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Abstract 

This research is aimed at advancing machine design through specifying and implementing 

(in "proof of concept" form) a set of tools which graphically model modular machines. 

The tools allow mechanical building elements (or machine modules) to be selected and 

configured together in a highly flexible manner so that operation of the chosen configura­

tion can be simulated and performance properties evaluated. Implementation of the tools 

has involved an extension in capability of a proprietary robot simulation system. This re-

. search has resulted in a general approach to graphically modelling manufacturing ma­

chines built from modular elements. 

A focus of study has been on a decomposition of machine functionality leading to the es­

tablishment of a library of modular machine primitives. This provides a useful source of 

commonly required machine building elements for use by machine designers. Study has 

also focussed on the generation of machine configuration tools which facilitate the con­

struction of a simulation model and ultimately the physical machine itself. Simulation as­

pects of machine control are also considered which depict methods of manipulating a 

machine model in the simulation phase. In addition methods of achieving machine pro­

gramming have been considered which specify the machine and its operational tasks. 

Means of adopting common information data structures are also considered which can fa­

cilitate interfacing with other systems, including the physical machine system constructed 

as an issue of the simulation phase. Each of these study areas is addressed in its own con­

text, but collectively they provide a means of creating a complete modular machine design 

environment which can provide significant assistance to machine designers. 
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Part of the methodology employed in the study is based on the use of the discrete event 

simulation technique. To easily and effectively describe a modular machine and its activity 

in a simulation model, a hierarchical ring and tree data structure has been designed and 

implemented. The modularity and reconfigurability are accommodated by the data struc­

ture, and homogeneous transformations are adopted to determine the spatial location and 

orientation of each of the machine elements. 

A three-level machine task programming approach is used to describe the machine's activ­

ities. A common data format method is used to interface the machine design environment 

with the physical machine and other building blocks of manufacturing systems (such as 

CAD systems) where systems integration approaches can lead to enhanced product reali­

sation. 

The study concludes that a modular machine design environment can be created by em­

ploying the graphical simulation approach together with a set of comprehensive configura­

tion. tools. A generic framework has been derived which outlines the way in which 

machine design environments can be constructed and suggestions are made as to how the 

proof of concept design environment implemented in this study can be advanced. 
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Chapter 1 

Chapter 1 Introduction 

Computer Integrated Manufacturing (CIM) is considered by many to be strategically 

important in achieving responsive and effective methods of realising products. The CIM 

approach emphasises the effective utilisation of information which is generated at all stages 

of the life cycle of products and the manufacturing systems used to realise them. 

Information exchanged amongst many computer based manufacturing machines can lead 

to faster and better decisions and actions. As a result, any given CIM implementation may 

include a diverse range of equipment, computer systems and people, ranging from product 

design, manufacturing operation planning (e.g. process planning), task defmition, and 

equipment requiring real-time computer control etc. 

With respect to the broad groupings of building elements of CIM systems listed above, real­

time computer controlled equipment is often characterised by a need to utilise equipment 

as much as possible in producing products, thereby justifying capital investment levels. 

Another typical characteristic of real-time computer-controlled equipment is the need for 

them to interact with other CIM sub-systems to realise manufacturing requirements in an 

efficient and timely manner. Often the efficient utilisation of automation equipment implies 

the need to generate machine control programmes (such as NC [Numerically Controlled] 

part programmes and robot task programmes) in an off-line manner, i.e. while the machine 

is used to produce other products. Off-line programming of automated machines has been 

used very successfully for NC machines and to a lesser extent for robots. The need for 

interaction between automated machines increases the complexity of associated 

operational planning and off-line machine programming activities. 
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Chapter 1 

The derivation of a machine design and simulation environment has been considered as a 

potential promising approach to advancing the objectives of CIM and to providing an aid 

to evaluate the operational performance of automated equipment. Within this environment, 

the operation planning of a machine and its interactive equipment is enabled, off-line 

programming for the machine and its interaction with related equipment is made and 

evaluated for real time control, and information sharing is also achieved. 

Computer controlled modular machines are defined as machines configured by using some 

of the control and mechanical building elements known as modules. They are inherently 

reconfigurable with regard to both their control and mechanical modules and also have the 

potential advantage of lower initial investment compared with conventional robots. 

Research on modular machines is attracting increased attention but significant work 

remains. 

This study chooses modular machines as key modelling subjects, uses computer graphical 

techniques, and aims at creating a graphical design and simulation environment for 

aggregating and simulating a modular machine along with its interactive equipment 

environment. The main objectives within such an environment include the establishment of 

a library of modular machine primitives for the frequent use of machine designers; the 

generation of machine configuration tools to facilitate the modelling of modular machines; 

the provision of simulation control and programming of a machine model; and the 

derivation of methods to achieve integration of simulation environment with other systems. 

The methodology employed in this study is to use a set of configuration tools to select 

modular machine primitive from their library and aggregate them into a machine model, to 

simulate the operational performance of the machine model as discrete event and to use 
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Chapter 1 

common data format to achieve the integration. The study concludes that the provision of 

a library of machine primitives is efficient in constructing a model by using configuration 

tools; a hierarchical ring and tree data structure is appropriate for the purpose of simulating 

modular machines; potential machine configurations of a machine can be evaluated by 

using the machine design and simulation environment. 

The main body of the thesis comprises four sections relating the establishment of a library 

of machine modules, the generation of configuration tools for modelling modular 

machines, establishing means of simulating/animating machines and finally specifying and 

using a common data format which can facilitate system integration. 

Following a literature review which reviews important literature in the areas of modelling 

and simulation systems, Chapter 4 discusses the issues of establishing a modular machine 

library of building primitives including single motion primitives and higher order 

primitives. Means of establishing different configurations of mechanical mechanisms are 

also considered. Chapter 5 furthers the discussion of the previous chapter and illustrates 

application areas of the library primitives created in chapter 4. The creation of a set of 

supporting tools for modular machine modelling, design and simulation is also described. 

The main components of these tools comprise modular machine configuration tools for 

building a machine model within the design environment. Spatial relationships and control 

logic to enable simulation of different operations are also defined by using these tools. A 

user friendly interface window is also described in chapter 5. 

Chapter 6 considers aspects of the kinematic modelling of modular machines. Two major 

classes of manufacturing configuration (or axis groups), which will be referred to as 

3 



Chapter 1 

articulated and distributed devices, are considered. In addition means of describing and 

implementing forward and inverse kinematics of these two types of device are described. 

Means of defining different motion types and associated position, path and velocity 

information are also illustrated in this chapter. 

The kinematic specification of the two device classes and solutions to their inverse 

kinematics are described in chapter 7 and a discussion of the issues encountered in the 

simulation of modular machines is presented. The idea of using various simulation 

mechanisms and processors is introduced in order to cope with complexity when designing 

and simulating them by catering for demanding manufacturing requirements. 

The programming of a modular machine provides a means for an end user to specify the 

tasks executed by such a machine. Chapter 8 describes a programming approach which 

involves a three level programming environment leading to the simulated execution of 

tasks performed by modular machines. 

Finally chapter 9 discusses the issues of integrating the design and simulation environment 

with other computer based systems in the context of computer integrated manufacturing. 

Thus a common data format approach is proposed and the proof of concept implementation 

of such a common data format is detailed. Chapter 10 concludes that a design and 

simulation environment is required for modular machines and such an environment is 

feasible and beneficial for both machine users and designers. As part of the methodology 

means of achieving such a design and simulation environment have been devised which 

build on the use of a robot simulation system (which employs proven computer modelling 

technology). 
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Chapter 2 Literature Survey 

2.1 Introduction 

With increasing product competition world-wide, current manufacturing industry has been 

challenged by the demand to manufacture in small batches and reduce product engineering 

life cycle time. As a result modern manufacturing systems need to be responsive in 

facilitating quick product changes, the production of short lead times and achieving cost 

effective machine utilisation. Consequently, various types of automation equipment with 

programmable capability, such as industrial robots, numerically controlled machines, 

automated guided vehicle (AGVs) and devices controlled by Programmable Logic 

Controllers (PLCs) are the result of modern technology and market requirements [Huang 

and Houck 1985, Hasegawa et al. 1990]. 

The various types of automated machines used in industry are extremely diverse both in 

their inherent building methods and functionality. Depending on the application 

requirements and the machine designer's expertise and experience, the approaches or 

methods adopted by machine designers can be quite different. This diversity in 

methodology occurs even when resultant machines produced have similar mechanical 

construction and function properties within their control system. Furthermore, the same 

manufacturing task may be automated by designing very different machines. One outcome 

of this diversity of methods and solution is a lack of standards leading to "islands" of 

manufacturing automation which cannot easily interoperate with other machines, people 

and software systems in their host environment. 

Computer integrated manufacturing (CIM) advances the philosophy that improved 
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productivity and efficiency levels can be realised through the effective utilization of 

information created at various stages of product realisation [W eston et al. 1988, Edwards 

1990, Kusiak and Heragu 1988, and Mahieddine et al. 1990]. CIM systems cover various 

manufacturing activities in all sectors ranging from planning and design to manufacture of 

a saleable product [Alien 1987 and Crooka111987]. 

In striving to achieve goals which can be realised through using CIM it is necessary to 

consider the design of machines 1 with a view to facilitating their integration. Furthermore 

in designing such machines the assistance of a computer aided machine design environment 

(and hence the availability of design tools which assist the machine designer) are becoming 

imperative. Contemporary robots and other industrial automation machines are typically 

designed so that they possibly work with people, tools, fixtures, etc. but only with reference 

to their local manufacturing environment. In order to enable symbiotic operation of a 

machine within its environment (with high levels efficiency and as-required flexibility), 

individuals with expertise in industrial, mechanical, electronic and software engineering 

are required: it being necessary during design to consider control system functionality, 

mechanical properties and integration requirements before task programming is realised. 

This thesis aims to advance the notion that an integrated design environment covering the 

various design aspects can be realised so as to enable machine performance to be analysed 

as an aid to design modification. Iteration is necessary to enable the design meet the 

established requirement particularly as system complexity grows~ Using conventional 

approaches a design iteration may be extremely costly both in terms of extending lead times 

1. In this context and indeed throughout this thesis, the term "machine" not only im­

plies the single machine but also a possible machine grouping (e.g. into a cell or a 

production line). 
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and in constructing ill conceived solutions. As manufacturing tasks become more complex 

and diverse, the conventional approach becomes even less responsive and efficient. A 

comprehensive set of design tools which assist the machine designer are much in demand 

[Jayaraman and Levas 1988, Miller and Lennox 1990]. 

Modular machines can provide hardware flexibility, high levels of functionality and cost­

effectiveness. Such machines can be built from primitive machine building elements both 

in terms of mechanical component elements and control system elements [Wurst 1986, 

Weston et al. 1989b, Tesar and Butler 1989]. The concept of modularity in machine design, 

tool design and software design is not new. It has been used in robotic applications for spot 

welding [Smith and Cazes 1982], various materials handling applications [Kamm 1983], 

and inspection [Gleason and Agin 1979]. Conventional industrial automation machines, 

such as robots and NC machines, have essentially fixed mechanical construction coupled 

with software flexibility. In contrast modular machines can be designed and used in 

industry with increased levels of mechanical configurability and system hardware 

flexibility to cater for changes in application area or products. Due to the feature of physical 

reconfigurability and inherent optional choices offered, the demand to provide an 

integrated set of computer-aided design and evaluation tools for modular machines is even 

more imperative than when establishing the workplace design of many conventional fixed 

mechanical structure machines. The availability of responsive and powerful tools to aid 

design can greatly expand the application domains of modular machines and produce 

higher functionality and more cost-effective flexible automation. The observation that there 

is a lack of appropriate design support tools to promote the application of modular 

automation machines is the principle motivation for this research study. 
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With emphasis on the design of a set of computer aided machine design tools which can 

support the design and application of modular machines, the literature review studies 

conventional machine design approaches along with conventional and computer aided 

modelling and simulation tools. Particular emphasis is on robotic modelling and simulation 

in the literature study due to prominent recent advances in this area. As a representative of 

one type of automatic machine, robots have developed quickly in terms of their operational 

capabilities which have instigated corresponding advances in design and simulation tools. 

It is appropriate to study evolving methodologies and identify limitations of contemporary 

robotic simulation systems, as this is instructive in specifying a design and evaluation 

environment for modular machines. A review of modular machine design is also given to 

briefly illustrate the state of the art in this area. This chapter concludes with some 

limitations of using a robot simulation system for modelling modular machines. 

2.2 Modular machines and modelling terminology 

To date, both the research literature and commercial modelling and simulation systems 

focus primarily on robots and means of off-line programming [Levas and Jayaraman 1989]. 

Although Dillman and Huck [1986] have described a general simulation system, Pai and 

Leu [1986] have proposed an interactive computer graphics simulation system, and Pinson 

[1985] has postulated a general simulation environment, their work primarily focuses on 

aspects of simulation and programming for conventional robots with largely fixed 

mechanical structures. Recently Jayaraman and Levas [1988] have described a workcell 

application design environment (WADE) aiming at providing an aid for designers to model 

industrial equipment, but WADE is still at a research development stage and does not 

support various important requirements for modular machines. The increasing importance 
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of modelling industrial equipment with reference to its working environment has been 

realized by various researchers [Durr et al. 1989, Milberg at al. 1988 and Duffey et al. 

1988], but the author has not found literature on this topic in the area of modular machine 

modelling and simulation. 

As this thesis aims to extend the use of simulation methods (previously applicable only to 

conventional robots) to provide tools for more general modelling and simulation of 

automated modular machines and their environmental interactions, it is necessary to define 

terminology which will facilitate the discussion of machine modelling and simulation. The 

aim here is to adopt appropriate terms from contemporary robot simulation literature, with 

additional terms defined to accommodate the modelling of extended objects. Reference is 

also made to terminology used within the Modular System Research Group in the 

Department of Manufacturing Engineering at Loughborough University of Technology 

[Case 1990 and Harrison 1990]. The terminology which will be adopted is defined in the 

following section with the aim of avoiding subsequent ambiguity. 

Automatic Machine: An automatic machine not only implies the single form of automatic 

machine but also a possible machine grouping e.g. a manufacturing machine cell or 

a production line configured for a manufacturing task. 

Conventional robot or articulated robot arm: An articulated robot or robot arm is a general­

purpose, prograrurnable machine which possesses certain anthropomorphic or 

humanlike characteristics. A robot can be reprogrammed to move objects through 

variable prograrurned motions for the performance of a variety of tasks. A robot is 

one type of automatic machine. 

Primitives or Modular Machine Elements: Based on a functional decomposition, a machine 
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can be divided into various more basic mechanical and control elements. A 

minimum functional element at the level of basic operation will be called a machine 

primitive. The mechanical constituents of a machine primitive can be further 

classified into two categories based on their elementary functionalities, namely 

motion primitives ( e.g, an axis of motion) or non-motion primitives (e.g. a fixture or 

gravity feeder). 

Device or Functional Device: A functional device is a general constituent of a modular 

machine, which is constructed from several machine building elements which need 

to have certain logical and spatial relationships to achieve some manufacturing 

operation. A modular machine can be comprised of several functional devices. Each 

of these devices performs a specific operation and collectively they achieve a 

manufacturing task. 

Articulated Device: If a functional device includes a serial kinematic chain linking 

constituent modular building elements (or primitives), the device is called an 

articulated device. Therefore the articulated device is a class of functional device. 

Within such a device, the chained primitive axes have close dependence in terms of 

ownership and spatial manipulation. This type of device is very useful in achieving 

the spatial flexibility or dexterity available with conventional robots. 

Distributed Device: A distributed device is another class of functional device for which the 

constituent elements of the device are configured in such way that some of the 

modular elements in the device are not mechanically coupled, i.e., there is no close 

ownership and spatial dependence relationship explicitly established amongst some 

primitives of the device. This type of device can be used to achieve an operation with 

particular requirements for cooperation, and/or coordination and/or 

10 
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synchronization. 

Modular Programmable Machine or Modular Machine: A modular programmable machine 

is constructed from modular machine building elements and devices, where both 

mechanical and control modules can exist within a library of primitives. Such a 

machine can be configured in a modular manner and the modular elements used can 

be reused in some other machine building exercise. Programmability implies the 

flexibility in the resulting automatic machine. 

Modular Machine Simulation Environment: A modular machine simulation environment is 

a computer interactive environment which provides an integrated set of aids to the 

designer of modular machines, i.e. through integrating tools for the modelling and 

simulation of multiple modular programmable and non-programmable devices. A 

hierarchical data structure and modularity are maintained within the environment to 

enable the extremely diverse range of modular machines application areas to be 

supported. 

Model: The term model will refer to a computer simulation model which represents the 

machine (or some part of it) in the form of graphics and data structure. 

Configuration Tools: The simulation environment for modular machines provides a set of 

tools which can be viewed as configuration tools to assist a designer in efficiently 

constructing a modular machine model. Such tools range from those for modular 

machine design, primitive selection, machine building (more classical use of the 

term configuration) to verification of the machine model. 

Aggregation: Aggregation is the process of constructing a modular machine model through 

a selection and binding of machine primitives into a modular machine model. 

l1 
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Reconfigurability: Due to the inherent properties of a modular machine and its simulation 

model, it can be disaggregated and subsequently re-aggregated into another 

configuration, i.e the machine or model possesses reconfigurability or is 

reconfigurable. 

Task: This is a relatively high level description (in terms of abstraction) of the operations 

performed by a machine. A task is usually comprised of a number of elemental 

actions and their temporal and logical relationships which result in the device 

performing the desired operation. Obviously any specified task should be within the 

functional capabilities of the particular modular machine which is required to 

perform the task. 

Event: A event refers to a user designed action or 1/0 requirement (for a device or 

primitive). The occurrence of events are simulated when performance of the device 

(or primitive) is evaluated within the modular machine simulation environment. 

Concurrencw Since a modular machine usually consists of several devices, it may be a 

requirement for a number of devices to perform tasks (and operations) at the same 

time (i.e. concurrently). Based on state relationships and time relationships 

governing the operation of devices, concurrency can be further categorized into two 

types, viz, coordination and synchronization. 

Coordination: Coordination is characterized by the need to establish a sequence of actions 

or state relationships between two or more concurrently moving primitives (or 

devices) to meet a set of pre-defined criteria. For example, the arrival of a PCB board 

may activate an insertion operation which may be achieved through co-ordinating 

the motion of a PCB transporting device with that of a manipulation device for 

insertion. 
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Svnchronization: Synchronization refers to the need to establish time relationships between 

actions (or state changes) of two or more concurrently operating primitives (or 

devices). For example two devices or primitives may begin and terminate execution 

of an action at the same instant, thus the actions are performed with synchronization. 

An alternative example is the need to continuously synchronise the motion of two or 

more primitives so that their relative motion follows a defined spatial contour. Thus 

different types of synchronisation (i.e. time dependency) need to be supported (and 

simulated). 

2.3 Conventional approaches to machine design 

Machine design processes traditionally demonstrate wide variation. Due to the complex 

nature of typical design processes, and the different experience and knowledge that a 

machine designer may have, the proposals and the final designs generated by different 

engineers are likely to demonstrate significant variation even for the same design problem. 

In an effort to provide a basis for structuring design processes, Sandor [1964] proposed the 

systematic approach illustrated in the simplified flowchart of Figure 2.1. Other similar 

approaches are reported by Taguchi and Wu [1980] and Sandgren [1990]. In summary the 

steps followed are: 

- The first step is for an engineer to attempt to solve a problem with vague information; 

to solve the problem the engineer typically needs to consult available information of 

various types. 

- The second step is for the engineer to clarify the problem and define the problem 

precisely for engineering action; thus the engineer applies the available information 

to the problem. 

- The third step is for the engineer to devise some conceptional designs and select one 

13 



Confrontation So~sof~onnation 

Very specific task demanded in Collect general information, e.g. 
motor catalogs; machine layout, reality, e.g. Design the motor 
company drawing files; experi-mount frame for this machine 
ence, hand books, texts. 

' ' 
Formulation of Problem AppUc:able ~ormation 

and Assumptions 
Clarify the problem, e.g. motor to Collect detailed information, e.g. 
be off the floor, supported on ma- motor specification and dimen-
chine frame, direct-connected to sions; loads; coupling between 
main shaft, if possible. shaft and motor etc. 

~ L 
Design Concepts 

Sketches for various motor arrangements 
criteria for selection, e.g. accessibility, 
easy of assembly, part cost etc. 

, If 
Synthesis of Conceptual Designs 

Instancing the skeleton design with con-
crete systematic parameters, e.g. selec-
tion of coupling components etc. 

'• 

Generation of Analyzable Model 
Abstracting the significant characteris-
tics of the real system for easy analysis, 
e.g. components shape etc. 

, 
Experiment, Analysis and Optimi:ration 
Improving the design by experiment 
with pre-defined criteria, e.g. strains 
and stresses of each part, cost etc. 

' 
Design Presentation 

Producing engineering drawings, e.g. as-
sembly drawings, details of mount and 
coupling elements, parts list etc. 

Figure 2.1 Sandor's Y shaped structure of the design process 

14 



Chapter2 

design based on comparison with criteria. 

- The design is synthesized to fill in a skeleton design with correct parameters at step 4. 

- In order to analyse the physical system so designed, it is important to generate a model 

to characterize the physical system at step 5. 

- At step 6, the engineer analyses and optimizes the design with reference to the 

experimental results based on the established criteria. 

-Finally the design is presented to the system user and builder, before ultimate delivery 

to the user. 

Traditionally at all stages of the design process, an engineer's intuition and judgement plays 

a very important role, this being based on experience and knowledge. This potentially 

increases the possibility of sub-optimal machine design. Although there are some general 

and typical methods and tools ( e.g, finite element methods for structural and flow analyses), 

there exist few scientifically-based general design strategies and procedures [Sandgren 

1990]. In an effort to generate a generally acceptable theory (or set of generalized 

principles) to guide the machine design processes, Duffey and Dixon [1990] have proposed 

a taxonomy of design problem types. Figure 2.2 summarizes the six types of mutually 

exclusive abstracted design problem, viz: "Perceived Need" from customers, required 

"Function" for the need, the principle of a design for the "Physical Phenomena", 

"Embodiment" of the design, the "Artifact" (or· attribute of) design and finally the 

(physical) "Artifact Instance". 

2.4 Current practice in CAD based machine design and modelling 

2.4.1 CAD in general machine and mechanism design and modelling 

Computer aided design has been widely used in generating machine design and engineering 
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Perceived Need 

Function 
•• 

Physical 
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Embodiment 

Artifact Type 

Artifact 
Instance 

Figure 2.2 Six types of design problems and a design approach 

drawings due to its powerful computation capability and enabling graphics. Within each 

stage of the complete design process CAD based computer packages have played an 

important role in optimizing the design, reducing the design cycle and improving design 

quality [Requicha and Voelcker 1982, Han et al. 1990]. For example, computer modelling 

techniques have been used in stress analysis by utilizing the finite-element method 

[Zienkiewicz 1977 and Rockey et al. 1975], and in dynamic analysis of spatial linkages 

[Langrama and Bartel1975]. 

Having realized that previous CAD approaches over stressed mechanism analysis rather 

than synthesis, various researchers have started to look at computer aided design tools for 

synthesis and simulation of mechanism design optimization. Typically this has involved 

non-linear programming and has shown some promise [Sandgren 1990]. Sandgren (see 
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Figure 2.3) has proposed a design tree structure to optimize the design of mechanisms based 
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Figure 2.3 Generic design tree structure 

Design 
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Material 
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on non-linear goal programming which allows consideration of multiple design objectives 

and handles both hard and soft design specifications. The author reports that a combination 

of a tree structure and the non-linear goal programming provides a flexible design 

environment to deal with design optimization problems. Figure 2.4 (a) (a simplistic view of 

the design process) and (b) (a more realistic view) outline the design tree structure and two 

types of non-linear programming problem, where outer noises represent uncontrollable 

variations in design parameters while inner noises are unavoidable but in part controllable 

variations in the design variables caused by time (e.g. wear) and manufacturing (e.g. 

tolerances) [Bartel and Marks 1974]. 
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Increasing interest in robot manipulators and three-dimensional biomechanics has greatly 

advanced the state of the art in mechanism design and synthesis [Fanghella et al. 1989]. 

Most relevant literature in the field of machine design and modelling with consideration of 

its environment is found in publications related to robot simulation systems, off-line 

programming of robots and robot modelling. 

2.4.2 Robot simulation and modelling 

The sophistication of automatic machinery, e.g., robots, mechatronic mechanisms, and 

other programmable equipment, has increased substantially partially due to their multi-

technological nature and partially because of the high desire for greater flexibility and 

responsiveness in systems. The levels of complexity faced when designing and installing 
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these machines within their host environment has greatly outstripped the capability of even 

a team of engineers from various engineering sectors optimising machine design processes. 

It is time-consuming and inefficient to design install, and maintain automatic equipment 

without an acceptably accurate pre-evaluation of the system. The increased demand for 

rapid product change over, equipment utilization and short lead times leads to a need for a 

flexible simulation environment, e.g. to maximise the utilisation of robots [Yong et al. 

1988, Siegler et al. 1987, V an Aken and V an Brussel1988, Ambler et al. 1982, Larson and 

Donath 1985 and Heginbotham et al. 1979]. As robot simulation systems evolve they 

become increasingly comprehensive and user-friendly. In an effort to classify 

contemporary robot simulation systems, both in terms of available functionality and 

openness2/completeness, the author will use a combination of the comparative criteria used 

by Dillmann and Ruck [1988], and by Chan [1989]. The criteria chosen include the 

following: 

(1) The means and capabilities of achieving the solid modelling of robot geometry; 

thereby generating a data representation of the geometry of a robot within its 

working environment; 

(2) Available capabilities of workcell development; which deal with model 

establishment, of devices and other equipment in the robot workcell; 

(3) The means and capabilities of achieving kinematic modelling and control; which 

provide essential data structures and algorithms for manipulating a robot's motion 

with respect to its working environment; 

2. Openness in this context implies the ability to extend (e.g. by adding functional ca­

pability) to provide an integrated support environment for machine design. 
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(4) The ability and means of achieving the modelling of robot dynamics; thereby 

enabling the user to simulate dynamic characteristics of a robot, e.g. representing 

inertias of a robot manipulator and motor torque characteristics; 

(5) The means and capabilities of achieving robot off-line programming; which 

facilitates the transfer of robot pro~ams (probably at a relatively high level) from 

the simulation environment to the robot control system, in an executable form, 

(i.e. post-processing the off-line robot program and downloading it into a robot 

controller to control the robot, possibly with consideration of calibrating offset 

and model errors between simulation and real world systems). 

In reality it is not necessary for every robot simulator to possess all of the above features. 

Depending on the complexity of a particular simulation task, it may be necessary to utilise 

only some of the above mentioned capabilities, and even within each category the 

capabilities typically offered and required vary from one system and situation to another. 

A summary of current available robot simulation systems and their brief functional 

description is listed in section 2.5. 

2.4.3 Robot solid modelling 

Solid modelling has been used for the simulation of robots [Requicha 1988, Homick and 

Ravani 1986] over the last decade. Various geometric modelling techniques are used in 

modelling robots and their workplaces. For instance, the Constructive Solid Geometry 

(CSG) modelling technique is used in some systems, such as the robot simulation system­

ROSI developed at the University of Karlsruhe [Dillmann and Huck 1986]. On the other 

hand, the Boundary Representations (BRep) models are also used within simulation 

systems, such as the GRASP simulation package developed in the Department of 
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Production Engineering and Production Management at the University of Nottingham 

[Dooner 1984]. However, because of the need for computationally intensive capabilities, 

like collision detection and graphics, Theveneau and Pasquier [1988] suggest that BRep 

method should be chosen in preference to CSG for the internal representation of geometric 

data. Kemper [1986] suggests that CSG tree describes only the history of modelling in a 

tree (with the operators [union, difference and intersection] in the nodes) and the geometric 

primitive (cube, block, cone, cylinder, etc.) in the leaves, and hence there is no explicit 

information representing boundary conditions in the model. Since BRep has explicit 

displayable information about an object whereas CSG has implicit one, the use ofBRep can 

significantly facilitate the applications where a great deal of computation are required for 

displaying. In the case of modelling a modular machine workcell, like a robot workcell, an 

intensive computation is demanding due to the requirement of displaying many views of a 

machine model with reference to its kinematic performance and surely BRep can 

substantially facilitate such an animation. 

The limitations of applying pure geometric modelling methods within engineering domains 

of solid modelling have been realized by many researchers [Pratt 1984, Shah and Rogers 

1988a and 1988b, Requicha 1984, Luby et al. 1986, Vaghul et al. 1985 and Floriani and 

Bruzzone 1989]. In an effort to overcome these limitations form features (i.e. groups of 

geometric entities defining attributes of a component's nominal size and shape) have been 

proposed. Pratt and Wilson [1985] have established the functional requirements needed to 

support an adequate description of form features in a solid modelling environment. 

It has also been realised by several robotic modelling researchers that it is inappropriate to 

directly use the geometry model to model and simulate a robot and its workcell. From a data 
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base point of view, Kemper and Wallrath [1987] have suggested that all known 

commercially available CAD/CAM systems for robotic modelling and simulation are based 

on a customised file system rather than a comprehensive database management system, 

which leads to difficulties when interfacing one system to other systems. Three 

representational methods, for describing solid objects, were examined with respect to 

aspects of importance in the design of databases to support robot modelling. The first 

representational scheme - known as primitive instancing (which requires the definition of 

every geometric object as a special instance of a geometric primitive object) is not 

appropriate in general-purpose robot modelling since it requires the specification and 

creation of an abundance of different relations, each of these relations consisting of only a 

small number of tuples. 

The second- Constructive Solid Geometry, is widely used representation in existing CAD/ 

CAM systems partly due to the relative ease with which input can be achieved. However 

since the CSG tree of a complex object can become very deep, and the displayable 

geometry is held in an implicit rather than explicit form, the computation of a particular 

view can be time consuming for an application which requires a quick display, such as 

robot graphical simulation. 

The last representation - Boundary Representation has the advantage of explicit edge 

representation. This can prove valuable in robot graphical simulation and animation. 

Kemper and Wallrath also surveyed some of the more recent proposals for object oriented 

engineering databases to support the retrieval and manipulation of engineering objects. 

Here two kinds of object orientatiol! are normally distinguished: viz: the structural and the 

behavioural object orientation. Structurally object-oriented databases provide facilities for 
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mapping complex objects onto a database structure and for retrieving these objects as 

entities with lack of object manipulation definition [Lorie 1982, Lorie and Plouffe 1983]. 

The behavioural databases provide object type data manipulation and this approach was 

originated from programming languages, such as GLIDE [Eastman 1986]. The proposed 

database systems can be summarised as follows based on the findings reported in four 

publications [Kemper and Wallrath 1987, Dillmann and Ruck 1988, Zaniola 1983, 

Stonebraker et al. 1983 a]. 

QUEL as a Datatype [Stonebraker et al. 1983 a], is an extension to the database 

management system INGRES [Stonebraker et al. 1976]. It provides a very general 

referencing mechanism to increase the expressive power of the query language and to 

allow the retrieval of tuples from one or more different relations. However, it has 

disadvantages of additional insertion complexity when new objects are created. In 

general terms, it supports structural object orientation via a very general reference 

mechanism, but the system does not provide any facilities for behavioural object 

orientation, i.e, the model does not allow the definition of application-specific 

operations. 

ADT-INGRES was proposed by Stonebraker et al. [1983 b] and provides a new way of 

specifying data types and corresponding operators which can be arbitrarily complex 

in a database management system. However, it requires highly trained staff (with 

knowledge of QUEL and the C language), and it does not provide support for 

handling hierarchical data structures (which are very important in engineering 

applications). Generally, ADT-INGRES provides some facilities for behavioural 

object orientation by allowing the user to define application-specific ADT operations. 

However, these operations are difficult to implement due to their internal non­

structured object orientation. 
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GEM was developed at Bell Laboratories by Zaniola [1983] as a general-purpose query 

and update language for the entity-relationship data model. It is an extension to the 

database language QUEL. The general database GEM has the same expressive power 

as "QUEL, as a Datatype" for robotics. Sets of composite data types need supporting 

to achieve an improvement for hierarchical structured modelling. 

The Complex Object Data Model (an extension to System R) is a relational database 

management system developed at IBM in San Jose, USA. The concept of a complex 

object is to define a hierarchical cluster of tuples with different relations for geometry 

modelling. This supports the structurally object-oriented modelling of hierarchical 

engineering objects. With enhancements to the query language to support retrieval 

operations, the System R extension allows retrieval of a complex object as entity even 

though the object representation may be segmented over different relations. However 

there still exist doubts concerning the sufficiency of data types for technical 

applications since only one new data type (long field) is introduced [Lorie and Plouffe 

1983]. 

The Functional Data Model and the language DAPLEX were proposed by Shipman 

[1981] and provide a conceptually natural database interface language through the 

basic constructs ofDAPLEX- the entity which is intended to model real-word objects 

and the function, defining the object properties. The language DAPLEX has the 

advantages of supporting the representation of hierarchical relationship (i.e, having 

structural object modelling orientation), allowing users to derive functions to 

represent arbitrary relationships and programming in terms of functions (high level 

programming) rather than database language. The limitations are that DAPLEX does 

not allow the user to define computationally complex functions and that inserting 

geometric data into a DAPLEX schema is extremely expensive in terms of 

computation. 
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The NF2 (Non First-Normal Form) Data Model was introduced by Schek and Pistor 

[1982] and is based on the non-normalized relational model. The database prototype 

AIM-P (Advanced Information Management Prototype) is an implementation of the 

NF2, supports composite attribute types and offers easy modelling of hierarchical 

relationships among objects [Dadam et al. 1986]. Being a hybrid of the relational and 

the hierarchical data model, the NF2 suffers from the problem of data redundancy in 

their representation. However in general, the NF2 model provides structural object 

orientation for hierarchically composed objects through clustering complex objects 

via sub relations. HDBL (Heridelbery DataBase Language) was used to transfer the 

data definition language of AIM-Pinto NF2 scheme [Dillrnan and Huck 1988], but 

HDBL does not provide facilities for the definition of application-specific operations. 

R2D2 (Relational Robotics Database System with Extensive Datatypes) was developed 

at the University of Karlsruhe and is an extension to the DBMS (DataBase 

Management System) AIM-P [Dadam et al. 1986]. Using a symbiotic approach to 

object-oriented database system, R2D2 provides concepts for structural and 

behavioural object orientation by integrating the concept of abstract data types into 

the data defmition and manipulation language of a structurally object-oriented 

DBMS. The Database features are inherited from the object-oriented data model NF2, 

which allows the modelling of hierarchical relationships among sub-objects; whereas 

the behavioural object orientation is achieved by defining operations on these defined 

abstract data types [Dillman and Huck 1988, Kemper and Wallrath 1987]. 

From the above brief description, it suggests that the CSG representation, with its inherent 

recursively defined tree structure, can be used in simulating automatic machines (such as 

robot solid modelling). However the BRep model consisting of an abstraction hierarchy is 

more promising for this type of modelling. A structural as well as behavioural 
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representation of object orientation is necessary for flexible and effective engineering 

application. 

2.4.4 Workcell modelling 

The modelling of machines, can be very complex involving a variety of representations of 

physical phenomena which need to be modelled with sufficient precision [Theveneau and 

Pasquier 1988, Ravani 1988, Milberg et al. 1988, Yoshimara et al. 1990]. On considering 

methods of modelling the general machine (along with fixed objects and sensor primitives 

within the machine's environment), Ravani proposed what he termed a complete modelling 

system for robot programming and simulation [Ravani 1988]. This system, called 

RWORLD (Robot WORLD), uses a multi-primitive representation of the workcell 

environment, at an abstract level, to cater for the various entity types encountered in real 

systems. The system includes: device primitives (which have one or more inherent degrees 

of freedom); object primitives without any inherent degrees of freedom (but which are 

capable of being manipulated in space); frame primitives (used to mark a location for the 

primitives); and finally sensor primitives (which provide a functional representation of 

sensory interactions). He argues that the provision of various types of primitive makes the 

system more attractive. 

Haurat and Perrard [1988] described a robot programming and simulation system known 

as ADAR. This system is aimed at defining the required application, programming, 

debugging and simulation tools required for robot applications. It claims to model complete 

robot workcells, including conveyors, NC machines etc. Theveneau and Pasquier [1988] 

discussed several representations for robot modelling, both in numerical and symbolical 

forms. These representations were used for computing and planning: they include 
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representations of geometric planning items and representations of the physical properties 

and behaviour of objects. The representation of uncertainty in robot workcell modelling 

was also considered. 

More recently, several research teams have realized the necessity and importance of 

creating a modelling environment which aids a designer of robot workcells [Jayaraman and 

Levas 1988]. Fougere et al. [1985] presented a description of the process of workcell design 

by using the ROBOT-SlM system which is a CAD based workcell design and off-line 

programming system. Miller and Lennox [1990] also described an object-oriented Robot 

Independent Programming Environment (RIPE) developed at Sandia National 

Laboratories at New Mexico USA. RIPE provides an environment for complex system 

integration with emphasis on robotic programming and integration of sensor technologies. 

With a realization of the need to also simulate the operation of vision systems, Raczkowsky 

et al. [1988] described a vision simulation system which used CAD system data for the 

calculation of the geometrical relationships between a camera light source and the 

workplaces. 

Clearly there is a trend and need to create a comprehensive modelling environment to 

support system designers (when planning and building automated machines) in which the 

context of the machine (i.e. the application environment) also needs to be modelled. 

2.4.5 Robotic kinematic modelling 

Robotic manipulators typically comprise articulated, open kinematic chains of N rigid 

bodies (links) which are connected serially by N joints [Ang Jr. and Tourassis 1987]. The 

kinematics of this type of robotic manipulator are very well understood. The Denavit-

27 



Chapter2 

Hartenberg representation (and associated parameters) has been used extensively to define 

homogeneous transformations between link coordinate frames [Paul and Zhang 1986, Paul 

and Rosa 1986]. The forward kinematics of robots can be easily solved using defined link 

parameters in the D-H equation, and by multiplying link transformations to fmd a single 

transformation which gives the goal location in matrix form [Paul 1981, Craig 1989]. 

However, the robotic inverse kinematics (which addresses the problem of calculating the 

joint coordinates for a given position and orientation of the end-effector) is complicated by 

the demand that the desired motion of the end-effector is frequently described in a Cartesian 

coordinate frame while the joint servos require that their reference inputs be specified in 

joint coordinates [Fu et al. 1987, Tourassis 1988 and Walker 1988]. All manipulator 

systems, which comprise revolute and prismatic joints configured in an articulated form 

with up to six degrees of freedom, are soluble using numerical methods. In the general case, 

however analytic or closed-form solutions of the inverse kinematic problem do not always 

exist for six degree of freedom robots. A principle of decoupling has been extensively used 

to derive closed-form solutions for robots [Vassilios and Ang.Jr 1989b]. Here a robot is 

generally decomposed into two groups or subsets of joint, each group mainly accounting 

for either position or orientation changes respectively. 

In his pioneering work, Pieper [1968] showed that for six degree of freedom manipulators 

in which three consecutive axes intersect at a point, a closed form or analytical solution can 

be obtained for the configuration. The majority of commercially available industrial robots 

today are designed to satisfy this requirement. Gupta [1986 and 1988] extended the concept 

of decoupling by using a Zero Reference Position description for kinematic analysis. For 

other robots, which do not satisfy Pieper's condition, a closed-form solution may not exist 
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[Rieseler and Wahl 1990] and in such cases researchers have resorted to the use of 

numerical and iterative methods to solve the inverse kinematic problem [Gupta and 

Kazerounian 1985, Goldenberg et al. 1985, Vassilios and Ang.Jr 1989b]. Vassilios and 

Ang.Jr have suggested that the most common numerical methods used for this purpose are 

based upon the Newton-Raphson approach. However these numerical methods are 

deficient in that convergence to the correct solution is never guaranteed and no multiple 

solution can be made for a manipulator system. Therefore general-purpose inverse 

kinematic methods involving numerical methods are still not applicable in a practical sense. 

Takano [1985] developed a set of analytic solutions to compute sub-sets of joint 

coordinates given their respective positioning and orientating sub-tasks. Eight different 

configurations of three degree of freedom robot manipulator system were discussed and up 

to eight solutions were provided for a given position and orientation, although arbitrary 6 

axis manipulators can have a maximum of sixteen solutions [Primrose 1986]. However the 

algorithm requires forward kinematic computation, and the mathematical basis for the 

algorithm and convergence conditions were not discussed in the paper. 

Tourassis and Ang Jr. [1989 a and 1989 b] proposed a modular architecture for inverse 

robot kinematics to overcome the current numerical deficiency in inverse kinematic 

computation. They claimed to have developed a general-purpose and mathematically 

robust algorithm for inverse kinematic solution, which can handle both closed-form 

analytic and numerical situations. The proposed algorithm facilitates a mathematical 

definition of a region in the robot workspace where convergence to the correct solution is 

guaranteed. The algorithm is also insensitive to the initial estimates and it provides for the 

computation of multiple solutions. However the algorithm is still very much a numerical 
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computation based method and requires considerable iteration before a solution is derived. 

2.4.6 Robot dynamic modelling 

The dynamics of physical manipulators is concerned with the relationship between forces 

and motions in two respects; namely forward dynamics (being the calculation of the 

accelerations which are then integrated to obtain the manipulators' coordinates and 

velocities in response to the applied forces or torques), and inverse dynamics (being the 

calculation of the forces or torques required for manipulators to achieve the desired 

generalized coordinates and their velocities and acceleration) [Featherstone 1987]. There 

are two approaches towards obtaining a dynamic model of a motion manipulator from well 

known physical laws, viz: Newton-Euler approach and Lagrange's-Euler approach. 

The Newton-Euler approach is based on the Newton's second law of motion, 

F = mxVv 

where m is the total mass of a manipulator moving part, F is the force to be exerted on the 

moving part and the Vv is the acceleration of the moving part. Whereas Euler's equation 

N = /cxro+rox/cro 

where le is the inertia tensor of the moving part in frame { c}, where origin is 

located at the centre of the moving part; 

ro is the moving part angular velocity and, 

ro is its angular acceleration. 

N is the moment applied on the moving part to cause motion. 

With the force Fi to cause linear motion and torque Ni to cause rotation, the joint force and 

torque can be obtained by establishing force and torque balance relationship on the 

manipulator. 
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The Lagrange-Euler approach is an energy-based approach to dynamics of manipulators 

[Uicker 1965]. The Lagrangian of a manipulator is expressed as 

L (q;. ti;) = K (qi, ti;) - P (ti;) 

where 

L: Lagrangian function 

K: total kinetic energy of the manipulator chain, 

P: total potential energy of the manipulator chain, 

Q;: generalized coordinates of a manipulator, 

ti;: first time derivative (velocity) of the generalized coordinate, 

The Lagrange-Euler equation of motion for the manipulator is given by 

d aL aL _ 
---- -T· 
dt i)qi i)qi ' i=l,2, ... n 

where Ti is generalized force or torque applied to the manipulator. Both of the above 

approaches can result in a set of non-recursive equations of motion in the form 

[Featherstone 1987 and Turney et al. 1980] 

n n n 

Fi = LH;/ii+ L Lhijktith+gi 
j=l j=lk=l 

or more meaningfully 

F(t) = H(q(t))ij(t) +h(q(t),q(t)) +g(q(t)) 

where F, q and q are the joint vector force, velocities and acceleration, and H, h and 

g are inertial, Coriolis and gravitational coefficients. For complex articulated mechanisms, 

the recursive Newton-Euler formulation applied and developed by Luh et al. [1980, 

Armstrong 1979 and Orin et al. 1979] is considered to be the most efficient currently known 

general method for calculating inverse dynamics. However, a number of specialised 

methods have shown that for any given manipulator customized closed form (symbolic 

structure for better insight as shown above) dynamics are more efficient than the recursive 
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Newton-Euler scheme [Armstrong et al. 1986 Kane et al. 1983 and lzaguirre et al. 1985]. 

These customized closed form equations are extremely attractive for the dynamic 

modelling and simulation of modular machines as often the use of multiple instances ofless 

complex devices is the main concern of modular machine designer. 

The above discussion has illustrated the feasibility of modular machine dynamic modelling 

and suggests a way forward. However, since the modelling of machine dynamics requires 

an intimate knowledge of the dynamics of physical machines and because of time 

limitations and difficulties in obtaining or establishing information of this type, it was 

decided that dynamic modelling could not be within the scope of this research. However in 

Chapter 7, the drive and control aspects of modular machines at the simulation phase are 

outlined. 

2.4.7 Robot off-line programming 

Although the commercial availability of robot programming languages is an important 

advance in the evolution of industrial robots, currently available languages are still difficult 

to use and essentially robots are still considered to work as a stand-alone automated devices 

[Gini 1987, Lyons and Arbib 1989 and Van Brussel et al. 1987]. Common difficulties 

encountered when using robots in industry are as follows: a loss of production time when 

using a robot to teach a program, programming in an uncertain environment making the 

robot program error-prone, and poor utilization of product information in the context of 

computer integrated manufacturing (CIM), [Chan et al. 1988, Simkens et al. 1988 and 

Craig 1988]. Thus many robotic researchers have concentrated on providing user-friendly 

robot off-line programming systems [Laugier and Pertin 1984, Leu 1985, Tan and Chang 

1985, Brantmark and Ramstrom 1985, Wozniak and Warczynski 1988, Imam and Pavis 
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1988, Ravani and Homick 1988, V an Aken and V an Brussel1987, Kitajima 1988, Ball and 

Smith 1988]. In contrast to robot on-line programming, robot off-line programming and 

simulation systems offer the following advantages: 

(1) There is no need to keep a robot idle whilst generating robot control programs. In 

some cases only final tuning need be done with the real robot and its workcell; 

(2) It is possible to create robot programs with reference to information established 

when modelling and simulation of the workcell. Knowledge accessed via workcell 

models can improve robot programs created e.g. avoid collisions; 

(3) Access to CAD databases can be achieved to advance the robot simulation and 

facilitate improved robot programs. This can be achieved through integration of 

the simulation system and a product design CAD system. This information sharing 

of product data facilitates a level of correspondence between design and 

manufacturing phases; e.g. the dimensional definition of a part from a CAD 

database can be used in determining robot position and sequences [Duelen et al. 

1987, Chan 1989, and Dillmann 1987]; 

(4) It also has financial attraction from the viewpoints of improving the robot 

workcell layout, reducing set-up time and cost, minimizing the equipment 

purchase cost based on an evaluation of the robots capabilities to perform a task. 

The cycle time associated with robot task execution can also be optimized by 

modifying the positions of parts and the sequences of robot operations. 

(5) A structured programming system can be devised for off-line programming, 

building on the possibility of integrating the simulation system with other CAD 

and Artificial Intelligence (AI) systems [Rogers et al. 1988]. Thus high levels of 

abstraction associated with task descriptions can be enabled. 
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While off-line programming and simulation systems can demonstrate the above 

advantages, they also suffer disadvantages associated with the inability to accurately model 

the physical robot workcell. However, various errors caused by inadequate modelling, 

tolerances related to geometrical descriptions and the specification of spatial relationships 

between objects, can at least in part be compensated for by employing an appropriate 

calibration [lshii et al. 1987, Ravani 1988, Chan 1989]. Another shortcoming of current 

robot simulators is that they almost invariably have been designed as a stand-alone robot 

programming package with their own data format and coding language and this leads to 

significant difficulty when attempting integration [Week and Clemens 1988, Rui et al. 

1988]. Standardization of robot programming has been attempted by various researchers 

[Arai et al. 1985, Week and Clemens 1988] and Week and Clemens described an approach 

which uses the IRDATA (Industrial Robot DATA) interface to transfer robot programs to 

robot controllers in an attempt to enable the universal application of off-line programming 

systems. 

RobOt programming itself has attracted wide attention in the robot research field [Volz 

1988, Van Aken and Van Brussel1987, and Rock 1988]. It has been realized and accepted 

by many researchers that contemporary robot languages can correspond to a number of 

hierarchical levels, i.e the language itself can be used to plan and control robot operation at 

various levels of abstraction [Bonner and Shin 1983, Lozano-Perez 1983, Leu 1985, Rock 

1988 and Volz 1988]. At the NATO workshop in Italy in 1986, a working group proposed 

a complete structural hierarchy for robot programming languages, as shown in Figure 2.5. 

