 

frame [166]. 2D-DIC measurement was used to study local plastic measurement 

in the Zr-Cu-based BMG under condition of wedge indentation. 

- Experimental Procedure 

A wedge-indentation experiment was carried out on the beam-shaped samples 

in a compression mode with a constant displacement rate 0.05 mm/min using 

Tinius Olsen Tensile test machine and maximum applied load was 4kN for 

wedge indentation. The used specimens were 30 mm × 10 mm × 2 mm with a 

flat surface along the thickness for DIC measurements. To apply this method, 

specimen was required to be prepared by an application of a random dot pattern 

(Speckle pattern) on its surface. The speckle pattern is essential, as it permits 
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the software to be able to identify and calculate the accurate displacements. A 

sufficient speckle pattern must have a considerable quantity of black speckles 

with different shapes and sizes. In this study, the specimen`s surface was initially 

painted with a thin layer of white paint and then a black mist of paint was applied 

to create the black speckles (Figure  5-23).  

   

Figure  5-23 (a) Applying speckle pattern and (b) the speckle pattern taken with digital 
camera. 

The equipment consists of computer software and digital camera (LIMESS 

system) with appropriate lens and resolution (See Figure  5-23). When the tensile 

test machine started, the upper part moved and the lower part was stationary. 

The loading direction can be seen in Figure  5-24. The micrographs were 

analysed using commercial image analysis software , DVIS  7.0 by LAVision to 

determine the in-plane displacement field, from which plastic strain values were 

calculated. 
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Figure  5-24 Loading direction of the test bar. 

 

- Local strain distribution 

As discussed previously, D-P model was employed to simulate the strain 

distribution under the wedge indenter under an imposed indenter displacement 

of  25 µm and 80 µm. The obtained results were compared to the DIC 

measurement in wedge indentation experiment. The axial logarithmic strain 

distribution (LE11) is shown in Figure  5-25 (a-b) for the DIC measurement and 

the FE model, respectively. As expected, a large plastic zone was formed under 

the indenter tip commensurate with [120] and [46]. The maximum Lagrangian 

strain (LE11) distribution in the model was compared to the strain distribution in 

the DIC measurement, which was around 0.0172. A reasonable match between 

the spatial depth (marked in Figure  5-25 (b)) and the depth, at which the shear 

bands formed during the experiments. The measured depth was ~193.5 µm, 

which was the distance to the lowest shear band formed during the experiment 

at the displacement of 75 µm. However, the presented material model was 

somehow limited, as there is no underlying mechanism to account for the 

material separation once the maximum shear stress was obtained and there was 
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no underlying mechanics to account for the shear-band evolution. Thus, the 

following step of our research was decided to be the development of strain-

gradient-based constitutive material models, accounting for nucleation and 

evolution of shear-bands in a physically sound way. This would allow for shear 

band localisation (at the wedge tip) once shear bands are nucleated. 
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Figure  5-25  Plastic strain distribution (LE11) after 80µm displacement of the wedge 

5.8 Conclusions  

A relatively new technique – wedge indentation – was employed to calculate the 

stress level required for shear-band initiation in the metallic glass; it was 

estimated that this level was between 0.7-0.9 GPa. The wedge-indentation 

technique was also applied to compare fracture surfaces of the soda-lime-silica 

glass and the studied Zr-Cu-based metallic glass at microscale. Observation of 

fracture surfaces indicated that the propagating cracks did not result in any 

energy dissipation in the traditional glass; on the contrary, the shear-band 

evolution in the metallic glass showed branching mechanism contributing to the 

plastic deformation at microscale. The wedge- indentation technique was also 

used to study evolution of various sets of shear bands at the volume of the 

studied materials. The obtained results showed that wedge indentation was able 

to providing an incremental study of the shear band propagation. The difference 

in indentation depth for incremental and single loadings was less than 5%. At 1 

kN, only semi-circular primary shear bands were observed. With increasing load, 

secondary shear bands were developed inside the plastic region. Shear 

behaviour strongly depended on the applied load that initiated shear bands at 

some “weak” sites, but it was not high enough to drive shear-band evolution to 

the surface, leading to their selective nucleation. The area underneath the force-

displacement curve can be used to calculate the work-done for the total 

deformation including elastic, plastic and damage deformations. Finally, wedge 

indentation experiment was modelled with pressure dependent yield criteria, 

Drucker-Prager. A reasonable match between the spatial depth and the depth, at 

which the shear bands formed in the wedge indentation, was observed. This 
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indicated that other predicted variables could be used to describe the initiation of 

shear localisation in the material. These results of initial numerical simulations of 

deformation processes demonstrated that a maximum-shear-stress criterion can 

be used for developing of constitutive models of BMG to characterise the shear 

band localisation in BMGs.  
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6 Uniaxial Compression Experiments 

6.1 Introduction 

Due to lack of long-range order, BMGs show unique deformation mechanisms 

compared to dislocation-mediated flow in conventional crystalline materials.  

Previous studies of plastic flow in BMGs can be divided into three categories 

based on the specimen size: (i) millimetre range, (ii) micron range, and (iii) 

submicron range. It is well known that BMGs specimens in millimetre range in 

most monolithic glass systems have a tendency to fail along one dominant shear 

band under uniaxial compressive or tensile conditions with little global plasticity 

at room temperature. A large number of studies on different types of BMGs 

showed increased resistance to catastrophic failure, when the specimen sizes 

were in the micron range [51,137,138]. In micro scale level, as shown in Chapter 

4, measurable plastic flow happens within multiple shear bands prior to eventual 

failure along the plane of maximum shear stress along the loading direction. In 

sub-micron range, some recent studies [23,50,139] have proposed that there is a 

transition in the deformation mode from inhomogeneous flow to non-localised or 

homogeneous flow as the test volumes approach the size of a shear band 

nucleus. Volkert et al. [139] argued that sub-microns pillar (below a certain size 

of 400 nm diameter) show  homogeneous plasticity based on Griffith-like model 

due to the lack of a stored elastic strain energy for shear band formation. 

Schuster et al [138] investigated the effect of micropillar size (ranging from 2 to 

20 µm in size) on yield strength of Pd40Ni40P20, and concluded that yield strength 

was insensitive to the pillar size.  Motivated by this work, the possible change in 

deformation mode from heterogeneous to homogeneous deformation was 
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examined as the specimen size was decreased in the current project. In addition, 

the influence of structural sate of BMGs on compressive stress-strain response 

of micropillars was studied in Zr-Cu-based BMG.  

FIB milling is typically used to manufacture microsized pillars. Schuster et al. 

have suggested a strong dependence of yield strength of micro-pillars due to 

specimen taper. When the pillar diameter is not uniform along its height, stress 

field decreases toward its base, once its cross-section area gradually increases. 

This increasing gradient in stress considerably affects the deformation behaviour 

of the pillar, as shear band can propagate easier with decreasing stress. If the 

specimen taper is around 2º-3º, the ratio of maximum and minimum shear 

stresses on the shear-band plane is 1.07 leading to 7% stress gradient along the 

shear band plane. So, if the tapered angle is around zero, there no stress 

gradient to influence the shear band propagation during the compression 

experiments. Hence, this chapter summarises an investigation of different 

techniques to prepare micropillars of Zr-Cu-based BMGs in order to select the 

best technique to minimise the specimen taper. In addition, the specimen taper 

also influences the measured elastic modulus significantly. In current study, the 

size effect on strength, plasticity and deformation mode in the BMG was 

examined using microcompression specimens with cross sections of 10 µm × 10 

µm to 230 nm × 230 nm. Additionally, micro-compression tests were conducted 

on as–cast and deformed specimens to understand the effect of multiple shear 

bands on the nominal elastic-plastic deformation of the material. 
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6.2 Cylindrical micro-compression specimens 

The compression specimens were fabricated on the polished surface of the 

beam-shaped specimens using FIB (Nova 600 Nanolab Dual beam).The 

cylindrical compression samples were fabricated through top-down milling by 

sequentially reducing the inner and outer diameters of the annulus patterns at 

the final ion beam conditions of 30 kV and 1 nA to obtain a good surface finish 

and minimizing taper. The diameters of the produced pillars were 10 µm (Figure 

6-1 (b)) and 5µm (Figure 6-1(b)), respectively. The aspect ratio (height/diameter) 

of the compression pillars was maintained at 2.5. 

 

Figure  6-1 As-fabricated Zr48Cu36Al8Ag8 micropillars with 10 µm (a) and 5µm (b) initial 

diameter. The top surface is nearly perfectly flat; however, the tapered shaped resulting 

in the geometrical artefacts in microcompression test. 