In addition to the then three frequently mentioned programming levels -joint, manipulator 

and task level, two new levels - feature and device levels were added, representing the need· 
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Figure 2.5 Hierarchical structure of robot programming languages 

to integrate the design of a product with its manufacturing processes. The programming 

environment was also highlighted as future robot programming systems will be interfaced 

to various modelling systems and as they considered it crucial within the design 

environment to facilitate interfacing between robot programming languages and intelligent 

knowledge-based systems. [Volz 1988] 

2.4.8 The post-processing of robot programs created during simulation 

Many simulation systems represent robot programs in their own off-line programming 

language this often being different to the robot control programming language of the robot 

simulated and typically specific to a simulation system. Hence post-processing is 

commonly adopted to convert off-line robot programs created during simulation into real-

time physical robot control programs which comply with the target robot language. There 
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were 89 high level robot languages identified by Blaha et al. [1988], nineteen of which 

robot languages were listed as currently available commercially. On the simulation and 

CAD/CAM side, there are almost 300 CAD/CAM systems existing to support the 

manufacturing process at its various life cycle stages [Kemper 1986, Kemper and Wallrath 

1987, and Durr et al. 1989]. Among them, some 20 robot simulation and off-line 

programming systems have been identified by the author. See section 2.5 for a brief 

description of each system. 

Currently most post-processing systems operate on the principle that the system abstracts 

geometrical information concerning modelled objects, spatial information concerning 

motions and sequential information in regard to the sense of operations generated at 

modelling and simulation stages by a user, and transforms them into a particular language 

format which is required by the target robot, with the consideration of target language 

capability and restrictions [Craig 1988]. However as earlier discussed, it also important to 

consider the need for standardised robot programming [Arai et al. 1985] and of interfacing 

to various manufacturing systems [Week and Clemens 1988]. 

2.5 Features of contemporary robot simulation systems 

Research into robot simulation systems has received wide attention and many systems have 

been described in the literature [Dombre et al. 1984, Craig 1985], with many commercially 

available systems having been used in industry [Yong et al. 1988, Femandez 1988, and 

Woodwark 1988]. The author has made a survey of the main features of available 

simulation systems which are detailed in Appendix A. 
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The concept of modularity is not new in engineering. For example the modularity of 

personal computers is now an accepted and necessary reality of computer architecture. 

Unfortunately, to date the use of modularity in robotics has been pursued only at the most 

elementary level although several mechanism and robotic researchers have realized the 

importance of the hardware flexibility which can be achieved through adopting a modular 

mechanical structure [Weston et al. 1989a, Benhabib et al. 1990, Moore et al. 1983, Fukuda 

and Kawauchi 1990, Ang. Jr and Tourassis 1988, Schmitz et al. 1988, Moore 1986, Rajan 

and Nof 1990, Rogers and Weston 1990]. Flexible manufacturing automation can be 

realised through using computer controlled manufacturing machines. Here software 

flexibility can result in each manufacturing machine being re-programmable. Hence the 

machine's task can be changed readily although clearly the magnitude of these changes will 

depend on limitations of the mechanical structure of these machines. Very often the 

flexibility realised can be further limited, e.g. by the use of specific tools and sensors. 

Benhabib et al. [1990] suggest that modular robots can offer greater hardware flexibility 

over and above that of current generation automatic machines. 

The concept of modular robot design is derived from the requirement for more flexible 

manufacturing machines and is achieved by modularity and reconfigurability in the 

machine's mechanical hardware. Conventional industrial robots have an essentially fixed 

configuration although optional degrees of freedom may be available as might size 

variants. Typically a given robot will be best suited to meet the requirements of a particular 

set of tasks. Hence for a different set of tasks, a solution close to the optimal one (or indeed 
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an acceptable solution) may not be feasible without changing the manipulators. On the 

other hand, robots are intended to be general purpose machines and hence include 

redundant functionality. This redundancy can be expensive and leads to difficulties in 

investment justification [Moore et al. 1990, Kota and Chuenchom 1990]. Alternatively 

modular robots (and more generally modular machines) can be designed to more fully meet 

a given set of application requirements, potentially leading to reduced cycle times, 

improved accuracy and reduced cost. In addition modular machines can demonstrate 

sufficient flexibility to (i) automate manufacturing tasks for a range of products and (ii) 

enable re-configuration as required at some future date. 

Current research in the area of modular machines focuses on two aspects, namely control 

architecture design and the provision of configuration tools to simplify the creation of 

modular machines. Weston et al. [1989a and 1989b]have proposed a control architecture 

for modular machines which is known as a Universal Machine Control (UMC) architecture. 

First generation implementations of this architecture has been commercialized, based on 

the research of the Modular Systems (MS) research group at Loughborough University of 

Technology. This architecture is used in conjunction with a set of tools to select and 

configure control system modules dependent of requirements of a given application. 

However to date the mechanical design of modular robots and machines is at the conceptual 

design stage and is almost exclusively achieved using traditional approaches due to the lack 

of computer aided design and simulation tools to aid the design process. Tesar and Butler 

[1989] presented six undriven joint modules (based on six elementary motion pairs) and 

three actuator modules. Higher order degree of freedom (DOF) articulated joint modules 

were also described based on various combinations of these nine basic modules. These 
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included six one DOF actuated joint modules, six two DOF actuated knuckles, four two­

DOF parallel planar motion modules, 3 three-DOF planar motion modules, and 3 three­

DOF spherical motion modules. However each of these designs are still at a conceptual 

stage, i.e. methods of selecting, aggregating and evaluating the use of the modules do not 

yet exist. Clearly there is a need to create and study the use of design and simulation tools 

which provide a flexible design environment for modular machines. 

2.7 The limitations of current robot simulation systems for 
modular machine modelling 

Current robot simulation systems can be used in evaluating and advancing robot 

performance and off-line programming, but they demonstrate some limitations in the 

design of modular devices. 

Lack of flexibility when designing and configuring a new modular robot configuration is 

the first limitation. Since most robot simulation systems were designed for commercially 

available robots, they expect to model a fixed "hardware" structure. This limits the 

available structural flexibility of the resulting robot model. Clearly it is not the intention of 

most robot simulation systems to accommodate the simulation of modular structures, hence 

a new approach to modular machine modelling is required. 

From the viewpoint of requiring an integrated design and simulation environment, current 

robot simulation systems also demonstrate limitations for modelling robot related devices 

within its workcell. As the demands for shorter product lead-times increases, the need to 

integrate manufacturing devices and processes becomes more pressing. Since most robot 

simulation systems were designed to simulate a single, stand-alone robot workcell, 
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insufficient attention has been paid to modelling interactions with other automated devices 

and therefore the efficient control and programming over these non-robot automated 

devices are not provided at all. It has been generally realised that design and development 

of a generic manipulator structure can be very expensive, time-consuming and challenging 

task in terms of resources and this was especially true in the space industry [Spar 

Corporation 1975, and Tesar and Butler 1989). However current robot simulation systems 

focus primarily upon the robot simulation and off-line programming. Even the modelling 

aspect is centred mainly on the geometry and kinematics of conventional industrial robots. 

The lack of efficient analysis tools to evaluate the performance of a complex manufacturing 

workcell has demonstrated the incapability in modelling wide range devices and aiding 

workcell designers to develop a new design efficiently. The need to derive such a design 

and simulation environment for modular machine designers especially with appraisal for 

modular machine is a major motivation of this research. 

Currently most robot simulation systems only provide a programming facility for robots 

which are defined in an associated robot model library. Any other devices with motion 

capability are not included in the robot programming facility. Since modules can be 

aggregated to create a kinematic structure which demonstrates articulated motion (in a 

similar manner to conventional robots), or alternatively be configured to create a physically 

distributed structure within a machine, new methods of programming such devices need to 

be studied. The incapability and insufficiency in multi-device programming of 

contemporary robot simulation systems also needs improvement. 

The limitations of current robot simulators as tools for aiding the design of modular 

machines has motivated this study in the aim to provide an environment for modular 
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machine design and simulation. Although a proven robot simulator can be used as a 

building block of a modular machine design and simulation environment, it is necessary to 

derive and consider the complementary use of various other design methods and tools. The 

configuration study, kinematics, supporting tools, programming and post-processing under 

such environment are discussed in this thesis. 
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Chapter 3 UMC Architecture and an Approach to 

Modular Machine Simulation 

3.1 Introduction 

This chapter continues the discussion on existing and potential methodologies which can 

be used in the design of modular machines. The Universal Machine Control (UMC) 

architecture is outlined as an example of a particular reference architecture in order to 

highlight and demonstrate the design principles of modular machines. The modular 

methods, configuration methods, hierarchical structure methods and data-driven methods 

used in the design of modular machines are particularly generalised. An approach for 

deriving an environment for enhancing modular machine design and simulation is proposed 

based on the UMC approach and modular machine design methodology. Since this study is 

based on a commercial robot simulation system called GRASP, a detailed description of 

GRASP is included to illustrate its underlying simulation approach. 

3.2 Modular machine design methodology 

Due to the potential advantages of a low level of investment in a long term (because of their 

reconfigurable features), high level of flexibility in their configuration and ease of 

integration with other machines, modular machines have recently attracted many 

researchers' attention [Benhabib et al. 1990, Tesar and Butler 1989, Fukuda and Kawauch 

1990]. From the total design perspective of a modular machine, the author summarised four 

methods used in modular machine design, namely: modular method; configuration method; 

hierarchical method; and data-driven methods. Each of them is detailed in the following 

sections. 
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3.2.1 Modular methods in the context of modular machine design 

The axiom on which the modular method is based is as follows. It is believed that there are 

similarities between the functional properties of very many manufacturing machines [Muck 

and Mammem 1984, Kamm 1983, Tesar and Butler 1989, Weston et al. 1989a, and Yan et 

al. 1990]. Hence, the functionality of a specific machine can be decomposed into a number 

of more basic modular elements. These elements can also be considered to belong to a 

larger family of modules for building machines. Though the decomposed machine modules 

will vary slightly from one application to the other, a generalization of these modules is 

possible. This fact has been appreciated by a number of suppliers of industrial machines 

leading to proprietary families of modular building components of machines [Moore 1986]. 

Essentially the modularization of manufacturing machines can take one of three forms. 

Mechanical modularization of the generic manufacturing machine would lead to a 

decomposition into mechanical elements. For example these elements might .be single 

degree of freedom modular units used to facilitate different types of motion. This level of 

modularization and decomposition of machine elements can be used by machine designers 

in constructing machines from well proven building blocks. 

Control system modularization results in a family of machine control modules (or building 

elements), which typically may comprise software and hardware modules. Currently, there 

are problems associated with contemporary machine control methods which limit their use 

in controlling modular machines. One of the problems is that these methods intend to 

provide "hard-wired" solutions which are based on a specific control hardware, and this 

inevitably results in inflexibility [Doyle and Case 1991]. A generalised solution to this 

problem, which can form a part of an overall modular machine design strategy, is to create 
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an open (or "standardised") industrial control architecture and to design appropriate control 

system elements which fit into that architecture. In this architecture "standardised" 

interfaces exist to proprietary control system elements, thereby enabling those elements to 

be treated in a generic manner. In this way a generalised approach to modularising high 

level control hardware and software is possible. Thus using this approach interaction . 

between lower level modules can be sequenced, synchronized, monitored, programmed 

and generally managed in a consistent manner. Once a vendor specific section of control 

hardware has been standardised, the hardware and software can then be viewed as a virtual 

control device and included in the library (or family) of control modules. 

A functional modularization of a machine can lead to the delineation and specification of 

various high level machine modules which themselves may be related in terms of their 

position and function within a hierarchical structure. Typically these modules will comprise 

several mechanical and control machine elements. The constituent physical (mechanical 

and control) elements of a functional module can be physically linked together or closely 

coupled with physical links (such as mechanical or electro-mechanical connections) 

between the physical elements. A typical example of a closely coupled functional module 

is a manipulation I placement manipulator system constructed by physically connecting 

motion axes and a gripper, which is commonly found in automated assembly operations. 

On the other hand, the constituent parts of a functional module may be physically 

decoupled and only be logically linked in some way, e.g. the individual physical 

components of a functional module may be distributed at various locations along a 

production line, and their relative motions may be maintained according to some 

application dependent relationship stored within the control elements or embodied in a task 
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program instead of through mechanical linkages. In this case, physically decoupled 

machine elements operate in a coordinated fashion (e.g. two or three elements maintain 

synchronous motion implying a logical link rather than a physical one). It is this logic 

relationship that can group machine elements within a functional module. These examples 

quoted can typically be found in packaging and process industries. 

In the process of machine design, a modular ·approach can thus be adopted through 

aggregating (or combining) modules in a consistent and structured manner, i.e. according 

to a modular framework for machine design. Such a design method may not only include 

the selection and building of machine elements, but can also provide a means of evaluating 

alternative solutions and generally enhancing approaches used in the various stages of 

machine configuration, implementation and reconfiguration. 

3.2.2 Configuration methods in the context of modular machine design 

Modular machines can be characterised by their inherent properties of configurability and 

re-configurability, i.e. a modular machine (built by selecting modules and aggregating them 

into a machine) can be reconfigured into another form (or configuration) to suit the 

requirements of a new task or tasks. Therefore configuration tools (which may comprise a 

set of software tools) can be used to aid the selection of some machine modules and 

aggregate them into a machine according to some structured framework. At the design 

stage the configuration tools can be used to build a machine model, through the selection 

and linking together of machine physical and control modules. This will be referred as to a 

logical machine and will exist as a software representation of a subset of the general 

manufacturing machine. Ideally this logical machine (or machine model) should be an open 
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structure with enough functionality to accomplish the required tasks. Through being open 

in this sense, it can be expanded for future tasks simply by appending new machine 

elements or modules. At run-time, all machine elements will need to perform their 

individual tasks which may be defined at a low level (as an individual module) or at a higher 

level (as a group of low level machine elements or modules). Correspondingly, control 

hardware and software modules are required to accomplish the tasks. The configuration 

tools can be considered to be one of two types, viz: (i) for modelling and simulating of 

mechanical and operational aspects of machines and (ii) for constructing aspects of 

physical machines and configuring aspects of their required run-time control software. Due 

to the need to configure a physical machine, there should be hardware configuration tools 

for both mechanical and control hardware construction. Mechanical hardware 

configuration tools include standard mechanical connectors between mechanical modules, 

base support frames, and connector fasteners. Control hardware configuration is 

determined by the controller design, modular computer structure, flexible internal wiring 

harness, standard interfaces between control board modules etc. Currently,less attention is 

directed to the hardware configuration tools and more configuration tools both for 

mechanical and control are being derived [Benhabib et al. 1990, Karlen et al. 1990]. The 

configuration tools used to model and simulate mechanical and operational features can be 

derived to aid the design and evaluation of modular machines. 

3.2.3 Hierarchical methods applied to modular machines 

It is believed that a physical and functional hierarchy typically exists within a machine 

[Albus et al. 1981, Kusiak et al. 1988, Jones and Saleh 1990, Jafari 1990] and machine 

elements existing in this hierarchy can be further decomposed into physical sub-systems 
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which may comprise a number of well defined modules. Therefore modular and 

hierarchical structures naturally exist within a machine. At each level of the machine 

hierarchical tree, a machine module is attached to the hierarchy. The adoption of a modular 

and hierarchical structure can lead to creation of both manageable and flexible machines. 

A typical example is the decomposition of an industrial robot. Figure 3.1 shows one 

approach to such a decomposition. More generally, a machine system can be decomposed 

into several sub-systems and each sub-system can consist of several modules (see Figure 

3.2). Clearly, a hierarchical machine structure can often be established by appropriate 

decomposition of a machine. 

The decomposition of a machine can be achieved in terms of its functionality which will 

usually be an abstract representation of the purpose of a machine and its constituent parts. 

Through functional decomposition it is possible to produce a family of control software and 

hardware modules which can be re-used: a major advantage compared to custom design and 

build approaches. Considering the functional decomposition of a robot, one possible 

classification is into three main parts, namely its manipulator, its control functions and 

sensory capabilities. Each of these functional parts can be further decomposed into even 

more elemental functional units which exist as a functional hierarchy to form the general 

purpose machine or robot (see Figure 3.1). 

As a general method of designing machines with hierarchical features, hierarchical 

methods can be employed in modular machine design in terms of both constructing 

physical machines and modelling and simulating modular machines. Since modular 

machines can have both an articulated and distributed configuration, the hierarchical 
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method employed in conventional robot design in a "bottom-up" manner can still be used 

· to model modular machines. A "top-down" hierarchical approach is also needed to design 

and evaluate a modular machine from the vie':"J>>int of its functionality. 

3.2.4 Data driven method in the context of modular machine design 

One of the axioms on which modular machine design is based is that any given aggregation 

of modules (which forms a manufacturing machine) can be described by a data model 

defming the functions of modules and their interaction [Moore et al. 1990, Durr et al. 1989, 

Harrison 1991]. A data model can be used to represent various aspects of a modular 

machine throughout its life-cycle. It can be a kinematic description of a machine element 

or a description of its motion. All data modules associated with a modular machine can be 

abstracted from any given manufacturing machine by adopting the underlying concepts of 

a modular and hierarchical approach. Thus data modules can describe a range of machine 

characteristics in relation to single machine element or indeed to the structure of the whole 

machine. Therefore, data modules in the context of modular machine can be the 

specifications of the machine's construction and functionality. 

The data modules representing a modular machine can be classified into a number of types. 

Figure 3.3 shows data modules for a particular modular approach - the UMC reference 

architecture. They include an 1/0 Component Device Descriptor data module, Physical 

Primitive module, Positional data modules, Task data modules and Machine data module 

etc. Collectively, all data modules can exist within a defined hierarchical structure. Once a 

reference data module is required, such as a positional data module, the top level data 

module is passed onto lower levels with the machine eventually being driven by these data 

50 



Chapter3 

Machine Data Model 

• ll 
• r 

Position 
Task Data Model - Data -

Module 
• 

Kinematic 
Control Subroutine - Data 

Primitive Data Model -
Module 

• a , r 
Component 

Physical Primitive ~ Handler 
Data Model -

Data Module 

• • 
' r 

1/0 Component Device 
Descriptor Data Model 

Figure 3.3 Data representation hierarchy in UMC architecture 

modules through referencing data relationships determined by the hierarchical structure or 
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Conventionally, machine design is achieved by one of two methods. The first commonly 

used approach is to tailor or customise a machine for specific requirements, such as 

dedicated or semi-dedicated automated machines for assembly, packaging and materials 

handling. This approach exists widely because it can provide mechanical optimization so 

that customised machines often demonstrate the required level of functionality (such as 

short cycle time and good accuracy) when achieving their specific manufacturing purpose. 

These machines include various computer controlled dedicated and semi-dedicated 

automatic machines. 

Obviously, the customised approach can involve very high levels of highly skilled design 

and development work, particularly if the machine is relatively complex. Such machines 

are normally produced in small numbers and therefore the high cost associated with design 

and manufacturing are often difficult to justify so that automating may not be practical 

[Weston et al. 1989a, Weston et al. 1989b]. It is also difficult (or even impossible) to 

modify a custom designed machine, either with regard to its mechanical or its control 

properties. 

The second conventional approach tries to produce a more general purpose machine (or 

indeed control system) typically of well defined mechanical configuration and flexibility. 

Thus a reasonable level of functionality can be produced at an acceptable cost to 

accomplish a variety of tasks. This approach is founded on the fact that producing one-off 
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custom machines is very expensive in terms of development costs, whereas the higher 

capital cost of more general purpose machine may be outweighed by spreading 

development costs over many units. At the present time, many automated machines are 

controlled by PLCs (Programmable Logic Controllers). Such a PLC approach can be an 

advancement on the hard-wired or mechanical control method (through using a more 

flexible control device) but often it can only be used as a lower level local control method 

and tends to lead to "hard-wired" solutions and inflexible control structures. With the black 

box proprietary structure of a typical PLC, the control of a relatively complex machine 

tends to be disorganised and communication among machines (via PLCs) can be very 

limited due to lack of data visibility at the individual machines [Johnson 1987]. A 

requirement for more flexible and efficient machines in turn gives rise to a pressing need 

for more advanced control methods. Though the PLC approach is becoming more 

commonplace (since they can solve the problem of flexibility in a more general fashion as 

the functionality of PLC's themselves advance), a lack of a standard approach and the fact 

that PLCs have been built bottom up with ease of industrial use as a prime objective has 

ultimately limited their effectiveness. Hence PLCs do not represent an optimal control 

system solution to specific manufacturing problems. Figure 3.4 outlines the PLC type of 

approach. Despite the drawbacks of contemporary PLCs they can be viewed as a forerunner 

of highly flexible (i.e. configurable), user-friendly control systems a new generation of 

which will be generated through top-down design and building on modem process control 

[Weston 1990]. 

The modular approach has been widely adopted by machine designers at different stages of 

design [Tesar and Butler 1989, Karlen et al. 1990]. However, the designer is still expected 
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to design manufacturing machines which are highly constrained both in terms of the 

physical and control structures. A generalised methodology based on a modular approach 

to system engineering has yet to be specified [Moore et al. 1990]. 

In addressing the problems faced and requirements to improve current ~achine design, a 

new approach to machine design, referred to as Universal Machine Control (UMC) has 

been derived by the Modular System (MS) research group at Loughborough which aims to 

formalise and structure modular machine design methods. The UMC approach aims to 

provide a software environment for machine design and control [Weston et al. 1989a and 

Harrison 1991]. It adopts modular methods from machine element design to machine 

configuration and run-time control. A hierarchical structure is maintained through the use 

of handlers which ensure conformance of machine building blocks which can be made 

available from various proprietary sources. In addition data driven methods are used to 

support highly configurable run-time control. Each of these features are intended to create 

an "open" reference architecture for general purpose machine design and control. 

3.3.2 A description of the UMC approach 

The UMC approach represents a step towards compensating for the disadvantages of 

conventionally controlled machines and in particular the need to realise sufficient 

flexibility whilst maintaining adequate performance at acceptable cost. It uses a "top­

down" approach in creating a high level simulation environment for users to control and 

co-ordinate various machine control elements, tools, sensors and work piece flow in a 

consistent and global way [Doyle and Case 1991]. The importance of achieving high level 

control over a machine with complex tasks can be justified by the following two reasons. 
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Firstly, complex manufacturing machines normally deal with multi-task, high-speed 

manipulation and highly efficiency manufacturing, therefore they require high levels of 

performance when coordinating tasks. For this coordination requirement, there is a 

considerable communication problem among local machine control devices. The more 

complex a task is as a general rule the more complex is the coordination required and hence 

more serious communication problems are. High level control and supervision for these 

communication and coordination tasks is a natural solution. 

Secondly, in terms of modular machine programming, a step up from the local 

programming and control of devices to more implicit approaches can facilitate faster and 

more user-friendly control over tasks of a modular machine. Conventionally, the user has 

to learn controller dependent (such as PLC) type of programming languages. If a low level 

proprietary programming is utilised, typically highly trained program staff are required: 

whereas if PLCs type of programming facilities are employed, typically there is a lack of 

co-ordination among sub-tasks of machine elements. 

Bearing these problems in mind, the UMC architecture provides a method whereby 

machine designers and control engineers can resolve the diverse range of control and 

manufacturing problems into a consistent approach which can meet the emerging needs of 

a modular approach to machine building and control. This will eventually eliminate the 

problems caused by a customised approach; by which machine builders automating similar 

manufacturing tasks will engineer very different solutions, based largely on limitations 

imposed by in-house engineering resources and previous knowledge. 

3.3.2.1 Universal features of the UMC approach 

One of the inherent features of the term UMC is illustrated by the term Universal. Although 
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UMC is not truly universal (nor could it be) it adopts a device-independent method of 

standardizing control issues. A software device called a "handler" is normally used to 

interface with a vendor specific control device and on the other side it provides a consistent 

interface to high level control (see Figure 3.5). Thus handlers provide the interface between 

the run-time UMC system and customised device control. It consists of two parts: a device­

dependent part and a generic interface to UMC task programs. The generic part of a handler 

waits for instructions from the task program and on receipt of such instructions it executes 

the command in question, sending a signal back to the task program to indicate whether or 

not execution is successful. The hardware specific functions of a handler depend on the 

hardware. Handlers are normally responsible for sending appropriate signals to local 

controllers. These signals are Ready-to-Execute, Error and Finish which indicate to the 

high level controller the protocol format of the proprietary device (such as a Quin motion 

controller). 

3.3.2.2 Inherent Modularity ofthe UMC approach 

The modular concept is explicit in the UMC architecture and can be viewed with respect to 

three aspects. Firstly the mechanical modules for machine building come from a model (or 

representation) of the decomposition of many automated manufacturing machines. Typical 

mechanical modules modelled include one degree of freedom (DO F) motion primitives or 

modules, two-DOF motion modules, three-DOF motion modules, and standard 

"mechanical connectors" for binding mechanical modules into a machine. However in the 

physical realisation of such machines currently only one DOF linear motion modules are 

used in one UMC demonstration rig, whereas revolute modules are included in a second 

machine demonstrator. The second modular aspect ofUMC concerns the use of proprietary 
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controller and 1/0 modules. Various commercially available motion controller modules and 

1/0 processing modules have been purchased and used as control hardware modules. These 

commercial units are used along with supporting software UMC control modules including 

handlers to incorporate them within the control architecture. The third aspect of the 

modular concept is incorporated in the programming and run-time control of the UMC 

machine. The machine programming and run-time system maintains the coordination of 

single machine element related sub-tasks through inter-task communication. Therefore 

these sub-tasks can be stored as tasks modules (if they are newly created) or they can be 

directly selected from a task module family. The whole system maintains a well established 

modular structure which ensures that the designed machine has high flexibility in terms of 

configurability. 

3.3.2.3 Hierarchical notion of the UMC approach 

A further feature ofUMC is its hierarchical nature. Different hierarchies are involved here 

dependent on the phase of the machine life cycle, i.e. the machines mechanical and control 

system design phase, the emulation hierarchy and the run-time control hierarchy. 

The hierarchical nature of the current version of UMC is mainly typified by its data 

definition and the relationships between such definitions. In the data representation of the 

UMC architecture (shown in Figure 3.3), there are clearly five hierarchical levels for data 

modules. This reflects the hierarchical approach advocated in considering the requirements 

of modular machine design. It encompasses most advantages of conventional design, being 

a modular machine at the design stage and reconfigurable machine at the installation stage. 

Furthermore the use of a hierarchical approach ensures that at the design stage, the solution 

generated in response to specific manufacturing problems is not that of the usual 
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conventional industrial robot approach, which only provides a sub-optimal solution in most 

cases. The other advantage is that the solutions obtained using this approach need not be 

specific to only one process or manufacturing problem, sometimes it is a solution to a 

number of manufacturing problems facilitating the production processing of a number of 

products. The modular design approach described allows two possible extreme design 

routes to be followed, i.e. to design a complete new machine or radically modify an existing 

machine. In either case, the methodology provides a set of geometrical modelling tools to 

allow several design solutions to be generated and compared through simulation, thereby 

achieving a better solution for a specific manufacturing problem. This design method 

employs a hierarchical approach and machine specifications should be accomplished first. 

This sequence is shown in Figure 3.6. Iteration is necessary to achieve better solution, 

therefore the UMC design methodology allows the designer to return to the machine design 

at various levels in the hierarchy to optimise a design solution. 

3.3.2.4 Data-driven features of the UMC approach 

In UMC, control and programming is achieved through using data-driven methods. A 

typical data flow of control parameters is also outlined in Figure 3.3. At the bottom level, 

the component handler data module passes the control parameters required by a physical 

component driver. In the case of a motion component for example these data from the 

handler are treated as commands and parameters, e.g. determining the type of move. 

Similarly at one level above, the control subroutine module transfers positional information 

to the component handler module through which the control data are further passed down 

to the component driver. The control related data modules are normally employed at run 

time, and task data modules are typically prepared for run-time data modules. This method 
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Figure 3.6 The Hierarchy of the UMC architecture 

and its simulation approach 

of data driving UMC is also organised so that computation and communication issues 

associated with real-time control are separated out leading to ready-to-use control 

parameters which are computed and processed at a high level of the hierarchy. This reduces 
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the computation burden on the local controller and increases the system efficiency and 

response time. The six data modules used in the UMC architecture are briefly described as 

follows. 

The 1/0 Component Device Descriptor (CDD) data modules take care of computer 

hardware dependence at the interface to the mechanical hardware, e.g. port addresses, 

communication protocols. Thus a 'standard' (or consistent) interface to 1/0 device 

descriptors is achieved: i.e. the component handler data module provides a standard UMC 

interface upwards to component control module and downwards to a hardware dependent 

component driver [Harrison 1989]. 

The Physical primitive data modules used in UMC define physical parameters of an 

associated component, e.g. the dimension and location of an axis of motion. This type of 

data module is especially useful at the emulation phase. For example the control primitive 

data module defines kinematic parameters of components, e.g. constraints on the maximum 

distance, speed and acceleration of an axis of motion. It also contains certain transient data 

fields which are used and evaluated at run-time. 

Positional data modules describe the machine task related positional information for some 

primitive components. These positions stored in a positional data modules determine the 

destination position of a defined motion associated with either a single or a group of axes. 

The positions are stored in the modules in such a way that they can be recalled flexibly via 

a name associated storage method [Booth 1990]. 

In terms of kinematic data modules, a user friendly interface is provided which defines at a 

more abstract level various parameters (e.g. speeds and accelerations) for motions. These 
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data are also stored in a separate data module using a name-velocity associated method. 

Currently, this data module is not available in a UMC physical machine environment, 

however it is available in the emulation system of the UMC architecture. 

Task data modules within the UMC architecture are not part of the machine description 

database, and they contain purely transient data. Each task data module supports machine 

control functions to which particular task calls are made by application task programs. The 

task data module can be completely created before run-time if the machine data module is 

complete. When it is created, it contains data which identifies the required component 

handler module. 

The machine data module contains a definition of the physical component primitives which 

form consistent tools of the complete physical machine for all application tasks to be 

programmed whilst the machine maintains its current configuration. The machine module 

is purely a machine description and it is used as a reference at run-time to create all other 

necessary program and data modules. The machine data module also contains data to defme 

the task configuration. 

With the above generalised four types of methodology employed in the UMC approach to 

modular machine design, UMC provides a general and highly flexible design method as 

described in Figure 3.6. There is a library of control system modules which emulate control 

functions required by the physical machine and descriptions of mechanical machine 

primitives to enable emulation of UMC manipulator systems. The user can select a set of 

control system modules from the library to configure a specific machine control system. 

Instances of the modules selected are then bound together by a hierarchical tree data 
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structure, the selection and binding being achieved by using configuration tools. This 

naturally fits these modules into a hierarchical data model representing the machine and its 

controller. After the provision of additional data (e.g. a position data module and task 

description) a machine is fully described and the code and data representing the machine 

can be pre-processed directly to generate the run-time control software. On completion of 

the generation of run-time control programs, the data and control program can be mapped 

to custom control hardware and the physical machine then can be driven through the tasks 

so defined. 

With an understanding of the advantages of the UMC approach, the authors' study has 

aimed to provide a consistent UMC design and emulation environment. In section 3.5, a 

general description of the emulation approach so created is outlined. 

3.4 The state of the UMC architecture and its limitations 

3.4.1 The benefits of the UMC approach 

Based on the aforementioned methodologies, UMC modular machine design and control 

approaches have shown significant promise in various application areas [Harrison et al. 

1988]. The designed machine can be reconfigured because of system modularity and its 

hierarchical data structure and therefore a wide variety of application tasks can be 

automated efficiently and cost effectively. The logical coordination of different group of 

axes can also be achieved by high level control. The data driven methodology offers not 

only considerable flexibility, but also data visibility and extendability, which can enable the 

machine to be fully integrated within its manufacturing environment. 
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Inherent properties of extendability and modularity also gives rise to two clearly 

identifiable advantages. First, very high functionality levels can be achieved (by tackling 

complex problems in an incremental manner) and second, support and diagnostic tool 

modules can be incorporated which are designed to serve the specific requirement of users 

and this naturally extends the machine's available levels of functionality. The inherent 

properties of machine reconfigurability can much reduce the machine lead time by 

facilitating re-arrangement into a new machine specific to new product or products. The 

hierarchical nature of a modular machine architecture provides important advantageous 

properties when compared with a "flat" architecture. There is a natural hierarchy in 

manufacturing machines and an increasing need to extend that hierarchy both upwards, to 

integrate the machine into factory level manufacturing, and downwards, to include low 

level machine components. The hierarchical approach can meet this requirement and the 

hierarchical data model also provides visibility since the users are allowed to access the 

data structure at each level. The obvious advantage of this visibility is that users can 

program, monitor and maintain the machine at different levels, and therefore the machine 

has much improved support and reliability. Additional significant benefit will accrue if the 

system requires modification and enhancement at a future date (a likely requirement as 

product models and manufacturing process change), resulting primarily from the natural 

visibility and extendability of the standard approach. 

3.4.2 The limitations of current UMC architecture 

Although the UMC architecture demonstrates a number of benefits described in the last 

section, the current UMC implementation suffers various limitations due mainly to there 

being insufficient manpower available to tackle all major aspects of the problem. In 
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particular, prior to this study there was not a machine design and simulation environment. 

Current UMC versions do provide configuration tools for run-time re-configuration of an 

existing machine. However the use is greatly dependent on the designer's experience and 

there is a pressing need to simulate the modified modular machine and evaluate its 

performance, e.g. before actually re-configuring an existing machine. Based on such an 

evaluation and gradual optimization of both the machine layout and task allocation, a 

designer of a modular machine, using the UMC approach can be more confident that the 

new configuration of an existing machine is appropriate so that incorrect or unnecessary 

modifications can be eliminated. Based on parallels with robot evolution, a design and 

simulation environment for modular machines is an inevitable requirement to extend the 

designer's ability to design modular machines in a user-friendly and efficient manner. 

From the perspective of machine capability, prior to this study the UMC implementations 

did not tackle the design of complex mechanism configurations. In such cases due to the 

wide range of possible complex combinations of motion axes, it is impractical to consider 

building and testing various optional control algorithms and machine mechanisms so that 

near optimal solutions can be realised. The physical reconfiguration of a UMC machine (or 

indeed demonstration rig) may mean large investment both on new motion module 

purchase and on installation. Algorithm testing on a physical machine can lead to lost time 

and production, judging from experience of corresponding robotic development. 

Alternatively it may be possible to use control algorithms developed in a simulation 

environment to control the physical machine thereby avoiding duplication. This can release 

the debugging burden at device control stage from the UMC machine designers and 

developers. 
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Prior to this study UMC machine programming was also limited to the level of a single joint 

and was typical achieved by using the C programming language. In terms of manufacturing 

task description, the single joint level is the lowest level of programming: this being 

equivalent to robot joint level programming. It is often necessary to program at this level to 

enable local machine task execution, control and programming but it is very often time 

consuming and results in difficulty for less trained programmers. The provision of only 

single joint level programming would limit the acceptance of UMC in industry. 

Programming should therefore be available at least at one level higher. Due to the real time 

requirement of the UMC physical machine, it is difficult to create a multi-level 

programming structure at run-time. However there is not as much concern about time 

constraints in the simulation stage. Thus it was considered to be feasible and desirable to 

create multi-level programming in the simulation phase. 

The above limitations of current the UMC approach are a direct motivation for the work of 

this thesis. The research study aims to overcome these limitations and hence to enhance the 

capabilities offered by UMC systems. Essentially UMC versions prior to this study dealt 

only with the physical machine implementation and its real time control, whereas a 

simulation environment can fully complement such system by providing design and 

evaluation supporting tools in order ultimately to achieve high level planning and off-line 

programming. Before this ultimate goal is fully achieved, and especially the goal of off-line 

programming, an embryo environment needs to be created of base supporting tools so that 

necessary enhancements can be made. In the following sections, a general perception of 

problems faced and approaches taken are illustrated. 
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3.5 Use of an emulation approach to enhance the capabilities 
ofUMC systems 

3.5.1 A generalized emulation approach as an integral part of 
the UMC methodology 

As described in section 3.1 and outlined in Figure 3.7, the UMC methodology encompasses 

the philosophies of modularity, hierarchical structuring and data or model - driven 

approaches. It has the advantage of producing flexible modular machines demonstrating 

high levels of reconfigurability and extendability at low engineering cost. The same 

philosophies can be employed at the emulation stage leading to a consistency of approach 

within UMC, i.e. common data models and control logic can then be maintained leading to 

ease of integration of the system within its host environment. The generalised ideal 

emulation system with consideration of potential integration with other life-cycle phases of 

manufacturing through using consistent data model and logic etc. and emulation approach 

itself are depicted in Figure 3.8 and Figure 3.9 respectively. 

This system retains many of the best features of contemporary robot simulation systems 

including geometric modelling, and work cell layout arrangement. In terms of the chosen 

emulation approach, the system retains an inherently modular structure which is common 

in many simulators. Furthermore, the modular approach is adopted to establish the 

modelled work cell, machine and other objects from a very basic starting point (i.e. low 

level primitive modules), which implies the adoption of decomposition methods and 

axioms referred to in section 3.2.1. Here, all machines (including robots) can be modelled 

from these very basic machine elements, leading to simulation of a host of manipulator 

systems rather than manipulators which comprise a pre-defined fixed configuration. 
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A library is used to accommodate a family of modular machine single elements, ranging 

from non-powered standard geometric shapes such as cuboids, cylinders, to powered 

modules including machine single motion elements and motion specification elements. 

These basic elements contained in the module library will be referred to as modular 

machine building primitives. Each class or family of machine building primitives will 

demonstrate a set of variations in one or more its minor features. For example, modules 

within the same class of prismatic motion primitive may have different dimensions or 

moving distance constraints. Therefore, for different variations of the same class of 

machine primitive, different values are assigned to corresponding data fields where this 

assignment is necessary and easily conducted. 

The configuration tools of the simulation system are a set of tools which provide an 

interface between the machine designer and the emulation system, thereby enabling an 

appropriate selection of machine building primitives and the aggregation of them into a 

complete machine within work cell model. For each type of machine building primitive, 

there is at least one configuration tool to accomplish its basic task. There are other tools for 

aggregating several joints into a group in a user designed way. This is achieved by using 

the generalized data structure for motion pairs described in section 4.2. The configuration 

tools also include editing facilities to modify the workcell of an existing modular machine. 

These facilities include dimension editing of an object or joints, construction editing of a 

group of joints, and location editing of an object or joint etc. Collectively these 

configuration tools facilitate f!te construction of modular machines during their simulation 

stage. Theoretically an expert system could be used to advise during the configuration stage 

by evaluating the suitability of the selected machine primitives for conducting the required 
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tasks. This could be achieved by using a knowledge-based approach to recommend a choice 

of machine primitives based on user's requirements e.g. in terms of say the required 

working envelope, accuracy and other kinematic and dynamic features. However the 

creation and the use of such an expert system was well beyond the research scope of this 

study, mainly due to time constraints but also to allow the author to concentrate on 

methodology rather than means of achieving these methods where the means might involve 

work which defocuses the study. 

Object manipulation defmes a set of tools for a user to manipulate all modelled objects 

(from simple geometric representations to elements forming a grouped motion structure). 

In terms of control related machine primitives (e.g. sensory devices) the manipulation of 

these primitives should also be achievable to initialise their conditions. For kinematic 

manipulation, two types of manipulation should be provided, namely forward kinematic 

manipulation (i.e. drive one or several motion primitives to move a specific distance or turn 

through a specified angle) and inverse kinematic manipulation (i.e. drive one or several 

motion primitives to a required position and orientation in work place by moving a 

prismatic joint through such a distance or turning revolute joints through such an angle 

which results in desired target position in the cartesian space). Through providing both 

types of transformation objects can be activated to perform their functions and controlled 

by the user "manually". 

A kinematic modelling facility can provide motion related functions which enable a 

designer to plan a satisfactory kinematic solution to the user's positional, velocity and 

acceleration requirements. This requirement can be as simple as a point to point move with 

constant speed of a single axis, or it can be as complex as a three dimensional curve with 
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various velocity specifications relating to a group joints. The versatility of the kinematic 

model and completeness of available motion combination will determine the capability of 

an emulation system and its application areas. There are already many robot simulator 

systems available, however, being a kinematically fixed and limited structure, they have 

demonstrated limitations. The kinematic modelling facility is especially important in that 

sense, being a generalised modelling facility to deal with various motion primitive 

configurations of different combinations. The kinematic motion planning can be straight 

forward single path plan, it can also be an "intelligent" path plan which calculates motion's 

at all passing point and check if there is a collision or impossible move. For some very 

accurate motions, the kinematic model should provide an error correction facility. 

Programming such a modular machine is a very demanding task. Although it is very 

difficult in one single machine task program to control and coordinate the operation of a 

modular machine, it is relatively easy to control every machine primitive at its local control 

level. Due to its modularity and kinematic structure, there is large amount of 

communication and coordination activity required within the modelled modular machine. 

At one level above the local primitive control level, task programming should provide 

efficient functions which cope with these communication and coordination issues. The 

operations vary with different application areas. An application specific programming 

facility is bound to limit its utility. Hence generalized and task control based task 

programming functions are likely to fmd more wide application areas at this level (i.e. one 

level above the single primitive or local control level). Some of the basic and common 

commands at this level can be provided by an emulation system. However, a user or 

application specific task programming facility can be derived by combining second level 
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from bottom commands or functions into macro commands. Such an open approach is also 

applicable in the other parts of emulation modelling facilities. 

The emulation system also includes an interface between the simulation environment of a 

modular machine and its physical realisation in the form of an operating machine. A 

detailed description of this interface and associated integration issues are outlined in 

Chapter9. 

A data rjng and tree method can be used to present both the hierarchical and modular 

features of a modular machine. Each part of a machine primitive's features can be 

represented by one or several data blocks, which are a collection of various data types. For 

example, an event in a task program can be expressed by one data block with certain data 

fields, which accommodate all event related information in the task. Each of these data 

blocks can be arranged in various ways. The proposed method for use in the author's UMC 

emulation is referred to as a data ring and tree method, which arranges the data block in 

such a way that data blocks at the same level of the hierarchy hang together in a ring form. 

For these data blocks which are located at one level below in the hierarchy, a new data ring 

is introduced from one data field at the data block which starts a new data ring. The newly 

introduced data ring can be seen as a branch in the data hierarchy tree structure, and it is 

normally called a child data ring. The data block which starts a child ring is called a parent 

data block. This structure puts the same level objects or their features in a ring which 

establishes a connected relationship. The tree characteristics can thus determine parent­

child relationships: in this way the combined data structure can reflect the hierarchical and 

modular features of a modular machine. The data block size can vary depending on the 

complexity of object feature to be represented. However, the same featured object aspects 
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can be represented in a similar manner. Thus if a geometric representation or model of a 

physical machine can be expressed by such a data ring and tree structure, then the modelled 

machine can be manipulated in the same way as the real physical machine with the same 

data structure used at the machine programming stage. Typically a task of a modular 

machine will comprise several sub-tasks where each sub-task can contain several events or 

operations. The data ring and tree structure also has the capability to satisfactorily represent 

this type of task. 

3.5.2 GRASP • A robot simulator as a research tool on which to build 
a UMC emulation system 

GRASP [Bonney et al. 1984; Yong et al. 1986; Bonney et al. 1987] stands for Graphical 

Robot Applications Simulation Package and was derived from a computer aided design tool 

for ergonomics called SAMMIE (System for Aiding Man-Machine Interface Evaluation 

[Case et al. 1986 and Porter et al,1986]). Both packages were originally developed in the 

Department of Production Engineering and Production Management at University of 

Nottingham. GRASP gradually emerged as a commercial software package and is 

marketed by a company called BYG Systems Limited (which was formed by some of 

original GRASP researchers). 

GRASP uses a three dimensional body-modelling package, which provides the means for 

constructing objects from geometric building primitives, e.g. cuboids, regular N-side 

prisms, etc. The primitives are grouped together into a hierarchical tree structure, therefore 

several of them can be arranged in appropriate positions and manipulated as a single entity. 

The model is displayed on a computer graphical terminal in a wire frame form. A high-level 

statement is incorporated within the GRASP language to define the joint structure, its 
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constraints and other data associated with a robot. Separate entities, modelling the "flesh" 

of each joint, may then be incorporated into the robot model. Any entity within a model 

may be nominated as a robot tool and mounted on a robot. These tools are then associated 

in a special way with the robot and the local axis system of some entity below the tool in 

the hierarchical tree structure is selected as a tool centre point (TCP) the TCP being a 

reference for defining a desired tool position at the robot control stage. 

A modelled robot then can be manipulated within its workplace which is the owner of the 

robot or the header of robot hierarchical tree. A robot can be manipulated at two levels. The 

first of these levels allows the user to move individual joints through a number of degrees 

or through specified distances, whereas at the second level the desired position of the tool 

(TCP) is defmed so that the GRASP system needs to compute the required increment of 

each joint to achieve that position. There are alternative methods available to the users for 

defining a TCP position, including absolute position and relative to a reference object. All 

the methods ultimately determine the location and orientation of the tool centre point. 

In order to automatically manipulate the robot, a robot program needs to be created. In 

GRASP a robot program is a sequence of discrete robot actions or operations involving the 

definition of associated positions. Such a sequence in GRASP is termed a track. It is the 

track which determines the robot operation during simulation. A track can be dumped into 

a process, which is a robot dependent and time based model since all positions are stored 

relative to the model objects rather than the robot. GRASP provides path- definition 

commands so that users can define the path between locations, these mainly being straight 

or circular paths with time or velocity control. Tracks can also be dumped in one or more 

processes to simulate (or animate) time dependent motions and robot operations within the 
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workplace. At this stage, cycle time estimates are produced. 

The GRASP robot simulator also provides collision detection facilities among modelled 

objects. Possible interference between objects can also be checked automatically by using 

the CHECK command, however this is very time-consuming. Off-line programming is also 

possible if a post-processing facility is used. Currently available the post-processors can 

convert the GRASP robot program into V AL, V ALII and ASEA AR- Languages. 

Like most robot simulators (as described in section 3.2.1), GRASP can only be used in 

modelling a limited family of robots with certain kinematic classes, which in the case of 

GRASP currently include kinematic configurations of Unimation, Adept, ASEA, OLP 

system, RCM3-KJKA, CLOOS, and Reflex-CINCINNATI robot. For non-GRASP­

standard robot configuration assistance is typically required from BYG (the supplier) in 

writing a specific Fortran subroutine. The programming and simulation of a robot workcell 

is also especially designed for serially chained robot type manipulators. However, BYG do 

provide an open binary version of GRASP, which provides a three dimensional solid 

modelling facility and a simulation environment for robot work cell layout. The open binary 

version of GRASP was made available to the author and was used as a basic simulation tool 

for modular machine design and simulation. 

The open binary version of GRASP provides a user interface which allows a user to create 

a new data model and also to manipulate the GRASP robot model, which are impossible in 

normal GRASP version. Some basic geometric primitives (e.g. cuboids, cylinders etc.) can 

be created by calling corresponding subroutines. Supporting tools, such as message 

manipulation and display, screen layout arrangement, new commands addition, and means 

of requesting data from user are also provided. 
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Chapter 4 Mechanism motion synthesis and the 

establishment of a primitive library 

4.1 The notion of a library of primitives 

Chapter4 

A modular manufacturing machine can be decomposed into sub-systems which are 

themselves decomposed into machine primitives (section 3.2.3). The machine elements or 

primitives obtained from a physical machine decomposition can be further analysed and 

generalized according to their features. In this study, the kinematics of a machine and its 

primitives are considered to be critical. Thus the decomposition of machine primitives is 

carried out by considering typical kinematic features of the machines, namely: motion type, 

primitive shape and compound motion type. A computer graphical technique is employed 

in this study, and hence a geometric representation of machine primitives is needed to 

enable graphical machine simulation . 

. The simulation study focuses on the above two aspects (i.e. kinematic modelling and 

graphical simulation) and certain idealisations and assumptions are made as follows 

because generally they either represent trivial influence on physical systems or can be 

improved by control engineers. 

(I) Gravitation and inertial effects are negligible. This implies that the physical drive 

system of each machine module can develop sufficient drive force (torque) to enable 

the required load motion to be achieved without error. During simulation no attempt 

will be made to solve dynamic models describing the behaviour of the load system or 

systems; 

(2) Through assuming the use of a "perfect drive system", this also implies the 

assumption that the modelled motion primitives can perform their target motions as 
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accurately as intended, i.e. that there are no steady state errors (including the absence 

of backlash in manipulator joints, no position overshoot or velocity lag errors). Thus 

the motion primitives will be assumed to have an infinite acceleration capability; 

(3) Also as the dynamic behaviour of simulated machines are not modelled, there will be 

an inherent absence of transient motion characteristic, i.e. the simulated load and 

module motions will instantaneously reach their commanded or specified position. 

Based on these idealizations of a physical machine and the stated research emphasis, a 

family of motion primitives can be generalized and modelled (or represented) by a common 

set of parameters assigned to attributes which characterise the modelled primitives. As an 

extremely large number of alternative types of motion primitives could be described it is 

necessary to categorise them into families of a similar class. This can simplify the process 

of storing (in computer memory) the models and subsequently selecting and building 

machines from them. Here the notion of storing these parameterised module families in a 

machine primitive library was employed. The reasons and advantages of building a 

machine primitive library are described in the following. 

There are various industrial machines which have been designed to automate (or semi­

automate) a spectrum of manufacturing operations. These machines demonstrate a variety 

of properties but they exhibit distinct similarities. Hence it is possible to decompose and 

generalize them into various machine constituents [Benhabib et al. 1990, Tesar and Butler 

1989] which individually or collectively can give rise to those properties. For example a 

typical machine constituent could be a single degree of freedom prismatic or revolute joint. 

Alternatively, it could be a gear box or cam follower, etc. Conceptually, constituent 

building blocks of this class can be considered to be low order primitives (i.e, "modules" 
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providing single degree of freedom motion). An alternative decomposition might lead to 

primitives (or modules) of a higher order, which demonstrate motion in more than one 

degree of freedom. Parameterisation of these various machine primitives enables not only 

a class (or family) of them to be stored in a standard form but indeed different classes or 

families also. In this sense, the establishment of a library of parameterised machine 

primitives can standardize procedures for building machines and can much reduce the need 

for repetitive effort. These machine primitives can then be reused by machine builders and 

new modules added to the library as a need for such modules is identified. 

Since parameterised machine primitives are modular building elements of a complete 

machine model, they provides more flexibility than the normal geometric interfaces 

commonly found in the solid modelling of conventional pedestal mounted robots. From the 

library of machine primitives a machine model builder can select machine primitives and 

aggregate them into a complete machine. They could constitute a machine which already 

exists, a completely new machine conceived by the designer or a machine design which is 

somewhere between these extreme cases. Therefore the machine primitive library provides 

a tool which can facilitate machine design and modelling. In later chapters of this thesis the 

potential use of machine models, from the perspective of building Computer Integrated 

Manufacturing (CIM) systems will be considered. 

In the context of this PhD study, the library of machine modules can be viewed as a 

collection of models of (i) geometric primitives of machines (which are an idealised 

representation of low or high order modular building elements), (ii) motion kinematic 

primitives of machines (which represent various types of motion), and (iii) non-motion 

machine building primitives. The library implemented includes examples of each of these 
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three main types of modular machine building element. 

The geometric primitives provide the motion elements which collectively will form the 

moving parts of a machine configuration. The motion (or kinematic) primitives specify the 

type or types of motion followed by a modular machine and its component parts, i.e. defmes 

characteristics such as spatial path, velocity and acceleration. The non-motion machine 

primitives are those modular accessory devices required which themselves do not possess 

any power driven capability (except possibly through gravitational forces). The non-motion 

primitives are utilised in conjunction with the motion primitives to accomplish certain 

manufacturing tasks, e.g. storage of components in its magazine. An illustration of this 

concept can be found in Figure 4.1. 

4.2 Building a single degree of freedom geometric primitive 
by using a generalized data structure 

The modelling of a machine for computer simulation requires its description (or 

representation) in the form of a computer model. Most simulation systems focus on some 

high level property of a machine's function. Since the interest of this research lies primarily 

in the kinematic performance of a machine, the simulation model should provide a 

sufficiently detailed geometric and graphic representation of the motion of configured 

machines. The user should be able to visualise the machine's construction through 

providing a display of both static and kinematic properties via animated graphics. Thus 

methods of representing these degrees of freedom (both individually and collectively) need 

to be analysed and a full implementation of the necessary geometrical and kinematic 

information made within a suitable data structure. In order to avoid confusion the term joint 
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will be used to describe a single motion element of the actual machine, whereas the term 

axis will be used to define such a single degree of freedom motion element of the modelled 

machine. 

4.2.1 Analysis of axis construction (motion pair structure) 

A mechanical mechanism can be viewed as a means of transmitting, controlling or 

constraining relative movement, and is typically comprised of some combination of joints 

and links. A joint and the two links it connects are known as a kinematic pair. Each 

kinematic pair has two connected basic elements allowing relative movement. In terms of 

kinematic features, a joint then has a moving part which is driven by some type of power 

unit to achieve an intended target position, and a fixed (or base) part which typically 

supports the moving part. If two mating elements of a joint are in surface contact the 

kinematic pair of the joint is called a lower pair; if the contact is in the form of a point or 

line the pair is known as a higher pair. Lower pairs include translational joints, revolute 

joints and their combinations, whereas higher pirlrs are typified by gears and cams 

[Dimarogonas 1988, Haug 1989, McCloy and Harris 1987]. Some typical joints are now 

analysed. 

4.2.1.1 Synthesis of lower pair motion primitives 

In computer modelling, a prismatic joint needs to be characterised by five main items of 

information, namely: the location and orientation of an axis in a global coordinate frame; 

the relative position of the base part to the axis; the relative position of the moving part to 

the axis; dimensional information concerning the moving and base parts; and finally the 

kinematic constraints and axis manipulation information i.e. currently used kinematic 

manipulation parameters. In order to accommodate all these aspects of axis information, a 
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coordinate frame system has been designed as shown in Figure 4.2.a. The global coordinate 

frame system establishes the origin position and orientation of the complete machine 

model. The axis coordinate frame system defmes the origin of an axis position and its 

orientation relative to the global origin. The origin of the axis moving part specifies the 

initial position and orientation of the moving part of an axis. The geometrical 

representations of the two parts of an axis then can be independently attached to these local 

coordinate frame systems. The coordinate frame of the base part geometry (i.e. the lower 

front corner if it is a cuboid) can coincide with the axis coordinate frame, but it can also be 

offset by the machine designer. The same applies to the geometry of the moving part. 

This generalized approach provides the flexibility in modelling different varieties of the 

same type of prismatic joint, i.e, the relative position of two local coordinate frames can be 

arbitrarily defined. This axiS coordinate frame system on the other hand also depicts the 

structure of an axis, and hence if the geometry to represent one part of the axis is missing, 

the structure is still maintained. This is very useful simplification feature when the model 

becomes very complex, and allows the hiding of some trivial geometries. 

As implied by a kinematic pair, a joint always has two elements which reflect the relative 

static and kinematic status of an axis. For revolute joints, the same coordinate frame system 

should and can be applied. In order to locate the axis origin at an appropriate position and 

orientation, the axis geometries need to be arranged according to the changes of motion 

type and the origin of the axis geometry. However, the same general axis structure remains 

(see Figure 4.2.b). A one degree of freedom rotation around axis Z1 in the local coordinate 

frame 0 1X1Y1Z1 is allowed. 
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Figure 4.2.a Coordinate frame system establishment 
of a prismatic axis 
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Figure 4.2.b Coordinate frame system establishment 
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In terms of lower pairs, for a long time it has been generally accepted that there can be no 

more than six lower pairs, namely: prismatic; revolute; screw; cylindrical; planar; and 

spherical. Waldron [1972] has comprehensively proven that there can be no other types of 

lower pairs. 

The main reason is that apart from the basic surface element, general helicoid, there are no 

other surfaces which can form the elements of lower pairs. All the other surface elements 

which form lower pairs are in fact special forms of a helicoid, viz: (a) a general surface of 

revolution, (b) a general cylinder or prism, (c) a circular cylinder, (d) a plane, or (e) a 

sphere. [Hunt, 1990, 1978]. A close study of these six types of lower pairs results in the 

conclusion that the constituent freedom of the spherical, planar, cylindrical and screw pairs 

appear as a combination of the single degree of freedom revolute and prismatic pairs. Thus 

it is necessary to generalize the degrees of freedom available from a combination of 

revolute and prismatic pairs and substitute the other four lower pairs with these two 

elementary motion pairs. 

The benefit of this simplification lies in the fact that every single degree of freedom 

building element can be controlled separately by computer, leading to a simplification of 

the problems of co-ordinating combined motion of this type. It might be noted that 

decomposition of a mechanical mechanism and the association of control system (which 

itself may be a decomposition of a higher order control system) can lead to a module which 

is sometimes referred to as a mechatronic unit . Since there is less complexity in direct joint 

control, the substitution of a more than one degree of freedom mechanism by a combination 

of directly controlled prismatic and revolute joints can provide more freedom and higher 

precision when controlling mechanisms with several degrees of freedom. On the other 
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hand, despite advances made in regard to communication capability between computers, 

interprocessor delay may ultimately limit the working of several directly controlled single 

degree of freedom joints when they need to work in a closely coordinated manner. 

In the remainder of this thesis it will be assumed that the functionalities of the other four 

lower pairs can be replaced by an appropriate combination of prismatic and revolute joints. 

A suggested proof of the notion that the other four lower pairs may be replaced can be found 

in [Dimarogonas 1988 and Hunt 1990]. 

4.2.1.2 Analysis and degeneration of higher pair motion primitives 

Though lower pairs have the capability to withstand considerable applied load due to their 

surface contact (which can be accurately manufactured easily), higher pairs are sometimes 

indispensable and still find many application areas within traditional machine design [Hunt 

1990]. 

A typical example of a higher pair mechanism is a cam-follower, which is traditionally the 

simplest means of achieving a complicated displacement profile with respect to some 

variable (commonly time). However, with advances in computer control, these complicated 

displacement requirements can be accomplished by the use of a mechanical prismatic joint 

associated with a flexible controller which stores or computes the required time versus 

displacement of the prismatic joint. Thus instead of a cam driver, a computer controlled 

actuator can drive the prismatic joint controlling movement in an appropriate manner to 

achieve a given time and displacement profile within a machine cycle. Therefore, the higher 

pair can be replaced by a lower pair both in a real machine as well as in the simulation, and 

the cam-follow structure can be degenerated into (considered to have been replaced by) an 
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equivalent prismatic joint. This replacement of cam drivers provides the following 

advantages. 

(1) Computer based controllers can change the "cam tour" (i.e the relationship 

between time and displacement) flexibly and easily i.e. under software control) 

and this can significantly reduce the cost and lead time to produce a new physical 

"cam-follower". Furthermore the use of programmable transmission elements of 

this type can lead to less downtime during product changes on manufacturing 

machines [Sinha 1990]; 

(2) With fewer mechanical parts, there can be reduced wear and lubrication 

problems; 

(3) It is easy to maintain the manipulator of a software cam and the software cams 

are more reliable because there is no line or point contact [Sinha 1990]; 

(4) Since there is no restriction on the rise and fall profiles, software cams provide 

wider range of choices even for more complicated transformations. 

Despite the above mentioned advantages, computer controlled lower motion pairs on the 

other hand do suffer the limitation of lower power and limited speed which needs to be 

overcome in the future through providing better control and drive equipment. 

The gear box is the other type of conventional higher pair mechanism, transmitting power 

to individual drive shafts at various speeds. The use of gear boxes for transmission is based 

on the assumption that the size, shape or the handling requirements of the product range to 

be processed by a particular machine throughout its lifetime are known [Hunt 1990 and 

Sinha 1990]. However, with reducing product life cycles and an increasing pressure to 
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minimise product costs, the use of a gear box type of transmission system can become 

expensive due to its inflexibility in coping with either faster throughput or an entirely new 

product. The expectations for new generation of production machines to be able to flexibly 

adjust to changing requirements have encouraged researchers to derive a family of 

"intelligent" controllers and drivers [Quin 1989]. In addition to software cams, software 

gear boxes (or so called programmable transmission systems) can achieve the necessary 

transformation between a displacement (measured by an encoder, which is a replacement 

for the input pinion of a gear box) and the position of an output shaft of servomotor. 

Furthermore the capacity to store different position relationships between the input device 

and the output shaft can lead to much increased flexibility. Kinematically, this simplifies 

the gear box into a set of revolute joints rotating in a synchronised and coordinated way. 

Therefore, the joint structure and coordinate system of a revolute joint can still be 

applicable in the gear box case. In the next section a solid modelling method is described 

which is suitable for representing modular machine primitives. 

4.2.2 Computer geometric representation 

Since all constituents of a machine can have their own physical manifestation, the 

employment of an appropriate geometry to graphically describe a machine element (or part 

of it) is a commonly used approach in graphical simulation [Jayaraman and Levas 1988]. In 

particular, a piece of geometry or compound geometry similar to the shape of a physical 

machine component can facilitate (in a simulation) the visualization and identification of 

the component's static and kinematic behaviour. Precise geometric representations of a 

machine and its working environment may be required to enable evaluation of the 

machine's performance before it is configured. For example the detection of potential 
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collisions among several components may need to be determined. 

As described in section 4.2.1, in terms of machine geometric and kinematic modelling, it is 

possible and feasible to degenerate various forms of mechanical pairs into prismatic and 

revolute pairs, thus greatly simplify the complexity of computer modelling. 

In simulation technology, the focus of the observation (i.e the type of visual interest in a 

machine) is critical in designing, and ultimately determining the efficiency of the 

simulation system. Generally, a joint can be represented by two geometric entities which 

model the moving and base parts of an axis. Different physical joints have different 

geometric shapes. Since this study is centred on the kinematic modelling of modular 

machines, a generalised axis representation is abstracted from the coordinate systems and 

the construction analysis of an axis described in section 4.2.1. 

Two single pieces of geometry can only statically represent a frame of an axis. As a motion 

pair, an axis encompasses these two pieces of geometry together with a coordinate frame 

which is established to connect the two geometry items and the axis. In order to associate 

an axis with its working environment, the complete representation of an axis needs 

information about the relationship between the local axis frame and the global frame which 

is a fixed frame in the machine modelling environment. 

The completeness of any geometric representation of a machine environment will 

determine the accuracy with which simulation can be achieved. However it also has an 

impact on the efficiency of the simulation. These are two contradicting aspects, as the 

computation power of current computer systems is not limitless. An axis can be simply 

represented by two single pieces of geometry and five coordinate frames. It can also be 
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displayed on a screen as two compound geometries and related coordinate frames. The 

compound geometries are the results of addition and subtraction of several primitive 

geometries. In terms of geometric representation, the base geometry (which is a part of the 

axis basic geometry) possesses the ownership of other geometries which are added to the 

base geometry, in the same way as the physical joint constituents can be assembled onto a 

physical joint base. The extending end of a compound geometry is open and any number of 

different primitive geometries can be owned by the base of the compound geometry. This 

will typically result in a low simulation speed, especially when graphic animation is 

involved. 

In order to clarify a model visually, part of an axis geometry can also be dummy (in the 

sense that it is not displayed and modelled graphically) to facilitate at higher speed the 

visualisation and understanding of complex configurations (i.e. those involving several 

interconnected joints). By using a simplified representational model of any group of axes it 

becomes easier to animate a machine, however this will be at the expense of less accurate 

modelling. Meanwhile this form of simplification also improves the clarity of the end user's 

visualisation of the model. A trade-off between the modelling accuracy and efficiency must 

be made. 

4.2.3 Data structure of a single axis for simulation 

It is critical to establish a common, inclusive and flexible data representation to 

computerise the modelling and simulation of a geometric axis. This data structure should 

be inclusive (in the sense of completeness of joint information) so that it can ensure that the 

data are informative enough for modelling, evaluation and task programming. A common 
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data structure for an axis should comply with the modular methodology, facilitate the 

manipulation of axes within a machine modelling environment and simplify the modelling 

of modular machines. The data structure should also be flexible since the simulation of a 

machine environment requires large amounts of computation and covers a considerable 

variety of physical joints. Effective data searching of the data structure of a single axis or a 

group of axes within a complete machine environment has considerable impact on the 

flexibility and efficiency of the simulation system. 

The information about an axis in a modular machine simulation system can be divided into 

the following parts: 

(l) dimensional information, which specifies the geometric representation of the fixed 

and moving parts of an axis; 

(2) spatial information, which describes the spatial relationships between the local axis 

frame and geometry coordinate frames of an axis as well as the relationship between 

the local axis frame and the global frame; 

(3) physical information about the kinematic features of a joint, such as the maximum 

position, velocity and acceleration of the joint; 

(4) the dynamics of a single joint and interacting forces amongst various machine 

elements. However, with respect to this research study dynamic information is only 

included in the data structure to enable future study and is not currently used for 

simulation purposes. 

Based on the above classification, three relevant data types are created by subroutines, 

namely: geometric primitives; spatial entity data blocks; and a general data blocks. For 

further details on these subroutines, see Glib manual by BYG [Glib 1989]. 
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For ease of manipulation all data blocks created by the above subroutines are always 

associated with a name. For clarity of the name representation, the following defaults are 

introduced as a suffixes: 

i) nome_M: the name of the axis moving part; 

ii) nome_B: the name of the base part of an axis; 

iii) nome_A: the local coordinate frame, corresponding to the name of the axis 

manipulation data block. 

With the above defaults and classification of axis information, three sets of functional 

subroutines are derived and the respective data blocks can be created and filled with the 

required information. One data block of the dimensional information representing a cuboid 

is illustrated in table 4.1. The data block has a number of words and can be divided into two 

major parts, viz: a common part and a part which is data block specific. 

In the common part, the first word of the block is reserved for an encoded specification of 

the block length and type. The second word is the address of this block. Since the ring (the 

entity data blocks at the same level of the hierarchy are formed into a ring) and tree (all 

entity data blocks are arranged in a hierarchical tree) type of data structure is employed in 

this research, two integer spaces are reserved for ring continuation pointers. The Principle 

Ring Pointer (PRP) is normally used for forward data block searching and the SRP 

(Secondary Ring Pointer) is usually used to search the data block of another ring of data 

blocks with the same features. The fifth word is reserved for the name block pointer of this 

block. The data type specific part of a data block varies in terms of its length and content 

depending on its requirements. For the cuboid it has enough words to describe its 

dimensions in X, Y and Z of the local coordinate frame (this having its origin at the cuboid 
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Word No Data Contents Comments 

WordO Data type and length Defines the data block~ and its 
word length in binary bit onn; 

Wordl Principal Ring Pointer 
Data Ring Continuation pointer 
for forward ring searching; 

Word2 Secondary Ring Pointer 
Data Ring Continuation pointer for 
Secondary Ring Pointer searching; 
The address of this data block's 

Word3 Name Block Pointer name data block; 

Word4 Display Status Flag The status of current graphical 
display; 

WordS General Block Pointer 
Data Ring Continuation pointer for 
other special data ring searching; 

Word6 X Value of a Cuboid 
Dimensional specification of a 
cuboid in X direction; 

Word7 Y Value of a Cuboid 
Dimensional specification of a 
cuboid in Y direction; 

WordS Z Value of a Cuboid 
Dimensional specification of a 
cuboid in Z direction; 

Word9 Empty Can be used for other purpose; 

WordlO Empty Can be used for other purpose; 

Wordll Empty Can be used for other purpose; 

'lllble 4.1 The data contents of a cuboid data block 

corner). 

The spatial information data block has the same common part as that of a cuboid. Since this 

block is used to describe the spatial relationship between a geometry local coordinate frame . 

and another frame, a word to associate the block with the geometry block address is 

introduced. In a spatial layout sense of geometry, it is usually convenient to establish an 
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ownership between the spatial data block and the geometry. Thus when the spatial positions 

and orientation vary, the data block applies the change through the ownership to update the 

geometry's spatial position and orientation. For details, see section 6.1. The other part of 

the spatial information data block is used to store the position and orientation of the 

geometry relative to another frame. For details of the data block see table 4.2. 

Kinematic information about an axis is stored in an axis kinematic feature data block. It also 

has a common part and a block specific part which describes a kinematic feature of an axis. 

For the details of the block, see table 4.3. 

Based on an analysis of axis structure and data representation, a physical joint can be 

described in the computer data structure as an axis composed of seven basic data blocks (as 

shown in Figure 4.3). 

The moving part geometry and base part geometry data blocks are at the bottom of the tree 

branches and they define the axis' dimension. Since it is possible to have dummy geometry 

included (concerning either moving or base parts) two separate data blocks are required to 

improve flexibility. The corresponding spatial data blocks for the base part specify the 

positions and orientations of the geometries relative to the axis' origin; the spatial data 

block of a moving part specifies the spatial relationship between the local axis moving 

geometry and moving part origin, since they are normally offset and there is a need to 

describe this offset in the kinematic simulation. Due to variation in the relative location of 

the two parts, they can be coaxial or offset. These two separate data blocks then enable the 

various possible combinations the two parts of the joint to be modelled in the axis data 

structure. 
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Word No Data Contents Comments Word No Data Contents Comments 

Word 0 Type & length Data type and length Word 0 Type & length Data type and length 

Word 1 p R p Principal Ring Pointer Word 1 p R p Principal Ring Pointer 

Word 2 s R p Secondary Ring Pointer Word 2 s R p Secondary Ring Pointer 

Word 3 N B p Name Block Pointer Word 3 N B p Name Block Pointer 

Word 4 D s F Display Status Flag Word 4 D s F Display Status Flag 

Word 5 G B p General Block Pointer Word 5 G B p General Block Pointer 

Word 6 E R s Entity Ring Start Pointer Word 6 E R s Entity Ring Start Pointer 

Word 7 p s N Picture Segment Number Word 7 p s N Picture Segment Number 

Word 8 From word 8 to word 16, nine vari- Word 8 From word 8 to word 16, nine vari-

Word 9 abies about the orientation of an ob- Word 9 abies about the orientation of an ob-

Word 10 Part of 4'4 ject are stored. Since a 4' 4 homoge Word 10 Reservation for ject are stored. Since a 4' 4 homoge 

Word 11 Homogeneous neous transformation matrix always 
I Transformation has 0 0 0 1 as its last row, the row 
I 
I About orienta- can be omitted without losing any 

I axis manipula- neous transformation matrix always 
I tion of rotation has 0 0 0 1 as its last row, the row I 

Word 16 or translation can be omitted without losing any 

Word 14 tion useful information. The translational Word 17 around or useful information. The translational 

Word 15 information is kept in word 17, Word 18 along Z axis of information along X, Y and Z is 

Word 16 word 18 and word 19 Word 19 local frame kept in word 17, word 18 and word 

Word 17 Value along X Linear translation along X 

Word 18 Value along Y Linear translation along Y 

I 19. Therefore only twelve words are 
I 
I used to store all spatial information. 

Word 19 Value along Z Linear translation along Z Word 24 Home position The home position of an axis 

Word 20 Empty Empty for special purpose Word 25 Mini. position The maximum negative position 

Word 21 Empty I 
I I 

I 
I I 
I I Empty for other use I I 

Word 29 I I 
I 

Word 30 Empty I 

Word 26 Maxi. position- The maximum positive position 
Word 27 Maxi. velocity The maximum allowable velocity 
Word 28 Maxi. accelera. The maximum allowable acceleration 
Word 29 Empty Empty for future use 
Word 30 Empty Empty for special use 

Word 31 Empty Empty for special use Word 31 Empty Empty for other uses 

Table 4.2 The data block contents of transformation Table 4.3 The data block contents for kinematic manipulation 
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Figure 4.3 A primitive axis and its generalised axis common data structure 
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The axis kinematic data block retains the joint kinematic information and the constraints 

for the axis kinematic simulation which are used in section 6.3. The spatial data block, 

above the kinematic data block, keeps the spatial information relating the moving part 

origin and the axis origin. The last block is about the spatial information of axis' origin and 

the axis owner's origin. This is the head of the axis data structure and the axis name is stored 

in this data block. The data blocks are formed into a data ring and tree structure. It complies 

with the natural hierarchical structure of a physical joint and its spatial information 

decomposition. The moving part spatial information can be easily searched and 

manipulated from the axis head data block. 

The above describes representations of the five information entities required to model an 

axis. The data structures so chosen by the author offer a flexible way of modelling modular 

machines. 

4.3 The derivation of library of geometric primitives 

Based on the use of the above data structure a family of single degree of freedom 

mechanical modules was derived in this study as follows. 

4.3.1 Prismatic axes 

Coaxial prismatic axes have been included in the library and have the following basic 

default shapes: either two cuboids; two cylinders; or a combination of one cuboid and one 

cylinder (see Figure 4.4.a). Though a simple axis shape (in terms of the axis two parts) is 

provided here, pointers are provided is left for users to add any sub-shape geometries onto 

these two basic pieces of geometry. 
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Offset prismatic axes have been parameterised in the library. They can be used as a 

mechanical slide module or a carriage, and are modelled as cuboids (see Figure 4.4.b). 

"" T 

" 
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(c) 

(a) 

r 
"' 

" " ~ 
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Figure 4.4 A family of single degree of freedom axes modules 

4.3.2 Revolute axes 

Coaxial revolute axes have been provided in the library as show in Figure 4.4.c. A 

commonly used swing type of revolute axis is also included in the library (see Figure 4.4.d). 

4.3.3 Screw type axis 

As an exceptional case, the screw type axis is also included in the library as single degree 
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of freedom modular unit. Graphically it is represented by a revolute axis (see Figure 4.4.c 

and 4.4.d). However a special driver is needed to drive it should linear or rotation motion 

be a requirement. The features of such a driver are described in section 7 .8.4. 

4.4 Grouping of up to three axes to create higher order 
library primitives 

In the majority of manufacturing application areas there is a requirement for motion in three 

dimensional space. Thus seldom will a a single degree of freedom unit be employed on its 

own. However at the other extreme, multi-degree of freedom mechanisms (such as 

conventional serially chained robots) will often include redundant motion capability for a 

specific set of requirements. Thus although a multi-degree of freedom mechanism may 

represent a feasible kinematic solution, it will often not represent the best solution because 

(i) the machine may be unnecessarily costly, (ii) it may demonstrate relatively poor 

accuracy (and repeatability) and (iii) it may involve relatively long cycle times (e.g. limited 

effective power to weight ratio). One approach to machine design is to specifically design 

a complex machine tailored to manufacturing certain types of component. However, the 

alternative approach of designing a distributed machine will gain in popularity with the 

increased availability of modular building elements [Ranky and Ho 1985]. This in turn will 

lead to cheaper solutions, with improved levels of accuracy and repeatability when 

compared with conventional industrial robots 

4.4.1 Reasons for limiting the number of serially chained 
single degree of freedom primitives 

An advantage of limiting the number of joints in a serial chain is that it much reduces 

modelling problems, i.e. it can lead to a reduction in complex modelling approximation 

101 



Chapter4 

errors and decreases the computation time to derive a kinematic solution. It can also 

simplify and facilitate modularization of simulation modelling of a complex machine and 

provide the possibility to study the mechanically distributed machine configurations. In 

addition it enables the possibility to derive at least one kinematic solution for every 

configuration considered here. 

When considering the major axes of motion of contemporary pedestal mounted industrial 

robots they are dominated by four types, namely: Cartesian (PPP); cylindrical (PPR); 

spherical or polar coordinate (PRR); and revolute or articulated (RRR) configurations 

[W olovich 1987, McCloy and Harris 1986] although SCARA (Selective Compliance Arm 

for Robotic Assembly) configured robots have also become widely used, particularly for 

light assembly applications. Here P denotes a Prismatic axis and R denotes a Revolute one. 

Three serially chained low level machine primitives (with their axes mutually 

perpendicular) can easily reach any position within three dimensional working envelope 

(note the four types of conventional robot configuration employ three joints to locate the 

robot gripper at a spacial position). The other three orientation related joints can be 

decomposed from three position related joints [Tourassis et al. 1989]. This practically 

implies the need and feasibility of a three degree of freedom mechanism to reach a possible 

location. 

Another reason why it is possible to limit to three the number of articulated joints in a group 

is that it is possible to drive a number of groups (of up to three joints) in a distributed way. 

In such a machine system the practical restrictions (such as computing power of a controller 

and the complexity of kinematic algorithms) imposing a limit the maximum size of any , 

serial chain (and hence on the range of kinematic solutions) is removed [Harrison 1989]. If 
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more joints are required another group of axes can be created and logically (rather than 

physically) connected to the previous groups. 

· In addition, due to the modular approach adopted, tasks requiring motion can be achieved 

via the concurrent operation of several simple sub-tasks (and associated sub-motions). This 

results in parallelism which can lead to shorter cycle times. 

Due to the above reasons, it is desirable (particularly in the context of a proof of concept 

PhD study) and indeed feasible to limit the joint number in any given group to three. The 

mechanical parallelism (i.e. use of concurrently operating groups) can then be applied in 

the configuring motion mechanisms and in the modelling of a modular machine. 

4.4.2 Possible combinations of prismatic and revolute axes 
within the limit of three 

The configurations possibly come from two approaches: (i) articulated or serially chained 

configurations of up to three axes and (ii) distributed or physically decoupled configura-

tions. 

4.4.2.1 Articulated configuration of two axes 

This is a common configuration used when building simple manipulators and is often used 

in industrial robot configurations. The advantage of this type of configuration is that the 

manipulator has better reach capability (improved dexterity) than other two degree of 

freedom mechanisms. However, since the base joint has to carry a second (or chained) joint, 

the moving mass will adversely effect the accuracy (through link defection etc.) and the 

speed of response (i.e. the power to weight ratio will be reduced as will the maximum 

acceleration of the end effector). All possible combinations of two axes groups and thus all 
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of their configurations and working envelopes are analysed in Figure 4.5. Since this 

involves two axes, it can only produce a two degree of freedom surface envelope. 

4.4.2.2 Articulated configuration of three axes 

Milenkovic and Huang [1983] have analysed the major combinations of three joint 

linkages. They only considered simple chains, which they defmed as open linkages, 

involving the use of revolute and prismatic joints with the joint axes either perpendicular 

or parallel to each other. Closed linkages were not included in their study. Amongst the 36 

possible combinations of these three joints, there are essentially 12 classes of combination 

available after discou~ting redundant configurations and eliminating others through a 

process of degeneration of degrees of freedom (16 of 36). 

However, even for these twelve simple chains, as earlier described only four of them have 

found wide-spread use in industrial robots. In establishing methods of designing machines 

from serial chaining it is useful to fully study the characteristics of all twelve configurations 

and to provide corresponding supporting tools to facilitate design processes. In attempting 

a quantitative appraisal of these configurations the author chose to use the following 

criteria: 

(a) Inherent accuracy, this being the theoretical accuracy with which a specific 

configuration can be modelled and controlled; 

(b) Ease of control which will depend upon the complexity of the kinematic solution for 

different configurations; 

(c) Working envelope which specifies the working volume of the configuration; 

(d) Speed of a movement of the end point of a configuration, which will characterise the 

speed with which a configuration can reach its target position when compared with 
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other configurations. 

Prismatic joints will demonstrate the same order of inherent accuracies as the resolutions 

of their feedback devices for each axis (which is essentially determined by the resolution 

with which position measurement in practice is achieved). Any configuration which 

employs one or several prismatic joints can maintain a high level of inherent accuracy in 

the degree of freedom in which the prismatic joint is used. Since the resolution of a revolute 

joint is an angular one, the actual inherent accuracy is essentially determined by the product 

of the joint length and angular resolution. The joint length is always greater than 1 

millimetre which is the usual measurement unit of a positional accuracy, therefore the 

length actually magnifies the resolution by the joint length times, and a poor inherent 

accuracy in that degree of freedom appears. 

Since a revolute joint introduces trigonometric functions in the forward kinematic 

computation, the control of such joints is more complex than for translational joint 

particularly when a configuration has a revolute joint as its first joint or there are more than 

one revolute joints in succession. If a prismatic joint is located in the parallel direction of a 

cartesian coordinate frame axes, it dramatically simplifies the kinematic computation. 

A revolute joint rotates about its axis, Hence configurations which include rotations are 

inherently more flexible than prismatic ones in the sense that they can usually rotate within 

a relatively large envelope. On the other hand, the length of a prismatic joint is usually 

limited because it has a linear mating surface and the mass of the joint needs to be restricted. 

Also the use of a leadscrew (in electric motor driven machines) can limited their maximum 

velocity. Thus, configurations with revolute joints typically have advantages of large 
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working envelopes and relatively high speed of movement of an arm's tip. 

Figure 4.6 illustrates the twelve valid configurations, their working envelopes and inherent 

accuracy in each direction. All of these configurations can be included in the library as 

multi-axes primitives. 

4.4.3 Distributed configurations 

Articulated configurations are used in automating many manufacturing machines because 

of their ability to facilitate three dimensional motion. This is particularly true in robot 

configurations. However, potentially distributed but logically coupled mechanisms can be 

even more widely applied as they can decompose a complex task into several sub-tasks, 

possibly accomplishing the whole more simply and quickly. In the past, due to lack of 

suitable complementary distributed control system capabilities, this potential has not been 

widely industrially realised, nor indeed very widely studied in academic circles. 

On considering possible distributed configurations, each individual device can be a single 

axis, an axis group or some other form of compound mechanism (e.g. proprietary devices). 

However coordination and synchronization of distributed configurations, to achieve some 

group (or global) functional goal, will need to be established by appropriate control of each 

device both separately and collectively. A distributed configuration can have its devices 

arbitrarily placed within its working environment, with electronic or logical coupling 

between the individual motions. Thus a distributed configuration does not suffer from the 

same spatial restrictions as serially chained manipulator systems. The logical relationships 

will determine the global properties of a distributed system. Such properties are discussed 

in section 7 .6. 
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4.4.4 Methods of aggregating (or building) articulated axis groups 

The methods chosen by the author for building an articulated axis group include two 

distinct operations, viz: graphical configuration and the establishment of data structure 

relationships. 

Graphical configuration (or aggregation) can be defined as the process of locating each 

constituent axis at the right position and orientation. This requires computer assistance or 

configuration tools which in this project have been built on either graphical manipulation 

tools or textual/language based (translational and rotational) commands. Constituent axes 

are aggregated to form an axis group. A single axis can be easily created by selecting an 

appropriate family of primitives from the library and defining parameters of the axis 

selected. Scaling of the graphical representation depends on the values input as axis 

parameters. Graphical manipulation at this stage is at the level of whole axis rather than of 

two separate graphical representations of the two axis parts. The manipulation covers the 

scaling of an axis, deleting or adding of an axis, establishing the position and orientation of 

an axis and viewing an axis from different points of interest. The appropriately prepared set 

of axis primitives then can be bound together as a whole. 

In terms of changes in data relationships, the aggregation of a set of axes leads to the 

establishment of a set of relationships between data representations of individual axes. The 

data relationships created in this way are of a parent-child nature, where a typical data 

arrangement of an axis group is illustrated by Figure 4.7. 

Since a child axis is always attached to a moving part of its parent, it is essential to create 

and maintain the parent-child relationships. The pointers in the axis data blocks are used to 
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link the child axis to its owner, i.e. the moving geometry of the parent axis. 

4.5 Building an end-effector - an example of a higher 
order mechanism primitive 

Chapter4 

Serving as an example of building a higher order (more than one axis) library primitive 

device (by aggregating previously described axis primitives) an analysis of industrial robot 

end-effectors is outlined and the associated data representations are detailed as follows. 

4.5.1 An analysis of industrial robot end-effectors 

For a long time, industrial robot end-effector research has been oriented towards the design 

of replacements for typical human operator hand functions. Consequently most end­

effectors take the shape of a two fingered parallel-jaw. This type of end-effector possesses 

the capability of grasping objects in either one or two-dimensions of the three translational 

degrees of freedom in the object's space [Kato 1980]. Another research direction has been 

towards the creation of industrial robot hands and particular effort recently has been aimed 

at creating dexterous multi-fmger robot hands [Li and Sastry 1988]. 

Amongst the two fingered gripper class, typical configurations are dominated by one of the 

two structures: (i) rotation type and (ii) translational type, as shown in Figure 4.8(a). For 

the robot hand, some would consider the ultimate universal gripper to be the human hand. 

However, at present such structures are too complex for industrial use. However, for many 

applications a three fingered hand should provide sufficient dexterity [McChey and Harris 

1986, I to 1980]. A three fingered hand is illustrated in Figure 4.8(b ). 

4.5.2 Modelling of industrial end-effectors 

The rotation type of Figure 4.8(a), consists of two revolute joints though they are controlled 
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Figure 4.8 Modelled industrial robot grippers (a) and hands (b) 
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to rotate in a coordinated way. The translational type of gripper is composed of two 

prismatic joints. Both types of gripper can be treated as two distributed but logically 

coupled axis groups in respect of modelling. Graphically, two fingers can be modelled by 

using either two revolute axis primitives or two prismatic ones and typically they belong to 

the gripper base or wrist. In terms of the data structure, both fmgers are children of the base 

and they form a child data ring for the base. A control relationship between the two fingers 

should be established and a possible arrangement is discussed in section 7.8.1. 

A three fingered hand is much more complex, but by aggregating modules from the library, 

it is possible to build up such a hand. The three fingered hand can be composed of three 

open serial chains and a wrist. Each finger consists of three revolute axes. In terms of the 

hand configuration, three finger chains are distributed on the wrist. Therefore, such a hand 

can be modelled by using three, 3 degree of freedom serially chained primitives and 

configuring them into appropriate positions. Similar to the two fingered gripper, the wrist 

owns three child fingers and a child data ring is formed for the wrist in terms of an internal 

data structure. However, each finger has a three serial axis chain and each digit or axis can 

be controlled individually or collectively. Section 6.5 discusses the control issues relating 

to hands. The graphical models are shown in Figure 4.8(a),(b) separately for a two fingered 

gripper and three fingered hands respectively. 

4.5.3 Working Centre Point (WCP) definition 

A working centre point of a machine is generally defined as the centre point of the machine 

tool or gripper which is normally precisely located in the workspace by the manipulator 

system to achieve machine and application dependent tasks. Since typical precise motions 

115 



Chapter4 

are required in the computer control of machines, a WCP defmition is required, which can 

enable convenient computation both in terms of modelling and control. For example a tool 

offset often needs to be accounted for. 

A WCP and the associated coordinate frame for the gripper are illustrated in Figure 4.8(a) 

and (b). The WCP is defined as the point in the centre point of all fingers thus every finger 

can spend least time to grasp an object. This definition can also simplify the control of an 

individual finger by using the same control procedure for all three groups of serially 

chained fmgers. 

4.6 Library primitives and their management 

The geometric primitives included in the library can be classified into the following types: 

i) single degree of freedom primitives; 

ii) high order manipulator primitives; 

iii) user specified high order primitives; 

iv) non-motion accessory primitives. 

A more detailed categorisation is shown in table 4.4. 

The same types of basic axes with different geometric shapes can be used to distinguish 

various physical joints. Users are also provided with supporting tools to define their own 

type of axis, should they require some variation from the basic axis representation. As to 

the functional simulation of associated sensors, approaches are described in section 7 .5, the 

sensory primitives are only listed here as graphical symbols of sensory primitives in the 

library. 
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Primitive type Device tYJ>e 

Single Axis moving part in cuboid shape and base in cuboid. 
Prismatic axis Axis moving part in cylinder shape and base in cuboid. 

Degree Axis moving part in cylinder shape and base in cylinder. 
of 

Freedom Axis rotating part in cylinder shape and base in cylinder. 
Revolute axis Axis rotating part in compound shape of half cylinder and axes 

a cuboid and base in cylinder. 

Axis group in the form of two perpendicular prismatic axes 
connection. 
Axis group in the form of vertical prismatic and vertical 
revolute axes connection. 

Two Axis group in the form of vertical prismatic and horizontal 
revolute axes connection. 

High order axis Axis group in the form of vertical revolute and horizontal 
prismatic axes connection. 

group Axis group in the form of vertical revolute and vertical 

manipulation revolute axes connection. 
Axis group in the form of vertical revolute and horizontal 
revolute axes connection with rotating axes parallel. 
Axis group in the form of vertical revolute and horizontal 

primitives revolute axes connection with rotating axes perpendicular. 

Articulated There are twelve combinations of three articulated axis 
three axis chain group. For the axis group constituents description see 

group Figure 4.5. 

Distributed Axis can be any axis in the category of single degree of up to three 
axis group freedom axes. 

Mechanical Two fingered grippers with prismatic axes. 
User grippers and Two fingered grippers with revolute axes. 

specific hands Three fingered hand with three revolute axes on each finger. 

high order Component Combination use of machine building primitives described 
primitives feeder and above which are arranged in the same way of mechanical 

conveyor feeders and conveyors . 

Contact sensors Graphically a sensor is represented by a 1•1•1 cuboid and 

and positional its function is associated with a sensory processor to 

Sensory sensors achieve the simulating of the physical sensor. The position 
of an component in the simulation model can be detected. 

primitives 
Distance The representation of this type of sensors is same as last 

sensors group, however a distance sensor can detect the distance 
between the sensor and a component in a model. 

Table 4.4 The classification of machine building primitive library 
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Because of the relative complexity of the data structures used to describe individual and 

combinations of library primitives, a library manager is required to ensure the correct and 

efficient use of these primitives. Firstly, the manager should automatically create all 

primitive constituent data blocks. Secondly, all data blocks need to be linked in a specific 

way within the data structure, thereby describing a primitive geometrically and the 

assignment of coordinate frames to each geometry forms the central issue of primitive 

creation. Thirdly, the manager has to ensure that the correct data are assigned to primitives. 

Since every library primitive has been pararneterised, only required meaningful data may 

be input. It is the manager's task to check the data type and possible value range, provide 

another chance for input if mistakes are made and finally to assign parameter values when 

correct input has been made with appropriate dimensioning applied. As the primitive's data 

structure is a subordinate of its owner, the manager should call graphical display functions 

to enable visualization of the primitive on a screen (see Figure 4.9). 

Since the implementation of the author's work is based on the open version of GRASP, the 

manager is working between the processed screen layout windows and functional 

subroutine calls. The association of a multi-window environment to the primitive library 

makes the design of modular machines easier and more flexible. In the next chapter, a 

strategy is illustrated to show how modular machine building can be realised. 
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Chapter 5 Configuration tools for building 

modular machines 

5.1 Introduction 

ChapterS 

This chapter develops further the discussion of applications of library primitives and 

considers the need for computer assistance in the configuration of modular machines. It 

describes the features of a set of configuration tools for machine aggregation and machine 

element modification. An interactive user environment is also described. Finally, an open 

approach to modular machine configuration is outlined to demonstrate inherent capability 

and limitations. 

In this context the term "configuration tools" is used to denote a set of software functional 

subroutines which are easy to use, are flexible in operation and provide assistance to the 

machine designer when he/she is building a machine model from primitives selected from 

the machine library. For each type of primitive, corresponding tools are available to include 

a chosen library primitive within the machine's simulation environment. The establishment 

of relationships between individual primitives within the machine's simulation 

environment is also accomplished by using configuration tools thereby enabling the 

aggregated primitives to be manipulated as single entity. 

A multi-window interactive environment enables the user to communicate in a flexible 

manner with the modelled machine. The need for manoeuvrability (which is defined in this 

study as a capability for an end user to manipulate a simulation model), of a simulation 

model and its environment is a well-established requirement of simulation systems [Chan 

1989, Siegler et al. 1987]. Several vendors of graphical simulation systems, particularly 
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those who market kinematic mechanism simulators, claim that their simulators are user 

friendly and can be mastered within two to four weeks; suggesting that operators need no 

previous simulation experience [Yong 1989 and GRASP 1988]. However, in practice the 

lack of flexibility found when modelling mechanical mechanisms in a simulation 

environment has greatly limited their use, as indeed has their lack of user friendliness, 

particularly in the case of modelling complex modular machines. With the modular 

methodology, and the author's implementation of an enhanced user interface to easily 

manoeuvre machine models, opportunities exist for flexibly building models of modular 

machines which can be created from an appropriate construction of articulated and 

distributed devices. This is achieved by the provision of an enhanced user environment 

involving the parameterization of library primitives. 

5.2 Methods used in configuring a modular machine 

Currently, many graphic simulators (particularly robot simulation systems) use a machine 

dependent configuration method as an integral part of simulation tools offered to the 

designer. Consequently most simulation systems are structured so that a model in the 

workcell can be extended for a new application in the form of geometric and other 

functional model building elements (e.g. a robot in a robot simulator, and symbolic 

machines in a general simulation system). However a single machine (or functional piece 

of equipment) is structurally fixed once it is created. This means that a user does not have 

any manoeuvrability in controlling the configuration of the machine or equipment. In this 

study an open approach to machine configuration is adopted which configures a machine 

from basic building elements contained within a library. The adoption of such an approach 

gives the following advantages when designing a modular machine: 
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i) the capability of building a new machine in terms of either distribution or 

articulation. In other words, a modelled machine can be enhanced by adding (as 

required) combinations of motion primitives to achieve a more complex task. The 

spatial arrangement of these new primitives can be based on various performance 

criteria (such as minimum working distance, provided that they do not cause any 

obstruction to other elements of the machine); 

ii) the capability of reconfiguring and rearranging an existing modelled machine. In 

certain industrial situations the need for rapid change-over of products implies that 

manufacturing machines need a capability for rapid re-configuration. One way of 

achieving this is to build a modular machine and to logically reconfigure its 

functional properties to satisfy the requirements of the product change. In the 

simulation phase, the inherent capability of being able to reconfigure a modular 

machine can reduce the machine build-time, ultimately eliminate possible errors 

in reconfiguration and provide an evaluation of the new machine configuration. 

In the rest of this chapter, the configuration tools, user interface and the open approach are 

described. 

5.3 Configuration tools for modular machine building 

Since when simulating modular machines, the machine's geometry is graphically displayed 

and its kinematic motions can be visualized and evaluated, two aspects are of great 

importance in terms of configuration tools. The first is that the simulation model should 

clearly define the machine's constitution and its graphic and spatial construction. The 

second is that a model should specify the logical relationships between the constituent 

devices which form the machine. Generally, a modular machine is composed of several 
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functional devices, i.e. some necessary (or required) number of axis primitives or sensory 

devices. The primitives will be added into the simulation environment as geometric entities. 

It is the role of the configuration tools to arrange them in a desired manner and to associate 

appropriate functional attributes to each device. The author's implementation of these 

concepts, based on the open binary version of GRASP, is described as follows. 

5.3;1 Graphical definition tools 

5.3.1.1 Machine definition tools 

The machine definition tools created during this study provide a set of software services 

which describe a modular machine model and define the data block ring and tree structure. 

This capability has been implemented at the highest possible level of the simulation 

hierarchy. An example modular machine definition file and its data structure are illustrated 

in Figure 5.1. The machine definition tools implemented in this study specifically achieve 

the following: 

- supply information about the modular machine's identification name, the machine's 

functional description, the machine's dimensions, and the number, type and name of 

its constituent devices; 

- create the machine definition data block, this comprising the same number of data 

blocks as that of the number of devices. The data blocks store machine and device 

information; 

- ·form the data ring representing the modular machine, starting from the machine 

definition data block followed by a description of all machine constituent devices 

(one by one). Here the last device data block points back to the machine definition 

data block. These device descriptions reside at a common level in machine's 

hierarchy which is one level below the data block ring formed by machine definition 
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Modular Machine Definition File 

Machine ID name: 
Function descriptioD: 
Machine dimension in X: 
Machine dimension in Y: 
Machine dimension in Z: 
Machining parts description: 
Parts maximum dimension in X: 
Parts maximum dimension in Y: 
Parts maximum dimension in Z: 
Device number: 
Device name 1 pointer: 

I I • • Device name n pointer: 
Reservation of some data words 

(a) 

(b) 

points to machine name block. 
points to machine function block. 
Real in mHUmeter. 
Real in mHUmeter. 
Real in mHUmeter. 
pointer to machine part description block. 
Real in mHHmeter. 
Real in mHUmeter. 
Real in mHUmeter. 
Integer. 
Integer points to device 1. 

Integer points to device n. 
Empty. 