The dimensions and the degree of taper of the both pillars were measured using 

FEG-SEM. Based on the SEM measurements, the micropillar with 10 µm had the 

taper less than 7º, and that for the 5 µm pillar around 12º by considering through, 

(a) (b) 
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tan𝜑𝜑 =
𝑑𝑑1 − 𝑑𝑑0
2. 5𝑑𝑑0

, 6-1 

Where, 𝑑𝑑0 is the initial diameter of the cylindrical pillar, 𝑑𝑑1 is the final diameter 

and 𝜑𝜑 is the tapered angle. Since beam-spread effects were much noticeable for 

milling of smaller pillars, tapering angle increased significantly with decreasing 

the diameter. As yield stress and the elastic modulus are affected by the 

specimen taper, it was decided to prepare rectangle pillars to reduce or eliminate 

the tapering effect. 

6.3 “Lift-out” technique for microcompression sample preparation 

A “lift-out” technique is preferred when requiring TEM analysis in comparison to 

traditional FIB-TEM specimens as the total fabrication time for the “lift-out” 

technique are much shorter with improved dimensional stability [140]. Rectangle 

microcompression pillar of 8× 8 µm2 cross section and aspect ratio of 2.8 were 

prepared, as shown in Figure 6-3. In this method, the location of an area of 

interest was found with an accuracy of microns using FEG-SEM attached to the 

FIB system.  Two trenches were milled on either side of the area of interest using 

a large-beam current (20 nA) for fast ion milling (See Figure 6-2 (a)). The 

trenches were milled so as to just touch the tungsten on either side, leaving a 

wall of material in the centre. The trenches were approximately 50 µm wide, 30 

µm long and 20 µm deep (see Figure 6-2(a)). A smaller beam current was 

applied to further thin the central membrane between the two trenches to the 

thickness of 10 µm and three cuts are made to the area of interest, framing it 

(Figure 6-2(b)). The next step involved milling away the attachment bonds on the 

top two corners of the membrane that were left by the frame cuts (Figure 6-2(c)). 
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The in-situ lift-out involved extracting and transferring the pillar with an internal 

nanomanipulator to the BMG substrate while it was still inside the FIB chamber. 

The in situ manipulation was enabled by the FIB deposition of Pt to first glue the 

manipulator needle to the pillar and then to glue it to the substrate (Figure 6-2(d-

f)). The last FIB milling was performed to the desired cross section and length of 

the pillar; i.e. 8 µm × 8 µm and 22.5 µm, respectively (Figure 6-3).The SEM 

measurements showed that the tapering angle for the pillar from its top to the 

bottom was less than 1º.  

 

 

Figure  6-2 Milling sequence for microcompression specimens of Zr-Cu-based metallic 

glass  using “lift-out method: (a) Iso view of rough cut on both sides of area of interest, 

(b) Iso-view of  frame cuts, (c) Iso-view of free membrane from trench, (d) and (e) In situ 

lift-out of pillar by means of nanomanipulator needle mounted inside FIB chamber by Pt-

deosition; (f) pillar mounted after transfer  from the side on BMG substrate by Pt-

welding. 

(a) (b) (c) 

(d) (e) (f) 
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Figure  6-3  Zr48Cu36Al8Ag8 micropillar with 8 µm × 8 µm cross section and 22.5 µm 

length  fabricated with lift-out method using FIB. 

The microcompression test was performed on the nanoindentation system 

(Micromaterial Platform III) using a flat punch tip with an equilateral triangle 

cross-section measuring 50 µm inside length and a constant displacement rate 

of 8 nm/s. The corresponding load-displacement data is presented in Figure 6-4. 

The measured elastic modulus from the elastic region of stress-train curve was 

around 85 GPa. The curves showed an elastic loading followed by a plastic 

region without any serration with the load remaining constant. If the yield 

strength is assigned when the specimens undergoes plastic deformation in the 

stress-strain curve, the yield strength of the pillar was 250 MPa, which is much 

lower than the value of 1800 MPa for the Zr48Cu36Al8Ag8 bulk compression 

sample (see Figure 6-8). Morphology of the compressed pillar was examined by 

FEG-SEM.  As can be seen in Figure 6-5, Pt-deposition used to glue the pillar to 

the substrate was not strong enough for preserving the pillar in position during 

microcompression tests, leading to failure of the pillar at the joint points. 
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Although the tapered angle the pillar was less than 1º for, it can be concluded 

that the “lift-out” technique is not suitable to provide micropillars as the Pt-

deposition is much softer than the Zr48Cu36Al8Ag8 micropillars.  

 

 

Figure  6-4 Compression load-displacement (a) and engineering stress-strain (b) curves 

of Zr-Cu based metallic glass with 8 µm × 8 µm cross section. 

(a) 

(b) 
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Figure  6-5 SEM micrograph showing that Pt-deposition used to glue the pillar to the 

substrate was not strong enough to preserve the pillar in position during the 

microcompression experiments. 

6.4 Micompression test on rectangular Zr48Cu36Al8Ag8 pillars 

6.4.1 Influence of structural state on micro-compression  

The next set of microcompression specimens were prepared from beam-shaped 

samples of the as-cast BMG and its fracture surface area (sheared zone area) 

obtained from the three-point bending using the dual FIB to evaluate the 

deformation behaviour of a highly deformed region and as-cast specimens of the 

Zr-Cu-based BMG. To reduce the taper effect, rectangular micropillars (see 

Figure 6-6) with the cross-sectional area of around 10×10 µm2 and the effective 

height of 25 µm were prepared by means of the top-down milling method by 

successively reducing the cross-section of the pillars at the final ion beam 

condition. A ion beam with a 30 kV accelerating voltage was used; an initial 

current of 20 nA was gradually reduced to 1 nA as the pillar cross section 

decreased. It was found that the tapered angle was less than 1º. Uniaxial 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 6
:  

U
ni

ax
ia

l C
om

pr
es

si
on

 E
xp

er
im

en
ts

  
 

166 
 

microcompression tests were performed on the micropillar samples with a 

nanoindentation system (Micromaterials Ltd. Platform III) using a flat punch tip 

with an equilateral triangle cross-section measuring inside length of 50 µm. To 

reduce the additional complexity of strain-rate effects, all tests were performed at 

a constant nominal displacement rate of 8 nm/s, resulting in the global strain rate 

of 1×10-3s-1. After the maximum length displacement was reached, the 

nanoindenter system had a short period of holding time, about 1 s. The pillars 

were examined prior and after the deformation using FEG-SEM. 

 

Figure  6-6 As fabricated Zr48Cu36Al8Ag8 rectangular micropillar with 10 µm ×10 µm. The 

top surface is nearly perfectly flat minimising geometrical artifacts in nano-compression 

tests 

The morphologies of the representative micropillars after compression are shown 

in Figure 6-7. The deformation mode of these pillars was dominated by localised 

shear-banding in a manner of stress drops to release the energy, which is similar 

to that in crystalline solids [141]. As shown in Figure 6-7, the shear bands were 
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initiated from the corner of the contact surface between the specimens and the 

compression indenter punch at around 45º to the loading axis. This was because 

the pillars experienced maximum shear stress due to the large constraint caused 

by friction between the test specimens and the punch [137]. Furthermore, 

following yielding, the upper part of the specimens began to slide along a major 

shear plane. As a result, the effective load-bearing cross-section area did not 

remain constant, as the punch impressed into the bottom part of the micropillar. 

This explains the observation of “lips” on the top of the deformed samples 

(Figure 6-7(a)) and decreasing of load (Figure 6-8(a)). The latter was not 

indicative of any work hardening or softening and it is a measure of friction of 

sliding between two rigid bodies [137]. SEM images taken after deformation 

confirmed that plastic deformation proceeded via shear banding irrespective of 

the material condition, and no change in the deformation mode was observed. 

Qualitatively, there was also no difference in shear-band density between 

different conditions.  

 

(a) (b) 
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Figure  6-7 SEM micrographs of deformed micropillars rectangular: (a-c) as-cast 

micropillar; (b-d) micropillar from sheared zone area. 

Figure 6-8 shows the representative engineering stress-strain response of the 

mocropillars in the as-cast and sheared zone states (fracture region). The 

engineering stress-strain curve is normally converted from the load-displacement 

data under assumption that the specimens were uniformly deformed. According 

to the engineering stress-strain curve (Figure 6-8), the mechanical behaviour of 

the BMG subjected to the external load can be classified into three different 

stages including a misalignment-effect region, an elastic region and a region with 

strain hardening followed by a steady-state plastic deformation. The 

misalignment region was a part of the initial deformation area deviated from 

linearity due to the imperfect contact between the punch and the pillar. As seen 

in Figure 6-8, the elastic-plastic transition in the pillars was abrupt, and 

deformation was characterised by discrete pop-in events throughout the plastic 

flow regime; there was a clear stress drop associated with each serration. The 

discrete pop-in events were triggered by the formation and propagation of one or 

multiple shear bands. The plastic-flow region shown in Figure 6-8 consists of a 

series of smaller stress drop followed by elastic loading, exhibiting increased 

(c) (d) 
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plasticity as the stress at the first stress drop was around 1.8 GPa; this is similar 

to the yield strength reported for Zr-Cu based metallic glass under compression. 