Machine 
geometric 
modelling 

Figure 5.1 Modular machine definition file (a) and its modelling data structure (b) 
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data blocks and its same level data blocks (e.g. task description data blocks) (see 

Figure 5. l(b)); 

-edit the machine data block including deleting functional descriptions, and generally in 

recreating and modifying the contents of data blocks; 

- edit machine data ring functions, e.g. deleting a data block for a specific device from 

the ring, adding new data to the ring to introduce a new device. 

5.3.1.2 Primitive layout tools 

Machine primitives can be created by filling in parameters of a primitive through the library 

manager. In GRASP, a created primitive geometry usually belongs to the workplace which 

is the head entity at the highest level of the GRASP hierarchy and is located in coincidence 

with the origin of GRASP global coordinate frame. Whereas the graphic primitive is 

located at the origin of the workplace. The machine primitive can use the workplace as a 

buffer before finally being affiliated to a device. Having chosen a primitive type from the 

library, the primitive can be created within the simulation environment and can then be 

located in a desired position by using primitive layout tools. These tools enable the user to 

achieve translational positioning of the primitive along the X, Y and Z axes of the global 

coordinate frame (workplace), this being an extension of the original GRASP functions. 

The relational orientation of a primitive was also enabled in this study. These layout tools 

(in the current implementation) provide the builder of modular machine with a flexible 

means of achieving machine layout. 

5.3.1.3 Aggregation tools for modular machine building 

Serially chained mechanisms and distributed mechanisms provide the main focus of this 

research, and therefore in this context the design of the machine configuration tools, 
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required to aggregate primitives into these two types of mechanisms, are of great 

importance. 

For the serially chained type of mechanism, the aggregation of primitives involves: 

- scaling an axis; 

- re-dimensioning of axis moving and base geometries; 

- adding an axis to a device; 

- deleting an axis from a device; 

- forming a device of articulated or distributed building elements; 

- changing logical relationships between motion primitives within a device or returning 

a primitive to the workplace. 

Each of these operations ensures that the primitives are correctly created and a device is 

"well constructed". In fact, unlike some other kinematic and robot simulators [Yong et al. 

1988] the dimensions of each primitive axis can be modified easily and this improves the 

flexibility of the man-machine interface. 

Distributed mechanisms can involve a wide variety of combinations of different library 

primitives. The constituents of a distributed system can be a single degree of freedom 

primitive, a higher order primitive, or even a functional device. There is no restriction on 

the number of primitives, but the complexity of control of these elements will generally 

grow with the number of these elements. 

Distributed mechanisms can be further sub-divided into: 

i) devices with up to three distributed (i.e. physically separated) single degree of freedom 

modules, which are the simple case of distributed mechanisms; 
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ii) complex devices which could include multiple instances of higher order primitives 

and multiple instances of (i). 

The configuration service supports the creation of distributed mechanisms which fall 

within both of these classes, thereby providing the user with more choices and significant 

flexibility. A user can organise his machine in his own way, with the system providing the 

supporting tools. It is important to re-emphasise that different machine layouts and 

organizational structures can accomplish the same manufacturing task and conversely that 

the same machine can be reorganised to achieve different tasks. Thus comprehensive and 

highly flexible tools are important in bridging the gap between machine users and 

designers. It can provide flexibility to the machine users allowing them to choose an 

appropriate machine rather than being driven towards a single machine type or at least 

having a heavily constrained choice. 

Two of the aggregation tools in the serial chained case can also be used to build distributed 

manipulators. These are the tools for (a) scaling an axis operation and (b) re-dimensioning 

an axis. In addition the following services were included to enable configuration of 

distributed machines: 

- adding an axis into a distributed device; 

- removing an axis from a distributed device; 

- forming a distributed device, by selecting motion primitives from the primitive library; 

- re-assigning ownership of an axis from a device to the workplace. 

An example of both a serially chained mechanism and a distributed device (both being 

created using the configuration tools) is illustrated in Figure 5.2. In the case (a) of the figure 

a serially chained mechanism can achieve "pick and place" assembly operation of different 
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components from their feeders; whereas the same operation can be alternatively achieved 

by a distributed mechanism through decomposing the task into several serial sub-tasks. 

5.3.2 Configuration tools for defining logical relationships between devices 

The operation of a modelled device also needs to be specified in terms of temporal 

relationships and motion performance. Here logical relationship definitions, which define 

the kinematic operation of a device need to be determined. To facilitate such requirements 

configuration tools were created and their use demonstrated. Based on a classification of 

motion requirements, three types of logical relationship were seen as being important so 

that their use was enabled in this study. 

5.3.2.1 Sequential logic relationships 

Probably the most important requirement in performing a particular operation is that the 

various elements of a machine or device need to accomplish some pre-defined sequence of 

sub-operations. In this study therefore it was necessary to specify (or program) such 

sequences so that the operation of a device can be animated. The transportation of a printed 

circuit board onto a conveyor and the subsequent insertion of an electronic component is a 

typical example of an operational sequence. To enable simulation of such sequences an 

appropriate data block was assigned which can be modified easily. The configuration tools 

implemented to enable the definition of sequential logical relationships were as follow: 

- a sequence creation function, which defines the order of execution. Here a data block 

is used to associate all primitives in the device with the sequence data block; 

- a sequence modification function, which re-establishes the operational sequence of the 

various primitives of a device through editing the contents of the sequence data block 

to meet the needs of a new situation; 
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- a sequence deletion function which removes one operation of a defined sequence and 

all operations of a defined sequence can also be deleted by removing its data block. 

The sequence data block belongs to the device data block and was introduced from word 5 

(General Block Pointer) of the device data block. The relationship between data blocks and 

their main data contents are illustrated in Figure 5.3. 

5.3.2.2 Relationships between loosely coupled motion primitives 

The motion of distributed primitives need to be co-ordinated, i.e. two or more primitives 

moving together (but not necessarily starting and finishing at the same time) may need to 

move concurrently but independently. A simulation of this type of motion is necessary to 

facilitate the modelling of a modular machine. It provides the means of simulating parallel 

operation, establishing a loose coordination among motion primitives within a device. Here 

a device was considered to be composed of two or more distributed motions with loose 

kinematic relationships (such as precedence relationships) represented either by equations 

within a data block. specifying a positional relationships. Here the device can be either a 

mechanically serial chained one or a distributed device. A coupled motion relationship is 

defined as a library primitive when the primitive is created. The motion relationship in other 

complex situations is defined at device creation stage in the form of either equations or 

tables. All information is stored in data blocks which are associated with appropriate 

motion primitive data representation blocks. 

In this study the configuration tools created to defme relationships between loosely coupled 

motion primitives allow: 

-loosely coupled primitive motion relationship data block creation, which sets up the one 

to one relationship between positions of motion primitives. At this stage of the 
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research, only a one to one relationship is allowed and the one to many relationship is 

left for future research. This relationship can be exemplified by an operation of metal 

removing using a lathe with multi-machine-tools where efficiency can be improved 

by such a multi-tool operation; 

- an interface for establishing the one to one relationship in position; 

- tools to create data blocks which store the required logical relationships and arrange 

them in a convenient way for retrieval; 

- modification tools to change the content of the co-ordination data blocks; 

- deletion functions, which delete unsatisfactory relationships before recreation or 

permanent device decoupling; 

The data block arrangement was designed in a similar way to that for sequential devices, 

except that positional relationships can occupy several data blocks. 

5.3.2.3 Synchronization of primitive motions within a device 

Another form of motion co-ordination is required to cater for closely coupled concurrent 

motions - i.e. synchronization of distributed motion primitives. This type of motion differs 

from the previous class in as much that several physically coupled or decoupled primitives 

need to move as if they were a single motion with common start and finish times, whereas 

loosely coupled primitive motions do not necessarily ensure all motions start and finish at 

the same time. Thus synchronization facilities were included to facilitate the simulation of 

closely coupled motion. Here the motion of several primitives can be modelled with 

common starting and finishing time. The number of motion primitives is not restricted as 

long as they belong to one device. The device can be either a distributed or serially chained 

type. A mechanically coupled device where there are two motion primitives can be the 

simplest case of a software cam - a higher order library primitive of this type is described 
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in section 7 .6. In terms of data representation, an additional data block needs to be attached 

to the device data block. Section 7.6 will describe how all primitives in a device were 

synchronized at the same time. It was considered that the following tools were needed to 

establish synchronization, these being implemented in this study. 

- a synchronization data block creation facility, which defines the synchronous 

relationship among device primitives and associates all synchronized primitives with 

the data block; 

- modification tools to update or modify the contents of the synchronization data block; 

- means of specifying a "master" primitive, this serving as the reference primitive in 

terms of synchronization time duration; 

- means of deleting synchronization relationships which separating such relationships 

for establishing other type of relationships. 

The data block arrangement employed is similar to that for the sequential logic relationship. 

However, the data block is distinguished by the suffix • _S' in the data block name, whereas 

the sequential blocks are characterized by the suffix '_Q' and those of the loosely coupled 

motion relationship by the suffix '_L'. 

5.4 The construction of the simulation model data structure 

With the machine configuration tools described in section 5.3, a modular machine 

simulation model can be gradually built up in the form of a data ring and tree structure. It 

is important to stress that the use of a hierarchical data ring (at the same level) and a tree 

structure (between different data levels) has been shown to perform admirably in creating 

simulation models for modular machine. 
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Figure 5.4 outlines the implementation of a possible ring and tree structure for 

comprehensively modelling modular machines. At the top of the hierarchy, a global ring 

acts as the root ring and heads the second level rings. The global ring usually starts from 

the geometric modelling ring and is initiated by a general data block. The Principle Ring 

Pointer (of the data block) points at the next data block on the global ring and the address 

of the first device is stored in word 5 of the initialization general data block. The 

initialization block of the geometric model is created automatically by the system, and at 

the same time, some other initialization data blocks are created for kinematic modelling, 

e.g. reference coordinate frames, path creation and task programming. 

At the geometric modelling level, devices are characterised by general data blocks which 

are created when several primitives are formed into a functional device. These devices can 

be created by using the configuration tools described in section 5.3. The other branch trees 

and global ring are created in a similar way and they can also possess other rings and sub­

trees. More details can be found in chapter 6 and 7. 

5.5 A User friendly interface for the creation of a machine model 

In the open binary version of GRASP (which is the basic GRASP plus some subroutines 

which enable users to manipulate certain data blocks), a computer screen layout 

arrangement facility is provided and this gives the research the possibility to evaluate 

various methods of creating a user interface. Currently, GRASP itself only provides one 

means of defining a six degrees of freedom robot structure, this being via the use of the 

proprietary GRASP textual language. Once the robot is defined in GRASP syntax the user 

will not have any interactive way of modifying the robot in terms of either its dimensions 
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or its structure. This approach is feasible for robot simulation. However, it is 

disadvantageous for modular machine modelling due to the wide range of possible motion 

primitives. The lack of a flexible and user friendly interface makes it difficult and time­

consuming to use the system. An attempt has been made in this research to study a 

comprehensive user friendly interface for modular machine simulation. 

5.5.1 Creating machine elements by using default parameters 

As described in section 4.6, the library primitives created for modular machine building can 

be used in many situations as shown in table 4.4. The parameterisation of these primitives 

enables the system to provide default parameters which can simplify and speed up the 

process of selecting and aggregating primitives. 

There are three types of information required to characterise a machine primitive in this 

study as discussed in the last chapter, viz: dimensional; spatial; and physical information 

about a primitive. Default values are provided for all these three types, and a set of tools are 

also available to modify them in this implementation. This provides a very convenient way 

of creating machine primitives, i.e. by creating a common primitive then modifying it. The 

creation of single primitive in terms of data representation can be at the level immediately 

under that at which device creation occurs, if such primitive is required only once in the 

machine, or at the top of the machine geometry modelling hierarchy if several same type of 

primitives are required in several situation. In the latter case, the same primitives can be 

copied as many times as the user wishes and modified to serve a different purpose in 

different devices. Copy and paste tools are very important for improving the user 

friendliness of the system. To begin with the primitive can be copied at the level at which 
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the original primitive was created. Subsequently, the copied primitive can be moved to an 

appropriate level and a new ownership can be established. At the correct hierarchical level, 

the primitive can then be modified to meet a given set of simulation requirements. 

5.5.2 Creating machine elements based on user specifications 

An alternative method of creating a new machine primitive is to call an appropriate 

primitive creation function from the primitive library and require the user to supply the 

parameters. The user specifies primitive parameters by using a syntax simulation language 

complying with a pre-defined language syntax. The implemented system provides an 

"interpreter" to check the syntax errors and then translate the text following into appropriate 

function calls which create a primitive. This option is designed for advanced users who can 

correctly provide the primitive parameter values and further speed up creation. However 

this option was only partially implemented and currently only axis and device creation is 

allowed. 

5.5.3 The creation of complex machine elements 

Usually, machine elements created through the primitive library possess a simple geometric 

shape. However for cases where more accurate modelling is needed, a detailed geometric 

description is required within the model. One approach to this problem is to create some 

basic geometry which can represent the detailed shapes of the machine elements. This basic 

geometry can then be "assembled" into a compound geometry which can satisfy the 

detailed simulation requirements. In terms of data structure, these geometric elements can 

be arranged in the form of a local hierarchy which can be later owned by a library primitive 

to allow the precise modelling of a physical machine and its geometry. A possible example 
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of such modelling approach is illustrated in Figure 5.5. 

An alternative method could have been to use the solid creation functions provided within 

GRASP. First a two dimensional face (or outline) is created in the X-Y plane. Then the face 

can be given depth or rotated about a coordinate frame axis to create a solid. If this solid is 

attached to the moving part or base part of a primitive, then a detailed representation of that 

part of a primitive is achieved. Another possibility for primitive creation is to create only 

an axis frame (i.e. without flesh or with empty geometry). Hence, an axis frame creation 

function is required, ideally along with related configuration tools to associate flesh 

geometry to an axis frame. In the implementation of this study, a means of creating an 

empty axis frame was included and the tools for associating the solids created from a face 

were also provided. This gives a user another flexible option of creating a primitive, and 

this facility was achieved by a simple extension of functions for creating solids in GRASP. 

5.5.4 Inputting primitive parameters through Sun View formatted windows 

Currently, GRASP and other simulation packages use a query man-machine interface- i.e. 

one question for one required parameter method. The advantage of this query method, 

compared with a text file, is that the user can see the modification interactively. However, 

the clarity of related primitive information is still quite poor and the efficiency of data input 

sometimes is extremely low. A mistake at the last step of answering a series of questions 

means that the user has to do it all again. The related information of a model feature, e.g. 

the dimension of an axis base part or the constituents of a compound geometry, is beyond 

the user easy access at one time. There is a need to investigate an efficient and convenient 

user interface. 
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The SunView (Sun Visual/Integrated Environment for Workstations) window facility 

provides possible tools to build an informative, efficient and flexible user interface. It 

enables users to achieve increased functionality in two major areas: i.e. a run-time system 

for managing input; and building blocks to support interactive application running. Since 

Sun View is a notification-based system and an event-driven mechanism- Notifier is used 

in this window form of interface environment, thus the complex management of various 

events (or inputs) does not rely on the application program. The Notifier reads UNIX input 

from the kernel and notifies a procedure to perform the formatted high-level events group 

task. The procedure which is called out or notified has previously been registered with the 

Notifier. In this application, the Notifier sits between the user's input environment and 

application objects and related procedures, i.e. primitive creation subroutines, reads UNIX 

events, formats UNIX input into Sun View events, and passes each event to the event 

procedure through the appropriate window. With this Notifier mechanism, each component 

or procedure of the user interface program receives only the Sun View events the user has 

directed towards it. The burden of managing a complex, event-driven environment is 

shouldered by the Notifier. Figure 5.6 describes the user input, the Notifier, SunView 

objects and user interface application procedures. 

Among four building blocks of Sun View, which include canvases for drawing, text sub­

windows for editing text file, tty sub-windows for running programs and panels for user 

input interface creation, panels are created to build an input form which can be opened if a 

user wants to modify or create a library primitive. The primitive related information can be 

obtained and modified in one page of its property form rather than one question for one 

parameter and so on. The procedure of creating a library primitive property form and 
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interfacing the form with the simulation of the modular machine is outlined in Figure 5.7. 

In this research Sun View was chosen as a window facility because it was available to the 

author. Since it is a proprietary windowing system, standard ones such as Motif and X­

Windows can be used to provide the same facility. 

The whole operation of primitive parameter input or modification can be illustrated as three 

sub-operations, as follows. 

(1) The user specifies the specific machine primitive and the aspect of creation and 

modification. The simulation system then searches for the corresponding 

parameter values based on the user's specification. A Sun View window with the 

appropriate primitive property format is then opened and the current parameter 

group values are displayed in corresponding panels as parameter default values. If 

the primitive is not an existing one, zero values are provided for new primitive 

creation and the whole set of primitive property forms is provided; 

(2) After the primitive property form is created on top of the machine graphic 

simulation windows, the user can input and modify the displayed parameters. 

Only valid type of parameter values is accepted by the Sun View panels, and if not 

valid then a partial repetition of the modification is necessary; 

(3) The input values through Sun View primitive property forms can be searched 

through pointing to the physical addresses of these parameters and transferred to 

the simulation model to update the new information on structure and dimension. 

A newly created or modified model can be viewed at this stage. 

5.5.5 Modification tools for a machine and its primitives 

With the Sun View primitive property form, it is also easy to build up machine primitive 
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parameter modification tools and window forms. All primitive parameters can be easily 

modified by re-inputting new parameter values and re-creating the primitive. At the 

primitive level, the following modification tools and window forms were partially 

implemented. 

(1) Primitive geometry modification tools, which enable the user to search for a 

correct geometry. These provide the current geometric parameters in an editable 

form, retrieve the new parameter values from the Sun View window and put them 

into the data block representing that geometry; 

(2) Position and orientation modification tools, which again obtain the current 

translation and orientation information along and around the local direction of the 

frame, display them in each panel item in an editable form, modify the value and 

assign them into a geometry entity block containing the new position and 

orientation information of the geometry within global model; 

(3) Kinematic constraints modification tools which can be used to get current 

primitive kinematic values, renew the constraints and store them in the kinematic 

data block of the primitive. 

For the machine level appropriate modification tools have already been described (in 

section 5.3.1.3). However a detailed "snatching" operation is illustrated in Figure 5.8. The 

system has to know which axis primitive is going to be removed from its current owner. 

After the initial query to the user, the modification function starts (from the machine 

geometric modelling ring) searching for the device which owns the axis primitive. Once the 

primitive has been found, its block address and its owner block address will be known. The 

axis primitive can then be removed from the device and the owner primitive. Thus the other 

144 



START 

Request the name of 
a device - axis group 

Search for the axis 
primitive name and 

related pointer 

Get the owner pointer from 
Principle Ring Pointer wor 

and get the moving part 
geometry pointer 

ChapterS 

Grasplib 
Subroutine 

....._Library..,.... 

Yes No 

Yes 

Set the P.R.P. of parent 
moving geometry to next 
pointer(P.R.P.); set the 
P.R.P. of next primitive 
pointer to owner pointer 

Set the P.R.P. of parent moving 
part to the owner pointer; Search 
for the last block in the data ring 
starting from workplace, the 
P.R.P.of last block points to the 
snatched axis primitive; Set the 
P.R.P.of snatched axis head block 
to root - workplace address 

e-display the model 
and the snatched primi­

tive returns to the 
origin of workplace 

Figure 5.8 The schematic of s~atching a primitive operation 

145 



ChapterS 

device constituents can be rearranged into the form of a new local data ring and tree 

structure. If the primitive which is to be removed from the device owns another axis 

primitive, the user has to inform the modification tool if that primitive is to be removed as 

well. If the owned primitive is also to be removed, then all removed primitives are returned 

to the geometric data ring and the ftrst removed primitive will point to its new owner rather 

than its original child. After the searching operation, the removed primitive returns to the 

root owner - typically the workplace in this implementation in terms of both ownership and 

position. 

5.6 Name and data block address based searching methods 

Due to the large amount of data manipulation required during machine simulation 

(including: data modification; primitive addition or deletion; and machine reconfiguration), 

an efficient way of finding the correct data block and word is of great importance. This 

efficiency of searching method will be dependent on the data structure of the machine 

model. Once again it has been shown that the use of a multi-layered ring and tree data 

structure to represent modular machines provides an easy to use and clear data structure 

which can allow a searching mechanism to find the required data block quickly. 

Data block searching in this study is based on an identification of a data tree branch, from 

the top level of the hierarchy according to the data manipulation category. Once the correct 

branch is found, the second level data ring address can be obtained from the branch data 

block. The searching advances to the second level of the hierarchy and this is automatically 

done by the simulation system. From second level downwards, the name of a manipulated 

object is used in the data ring search at that same level. Since all objects within the model 
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are identified uniquely by their names, the search of an object name therefore is the only 

way of locating the data block address of that object. Therefore, at this stage an object name 

is required by the simulation system for the object data block address. If a further 

downwards search is necessary to find the third level primitives, then the primitives address 

can be found from the searched second level data block contents. Once the lower level data 

block address is found, data manipulation of the block can be easily carried out. 

Using the conventional GRASP modelling system the modelling origin workplace is 

treated as a pseudo functional device in the modular machine simulation system. Under the 

workplace various machine primitives are usually created and re-located to their target 

positions. The data manipulation of these primitives should be carried out under the 

workplace sub-tree. Since the configuration tools enable the user to build up this type of 

data ring and tree structure, the user should always realize this structure in this particular 

implementation and this will enable an easy manipulation of the data ring and tree structure. 

However, a warning system is provided to prevent unstructured data manipulation. 

5. 7 An open approach towards machine elements creation 
and configuration 

5.7.1 The needs to create an open structure for simulation of 
modular machines 

In the assembly industry, common sub-operations of assembly tasks include: pick a 

component from a device (usually a feeder, conveyor or component magazine), assemble 

the component in a desired way (often involving accurate placement and orientation, 

followed by some fixing operation, some form of inspection operation, withdrawal of the 
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assembly (or sub-assembly) to some output devices (e.g. pallet, conveyor, etc.). A very 

common operation in assembly requires a so called "pick and place" motion which is 

generally achieved by a mechanism through picking a component from its holder and 

placing it into its other mating part. Among these non-processing operations, the most 

important task is to relocate a specific component at another target position with a defined 

orientation. The flexibility and efficiency in achieving these transportation related tasks are 

of great importance to machine designers and users. The various device arrangements can 

lead to a better solution to a modular machine design. Therefore there is a need to create an 

open structure which enables the user to build up complex devices and operations in order 

to find optional designs. The current single primitives and their configuration tools ensure 

that the user can configure their own machine in a simulation model. 

Although modular machines are more usually found in the assembly application area, the 

concepts can be extended to the other manufacturing application areas. Hence the 

simulation should be similarly extendable. Since the system adopts the library concept 

together with modular methods, the machine user can utilise library primitives and 

configuration tools to construct his special primitives. Once the primitive is parameterised, 

it can be stored in the library for future repetitive uses. 

5. 7.2 Extendability of the open approach 

A simulation system for modular machines should be versatile in terms of being able to 

cope with various applications and complex operations. The extendability of the modelling 

approach enables enough flexibility to deal with application variations. It is the adoption of 

an open approach towards machine building (which is inherited from the data ring and tree 
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structure) which makes the modelled machine highly extendible. Though at each level the 

ring of data blocks is in the closed form, the configuration tools enable the user to add new 

data blocks or primitives in a user friendly way. Such extension tools are available at 

different hierarchical levels. 

Although the configuration tools are described in section 5.2, a detailed description is given 

here to illustrate the ease with which device addition can be achieved (see Figure 5.9). A 

device should first be created by forming a primitive group under workplace. The user then 

has to locate this group at some desired position and orientation. The head device block of 

the ring to which the device is to be added needs to be found via a search, this being the 

responsibility of the configuration tools. Once the address of the head device is found the 

device description can be added to the end of the ring. 

The systems extendability comes not only from the inherent nature of the modelling data 

structures but also from the concept of creating a primitive library. At the top level of the 

hierarchy of the implemented simulation system, five main categories for assembly 

associated manufacturing were created. However, arising simulation categories can be 

· added into this ring in order to simulate other manufacturing applications. This should be 

easily carried out using the tools provided. Once the new categories are added, the 

association of the new class and its branch with the other parts of the system is again via a 

data block address. It is possible for the user to use some system subroutine tools to write 

application dependant programs. 

5.7.3 Open structure for machine element creation and machine 
configuration 

The foregoing discussion illustrates that the data structures used for modelling in the 
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simulation system have a further extremely useful feature - namely their openness in 

enabling machine construction. Most graphically based machine simulation packages 

provide efficiency in the respect that they can create, simulate and evaluate a model with a 

fixed structure quickly. However their inherent flexibility when building up a model very 

much depends on restrictions imposed which limit the possible machine configurations, 

typically to a class of manipulator system. In some graphic simulation packages, the built­

in machine models often make workcell design user-friendly provided that existing 

machine models or models of a similar class are involved. However it is very difficult even 

impossible to simulate machines which do not correspond to the supported class of models. 

In this study of modular machine simulation, single degree of freedom machine building 

elements are standardized and parameterised so that they can be flexibly arranged, in terms 

of either the spatial relationships or the shapes of a moving part and a base part. As a 

demonstration, Figure 5.10 illustrates some more common machine primitives used in the 

field, which have been created and associated using the simulation system. At the lowest 

level of solid modelling (i.e. the GRASP basic geometry primitive level) the user can use 

the GRASP geometry primitives to construct any non-powered machine device. Most of 

these types of device are mainly concerned with the dimensional shape of the physical 

devices so that accurate dimensional modelling provides the useful information to govern 

powered motion, e.g. as planning and collision detection position data which may be of 

vital importance for model evaluation. 

The openness of the approach also lies in the fact that the machine primitives and their 

configuration are open. Most robot simulation systems model a robot by creating it as a 

fixed entity, so that any addition or deletion of an axis or other primitives is very difficult. 
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Figure 5.10 Some of non-power driven machine primitives 
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GRASP is a very typical example. It only allows a user to create a robot by defining the 

structure and its flesh using a GRASP text creation form. Some aspects of structural and 

shape modification prove impossible at an interactive level. However the modular machine 

simulator enables the user to create machine primitives and modify them flexibly via the 

user friendly interface which is established specifically to support modularity. 

These features are crucial when attempting to create a machine design, simulation and 

evaluation system. They potentially enable the machine users to design a machine based on 

information concerning their products and their manufacturing operation requirements. 

Potentially it can provide very strong support tools for machine end users and could bridge 

the gap between machine designers and users. The lack of communication between and 

understanding of design as opposed to manufacturing problems may disappear. The second 

benefit of this type of design and simulation is that the machine user can reconfigure an 

existing machine to accomplish a new manufacturing task. As ba$ic machine primitives, for 

instance transporting primitives, are commonly used in various machines, they can be 

easily converted into a part for another machine primitive. A simulation exercise centred 

on the feasibility of such a conversion can provide useful information for machine builders. 

The third benefit is that the flexibility of machine configurability is well maintained due to 

the re-use of the library primitives and configuration tools. The availability of a 

comprehensive set of configuration tools ensures that the user has access to the machine at 

any level of the model's hierarchical data structure. The last advantage is that the model has 

a simple and clear data structure and hence it is easy to maintain and manipulate. 
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Chapter 6 Machine kinematic modelling 

6.1 Introduction 

A further key issue in modelling a modular machine concerns kinematic modelling aspects, 

which are required to define spatial relationships as a function of time. Simulation of a 

modular machine (which includes machine graphical modelling, machine configuration, 

machine kinematic modelling and task programming based on use of the machine model) 

can lead towards an integration of machine design and evaluation activities. 

Powerful computer graphic facilities provide very useful tools not only to graphically 

model the modular machine but also to animate motion within the machine system. 

Animation, using computer graphics, enables the user to visualize the kinematic 

performance of a machine much more easily [Yong 1990]. Simulation systems, which 

incorporate animation capabilities, have been used in the design of various robotic 

applications and have proved very useful tools for robot work cell design and evaluation 

[Miller,1985, Yong and Bennaton 1988]. 

The realization and control of animated motion requires a specification of the machine's 

kinematics. The kinematics of a modular machine system can be characterised by its 

position versus time information, relating all moving elements in the system, together with 

information concerning the velocity and acceleration of each motion. In manufacturing 

engineering applications, it is quite common to require a machine tool point to traverse a 

specified three dimensional continuous curve, and thus it is necessary not only to study 

discrete position versus time relationships but also to include a description of the 

continuous tool point path in the kinematic study. In this chapter, a study of the kinematic 
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properties of modular machine systems is carried out. 

6.2 Kinematic representations of machine primitives 

6.2.1 Single degree of freedom motion primitives 

In this study two types of single degree of freedom motion primitive are included in the 

machine primitive library, viz: prismatic and revolute axis or single degree of freedom 

machine building elements (see Figure 6.1 ). They represent the simplest cases of kinematic 

(or motion) primitives of machines. In the kinematic representation of a mechanism, two 

methods are usually used to describe its motion, involving respectively the use of 

coordinate equations (describing typically the position of the end-point) or the use of 

homogeneous transformations. For example, the relationship between the end-point of a 

revolute axis in its original frame{l} to that in its rotated frame{2} can be expressed as 

follows: where rotation is through 9 around the Z-axis, 

xl = XzCOS (9) - Yzsin (9) 

Y1 = X 2 sin (9) + Y2cos (9) 

This same relationship can also be described by using a homogeneous transformation as 

follows: 

cos (9) -sin (9) 0 0 

sin (9) cos (9) 0 0 x 
0 0 10 
0 0 01 

Usually the homogeneous transformation matrix for rotation about the Z axis through 9 is 
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denoted by Rot(Z, 9), i.e. 

Rot(Z, 0) 

cos (0) -sin (0) 0 0 
_ sin (0) cos (0) 0 0 

0 0 10 
0 0 01 
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Since the homogeneous transformation matrix is a much more convenient form than 

explicit equations, especially when mechanisms become complex, this method has been 

commonly used in the kinematic representation of machine primitives [Paul1981, Fu et al. 

1987]. 

Similarly, the homogeneous transformation for positive rotation around X is 

Rot(X, a) -

1 0 0 0 
0 cos (a) -sin (a) 0 
0 sin(a) cos(a) 0 
0 0 0 1 

and for a positive rotation about the Y axis 

Rot(Y,Ijl) -

cos (ljl) 0 sin (ljl) 0 
0 1 0 0 

-sin (ljl) 0 cos (ljl) 0 
0 0 0 1 

If the axis frame origin is translated through distance a in the positive X-direction of 

coordinate frame, b in a positive Y-direction and c in a positive Z-direction, the 

homogeneous translation transformation matrix becoming 

Trans (X, Y, Z) = 

100a 
010b 
001c 
0001 

Since the homogeneous transformation matrices are used to describe the transformation 
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(rotation and translation respectively) between the original frame and the new coordinate 

frame of motion axis, they can be further generalised as 

111 112 113 dx 

Transformation (X, Y, Z) - 121 122 123 dy -
t31 132 133 dz 
0 0 0 1 

rR o t Tran~ 
Loo o 1 J 

where, Rot denotes the 3 x 3 rotational component of new frame{2} with respect to the 

original frame{ 1} and Trans is a 3-element column vector pointing from the origin of 

frame{ 1} to that of frame{2}. The simplified homogeneous transformation matrix can be 

stored in a transformation data block- entity block in the form of Rot(3 x 3) and Trans(3). 

Four data words are saved due to this generalisation, this being a useful simplification 

which has been utilised in this study. 

Since single degree of freedom motion primitives can only move along, or rotate around, 

one direction of the local coordinate frame, there is only one variable in the single motion 

primitive transformation matrix. For example, the translational motion along the Z-

direction of the local frame can be expressed as 

Trans (X, Y, Z) = Trans (0, 0, z) -

100a 
010b 
001z 
0001 

where a and b are the fixed displacement of the motion axis along X and Y directions and 

z is a variable within its working constraint. In order to simplify the creation of an axis 

primitive, the Z direction of a local coordinate frame is always chosen as the initial 

direction of rotation or translation. For the rotation, the homogeneous transformation 
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Rot(Z, 0) 

cos (0) -sin (0) 0 a 
_ sin (0) cos (9) 0 b 

0 0 1 c 
0 0 01 
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where a, b and c are the fixed initial displacements along X, Y and Z directions of the 

local frame, and 9 is variable of the rotation. 

6.2.2 General coordinate frame establishment 

The Denavit-Hartenberg [1955] representation is employed in this study to represent the 

articulated axis groups (high order primitives) because it has been proven to be a very 

effective method of modelling articulated robots. A brief description of this approach is 

given below as it forms a mathematical base of this modelling study. A coordinate system 

attached to each link of the primitive must be established in order to produce a 4 x 4 

homogeneous transformation matrix; this represents the coordinate system of each link at 

the connecting joint with respect to the previous link's coordinate system. Through a 

sequential concatenation of transformations from the first to the last axis, the primitive end-

point can be transformed and its position obtained in terms of the local coordinate frame of 

a high order primitive. For each primitive constituent (e.g. axis of motion) an orthogonal 

Cartesian coordinate system (Oi, Xi, Yi, Z;) is established and attached to each axis of 

motion at its connecting joint, where i = 1, 2, 3 (frame{O} is for the local coordinate frame). 

The convention for establishing these orthogonal coordinate frames is based on the 

following rules: 

(1) The 21 direction of a local frame of an axis primitive is always chosen to be in the 
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direction of translation if the axis is a prismatic one or a rotation in the revolute case; 

(2) The X; coordinate direction will be normal to the Z; and Z;.1 direction, pointing away 

from the Z;.1 axis if Z; and Z;.1 are not in a common plane; 

(3) The Y; coordinate direction complies with the right-hand coordinate system 

convention; 

(4) The coordinate system establishment starts from the base part of axisl and finishes 

at the end-point of the moving part on axis2 in this case (obviously this would be axis3 

in the case of three serially chained single degree of freedom primitives). 

Based on this convention, a rigid link geometry can be expressed by four geometric 

parameters (see Figure 6.2). The definitions of each of these four parameters are given 

below: 

d;: the distance from the origin of the (i-l)th coordinate frame to the intersection of the 

Z;.1 direction with the X; along the Z;.1 direction; 

8;: the joint angle from the X;.1 coordinate axis to the X; coordinate axis about the Z;.1; 

~: the normal distance from the intersection of the Z;.1 coordinate axis with the X; 

coordinate axis to the origin of the ith frame along the X; direction; 

a;: the offset angle from the Z;.1 direction to Z; direction about the X;. 

With these four parameters, the characteristics of a joint in an articulated motion pritnitive 

can be defined in terms of its position and orientation relative to its previously connected 

axis. Since each low level motion primitive contained within the modular machine library 

has only one degree of freedom, there will be one variable amongst the four parameters. For 

a revolute axis, d;, ~. and a; remain constant for the joint, whereas 8; is a variable which 

will change when the motion axis rotates with respect to its preceding connection. For a 

prismatic axis of motion, 8;, ~ and a; are constant, where d; is the axis variable. 
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The homogeneous transformation matrix can then be developed to describe the relationship 

between the joint coordinate frame{i-1} and {i}, this being known as the D-H 

transformation matrix for adjacent coordinate frames [Fu et al. 1987, Craig 1989 and Paul 

1981]. It can be obtained by the following transformations: 

(1) rotating frame{i-1} through the angle of 9i around the ~-1 coordinate axis in order 

to align the Xi_1 coordinate axis with~; 

(2) translating along the ~-1 direction a distance of ~ to bring xi-1 and xi into 

coincidence; 

(3) translating along the xi coordinate axis by a;. to coincide the two origins xi and xi-1; 

( 4) rotating through an angle of <Xj around the Xi coordinate axis in order to bring the two 

coordinate systems into coincidence. 

Therefore 

= 

cos(9i) -cos(a)sin(9i) sin(a)sin(9i) a;cos(9;) 

sin (9;) cos (ai) cos (9i) -sin (ai) cos (9;) a; sin (9;) 

0 sin ( ai) cos ( ai) d; 

0 0 0 1 

Based on this equation, the forward kinematic transformations of two or three serially 

modular machine primitives can be easily solved. 

6.2.3 Two degree of freedom articulated axis groups • higher order 
motion primitive 

6.2.3.1 Forward kinematics of two degree of freedom (DO F) articulated axis group 

For higher order articulated machine primitives constructed from chaining together two 

single DOF motion primitives, a further degree of freedom is introduced requiring a second 
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variable to describe the new degree of freedom. The forward kinematic problem is thus to 

obtain the end-point (or Working Centre Point) position in the global Cartesian coordinate 

frame, assuming the displacement or rotation of each axis primitive is known. To solve this 

problem transformation through the local coordinate frames of each constituent single DOF 

motion can be used and compounded. Thus the end-point position of a higher order two­

axis primitive can be obtained as the result of coordinate frame transformation from the 

second axis frame to the end-point after consideration of the transformation from the first 

axis frame to second axis frame. All possible seven two axis higher order primitives are 

listed in Figure 4.5, and the forward kinematic transformation of the first of these primitives 

is described below. The primitive is composed of two prismatic motions, therefore the end-

point (WCP) position is given as follows: this being based on the Denavit and Hartenburg 

[1955] convention 

1 0 0 0 [0 0 1! _0100x0100x 
- 0 0 1 dl -1 0 0 0 

0001 0001 

xwcp = d2 

or Ywcp = 0 

2 wcp = d1 ' 

1 0 0 0 
0 10 0 
0 01 d2 
0 0 0 1 

= 

0 0 1 d2 

0 10 0 
-1 0 0 dl 

0 0 0 1 

where (Xwcp• Y wcp• Zwcp) is the end-point position relative to the local frame of the higher 

order primitive. A coordinate frame rotation is included since the Z-direction of the local 
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frame of an axis primitive is always chosen to be in the direction of the translation or 

rotation for the convenience of machine primitive solid modelling [Paul 1981]. The same 

convention is used throughout for kinematic representations. By using the D-H 

transformation matrix, the same equations mentioned above can be obtained and the D-H 

method is illustrated in the next higher order primitive. 

For the primitive (2) in Figure 4.5, the link parameter table can be summarised as follows: 

Link Variable oi ~ ~ di cos~ sin~ 

1 dl 0 0 0 dl 1 0 
2 02 02 -90 a2 0 0 -1 

Then the corresponding T2(i-1,i) matrices for the prismatic and revolute single motion 

primitives are: 

T2 (1, 2) 

Thus 

-

10 0 0 
010 0 
00 1 dl 

000 1 

cos(92 ) 0 -sin(92 ) a2 cos (92) 

= sin ( 92) 0 cos ( 92) a2 sin ( 92) 

0 -1 0 0 
0 0 0 1 

cos(92 ) 

_ sin (9
2

) 

0 

0 

0 -sin(92 ) a2cos (9
2

) 

0 cos (92) a2sin (92) 

-1 0 d1 

0 0 1 

The forward homogeneous transformation matrices for the rest of the two DOF machine 
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primitives illustrated in Figure 4.5 can be found in Appendix B. 

6.2.3.2 The inverse kinematics of two DOF articulated axis groups 

The inverse kinematics of a two DOF motion primitive deals with the issue of how to obtain 

the servo-input values of the two individual motion primitives, thereby establishing a 

desired motion of the end-point of a higher order primitive. Since in this case there are only 

two motion axes, the inverse kinematic problem can be solved by using the method of 

comparing the corresponding elements of the matrices on each side of following equation, 

ail bil cil Pil 

a;2 bi2 c;2 Pi2 

a;3 bi3 ci3pi3 

0 0 0 1 

= T;(0,2) = T;(0,1) XT;(1,2) 

where Ti(0,2) is the combined transformation from the local frame of the higher order 

primitive to the last single DOF motion primitive in the group, i=l, 2, 3, 4, 5, 6, 7 for the 

combinations in Figure 4.5. The left side of the equation is a generalised vector p and a 

3*3 matrix. The vector p represents the position of the higher order primitive end-point 

with respect to the higher order primitive local coordinate frame; whereas the matrix 

specifies the orientation of the end-point. For the situation (1) in Figure 4.5, the following 

equation can be established: 

au bu cu X 11 

al2 b12 c12 Y12 

a13 bl3 C13 Z13 

0 0 0 1 

= T1 (0,2)-

0 01 d2 

0 10 0 
-100d1 
0 00 1 

Therefore, the solution is d2 = X11 and d1 = Z 11• For the configuration of (2) in Figure 4.5, 

the equation is 
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a2l b21 c21 x21 

a22 b22 c22 Y22 

a23 b23 c23 223 
= T2 (0, 2) 

cos (92) 0 -sin (92) a 2cos (92) 

= sin ( 92) 0 cos ( 9 2) a2 sin ( 92) 

0 -1 0 dl 
0 0 0 1 0 0 0 1 

A solution to enable control of individual single-DOF primitive axes can be expressed in 

terms of the given position (only a two dimensional position value set of x and y being 

required here): 

from 

hence 
y

22 
= a2 xsin(B

2
) 92 = atan2(X21/a2,Y22/a2) 

where atan2(y, x) returns = tan-1(y/x) adjusted to the proper quadrant. The inverse 

kinematic solutions for other situations in Figure 4.5 are described in Appendix B. 

6.2.4 Higher order primitives formed from three DOF 
articulated axis groups 

Three degree of freedom articulated axis groups are important higher order modular 

machine primitives, providing the necessary articulation to reach a three dimensional 

position. Such a requirement has been widely reported and adopted in industrial robotics 

[Craig 1989, Tourassis and Ang, Jr. 1989, Gupa 1986, Fu et al. 1987, Takano 1985]. Since 

a further degree of freedom is introduced by chaining a further axis of motion, the 

complexity is increased requiring an additional homogeneous transformation; i.e. matrix 

multiplication to obtain the forward transformation. Figure 4.6 shows all possible twelve 

combinations of three single degree of freedom articulated machine groups which can be 

created with perpendicular or parallel joint motion directions. Typical combinations are 
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discussed as follows. 

6.2.4.1 Three prismatic axes articulated in the Z. X and Y directions 

For the case of (1) in Figure 4.6, based on the conventions of coordinate frame 

establishment, the coordinate frame assignment of three prismatic axes articulated in the Z, 

X, and Y directions is shown in Figure 6.3. The link parameter table required to use the D-

H matrix is then 

Link Variable ei <Xj ~ di COS<Xj sin<Xj 

1 dl 0 -90 0 dl 0 -1 

2 d2 90 -90 0 d2 0 -1 

3 d3 -90 0 0 d3 1 0 

The transformation matrices from frame{O) to frame{1), frame{1) to frame{2) and 

frame{2) toframe{3) arerespectively 

T11 (0, 1) -

-

1 0 0 0 
0 0 1 0 
0-1 0 dl 

0 0 0 1 

0 10 0 
-100 0 
0 0 1 d3 
0 00 1 
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Tl2 (1, 2) -

0 0 -1 0 
1 0 0 0 
0-1 0 d2 

0 0 0 1 

0 0 -1-d3 

_100d2 

0-1 0 dl 

0 0 0 1 
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The orientation matrix and position vector of the primitive is given by 

T. = 
I 

ail bil cil Pn 

ai2 bi2 C;2Pi2 

ai3 bi3 ci3Pi3 
0 0 0 1 
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After the comparison of Ti and T1(0,3), the position of the end-point of the last single 

motion primitive can be expressed by 

P= or 

plx = -d3 

Ply= dz 

plz = dl 

From the above equations it is very easy to obtain the inverse kinematic solutions to 

control the separate primitive axes when a desired position is given: 

d1 = P1z 

dz = P1y 

d3 =-ph; 

6.2.4.2 Two prismatic axes articulated (or chained) in the Z and X direction 
with a third revolute axis connected to the second prismatic unit 

In this case a revolute axis is introduced and a third control variable a3 should be 

considered. A coordinate frame assignment for the three articulated axes must be made and 

one attempt is depicted as in Figure 6.4, according to the conventions of coordinate 

establishment. The associated link parameter table is listed in the following table. 

Link Variable ai <lj llj dj COS<lj sin<lj 

1 dl -90 0 0 dl 0 -1 

2 d2 0 0 0 d2 1 0 
3 a3 90 a3 D3 0 0 1 
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The transformation matrices from frame{O} to frame{l}, frame{l} to frame{2} and 

frame{2} to frame{3} are respectively 

T21 (0, 1) = 

1 0 0 0 
0 0 1 0 
0-1 0 dl 

0 0 0 1 

T22 (1, 2) 

cos (83) 0 sin (83) D3 X cos (83) 

T 
23 

(2, 3) = sin (83) 0 -cos (83) D3 x sin (83) 

0 1 0 0 
0 0 0 1 

-

100 0 
010 0 
001 d2 

000 1 

where D3 is the link length of the revolute axis. The compounded transformation is 

cos (83) 0 sin (83) D3 X cos (83) 

0 1 0 d2 T2 (0,3) -
-sin (83) 0 cos (83) -D3 x sin (83) + d 1 

0 0 0 1 

If comparison is made between Ti (i=l,2 .. .12 for the twelve combinations) and T2(0,3), the 

position of the end-point of the high order primitive can be given by 

D3 X cos (83) 

d2 

-D3 X sin (83) + d 1 

or 

P2x = D3cos(63) 

p2y = d2 

P2, = -D3sin (63) +d1 

From these equations, the inverse kinematic solutions can also be derived as follows. 

From P2x =D3cos(63), then 63 = + arcos(P2xfD3) 

If 63 = arcos(p2xiD3), substituting 63 in P2z = -D3sin63+d1, 

then d1 =p2z+D3sin(arcos(P2JD3)) 

If 63 =-arcos(P2xiD3), repeat same substitution 

then d1 =P2z-D3sin(arcos(P2xiD3)). 
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Obviously, two groups of solutions exist for this type of three degree of freedom serially 

chained manipulator: the distinction being with respect to the given position as follows. 

d1 = p2.+D3 sin(arcos(~)) 
d2 = P2y 

93 = arcos (~:) 
and 

dl = P2z- D3 sin (arcos (~:)) 
d2 = P2y 

93 = -arcos (~:) 

This means that given one set of local Cartesian coordinate values, there are two possible 

configurations which will satisfy the required position (assuming that the axis rotates 

around Zz and starts from X2 as its zero angle). 

The same coordinate frame assignment rules can be applied to the rest of the twelve three 

axis combinations, and by comparing the Ti (i=1, 2, 3 .. .12 for the twelve configurations) 

and Ti(0,3), the forward kinematics solutions can be derived in terms of the given single 

primitive axis rotation or translation. The same equations can be used to derive the inverse 

kinematic solutions as demonstrated above. See Appendix 6 for solutions derived by the 

author to the rest of the twelve configurations. 

6.2.5 Motion of distributed manipulators 

As earlier discussed, many types of manufacturing machine require that the relative motion 

of more than one axis group be controlled concurrently. In such situations the individual 

groups may be formed from mechanically decoupled modules to provide one, two or three 

degrees of motion as required; e.g. this may or may not involving the serial chaining of axes 

to achieve articulation in the form previously described and analysed in this chapter. Thus 

there is a need to simulate the relative motion of two or more groups of axes, where this 

relative motion will be referred to as distributed motion to emphasise that the different 
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groups may be only logically related rather than physically linked together and that the 

groups can be located in different co-ordinate frames as required. Describing the 

kinematics of distributed motion (as defined above) involves a relatively simple extension 

of the kinematic solutions presented in the previous sections of this chapter. This essentially 

being because the kinematics of individual axis groups will still be valid with respect to 

their primitive local coordinate frames. However, the main interest in simulating 

distributed motion lies in that the relative positions of each end-point of two or more motion 

primitives have to be aligned or related accurately in terms of the local coordinate frame of 

the distributed axis primitive. 

To illustrate this requirement further, consider typical assembly operations where often 

there is a need for accurate alignment of two or more physically decoupled motion 

primitives to achieve parts presentation and fixing (e.g. insert a component into its mating 

part). One typical example is that after the arrival of a printed circuit board (PCB) on a 

transporting motion primitive, a second axis group provides articulated motion to align 

electronic components perpendicular to the insertion position on the PCB board before 

inserting the component. (see Figure 6.5 a). This type of multi-device operation is 

characterised by mechanical concurrency and the need for device coordination. 