Strain hardening occurred immediately after yielding at around 4% of strain and 

declined when the steady-state plastic flow started. The steady-state part 

proceeded in a perfect-plastic manner without any sign of the strain softening or 

hardening. There were multiple stress drops observed and there seems to exist 

blocking resistance to evolution of shear bands. This appeared to induce 

initiation of subsequent shear bands operating at higher load (or stress), showing 

an extended ductility and intrinsic plasticity of the BMG.  This suggested that 

initiation of shear bands was easier than their evolution and plasticity was mainly 

accomplished by formation of new shear bands. In Figure 6-9, the hardening 

effect observed is apparent in the true stress-true strain curves, in addition to the 

curves based on engineering stress. This indicated that the hardening effect is 

not an artifact resulting from the use of engineering stress-strain assumption. 

In the deformed-region pillar, the stress required to initiate shear bands is 

significantly lower than that for the as-cast pillar (0.8 GPa). This demonstrated 

that the deformed area was twice softer compared to the as-cast material, which 

was also confirmed by indentation tests on the fracture surface area. The 

difference in the strength levels is associated with the flaw sensitivity [142] of 

defect population that helped shear-band initiation [49,139]. These defects 

include free volume, nano-voids and nanocrytallisation inside the shear bands. 

As there is no temperature inside shear bands based on the discussion on 

section 4.2.1, it would not be any crystallisation inside our shear bands.   



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 6
:  

U
ni

ax
ia

l C
om

pr
es

si
on

 E
xp

er
im

en
ts

  
 

170 
 

The measured elastic modulus was estimated from the elastic region of 

engineering stress-strain curve. After applying the correction value of 1.25 for the 

extracted elastic modulus on the basis of the finite element simulation of 

microcompression [143], the elastic modulus of as-cast pillars was around 85 

GPa, which was about 10 % less than the value of 95 GPa obtained in the three-

point bending test. The possible reasons were the misalignment or imperfect 

contact between the top surface and the tip, as indicated in Figure 6-8. However, 

the results on the elastic modulus indirectly indicate that the misalignment artifact 

on the yield-stress measurement was minimised in this study. An additional 

effect can be potential damage caused by FIB to the pillar surface. The thickness 

of the damaged layer for a Zr-based BMG was estimated around 4 nm for 3.8 

µm-diameter micropillars using Auger electron spectroscopy [51], and the 

damage thickness of 10-20 nm reported for 700 nm-diamtere micropillars. 

Therefore, an area of damage layer was less than 1 % for 10 µm micropillar, and 

FIB -induced damage of the pillar surface had no significant influence on 

strength and deformation behaviour of the studied micropillars. The magnitudes 

of the Young`s modulus of the sheared zone measured with the 

microcompression experiments were compared to those for the undeformed 

region: the former were considerably lower around 30 GPa. Hence, there was a 

significant decrease in excess of 50% in the values of the elastic modulus 

compared to those for the as-cast sample. 
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Figure  6-8 Characteristic engineering stress-strain curves of as cast and shear-zone 

micropillars of Zr48Cu36Al8Ag8 at constant displacement rate of 8 nm/s. 

(a) 

(b) 
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Figure  6-9 True stress-strain curves of as cast and sheared zone micropillars of 

Zr48Cu36Al8Ag8 at constant displacement rate of 8 nm/s. 

6.4.2 Influence of sample size on micro-compression behaviour 

Rectangular micropillars with cross-section of 230 nm × 230 nm and effective 

length of 580 nm (aspect ratio of 1:2.5) and the taper angle from the top to the 

bottom lower than 1 º were machined by FIB to perform in-Situ SEM micro-

compression test. An ion beam with a 30 kV accelerating voltage was used; with 

an initial current of 12 nA gradually reduced to 100 pA as the pillar cross section 

decreased. Micro-compression tests were performed using a nanomanipulator 

system, Kleindiek nanotechnik, which has recently been set up at Loughborough 

Material Characterisation Centre (LMCC) inside the FEI Nova600 Nanolab 

DualBeam FIB-SEM. The flat tip (AFM tip) with an equilateral triangle cross-

section measuring 1.5 µm in side length was also machined by FIB. The 

deformation characteristic of the nano-scale pillar was compared to 10 µm 

rectangle micro-pillar to investigate the effect of the sample size on inelastic 
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deformation. Quantitative Weibull analysis suggests that the increase in strength 

can be attributed to the lower probability of having weak flaws in a small sample. 

 

Figure  6-10 SEM image of the as-fabricated 230 nm nano-pillar. The tapering angle of 

the as-fabricated pillar is lower than 1 º and the pillar top is round. The height of the 

round region is ~ 30 nm, hence the inelastic deformation was rarely affected by the top 

pilar. 

-Nanomanipulator Setup for micro-compression experiments 

The setup is consisting nano robots with nanoelectronic controls, which can 

operate under SEM. These manipulators have joint configuration RRP (revolute–

revolute–prismatic), which uses two rotational joints with 0.1 μrad resolution and 

one prismatic joint with 0.25 nm resolution. These nanomanipulators have well-

behaved kinematic and backlash-free characteristics besides having nano-scale 

precision to guarantee accurate manipulation. The accuracy of a manipulator's 

tip control under SEM is in nanometers. It comprises a MM3A Manipulator 

attached with a microcantilever based force sensor at its gripper/tip position. 

There is a micro spring positioned next to it in order to generate force-deflection 
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experimental value. Using MM3A controls the manipulator can interact with 

objects in its work space at both micro- and nano- scale. When the manupulator 

tip made a contact with an object, it causes a feedback signal response 

proportional to the force applied because of a piezo-resistive layer on the surface 

of the force sensor. The force feedback signal is amplified and converted as 

audio output to sharply notice the first contact between the object and 

manipulator tip. The manipulator tip and cantilever spring interaction can be 

viewed on a computer screen in high resolution using SEM; these images show 

deflections in submicron range. The photographs of manipulator, complete 

setup, cantilever spring, and force are shown in Figure 6-11.  

 

Figure  6-11 Experimental set-up of in-Situ microcompression study inside FIB (b) 

MM3A-LMP Micromanipulator and its component including AFM tip, Piezo-resistance 

force sensor and Micro cantilever spring. 

Figure 6-12 shows a SEM image of the compressed the 230 nm pillar, where two 

shear offsets were observed. The shear band spacing was ~40 nm, which was 

easily measurable in the image. In contrast to the 10 µm pillar of the virgin state, 

the shear band did not form an intersect with the pillar top surface at the location 

of the indenter/pillar contact and the inelastic deformation was localised within 

shear bands (as shown by arrow in Figure 6-12). This indicated that the 
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deformation mode of the studied pillar was invariable with the localised shear 

banding, independent of sample size. There was no deformation change from 

localised-to-homogeneous deformation occurred up to 230 nano-pillar. Despite 

the fact that the micropillars were inhomogeneously deformed by localised shear 

bands, it was evident that the strength of these pillars was a function of the 

sample size. The yield strength of the 10 µm and 230 nm pillar are 1.8 GPa and 

2.26 GPa, respectively.  

 

Figure  6-12 High resolution SEM micrographs of deformed 230 nm micropillars 

rectangular after compression test. Two shear bands were observed (highlighted with 

arrows) 

The effect of possible geometrical artifacts such as tapering of the pillar and the 

pillar top roundedness was considered to interpret the plasticity and deformation 

mode of the 230 nm pillar. As shown in Figure 6-12, the taper in the 230 nm 

pillars in this study was less than 1º leading to very low stress gradient along the 

shear plan and it was unlikely to affect or suppress the shear band propagation 

as reported by Schuster et al. [138]. The non-planarity of the nano-pillar`s top 

resulted in non-uniaxial stress state directly underneath the contact with flat 
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punch. As the fabrication of the 230 nm pillar was very challenging, there was a 

possibility that the deformation mode of the pillar could be affected by this 

geometrical artifact of the non-flat top surface. However, the total plastic 

displacement of the pillar was larger than the height of the round region (around 

30 nm). Thus, the round part of the pillar did not contribute to the plastic 

deformation and the deformation was accommodated by the lower section with 

constant cross section area, and the width of the pillar uniformly increased. SEM 

image of the compressed pillar presented in Figure 6-12 demonstrate the 

evidence of shear banding within the pillar in the section with constant cross-

section area, that do not suffer from the geometrical artifacts. 