A different but common requirement for distributed motion is found when two or more 

motion primitives have to move or rotate while maintaining some pre-defined relationship. 

A typical example of this type of distributed motion is found in software gear box systems 

where several physically decoupled revolute motion primitives have to rotate while 

maintaining a pre-specified gear-ratio and rotation-ratio between the driven gears and the 

driving gear (see Figure 6.5.b). In this case the distributed motion is characterised by the 
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(a) 

(b) 

Figure 6.5 (a) A PCB assembly mechanism and (b) a group of 
physically decoupled gear-driven axes in a distributed motion situation 
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need for concurrency but also a requirement for motion synchronisation. 

In terms of data representation for each of these two types of coordinate frame system, a 

special data item is reserved to describe the frame type in the general data block (which in 

respect of this study was also the head block of the distributed motion primitive ring); Here 

the character "A" in word5 of the head block of the ring was used to denote that this axis 

group is an articulated group, where the alternative use of "D" denotes a distributed axis 

group in its configuration. For a complete description of data contents of the two types of 

·axis group, see tables 6.1 and 6.2. Data control and manipulation will be discussed in the 

next chapter. 

6.3 Position definition 

Having established a geometric modelling facility for both articulated and distributed 

higher order motion primitives, together with aggregation techniques, it is necessary to 

facilitate means of controlling their motion. Two methods of controlling motion were 

considered to be important in this study. The first and most simple concerns movement of 

one axis at a time. The second involves co-ordinated motion of a complete axis group 

(higher order primitive) to enable a desired position to be reached and involves the 

computation of motion control values through solution of the inverse kinematics of the 

corresponding higher order motion primitive. It is a fairly straightforward matter to provide 

motion control of the first class of manipulation, since all motions are manipulated at the 

single axis level (i.e. each axis moving one at a time with reference to kinematic solutions 

of each axis). However, as for robots it is very important that modular machines can be 

manipulated in such a manner that they can be positioned along some path to accomplish a 
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Word No Data Contents Comments 

Word 0 Type & length Data type and length 
Word 1 P R P Principal Ring Pointer 

Word 2 S R P Secondary Ring Pointer 

Word 3 

Word 4 

Word 5 
Word 6 

Word 7 
Word 8 

Word 9 
Word 10 
Word 11 
Word 12 

Word 13 
Word 14 

Word 15 
Word 16 
Word 17 

Word 18 
Word 19 
Word 20 

Word 21 

Word 22 

Word 23 
Word 24 

I I 
I I 

Word 31 

N B P 
D S F 

'D' or 'A' 
'R' or 'A' 

Gripper Pointer 
Axis 1 mptptr 
Axis2 mptptr 

Axis3 mptptr 
Axis 1 basptr 

Axis2 basptr 
Axis3 basptr 
Axis 1 point et 
Axis2 pointer 

Axis3 pointer 
WCP pointer 
Empty 

'P' or 'R' 

'P' or 'R' 

'P' or 'R' 

Empty 
I I 
I I 
Empty 

Name Block Pointer 

Display Status Flag 
Denote for distributed or articulated 
For relative or absolute coordinate 
Gripper head data block pointer 
The moving part pointer of first axis 

The moving part ptr of second axis 
The moving part ptr of third axis 
Axis 1 base part data block pointer 
Axis2 base part data block pointer 
Axis3 base part data block pointer 
Axis 1 head data block pointer 
Axis2 head ·data block pointer 

Axis3 head data block pointer 
End-point of axis group pointer 

word18 and word 19 
Empty for other data manipulation 

purpose 
Axis1 type (Prismatic or Revolute) 

Axis type of second axis 

Axis type of third axis 

Empty for other use 
I I 
I I 

Empty for other use 

Table 6.1 The head data block contents of 
articulated axis group 

Word No Data Contents Comments 

Word 0 Type & length Data type and length 

Word 1 P R P Principal Ring Pointer 
Word 2 S R P Secondary Ring Pointer 

Word 3 

Word 4 
Word 5 
Word 6 

Word 7 
Word 8 
Word 9 
Word 10 

I I 
I I 

Word 16 

Word 17 
Word 18 

Word 19 
Word 20 
Word 21 

I I 
I I 

Word 24 

Word 25 
Word 26 

Word 27 

Word 28 
Word 29 

I I 
I I 

Word 31 

N B P 
D S F 

'D' or 'A' 

'R' or 'A' 

Primitive 1 ptr 
Primitive2 ptr 

Primitive3 ptr 
Primitive4 ptr 

I I 
I I 

Primitive9 ptr 
Primitive10 ptr 
End primitives 

'P' or 'R' 

'P' or 'R' 

'P' or 'R' 
I I 
I I 

'P' or 'R' 

'P' or 'R' 
'P' or 'R' 
'P' or 'R' 
'P' or 'R' 

Empty 
I I 
I I 
Empty 

Name Block Pointer 

Display Status Flag 
Denote for distributed or articulated 
For relative or absolute coordinate 

Primitive 1 head data block pointer 
Primitive2 head data block pointer 
Primitive3 head data block pointer 
Primitive4 head data block pointer 

Primitive9 head data block pointer 

Primitive 10 head data block pointer 
'E' for the end of primitives group 

Axis 1 type (Prismatic or Revolute) 
Axis type of second axis 
Axis type of third axis 

Axis type of sixth axis 
Primitive type of seventh axis 

Primitive type of eighth axis 

Primitive type of ninth axis 

Primitive type of tenth axis 

Empty for other use 
I I 
I I 

Empty for other use 

Table 6.2 The head data block contents of 
distributed axis group 
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complex task without the need for excessive programming time. Thus a means of achieving 

positioning along such a path was derived and implemented. This included three ways of 

defming positions described in the following sub-sections. 

6.3.1 A position relative to a local frame of a motion primitive 

A point to which the motion primitive will refer to or pass through can be defined with 

respect to the local coordinate frame of a higher order motion primitive. Let point 

Pij(X,Y,Z) be a position in the coordinate frame of a motion primitive. Pij can be specified 

relative to this local frame OiXiYiZj(where i=1, 2, 3, ... n and n is the total number of local 

frames, or motion groups in the whole machine model) by local coordinates (JS. Yj, Zj), 

where j= 1, 2, 3, ... m (m being the number of points in frame{i}) (see Figure 6.6). The 

convenience of this type position definition lies in the directness and simplicity when 

obtaining kinematic solutions. The inverse kinematic solutions for an axis group to reach a 

point Pij defined locally can be obtained by calculating the moving increment values of 

each axis in the local frame of the axis group in respect to the point Pij· Therefore there is 

no need to transform the motion target point Pij from any other coordinate frame (e.g. from 

the global or an object frame to the local one). This is of great importance in accurately 

representing a target position of a manipulator since a relative accuracy between the point 

Pii and the motion primitive local origin Oi is achieved through eliminating the number of 

transformations between coordinate frames (i.e. reducing the approximation errors in the 

computation of a coordinate frame transformation). However a potential problem with this 

type of position definition is that sometimes it is difficult to obtain the coordinate values of 

Pij relative to OiXiYiZj. 

Once a point is defmed, all position and reference frame information can be stored in one 
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Figure 606 The position definition relative to 
local motion primitive frame 

Word No Data Contents Comments 

Word 0 Type & length Data type & length 

Word 1 Prino Ring Ptr o Principal Ring Pointer 

Word 2 Secndo Ring Ptro Secondary Ring Pointer 

Word 3 Name Block Ptro Name Block Pointer 

Word 4 Dispo Status Flag Display Status Flag 

Word 5 Ref 0 origin ptr 0 Reference origin pointer 

Word 6 'P' or '0' or 'G' 'P' for primitive frame defi-

Word 7 Empty nition, '0' for non-motion 

Word 8 Empty object definition, and 'G' for 

Word 9 Empty global definition 

Word 10 X Value X Value of the position 

Word 11 Y Value Y Value of the position 

Word 12 Z Value Z Value of the position 

Word 13 Empty Empty 

Word 14 Empty Empty 

Word 15 Empty Empty 

Table 6o3 The data contents of a position data block 
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general data block of the position data ring, this being a branch of the kinematic ring. The 

data contents chosen in this study are shown in table 6.3, where the reference coordinate 

origin pointer is stored in word 5 and the reference coordinate type is stored in word 6. A 

"P" in word 6 denotes that the reference coordinate frame is the local coordinate frame of 

a motion primitive. 

6.3.2 A position relative to a non-powered object frame 

In a situation where high relative accuracy is required (e.g. when establishing the relative 

position of an object and a point Pij) position definition may best be done with respect to a 

local object. Since the position of Pij is defined relative to the object origin Oi, improved 

relative accuracy can be achieved through direct transformation from the coordinate frame 

OiXiYiZj to point Pij· In this case, each point Pij is transformed into a point in the local 

coordinate frame of a motion primitive through the object frame OiXiYiZj to obtain the 

kinematic solutions for a target point specified in an object frame, i.e. the relative position 

between Pij and Oi is guaranteed to be exact and explicit to a user although the kinematic 

solution is fmally in the form of Pij relative to the local coordinate frame of the motion 

primitive (axis group). The end-point movement of a motion primitive from Pij to another 

point in the frame OiXiYiZj can be determined by applying kinematic algorithms describing 

the higher order primitive, considering the coordinate frame transformation from the object 

to a motion primitive frame. 

Another advantage of this type of position definition is that it maintains a relative spatial 

relationship within the local frame OiXiYiZj. When executing a control program for the 

primitive, should the motion primitive be reconfigured or modified, the position data 

referenced need not be changed. This property improves the system's modularity and 
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improves its "friendliness" at the user-interface. In this study the character "0", in word 6 

of the position data block, is used to denote positioning relative to a non-powered object 

frame. Here the reference origin pointer contains the address of the object coordinate frame, 

while Xj, Yj and Zj are the coordinate values relative to the object origin (see Table 6.3). 

6.3.3 A position relative to the global frame 

A further useful facility can be offered by allowing positions in the modular machine 

simulation model to be defmed by referring them to a global coordinate frame. This type of 

position definition is useful when certain positions are required to enable several motion 

primitives to refer to them equally in the terms of importance in accuracy. In this situation, 

a position relative to the global frame can be referred to by several motion primitives for 

co-ordinating a position. When sharing a common position (in the sense of equal reference 

importance among more than two motion primitives) the position definition should be 

neutral with respect to the primitives concerned (i.e. the position should be defined without 

direct reference to any coordinate frames of their associated motion primitives. This type 

of neutral position definition can associate motions and lead to multi-primitive 

coordination, as discussed in the next chapter. 

Another use of this type of position definition occurs when the complete model needs 

global reference points. A coordinate frame can be added at such a global point to visualize 

the reference frame position. 

6.3.4 Methods of assigning position values 

Position definition. values for each of the three types can be assigned in one of the two 

following ways: 

(i) Inputting position information interactively with respect to an appropriate coordinate 
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frame; or 

(ii) Moving motion primitives until they reach a required position, then recording the 

position with reference to an appropriate coordinate frame. 

It is important to identify position uniquely and in this study unique names are assigned 

within the model. Thus position names are assigned whenever a position is defined along 

with the chosen type of reference coordinate frame. Having defined a number of positions 

using the above methods they are arranged to form a positional data ring. Implementation 

of the head data block of this kinematic modelling data ring was achieved within word 5, 

in positional head data block containing a "P" to denote the start of the positional data ring 

(see Figure 6.7). An initial check of word 5 in the head data block can easily lead to a search 

of the position data ring where the desired position information is found by comparing 

names. This structure provides a hierarchical organisation, easy access to position 

information and maintains the system modularity. 

6.4 Path definition for motion primitives 

6.4.1 Introduction 

In some application areas (such as laser cutting, arc welding, and peg in the hole assembly 

operations) movement along a precise spatial path is of paramount importance to the 

accomplishment of that task. For this research a key element of path definition is that the 

X-Y-Z relationship of a curve is specified so that the end-point of a higher order motion 

primitive can follow that profile as closely as possible. A curved path can be expressed by 

a spatial equation reflecting the relationship of the X, Y and Z coordinates in a Cartesian 

frame. Usually, an equation can be explicitly expressed in the form of Z = f(X, Y), where Z 
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is unique function of X and Y. There are situations where such an explicit expression is not 

possible. However a complex curve can be subdivided into several segments and 

corresponding equations derived to characterise those segments, where each of them is 

unique and can be expressed explicitly. Only curves which can be explicitly represented are 

considered here. 

There are two issues which need to be considered to avoid ambiguity and multi-solutions 

for obtaining ~ with given Xi and Yi in 3-D space. The first is that the segmentation of a 

curve is precisely defmed by its Z = f(X, Y) function and its initial parameter values, i.e. 

the valid region of (Xi, Yi) to (Xi+ 1, Yi+ 1). Incorrect segmentation and initialization can lead 

to an incorrect path specification. The second aspect is that the equation must possess the 

uniqueness characteristics referred to above. Otherwise, a multi-specification of a curve is 

likely and can cause confusion when achieving computer control of the machine. In the case 

of distributed motion primitives, a three dimensional curve can be realised and sub-divided 

into two dimensional curves by using two or more distributed motion groups to constrain 

the path complexity; rather than using one single complex device like a multi-axis robot. 

Properties of these two dimensional curves are discussed in the following. 

6.4.2 Definition of two dimensional curves 

A two dimensional curve in the X-Y plane can be expressed by one or more algebraic 

equations of the form Y = f(X), Xr<X<Xi+l• where i=l, 2, 3, ... n. Each of these equations 

can be stored in one modular machine database block to describe paths along with their 

initial conditions. In this study the path data block structure was chosen so that it belongs 

to tlle patll sub-tree in tlle modular machine hierarchy (see Figure 5.4) and starts from tlle 
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path data head block which specifies the number of paths for the machine and introduces 

the first curve from its Curve Ring Start of word 5. At the level of the path head data block, 

if a complete curve can be expressed in a single algebraic expression, then the curve data 

block stays at the same level at its head data block; if a curve consists of several sub-curves, 

then a new sub-curve data ring is introduced from a Sub-curve Ring Start word in the path 

head block of its parent, where the same number of sub-curve data blocks are created to 

achieve information storage of these sub-curves. A possible curve example and its data 

representation data ring is illustrated in Figure 6.8. All equations describing each segment 

of the curve are stored in their corresponding sub-curve data blocks. 

6.4.3 Common path primitives 

The paths mentioned in the last section are closely related to curve types and their initial 

conditions, i.e. these paths are motion primitive specific move paths. However there exist 

some common types of paths which are motion primitive independent and can be 

generalised as path classes for many motion situations. These common paths can be 

classified into a number of path types. They can be modelled and stored as primitive 

building elements of more complex paths, and then during machine modelling they can be 

selected as required. The path types modelled and included in this study were as follows: 

(1) a straight line path type which requires the end-point (WCP) to travel along a straight 

path passing through two defined positions. The two points in Cartesian space can be 

arbitrarily defined and it is the straight line pattern which is common to this type of 

motion, therefore straight line motion is defined as a common path.; 

(2) circular paths which require the motion primitive end-point (WCP) to pass through 

three points which are not eo-linear. These types of paths are characterised by a 

common circular feature, and the specific circular path is determined by the location 

183 



y 

0 

P.R.P. 
S.R.P. 

Path Ring 
Start 

Sub-curve 
Ring Start 

I I 
I I 

Path 
definition 

P.R.P. 
S.R.P. 

I I 
I I 

Figure 6.8 Path profile and its data block representation 

184 

Chapter6 

X 

P.R.P. 
S.R.P. 

Sub-curve 
Ring Start 



Chapter6 

of the three points. For the straight line and circular paths a corresponding path data 

block is created and included within the path data ring; 

With these two types of path definition, along with the use of equation based paths as 

discussed in 6.4.2, a set of path defmition tools were provided for modular machine 

configuration. Combination of these paths can be defmed at the simulation stage to defme 

spatial relationships for motion primitives as required. This offers great flexibility when 

specifying the geometry of different manipulator motions. In the next section, kinematic 

definitions of motion are considered. 

6.5 Specification of velocity and acceleration 

The maximum permissible velocities and accelerations of machine mechanisms are vital 

determinants of the cycle time with which motion related tasks can· be accomplished. 

Flexible methods of describing such parameters are required to enable comparative studies 

of modular machines and to cater for various velocity and acceleration requirements. 

Although the velocity and acceleration of certain mechanisms used in manufacturing 

machines may not be accurately controlled, it is practical and appropriate in many 

situations to modem control technology to enable the precise control of these variables at 

least for selected mechanisms. 

6.5.1 Kinematic specification at the level of single degree of freedom motion 

The specification of velocity and acceleration can be discussed at two levels, namely the 

single degree of freedom axis level and the device level. It is straightforward to define the 

velocity and acceleration for a single axis in terms of either translation or rotation profiles. 

At this level, the user has a clear view of the actual kinematics of that axis. For a device 
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with only one single motion axis or a distributed device constructed with same type of axis, 

this is an ideal method. For rotational motion the angular velocity and acceleration of a 

revolute axis can be easily converted into equivalent linear values. If the motion primitives 

of a multi-degree of freedom manipulator system move sequentially, the same clarity of 

kinematics remains. To facilitate proof of concept kinematic modelling in this study the 

frrst five types of the six typical velocity profiles illustrated in Figure 6.9 were implemented 

to enable control of velocity and acceleration at the single degree of freedom level. 

6.5.2 Kinematic specification at the multi-axes level 

For serially chained or articulated manipulator systems, there is not the same level of clarity 

and simplicity with respect to the device's end-point velocity and acceleration since the 

kinematics of such a device's end-point (WCP) is determined by a combination of the 

velocities of its constituent axes and the configuration of those axes. If several motion 

primitives are activated at the same time, the end-point velocity becomes the compound 

velocity of all motion velocities, which can be classified as follows: 

(1) the resultant velocity and acceleration of a manipulator system, which comprises 

prismatic axes of motion is determined by the addition of the various axis velocity and 

acceleration vectors (see Figure 6.10.1). In this situation neither the compound 

velocity nor acceleration will have a dependence on the geometry of motion axes. In 

this study the velocity profiles were stored in a velocity data ring. 

(2) devices with one revolute axis and the rest prismatic, have only one direction along 

which the velocity and acceleration are straightforward. Since the revolute axis 

rotates around its local coordinate axis, it can only contribute two of three elementary 

velocity and acceleration components respectively along two directions (X and Y; or 

Y and Z; or Z and X) in Cartesian space. The velocity along the rotating coordinate 
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axis is determined by the motion primitive along which direction it translates (Figure 

6.10.2). The component velocity and acceleration compounds are not constant 

because the rotating axis changes its two contributory elements in the two Cartesian 

directions. 

(3) devices with two or more revolute axes in their configuration present a very 

complicated problem when deriving the end-point velocity and acceleration. The 

kinematics of such manipulator systems are determined not only by the articulated 

axis configuration at a particular instant in time but also by the geometry of the 

individual axes. For instance, the velocity of a three degree of freedom articulated 

primitive is much greater when each of its axes are fully extended than when the axes 

are in a retracted position. The compound velocity and acceleration of the end point 

will not be constant and this will require calculation for each axis configuration at 

each instant in time. This calculation can be very difficult as it depends on the axis 

geometries and configuration. 

The velocity for a higher order primitive with three prismatic axes has been implemented 

in this study and the same methodology can be used to derive solutions for (2) and (3). 

6.6 Conclusion 

This chapter began by identifying the fundamental mathematical equations for deriving the 

spatial transformations of motion objects. Subsequently the parameters required when 

modelling a modular machine were determined, thereby providing an interface for a user to 

determine machine characteristics. Three key elements required when defining a motion 

were considered along with methods of specifying parameters of those elements. The need 

for various coordinate frame systems was also illustrated to facilitate kinematic definition 

of machines. 
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Although comprehensive geometric and kinematic modules of machines can be created 

using the facilities described, there is a requirement for modular machine control 

mechanisms, which can control the machine motion and simulate run-time control. 

However transformation equations for different device configurations have been derived 

which allow a modular machine model to be manipulated in a design environment 

according to a user's specification. The next chapter discusses the control and drive of a 

modular machine simulation model, and various software mechanisms to meet complex 

user requirements. 
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Chapter 7 Control and drive of a modular machine model 

7.1 Introduction 

The various motions discussed in the last chapter must be generated by forces exerted in 

the physical machine's drive systems. The dynamic properties of physical manipulators can 

be characterised by determining relationships between forces and motions in two respects; 

namely solution of the forward dynamics (being the calculation of the accelerations of 

motion axes, which are then integrated to obtain the manipulators' velocities and 

coordinate positions in response to the applied forces or torques), and the inverse dynamics 

(being the calculation of forces or torques which must be exerted on a manipulator to 

achieve the desired coordinates and associated velocities and accelerations) [Featherstone 

1987]. Starting from well known physical laws, there are essentially two approaches 

towards obtaining a dynamic model of a manipulator system, namely the Newton-Euler 

approach and Lagrange's-Euler approach [Armstrong et al. 1986, Stone 1985, and Kane 

and Levinson 1983]. These approaches have been briefly discussed in the Chapter 3. 

In this chapter, a strategy for simulating a modular machine is proposed and the necessary 

aspects of manipulating a modular machine model in the simulation environment are 

discussed based on the use of simulation tools implemented according to the discussion of 

previous chapters. The methodology and strategy of a kinematic simulation approach to 

modelling both articulated and distributed mechanisms are outlined. The coordination of 

motion primitives through reference to the operation of sensory primitives is also 

described. The simulation of motion concurrency is discussed as are some application areas 

of the integrated simulation system so created. 
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7.2 A control and driving structure for modular machine models 

Following the assumptions described in Chapter 4, graphical simulation and animation of 

modular machines can be concentrated on describing kinematic properties, only attempting 

very limited dynamic modelling. As stated earlier, the motion primitives can be 

manipulated without applying forces in the simulation environment. Thus a systematic 

strategy for simulating the operations of a modular machine implemented in this study took 

the form of Figure 7 .1. Since there is no serious concern about the time that the modelling 

system spends on the various simulation activities, a comprehensive top-down hierarchical 

data structure was adopted. This facilitates the management and manipulation of objects 

with their relationships and interrelationships represented by the data structure and 

associated kinematic calculations being executed during simulation. Although such a 

simulation approach may take longer than one using structures with fewer levels of 

hierarchy, it enables simulation of various activities, including motion communication, 

coordination and sensory information processing. A detailed description of control and 

driving of a modular machine model is illustrated as follows. 

A modular machine task was decomposed into several sub-tasks, i.e. events which achieve 

the target task by involving sufficient modular machine devices in a cooperative manner. It 

was considered necessary to synchronise and control the sequence of events followed by 

each task where in the physical system these events may occur concurrently. In this study 

a scheme was implemented where the event controlled at the very beginning of the 

simulation creates an event data block for each event of the first task based on the 

information provided by the command type of an event description. One example of an 

event command type which was implemented is the Move primitive-name distance. The 
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-event controller interprets this command to achieve control of the simulation and also 

creates other useful information according to the command type. Table 7.1 shows an 

example of data table for a motion event. The simulation clock provides a time base for the 

simulation and when it starts to run, the event controller checks the status of each event data 

block. If the block is Active, then the primitive's event processor starts to calculate the new 

state of the modular primitive corresponding to movement in the user specified time 

interval, based on the initial or previous state. If the primitive has a Waiting status, then the 

controller ignores this event until the event status becomes Active. An Idle state is used to 

denote the end of an event. Once the event controller finds an event is idling, it creates 

another event data block in accordance with the next command for that model primitive. In 

terms of event based simulation, the time spent on the creation of event data blocks is not 

counted, as it is an overhead which will not be occurred with the actual modular machine. 

The new state of a primitive (or machine element), e.g the new position of a motion 

primitive, or the new status of a sensory device, is then passed to the driver of the specific 

primitive. The driver changes the state of that primitive in terms of its data content in the 

appropriate position of its data block. At this stage, the information for the particular 

primitive relating to a given new moment of time (ti+I = t;+M;) is available and can 

refresh the graphical model. However, the remaining processors for other primitives in a 

modular machine may still be referencing the "old" moment of time (fj). It is therefore 

necessary to return the processing time to the beginning of the processed event simulation 

until all events in an Active state are processed. The Display rendering mechanism finally 

updates the state graphic (position and status) of all active event related machine primitives 

by reference to the data blocks. At the end of this computational loop, the simulation moves 

onto its next time cycle. The flow chart relating to this procedure is detailed in Figure 7 .2. 
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Word No 

Word 0 
Word 1 
Word 2 
Word 3 
Word 4 
Word 5 
Word 6 
Word 7 
Word 8 
Word 9 
Word 10 
Word 11 
Word 12 
Word 13 
Word 14 
Word 15 
Word 16 
Word 17 
Word 18 
Word 19 
Word 20 
Word 21 
Word 22 
Word 23 
Word 24 
Word 25 
Word 26 
Word 27 
Word 28 
Word 29 
Word 30 
Word 31 
Word 32 
Word 33 
Word 34 
Word 35 
Word 36 
Word 37 
Word 38 
Word 39 

Data Contents 

Type & length 
p R p 
S R P 
N B P 
D S F 
'A' or 'D' or 'W' 
'Q' or 'S' or 'L' 
Primitive! ptr 
Primitive2 ptr 
Primitive3 ptr 

'P' or 'R' 
'P' or 'R' 
'P' or 'R' 

Start position X 
Start position Y 
Start position Z 
Goal position X 
Goal position Y 
Goal position Z 
lncrem. for axisl 
Increm. for axis2 
Increm. for axis3 
Time interval t 
Max. velocity 1 
Max. accelera. 1 
Max. velocity 2 
Max, accelera. 2 
Max. velocity 3 
Max. accelera. 3 
Scaled velocity 1 
Seal. accelera. 1 
Scaled velocity 2 
Seal. accelera. 2 
Scaled velocity 3 
Seal. accelera. 3 
Start time 
Duration 
Elapsed time 
Time interval 
Empty 

Comments 

Data type and length 
Principal Ring Pointer 
Secondary Ring Pointer 
Name Block Pointer 
Display Status Flag 
Denote for • Active", "Idle" or "Wait" 
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For "Sequential", "Synchronization" or "Loosely coupled" 
Primitive 1 head data block pointer 
Primitive2 head data block pointer 
Primitive3 head data block pointer 
Axis 1 type (Prismatic or Revolute) 
Axis type of second axis 
Axis type of third axis 
Starting position for the event of the X direction 
Starting position of the event along the Y direction 
Starting position of the event along the Z direction 
Target position of the event along the X direction 
Target position of the event along the Y direction 
Target position of the event along the Z direction 
The calculated increment for first axis after time interval 1 
The increment for axis 2 after the time interval t 
The increment for axis 3 after the time interval I 
Time interval 1 specified by user or the smaller left time 
Maximum velocity for axis 1 specified at axis creation 
Maximum acceleration for axis 1 specified by the user 
Maximum velocity for axis 2 

Maximum acceleration for axis 2 
Maximum velocity for axis 3 
Maximum acceleration for axis 3 
Scaled velocity 1 based event type and longest motion time 
Scaled acceleration for axis 1 by longest motion time 
Scaled velocity for axis 2 based on the longest time 
Scaled acceleration for axis 2 by the longest motion time 
Scaled velocity for axis 3 based on the longest motion time 
Scaled acceleration for axis 3 based on the longest time 
The start time of the event 
The execution period of the event 
The elapsed time before this time interval 1 
The user defined simulation time interval 1 
Empty 

Table 7.1 The data block contents of an simulation event 
195 



START 

Create event execution 
data table 

Kinematic calculation for car­
tesian and axis level control 
parameter values by the next 

simulation time interval 

No 

Search and update 
the moving geometry 
transformation data 

block content 

Yes 

Refresh all move 
geometries new 

position and 
orientation 

Signal receiver 
and its data block 

Chapter? 

Kinematic 
primitives 

for 
modular 
machine 

simulation 

Figure 7.2 The schematic of event control and animation processing 

196 



Chapter? 

7.3 The modular machine simulator 

The simulation system implemented in this study operates in a "control and drive" manner, 

administering the execution of event-based application tasks. It includes a simulation time 

based clock, event controller, event processor and event drivers. A detailed description of 

these constituent parts is given below. 

7.3.1 The simulation clock 

The simulation of modular machines is essentially a time-based activity; and therefore it 

must be possible to refer the three dimensional kinematic information to a time base. The 

simulation clock only calculates the time the machine primitives actually spend in carrying 

out events. Other non-event related delays (such as the computing time spent on the 

creation of the event data table, calculation of the motion kinematic solutions etc.) are not 

counted since they will not be replicated in the real modular machine activities. This is 

based on the assumption that the physical controllers obtain their control parameter values 

without significant delay. Therefore the "simulation time" is the sum of durations spent on 

each event in sequence. The minimum time unit (or time between 'ticks') for the simulation 

clock is set to a user specified time interval at the beginning of the simulation. With this 

time interval, the clock then advances its time by one unit after the event controller finishes 

each execution loop of the whole simulation environment. If the time duration left to 

simulate an event is less than the specified time interval, the event controller sets the time 

duration left for that event as a new time interval, thus allowing the new state of the whole 

model to be obtained at the end of the new time interval. Once this time advancement is 

completed, the user specified time interval is re-set to the simulation minimum time unit, 

to allow the same procedure to be repeated for the next simulation cycle. At the end of a 
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simulation exercise, the clock stops and indicates the total time taken by the modular 

machine to finish its specified task. 

7.3.2 The simulation event controller 

The simulation event controller is a mechanism based on a control program and it 

administers tasks in the simulation environment. The simulation event controller 

accomplishes the following: 

i) Creation of event data block tables based on the event command information when 

the previous event is complete or the simulation has just started; 

ii) Initiation of execution of an event related processor; 

iii) Provision of an information service as required to machine primitives; such as the 

time elapsed; a list of active primitive names; a list of currently executing event 

names, etc.; 

iv) Maintenance of coordination amongst single events, i.e, coordinating several 

event executions with respect to time; 

v) Establishment of concurrent motion control information for the event data table of 

each motion axis, such as initiating several devices at different locations in the 

simulation environment to achieve parallelism; 

vi) Production of accurate synchronisation of several motion axes by indicating the 

motion coordination type and scaling the velocities of other motion events based 

on the longest time event, during which the slowest axis completes its event (or 

motion). 
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7.3.3 The simulation event processors 

The specific execution of an event, which is issued by the event controller, is carried out by 

one of the event processors according to the event type. These processors can create new 

machine primitive control parameter values based on the information contained in the event 

data table. This is enabled by these processors having direct access to the data structures of 

machine primitives. Such an arrangement for processors (to be able to communicate with 

the machine model) improves the efficiency of the resulting simulation and reduces the 

burden on the event controller (the event control concentrates on the control issues rather 

than on data manipulation). Since each machine primitive needs different processing 

capabilities, it is easier for a processor to obtain the control value with respect to the 

primitive control algorithm. For this study, event processors of the following types were 

created: 

i) Single axis motion processors, which calculate the new position of the current 

primitive by the end of next time interval where that calculation is based on the 

current position and a knowledge of the velocity of the axis. 

ii) Articulated higher order primitive motion processors, which obtain the new 

position for the end-point of the primitive in terms of the primitive local frame. 

The velocities for each individual axis of motion are determined by the event 

coordination type of the higher order primitive. If the event uses sequential or 

loosely coupled coordination, each axis will independently reference its own 

specified velocity. However, in the case of synchronization the velocities are 

determined and scaled based on the longest time of flight that an individual axis 

of motion (belonging to the articulated group) takes in moving to the required 

position. 
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iii) Path event related processors, which are required to calculate the new control 

parameter values for the axes of motion which will move during the next time 

interval in compliance with the path requirement. Three dimensional paths are 

achievable, but the current research concentrates on two-dimensional paths. Since 

the path is the result of two or more relative motions, two approaches can be 

employed to achieve a two- dimensional path, viz: using an articulated high order 

primitive motion or using a distributed (physically decoupled) device. Figure 7.3 

demonstrates the principles involved here. 

iv) Distributed device processors, which deal with the complex machine situation 

where the machine comprises several physically distributed machine devices. In 

such a case several processors may be involved in establishing motion calculation 

and animation. 

v) Sensory processors which cope with the signalling of crucial state changes in the 

simulation model. Based on the spatial and dimensional information describing 

the model and its constituents, the functioning of sensory devices (such as 

positional sensors, distance sensors and contact sensors) can be simulated. For 

example a presence /absence sensor can simply detect the existence of an object 

at a specified position in the simulation environment. If an object has reached a 

defined position, then it sends a presence signal (e.g. a 'one' state on a line). 

Simulation of such a sensor can inform the simulation system that the 

instantaneous distance between the specified object and the sensor is some preset 

value. Contact sensors then report if there is a close contact between a specified 

object and the contact sensor. The use of 3 D boundary representation can enable 

the detection of objects, and can ensure that all these three kinds of sensors can 

obtain their positional information and send a signal correctly. Three types of 
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processors were created, corresponding to the above mentioned sensory devices 

to perform their sensory functions and details of these sensory processors can be 

found in section 7.5. 

7.3.4 The simulation event drivers 

In this context a driver will be considered to be a mechanism which provides a standard 

interface between the temporal logic (or algorithms) of the machine control and the 

realization of that logic or algorithm in the simulation environment. With respect to each 

type of control processor described in section 7.3.3, there exists a corresponding driver for 

each processor depending on its specific features. Each driver executes the machine 

primitive activities based on the driver's specification. The reason for establishing a driver 

mechanism is that there is a need to deal with various types of physical manipulators in a 

standard and consistent way. The Universal Machine Control approach has derived such a 

method in the real time control phase [Weston et al. 1989a]. The establishment of standard 

interface mechanisms (drivers) between processors and graphical primitives in the 

simulation system can facilitate the future integration of the simulation system and other 

graphical CAD-based systems. It also enables the physical controller to utilize some of the 

control data at the real machine control stage. The integration aspects are discussed further 

in Chapter 9. 

7.4 The path based control mechanism 

A two dimensional path is defined as an equation (or a set of equations) at the path I 

definition stage of kinematic modelling. The definition is achieved either by direct 

equation input or by using a computer graphical curve definition facility (in this study the 
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Face creation facility in GRASP is used). The equation (or equations) defined can be 

retrieved from the path data ring through the Machine Modelling Global Ring (see Figure 

5.4). If an axis group has a constant acceleration a and constant velocity v moving on a 

defined path, then 

I
t, 

v = a x dt= a x (t1 - t0) 
to 

Distance along a two dimensional curve y = f(x) in the region of x = a and x = b can be 

obtained from 

s = J:J+ (:r xdx= g(x)l := g(b) -g(a) 

To establish path control, a symmetric trapezoid (see Figure7.4.1) is assumed, and the 

distance d can be expressed as 

2 d = vx (t1-t0) +K1 xt0 , 

where K1 is the slope of the acceleration section of a trapezoid motion profile (see Figure 

7.4.1). 

Let d = S, the total time spent on a symmetric trapezoid path is given by 
2 . 

t2 = v +Sa , where S is the total length of a defined path, v and a are constant velocity 
va 

and acceleration respectively. The reader can consult appendix D for details of deriving fo, 

t1 and t2, d and S equations for an assumed trapezoidal path. 

With the desired velocity v and acceleration a (see Figure 7.4.2) t2 is the estimated time 
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Figure 7.4 The analysis and derivation of the relationship between 
the path distance along X and Y direction and time t. 
(1) Velocity profile; (2) Path profile; (3) The establishment of X and 
time t relationship; ( 4) The Y and time t relationship based on the X=g(t). 
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spent on the specified path. The next step is to find the corresponding point (XJ., Yi) on the 

specified path at a specific time ti. In evaluating the position Pi(xh Yi) it is extremely 

difficult to establish an explicit equation for the relationship between the X coordinate and 

the curve lengthS, therefore it is often impossible to calculate the exact point Pi(xh Yi) on 

the path with a given time ti because from s = J :Jl + (! r dx, it is impossible with most 

curves to obtain the inverse function x = g(s) where s is a function of time. If an explicit 

relationship y = y(t), x = x(t) is defmed, then the point Pi(xi, Yi) can be obtained through this 

set of equations. An approximate relationship describing x = x(t) can be established through 

the kinematic analysis with reference to the desired path. While the end-point of an 

articulated motion primitive is moving on a specified path, the defmed acceleration and 

velocity can be divided into two elements along x and y directions. The slope of the curve 

at the point Pi(xi, Yi) can be obtained from the relationship y' = dd f(x) , and e can thus 
X . 

be obtained. The distance moved along the X direction can be approximately expressed as 

(see Figure 7 .4.2). 

and 

where x (t;) is the distance moved along the X direction at time ti; 

V x (t;) or V(t;)cos(8i) is the elementary velocity along the X direction at time ti ; 

ax(t;) or a(t;)cos(8j) is the acceleration along the X direction at time ti ; 
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!J.t is the time interval ; 

x (lj+1) is the estimated distance that the motion primitive will have moved after a 

time interval !J.t • 

Times to. t1 and t2 can be used to evaluate the velocity v and acceleration a in Figure 7.4.1 

in the above calculations. Using such an approach x (lj+1), y (lj+1) can be easily obtained 

knowing the path specification equation y = f(x). After calculating values for x (tt+1) (or xi 

for short) and y (ft+t) (or Yi for short) on the path, these Cartesian coordinates need to be 

converted into axis coordinates so that the chosen machine axes of motion can establish the 

target position on the path. The inverse kinematic transformation equations described in the 

last chapter were employed to calculate the axis coordinates at time ti+ 1• 

Although the velocity and acceleration at time ti are used to calculate the distance for time 

interval M, improved accuracy can be achieved by using the velocity and acceleration at 

the mid-point between xi and xi+ 1• This is achieved at the expense of recalculating xi+ 1 with 

mid-point v and a after the ftrst time calculation of xi+l· 

Two restrictions are imposed on the path definition to allow correct execution of the above 

algorithm. The ftrst is that a path must be continuous so as to maintain the existence of Yi 

for a given xi. If a path has a discontinuity, the path should be treated as two separate paths. 

The second restriction is that although the trapezoid velocity proftle is deftned with sudden 

changes, a blend should be introduced at the unsmoothed corners of the velocity proftle in 

order to maintain a smooth acceleration. This is specially true in real time control since jerk 

and violent acceleration could increase wear and make accurate real-time computer-based 

control very difftcult. Run-time control of the joint path requires smoothness in terms of 
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joint displacement change and the change rate should not exceed allowable limits of joint 

acceleration. In terms of simulation, the same rules should be applied to model the 

kinematic motion. The velocity and acceleration elements along X and Y directions 

calculated in the above equations can be used to compare with the axes velocity and 

acceleration. If the required acceleration or velocity for any axis exceeds the maximum 

limit, the Cartesian trapezoid velocity profile should be modified to agree with the axes' 

kinematic constraints. 

7.5 Simulation ofsensory device functions 

The sensory device processors are also key constituents for responsive simulation. The 

methodology which these processors employ lies in the correct calculation of an accurate 

distance between the sensory device and the detected object surface. The simulation of the 

functional properties of these three types of sensory devices is illustrated as follows. 

An object has its own local coordinate frame which establishes the location of the object 

at a desired position in the simulation environment. Based on the relative position of the 

object and a sensor, the distance between the sensor and the object (frame) can be easily 

obtained. Here the "positional sensor" is defined and characterised as one which predicts 

an object position relative to a coordinate frame coincident with the sensor. This frame can 

be a common reference frame for other objects or motion primitives. See Figure 7.5.1. 

Another type of sensor which will be defined and characterised is a "distance sensor" which 

predicts the distance between the approaching surface of an object and the distance sensor, 

this being based on the local frame orientation of the object and the relative position of the 

object and sensor (see Figure 7.5.2). This type of sensor is used to measure a distance so 
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that associated processing capability can make decisions based on the distance obtained. 

One example application is the use of a distance sensor to simulate a switching action 

corresponding to the distance between the object surface and the sensor becoming zero (e.g. 

a part arrived at the sensor position) or indeed some non-zero value as required. 

"Contact sensors" will be defined and characterised as ones which detect the relative 

position of an object and a sensor, where that distance is very small and usually embedded 

in the surface of another object (see Figure 7.5.3). A contact sensor is mainly concerned 

with the normal distance between an approaching object and the sensor. If the distance 

equals zero, then the sensor can transmit a signal to the event controller to stop the 

approaching motion to the sensor surface or to make other decisions. This type of sensor is 

mainly used for collision detection of some collision-prone parts in the simulation model. 

In the case of distance and contact sensors they function in one direction only which is 

defmed at the sensor creation stage, and hence the calculation is made easier by arranging 

the directions of these sensors co-incident with that of the local coordinate frame of sensory 

related objects. Each sensor has its own local frame, therefore it is possible to locate the 

sensor with a desired orientation to facilitate its measurement. The direction of a sensor is 

always chosen to be the approaching direction of a detected object. If more than one 

dimension distance detection is required, one or two more sensors can be embedded in the 

same sensor to expand the sensor dimensional capability and form a compound sensor. 

There is no consideration in the current implementation of the orientations of these sensors 

relative to a detected object. 

Since dynamics are not considered in this thesis, force sensors and their simulation is also 
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beyond the scope of the discussion. Since the condition of any of the above mentioned 

sensors can be determined at any time within the time interval of the user specification, the 

time interval should be substituted by the remaining time Oess than one time interval unit) 

before a condition is reached. The remaining time is obtained according to the velocity of 

the approaching motion and the distance to be traversed in the next time interval. In this 

study the distance moved during the previous time interval and the distance between the 

object and the sensor are kept in the sensor data block for comparison. Therefore the exact 

time instant can be calculated before the object will move through the sensor work space. 

7.6 The distributed device processors 

A special class of processor is required to co-ordinate the operation of distributed devices, 

be that in the simulation environment or when achieving run-time control of the real 

machine. This type of processor is characterised by the need for co-ordination amongst 

motion primitives which are physically distributed. The physically distributed layout 

requires the establishment of spatial relationships between devices, and the need for 

coordination requires precise definition in the device event data block. A primitive event 

data block is created for each machine primitive to enable the event controller to execute 

the device task properly. These data blocks form a local event data ring and the frrst or head 

event data block in the ring points to another event data block relating to another device, 

i.e. another motion primitive with separate event or a sensory event data block. The 

complete set of data blocks then form a possible two level event data ring which is attached 

to the kinematic modelling ring (see Figure 7.6). 

With the aforementioned distributed local event data ring, the distributed event processor 
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takes over the event controller's responsibility (at distributed device level only) and checks 

the event type. Once the sub-event in a distributed device event is identified, the distributed 

event processor calls a sub-event dependent processor (in this case as a sub-processor for 

the sub-event) to execute the sub-event. This sub-processor can be a single motion 

processor, a high order primitive processor or a sensory processor. Once this sub-event is 

finished, the sub-processor returns its next coordinated sub-event data block address and 

the distributed event processor checks the new sub-event type before calling the next sub­

processor based on the sub-event type. This procedure repeats until all active sub-events in 

the distributed event advance their states and time base by another simulation time interval. 

At this stage, the distributed event processor returns its administration responsibility to the 

event controller and the other top level events in the event data ring are evaluated by the 

event controller in order to advance their states and time base to the current time. In the 

present implementation, the sub-event block for a distributed device uses a data block 

similar to that of the single primitive event block (containing 20 words). However 

coordination between machine primitives requires a more descriptive event data block 

hence a similar data block to that used for higher order primitives was adopted and found 

to be appropriate (i.e. 4{) words in the block). 

7.7 Motion and processing concurrency 

Motion concurrency is characterised by several devices in motion at the same time and 

requiring concurrent processing. This capability is of great importance in improving the 

efficiency and capability of a manufacturing machine. Manufacturing concurrency has 

been achieved for a long time through hard-wired control (parallel processing) and 

mechanical parallelism in various types of machine. The approach is commonly employed 
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in accomplishing large batch manufacturing tasks where there is seldom much flexibility 

required or available (in terms of the frequent changing of the con currency relationships). 

For conventional hard automated machines however product changes often cause very high 

levels of reconfiguration overhead. Computer controlled modular machines can provide 

sufficient flexibility to enable product changes whilst also offering operational 

concurrency. This form of concurrency exists at two levels, viz: the device level and 

machine level. At the device level operation concurrency is typified by the distributed 

device event where the single primitives in the device can achieve two forms of 

concurrency, namely loosely coupled co-ordination and close synchronization of several 

motions. Concurrency at the machine level is largely enabled by the physical layout of the 

modular machine - i.e. any arrangement of distributed devices. The layout of modular 

machines can be designed such that complex tasks are decomposed into multiple instances 

of simple sub-tasks with motion groups assigned appropriately to sub-tasks. Accordingly 

the joint and other machine primitive groups can be decomposed from a possibly complex 

machine for complex tasks into a number of simple devices. In terms of each joint group, 

they perform simple sub-tasks. However the combination of a number of relatively simple 

sub-tasks can be aggregated to configure a complex task [Kusiak et al. 1990]. 

Two levels of motion concurrency are essential at the simulation stage in order to emulate 

practical situations. The low level (device level) concurrency is at the device motion 

primitive level (as described in section 7 .6), where the parallel operation of several single 

degree of freedom primitives is enabled. The machine level motion concurrency is 

achieved by advancing the simulation clock at the same interval for all active devices in the 

model and this is reflected into the design of the two level event data ring structure. The 
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execution of all active primitives in each device is organised in such a way that when the 

execution of sub-events in one event are finished the next event at the same time interval is 

executed until all active events are advanced. In terms of real time computation, the above 

execution of events is a sequentially based method. However in the context of scaled 

simulation time motion, concurrency and parallel device event execution is achieved and if 

the available processing power is sufficient "real time" simulation is achievable. 

Computation time is not a critical criterion during simulation since no real time control 

response is required. However such a real time simulation system could prove highly 

beneficial for run-time control. The benefit of this having this type of event concurrency 

during simulation is that it can provide an estimate of real time machine performance and 

can provide assistance in the actual machine event control and task planning. 

7.8 Example application of the simulation system 

In this section, the control of some frequently used devices and primitives, such as motion 

axis group end-effectors (grippers), gravity feeders and conveyors are discussed to 

exemplify the design methodology and tools created in this research study and described in 

this chapter. 

7.8.1 Control of a gripper 

A gripper mechanism suitable for attachment to a group of axis primitives can be modelled 

by aggregating two or more single motion primitives on a gripper base (see Chapter 4). The 

control requirements of the gripper can be characterized by the gripper type, its motion 

constraints and motion sequence. In this study, grippers were modelled so that the gripper 

type specifies the number of fingers and the number of motion primitives on each finger 
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etc., the motion constraints defme the working range, velocity and acceleration features of 

each motion primitive, and the motion sequence defines the motion sequence of each axis. 

This information enables the gripper processor to calculate its complete operation cycle 

(open plus close duration). With the execution of a gripper operation event, the gripper 

processor advances the spatial state of the gripper with reference to its Work Centre Point 

(WCP) by the simulation time interval. Grippers with two fmgers represent a simple case 

where two motion axes usually rotate or slide symmetrically and synchronously. Once one 

control parameter for one finger is obtained, the magnitude of state change is the same for 

the other except that it is in the opposite direction. 

The control of more than two motion axes resembles distributed device control where more 

than two groups of distributed fingers (devices) interact with each other in a coordinated 

manner. The main difficulty is the specification of target positions for specific fingers of a 

hand. Once the position and orientation are defined, the kinematic equations for 

corresponding high order articulated primitives can be used to calculate the forward and 

inverse transformations. To simplify the position definition for each individual finger, an 

approach based on establishing a finger tip grasping shape was concerned and adopted in 

this research. As indicated by the comparative study of human hands, the grasping of 

manufacturing components can be roughly divided into two types, viz: circular (radial and 

symmetrical) grasping and prismatic (opposed parallel) grasping [Cutkosky et al. 1990, Li 

and Sastry 1988]. For the circular type of grasping (see Figure 7.7.1), a circle passing 

through the tips of all fingers can be established as a variable of the hand. All fmger 

positions can be defined with reference to this circle and the fingers always move towards 

or away from the centre of the circle as if in contact with the variable circle. Prismatic 
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grasping is characterized by the parallel and opposite movement of fingers (see Figure 

7. 7 .2). A straight cylinder perpendicular to the direction of finger axis motion is created as 

a reference for this type of grasping. The position of the fingers is then defined with 

reference to the centre line of the cylinder. 