 

Figure  6-13 Fracture surface of a compressed 10 µm micropillar. The surface was 

smooth and shiny not showing any evidence of vein pattern or local melting. The top half 

of pillar was completely sheared off from the lower half. 

Figure 6-13 shows the fracture surface of the 10 µm micro-pillar; its appearance 

was flat and shiny. The fracture surface of BMGs generally exhibit “vein” pattern 

with sub-micron dimension or evidence of molten droplets [144]. Hence, further 

investigation is required to discover a reason for flat fracture of the pillar. 
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Figure  6-14 SEM micrographs of deformed 10 µm micropillars rectangular 

As shown in Figure 6-12, there was a very limited number of shear bands in the 

230nm  pillar  compared to the 10 µm pillar (see Figure 6-14).  This suggests that 

smaller pillar was close to the size comparable with observed shear band 

spacing. Thus, the measured apparent yield strength of the 230 nm pillar (2.62 

GPa) would represent the strength of the material without any volumetric defects. 

Figure 6-12 and Figure 6-14 illustrate the shear band spacing for the 230 nm and 

the 10 µm pillars. For micro-pillars of 10 µm, shear band spacing mainly ranged 

from 200 nm to 1000 nm. However, shear band spacing decreased from this 

range to 40 nm for 230 nm micro-pillar and finer shear bands were formed. 

Therefore, with decreasing the sample size, the average shear band spacing 

became narrower and the density of shear band decreased. 

For brittle materials, flaw sensitivity can be used to describe the variability of their 

strength. Weibull statistics, as firstly discussed by Schuster [49], can describe 

the strength increase with decreasing sample size. The Weibull equation 

explains the fracture possibility of 𝑃𝑃𝑓𝑓 as a function of a given uniaxial stress 𝜎𝜎 in 

forms of [145]: 
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𝑃𝑃𝑓𝑓 = 1 − 𝑠𝑠𝑒𝑒𝑝𝑝 �−𝑉𝑉 �
𝜎𝜎 − 𝜎𝜎𝑢𝑢
𝜎𝜎0

�
𝑚𝑚
� 6-2 

where 𝜎𝜎0 is a scaling parameter, 𝑚𝑚 is the Weibull modulus, and 𝑉𝑉 is the volume 

of tested sample. The parameter 𝜎𝜎𝑢𝑢 represents the stress at which there is a 

zero failure probability, and is usually considered to be zero [51]. It was assumed 

that the characteristic flaw causing fracture in both micron and sub-micron 

micropillars were the same, then, at a fixed fracture probability, then 𝑃𝑃𝑓𝑓 =

𝑐𝑐𝑖𝑖𝑛𝑛𝑑𝑑𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡, above equation can be simplified to:  

�𝑉𝑉 � 𝜎𝜎
𝜎𝜎0
�
𝑚𝑚
� = 𝑐𝑐𝑖𝑖𝑛𝑛𝑑𝑑𝑡𝑡. 6-3 

since 𝑉𝑉 = 𝑑𝑑3, where 𝑑𝑑 is the diameter of the compression sample, 

𝑑𝑑3𝜎𝜎𝑚𝑚 = 𝑐𝑐𝑖𝑖𝑛𝑛𝑑𝑑𝑡𝑡. 6-4 

As mentioned previously, the apparent strength of 10 µm and 230 nm of the Zr-

Cu-based BMG sample are 1.800 GPa and 2.26 GPa, respectively. Inserting 

these values to  Eq.6-4, the Weibull module is calculated to be about 50, which is 

within range of the m values recently reported for the malleable (m=73.4) and 

brittle (𝑚𝑚 =25.5) Zr-Cu-based metallic glasses. The higher 𝑚𝑚  -value indicated 

higher ductility of the specimens.  The above analysis supported the observation 

that the compression stress increases with decreasing specimen size can be as 

result of reducing the defect populations in the specimens. 

6.5 Conclusion 

This chapter details an investigation on different techniques to prepare 

micropillars of the studied BMG with the lowest possible taper angle. As 
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described, the rectangular micropillars were milled by means of top-down milling 

method with specimen taper less than 1º. 

The rectangular micropillar specimens with cross-sectional area of 10 µm × 10 

µm were prepared from as-cast and the fracture surface area to study the 

deformation behaviour of a highly deformed region and as-cast specimens of the 

studied BMG. The deformation mode of these pillars was dominated by localised 

shear banding which manifest in stress drop to release the energy. The results 

also indicated that shear band initiation was easier than their evolution. In the 

deformed region, the stress required (0.8 GPa) to initiate shear bands is 

significantly lower than that for the as-cast pillar, which was ~ 1.8 GPa. The 

elastic modulus of as-cast pillar was ~ 85 GPa , which was 10 % lower than the 

value of 95 GPa obtained during three-point bending test due to the 

misalignment or imperfect contact between the top surface of the pillar and the 

flat punch. 

Additionally, micro-pillars with cross section sizes of  10 µm × 10 µm and 230 nm 

× 230 nm were fabricated and then tested in homogenous loading condition to 

investigate the effect of sample size on deformation characteristics of the BMG. 

For all sizes, the plastic flow was localised in shear bands.  The apparent yield 

strength of the pillar specimens was between 1.8 GPa and 2.26 GPa showing 25% 

variation in strength. The strength enhancement was successfully modelled 

using Weibull statistics for brittle materials. Therefore, the increase in strength 

can be as a result of the fact that a smaller sample has less defect population.
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7 Characterisation of Shear Bands  

7.1 Introduction 

Shear-banding is one of the primary mechanisms of plastic deformation in BMGs 

[26,38]. It is a form of plastic instability that localises large shear strains in a 

relatively thin band (shear band), when a BMG is deformed. At room 

temperature, shear bands are particularly important, as they control the plastic 

deformation and failure behaviour in metallic glasses. To study mechanical 

behaviour of metallic glasses, the key is to fully understand shear bands, their 

initiation, propagation and overall mechanical properties. Hence, specific 

characteristics of shear bands were investigated, namely, 

• initiation of shear bands: propagation, evolution and sliding; 

• crystallinity / non-crystallinity of shear bands; 

• geometric characteristics of shear bands; 

• mechanical properties of shear bands. 

A surface-decoration technique was adapted to investigate formation and 

evolution of shear bands during wedge indentation experiments (see chapter 5) 

at sub-micron length scales.  Shear bands were microstructurally characterised 

using XRD and TEM. Mechanical properties of individual shear bands in the Zr-

Cu-based metallic glass were investigated using an indentation technique in 

order to obtain a better understanding of how shear-band plasticity was 

influenced by non-crystalline defects.  
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7.2 Surface decoration  

In experiments at microscale, surface features such as grains, inclusions, 

second-phase particles or surface scratches often lacks surface features of the 

appropriate size or optical contrast to study local displacements. Typical 

methods such as strain gauges or optical non-contact methods used for 

displacement measurements cannot be applied at nano- or micro-scale. Surface 

decoration is a process of applying an artificial surface pattern with the 

appropriate size or optical contrast as natural surface to evaluate local 

displacements by comparing corresponding area before and after deformation by 

using various techniques such as digital image correlation technique (DIC). 

Surface-decoration techniques such as spray painting, grinding or etching are 

used to provide patterns at the macro-scale [146]. These techniques can be 

used up to 1000X magnification with conventional optical microscopes. In the 

last few decades, research has led to the discovery and development of 

structures with features in the nanometre range [147]. Consequently, more 

specialized surface-decoration methods were required to visualise these 

nanometer features at higher magnifications. Scanning Electron Microscopy 

(SEM) can provide high- quality images over a broad range of magnifications 

from about 30x to greater than 100,000x. Furthermore, the decoration 

techniques such as microcontact printing, UV photolithography and gold coating 

are employed to create features less than 100 nm [148,149]. Surface decoration 

can be applied very locally using Focused Ion Beam (FIB) and a Focused 

Electron Beam (FEB) methods to create features on the specimens. FEB and 

FIB can also be used for sputtering of metallic films in the pattern of a randomly 

structured bitmap with resolution of features less than 5 nm in size [140,150].  In 
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addition, FEGSEM-FIB instruments can offer high quality imaging at high 

magnifications; those can image feature with resolution less than 5 nm in 

addition to allowing precise milling using as ion beam [151]. 