Based on knowledge of the hand structure (circular or linear), it is easy to determine the 

other fmger' s position: once one of them is calculated and the fingers are always in contact 

with the variable cylinder. The inverse transformation equations can be used to calculated 

each axis control value. 

7.8.2 The control of gravity feeders 

The effect of gravity is an important issue in simulating the motion of any mass related 

object simply because it affects the spatial relationship of an object with reference to its 

simulation environment. A gravity component feeder (see Figure 7.8.2) is a typical 

example of a device where gravity effects spatial relationships. Once the first component 

at the "ready to be picked up" position is removed, gravity forces the remaining 

components in the feeder slider to fall until they are stopped by some end-stop mechanism. 

This effect can be simulated by checking (at every simulation time interval) the distance 

between the next component and the "ready to be picked up" position along the Z direction 

of the feeder local frame. If the next component is located above the "ready to be picked 

up" position, gravity effect starts to come into play. The distance moved under gravitational 

forces in the vertical and horizontal directions, with respect to simulation time, are 

respectively (see Figure 7.8.1) 

1 2 1 . 2 
Dv = 2 xavxt = 2 xgxsm(9) xcos(9) xt 
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Figure 7.7 The circular grasping ( 1) and the 
prismatic grasping ( 2 ) of typical hands 
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Figure 7.8 A gravity feeder ( 2 ) and its side view of 
the analysis of gravity acceleration ( 1 ) 
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Dh = ~xahx~ = ~xgxsin(9) xsin(9) x~ 
where, av and ah are the acceleration components of gravity along vertical and horizontal 

directions respectively, and t is the time interval. 

At the end of each simulation time cycle, the event controller activates the gravity processor 

to advance the state of any objects subject to the gravity effect. Gravitational characteristics 

are assigned to individual components or component groups (if all components in the 

feeder slider are defined as an array) before animation of the model starts. 

A similar methodology can be applied in checking the effect of gravity at the model design 

stage. If an object does not belong to the workplace or another objects and its mass centre 

is not on the top of another object, then in the simulation it falls onto either the ground floor 

(workplace X-Y plane) or the top of some object which is vertically below the falling 

object. If an object belongs to another object, then the root object of this group of objects 

(data ring) is checked with respect to the gravity effect. This function was only 

implemented for a small number of object models but the methodology can be extended to 

a complex model at an expected high cost in computation time. 

7.8.3 The control of conveyor devices 

Conveyors are widely used as transportation equipment in various industries and especially 

for assembly tasks. Conveyors can be classified into the following types based on their 

motion activating types: 

- constant moving conveyors; 

- condition moving conveyors which start to move when certain conditions are 
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satisfied. 

The first situation is very straightforward as a simple event can be defined to activate the 

conveyor following which the conveyor then moves continuously. However the condition 

based conveyor waits for an activating signal from the event controller. Typically sensors 

can issue activating/deactivating signals for the conveyor. However the state changes of a 

sensor must be processed before the sensor processes and activates a conveyor. Otherwise 

an incorrect model animation can occur. The event controller must ensure that the 

advancement of each primitive is in the correct sequence. 

This chapter has illustrated a major part of the simulation system for modular machines 

implemented in this PhD study. With the consideration of both articulated and distributed 

mechanism configuration, various simulation event processors were described in detail 

which provide an essential core for the simulation of modular machines study. It has also 

been demonstrated that the adopted simulation methodology can be used to model and 

simulate both configurations involving sequence based coordination and time based 

synchronisation. 
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Chapter 8 Modular machine programming 

8.1 Introduction 

Modular machines can be used in complex manufacturing operations, and thus a 

comprehensive methodology of programming is desirable through a user-friendly 

interface. Programming of modular machines is unlike robot and NC (Numerical Control) 

machine programming because of the enhanced generality, multi-device environment, 

flexibility and reconfigurability for different manufacturing tasks. Hence a general 

approach towards the programming of modular machines is required. In this chapter a 

programming study is made of the features of modular machines in manufacturing and a 

general systematic approach towards high level utilization and control of modular machine 

is outlined. This approach is illustrated through simulation with the possibility of 

implementation on the physical machine by the utilization of a common data format 

interface between the simulation and the physical machine control. The common data 

format interface is important for the systematic integration of simulation, physical machine 

and other CAD based systems and is demonstrated in detail in Chapter 9. 

8.2 Methods used for robot programming 

Since modular machines are still at the research stage and little attention has been paid to 

programming issues, the programming languages and methods are rarely found in the 

literature although programming of multi-robotic devices in coordinated motion was 

considered by some researchers [Agapakis et al. 1990]. However a study of robot 

programming languages can generate some useful ideas for modular machine programming 
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because both types of device are manufacturing automation machines although there are 

some differences in their configuration methods. As illustrated in section 2.4.7, it has been 

generally realised and accepted that a robot language is divided into levels. Ideally five 

levels (see Figure 2.5) are used, where each level of programming implies a different level 

of abstraction [Dupourque 1986]. Most current implementations of robot programming 

languages are at the manipulator level and above [Volz 1988 and Wagner 1990]. 

There are conventionally two common approaches adopted by these implementations, 

either using an existing language, such as Fortran or C, or a proprietary language such as 

V AL. The advantage of the first approach is that it permits the full power and benefits of 

the language to be used. However there are problems with the former approach due to the 

lack of robot specific characteristics [Gini 1987, Hutchinson and Kak 1986]. The advantage 

of a proprietary language is that it is customised to the capability of robots but it clearly 

suffers the disadvantage of being robot dependent and not standardised or generally 

accepted. 

Most recently a new method of deriving a robot programming facility has been proposed 

and devised under the concept of a programming environment, where a programming 

system can be coupled to various modelling systems and sufficient information abstraction 

and sharing between these systems can be enabled. This approach is thought to be an 

appropriate method towards future robot programming [Volz 1988]. 

Based on the evolution of robot programming systems, a method derived from the 

abstraction of a multi-level programming system and a programming language 

environment was adopted to devise a new programming system for modular machines. A 
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three level programming system was partially implemented within the established modular 

machine design and simulation environment. Currently an interactive programming facility 

has been devised and a compiler can be created in the future for interpreting the textural 

input of a task description of a modular machine. The detailed implementation is described 

in section 8.3 onwards where the characteristics of modular machine programming are 

considered with reference to articulated and distributed device programming. 

8.3 An analysis of modular machine operations 

8.3.1 Generic manufacturing operations 

The actions of a manufacturing machine are characterised by two aspects, namely the 

machine generic operation and the application dependent operations with respect to the 

machine's functionality [Volz 1988, Chatila and Giralt 1987, Van Aken et al. 1988, 

Sanderson and Homem-de-Mello 1987]. The machine generic operations are defined as 

those which exist to such a wide extent that they can be found in various application 

machines of automation. From a perspective of manufacturing industry, the generic 

operations can be abstracted from various specific industries. The assembly industry 

provides a typical application for such abstraction of generic operations. Due to the time 

limitation, only motion, sensory and communication related operations in the context of 

assembly operations were considered in this study. 

A motion operation in the assembly industry can be further divided into preparatory and 

task-achieving operations [Gini 1987 and Laugier 1988]. A preparatory motion is typically 

used when a component is required to be transferred from its initial position to a position 

where it is ready to be processed. For example an electronic component is transferred from 
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its feeder to a ready-to-be-inserted position and this transferring motion is a typical 

preparatory motion which prepares for a task-achieving motion. A task-achieving motion 

is typified by a device moving to accomplish a manufacturing task (e.g. insertion, material 

removal and so forth) by associating the motion with the task related objects. 

The signalling operation of sensory devices is another type of generic operation. The reason 

for such a generalisation is that the feature of such operations (carried out by sensory 

devices) is to sense manufacturing environment changes which are common to all 

machines. The sensors provide a feedback for the machine controller to make a decision to 

change the machine state independent of the type of sensors used. A communication 

operation between a device and a controller is also a generic operation. With the advent of 

Computer Integrated Manufacturing there is a great opportunity to achieve modular 

machine manufacturing concurrency and parallelism in order to improve manufacturing 

flexibility and efficiency. Modular machine manufacturing concurrency is typified by 

multi-device operations at the same time in a cooperative manner. To be more specific from 

the control aspect, these devices are coordinated in such a way that one device's operation 

is possibly dependent on the execution of another device's operation. All devices' 

operations are arranged correctly in order for the whole machine to achieve the specified 

task with optimal efficiency whilst physical non-interference between devices is 

maintained. Success in this accurate coordination relies on correct communication between 

devices and their awareness of the machine environment. Therefore, in a computerised 

manufacturing environment, communication among the devices of a modular machine can 

be considered as a generic operation. This is also true at a manufacturing cell or even 

factory level. 
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At the current time, the author believes that the above three types of generic manufacturing 

operations encompass most of the generic side of manufacturing machines in assembly and 

other industries, and that these operations can be used as a target for modular machine 

programming. A wider discussion about application dependent manufacturing operations 

is given in the next section. 

8.3.2 Application dependent operations 

Each task in different applications requires special (application dependent) operations to 

achieve its objectives. Some such special operations are listed as follows: 

Spatial operations which change the position of a task related object by non-generic 

motion. For instance, an electronic component is relocated in another place in an 

assembly by gravity force; 

Geometric operations which change the dimension and shape of a task related 

object., e.g, machine tools cut the component into the designed shape and 

dimension from the raw material; 

The processing one of the physical properties of an object. For example heat 

treatment of metal changes the mechanical characteristics of that metal; 

Ownership related operations which change the ownership of an object from the 

previous owner to a new one. Fixture, indexes and jigs are typical examples of this 

type of operation which are non-gravity dependent owners. 

There are many others of which some can be included in physical property operations, such 

as welding, spraying, soldering etc. Since this research is focused mainly on assembly and 

related manufacturing industries, the above operations provide a wide enough range to 
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express the needs of such manufacturing activities. 

Like the generic operations, the application dependent operations can also involve different 

levels of a modular machine task description. This feature of requiring a multi-level task 

description naturally leads to the multi-level modular machine operation description. Some 

of the application dependent operations can be composed by some of generic operations. In 

this case, the task description for the generic operations at this constructing level of the 

operations can be employed by the application dependent operation and all related control 

parameters can be adopted. However, if this operation involves the machine device level 

function formation, then an application dependent task description is usually required in 

order to facilitate the user application description. The manipulator end-effector or gripper 

is a typical example. The motion of each jaw or finger can be precisely defined by using the 

generic operation - preparatory operation description. However, at the high level, which is 

the device level, an application dependent task description is required to simplify the 

description of the gripper operation. "Open" or "Close" can serve the task description 

purpose. 

However, some other special operations, such as physical property related operations, need 

special task descriptions which are beyond the combination of machine generic operations. 

The control of welding parameters can not be described in terms of machine generic 

operations even if the control of these parameters are integrated into the machine control 

capability. In these cases, a special set of application dependent task descriptions should be 

introduced as a sub-set of the whole machine task description. 

It can be clearly seen that an application dependent operation is characterized by its special 
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requirement of introducing a new command description no matter at which level it is used. 

But, due to the generic feature of the four types of generic operations, one set of operation 

descriptions can be always used at different level of a modular machine in different 

application areas. This can lead to a general approach towards a consistent machine task 

description with respect to the machine generic operations. There is a need and opportunity 

to produce a framework for the generic side of the operation. together with some sub-set of 

the application dependent tasks and operation descriptions. Thus a robust modular machine 

programming methodology can be derived. 

8.4 An operation-oriented programming methodology 
with a three level user interface 

Manufacturing operations can be categorised into generic and application dependent 

operations [Laugier 1988]. Each of these categories can be further divided into some 

specific operations with a common feature. Although this decomposition is described with 

respect to assembly machines, it is also true of other manufacturing machines due to the 

machine's common feature (to change a product's geometry, physical property, 

relationship etc.). As modular machines take advantage of a machine's functional 

decomposition, the above analysis and classification is even more beneficial to modular 

machine programming and task description. Since multi-machine or device co-ordination 

in a computerized manufacturing environment is considered in the above discussion, the 

distributed devices layout aspect is also encapsulated in the operations discussed earlier. 

It is natural that each generic operation exists at each level of the physical machine 

hierarchy and that the same type of generic operation can overlap two or more physical 
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levels. Because of the hierarchical feature and the operational decomposition, the lower 

level operations can form a higher level operation which is in the form of some greater 

abstraction of the task description. The low level generic operation primitive can not only 

form a higher level generic operation, but can also produce some application dependent 

operations since the modular configuration is adopted in constructing complex devices 

from low level primitives. A manipulator gripper can be classified as this type of 

application dependent operation constructed by two or more low level geometric operations 

- rotation and sliding. This is especially true if the dependent operation is made of motion 

operations. The outcome of this analysis completely agrees with the machine primitive 

decomposition in terms of a machine's physical construction. 

Based on the operation analysis and the modular machine function decomposition, the three 

level operation oriented machine task description method shown in Figure 8.1 is proposed 

and partially implemented to program a modular machine. At the lowest level (machine 

single primitive level), the task description is focused on the individual primitive feature, 

and each device is precisely specified to achieve its function in an exact way. This is a 

complete level of a machine task description, but is often very cumbersome and logically 

error-prone. The task description at the device level provides a better user interface and has 

some intelligence. Along with the low level machine definition, this level of progranuning 

can achieve the machine task description with a reasonable efficiency. A higher level of 

task description is needed to realize high level machine intelligence, and is denoted as task 

level progranuning. These three level progranuning are described in details as follow. 
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8.5 Operation-oriented programming method at the lowest level 

Based on the above discussion, a modular machine's manufacturing task can be defined by 

its operation and corresponding attributes. An operation definition describes the machine's 

action type, whereas the related attributes then define the action details in a quantitative 

manner. In this study modular machines were decomposed into a three level hierarchy in 

terms of functionality, and thus a different criterion is used to measure the operation and 

functionality at each level. 

At the lowest level of the hierarchy the focus of function description of single motion 

primitives or sensors relies on the isolated view of the single primitive performance. 

Therefore, the operation of these primitives is described by the primitive function type and 

its attributes. For example, a single motion primitive's operation for a prismatic joint can 

be described by the function MOVE and the attributes, primitive name, moving distance, 

velocity, and acceleration. As to the rotation of a joint, the operation type MOVE is replace 

by ROTATE and the corresponding attributes are described in the context of the rotation 

operation. Although there are two types of generic motion operations at this motion 

primitive level, there is no fundamental difference in describing them both in function type 

and attributes. The difference appears at the device level discussed in the next section. 

Sensors are another type of low level primitive which simply send conditional signals to 

provide raw information for the machine controller to make decisions. The signalling 

operation at this level was treated as a generic operation as they can be found and used in 

computerised modular machines in many application areas to achieve low level 

"intelligence". The function description for a sensor is 

SIGNAL sensor_ device_ name;. 
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The other two types of generic operations - communication and decision making, derived 

at the machine level based on the device and machine functionality, are not considered at 

this low primitives level since they are concerned with higher level coordination and 

management of the machine's operations. 

Application dependent operations at the lowest level are defined as those that accomplish 

elementary operations which are application dependent other than: the above mentioned 

three - sliding, rotation and signalling operations. Sometimes one of the elementary 

operations forms an abstracted operation at a high level. For example, the mixing of 

chemical solution for PCB board soldering is one such application dependent operation. 

Since the application dependent operations at this level often involve other physically and 

chemically related operations, motion and signalling based operations are concentrated in 

this study at the low operation level. 

8.6 Programming methods at the device operation level 

8.6.1 Motion generic operation 

At the device function description level, the view point is that of a group of single 

primitives and their relationships. Therefore the focus of the device description is on the 

function type and its attributes with respect to the group. Abstraction in the device function 

description may be possible to a certain extent, but it varies from one device to the other 

depending on the device complexity. If a device is of a transportation type, such as a group 

of relationships established between motion primitives to achieve a certain motion type in 

its working envelope, the function description of the device is still centred on its compound 

motion description. Since at this stage more motion primitives are introduced in the device, 
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there are two aspects which need to be described due to this structural change. 

The first is that the relationship of these primitive motions is of great importance in 

extending the device functionality. The spatial information is initially embedded in the 

machine model and this gives one possible method of dealing with the issue. The second 

aspect is the functional combination of these primitives, and this is defined by the device 

function description type in conjunction with some of the attributes. The articulated and 

distributed devices are the main interest of these function descriptions. The articulated 

situation is discussed in this section and the distributed one is considered later. 

For the articulated motion axes group, as described in previous chapters, there are basically 

three types of primitive motion relationships, viz: sequential, loosely coupled and 

synchronized motions. The function descriptions for these three motion types were 

implemented in the abstracted form of 

MOVE device_name, motion_type Q (primitive 1,2,3) default type(Q) or L or 

S(path_narne), targetyosition, velocity, acceleration;. 

The above form of task description does not necessarily have a complete set of attributes 

every time when a task is described. For example, when the motion type is sequential, each 

primitive uses its own maximum velocity and acceleration if the device velocity and 

acceleration are not specified. The default velocity and acceleration of each motion 

primitive are also used in the case of loosely coupled motion if the velocity and acceleration 

are not defined explicitly at this device level. For the synchronized situation, the default 

velocity and acceleration for the longest motion execution time is chosen to scaled the rest 

of them based on the synchronization condition if the device velocity and acceleration are 
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not defined. 

8.6.2 Operations for the distributed devices 

As for the distributed devices (built up by physically distributing all single motion 

primitives or higher order primitives), there are similar basic motion types, i.e. the 

sequential motion, loosely coupled motion and closely coupled motion which can be a path 

required motion [Jouaneh et al. 1990, Maimon 1990 and Tao et al. 1990]. Since motions 

are relative to each other in this case, the overlap of two distributed motions in an interest 

plane can prOduce a defined path as described in section 7.3.3. Apart from these three single 

motions, there are other possibilities where one higher order primitive in a device can move 

with any type of the above three motions and rest of motion primitives in the device are co­

ordinated with the 'main" motion in one of these three motion types. Hence, three possible 

combinations can be derived to describe the relationships of motion primitives within a 

device. Since all types of motions are time based, the combination of the same type of 

motion as a sub-event repeats the same description and can be replaced by two separate 

events, hence these sub-events are redundant and initially excluded from the discussion 

(see Figure 8.2). If any type of event embodies a same type of sub-event motion, it is easy 

to define such situation as two separate events for the same device. For loosely coupled 

motion of a device, the sequential motions should be defined explicitly to ensure the correct 

sequence although this sub-event starts at the same time as other, primitive motions. The 

command in such a situation is 

MOVE device_ name, L (1st, 2nd, .. nth), target _position_ name, velocity_ name, 

acceleration_ name;, 

where 1st, 2nd, .. nth are 1st, 2nd, .. nth primitive name of the sub-event, and the sub-event 
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is embedded in the event description. Since the device is distributed in this situation, the 

position, velocity and acceleration actually refer to one set of related data which are 

respectively defined at the position, velocity and acceleration specification stages. 

In the situation of a synchronized sub-event in a loosely coupled event, up to three motion 

primitives can be synchronized to achieve a path specification. In this case, such sub-events 

can be scheduled into sequential events and executed one after another. However the 

parallelism is not maintained and the desired efficiency of the task execution becomes poor. 

There is a need to deal with this sub-event complexity in terms of machine programming. 

The following command was created to encompass the related information: 

MOVE distributed device name, L (1st, 2nd, 3rd of the synchronization sub-- -

event), target _position, path_ name, velocity, acceleration; 

where a path_ name specifies the path which the synchronization sub-event primitive group 

has to follow. The velocity and acceleration here define the user expected end-point 

velocity and acceleration of each primitive or primitive group. If this velocity and 

acceleration violate the joint velocity and acceleration constraints, the joint velocity and 

acceleration are used to replace the user specified ones at this level of programming. It is 

impossible and impractical to require all primitives in a distributed device to move at one 

single velocity and acceleration since the sub-event nature mainly dictates the motion 

kinematic feature. The user specified velocity and acceleration are usually treated as a 

reference velocity and acceleration and therefore are not necessarily used. If a strict 

kinematic requirement has to be imposed on the motions of primitives in a device, the 

velocity and acceleration can be replaced by velocity and acceleration data names, where 

velocity and acceleration data tables are created at the velocity and acceleration definition 
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stage for the device. This can be very useful for a task-achieving operation definition at this 

level. In most situations, the default velocity and acceleration can be used to simplify the 

machine programming in preparatory operation and a certain percentage of the default 

velocity and acceleration can be used as a fme motion for a task-achieving generic 

operation at this level. The trapezoidal velocity profile can be defined at the kinematic 

feature creation stage and be referred to by the preparatory and task-achieving operations 

at this stage. The exact profile is decided by the user's specification (see Figure 8.3). 

Therefore at this level, the velocity attribute has three options, namely actual reference 

velocity, velocity data block name, and velocity profile data block name. The task­

achieving operation can be embedded into its preparatory operation or defined as separate 

one. 

8.6.3 Signalling generic operation at the device level 

The generic operation signalling at device level is initiated by the receiving of the signal. 

Signal primitives or sensor devices are created at the modelling stage. Once the simulation 

starts, they function as physical signal devices. The status of a sensor device can only be 

altered by the satisfaction of its functional description. For example, a proximity sensor 

changes its signal status when an object exists between its "emitter" and "receiver". 

Therefore, the operation of sensor devices are activated by the start of the simulation 

execution rather than by any command. 

Meanwhile the effective utilization of these sensory device information requires the ability 

to perform logical operations on it. Typical logical operations, such as AND, OR NOT, 

need to be included in the sensory information operation. These operations can achieve the 
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same level of intelligence as conventional computer languages in the sense of programming 

capability. However since the operated information is the feedback of simulated machine 

environment, these logical operations together with some conditional operation commands 

enables a user to have better awareness of a machine environment. Like the conditional 

operation command in conventional computer languages, IF (logical operation=true) 

THEN machine action, WHILE (logical operation=true) machine actions, and FOR 

machine actions TILL (logical operation=true) are used in machine programming at the 

device level. The WHILE and FOR .. TILL commands are a form of loop. The machine 

actions in these loops can be a series of sequential or parallel actions. For example, an 

articulated manipulator group is populating a PCB board. If the condition that a PCB board 

is at the "Ready" position is satisfied, then the manipulators can pick up several electronic 

chips and insert them into different positions one after another until the population is 

finished. The inserting positions can be defined as a variable, and the manipulator group 

uses the same assembly operation procedure (subroutine). A insertion procedure (see 

Figure 8.4) could be described as: 

WHILE (PCB_Ready = true AND population_not_fmished) 

{ 

MOVE device_ name, Pick_ chip _yosition; 

MOVE device_ name, Insertion _approach _yosition; 

MOVE device_ name, Chip _target _yosition, velocity _yrojile _name; 

MOVE device_ name, Insertion_ approach_yosition; 

}. 

The loosely coupled motion default type is chosen for the above motions. A specified 

velocity profile is used in task -achieving operation of insertion, and the rest of the motions 
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use the default trapezoid velocity profile. The condition of PCB_Ready is satisfied by 

delivering a PCB board at the assembly position where a sensor can then send a signal to 

validate the PCB_Ready condition. The delivery of a PCB board can be achieved by 

another device controlled by another device level control program. The assembly finishes 

when all chips are populated on a PCB board 

8.6.4 Communication generic operation at the device level 

Signalling operations describe the interaction of machine sensory devices with their 

environment, and they can be classified as external communication between machine 

controller and sensory devices. Due to the multi-device construction structure of a modular 

machine, there is a great need to communicate among these device's operations to achieve 

operation coordination. The interaction among these device's operations is defined as 

internal communication, which enables task planning coordination, information sharing, 

and the initialization and activation of other device operations. The efficient operation of a 

modular machine relies on the correct task operation planning and sub-task allocation to 

each device. Due to manufacturing requirements, there may be a sequence constraints, i.e. 

sub-task B can only be carried out after sub-task A finishes. The activation of such a 

successor sub-task can be realized through the internal communication between sub-tasks. 

Since this type of conditional variable can be defined as a global logical variable in the 

simulation phase, the communication was achieved by the command 

SEND destination_variable, message; 

where message can be a single "1" for true or "0" for false, or a long data message. In the 

situation of information sharing, the information in one sub-task, such as sensory values, 

velocity etc., can be used in another sub-task if it requires this information. The activation 
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of another device is also achieved by the communication command 

SEND destination_variable, message. 

This then provides a tool for the machine controller to plan and control the machine 

devices in an intelligent manner. In real time control using the OS9 operating system for 

UMC, EVENT, PIPE and DATA MODULE can be used to pass information, and each has 

its own advantage. However, to simplify the communication method (mainly due to the 

adequate capability of the SEND command in the modular machine simulation), only the 

SEND command is created for the communication purpose among sub-tasks of a modular 

machine. 

8.6.5 Application dependent task description at the device level 

In assembly industries, a typical application dependent device is the gripper or hand which 

holds a component and assembles it in conjunction with transportation devices. The 

implementation of this simple gripper operation description for two jaw with symmetric 

gripped component at device level is described as 

OPEN gripper name; or CLOSE gripper name; . - -

However, for those grippers which have more than two fingers, the task descriptions should 

be defined explicitly for hand operation. In the case of prismatic grasp of a symmetric 

object, the hand operation description should encompass the grasp type (prismatic) and 

gripped fmger tip position relative to the central line of grasping the variable cylinder. The 

grasping event is described as: 

CLOSE hand_ name, Prismatic, position; 

where the position is the relative position from the hand grasping to the central line of the 
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variable cylinder (or the diameter of the cylinder). A similar event description is employed 

for the circular grasp 

CLOSE hand_name, Circular, position; 

where the position is defined relative to the grasping variable circle centre. The opposite 

operation of a hand is simpler than CLOSE and is described as OPEN hand_name. The 

above description is appropriate for symmetric component grasping, but the same 

description can also be extended to non-symmetric component grasping description by 

embedding some contact sensors on each finger. The approximate finger tip position 

definition can lead one of the fmgers to touch the object and then the sensors will guide 

the other fingers to their contact (grasping) position. 

The modelling of this type of complex grasping itself can be complicated in most modelling 

systems, let alone incorporating the hand in its whole environment. However, the modular 

approach allows the user to decompose the machine as well as the task into devices and sub­

tasks, and hence each of the devices can be modelled individually and sub-task operations 

can also be tested beforehand. This method enables the user to model each device 

separately and assemble them into a large model. The other benefit of providing a tool to 

simulate hand operation is that it enables the dexterous hand researchers to simulate the 

conceptual hand performance before building any unnecessary prototype. 

A conveyor is another type of application dependent device which has linear motion 

(usually driven by a rotation mechanism) with some variations in terms of motion type. A 

simple conveyor operation is described as 

START conveyor_name; 
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An attribute is appended to allow the simulation of more complex conveyor operations. A 

conveyor operation depending on a sensor condition is described as: 

START conveyor name, sensor name, velocity; - -
where velocity specifies the conveyor variable moving speed. 

Modular machines can be used in various applications. The above approach can be 

employed to deal with many devices which arise in new applications. The method can be 

generalised as defining the functionality of a new device, decomposing the device into low 

level operations, studying the variations of the device function, deriving the task 

description command and attributes at the device level for the application and development 

of its control algorithm. Depending on the application dependent device functionality, the 

command to control the operation of the device can be in the abstracted form of the 

functional description. Again the format of the sub-task description has the form 

ACTION device_ name, action_ attribute; 

where ACTION can be instantiated by a specific device function and the attribute is the 

quantitative description of the action. This method is only a recommended procedure and 

the full implementation of other application dependent devices is left for future research 

and implementation with the advent of new devices. 

8. 7 Task level programming 

Device level programming is characterised by the description of the primitives' separate 

operations and their coordination. A series of such primitives' operations can often result 

in the accomplishment of a sub-task. It is attractive to draw the programmer's attention to 

a level of programming that is one level above device programming [Rock 1988], i.e. to 
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consider the machine operation description as the completion of some sub-tasks 

accomplished by a series of primitive operations at the device level. The description of a 

machine's operation is then at a high level of abstraction and the user can program a 

modular machine with ease. The premise of this level of programming is that the detailed 

parameters of each primitive's operation in a device are available to the task program 

instantiation and decomposition mechanism (PIDM). This method is based on the 

programmer defining some default parameter values for a device primitives at model 

creation stage and the PIDM having full access to the model information. 

The task program in the instantiation and decomposition mechanism can also reason about 

some parameter values and primitive operation sequence based on the task level description 

and available primitive definitions (model knowledge) and some Macro operation 

sequences. All these can lead to easy programming with a higher level of abstraction, 

enhanced intelligibility of task program, more rapid program development and intensified 

program abstraction with automated assistance. 

8. 7.1 The abstraction of insertion assembly operation 

In the simulation phase of a modular machine, the geometric information is fully 

represented in the model and is available to any internal mechanism although hidden from 

the user. This enables the program instantiation and decomposition mechanism to have 

access to geometric information of any machine device and component object. The PIDM 

then has a full spatial knowledge with which to reason about the distance each motion 

primitive moves. On the other hand, the primitive's operation type and the decision of 

selecting a particular primitive are determined by the high level task description and its 
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incorporated operations. The operation sequence is usually dictated by production rules. 

For example, the operation sequence for the insertion of a peg into a hole may be typically 

expressed as 

MOVE device_ name, approaching_positionl; 

MOVE device_ name, component _gripping_position; 

CLOSE gripper_ name; 

MOVE device_ name, approaching_positionl; 

MOVE device_ name, approaching_position2; 

MOVE device_ name, insened _position; 

OPEN gripper name; 

MOVE device_ name, approaching_position2; 

MOVE device_name, original _position;. 

As clearly indicated in the above operation sequence (also see Figure 8.5), the assembly 

operation "Peg in a Hole" is composed of nine separate device operations and the sequence 

is decided by the correct assembly rules of such an assembly task. In order to describe such 

a task type at a higher level, the user has to specify the device or devices task type, the 

operation related object names and its destination to uniquely define a task. A proposed task 

description for the above assembly task is 

INSERT objectl_ name, object2 _name, device I_ name, device2 _name;. 

Since the modelling embeds all information about the machine model, the explicit 

specification of the object operated upon, operating device and destination object provides 

all related devices and objects for reasoning and decomposition. The task type INSERT 

then implies the operation content and sequence at the device level programming. The 

moving distance for a device is calculated as the relative distance between objectl and 
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object2 along with the assembly rules fir INSERT task (in this case the operated component 

must be approached and inserted vertically with some safety considerations, and this 

determines the approach positions). Since there is usually more than one device of each 

type in a machine, it is necessary to specify the operation device to avoid ambiguity. Expert 

systems are expected to be employed for the above purpose. Some researchers [Rajan and 

Nof 1990] have realised the importance of efficient task allocation among several qualified 

candidate machines, and this issue should be considered at the task level description and 

task decomposition in modular machine programming. However, this is beyond the scope 

of the current research and is left as a consideration for further higher level programming 

(task level programming can then be further divided into low level - object and high level 

- task or objective programming [Rock 1988 and Van Aken et al. 1988]). However, the 

spatial relationship between two mating objects and the program instantiation and 

decomposition mechanism are considered in next section. 

8.7.2 The spatial relationship of two assembled mating objects 

For objects with a simple geometric shape, such as cuboid and cylinder, ten spatial 

relationships are possible (see Figure 8.6) excluding the impossible assembly operation of 

"bottom into" and "beneath" (these two however can be substituted by "top into" and "on" 

if the assembled sub-assembly is turned upside down). The above ten possibilities can be 

further reduced if a restriction is imposed such that a mating direction always has to be the 

Z direction of the local coordinate frame. The system could then automatically work out the 

"insertion" or "placing" direction according to the convention. However, this can restrict 

the user model object definition and cause inconvenience for modelling, and therefore all 

ten possible relationships are accommodated in the object level description by requiring the 
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user to explicitly specify the relationship between two assembly objects. The other options 

to "into" description of "insert" command mentioned early are the rest of relationships 

listed in Figure 8.6. All these relationships can be embedded as an attribute in any part 

mating related task description. 

8.7.3 The task programming instantiation and decomposition mechanism 

Knowledge about the two mating components gives more information for the system to 

calculate the moving distance. It is easy to calculate the distance between the two frames 

related to the component local frame. Through a search of the modelling data structures of 

two component geometry, the boundary, shape and dimensions of each component can be 

found, and the offset between the coordinate frame and the outline of each component can 

then be calculated. 

Since a set of conventions are used to specify the position and orientation of a local 

coordinate frame relative to the geometric representation in GRASP [Grasp 1989] and other 

equivalent modelling systems, the calculation of a coordinate frame offset can be used to 

obtain the moving distance due to the component dimension variation (see Figure 8.7). The 

spatial relationship between two mating components is also a very useful in calculation of 

the moving distance. The distance due to the assembly direction can be based on the spatial 

information specified in the object level task programming. With the above full knowledge 

and the names of the devices involved, a lower level (device level) of machine task 

execution programming can be generated with reference to the task description and the 

assembly rule. 

The object level programming described in this chapter partially achieves the objective of 
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intelligent programming. By utilizing model information, the moving distance of a device 

can be determined automatically. Since the derivation of device level operation type and 

sequence are based on the substitution of a set of fixed operations, this approach cannot be 

classified as real intelligence. A genuine intelligent programming approach needs to be 

dealt with at an even higher level - assembly task programming, and this approach requires 

more background information and high level intelligent reasoning. However, this area 

remains untouched and is left for future research. 

This chapter has illustrated some implementation of modular machine programming which 

is essential part of the modular machine design and simulation environment. A three level 

modular machine programming environment is described and the implementation of the 

first two levels have been discussed with particular reference to assembly operations. It is 

suggested that artificial intelligence is desired for generating high level task programming. 
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Chapter 9 Common data format for the integration of 

simulation and physical machines 

9.1 Introduction 

Currently most machine design and simulation software works in isolation within a 

computer integrated manufacturing environment [Durr 1989, Kemper 1987]. The reason 

for this is that almost every system relies on its own specially designed and customized data 

structure. The lack of a standard data structure has greatly impeded easy access to the data 

structure of different systems, flexible manipulation at the different user levels and efficient 

information utilization. Due to the existence of various data structures at different levels of 

the entire engineering life-cycle and also because of different requirements at each 

application level, it is difficult to define a new standard data structure to be a popularly used 

and accepted standard within engineering applications. However, Maier et al. [1985] 

proposed a new data model and Zdonik et al. [1986] described a methodology for 

complying with an object-oriented programming environment in a database. 

With increasing appreciation of the importance of a standard for product model exchange, 

many researchers have devoted their effort to accelerate the development and 

implementation of an international standard STEP (STandard for the Exchange of Product 

Model Data). STEP is targeted to provide a complete, unambiguous, computer-sensible 

description of a product throughout the life cycle of the product. The data elements required 

to support a product through its life cycle include not only the geometry but other attributes 

and features that completely define a product [STEP 1991, Vergeest 1991]. Although the 

STEP standard has attracted many researchers attention particularly those whose main 
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interests involve geometric modelling and data exchange, only philosophies embodied in 

the STEP standard was used to achieve system integration. The reasons for adopting such 

an approach is that the STEP standard is so complicated and comprehensive that it has 

redundant capabilities for the modelling of modular machines. In addition at the time of this 

implementation there was no complier commercially available and it is also difficult to 

write such a compiler. Based on these reasons a local common data format approach was 

used by the author and other researchers [Gob 1991]. In this chapter, such an approach with 

reference to the STEP standard methodology is proposed to integrate the various systems 

at different levels. This common data format can serve as the common interface between 

the existing machine design and simulation system and the physical machine control as 

well as other computer aided machine design systems. The common data format is a type 

of neutral data format which tries to encapsulate the contents of different requirements from 

each application level and provide a comprehensive and consistent data information for 

machine design, simulation and physical machine control. 

9.2 The demands of common data format 

9.2.1 The requirement from the simulation of physical machines 

For most industrial automation machines, there is a wide range of control methods used in 

applications and various control parameter data formats exist. However there is much 

commonality in manufacturing methodologies, and it is possible to identify generic control 

task and control parameter data among these different control approaches. It is of great 

importance to generate a common data content and format from physical machines so as to 

facilitate the creation of control algorithms and the specifications for the simulation phase. 

A common data format can facilitate the standardization of design and manufacturing of 
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the industrial controllers and dramatically reduce the large number of pre-processors and 

post-processors required by both the physical and simulation controllers. 

At the simulation phase of machine design, a set of control and drive parameters are 

required in order to manipulate the graphical representation of a manipulator. Direct access 

to this control data from the simulation environment can save effort in redesigning the 

control parameters, increase the possibility of the data being directly used at the physical 

machine control phase and improve the close connection between a physical machine 

control and its simulation (device manipulation). One of the major data contents in 

simulation is kinematic modelling data which is defmed as the control data in physical 

machine control. Use of a data format that is common to the machine and the simulation 

improves the realism of the simulation. This is because the closer the relationship between 

the simulation of a machine and the physical machine, the more accurate and reliable the 

simulation result is. 

9.2.2 The requirements from physical machines 

With the requirement for quick product changeover and economical production, the 

manufacturing complexity from machine functionality to task planning increases 

considerably. The importance of a correct evaluation of a manufacturing machine's 

functionality and its performance beforehand is so prominent that the simulation of a 

machine's task execution becomes a key component to assist the management to make 

responsive decisions. It is easy to intelligently achieve a complex task in the simulation 

environment based on the large number of calculations and assumptions that a simulated 

machine model always perform as expected and there are no time constraints during the 

252 



Chapter9 

simulation of a machine. However, due to the real-time constraints and the low level focus 

of machine control, it is unreasonable to expect a physical machine to achieve the same 

level of performance evaluation as a simulated machine model in terms of planning, 

calculation etc. Therefore there is a need for a physical machine to share the simulation 

results in its physical task execution. A consistent data content and format can undoubtedly 

improve the easy utilization of such simulation results. 

The high level task planning of a machine can be accomplished easily, efficiently and 

cheaply at the simulation phase. There is usually no equivalent level of planning in physical 

machine programming. The execution of a high level planning task at the simulation phase 

requires a decomposition of the task into low level (physical machine programming level) 

sub-tasks. The common data format at the level of both simulation and physical machine 

control provides a means to interface the high level task planning and physical machine 

level control. 

A common data format can facilitate the information sharing between simulation and 

physical machine. The simulation results can be used in physical machine control. It can 

also make it easier to interface either the simulation or physical machine with other 

machine design and evaluation systems. If there are m CAD systems for machine design 

and there are n physical machines, then m x n processors will need to be written in order to 

interface all these m systems with then machines. However, it is only necessary to write 

m+ n pre-processors and post-processors to interface them if the common data format 

approach is adopted in this integration design issue. In this research, the interface is 

implemented between a mechanism design software package known as CAMLINKS 

[1991] in Machine Design and Control and the modular machine simulation environment. 
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CAMLINKS is designed for mechanism and machine design and analysis, and it provides 

very useful data on cam motions which can possibly be used for software cam control. 

9.3 The common data format approach 

9.3.1 Centralised common data format 

There are two typical approaches to achieve the integration of machine graphical 

simulation and physical machine control. The first is for a machine simulation system to 

use its own data formats both in terms of geometric and machine simulation information (a 

·CAD system data format is probably used). Alternatively, the physical machine also works 

on its own data format (possibly a specialised data format), but integration is achieved by 

a direct processor between the simulation system and the physical machine. The second 

approach is the same as the first in the sense that both the simulation and the physical 

machine work on their own data formats, but with a centralised common data format 

introduced, each side must have a processor in order to establish an interface with the 

common data format directly. Figure 9.1(a) and Figure 9.1(b) describe the above two 

approaches respectively. The second approach was adopted in this study and a prototype 

common data format was designed and partially implemented (described in the section 9 .4). 

9.3.2 The data analysis of a simulation system and physical machines 

From the point of view of the simulation phase, the following data types should be included 

in the common data format: 

(1) Geometrical description data of a simulation machine model which defines the 

shape, dimension and layout of each machine component within the simulation 
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environment. These data provide essential information about the geometry of a 

machine and its spatial relationships; 

(2) Kinematic specification data of a simulated machine, which defines the capability 

and constraints of a machine's motion; 

(3) Machine task definition of a simulated model, which specifies sequence of 

machine's task execution, the task type and the target position (task attributes) of 

each sub-task. The task defmition can be made at three different levels for the 

convenience of a user as described in Chapter 8; 

(4) Sensory device and other special mechanism functionality described in a 

simulation model. Since the device does not exist physically, functional 

performance is purely dependent on the definition of each device's function and 

its computational execution of each function. 

The physical machine control shares two of these types of data (kinematic specification and 

task definition) with the simulation. Since sensory and other special devices exist 

physically in a machine, there is no need to describe their functionalities in its physical 

machine model. Also since a real machine is already constructed physically, there is 

generally no need to describe its geometric parameters, although in some advanced 

machine control this information could assist intelligent machine control and decision 

making. The following additional data types are required to accommodate the real-time 

physical machine control issues. 

(1) Machine dynamic feature descriptions which define the dynamic performance of 

each machine's manipulators, such as damping, inertia, gain, moment tensor etc. The 

physical machine's real-time response is highly dependent upon its dynamic 

256 



Chapter9 

characteristics. The optimal selection of these parameter values can produce high 

quality control performance. 

(2) 1/0 checking description of each port or handler. Since the physical 

communication and task execution devices are not perfectly reliable, frequent 

checking of each port to ensure a correct status is of prime importance to ensure 

the correct execution of the whole task. 

All these six types of data are separately defmed in the simulation and physical machine 

domains in most systems, but a unified description is required for true integration, which 

can be described by using the EXPRESS language. 

9.3.3 Common data format definition method 

It is not necessary to include every type of data at each level of machine evaluation and 

application as they have differing requirements. However, as data types overlap between 

different systems in a machine application environment, it is possible to abstract a common 

data type from more than two systems into part of the common data format. The 

methodology employed is based on data abstraction and the collection of these local 

common data types into a common data format. The abstraction is carried out at different 

application levels and the data collected are arranged in the same hierarchical structure as 

with their physical machines or simulation model. Therefore the common data format 

possesses the characteristic of hierarchy, modularity and multi-usage. 

Based on the above methodology and the current implementation environment of the 

Universal Machine Control architecture, the UMC simulation environment and a 

specialised CAD based motion design software (CAMLINKS), the first three types of data 
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have been formed into the current common data format. The remaining three types are 

treated as local data requirements of the simulation and physical machine control but could 

eventually be included in the common data format for an even more advanced emulation 

environment. 

The representation of each object, device, primitive, position, path etc. is identified by a 

unique name. Therefore the exclusive name for each entity in the machine application 

environment (no matter whether it be the simulation environment or physical machine 

control) is of extreme importance. The syntax for these common data format definitions is 

based on Entity_type Entity_name, attributes, as illustrated in the previous chapter. An 

overall common data format description is illustrated in Figure 9.2. 

Since a hierarchical structure is embedded in the data format, a top-down machine 

definition approach is naturally used to facilitate the data definition. Because there is 

usually more than one element as the higher level descendants or its attributes specification, 

the common data format possesses the recursive definition feature at the same level 

definition of a machine element or its attribute data,. All lower level elements are defined 

sequentially until all elements belonging to the same owner are defined. The geometric and 

kinematic data are described at the bottom level for different attributes. Task definition data 

is at the same level as the machine description level, (the top level). The task data output 

format can also form a hierarchy for different machine constituents - devices. At the top 

level of the task data a higher level task description is used to generalise the task being 

executed. The second level task description is sequential task execution description 

although there can be parallel task execution. 
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Entity_type Entity_name{ 
Constituent_element's_ namel, 
Constituent_element's_name2, 
Constituent_element's_name3, 

}; 

I I 
I I 
I I 

Constituent_ element's_last_name; 

Constituent_ element's_namel [ 
Sub-constituent_ element's_ namel, 
Sub-constituent element's name2, 

I I - -

]; 

I I 
I I 

Sub-constituent_element's_last_name; 

Sub-constituent_element's_namel( 
Primitive _geometry _information( 

shape_type, 
X,Y,Z dimensions), 

Primitive _location _at_ workcell( 
Translation(X,Y,Z), 
Rotation(X,Y,Z)), 

Primitive_ constraints ( 
axis_ home _position, 
park _position, 
maximum _position, 
minimum _position, 
maximum_ velocity, 
maximum_acceleration), 

); I I 
I I 
I I 

Task task name{ 
Sub-task namel, 
Sub-task name2, 
Sub-task:name3, 

}; 
Sub-task_namel( 

Primitive _manipulation_ commandl, 
I I 
I I 

Primitive_ manipulation _last_ command 
) ; I I 

I I 
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machine's name, and its con-
stituents names 

, , 
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, r 
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their sub-task type and attrib-
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Figure 9.2 The common data format for the machine 
geometric, kinematic and task description 
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9.4 Processors implemented between the common data format 
and the simulation environment 

9.4.1 Post-Processor from the common data format to the simulation 

The purpose of establishing a post-processor from the common data format to a simulation 

environment is to interpret the common data format into the ring and tree structure used in 

the modular machine simulation environment. All data types embedded in a common data 

file are not needed to simulate a machine model. The main objective is to process the 

geometric and kinematic part of the common data file so as to create a data structure and 

corresponding data blocks (as described in the previous chapters). The first key word 

expected is "Machine" followed by a name that is stored in a data block at the highest level 

of the machine modelling data structure hierarchy. The number of machine constituents and 

their head block pointers are also stored in this data block on subsequent scanning of the 

me. The machine definition is introduced by a bracket which denotes the beginning of the 

constituent parts of the machine, identified by their names and separated by comma. The 

machine definition is terminated by a concluding bracket followed by a semi-colon to 

indicate the completion of one entity at this level (in this case the machine entity). At this 

point, the definition usually drops one level of the hierarchy to specify the machine 

constituents' attributes. The same starting symbol "{"and concluding symbols"}" are used 

throughout the common data me to clarify the hierarchical structure for the post-processor. 

At the second level of the data structure hierarchy, the corresponding data blocks are 

created for each of these machine constituent parts based on their type. Each of these data 

blocks belongs to the machine data block and remains at the same level to form a machine 

constituents data block ring in the simulation environment. The next level of the hierarchy 
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defines sub-constituent parts of a machine constituent part. At this level, the detailed 

geometry, location information and kinematic constraints of the sub-constituent part are 

specified. At this level the processor generates the standard data tree and ring structure for 

the motion axis in the simulation. The successive creation of those sub-constituent parts 

forms another ring at this level before the concluding symbols. The creation of these data 

blocks for sub-constituents then collectively produces a structured data representation 

which is ready for graphical manipulation and displaying. 

The concluding symbols of one entity at a particular level, followed by a key word - Task 

indicates the completion of geometric and kinematic description of a machine model and 

the start of the machine's task description. A similar hierarchical structure was also 

employed in the task description and therefore a similar hierarchical structure is created for 

the task description. The schematic of the complete post-processor is illustrated in Figure 

9.3. 

9.4.2 Pre-Processor from the simulation environment to a common 
data format file 

This pre-processor abstracts the common data format related information from the tree and 

ring data block structure in the simulation environment. The entity name (or machine's 

name), its constituents and the sub-constituents' attributes are obtained from the data 

structure. With this complete set of information, the simulation data structure can be down 

loaded into a file complying with the common data format syntax. The data abstraction is 

based on a data block search throughout the whole simulation environment. The search is 

started at the model owner- Workplace (the default highest level of the GRASP hierarchy). 

The Principle Ring Pointer (PRP) is extensively used to find the next object in the ring, 
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while the Entity Ring Start Pointers (ERSP) are used to identify the lower level descendants 

(see Figure 4.7 and Figure 5.5). The entity's name and its pointer are treated as the main 

connection to find the correct data block and this logical connection is maintained 

throughout the simulation data structure. 

The searching pointer traverses the data structure from the top level of the hierarchy to the 

bottom of one of its constituents (device). Once it finishes the searching of one branch of 

the tree, it traverses to the next constituents of the machine and searches through its 

descendants again. Figure 9.4 describes the top-down searching approach. The same 

procedure is used for the search of different devices with the accommodation of some 

diverse properties for different device types. The end of each low level or next data 

structure group searching means the completion of each common data block format, i.e, the 

output of beginning from the data output block in the form of starting symbol"{" or"[" or 

"("to the concluding symbols"};" or"];" or");". Looping techniques were used to improve 

the program quality and it proves to be efficient in data searching. The program was coded 

in Fortran and the common data format file is created as an ASCII file for easy transfer. The 

whole procedure is illustrated in Figure 9.5. 

9.5 The interface between the simulation environment 
and other CAD based systems 

9.5.1 Introduction 

The simulation environment has been designed to provide machine design and evaluation 

tools which are user friendly and versatile in functionality. The motion primitive library 

covers a wide range of motion elements and appropriate selection and combination enables 
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the creation of more complex mechanisms. However, as the complexity of manufacturing 

methods increases and further integration requirements with other CAD-based special 

machine design systems arise, it is of great importance to evaluate the method and approach 

to interfacing with these systems. This is because these tools provide in-depth information 

for a special area of machine design which is not considered substantially in the simulation 

environment. Usually only this special part of information from a particular tool is desired 

in the data utilisation at the simulation phase and physical machine control. For example, 

the CAD geometry information of an assembled part, such as the shape, dimensions etc. can 

be used to derive position information for task planning and execution of a machine 

assembly operation. Due to this "specialized information" feature, the approach of writing 

a post-processor targeted at providing one kind of "special" information is adopted, and for 

each of these specialized tools one post-processor is written to interpret the information into 

part of the common data format. In this section, the method and implementation of a post­

processor between a specialized mechanism design tool CAMLINKS and the simulation 

environment is given below. 

9.5.2 The approaches to interfacing CAMLINKS and the simulation 
environment 

CAMLINKS is a program for mechanism design and analysis. The MOTION program in 

the package enables the design of motions for either linear or angular coordinates with 

reference of time or an input motion. The output of the program is a data file describing the 

designed motion. Since the current simulation environment does not provide a cam motion 

design facility, it is desirable and feasible to interface the CAMLINKS motion design with 

the machine simulation environment. This can improve the functionality of machine design 
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tool and provide a test-bed for cam software design and application. There are ten types of 

mathematical law which specify the motion type within a segment of a motion cycle 

(usually a cycle is divided into several segments). The user can select one of ten motion 

types to apply it to a segment. Therefore the output of a complete motion cycle always has 

the same number of data description sections as that of a segment division in motion cycle 

design. 

The output of a CAMLINKS motion profile has two basic parts, namely the initial 

conditions and the parameters to specify an equation, and the calculated displacement, 

velocity and acceleration output with reference to a user specified input interval (see 

Appendix E for a CAMLINKS motion output). Based on this format two approaches were 

adopted to use the result of a CAMLINKS motion design. 

9.5.2.1 Abstracting the displacement output to produce a designed motion profile 

The first and easier approach adopted in this study was to save the data file of a designed 

motion profile on a data disk, place the disk on another PC machine which is connected to 

the Sun workstations via RS232, initiate the ftp (file transfer protocol) on the PC machine, 

and transfer the designed motion profile to a workstation through ftp using put command. 

This motion data file in ASCII format can then be read into the simulation environment. 

Figure 9.6 illustrates the above file transfer approach used. 

When the motion file is read into the simulation environment, a function program called 

"filter" was used to abstract the motion profile data file. Basically the data file consists of 

following information: 

Initial condition data block which defines the type of motion outputs (linear or 
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angular), the input and output value at the start of motion profile, and the speed of 

the master crank rotation; 

Within each section there are possibly three parts to the data description. The frrst 

part specifies the segment number, segment type, input start point, end point and the 

increment, and the output start point, end point and output increment. Depending on 

the segment type, there is a further part of description to define the segment profile 

precisely for some motion type. The third part of the segment description gives the 

output displacement, velocity and acceleration with reference to each input value 

which are determined by the master crank rotational speed and the number of total 

revolute steps in one cycle based on the following equation: 

I ( ') I (. 1) Sm le 'fth . . l' v 1 = v 1- + 60 x Ne 1 e mouon 1s mear, or 

/v(i) = /v(i-1) +Smx le x360 = /v(i-1) +60Smx le ifthemotionis 
60 Ne Ne 

angular, wherelv(i) is the input value atthe ith step in a cycle, Sm is the master crank 

rotational speed, le is the total increment of input in a cycle and Ns is the total step 

number in a cycle. 

The above section information repeats for each segment in a proflle cycle until the profile 

comes to the end of a cycle. For an example of the data format for a motion profile, see 

Appendix E. Based on the above data information analysis, the corresponding algorithm to 

abstract the input and output displacement data is illustrated in Figure 9. 7. Since the last 

input and output value set in one segment re-appears at the frrst line of the following 

segment, the last value set of input and output in the previous segment is ignored to avoid 

the repetition of the same value set. There should be no concern about the segment profile 

type due to the already available output values of the motion profile. However to provide 

clear information, the segment type value is still stored in a word and all output values in 

one segment are also stored in the same data block to be used as position data block to drive 
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9.5.2.2 Deriving equations of each segment to calculate the output 
at the simulation stage 

Chapter9 

An advanced approach was also adopted in this study to facilitate the application of these 

motion profiles designed on CAMLINKS. Since CAMLINKS uses standard mathematical 

laws to describe each segment profile, it is desirable and possible to derive the 

mathematical equations for each segment along with the boundary conditions. This 

approach has following advantages. 

(1) Large amount of data storage memory are saved. Due to the considerable number 

of motion profiles requirement for complex motion control, the output data value 

set can consume an extremely large amount of memory space. This is specially 

true when the number of calculated input and output value in the set increases, due 

to a time interval decrease. This can potentially slow down the searching and 

calculation of simulation activity; 

-
(2) The user can specify the time interval at the simulation stage rather than go back 

to CAMLINKS to modify the number of motion steps in a cycle and recalculate 

the whole value set again; 

(3) It is desirable to obtain the motion displacement versus time relationship in order 

to fully integrate the CAMLINKS design results into the simulation environment. 

In CAMLINKS, the simulation clock (or timing mechanism) is a very simple one. 

Because it does not cater for the multi-device machine design situation, the timing 

coordination among the distributed devices is not considered in the package. It is 

therefore very important to obtain the displacement versus time relationship to 

coordinate the motion with other device motions in the simulation. One of the 
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example is that CAMLINKS can not calculate the displacement with a different 

time interval for the same motion profile. This can happen in the simulation of 

multi-device machines. 

To derive the equation expressing the displacement versus time relationship, the above 

motion profile data file is re-used. Since all initial conditions are defined in the 

CAMLINKS output motion file, they can be read into their corresponding data block as the 

boundary conditions for each motion segment. The motion profile definition in 

CAMLINKS is based on standard mathematical laws. The following motion laws are 

considered in the derivation of equation expression: 

(1) a dwell law which provides a segment with a zero change in the position of the 

output (see Figure 9.8.1); 

(2) a polynomial law which provides a general purpose motion profile based on the 

following expression: 

Up to twelve of the above coefficients are determined by the boundary and via­

point conditions (see Figure 9.8.2); 

(3) a modified-sine law which provides dwell-rise-dwell or DRD motion. The only 

data requirement is the start value, end value and increments of the input and 

output displacements. The whole segment is divided into three sections in the 

1 1 7 7 
range of o ~a~ 813, 813 :s; a :s; 813 , 813 :s; a :s; 13 

where 13 is the rotation cycle of a master crank (see Figure 9.8.3); 

(4) a modified-trapezoidallaw which also provides dwell-rise-dwell (DRD) motion 
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a a 

(1) A dwell motion profile (2) A 3-4-5- polynomial motion profile 

(3) A modified sine motion profile (4) A modified trapezoidal motion profile 

a 

(5) A cycloidal motion profile 

Figure 9.8 Some of motion laws and their motion profiles 
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which leads to relatively low dynamic forces [CAMLINKS 1991]. The data 

required is the start value, end value and increments of the input and output 

displacement since it is a standard law. The whole segment is divided into 

. 1 1 3 3 5 5 7 
followmg sub-segments, o~es:8~' 8~s:e~8~' 8~~es:8~' 8~~0~8~' 
7 
8~~es:~, 

where ~ denotes the rotational cycle of a master crank (see Figure 9.8.4); 

(5) a cycloidallaw which provides the simplest DRD standard law to apply in the 

case of high speed applications [Chen 1982]. There is no further division for 

cycloidal motion curve since the displacement can be expressed in one single 

equation. The input and output range are required to exactly specify the size of the 

curve (see Figure 9.8.5). 

All equations for the above motion laws along with their curve diagrams can be found in 

Chen [1982]. 

As can be seen from the above description, the laws are fully determined by their boundary 

conditions apart from the polynomial law. With the substitution of these boundary 

conditions into the corresponding equations in each case, the intermediate displacement 

values can be calculated with the specified time interval. The equations for the polynomial 

law can be determined by using the parameter values provided by the polynomial motion 

data file. There are twelve parameters which are for the twelve parameters in y = f(x) 

equation. Thus the polynomial equation is also fully determined and can be used to 

calculate the displacement values at a specific time interval. Figure 9.9 illustrates the 

schematic of equation abstraction, boundary initialisation and calculation implemented in 

this study at the simulation stage. 
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In the simulation phase, with the identification of segment motion type, the corresponding 

equation set is called and the parameters can be passed onto the equation. In order to 

determine the output displacement value at a specific time, the corresponding input time is 

required to achieve the calculation. The input value can be obtained through the following 

equation 

I () Sm D' Vt=6()X1Xt if the output is linear, or 

lv(t) = s;;xDixtx360 = 60SmxDixt if the output is angular, 

where Di is the difference between the end input value of the last segment of a motion 

cycle and the start input value of the first segment in a cycle. With this time value, the 

segment can be easily identified and the corresponding equation set can be found. The 

output displacement, velocity and acceleration are then calculated with the consideration 

of each segment boundary conditions. 

9.6 Conclusion 

In this chapter, a neutral common data format has been proposed in the form of a 

hierarchical text file format. The requirements for both physical machines and the 

simulation have been discussed. The interface between the simulation system and the 

common data format is described in terms of its pre- and post- processing. The algorithms 

for the implementation have been outlined. 

As an example, the integration of a specialised motion design package CAMLINKS and the 

common data format has illustrated two aspects. The direct data format transfer enables the 

user to use the data output from other systems quickly at the possible inconvenience of 
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inflexibility and huge amounts of data. The analytical approach to the integration of these 

systems provides flexible integration due to the knowledge exchange between systems. 

However this needs very close collaboration between system designers and this approach 

can prove difficult among commercialised systems. 

The full integration of the simulation and the physical machine (UMC demonstration rig) 

has not been tackled thoroughly by the author due to time limitations and the large amount 

of work involved. Otherresearchers [Gob 1991] have used a relational database to abstract 

the different data requirements for each system from the common data format file. The 

integration of the common data format and the UMC physical machine has been partially 

implemented in this way. The data requirements of the UMC machine can be satisfactorily 

derived from the common data format file. 
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Chapter 10 Contribution to knowledge and 

future recommendations 

10.1 Contribution to knowledge 

Chapter 10 

This study has concentrated on the derivation of a modular machine design and simulation 

environment which aims at producing a flexible design environment for appraising the use 

of modular machines. The methodologies of creating such an environment have been 

studied and illustrated in this thesis and provide an essential basis for the derivation of a 

new type of machine design and simulation system for modular automated machines. In 

contrast to the conventional approach to modelling and simulating the industrial robot type 

of automated machine by using a fixed method of representation, a standard modular 

approach to describing the constituent elements of a machine has been proposed and the 

related data structures used to standardise modelling of each of the machine's constituent 

parts has also been created. A machine designer can select the necessary machine building 

primitives and aggregate them into a machine model in a modular manner by using the 

configuration tools derived in this Ph.D research. The machine model can then be 

associated with kinematic features and execution tasks for the purpose of simulating and 

animating the performance of the modelled machine. Articulated and distributed 

configurations of mechanisms have been demonstrated and show that the proposed 

methodologies in modelling a modular machine are well established and sufficient for the 

task. 

In addition, the integration of a modelling system and other CAD based design or real time 

systems has been considered through the adoption of common data format structures. 
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Collectively these aspects represent an important contribution to the literature in the areas 

of enhancing flexibility in the modelling of modular machines, a reduction in the lead-time 

to design a machine, the derivation of configuration tools for modular machine design and 

the application of modelling results to life cycle engineering. In facilitating a proof of 

concept demonstration of modular machine design environment, more specific 

contributions to knowledge can be summarised as follows:-

(l)A library of machine primitive modules has been created based on an analysis of six 

types of motion pair. These machine primitives (which comprise two basic types -

prismatic and revolute axis) can be used to generate the other four types of motion pair 

commonly found in traditional mechanisms. The establishment of such a library of 

machine primitives greatly facilitates the design activities for modular machines and 

provides a fundamental primitive source for the design and simulation of a modular 

machine. Each machine primitive has been parameterised by its geometric features, 

motion type and kinematic features. The data structure of a geometric primitive stored 

in the primitive library enables a user to fill in necessary parameters in order to create 

a user required motion axis. The methodology used in the establishment of the 

primitive library is based on the concept that a manufacturing machine can be 

decomposed into many elementary building elements both in terms of mechanical and 

control constituents. Data modelling techniques were used to derive a generalised 

data structure to include the necessary information for a motion axis and the 

generalised data structure for all motion axis types has been defined as a standard ring 

and tree structure in this study. This structure is used frequently as a module to 

describe every new motion axis. Through the study of these motion pairs and their 

data structural representation, it is concluded that this data structure generalisation 

greatly increases the modularity of the whole modelling environment and provides a 
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fundamental basis for the modelling of modular machines which can thereafter be 

aggregated by selecting motion axis primitives from the primitive library. This 

general purpose ring and tree structure can also be used as a standard motion module 

to model other automation devices in a modular manner, and this approach therefore 

overcomes the disadvantages which result from most current approaches towards 

modelling of manufacturing equipment, where different or customised data structures 

may be required for each class of entity modelled. The establishment of a library of 

machine primitives represents a major part of this study. 

(2) A general multi-level ring and tree structure was designed to model various aspects 

of modular machines, including geometry modelling, kinematic modelling and task 

description with respect to its working environment. The methodology of modelling 

a modular machine and its environment is based on the hierarchical concept of a 

modular ring and tree data structure. 

(a) Modular machine's geometry was modelled in a hierarchical manner to facilitate 

the search for model elements and clarify the structural relationships within a 

modelled machine. 

(b) Kinematic modelling is another aspect of modular machine modelling, and 

position, motion path and velocity and acceleration were modelled as a kinematic 

sub-structure. A desired kinematic feature of a motion for a modular machine or a 

device within the machine needs to be specified clearly before the motion is 

actually activated. Separation of the kinematic and geometric aspects improves 

the modelling system clarity and ease of manipulation, and furthermore this 

decomposition also parallels that in the physical modular machine. 

(c) Task specification is a further aspect of modular machine modelling that is also a 

separate issue in the physical modular machine. A hierarchical structure of task 
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specification was adopted and corresponding task information was interpreted 

into data contents in a task description data block which is arranged in a ring and 

tree structure. The hierarchical modelling ring and tree adopted and implemented 

in this study is based on the result of a modular machine decomposition to 

maintain the modularity concept. 

The use of a hierarchical modelling tree and a variety of data blocks has been 

shown to improve the clarity of representing various aspects of a modular 

machine's information; it also facilitates the manipulation of the data contents; it 

arranges the various data in a consistent and organised way; and it also improves 

the efficiency of model element searching although a multi-level hierarchy may 

appear to be more complicated when simply searching along one branch. This data 

structure approach has been favoured for modular machine modelling in this study 

and can be potentially beneficial for other types of machine modelling. The 

implementation of the above data structure for the modelling of modular machines 

is another major part of the research. 

(3) A set of configuration tools has been created for the manipulation of created motion 

axes, including locating an axis, forming a device, deforming a device, geometric 

manipulation of an axis etc. This set of configuration tools provides a very useful aid 

for modular machine designers by allowing them to select some motion primitives, 

locate them at a desired position and orientation, and aggregate them into a functional 

device to achieve a certain task. A designer of a machine can also use these tools to 

change selected dimensions of an axis, to scale an axis to a user-defined scale, and to 

break down a formed device into its original machine building primitives for either 

re-use or deletion. These tools are of vital importance in improving the system's user 

friendliness and can provide users with more manoeuvrability over the modelled 

machine arrangement and reconfiguration. The configurability of a modelled modular 
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machine is very much dependent on these tools. A Sun View window facility was also 

studied and implemented to further facilitate the specification of motion primitive 

creation and modification. This facility can be more extensively used for the 

specification of all parameters within the design and simulation environment based 

on the study of motion primitives. However due to the time limitations this work is 

left for future implementation. An open end is also left for modular machine designers 

or future implementations to add more configurations of modular mechanisms. This 

method was adopted in this study because the potential complexity of a modular 

machine's configuration is beyond current implementation and this method can be 

helpful for new configuration users. Configuration tools are provided both for general 

geometries and machine primitives and only tools for the configuration of modular 

machines was devised in this study as the former already existed in Grasp. 

(4) Four types of robot configuration (i.e. cartesian, cylindrical, revolute and spherical 

configurations) [Moore 1986) have dominated articulated mechanisms in automated 

machines although other articulated configurations have been proposed by some 

researchers. A comprehensive study of the kinematic synthesis and analysis of 

configurations with up to three degrees of freedom has been carried out to provide a 

theoretical basis for the use of different configurations. The well known 

representation- Denavit-Hartenberg notion of transformation matrices was adopted 

to deal with most of these configurations. It has been found that D-H representations 

are not adequate to handle every possible configuration of up to three degrees of 

freedom. In these situations, a modified 4 x 4 matrix representation was derived 

analytically by the author to compensate for the inadequacies of D-H representation. 

Seven sets of forward and inverse kinematic solutions were derived for all seven 

possible configurations of two axis groups. Twelve sets of forward kinematic 

solutions were also derived for all twelve possible configurations of the three axis 
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groups and three sets of inverse kinematic solutions were also derived for three of the 

twelve configurations. The remaining inverse solutions for the other configurations 

can be obtained in the same way. Kinematic analysis has to be done as no solutions 

to all configurations studied are readily available to anyone. 

(5) A set of machine task related processors has been designed for simulation and 

animation purposes. Through the use of this set of processors it has been shown that 

they are the key elements of a modular machine simulation environment and they are 

also devices which can be used to generate data to drive a machine model during 

animation. Due to the complexity of machine configuration, it is essential to 

understand that a variety of processors are required to cater for the variation of 

processing requirements of different functional devices which form modular 

machines. This has been illustrated by creating processors for articulated, and 

distributed configurations of mechanisms and sensory devices. A simulation clock 

has also proven to be an important requirement for the simulation of modular 

machines, providing a time reference to co-ordinate the processing of different 

events. A requirement for an event manager (or controller) within a simulation 

environment has also been demonstrated, thus with reference to simulation time it has 

been shown that the event controller can co-ordinate the various machine processors. 

Since these simulation mechanisms and processors are key elements of a modular 

machine simulation environment, they represent another major part of contribution. 

(6) It has been shown that the manufacturing operations performed by modular machines 

can be generalised into hierarchical levels, this leading naturally to a three level 

operation-oriented methodology for flexible modular machine programming. It can 

be concluded that programming at the lowest level (i.e. at the level of manipulating 

single machine primitives) allows highly trained staff to have more capability to 
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describe a specific manufacturing task in detail, whereas second level (i.e. at device 

operation level) programming enables the user to program a machine as a whole in a 

more abstract form rather than be concerned with details of its individual primitives. 

At an object level, programming of a modular machine is an even higher level of 

abstraction. However from the viewpoint of task programming the lowest level 

programming is the most complicated and difficult, whereas the second level 

programming is less complicated and the object level is the easiest among the three 

levels. It has also been illustrated that the use of a hybrid of second level and object 

level programming can lead to a flexible programming environment. The description 

of both generic and application dependent operations are required to form a complete 

programming facility. The implementation of the programming capability necessarily 

was limited to the assembly related manufacturing tasks. 

(7) Aspects of systems integration were addressed in this study with interfacing achieved 

between the proof of concept modular machine simulation system, other proprietary 

CAD systems and the physical machine. Here a use of a common data format 

approach was used and generalised by the author. Pre- and post- processors were 

implemented and used between the common data format and the simulation 

environment: this having been the first phase of work required to enable the sharing 

of information created at various life cycle stages. Interfacing between the simulation 

environment and a proprietary CAD based systems was also considered in a second 

phase of the authors' integration study; this being to enable the simulation 

environment to access information created during other design processes. The third 

phase has been the interfacing between the simulation environment and physical 

machines and a method has also been proposed in this regard. 
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10.2 Implications and future recommendations 

A prototype of a simulation environment for modular machines has been proposed and 

implemented in this PhD research study. The following suggestions and recommendations 

can be made based on the findings of the research. 

10.2.1 Modelling of modular machines 

Articulated and distributed configurations have been the main focus of this study since they 

represent the majority of motion mechanisms. However, it is also necessary to model other 

mechanisms such as parallel mechanisms which form a motion mechanism in a closed form 

[Khalil and Kleinfinger 1986] thereby having redundant degrees of freedom [Cleary and 

Tesar 1990, Karlen et al. 1990], mobile mechanisms (e.g. walking mechanisms) and hybrid 

systems of parallel and articulated mechanisms. Generally parallel mechanisms will have 

the advantage of a large payload bearing capability: by using parallel link structures high­

precision can be realised when positioning its end-point. A mobile mechanism is used to 

change the base location within the working environment and is very useful for transporting 

components to some other location away from the current operation site. A hybrid 

configuration of parallel and serially chained mechanisms may achieve the advantages 

associated with both types of mechanisms, i.e. having a large payload bearing capacity, 

rigidity, high-precision achieved by parallel structure in the hybrid system, and large 

working envelope and dexterity associated with serially chained configurations. The 

current simulation environment provides the capability of graphically describing all the 

above mechanisms. However, the internal data association among the different data 

structures for each of the machine primitives needs to be realised according to a particular 

mechanical structure. It is very important to achieve this internal data association in order 
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to make the modular machine simulation environment more versatile and powerful. It can 

be anticipated that it should be easy to incorporate the above mechanisms into the 

simulation environment by establishing the kinematic relationships and solutions for each 

mechanical structure in a newly created head data block. 

Solid modelling was the only geometric modelling technique used within the current 

implementation. Other geometric m?delling techniques have some particular advantages, 

and, it is necessary to investigate the possibility of using other techniques and incorporating 

them within one simulation environment. Thus different techniques could be used to model 

the aspect of a machine in which the technique offers advantage. For example, surface 

modelling allows curve of surface descriptions which is vital to some applications such as 

arc cutting for turbine blades of aircraft engines. 

10.2.2 Kinematic and dynamic modelling 

The kinematics of certain classes of robot manipulator has been well established, but there 

are no general closed form solutions. Numerical methods have to be used to solve the 

inverse kinematics. Due to the wide diversity of mechanical configurations possible with 

modular machines, more complex kinematic problems will be encountered in the situation 

where branching of a new mechanical chain starts or where a hybrid mechanism of parallel 

and serially chained configuration is employed. Since there is a discrepancy in the 

parameter representation between an articulated configuration (usually represented by the 

D-H parameters) and a hybrid mechanism of parallel configuration and articulation, a new 

method of kinematically describing them needs to be devised. Benhabib et al. [1989] 

proposed a method to describe a kinematic chain with some branches of articulation, and 
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this method needs evaluating and enhancement for a general modular configuration within 

this implementation. There are often redundant degrees of freedom for these modular 

configurations, thus a general approach towards representing these kinematic redundant 

degree of freedom and the criteria used to determine which joint paths are best for a given 

situation should be exploited for a better understanding of the configuration. 

Dynamic modelling of a modular machine incorporates its mass, compliance and damping 

to simulate the machine's response to the force and extemalloads of each machine motion 

primitive. Dynamic modelling of robotic systems has been addressed by researchers [Kang 

and Freeman 1990, Cox and Tesar 1989, and Cho et al. 1989]. A dynamic model can be 

used to evaluate the dynamic conditions, response and performance of a robot when it 

executes an assigned task. A powerful capability of simulating the dynamic features of a 

robot can facilitate the optimization of a robot design and provide invaluable assistance for 

robot designers. A modular machine can also benefit from the dynamic modelling and 

simulation by graphically evaluating the influence of some dynamics-related parameters 

and by finally optimising them with respect to a particular application. The dynamic 

performance measure, and criteria for optimization of dynamic features of a modular 

machine needs to be evaluated so that it can complement the simulation environment. 

10.2.3 System integration 

System integration has recently been a very attractive research area aimed at gaining a 

better understanding of integration requirements and benefits within various sections of a 

manufacturing enterprise. Weston et al. [1989c, 1992] realises that in addition to an 

established interface which enables an inter-communication between manufacturing sub-
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systems, applications control and information support services are also required to achieve 

true system integration. 

Various system integration issues were discussed in Chapter 9 with particular reference to 

establishing interfaces with a CAD based motion design software package and the UMC 

physical machine: thus interface capabilities were implemented and requirements of some 

basic information support tools were considered. Essentially an advancement of this 

integrated facility could be realised with two application foci in mind. The first focus could 

centre on providing an integrated set of tools aimed at covering the various life cycle phases 

of machines, ranging from tools to assist machine design, through building and run time, to 

enabling and supporting change. Thus this first integrated toolset would be specific to the 

need of shop-floor manufacturing machines. A second, much broader focus could be to 

provide tools to support enterprise-wide integration, where the machine toolset would be 

just one sub-system but could access, or provide, information on a much wider basis. This 

wider integration scope can be viewed conceptually as horizontal and/or vertical 

integration (see Figure 10.1) [Weston and Davies 1992], where in general benefits of 

p 
Engineering Production 

Figure 10.1 A Functional decomposition of an enterprise 
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improved and faster decision making can lead onto a reduction in product leadtimes and 

better products. 

In the case of either focus it will be necessary to bridge existing gaps between the various 

methods and tools used through the engineering life cycle. The proof of concept, integrated 

machine design and simulation environment described in this thesis can provide a useful 

stepping stone towards this aim. Figure 10.2 illustrates conceptual requirements to achieve 

wider scope integration between system design and system application: where integration 

tools can deal with information exchange, communication establishment and application 

support. Such approach can offer the following benefits compared with existing 

manufacturing systems: 

- partial evaluation of a manufacturing system before they are physically realised; 

leading to improve system design; 

- opportunities to achieve a measure of optimization of the system design and 

automation; through system evaluation; 

- reduction in product leadtime through improved decision making; 

- provision of consistent models for various phases of engineering life cycle; to 

systemise design processes and avoid duplicated design effort; 
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Figure 10.2 An enterprise wide system integration approach 

294 



References 

References: 

Agapakis, J.E., Katz, J.M. and Pieper, D.L., "Programming and Control of Multiple Robotic 

Devices in Coordinated Motion", The Proceedings of 1990 IEEE International Conference 

on Automation and Robotics, Cincinnati, Ohio, pp. 362-367, May 13-18, 1990. 

Alien, D.K., "Architecture for Computer-Integrated Manufacturing", Annals ofthe CIRP, Vol. 36, 

No. 1, pp. 351-354, 1987. 

Ambler, A. P., Popplestone, R.J., and Kempf, K.G., "An Experiment in the Off-Line Programming 

of Robots", Proceedings of 12th ISIR Paris, France, June, 1982. 

Anderl, R. et al., "IGES review and proposed extensions", TAP Position Paper, DIN-NAM 

961.412-84, 1984 

Ang, Jr., M. H. and Tourassis, V. D.,"General- Purpose Inverse Kinematics Transformation for 

Robotic Manipulators", Journal of Robotic Systems, Vol. 4, No. 4, pp. 527-549, 1987. 

Ang, Jr., M. H. and Tourassis, V. D.,"Flexible Manufacturing Using Modular Robotic Wrist", 

International Conference on CAD/CAM, Robotics and Factories of the Future, pp. 166-

170, 1988. 

Arai, T., Takashima, S., Hirai, S. and Sata, T., "Standardization of Robot Software in Japan,'' 15th 

International Symposium on Industrial Robots, pp. 995-1002, 11-15 September, 1985, 

Tokyo, Japan. 

Armstrong, W.M., "Recursive Solution to the Equations of Motion of an N-Link Manipulator," 

Proceedings of the 5th World Congress on the Theory of Machines and Mechanisms, Vol. 

2, July, pp. 1343-1346, 1979. 

Armstrong, B., Khatib, 0. and Burdick, J., "The Explicit Dynamic Model and Inertial Parameters 

of the PUMA 560 Arm," Proceedings of the 1986 IEEE International Conference on 

Robotics and Automation, San Francisco, pp. 510-518, April1986. 

295 



References 

Ball, D.A. and Smith, P ., ''The Practical Use of 3D Simulation in Industry", Proceedings of the 4th 

International Conference Simulation in Manufacturing, Edited by Browne, J and Rathmill, 

K., pp. 83-91, London, 1988. 

Bartel, D.L. and Marks, R. W. ASME Journal of Engineering Industry, pp. 171-178, 1974. 

Batory, D. S. and Kim, W., "Modelling concepts for VLSI CAD objects" ACM Transactions of 

Database system, Vol. 10, No. 3, pp. 322-346, 1985. 

Benhabib, B., Zak, G., and Lipton, M.G., "A Generalised Kinematic Modelling Method for 

Modular Robots", Journal of Robotic Systems, Vol. 6, No. 5, pp. 545-571, 1989. 

Benhabib, B., Cohen, R., Lipton, M.G. and Dai, M.Q., "Design of a Rotary-Joint-Based Modular 

Robot", in Cams, Gears, Robot and Mechanism Design, (Presented at the 1990 ASME 

Design Technical Conference), Proceedings of 21st Biennial Mechanisms COnference, pp. 

239-243, Chicago, Illinois, September 1990. 

Blaha, J.R., Lamoureux, J.P. and McKee, K.E., "Currently Available Robot Programming 

Langnages," In Control and Programming in Advanced Manufacturing, Edited by 

Rathmill, K., IFS Publication, Springer-Verlag, 1988. 

Booth, A., "An Introduction to UMC" Internal report, MS Research Group, The Department of 

Manufacturing Engineering, University of Technology, Loughborough, 1990. 

Brantmark, H. and Ramstrom, K.G.,''ASEA Off-line Programming System - A User Friendly 

Implement", Proceedings of 15th International Symposium on Industrial Robots, Tokyo, 

Japan, pp. 741-749, Vol. 2, September 1985. 

CAMLINKS manual, "CAMLINKS", by Limacon Consultants in Machine Design and Control, 

1991. 

Case, K., "Configuration Tools and UMC", Internal Technical Report within the Modular 

Research System Group in the Department of Manufacturing, Loughborough University of 

296 



References 

Technology, December, 1990. 

Chan, S.F., Weston, R.H. and Case, K.,"Robot Simulation and Off-line Programming", Computer­

Aided Engineering Journal, pp. 157-162, August 1988. 

Chan, S.F., "Advancement in Robot Programming with Specific Reference to Graphic Methods," 

Ph. D. Thesis of Department of Manufacturing Engineering, Loughborough University of 

Technology, 1989. 

Chatila, R. and Giralt, G., ''Task and Path Planning for Mobile Robots", in "Machine Intelligence 

and Knowledge Engineering for Robotic Applications", Edited by Wong, A.K.C. and 

Pugh, A., NATO ASI Series Vol. F33, Springer-Verlag, pp. 299-330, 1987. 

Chen, Fan Yu, "Mechanics and Design of CAM Mechanisms", Pergamon Press Inc. 1982. 

Cleary, K. and Tesar, D., "Incorporating Multiple Criteria in the Operation of Redundant 

Manipulators", The Proceedings of 1990 IEEE International Conference on Automation 

and Robotics, Cincinnati, Ohio, pp. 618-624, May 13-18, 1990. 

Craig, J.J., "Anatomy of an Off-line Programming System," Robotics Today, pp. 45-47, February 

1985. 

Craig, J.J., "Issues in the Design of Off-Line Programming Systems," in International Symposium 

of Robotics Research, Edited by Bolles, R. and Roth, B., MIT Press, Cambridge, MA, 

1988. 

Craig, J. J.,"Introduction to Robotics- Mechanism and Control", Second Edition, Published by 

Addison-Wesley Publishing Company, Inc., 1989. 

Crookall, J.R., "Education for CIM", Annals of the CIRP, Vol. 36, No. 2, pp. 479-497, 1987. 

Crosnier, A. and Fournier, A.,"Simulation of Cameras and Proximity Sensors for Computer Aided 

Design for Robotics and the Off-Line Robot Programming," Proceedings of the 

297 



References 

International Workshop on Industrial Applications of Machine Vision and Machine 

Intelligence, Seilgen Symposium, pp. 316-323, Tokyo, Japan, 1987. 

Cutkosky, M.R. and Howe, R.D., "Human Grasp Choice and Robotic Grasp Analysis," Chapter 1 

in Dextrous Robot Hands Edited by Venkataraman, S.T. and Iberall, T. Published by 

Springer-Verlag New York Inc., 1990. 

Dadam, P., Kospert, K., Anderson, F., Blanken, H., Erbe, R., Gunauer, J., Lum, V., Pistor, P., and 

Walch, G., "A DBMS Prototype to Support Extended NF2 Relations: An Integrated View 

on Flat Tables and Hierarchies", Proceedings of the ACM SI GM OD Conference, ACM, 

New York, pp. 376-387, 1986. 

Denavit, J. and Hartenberg, R.S., "A Kinematic Notation for Lower Pair Mechanisms Based on 

Matrices", ASME Journal of Applied Mathematics, Vol. 77, pp. 215-221, 1955. 

Derby, S., "Off-Line Programming of Two Industrial Robots," Robots 8th Conference 

Proceedings, Detroit, MI, USA, Vol. 2, pp. 20/65-20n6, 4-7 June, 1984. 

Dillman, R. and Huck, M., "A Software System for the Simulation of Robot Based Manufacturing 

Processes", Robotics, Vol. 2, No. 1. Elsevier Science, Publishers (North-Holland), March, 

. 1986. 

Dillmann, R., "The Use of Computer-Aided Design Methods in Robotics", Welding and Cutting, 

Vol. 39, Part 4, pp. E63-E66, April1987. 

Dillman, R. and Huck, M., "A Relational Data Base Supporting CAD-Oriented Robot 

Programming", CAD Based Programming for Sensory Robots, Edited by Ravani, B., 

NATO ASI Series F, Vol. 50, Proceedings of the NATO Advanced Research Workshop on 

CAD Based Programming for Sensory Robots, II Ciocco, Italy, July 4-6, 1988. 

Dimarogonas, A. D., "Computer Aided Machine Design," published by Prentice Hall International 

(UK) Ltd., 1988 

298 



References 

Dooner, M., "Robotics Software and CADCAM", Computer-aided Engineering Journal, pp. 217-

220, December 1984. 

Doy1e, R. and Case, K., "The Logical and Geometrical Modelling of a Universal Machine Control 

Architecture", European Technology Congress and Exhibition, Birmingham, C415ftH9, 

pp.189-197, July 1991. 

Duelen, G., Bernhardt, R. and Schreck, G., "Use of CAD-Data for the Off-Line Programming of 

Industrial Robots", Robotics, Vol. 3, Part 324, pp. 389-397, 1987. 

Duffey, M. R. and Dixon, J.R., "A Program of Research in Mechanical Design: Computer-Based 

Models and Representations", Mechanism, Machine, and Theory,Vol. 25, No. 3, pp. 383-

395, 1990. 

Duffey, N. D., Herd, J.T. and Philip, G.P., "A Structural Approach to the Control of Parallel Acting 

Co-operating Robots", Proceedings of International Symposium on Industrial Robots, pp. 

323-332, April1988. 

Dupourque, V., "Using Abstraction Mechanisms to Solve Complex Tasks Programming in 

Robotics", Proceedings of the 1986 IEEE International Conference on Robotics and 

Automation, San Francisco, April 1986. 

Durr, M., Ruck, M., Kemper, A., Mohrholz, p. and Wallrath, M., "Using Conventional and Nested 

Relational Database Systems for Modelling CIM Data", Computer-Aided Design, Vol. 21, 

No. 6, pp. 379-392, July/August 1989. 

Eastman, C.M., "The Use of Object-oriented Database to Model Engineering Systems", 

Proceedings of the International Workshop on Object-oriented Database Systems, Pacific 

Grove, California. IEEE Computer. 

Edwards, J., "Machine Vision and Its Integration with CIM Systems in the Electronics 

Manufacturing Industry", Computer-Aided Engineering Journal, pp. 12-18, February 

1990. 

299 



References 

Fanghella, P.,Galletti, G. and Giannotti,E., "Computer-aided Modelling and Simulation of 

Mechanisms and Manipulators", Computer Aided Design, Vol. 21, No 9, pp. 577-583, 

November 1989. 

Featherstone, R., "Robot Dynamics Algorithms" by Kluwer Academic Publishers, 1987. 

Ferrandez, K., "The Use of Computer Graphics Simulation in the Development of Robotics 

Systems," ACfA Astronaut (UK), Vol. 17, No. 1, pp. 115-122, January 1988. 

Floriani, L.D. and Bruzzone, E., "Building a Feature-Based Object Description from a Boundary 

Model", Computer-aided Design, Vol. 21, No. 10, December, 1989. 

Forestier, P., ''The CATIA Integrated Geometry Modeller," Computer Graphics, Proceedings of 

the International Conference, London, pp. 381-391, 1985. 

Fougere, T. J., Chawla, S. D. and Karneva, J. J.,"ROBOT-SIM: A CAD Based Workcell Design 

and Off-line Programming System", ASME Winter Annual Meeting, Robotics. and 

Manufacturing Automation, PED Vol. 15, 1985. 

Fu, K. S., Gonalez, R. C. and Lee, C. S. G., "Robotics: Control, Sensing, Vision, and Intelligence", 

Published by McGraw- Hill Inc., New York, 1987. 

Fukuda, T. and Kawauchi, Y., "Cellular Robotic System (CEBOT) as One of the Realization of 

Self-Organising Intelligent Universal Manipulator," Proceedings of 1990 IEEE 

International Conference on Robotics and Automation, pp. 662-667, Cincinnati, Ohio, 13-

18 May, 1990. 

Gini, Maria, ''The Future of Robot Programming", Robotica, Vol.5, pp. 235-246, 1987. 

Gleason, G.J. and Agin, G.J., "A Modular Vision System for Sensor-Controlled Manipulation and 

Inspection",Proceedingsof9thintemationalSymposiumandExpositiononindustrialRobots, 

Washington. D. C., March, 1979. 

300 



References 

Glib, "Grasp Library Subroutine Menual", BYG System Limited, Nittingham, 1989. 

Goh, A.S., "Integration of UMC and common data format based on step", Internal miniute, MS 

Research Group, The Department of Manufacturing Engineering, University of 

Technology, Loughborough, 1991. 

Goh, K. and Middle, J.E., ''The WRAPS System -A Tool for Welding Robot Adaptive 

Programming and Simulation," Proceedings of the First National Conference on 

Production Research, Nottingham University, U.K. 9-10 September 1985. 

Goldenberg, A.A., Benhabib, B. and Fenton, R.G., "A Complete Generalized solution to the 

Inverse Kinematics of Robots," IEEE Journal of Robotics and Automation, Vol. RA-1, No. 

1, pp. 14-20, March 1985. 

Gupta, K. C.,"Kinematic analysis of Manipulators Using the Zero Reference Position 

Description", International Journal of Robotics Research, Vol. 5, No. 2, pp. 5-13, Summer, 

1986. 

Gupta, K.C. and Kazerounian, K., "Improved Numerical Solutions of Inverse Kinematics of 

Robots", Proceedings of IEEE International Conference on Robotics and Automation, pp. 

743-748,25-28 March, 1985. 

Gupta, K. C.,"Kinematics of Robot with Continuous Roil Wrist", IEEE Journal of Robotics and 

Automation, Vol. 4, No. 4, pp. 440-443, August 1988. 

Han, C.S., Traver, A.E. and Tesar, D., "Using CAD/CAM in the Design of a Robotic 

Micromanipulator", Computer-Aided Engineering Journal, pp. 43-48, April1989. 

Harrison, R., "A description of UMC", Internal report, MS Research Group, The Department of 

Manufacturing Engineering, University of Technology, Loughborough, 1989. 

Harrison, R., "A Generalized Approach to Machine Control", Ph.D Thesis of the Department of 

Manufacturing Engineering, Loughborough University of Technology, 1991. 

301 



References 

Harrison, J.P. and Mahajan, R., "The IGRIP Approach to Off-Line Programming and Workcell 

Design," Robotics Today, pp. 25-26, August 1986. 

Hasegawa, Masaki, Takata, Masayuki, Temmyo, T and Matsuka,H., "Modelling of Exception 

Handling in Manufacturing Cell Control and Its Application to PLC Programming", 

Proceedings of 1990 IEEE International Conference on Robotics and Automation, 

Cincinnati, Ohio, pp. 514-519, May 13-18, 1990. 

Haurat, A and Perrard, J., "ADAR: A New Vision of Tasks Programming for Robotized Industrial 

Workcells", Proceedings of International Symposium on Industrial Robots,. pp. 431-442, 

Aprill988. 

Heginbotham, W. B., Dooner, M. and Case, K., "Rapid Assessment of Industrial Robot's 

Performances by Interactive Computer Graphics", 9th International Symposium on 

Industrial Robots, Washington D,C., pp. 563-574, March, 1979. 

Hemami, H., Jaswa, V. C., McGee, R. B., "Some Alternative Formulations of Manipulator 

Dynamics for Computer Simulation Studies", Proceedings of the 13th Allerton Conference 

on Circuit and System Theory, University of Illinois, pp. 124-140, October 1975. 

Hornick, M. L. and Ravani, B., "Computer-aided Off-line Planning and Programming of Robot 

motion", International Journal of Robotics Research, Vol.4, No 4, pp. 18-31, Winter 1986. 

Hornick, M. L. and Ravani, B., "A Data Structure and Data Base Design for Model Driven Robot 

Programming", Proceedings of the 1986 IEEE International Conference on Robotics and 

Automation, San Francisco, pp. 1082-1086, April1986b. 

Howie, P., "Graphical Simulation for Off-Line Robot Programming," Robotics Today, Vol. 6, Part 

l,pp.63-66, 1984. 

Huang, P.Y. and Houck, B.L.W., "Cellular Manufacturing: An Overview and Bibliography", 

Production and Inventory Management, Fourth Quarter, 1985. 

302 



References 

Hunt, K. H., "Kinematic Geometry of Mechanisms", Published By Oxford University Press, 1978. 

Hunt, K. H., "Kinematic Geometry of Mechanisms", Published By Oxford University Press, 1990. 

Hutchinson, S.A. and Kak, A.C., "FPro1og: A Language to Integrate Logic and Functional 

Programming for Automated Assembly", Proceedings of the 1986 IEEE International 

Conference on Robotics and Automation, San Francisco, pp. 904-909, Apri11986. 

Industrial Robot, "Cambridge Control Package; its Dynamic Approach," Vol. 14, No. 2, pp. 93-94, 

February 1987. 

Imam, I and Davis, J.E., "Robot Simulation and Off-Line Programming- An Integrated CAE-CAD 

approach" Proceedings of the NATO Advanced Research Workshop on CAD Based 

Programming for Sensory Robots, II Ciocco, Italy, pp. 189-201, July 4-6, 1988. 

Ishii, M., Sakane, S., Mikami, Y., and Kakikura, M., "A 3-D Sensor System for Teaching Robot 

Paths and Environment," International Journal of Robotics Research, Vol. 6, No. 2, pp. 45-

59, 1987. 

Izagnirre, A. and Paul, R.P., "Computation of the Inertial and Gravitational Coefficients of the 

Dynamic Equations for a Robot Manipulator with a Load," Proceedings of the 1985 

International Conference on Robotics and Automation, St. Louis, pp. 1024-1032 March 

1985. 

Jacobs, M.P., "Off-Line Robot Programming: A Current Practical Approach," Robots 8 

Conference Proceedings, Detroit, Ml, USA, Vol. 1, pp. 4/1-4/11, 4-7 June, 1985. 

Jafari, M. A., "Petri Net Based Shop-floor Controller and Recovery Analysis", The Proceedings of 

1990 IEEE International Conference on Automation and Robotics, Cincinnati, Ohio, pp. 

532-537, May 13-18, 1990. 

Juyaraman, R. and Levas, A., "A Workcell Application Design Environment (WADE)", in CAD 

Based Programming for Sensory Robots, Edited by B, Ravani, Published by Springer-

303 



References 

Verlag, NATO ASI Series, Vol. F50, pp. 91-120, 1988. 

Jones, A. and Saleh, A., "A Multi-level/Multi-layer Architecture for Intelligent Shop-floor 

Control", International Journal of Computer Integrated Manufacturing Vol. 3, No. 1, pp. 

60-70, 1990. 

Jouaneh, M.K., Wang, Z. and Domfeld, D.A., ''Trajectory Planning for Coordinated Motion of a 

Robot and a Positioning Table: Partl -Path Specification", IEEE Transactions on Robotics 

and Automation, Vol. 6, No 6, pp. 735-745, December 1990. 

Kacala, J., "Robot Programming Goes Off-Line," Machine Design, pp. 89-92, November 1985. 

Kamm, L.J., "Recent Applications of Modular Technology Robots", SME.13th International 

Symposium on Industrial Robots and Robot7, (U.S.A), pp. 11.66-11.74, 1983. 

Kane, T.R. and Levinson, D.A., ''The Use of Kane's Dynamical Equations in Robotics,'' The 

International Journal of Robotics Research, Vol. 2, No.3, pp.3-20, Fall1983. 

Karlen, J.P., Thompson, J.M. and V old, H.I., "A Dual-Arm Dexterous Manipulator System with 

Anthropomorphic Kinematics", The Proceedings of 1990 IEEE International Conference 

on Automation and Robotics, Cincinnati, Ohio, pp. 368-373, May13-18, 1990. 

Kato, Ichiro, "Mechanical Hands lllustrated", Survey Japan, Japan, 1980. 

Kemper, A., "CAD Database: Requirements and Survey,'' Proceedings of 19th Annual Hawaii 

International Conference on System Sciences, Honolulu, lli,USA, pp. 363-378, January 

1986. 

Kemper, A. and Wallrath, M., "An Analysis of Geometric Modelling in Database Systems," ACM 

Computer Surrey, Vol. 19, No. 1, pp. 47-91, March 1987. 

Khalil, W. and Kleinfinger, J.F., "A New Geometric Notation for Open and Closed-Loop Robots", 

Proceedings of the 1986 IEEE International Conference on Robotics and Automation, San 

304 



References 

Francisco, pp.1174-1179, Aprill986. 

Kitajima, K., "Interactive Robot Simulator for High-Level Tasks", Computer-Aided Design, Vol. 

20, No. 2, pp. 93-99, March 1988. 

Kiedrzynski, A and Becquet, M., "Light Structure Modular Design Using Honeycomb Links". 

Proceedings of 18th International Symposium on Industrial Robots, pp. 101-110, April, 

1988. 

Kota, S. and Chuenchom, T., "Adjustable Robotic Mechanisms for Low-Cost Automation", in 

Cams, Gears, Robot and Mechanism Design, (Presented at the 1990 ASME Design 

Technical Conference), Proceedings of 21st Biennial Mechanisms Conference, pp. 297-

322, Chicago, lllinois, September 1990. 

Kusiak, A. and Heragu, S.S., "Computer Integrated Manufacturing: A Structural Perspective", 

IEEE Network, Vol. 2, No. 3,pp14-21, May 1988. 

Kusiak, A. and Park, K., "Concurrent Engineering: Decomposition and Scheduling of Design 

Activities," International Journal of Production Research, Vol. 28, No. 10, pp.1883-1920, 

1990. 

Larson, R. and Donath, M., "Animated Simulation of Intelligent Robot Workcell", Proceedings of 

Robots 9 SME Ref. MS85-622, pp. 19-54-19-69, Detroit, Michigan, USA, June 2-6, 1985. 

Langrana, N. A. and Bartel, D. L., "An Automated Method for Dynamic Analysis of Spatial 

Linkages for Biomechanical Applications", Transaction ASME, Journal of Engineering 

Industry, Vol. 97, pp. 568-574, 1975. 