Surface-decoration techniques including etching and FIB were employed to 

create patterns on specimens in order to track formation and evolution of shear 

bands in the samples. The beam-shaped specimens of the studied BMG with a 

length of 40 mm, width of 10 mm and thickness of 2 mm were mechanically 

polished to a mirror finish (see chapter 4) to offer best conditions for observing 

shear bands. Polished specimens were etched using Nitro-Hydrochloric solution 

(Aqua Regia), by immersing them for duration times of 2 minutes and 10 

seconds in the solution. Aqua regia is a mixture of two parts HCL, one part 

HNO3 and two parts of water. Morphology of the specimen`s surface after 

etching was characterised with FEG-SEM (Leo 1530VP FEGSEM). As shown in 

(Figure 7-1(a)), the 2 min immersion resulted in metal heavily reacted with 

etching solution, yielding no useful information. As can be seen in Figure 7-1(b), 

the 10s immersion of the sample revealed a few features; however, it led to 

formation of some holes with dimension of up to 3µm. This is a potential problem 

as shear bands have dimensions typically in tens of nanometre and the features 

generated after etching were significantly larger in size compared to size of 

shear bands.  The formed holes can also lead to local compositional changes 

and structural changes due to dissolution of the valve-metal components, such 

as Zr, and partial re-decomposition of Cu [152]. In addition, the formed holes can 

act as favourable surface sites for initiation of bands and stress raiser since 

these holes, like sharp edges or tips, are mechanically weak points. These 

extended features can distort the overall conclusion of the study. 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 7
:  

C
ha

ra
ct

er
is

at
io

n 
of

 S
he

ar
 B

an
ds

 
 

183 
 

 

Figure  7-1 SEM images of Zr48Cu36Al8Ag8 surface after  immersion in Nitro-Hydrochloric 

solution  for 2 min (a) , which heavily reacted with etching solution and 10 s (b), which 

shows holes of 3 µm in diameter. 

It can be concluded that specialized surface-decoration methods were needed to 

visualise nanometre-scale features at higher magnifications. To implement this 

approach, an initial indentation load of 500 N was applied using the wedge-

indentation technique on a beam-shaped specimen with dimension of 80 mm × 5 

mm× 2 mm. To create a fine local grid, microlines were milled using FIB with 30 

kV acceleration voltage and 10 pA beam current; it took ~1 s to produce each 

microline. Milled lines had a length of 20 μm, width of 0.2 μm and spacing of 1 

μm (Figure 7-2). Ten 6x6 sets of gridlines were milled on the front face of the 

indented sample. Next, wedge indentation was performed by applying 

subsequent load increments of 1 kN. SEM images of 5000x magnification with a 

128 μm Horizontal Field Width (HFW) were taken before and after each 

incremental loading to evaluate surface deformation caused by wedge 

indentation into the tested material. The induced shear bands were characterised 

using a Zygo NEWVIEW 5000 system. Shear band morphology was examined at 

ten different locations as shown in Figure 7-4. 

(a) (b) 



Deformation Behaviour of a Zr-Cu-based Bulk Metallic Glass  2016
 

  

C
ha

pt
er

 7
:  

C
ha

ra
ct

er
is

at
io

n 
of

 S
he

ar
 B

an
ds

 
 

184 
 

 

Figure  7-2 SEM images of FIB nano lines produced with surface-decoration process 

with detailed set of gridlines shown at higher magnification. 

It is known that surface imperfections serve as preferable sites for initiation of 

shear bands [153]. In the present study, there were no obvious differences in 

shear band evolution in specimens with polished and decorated surfaces, 

suggesting that surface decoration had no influence on shear-band initiation and 

evolution (Figure 7-3).  

 

Figure  7-3 SEM image of shear band evolution with (a) and (b) without surface 

decoration. 

(a) (b) 
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Figure  7-4 SEM image of surface decoration with numbered locations. 

A new model of deformation behaviour of metallic glasses can be proposed 

based on the current observations in the surface-decoration experiments. Shear 

band did not operate simultaneously across the shear plane resulting in 

catastrophic behaviour with no plastic deformation in the BMG. As illustrated in 

Figure 7-5(b-e), shear bands formed a localised deformation zone and slip 

occurred across these bands as marked by black arrows in Figure 7-5. This 

indicates that once a shear band formed, it caused the material volume across it 

to slip (Figure 7-5 (c)). Thus, shear bands do not ‘flow’ in contrast to the motion 

of dislocations along a slip plane in conventional crystalline metals; they shear 

bands propagate discretely through the volume. 
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Figure  7-5 Evolution of shear bands with incremental loading in locations 1 and 9 shown 

in Figure 7-2 using surface-decoration technique: (a) undeformed gridline; (b) and (c) 1 

kN; (d) and (e) 1-2 kN. 

Location 1 Location 1 (b) (c) 

(d) (e) Location 9 Location 9 

(a) 
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Next, morphology of the material surface showing shear bands was studied 

(front face in Figure 5-22(b)). A shear band was chosen for this as shown in 

Figure 7-6(a) and the variation of height across it was measured at three 

locations (designated by lines 1, 2 and 3 in Figure 7-6(a)). The measured profiles 

of the surface indicated that the variation of height across the shear band 

increased by moving further away from the indenter, indicating that shear bands 

caused an out-of-plane displacement. Interestingly, depending on location, a 

rotation of material volume was observed due to shear-band deformation (Figure 

7-5 (c)).  

 

Figure  7-6 Measurement of material`s height along  single shear bands: (a) overall 

appearance of shear bands; (b) sites variation of height along shear band  for 

measurement shown in (a) 
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7.3 Microstructural characterisation  

The amorphous nature of the deformed beam-shaped specimens under wedge 

indentation was examined via XRD; the X-ray diffraction patterns obtained from 

the top and front face of the wedge indented sample (Figure 5-22 (b)) are shown 

in Figure 7-7. A broad diffraction without any crystalline peak was observed in 

the XRD patterns of both deformed specimens under wedge-indentation and as-

cast specimens, indicating fully amorphous structure, in both cases. 

 

Figure  7-7 XRD patterns of as-cast  Zr48Cu36Al8Ag8, top and front of wedge-indented 

sample. Note that the deformed sample did not have any detected crystal-diffraction 

peaks. 

To understand the microstructural characteristics of the shear bands, TEM 

studies were performed to investigate a deformed region below the wedge 

indent, in particular the area with noticeable shear bands (See Figure 7-8). Thin-

film foils for TEM were prepared using FIB providing locally uniform foil 

thickness; thin slices were cut along a plane parallel to the loading direction and 
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perpendicular to the visible shear planes identified from the traces of slip bands 

on the sample surfaces. The composition of the samples was locally studied 

using TEM-EDS. 

In the bright-field image of specimen`s the cross-section (Figure 7-8(b)) extracted 

from a typical location shown in Figure 7-8(a), no dark contrast can be seen. For 

a TEM specimen with uniform thickness, lack of a noticeable contrast between 

shear bands and the surrounding undeformed matrix indicated that there was no 

significant change in the structure. The region within a shear band was studied 

by using a 200 nm × 200 nm square selected area aperture. As presented in 

Figure 7-8(b), there was no sharp diffraction pattern in this region demonstrating 

no formation of nano-crystalline structure in the shear bands, and a diffuse ring 

pattern indicated a fully amorphous structure. The combination of locations, 

where the SAED was obtained from, was tested in-situ with EDS. The 

measurements showed that the elemental concentrations were close to the 

nominal value of 47.2 at.% Zr, 37.1 at.% Cu, 7.8 at.% Al and 8.1 at.% Ag . 

Incidentally, similar compositions were observed during the study for the as-cast 

and the deformed BMG using the SAED technique. In summary, no 

compositional changes were found in the shear-band region.  
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Figure  7-8 (a) SEM micrograph of wedge-indented Zr48Cu36Al8Ag8 sample with pre-

polished surface showing traces of shear bands.  (b) BF TEM image from regions within 

shear bands. 

To further investigate the micromechanism of localised plastic deformation in the 

BMG, microstructure of the fracture surface obtained from three-point bending 

was characterised with XRD (Figure 7-9) and TEM (Figure 7-10(a)). The cross-

sectional TEM foil was cut with FIB from an area with a typical vein pattern of the 

fracture surface (Figure 7-10(b)). Figure 7-11(a) shows a TEM image obtained 

from the fracture surface of the studied BMG and a representative crystalline 

material (Pt). For the crystalline structure, dark dots in the matrix illustrated in the 

image show ordered nano-domains of sizes less than several nanometers; the 

sharp diffraction spots demonstrating the formation of nanocrystals in the matrix. 

The bright-field (BF) image of the fracture specimen is shown in Figure 7-11(a), 

where the featureless contrast can be seen in the fracture-surface section. The 

featureless contrast in the BF image is associated with no significant structural 

changes in the fracture surface; hence, there is no structural ordering within the 

(a) 

(b) 
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fracture surface. The corresponding SAED pattern shows a diffuse ring without a 

sharp diffraction pattern confirming the amorphous structure. The composition 

measurements using TEM-EDS illustrated that the elemental concentrations 

were close to the nominal value of 46.8 at.% Zr, 37.00 at.% Cu, 8.1 at.% Al and 

7.9 at.% Ag, which is similar to the as-cast materials. These results further 

confirmed that yielding of the BMG does not lead to crystallisation in the material. 

 

Figure  7-9 XRD pattern of Zr48Cu36Al8Ag8 for three-point bending. 

 

 

(a) (b) 
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Figure  7-10 (a) Fracture surface of Zr48Cu36Al8Ag8 sample, showing typical vein 

morphology, under three-point bending used for TEM preparation: (b) initial stage of 

sample preparation for TEM; (c) TEM specimen mounted on TEM grid. 

  

Figure  7-11 TEM micrograph and SAED pattern of fracture surface of Zr48Cu36Al8Ag8 

sample under three-point bending: (a) dark field TEM micrograph image of  the BMG vs. 

crystalline materials;    (b) nanodiffraction patterns from fracture surface region with vein 

pattern on fracture surface. 

(c) 

(a) (b) 
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7.4 Indentation of sheared zone  

7.4.1 Indentation of individual shear bands 

As shear band is a mechanism of plastic deformation in metallic glasses, 

mechanical properties of individual shear bands were investigated in order to 

obtain a better understanding of the effect of non-crystalline defects on shear-

band plasticity. Thus, important questions arise are: (i) what actually are the 

mechanical properties of the shear bands; (ii) Are the inter-band mechanical 

properties similar to or higher than those of the shear band. The wedge 

indentation test was performed with a peak load of 2000 N to obtain well-

developed shear bands on the front surface of the specimens (see Figure 7-12). 

Under this condition, it is easy to determine the location of shear bands or 

sheared regions in the specimens. A series of nano-indentation experiments 

were conducted near and on traces of the shear bands using a Vickers indenter 

with a maximum load of 100 mN and a loading rate of 2 mN/s (with a 30 s hold 

time at peak load). Since the indentations were spaced at an interval of 10 µm 

and their size was around 5 µm, the spatial resolution perpendicular to the shear 

band was within 3 µm. The values of hardness and modulus measured in the 

deformed region could be divided into two groups based on the location of 

nanoindentation imprints. Firstly, the indentations were made between the shear 

bands in the deformed region, as shown in Figure 7-12. Secondly, some 

indentation imprints were placed over the shear bands. The indentation made 

over shear bands exhibited a larger peak-load displacement than that in the 

inter-band area (Figure 7-13 (a)), indicating that shear bands were softer. 
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Figure  7-12 SEM image showing indentation made over shear bands and between 

them, i.e. in inter-band region. 

The hardness values obtained for the bulk area were also higher than those for 

shear bands. It seems that the actual hardness of individual shear bands should 

be much lower than the measured value as the shear bands typically present 

only a small volume fraction of a deformed region, and the measured results 

average over both shear bands and an undeformed region. The initial part of the 

P-h diagram up to 10 mN still demonstrates a distinct difference in responses of 

the shear bands and bulk areas, indicating that the former are much softer. 

Obviously, at low indentation loads and, respectively depth, the material`s 

response is defined by the small volume localised around the shear band. In the 

subsequent stages of loading, contribution of parts outside the shear band would 

increase, moving towards the virgin-state behaviour. However, it is very 

challenging to perform indentations over the shear bands with very low loads and 

precise positioning is difficult to achieve. 
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Figure  7-13 Shear bands vs. bulk area: (a) load-displacement; (b) hardness; (c) 

modulus. 

Mechanical strength of the shear band can be estimated from the initial part of 

the P-h curve shown in Figure 7-13(a). The sheared zone can be about 500 µm 

wide based on the shear bands definition, at which deformation is localised and 

softening happens. The size of the sheared zone is similar to the shear-band 

width reported for crystalline materials [38]. The number of serrations is about 30 

for the sheared zone in the indentation experiments. These results confirmed 

that the softening zone on the fracture surface was a sheared zone with the size 

of 400 µm.  Hence, a large softening area was a result of concentration of 

(a) 

(b) (c) 
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multiple thin shear bands in the deformed region. These shear bands were 

uniformly distributed in the sheared region, leading to formation of a composite 

comprising shear bands and undeformed region. SEM observations (Figure 

7-12) showed much thinner shear bands compared to these results; it also 

indicated that a sheared zone was formed as a result of many serrations.  

7.4.2 Indentation of fracture surface 

Nano-indentation tests were carried out on the fracture surfaces of BMG 

specimens after three-point bending to investigate the effect of the dilatation 

process, which is considered as a mechanism of deformation-induced 

localisation, in a highly deformed region. The nano-indentation was performed at 

room temperature on Nanotest Platform III; equipped with a Vickers tip under a 

peak load of 100 mN and loading rate of 2 mN/s to determine mechanical 

properties of fracture surface during nano-indentation according to the theory by 

Oliver and Pharr.  The obtained load-indentation depth (P-h) diagram for the 

indented fracture region is demonstrated in Figure 7-14 (a). Clearly, a distinct 

difference was observed between the fracture region and the undeformed 

material in indentation with 100 mN; the fracture region was much softer than the 

virgin material. In addition, the P-h curves exhibited increased serrated flow in 

the fracture region, indicating that a large number of shear bands were activated 

during the fracture process. The magnitudes of hardness and modulus of the 

fracture surface measured with nanoindentation were compared to those for of 

undeformed region: the former values were much lower, ranging from 0.5 to 1.5 

GPa and 5 GPa to 30 GPa, respectively (Figure 7-14 (b-c)). There was a 
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significant decrease in excess of 80% in the values of hardness and modulus 

compared to those for the as-cast sample. 

 

 

Figure  7-14 Fracture surface vs. as-cast sample: (a) load-displacement (P-h) curves; (b) 

hardness; (c) modulus under peak load of 100 mN. 

The scatter presented in the experimental data may be due to the roughness of 

the fracture surface, affecting the contact area, or presence of softer shear 

bands close by. Hence, a series of nanoindentation experiments were performed 

on the fracture surface under peak load of 500 mN and loading rate of 2 mN/s 

with the Vickers indenter as the higher load to diminish the effect of surface 

(a) 

(b) (c) 
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roughness. Figure 7-15 shows the representative nano-indentation load-

displacement curve (P-h) curves, average hardness and reduced modulus (Er) 

observed from two regions including fracture surface and as-cast sample. As 

shown in Figure 7-15(c), the indentation made in the undeformed area showed a 

much smaller displacement at the peak load than those in the fracture area, 

exhibiting that the fracture area was much softer than the as-cast materials. This 

trend implies that the undeformed BMG has less free volume, whereas the 

fracture region had a higher amount of statistically distributed free volume with 

random configuration of atoms [154]. The hardness and modulus of the fracture 

surface and undeformed region are shown in Figure 7-15 (a-b). As expected, the 

hardness and modulus of the deformed region are much smaller than those of 

the undeformed region, ranging from 0.25 to 0.5 GPa and 5 GPa to 30 GPa, 

respectively. Hence, it is also confirmed that there was a distinct decrease in 

excess of 80% in the values of hardness and modulus compared to those for the 

as-cast sample. To further confirm that the lower levels of hardness or modulus 

of the fracture surface were not experimental artefacts, nano-indentation 

experiments were conducted on the specimen’s top surface close to the fracture 

surface area.  

 (a) (b) 
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Figure  7-15 Fracture surface vs. as-cast sample: (a) hardness; (b) modulus; (c) load-

displacement (P-h) curves under peak load of 500 mN. 

Additional indents were made near the fracture surface under peak load of 100 

mN and loading rate of 2 mN/s within the distance from ~16 µm to ~700 µm 

(Figure 7-16) to investigate variability of mechanical properties in the deformed 

region. This study demonstrated that the measured modulus varied from ~17 

GPa to ~90 GPa with the latter corresponding to the respective value in the as-

cast BMG, depending on the distance to the fracture surface (Figure 7-16(b)). 

The measured modulus gradually increased up to ~40 GPa in the region 

spanning around 400 µm from the fracture surface followed by a sharp increase 

to the as-cast level. These results also indicated that there was a weak zone or 

sheared zone, as discussed in the previous section, with the width of 400 µm 

followed by a distinct transition from the deformed region to the virgin-state area. 

The weaker zone can be as a result of  STZs, which can operate everywhere 

within the plastic zone, Hence, it can be concluded that the extent of weaker 

zone gradually decreased in this zone from 81% to 55% of the modulus of the 

undeformed area with the distance to the fracture surface. 

(c) 
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Figure  7-16 (a) Schematic of diagram illustrating indentation points on fracture surface 

and (b) variation in measured hardness with distance from fracture surface. 

Some other factors may also cause the weak zone in BMGs such as excess free 

volume, nanovoid formation, nanocrystallisation and plastic deformation. The 

excess free volume leads to a situation, when the plastic zone is not limited to 

the fracture surface, and sheared zone could operate everywhere within this 

zone. It can also be indicated that the shear bands were evaluated through the 

materials volume [147]. Several researchers showed that temperature rises (from 

0.1 K to ~1000 K) occurred inside shear bands, leading to strain softening. Such 

temperature rises are negligible at low strain rates as shown in Chapter 4; 

(a) 

(b) 
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therefore, it can be concluded that the onset of serration was controlled by the 

free-volume creation and annihilation leading to formation of shear bands. The 

pre-existing shear bands forming weak links are preferred sites for further 

deformation. As shown in Figure 7-5, old shear bands can act as artificial defects 

and promote the initiation of new shear bands and stabilize evolution of shear 

bands. This led to formation of a sheared zone contributing to plastic 

deformation. The sheared zone can be enlarged by nucleation of new shear 

bands, resulting in enhancing intrinsically ductility and free-volume creation. 

Yavari et al. [64] showed that the free volume in deformed metallic-glass ribbons 

was double that in the as-cast state. 

The variation of the Young`s modulus and hardness can be also induced by 

damage evolution. In the last decade, much effort has gone to implement a 

continuum-damage- mechanics framework to predict failure behaviour of various 

types of materials such as metals [155], composites [156] and polymers [157]. In 

the pioneering work of Lemaitre and Dufailly [155], indentation approach was 

used to quantify deformation-induced damage through the degradation of 

indentation hardness and modulus. The hardness value is linearly proportional to 

the flow stress in the hardness-based damage quantification. Hence, this 

methodology investigated the hardness degradation with regard to the damage-

induced changes in the flow stress. The damage parameter is considered as: 

𝐷𝐷𝐻𝐻 = 1 −
𝐻𝐻𝑑𝑑
𝐻𝐻

, 7-1 

where 𝐻𝐻𝑑𝑑  is the measured damaged hardness and 𝐻𝐻 is extrapolated from the 

hardness value in the undamaged area. In the similar way, the elastic-modulus-
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based damage quantification assumes that the degradation due to the evolution 

of damage, and calculated by 

𝐷𝐷𝐸𝐸 = 1 −
𝐸𝐸𝑑𝑑
𝐸𝐸

 7-2 

where 𝐸𝐸𝑑𝑑 and 𝐸𝐸 are the elastic modulus in the damaged and undamaged area. If  

𝐷𝐷 = 0 , the material is free of damage and if  𝐷𝐷 = 1  , the material is fully 

damaged. Although he microscopic damage morphology is not captured using 

this damage technique, the average flow response of the materials under the 

indenter is measured through the mean effects of all voids and discontinuities on 

the mechanical properties, which resulted in the direct damage measurements 

[158]. To achieve this, the nanoindentaion results obtained from the specimen’s 

top surface close to the fracture surface area were studied carefully to assess 

the accuracy and overall applicability of the indentation-based damage 

quantification. As shown in Figure 7-16(b), there was a sharp increase in the 

measured modulus from the distance larger than 400 µm to fracture surface. The 

𝐷𝐷 parameter was calculated from the drop in the measured modulus, as shown 

in Figure 7-17. The results suggest that a major amount of damage was 

accumulated in the material, therefore it led to a sudden decrease in its modulus. 

For distances lower than 400 µm, the measured modulus reduces further, 

denoting an increasing damage, up to 80% (Figure 7-17). This is due to a higher 

shear-band density near to the fracture area. The damage in the studied BMG, 

as a result of three-point bending, was clearly observed with other experimental 

tools: Figure 4-6 shows SEM images of damage in the fracture surface of the 

material and the indentation studies on the fracture surface. 
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Figure  7-17 Damage versus distance to the fracture surface 

7.5 Conclusion 

A systematic study was carried out to investigate features of plastic deformation 

related to shear bands in Zr48Cu36Al8Ag8 using various techniques. This analysis 

provided a new insight into deformation behaviour of Zr-Cu-based BMGs, and its 

main conclusions are summarised as follows: 

1. During plastic deformation, shear bands formed localised deformation zones, 

with deformation including discrete movement of the material`s volume along 

shear-band lines. Shear behaviour strongly depended on the applied load that 

initiated shear bands at some “weak” sites, but it was not high enough to drive 

shear-band evolution to the surface, leading to their selective nucleation.  

2. Fracture surfaces of the studied BMGs, consisting of multiple localised shear 

bands, were 6 to 8 times weaker than the undeformed material. 

3. TEM characterisation of individual shear bands revealed that there was no 

precipitation of nanocrystals inside the shear bands induced by wedge 
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indentation or three-point bending, and faces of the shear bands were 

amorphous.  

4. The same compositions were observed in our study with SAED for the as-cast 

alloy and the deformed areas; hence, no compositional changes were found in 

the shear-band region. This shows that generation of shear bands is related 

rather to yielding behaviour of the BMG than crystallisation-induced changes in 

its microstructure. 
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8 Conclusions and Future works 

8.1 Conclusions 

The main purpose of this research was to bridge a gap in current knowledge on 

elastic and inelastic deformation of a Zr-Cu-based metallic glass under various 

loading conditions and at different length scales. This was achieved by 

conducting first an extensive literature review on deformation mechanism of 

BMGs, followed mostly by experimental studies. The experimental part of this 

research focused mainly on the analysis of deformation behaviour of the BMG 

and shear-band characterisation. The experiments were designed and 

conducted as part of continuation and extension of research into BMGs at 

Loughborough University except for DIC measurement performed at Sheffield 

University.  To study deformation behaviour, a large number of experiments were 

performed at different length scale including nano-, micro- and macro-scales 

under inhomogeneous and homogeneous loading conditions. Additionally, shear 

bands were directly characterised to understand the nature of plastic deformation 

in the BMG. A preliminary numerical study was analysed to study local plastic 

deformation in the BMG. The results of this study made a valuable contribution to 

our existing understanding of deformation characteristics of the BMG under 

homogenous and inhomogeneous loading condition as well as mechanical 

behaviour of shear bands, which are responsible for an inelastic deformation 

mode in the BMG. Based on the above, the current research brought upon the 

following conclusions. 

This thesis reviewed the theory behind the analysis techniques used for 

extracting magnitudes of the elastic modulus and hardness from nanoindentation 
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test data for metallic glasses using a spherical tip. The calibration measurements 

required to ensure correct performance of the instrument including frame 

compliance, cross-hair calibration and indenter area function were also 

discussed. 

A standard macroscale three-point bending test was conducted to determine the 

bulk flexural modulus (𝐸𝐸) of the BMG, which was evaluated to be 95 GPa with 

the Poisson's ratio (𝜈𝜈)  of 0.35. Fracture morphology of specimen revealed a 

vein-like structure for both tension and compression sites as a result of shear-

band sliding. This behaviour is distinctly different from the case of propagation of 

principal shear bands along a slip plane, widely reported in the literature. In this 

study, indentation techniques were extensively used to first study the elastic 

deformation of a Zr-Cu—based BMG alloy, followed by a systematic analysis of 

initiation and evolution of shear-band localisation in the indented materials.  The 

initial stage of elastic deformation of the BMG was investigated via the nano-

indentation test with a spherical indenter with 5 µm diameter. Below 4 mN, no 

appreciable plasticity was observed, and deformation was assumed to be purely 

elastic. However, in a subsequent loading case, a significant plastic event was 

observed at ∼4 mN, which is considered to be the first ‘pop-in’. The load  at it 

was used to calculate the maximum shear stress underneath the indenter with 

the help of Hertz`s spherical contact mechanics. Additionally, the obtained 

experimental results showed hardening behaviour of the BMG with the load 

corresponding to the first pop-in increasing with each load increment. The 

incremental loading technique was also used to investigate the dependence of 

hardness on penetration depth, and this similarly indicated the work-hardening 
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phenomena in the metallic glass, especially at nanoscale. A discrete serrated 

flow was observed at low strain rates (0.02 s-1); however, high rates suppressed 

this type of flow. As a result, the pop-in events for this metallic glass manifested 

as a stepped P-h curve with significantly strong rate sensitivity. The serration 

flow behaviour was analysed using the concept of free volume and localised 

heating. The temperature rise, calculated as 0.04 K for the low strain rate, was 

negligible to have an effect on the deformation mechanism. Shear bands 

appeared on the surface at load in excess of 100 mN, and shear steps were 

observed on the material`s surface at higher load magnitude. 

The results obtained with the suggested wedge-indentation technique 

demonstrated the stress level required for initiation of shear bands in the BMG. It 

was estimated that the level of stress required to initiate shear bands was 

between 0.7-0.9 GPa in wedge indentation. Several serrated semi-circular slip 

steps formed by shear bands were observed on the front surface of the wedge- 

indented BMG. Apart from the serrated slip-steps, numerous smooth semi-

circular slip steps of shear bands were seen, when the load was increased 

above 2 kN. These serrated and smooth semi-circular slip steps were named 

“primary shear bands” in order to discriminate them from other slip-steps of the 

shear bands formed at higher loads. The slip-steps of the semi-circular PSBs 

seemed to vanish as they approached the indentation surface. From the 

observations, few slip lines of the shear bands reached the top surface and they 

lined up along straight lines parallel to the imprint’s axis. This indicated that 

nucleation of shear bands occurred easier than their evolution. Above 1 kN, new 

types of shear bands were formed inside the zone of primary shear bands, 

originated radially from the indenter tip. The wedge-indentation technique was 
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also applied to compare fracture surfaces of the soda-lime-silica glass and the 

studied Zr-Cu-based metallic glass at microscale. Observations of the fracture 

surfaces indicated that the propagating cracks did not experience any energy 

dissipation in the traditional glass; on the contrary, the shear-band evolution in 

the metallic glass showed branching and healing mechanisms contributing to 

plastic deformation at micro-scale. There was a deviation from linear elastic 

deformation in the load-displacement curve due to shear-band operation for the 

single-load condition, and incremental loading resulted in no difference of the 

overall mechanical response of the BMG. The residual imprint depth for the first 

(22 µm) and the second (50 µm) incremental loads was equal to the initial 

displacement of the indenter engaged with the specimen.  Consequently, the 

incremental load-displacement curve can be utilised to estimate the total work 

done for entire deformation.  The wedge indentation is particularly useful for 

materials scientists for development of appropriate constitutive models that 

characterise plastic events in amorphous materials in the small-length scale. A 

systematic study was carried out to investigate the nature of shear bands by their 

direct characterisation around the fracture and the indented region using various 

techniques including XRD, SAED, EDS, surface decoration and nanoindentation. 

The surface-decoration results showed a localised deformation zone, which was 

formed as a result shear-banding, slipped across shear-band lines. This 

indicated that formation of shear bands resulted in slippage material volume. 

While dislocations move along specific slip planes in traditional metals, shear 

bands do not flow and propagate gradually across BMG specimens. The 

variation of height of the specimen`s surface along a chosen shear band showed 

rotation of a material volume due to shear-band formation. TEM studies of the 
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deformed and as-cast BMG demonstrated that deformation in the BMG did not 

lead to crystallisation inside the shear bands and no compositional change was 

found in the shear band region as well. This shows that generation of shear 

bands was a result of yielding behaviour of BMG. The indentation made on the 

individual shear bands exhibited that they were softer than the bulk materials 

based. However, the indentation results cannot be used as a shear-band 

property as the indentation inevitably deforms the harder surrounding bulk 

material. The sheared zone can be estimated from the initial part of the P-h 

curve; it was around 500 µm. The nano-indentation tests on the fracture surface 

showed that the fracture region was much weaker than the virgin material. It is 

hypothesized that the a dilatation process was a mechanism of deformation-

induced localisation in a highly deformed region. Additional indents were made 

near to the fracture surface demonstrating that there was a softened zone with 

width of some 400 µm in addition to a sharp transition from the highly deformed 

region to the bulk area. The indentation approach was employed to quantify 

deformation-induced damage through the degradation of indentation hardness 

and modulus using continuum-damage-mechanics suggested by Lemaitre and 

Dufailly [155]. The results showed that a major amount of damage was 

accumulated in the BMG resulting in a significant decrease in the measured 

modulus due to a higher shear-band density near the fracture zone. Effects of 

size and structural states on deformation characteristics of the BMG under 

imposed homogeneous loading states were also studied. As a specimen`s taper 

has a significant effect on yield strength of micro-pillars, various pillar preparation 

techniques were examined to minimize the specimen`s taper. It was found that a 

rectangle pillar could reduce or eliminate the tapering effect. Although the 
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specimen`s taper can be eliminated by using a lift-out technique, the Pt-

deposition that is much softer than the BMG to failure of the pillar at the joint 

point. So, compression tests were carried out on micropillars milled from the 

virgin BMG and its fracture surfaces. The deformation mode of these pillars was 

dominated by localised shear banding. The yield strength measured from the 

engineering stress-strain curve indicated that the fracture region (~1 GPa) was 

significantly softer that the virgin state (~1.8 GPa). There is a possibility that a 

higher amount of free volume resulted in a decrease in strength in the fracture 

region. However, a further investigation will be required to compare amounts of 

free volume in the fracture region and the bulk area. Rectangular pillars with 

cross-sections of 230 nm × 230 nm and 10 µm × 10 µm from the BMG were also 

fabricated using FIB and tested in compression to investigate the effect of 

sample size on deformation behaviour of the BMG in micro-scale. At all sizes, 

the plastic flow was localised in shear bands and there was limited number of 

shear bands in the smaller sample. The strength increase was successfully 

modelled using Weibull statistics for brittle materials. Thus, the increase in 

strength is a result of the fact that a smaller sample has fewer defects.  

This study provided a new insight into the deformation behaviour related to shear 

bands of Z-Cu-based BMGs using various techniques. During plastic 

deformation, shear bands formed a localised deformation zone at various lengths 

(nano- and micro-scale) under homogenous (uniaxial compression) and 

inhomogeneous (wedge indentation) loading conditions. In the wedge-

indentation experiment, it was shown that nucleation of new shear bands was 

easier than its evolution during inelastic deformation. The deformation comprised 
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discrete movements of the material`s volume along shear-band lines. For micro-

compression experiments, the yield strength increased for smaller samples 

compared to the larger ones due to fewer defects. The fracture surface of the 

studied BMG was significantly weaker than the bulk materials based on nano-

indentation and micro-compression results. There were no crystallisation and 

compositional changes inside the shear bands under inhomogeneous loading 

conditions. Hence, shear bands showed there an amorphous structure with 

composition similar to the bulk material. 

8.2 Recommendation for future works 

The results that were highlighted in this research project reflect a number of 

findings; still, some new topic arose during the course of the study which could 

benefit from a further research. 

8.2.1 Experimentation 

• Employing in-situ wedge-indentation experiments in addition to the 

surface decoration technique for BMGs to characterise deformation 

behaviour in terms of evolution of shear bands localised in the volume of 

materials. This will further information for deformation mechanism of 

BMGs. 

• Studying a possible transition from heterogeneous deformation as the 

specimen`s size is decreased and the effect of a structural state on such a 

transition length scale using in-situ micro-compression experiments. It was 

shown by Greer et al [3] Zr-based glass micropillars with diameter of 100 

nm or less exhibited homogeneous plastic deformation that preceded 
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shear-band propagation. This homogenous flow is different from high- 

temperature plasticity and it is worthy of a separate study to explore the 

specific mechanism responsible for homogenous deformation.   

• Microstructural characterisation of microcompression specimens. The 

direct characterisation of shear bands around the compressed area using 

various techniques including SAED, EDS, surface decoration. The surface 

decoration can be employed to analyse multiple shear bands formed and 

propagated in compression studies. 

• Investigating into the pressure sensitivity of the Zr-Cu-based metallic glass 

and its dependence on the structural state of the glass. Although plastic 

deformation in conventional crystalline metallic alloys is linked only to the 

motion of dislocations that is generally non-pressure-dependent, the 

plastic flow in BMGs is also sensitive to hydrostatic or normal stresses. 

This is due to the fact that shear in BMGs is accommodated through local 

atomic rearrangements leading to dilatation during deformation, so that 

pressure sensitivity can be expected. 

8.2.2 Modelling 

In Chapter 9, initial results for a numerical model of deformation process in the 

BMG were presented and used to characterise shear-band localisation. There 

are some additional directions for the future work. 

• Development of 3-D finite-element (FE) models with a random distribution 

of weak elements in the bulk volume of BMGs; and incorporation of a 

strain - gradient formulation to implement inhomogeneous loading states –
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e.g. wedge indentation, as well as homogeneous loading state as in the 

micro pillar compression technique to analyse the effect of strain gradients 

on shear band initiation and their propagation patterns. 

• Development and implementation of a 3-D finite-element computational 

algorithm to incorporate local and non-local effects of strain gradients on 

initiation and propagation of shear bands under homogeneous and 

inhomogeneous loading states based on a non-local plasticity theory. 

• A study of the effect of experimental conditions imposed on the analysis of 

homogeneous and inhomogeneous deformation modes, on the shear-

band initiation and propagation and specific deformation behaviour 

observed in the force - displacement curves. 
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