Laugier, C., "Planning robot motions in the SHARP system,'' in "CAD Based Programming for 

Sensory Robots", Edited by Bahram Ravani, Published by Springer-V erlag Berlin 

Heidelberg, NOTO ASI Series, Vol. F50, pp .. 151-187, 1988. 

Langier, C. and Pertin, J., "Automatic Grasping: A Case Study in Accessibility Analysis", 

305 



References 

Published in "Advanced Software in Robotics", Edited by Danthine, A and Geradin, M, 

Nonh Holland, 1984. 

Lee, C.S.G., "On the control of Robot Manipulators,'' Proceedings of 27th Soc. Photo Optical 

Instrumentation Engineers, Vol.442, San Diego, California, pp. 58-83, 1983. 

Leu, M. C., "Robotics Software Systems", Robotics and Computer-Integrated Manufacturing, Vol. 

2, No. 2, pp. 1-12, 1985. 

Levas, A. and Jayaraman, R, "WADE: An Object-Oriented Environment for Modelling and 

simulation of Workcell Applications," IEEE Transactions on Robotics and Automation, 

Vol. 5, No 3, pp. 324-335, June 1989. 

Li, Z. and Sastry, S., ''Task-Oriented Optimal Grasping by Multifingered Robot Hands", IEEE 

Journal of Robotics and Automation, Vol. 4, No. 1, pp. 32-44, Febrnary 1988. 

Lorie, R., "Issues in Databases for Design Applications", in File Structure and Databases for CAD, 

Edited by Encamacao, J. and Krause, F. L., North-Holland, Amsterdam, 1982. 

Lorie, R. and Plouffe, W, "Complex Objects and Their Use in Design Transactions". Proceedings 

of ACM SIGMOD Conference on Engineering Design Applications. San Jose, California, 

pp. 115-121, May 1983. 

Luby, S. C., Dixon, R. R. and Simmon, M. K., "Creating and Using a Features Database", 

Computer. Mech. Eng., Nov. 1986. 

Luh, J.Y.S., Walker, M.W., and Paul, R.P., "On-Line Computational Scheme for Mechanical 

Manipulators,'' Transaction ASME, Journal of Dynamic Systems, Measurement and 

control, Vol. 120(2), pp. 69-76, 1980. 

Lyons, D.M. and Arbib, M.A., "A Formal Model of Computation for Sensory-Based Robotics", 

IEEE Transactions on Robotics and Automation, Vol. 5, No 3, pp. 280-293, June 1989. 

306 



References 

Muhieddine, F. and Webb, D.C., "BCL -the Industrial CNC Standard", Computer-Aided 

Engineering Journal, pp. 54-56, April 1990. 

Maier, D. Otis, A. and Purdy, A., "Object-oriented database development at Servio Logic", IEEE 

Database Engineering, Vol. 8, No. 4, pp. 58-65, 1985. 

Maimon, D., ''The Robot Task- Sequencing Planning Problems", IEEE Transactions on Robotics 

and Automation, Vol. 6, No 6, pp. 760-765, December 1990. 

Mattis, A. and Gill, K.D., ''The Best Robot for the Job: Simulation can Help Decide," The 

Industrial Robot, Vol. 15, No. 1, pp. 32-34, 1988. 

McCloy, D and Harris, M., "Robotics - An Introduction,'' Published by Open University Press, 

Milton Keynes, England. 

Milenkovic, V. and Huang, B., "Kinematics of Major Robot Linkages", Proceedings of 13th 

International Symposium on Industrial Robots and Robots 7, Chicago, Illinois, Vol. 2, 

1983. 

Middle, J.E. and Gob, J., "WRAPS -Welding Robot Adaptive Off-Line Programming and Expert 

Control System," Second International Conference Developments in Automated and Robot 

Welding, London, 17-19 November, 1987. 

Milberg, J., Schrufer, N. and Tanber, A., "Requirements for Advanced Graphic Robot 

Programming Systems," IFAC, Robot Control, Karlsruhe, FRG, 1988. 

Miller, R.K., "Manufacturing Simulation,'' SEAT Technical Publication and Technical Insight 

Publication, 1987. 

Miller, D. J. and Lennox, R. C., "An Object-Oriented Environment for Robot System 

Architectures", The Proceedings of 1990 IEEE International Conference on Automation ·· 

and Robotics, Cincinnati, Ohio, pp. 352-361, May 13-18, 1990. 

307 



References 

Moore, P. R., Weston, R.H., Thatcher, T.W. and Gascoigne, J.P., "Modular Robot Systems", 

Proceedings of 2nd lASTED International Symposium on Robotics and Automation, 

Lugano, Switzerland, pp. 165-169June 1983. 

Moore, P. R., "Pneumatic Motion Control Systems for Modular Robots", Ph. D.Thesis, 

Department of Engineering Production, Loughborough University of Technology, April 

1986. 

Moore, P. R., Weston, R.H., Booth, A. and Harrison, R., "An Open Control Architecture for 

Assembly Automation", The Proceedings of 11th International Conference on Assembly 

Automation, Detroit, Michigan, pp. MS90-838-1-MS90-838-17, November 11-14, 1990. 

Orin, D.E., McGhee, R.B., Vukobratovic, M., and Hartoch, G., "Kinematic and Kinetic Analysis 

of Open-Chain Linkages Utilizing Newton-Euler Methods," Math-Biosciences Vo1.43, 

pp.107-130, 1979. 

Pai, D. K. and Leu, M. C., "INEFFABELLE- An Environment for Interactive Computer Graphics 

Simulation of Robotic Applications". Proceedings of IEEE International Conference on 

Robotic and Automation, San Francisco, California, April, 1986. 

Paul, R. P.,"Robot Manipulators: Mathematics; Programming, and Control", The MIT Press, 

Cambridge, Massachusetts. and London, England, 1981. 

Paul, B. and Rosa, J.,"Kinematics Simulation of Serial Manipulators", The International Journal of 

Robotics Research Vol. 5, No. 2, pp. 14-31, 1986. 

Paul, R. P. and Zhang, H.,"Computationally Efficient Kinematics for Manipulators with Spherical 

Wrists Based on the Homogeneous Transformation Representation", The International 

Journal of Robotics Research, Vol. 5, No. 2, pp. 32-44, 1986. 

Pieper, D.,"The Kinematics of Manipulators Under Computer Control", Ph.D. Dissertation, 

Computer Science Department, Standford University, Standford, CA, Oct. 1968. 

308 



References 

Pinson, E., "A Simulation Environment for Robot Software Development". SPill, Vol. 579, 

Intelligent Robots and Computer Vision, 1985. 

Primrose, E. J. F., "On the Input-Output Equation of the General 7R Mechanism," Mechanism, 

Machine and Theory, Vol. 21, No. 6, pp. 509-510, November 1986. 

Pratt, M. J., "Solid Modelling and the Interface Between Design and Manufacture", ffiEE 

Computer Graphics and Applications, Vol.4, No 7, pp. 52-59, July 1984. 

Pratt, M. J. and Wilson, P.R., "Requirements for Support of Form Features in A Solid Modelling 

System", Supplied to CAM-I as the Final Report of the Contract "Features Support in a 

Geometric Modelling SYstem (GMS)- Phase 11", 1985. 

Quin, "Intelligent Motor Control for Industrial Plant Automation", An Introduction to the 

Principles and Application oflntelligent Control Techniques to Solve Complex Velocity, 

Acceleration and Position Control Problems in Industrial Automation Projects, 1989. 

Raczkowsky, J., Mittenbuhler, K. H. and Fohler, C., "Simulation of Vision in Robot Applications", 

In Robot Control, pp. 499-504, 1988. 

Rajan, V. R. and Nof, S. Y., "A Game-Theoretic Approach for Co-operation Control in Multi­

Machine Workstations," International Journal of Computer Integrated Manufacturing by 

Taylor & Francis Ltd., Vol. 3, No. 1, pp. 47-59, 1990. 

Ravani, B., "World Modelling of CAD Based Robot Programming and Simulation", CAD Based 

Programming for Sensory Robots, Edited by Ravani, B., NATO ASI Series F, Vol. 50, 

Proceedings of the NATO Advanced Research Workshop on CAD Based Programming for 

Sensory Robots, 11 Ciocco, Italy, pp. 67-89, July 4-6, 1988. 

Ravani, B. and Hornick, M. L.,"STAR: A Simulation Tool for Automation and Robotics", in 

Control and Programming in Advanced Manufacturing, Rathmill, K.ed, International 

Trends in Manufacturing Technology,IFS Publish. pp. 269-294, 1988. 

309 



References 

Requicha, A. A. G., "Representations for Rigid Solids: Theory, Methods, and Systems", ACM 

Computing Survey, Vol. 12, No. 4, pp.437-464, 1980. 

Requicha, A. A. G. and Voe1cher, H.B., "Solid Modelling: a Historical Summary and 

Contemporary Assessment", ffiEE Computer Graphics and Applications, Vol. 2, No. 3, pp. 

9-24, 1982. 

Requicha, A. A. G., "Representation of Tolerance in Solid Modelling: Issues and Alternative 

Approaches in Solid Modelling", Edited by Picket!, M. S. and Boyse, J. W. Published by 

Computer Plenum Press, New York, USA,1984. 

Requicha, Aristides, A.G., "Solid Modelling-A 1988 Update", CAD Based Programming for 

Sensory Robots, Edited by Ravani, B., NATO ASI Series F, Vol. 50, Proceedings of the 

NATO Advanced Research Workshop on CAD Based Programming for Sensory Robots, 

II Ciocco, Italy, July 4-6, 1988. 

Rieseler, H. and Wahl, F.M., "Fast Symbolic Computation of the Inverse Kinematics of Robotics", 

The Proceedings of 1990 ffiEE International Conference on Automation and Robotics, 

Cincinnati, Ohio, pp. 462-467, May13-18, 1990. 

Robotics World, "AutoSimulation,'' Vol. 13, No. 3, pp. 3, 1986. 

Rock, S.T., "Intelligent Robot Programming: You Can't Get There From Here- A Viewpoint,'' 

Robotica, Vol. 6, pp. 333-338, 1988. 

Rockey, K. E., et al., "The Finite Element Method", New York: Halsted Press/Witley, 1975. 

Rogers, P ., Williams, D.J ., Wesley, P .S. and Clare, J. N., "On-Line Scheduling of Machining Cells 

Using Knowledge-Based Simulation", Proceedings of 4th International Conference of 

Simulation in Manufacturing, pp.151-163, November 1988. 

Rogers, G.G. and Weston, R.H., "Modular Production Systems", Proceedings of Institution of 

Mechanical Engineers International Conference Mechatronics: Designing Intelligent 

310 



References 

Machines, pp.31-35, September 1990. 

Rui, A., Weston, R.H., Gascoigne, J.D., Hodgson, A. and Sumpter, C.M., "Automating 

Information Transfer in Manufacturing Systems," Computer-Aided Engineering Journal, 

pp. 113-121, June, 1988. 

Sanderson, A. C. and Homem-de-Mello, L.S., "Task Planning and Control Synthesis for Flexible 

Assembly Systems", in "Machine Intelligence and Knowledge Engineering for Robotic 

Applications", Edited by Wong, A.K.C. and Pugh, A., NATO ASI Series Vol. F33, 

Springer-Verlag, pp. 331-353, 1987. 

Sandgren, E., "A Multi-Objective Design Tree Approach for the Optimization of Mechanism", 

Mechanical Machine Theory, Vol. 25, No. 3, pp. 257-272, 1990. 

Sandor, G. N., "The Seven Stages of Engineering Design", Mechanical Engineering, Vol. 86, No. 

4, pp. 21-25, 1964. 

Schek, H.J.and Pistor, P., "Data Structures for an Integrated Database Management and Retrieval 

System", Proceedings of the 8th International Conference on Very Large Database. Mexico 

City, VLDB.Endoment, Saratoga, California, 1982. 

Schlechtendahl, E G (Editor) Specification of a CAD*I neutral file for solids. Published by 

Springer, 1986. 

Schmitz, D., Khosla, P.K. and Kanade, T., "The CMU Reconfigurable Modular Manipulator 

System", Technical Report, Carnegie Mellon University, CMU-RI-TR-88-7, 16 pages, 

1988. 

Schreiber, R.R., "Robot System Simulation," Robotics Today, pp. 81-90, June 1984. 

Shah, J.J and Rogers, M.T., "Expert Form Feature Modelling Shell", Computer-Aided Design, 

Vol. 20, No. 9, pp. 515-524, November 1988a. 

311 



References 

Shah, J.J and Rogers, M.T., "Functional Requirements and Conceptual Design of the Feature­

Based Modelling System", Computer-Aided Engineering Journal, pp. 9-15, February 

1988b. 

Shipman, D., ''The Functional Data Model and Data Language DAPLEX", ACM Transactions on 

Database Systems, Vol. 6, No. 1, pp. 140-173, March 1981. 

Siegler, A., Bathor, M. andDevi, G., "A 3-Dimensional Computer Animation System with Robotic 

Applications", Robotica, Vol. 5, pp. 281-290, 1987. 

Sll..MA Inc., "Programming in Sll..", Available from Sll..MA Inc., 1601 Saratoga- Sunnyrale Rd., 

Cupertino, Calif. 95014, 1989. 

Sll..MA Inc., "Transmitting Power Intelligently", Professional Engineering, Mechanical Eng. 

Publications, pp. 52-54, April1990. 

Sll..MA Inc., "The CimStation User's Manual," Version 4.0. Available from Sll..MA Inc., 1601 

Saratoga- Sunnyrale Rd., Cupertino, Calif. 95014, 1989. 

Simkens,P., Van Brussel, H., Serrien, S. and Bryon, S.,"Generating Off-line Robot Programs with 

Geometrical Data From a CAD-Database", Proceedings of International Symposium on 

Industrial Robots, pp. 309-322, April1988. 

Sinha, P. K., ''Transmitting Power Intelligently", Professional Engineering, Mechanical Eng. 

Publications, pp. 52-54, April1990. 

Smith, R. C. and Cazes, R., "Modularity in Robotics - Technical Aspects and Applications", IFS 

Proceedings of International Conference on Robots in the Automation Industry (U.K), pp. 

115-122, 1982. 

Spar Corporation, "Conceptual Design of the Payload Handling Manipulator System," for NASA 

Jonhson Space Centre, Houston, TX., 1975. 

312 



References 

Stonebraker, M., Wong.E., Kreps, P. and Held, G, "The Design and implementation of INGRES", 

ACM. Transaction on Database Systems. 1.3 pp. 189-222, Sept. 1976. 

Stonebraker, M., Anderson, E., Hanson, E. and Rubenstein, B., "QUEL as a Datatype", Memo. 

UCB/ERL M83n3, University of California, Berkeley, Dec. 1983a. 

Stonebraker, M., Rubenstein,B.and Guttman, A., "Application of Abstract Data Types and 

Abstract Indices to CAD Database", Proceedings of ACM SIGMOD Conference on 

Engineering Design Applications, San. Jose, Calif., ACM. New York, May 1983b. 

Taguchi, G. and Wu, U., "Central Japan Quality Control Association," Nagoya, Japan, 1980. 

Takano, M.," A New Effective Solution for Inverse Kinematics Problem (Synthesis) of a Robot 

With Any Type of Configuration", Journal of the Faculty of Engineering, The University 

of Tokyo, Vol. 38, No. 2, pp. 107-135, 1985. 

Tan, H.F. and Chang, F.Y.,"A Flexible Robot Programming System - URUCS", Proceedings of 

15th International Symposium on Industrial Robots, Tokyo, Japan, pp. 725-732, Vol. 2, 

September 1985. 

Tao, J.M., Luh, J.Y.S. and Zheng, Y.F., "Compliant Coordination Control of Two Moving 

Industrial Robots", IEEE Transactions on Robotics and Automation, Vol. 6, No 3, pp. 322-

330, December 1990. 

Tesar, D, and Butler, M. S., "A Generalized Modular Architecture for Robot Structures", ASME, 

Journal of Manufacturing Review, Vol. 2, No2, pp. 91-117, 1989. 

Theveneau, P. and Pasquier, M., "A Geometric Modeller for An Automatic Robot Programming 

System", CAD Based Programming for Sensory Robots, Edited by Ravani, B., NATO ASI 

Series F, Vol. 50, Proceedings of the NATO Advanced Research Workshop on CAD Based 

Programming for Sensory Robots, II Ciocco, Italy, July 4-6, 1988. 

Tourassis, V.D., "Principles and Design of Model-Based Controllers," International Journal of 

313 



~----------------------------------------------------- I 

References 

Control, Vol. 47, No. 5, pp. 1267-1275, May 1988. 

Tourassis, V. and Ang , Jr., M., "Analysis and Design of Robotic Manipulators With Multiple 

Interchangeable Wrists", IEEE Transactions on Robotics and Automation, Vol. 5, No. 2, 

pp. 223-230, Aprill989a. 

Tourassis, V. and Ang, Jr., M,"A Modular Architecture for Inverse Robot Kinematics", IEEE 

Transactions on Robotics and Automation, Vol. 5, No. 5, pp. 555-568, October 1989b. 

Tumey, J.L., Mudge, T.N., and Lee, C.S.G., "Equivalence of Two Formulations for Robot Arm 

Dynamics," SEL Report 142 ECE Department, University of Michigan, Ann Arbor, 

Michigan, 1980. 

Uicker, J.J., "On the Dynamic Analysis of Spatial Linkages Using 4*4 Matrices", Ph.D 

dissertation, Northwestern University, Evanston, TII. 1965. 

Vaghul, M., Zinsmeister, G. E., Dixon J. R. and Simmon M.K., "Expert Systems in a CAD 

Environment: Injection Moulding Part Design as an Example" Proceedings 1985 ASME 

Conference, Computers in Engineering, Boston, August 1985. 

Van Aken, L and Van Brussel, H.,"A Structured Geometric Database in An Off-line Robot 

Programming System", Robotica, Vol. 5, pp. 333-339, 1987. 

Van Aken, L. and Van Brussel, H., "Robot Programming Languages: the Statement of a Problem", 

Robotica, Vol. 6, pp. 141-148, 1988. 

Van Aken, L., Van Brussel, H. and Schutter, J.D., "Simplification of a Robot Task specification 

by Incorporating a Structured Geometric Database into an Off-line Robot Programming 

System", CAD Based Programming for Sensory Robots, Edited by Ravani, B., NATO ASI 

Series F, Vol. 50, Proceedings of the NATO Advanced Research Workshop on CAD Based 

Programming for Sensory Robots, II Ciocco, Italy, pp.123-150, July 4-6, 1988. 

Van Brussel, H., Winter, D.D., Valckenaers, P. and Claus, H., "A Universal Programming 

314 



References 

Structure for Multi-Robot Assembly Systems", Proceedings of 8th International 

Conference on Assembly Automation, pp. 209-226, March 1987. 

Volz, R.A., "Report of the Robot Programming Language Working Group: NATO Workshop on 

Robot Programming Languages," IEEE Journal of Robotics and Automation, Vol. 4, No. 

1, pp. 86-90, February 1988. 

Wagner, C. C., ''The Implementations of Natural Language Structure on the Control of Intelligent 

Robotic Systems", International Journal of Computer Integrated Manufacturing, Vol. 3, 

No. 1, pp. 35-46, 1990. 

Waldron, K.J., "A method of studying joint geometry Mechanism and Machine Theory" 7, 347-53 

[ 1.4.3], 1972. 

Walker, M. W., "Manipulator Kinematics and the Epsilon Algebra", IEEE Journal of Robotics and 

Automation, Vol. 4, No. 2, pp. 186-192, 1988. 

Week, M. and Clemens, R., "Experiences with Off-Line Robot Programming via Standardized 

Interfaces", CAD Based Programming for Sensory Robots, Edited by Ravani, B., NATO 

ASI Series F, Vol. 50, pp. 223-234, 1988. 

Weston, R.H., Gascoine, J.D., Rui, A., Hodgson, A., Sumpter, C.M. and Coutts, 1., "Steps towards 

information integration in Manufacturing", International Journal Computer Integrated 

Manufacturing, Vol. 3, pp. 140-153, 1988. 

Weston, R.H., Harrison, R., Booth, A.H. and Moore, P.R., "A New Approach to Machine Control," 

Computer-Aided Engineering Journal, pp. 27-32, February 1989a. 

Weston, R.H., Harrison, R.,Booth, A.H., and Moore, P.R., "Universal Machine Control System 

Primitives for Modular Distributed Manipulator Systems," International Journal of 

Production Research, Vol. 27, No.3, pp. 393-410, 1989b. 

Weston, R.H., Gascoigne, J.D., Coutts, I., "The Need for a Generic Framework for System 

315 



References 

Integration," in "Advanced Information Technologies for Materials Flow Systems", NATO 

ASI Series F53, pp. 279-309, 1989c. 

Weston, R.H., Hodgson, A., Coutts, I., Murgatroyd, S., "Integration Tools Based on OSI 

Networks", AUTOFACT, 89, Detroit, Michigan, SME Ref. Ms89-708, October 1989d. 

Weston, R.H., "New Concept in Programmable Automation", Proceedings Institute of Mechanical 

Enginerring Seminar on "Control in the Process Industries", Solihull, U.K. May 1990. 

Weston, R.H. and Davies, B.J., "Boilding Wider Scope Integrated Manufacturing Systems", 

Tutorial for Advanced School on 'Mechtronics', Udine, Italy, 23-27 March 1992. 

Woodwark, J., "Shape Models in Computer Integrated Manufacture- a Review,'' Computer-Aided 

Engineering Journal, pp. 103-113, June 1988. 

Wozniak, A. and Warczynski, J., "Robot Simulation and Programming System", IFAC Robot 

Control, Karlsruhe, pp. 437-442, 1988. 

Wurst, K. H., "The Concepts and Construction of a Modular Robot System", IFS, Proceeding 

International Symposium on Industrial Robotics (Belgium), pp. 37-44, 1986. 

Y an, X. T., Weston, R.H. and Case, K., "An Emulation System for Machine Design and Control", 

The Proceedings of 11th International Conference on Assembly Automation, Detroit, 

Michigan, pp. MS90-840-1-MS90-838-18, November 11-14, 1990. 

Yoffa, N. A., "Off-Line Programming for Automotive Spot Welding,'' Robotics World, pp. 24-25, 

April, 1988. 

Yong, Y.F., Marshall, R.J. and Bonney, M. C., "Using CAD to Plan and Evaluate a Robotic Cell", 

in Control and Programming in Advanced Manufacturing ". Edited by Rathmill, K., 

Published by IFS Ltd, UK, Springer-Verlag, pp. 235-247, 1988. 

Yoshimara, M., Yoshikawa, N. and Hitomi, K., "Design Optimization of Industrial Robots 

316 



References 

Considering the Working Environment", International Journal of Production Research, 

Vol. 28, No. 5, pp. 805-820, 1990. 

Zaniola, C., "The Database Language GEM", Proceedings of the International Conference on 

Management of Data, San. Jose, California, ACM, New York, pp. 207-218, May 23-26, 

1983. 

Zdonik, S. B. and Wegner, P., "Language and methodology for object-oriented database 

environments", Proceedings of 19th Hawaii International Conference on System Sciences, 

Honolulu, HI, USA, pp. 378-387, January 1986. 

Zienkiewicz, 0. C., ''The Finite Element Method", London,: MCGraw-Hill, 1977. 

317 



Appendix A 

Appendix A Contemporary robot simulation systems 

In this appendix a brief description of the features of contemporary robot simulation 

systems is given to illustrate their variety. 

CimStation: was developed by SILMA Inc. California, USA [SILMA 1989]. The 

CimStation is a CAD based system and offers facilities to import CAD models from 

external CAD systems, via the IGES (Initial Graphical Exchange Specification) 

interface or direct translators from certain CAD systems. It has capabilities for 3D 

CAD modelling with shading techniques, collision detection among objects, 

hierarchical world model structure, attachment of kinematics to structured objects and 

models some dynamic properties. A special robot programming language called SIL 

[SILMA 1988] was developed to strengthen its programming capability. Based on the 

use of its collision detection capabilities the operation of force sensors, limit switches 

and light-beam interrupt sensors can be simulated. The robot language KAREL is 

supported in post-processing [Craig 1988]. 

ROSI: ROSI was developed at the University of Karlsruhe. It is built on a centralized 

database architecture to support CAD and robotic simulation in a uniform manner 

[Dillmann and Ruck 1986]. 

SHARP: SHARP is an automatic robot programming system under current development 

at the LIFIA laboratory in France. It has 3D modelling and motion planning 

capabilities. Two classes of functional reasoning are available in the system, namely 

functions aimed at computing collision free trajectories for a robot, and functions to 

generate contact guided motions under uncertainty constraints, i.e. motion in part­

mating operations etc. [Laugier 1988]. 

AutoSimulation Suite: The AutoSimulation suite developed by AutoSimulation Inc. 

(ASI), is composed of: AutoBots for robot simulation and off-line programming; 
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AutoMod for numerical simulation; AutoGram for producing graphic representation; 

and InterFaSE modules for factory scheduler based simulation. [Robotics World 1986, 

Miller 1987] 

GRASP: GRASP (General Robot Arm Simulation Program), was developed at the 

Rensselaer Polytechnic Institute in the United States. It has the capabilities of 

modelling up to six axis robots, describing tasks, cycle time estimation, and robot 

animation to facilitate evaluation. The V AL robot language is supported in post­

processing [Chan 1989 and Derby 1984]. 

McDonnell Douglas Robotics Suite: The McDonnell Douglas robotic simulation system 

was designed for off-line robot programming [Howie 1984] and has four modules 

namely: BUILD for building robot models (with up to six degree of freedom 

manipulators); PLACE for designing and evaluating a robot workcell through 

animation; COMMAND for off-line program creation; and ADJUST for the calibration 

of errors between the built CAD model and physical robot workcell. Robot languages, 

V AL, VAL-11, KAREL and MCL for Unimation GMF and Cincinnati T3 are supported 

to enable off-line programming within the COMMAND module [Chan 1989]. 

ROBOGRAPHIX: The ROBOGRAPHIX simulation system was developed by 

Computervision [Mattis and Gill 1988]. Four major functions are covered in the 

system, which are workcell modelling, robot program creation, robot program 

verification, and post-processing and down loading to the target physical robots. CAD/ 

CAM information can be used for robot simulation as the CAD/CAM system database 

and the ROBOGRAPHIX simulation system and its accessories library are integrated. 

Robot languages, such as V AL and RAIL are supported in post-processing. 

GRASP: GRASP was developed at the University of Nottingham and further details can 

be found in Section 3.5.2. 

ROBOT-SIM: ROBOT-SIM was developed by Calma R & D and offers the user with 
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more than 20 popular industrial robot models [Miller 1987]. Providing many common 

robot simulation features (i.e. robot and workcell design, robot motion programming, 

cycle time estimation) ROBOT-SIM additionally provides capabilities for dynamic 

modelling and simulation of up to six degree of freedom robots generating information 

relating to velocities, accelerations, link inerdas and motor torque characteristics. 

ROSI: ROSI (RObot dynamic Simulator) was developed in the Department of Artificial 

Intelligence at the University of Edinburgh. The system claims to have no limitation on 

the number of degrees of freedom of a model. A dynamic's engine is included in ROSI 

for dynamic computation within an even larger software system. A user interface for 

communication between the dynamic engine and the program is also provided in 

graphical form. [Industrial Robot 1987] 

STAR: STAR (or Simulation Tool for Automation and Robotics) was developed as an off­

line robot motion planning and programming system with capabilities for dynamic 

modelling. A high level programming language is provided and therefore it has the 

abstraction of task description at high level. Common robot simulation facilities (e.g. 

input module for model building, kinematic modelling, trajectory planner and motion 

planing and programming) are provided. The animation of solid geometry models of 

objects generated on the GMOS solid modeller system is achieved through a CAD 

interface modeller system, although STAR is not a CAD package. [Hornick and Ravani 

1986, Ravani and Hornick 1988] 

CATIA: CATIA is the acronym for Computer Aided Design with a Three dimensional 

Interactive Application and was developed by Dassault Systems in France [Crosnier 

and Fournier 1987, Forestier 1985]. CATIA has capabilities for the 3D geometric 

modelling of complex kinematic closed loops. It can simulate cooperation between 

several robots, task definition in various forms and off-line robot programming. 

IGRIP: IGRIP is the acronym of Interactive Graphics Robot Instruction Program and was 
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developed by Deneb Robotics Inc. It provides a software tool for workcell design, off­

line programming, robot performance evaluation, collision detection and robot task 

description. It can also display the maximum and minimum reachable workplace of a 

robot. Elements of the workcell can be displayed in a choice of four forms [Yoffa 

1988], viz: wire-frame, hidden line, simple shading, and sophisticated shading. IGRIP 

is computer system independent, being designed in modular form to provide portability 

and flexibility [Schreiber 1984, and Harrison and Mahajan 1986]. 

HERON: HERON was developed by Robcad Ltd., ISRAEL and is a stand-alone CAD/ 

CAM workstation [Miller 1987]. It comprises six modules, namely: 

ROBOSIM for workcell design, task description and simulation; 

ROBOLOAD for downloading off-line robot programs; 

ROBOGEO for geometric modelling and mechanism design; 

ROBODOC for drafting and documentation; 

ROBOPERT for providing project management tools; 

ROBOLm which provides libraries of available robots, accessories and peripherals. 

INTERGRAPH: Intergraph robot simulation software was originally developed in 

conjunction with GMF Robotics. The system provides the tools to build libraries of end 

effectors and other peripherals for use with standard robot libraries. The system can 

define and simulate robot motion and perform production cost analysis. The off-line 

programming of a robot is further detailed in five phases [Kacala 1985] namely, 

operation planning and definition for robots and accessories; workplace composition; 

process simulation, editing and verification; program output for translating into a robot 

program and finally; process feedback and workcell calibration. 

GMF: The GMF off-line programming system has a set of Sand G codes to construct robot 

programs. English-like mnemonics may also be used as an alternative to indirectly 

specify the S and G codes. The data input for a point is required to comply with the joint 

axis form which makes programming difficult [Jacobs 1984]. 
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ROBCAM: ROBCAM is a robot simulation and off-line programming system and was 

developed by Silma Corporation. It provides high-level robot programming capability 

based on the language RISE. The system requires a user to employ only one common 

language for all robots. The RISE program so created can be translated into a particular 

robot language after conversion through an intermediate language stage called 

RCODE. [Miller 1987, Craig 1985] 

WRAPS: WRAPS stands for Welling Robot Adaptive off-line Programming and was 

developed in the Department of Manufacturing Engineering at Loughborough 

University of Technology [Gob and Middle 1985]. Being specialised for the off-line 

programming of robotic arc welding tasks, the system features functions such as 

procedure selection and optimization for welding via the use of an expert system 

[Middle and Gob 1987]. 
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Appendix B The derivation of path control algorithms 
for two degree of freedom configurations 

This appendix describes the derivation of forward and inverse kinematic solutions to 

articulated configurations with two degrees of freedom. In addition to the two situations 

discussed in chapter 4 the remaining five configurations depicted in Figure 4.5 are 

considered here. 

B.l One prismatic and one revolute axis articulated in the Z 
and Y directions respectively 

For the case of (3) in Figure 4.5, the coordinate frame assignment of one prismatic and a 

revolute axes articulated in the Z and Y directions is shown in Figure A3.1.3. The link 

parameter table required to use the D-H matrix is then 

Link 

1 
2 

Variable 

-90 
0 

cos~ 

0 d1+D1+D2 0 

D4 D3 1 

sin~ 

-1 

0 

The transformation matrices from frame(O) to frame(1), frame(1) to frame(2), and 

frame(O) to frame(2)are respectively 

1 0 0 0 
0 0 1 0 

T31 (0, 1) = 0-1 0 dl +Dt +D2 

0 0 0 1 

-sin92 -cose2 0 

0 0 1 
= 

-sine2 -cose2 0 D4 sin92 

= cos92 -sin92 0 -D4cos92 

0 0 1 D3 

0 0 0 1 

-cose2 sin92 OD4cos92 +d1 +D1 +D2 
0 0 0 1 

The inverse kinematic solutions for the above configuration can be analytically derived as 

follows based on the forward solutions: 
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P3x = D4 sin92 

from P3, = D3 

P3• = D4 cos92 +d1 +D1 +D2 

hence 

Clearly two solutions exist for a given position in manipulator cartesian space. 

B.2 One axis revolute in Z and one axes prismatic in X direction 

For the case of (4) in Figure 4.5, the coordinate frame assignment of one revolute and a 

prismatic axes articulated in the Z and X directions is shown in Figure A3.1.4. The link 

parameter table required to use the D-H matrix is then 

Link 

1 
2 

Variable 

90 

0 

sinai 

1 

0 

The transformation matrices from frarne(O} to frame( 1} can not be derived from the D-H 

representation based on the above four parameters in the table since there are six variables 

required to describe the transformation from frame (0} to (1}. Homogeneous 

transformation matrices were used to obtain the transformation as follows. 

T41 (0, 1) = Rot (Z, 91) Trans (Z, D1) Trans (X, D2) Rot (Z, 90) Rot (X, 90) 

-sin91 0 cos91 D2cos91 

= cos91 0 sin91 D2sin91 

0 1 0 D1 

0 0 0 1 

The transformation matrices from frame(1} to frame{2}, and frame{O} to frame{2}are 

respectively 

1 0 0 0 
01 0 0 

T42 (1, 2) = 0 0 1 d2 + D3 

0 0 0 1 
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-sina1 0 cosa1 (d2 + D 2 + D3) cosa1 

= cosa1 0 sina1 (d2 +D2 +D3 ) sina1 

0 1 0 D1 

0 0 0 1 

The inverse kinematic solutions for the above configuration can be analytically derived as 

follows based on the forward solutions: 

P4" = (d2 +D2 +D3)cosa1 

from P4, = (d2 +D2 +D3) sina1 

p4z = Dl 

hence 

Clearly only one solution exists for a given position in manipulator Cartesian space. 

B.3 Two revolute axes articulated in the Z and Z directions 

For the case of (5) in Figure 4.5, the coordinate frame assignment of two revolute axes 

articulated in the Z and Z directions is shown in Figure A3.1.5. The link parameter table 

required to use the 0-H matrix is then 

Link Variable ai <Xj llj di COS<Xj sin<Xj 

1 a1 a1 0 02 01 1 0 
2 92 a2 0 03 0 1 0 

The transformation matrices from frame{O} to frame{1}, frame{1} to frame{2}, and 

frame{O} to frame{2}are respectively 

cosa1 -sina1 0 D2cosa1 

r
51 

(0, 1)- sina1 cosa1 0 D2sina1 

0 0 1 D1 

0 0 0 1 
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cosa2 -sina2 0 D3cosa2 

r
52 

( 1, 2)= sina2 cosa2 0 D3 sina2 

0 0 1 0 
0 0 0 1 



T5 (0, 2) = T51 (0, 1) X T52 ( 1, 2) 

cos (01 + 02) -sin (01 + 02) 0 D3cos (01 + 02) + D2cos01 

= sin (01 + 02) cos (01 + 02) 0 D 3 sin (01 + 02) + D2sin01 

0 0 1 D 1 

0 0 0 1 

AppendixB 

The inverse kinematic solutions for the above configuration can be analytically derived as 

follows based on the forward solutions: 

Psx = D3cos (01 + 02) +D2cos01 

from P5, = D3 sin(01+02) +D2sin01 

Ps, = Dl 

hence 

where 

Only two valid solutions exist for a given position in manipulator cartesian space. 

B.4 Two revolute axes articulated in the Z and X directions 

For the case of (6) in Figure 4.5, the coordinate frame assignment of two revolute axes 

articulated in the Z and X directions is shown in Figure A3.1.6. The link parameter table 

required to use the D-H matrix is then 

Link Variable oi <Xi ai di COS <Xi sin <Xi 

1 ol Ot 90 D2 Dl 0 1 
2 e2 92+90 0 D3 0 1 0 

The transformation matrices from frame{O) to frame{ 1) can not be derived from the D-H 
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representation based on the above four parameters in the table since there are six variables 

required to describe the transformation from frame (0} to (1}. Homogeneous 

transformation matrices were used to obtain the transformation as follows. 

T61 (0, 1) = Rot (Z, 91) Trans (Z, D 1) Trans (X, D2) Rot (Z, 90) Rot (X, 90) 

r
-sin91 0 cos91 D2cos91 

= cos91 0 sin91 D2sin91 

0 1 0 D 1 

The transformation matrices from frame( I} to frame(2}, and frame(O} to frame(2}are 

respectively 

-sin92 -cos92 0 -D3sina2 

r
62

(1,2) = cos92 -sin92 0 D3cosa2 

0 0 1 0 
0 0 0 1 

sina1 sina2 sina1 cos92 cos91 D3 sina1 sina2 + D2cosa1 

= -sina2cosa1 -cosa1 cosa2 sina1 - D3 sin92cos91 + D2 sin91 

cosa2 -sina2 0 D3cosa2 +D1 

0 0 0 1 

The inverse kinematic solutions for the above configuration can be analytically derived as 

follows based on the forward solutions: 

P6x = D3 sin91sin92 +D2cos91 

from P6y = -D3sina2cos91 +D2sina1 

P6, = D3cosa2 +D
1 

a2 = ±acos(P6,-D1)/D3 

hence 
a1 = asin (p 6P3sina2 ±D2jDisin292 -P~:x:+Di )1 (Disin292 +Di) 

Clearly only one solution exists for a given position in manipulator Cartesian space. 
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B.5 Two revolute axes articulated in the Z and Y directions 

For the case of (7) in Figure 4.5, the coordinate frame assignment of two revolute axes 

articulated in the Z and Y directions is shown in Figure A3.1.7. The link parameter table 

required to use the D-H matrix is then 

Link Variable 9j Clj 3j dj COSClj sinClj 

1 91 91 -90 D2 D1 0 -1 
2 92 9r90 0 D3 0 1 0 

The transformation matrices from frame{O} to frame{1}, frame{1} to frame{2}, and 

frame{O} to frame{2}are respectively 

cosa1 0 -sina1 D2cosa1 

r
71 

(0, 1)= sina1 0 cosa1 D2 sina1 

0 -1 0 D 1 

0 0 0 1 

sina2 cosa2 0 D3sina2 

Tn(1,2)= -cosa2 sin92 O-D3cosa2 

0 0 1 0 
0 0 0 1 

sina2cosa1 cosa1 cosa2 -sina1 (D3sina2 +D2) cosa1 

= = sina1 sin92 sina1 cosa2 cosa1 (D3sin92 + D 2) sina1 
cosa2 -sina2 0 D3cosa2 +D1 

0 0 0 1 

The inverse kinematic solutions for the above configuration can be analytically derived as 

follows based on the forward solutions: 

P1x = (D3sin92 +D2)cosa1 

from P11 = (D3sina2 +D2)sina1 

P1z = D3cosa2 +D
1 
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a = atan2(p
7
') 1 P1x 

hence 

Clearly there are two solutions available for a given position in manipulator Cartesian space. 
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Appendix C Control algorithms of 3 DOF configurations 

This appendix describes the derivation of forward and inverse kinematic solutions to 

articulated configurations with two degrees of freedom. In addition to the two situations 

discussed in chapter 4 the remaining ten configurations depicted in Figure 4.6 are 

considered here. 

C.l One revolute and two prismatic axes articulated in the Z, Z and X directions 

For the case of (3) in Figure 4.6, the coordinate frame assignment of one revolute and two 

prismatic axes articulated in the Z, Z, and X directions is shown in Figure C.3. The link 

parameter table required to use the D-H matrix is then 

Link Variable ai <Xj ai d· I COS<Xj 

1 81 81 0 D2 D1 1 

2 d2 90 90 0 d2+D3 0 
3 d3 0 0 0 d3+D4 1 

The transformation matrices from frame{O} to frame{ I}, frame{1} to 

frame{2} to frame{3} and frame{O} to frame{3 }are respectively 

cos81 -sin81 0 D2cos01 

T31 (0, 1) = sin81 cos81 0 D2sin01 

0 0 1 D! 
0 0 0 1 

001 0 
100 0 T33 (2, 3) T32 (1, 2) = 0 10 d2 +D3 

000 1 

T3 (0, 3) = T31 (0, 1) X T32 (1, 2) X T33 (2, 3) 

-sina1 0 cos01 (d3 + D 4) cosa1 + D2cos01 

= cosa1 0 sin81 (d3 +D4) sina1 +D2 sina1 

0 1 0 d2+D3 +D1 

0 0 0 1 
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Figure C The assignment of coordinate systems to twelve possible 
three joint configurations ( to be continued) 
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C.2 Two revolute axes along Z directions connected by one prismatic axis in between 

For the case of (4) in Figure 4.6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.4. The link parameter table 

required to use the D-H matrix is then 

Link Variable 9i ~ ~ di cos~ sin a;_ 

1 91 91 0 D2 D1 1 0 
2 d2 0 0 0 d2+D3 1 0 
3 93 93 0 D4 0 1 0 

The transformation matrices from frame{O) to frame{1 ), frame{l) to frame{2), frame{2) 

to frame{3) and frame{O) to frame{5)are respectively 

cosa1 -sina1 0 D2cosa1 

T41 (0, 1) = 
sina1 cosa1 0 D2 sina1 

0 0 1 Dl 
0 0 0 1 

10 0 0 
010 0 
001d2 +• 
00 0 1 

cosa3 -sin93 0 D4cosa3 

T
43

(2,3) = sina3 cosa3 OD4 sina3 

0 0 1 0 
0 0 0 1 

cos(a1 +93) -sin(a1 +a3) 0 D4cos(a1 +a3) +D2cos91 

= sin(a1+a3) cos(a1 +a3) 0 D4 sin(a1+a3) +D2sin91 

0 1 1 d2 +D3 +D1 

0 0 0 I 

C.3 Two revolute axes along Z and X directions connected by one prismatic axis in 
between 

For the case of (5) in Figure 4.6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.5. The link parameter table 

required to use the D-H matrix is then 
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(S) 

(6) 

(7) (8) 

Figure C (continued) The assignment of coordinate systems to twelve 
possible three joint configurations ( to be continued) 
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Link Variable 9i <lj l1j di COS<lj sin<lj 

1 91 90+91 90 Dz D1 0 1 
2 d2 90 0 0 dz+D3 1 0 

3 93 93 0 D4 0 1 0 

The transformation matrices from frame{O} to frame{1}, frame{l} to frame{2}, 

frame{2} to frame{3} and frame{O} to frame{5} are respectively 

-sin91 0 cosa1 D2cosa1 

= cosa1 0 sina1 D2 sina1 

0 1 0 D 1 

T51 (0, 1) 

0 0 0 1 

0-10 0 
1 0 0 0 
0 0 1d2+1 

0 0 0 1 

cosa3 -sina3 0 D4cosa3 

r
53 

(2, 3) = sina3 cosa3 0 D4sina3 

0 0 1 0 
0 0 0 1 

sina1 sina3 sina1 cosa3 cosa1 D 4 sina1 sina3 + (d2 + D3 + D 2) cosa1 
-sina3cosa1 -cosa1cosa3 sina1 -D4 sina3cosa1 + (d2 +D3 +D2) sina1 

cosa3 -sina3 0 D4cosa3 +D1 

0 0 0 1 

C.4 Two revolute axes along Z and Y directions connected by one prismatic axis in 
between along X direction 

For the case of (6) in Figure 4.6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.6. The link parameter table 

required to use the D-H matrix is then 

Link Variable 9i <lj ai d· I COS<lj sin<lj 

1 91 90+91 90 Dz Dl 0 1 
2 d2 90 90 0 dz+D3 0 1 

3 93 93 0 D4 0 1 0 
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The transformation matrices from frame{O) to frame{l), frame{l) to frame{2), frame{2) 

to frame{3) and frame{O) to frame{3) are respectively 

T61 (0, 1) = 
-sina1 0 cosa1 D2cosa1 

cosa1 0 sina1 D2sina1 

0 1 0 D1 

0 0 0 1 

0 01 0 
1 00 0 
010d2+1 

0 00 1 

cosa3 -sina3 0 D4cosa3 

T
63 

(2, 3) = sina3 cosa3 0 D 4 sina3 

0 0 1 0 
0 0 0 1 

sina3cosa1 cosa1cosa3 -sina1 D4 sina3cosa1 + (D2 +d
2

+D3 ) cosa1 

sina1sina3 sina1cosa3 cosa1 D4 sina1sina3 + (D2 +d
2

+D3) sina1 

-sina3 

0 

0 

0 

C.S One prismatic axis in Z direction followed by two revolute axes along Y and Z 
directions 

For the case of (7) in Figure 4.6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.7. The link parameter table 

required to use the D-H matrix is then 

Link Variable ai <Xj ai d· I COS<Xj sin<Xj 

1 dl 0 -90 0 dl 0 -1 

2 a2 82 90 D3 0 0 1 

3 83 83 0 D4 0 1 0 

The transformation matrices from frame{O) to frame{1), frame{1) to frame{2), and 

frame{2) to frame{3) based on D-H representation are respectively 
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T11 (0, 1) = 

1 0 0 0 
0 0 1 0 
0-10d1 +D1 

0 0 0 1 

cos62 0 sin62 D3cos62 

= sin62 0 -cos62 D3sin62 

0 1 0 D 2 

0 0 0 1 

T73 (2, 3) 

AppendixC 

cos63 -sin63 0 D4cos63 

= sin63 cos63 0 D4 sin63 
0 0 1 0 
0 0 0 1 

Since there are six parameters required to describe the transformation of six degrees of 

freedom from joint 2 to 3, i.e. link 2 and 3 do not satisfy the D-H conventions, the D-H 

representation in the case that there is no intersection between Zi-l and Xi can not be 

directly used. The author derived the transformation representation from frame{ 1) to 

frame{2) based on six degrees of freedom transformation as follows 

T 72 ( 1, 2) = Rot (z, 92) Rot (X, 90) Trans (X, D3) Tans (Z, D2) 

cos62 0 sin62 D2 sin62 +D3cos62 

= sin62 0 -cos62 -D2cos62 + D3sin62 

0 1 0 0 
0 0 0 1 

Therefore the transformation from frame{O) to frame{3) is 

T7 (0, 3) = T71 (0, 1) X T72 (1, 2) X T13 (2, 3) 

where 

cos62cos63 -sin63cos62 sin62 P1:x: 

= sin63 cos63 0 P1Y 

-sin62cos63 sin62sin63 cos6
2 

P1, 

0 0 0 1 

P1:x: = D4cos62cos63 +D2 sin62 +D3cos62 

P1y = D4sin63 
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C.6 Two revolute axes along Z and Y directions connected by one prismatic axis in 
between along Z direction 

For the case of (8) in Figure 4.6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.8. The link parameter table 

required to use the D-H matrix is then 

Link Variable 9j <Xj 8j di COS<Xj sin<Xj 

1 91 91 0 Dz D1 1 0 
2 d2 0 -90 0 dz+D3 0 -1 

3 93 270+93 0 D4 0 1 0 

The transformation matrices from frame{O} to frame{1}, frame{1} to frame{2}, 

frame{2} to frame{3} and frame{O} to frame{3} are respectively 

cosa1 -sina1 0 D2cosa1 

T81 (0, 1) = 
sina1 cosa1 0 D2sina1 

0 0 1 Dl 

T82 (1, 2) = 

0 

1 0 0 0 
0 0 1 0 
0-10d2 +D3 

0 0 0 1 

0 0 1 

sina3 cosa3 0 D4 sina3 

r
83

(2,3) = -cosa3 sina3 O-D4 cosa3 

0 0 1 0 
0 0 0 1 

T8 (0, 3) = T81 (0, 1) X T82 (1, 2) X T83 (2, 3) 

sina3cosa1 cosa1 cosa3 -sina1 D 4 sina3cosa1 + D2cosa1 

= sina1 sina3 sina1 cosa3 cosa1 D 4sina1 sina3 + D2sina1 

cosa3 -sina3 0 D4cosa3 +d2 +D3 +D1 

0 0 0 1 

C.7 One prismatic axis in Z direction followed by two revolute axes along Y and Z 
directions 

For the case of (9) in Figure 4.6, the coordinate frame assignment of three prismatic axes 
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articulated in the Z, X, and Y directions is shown in Figure C.9. The link parameter table 

required to use the D-H matrix is then 

Link Variable ei CXj 8j dj COSCXj sinllj 

1 e. e. -90 D2 Dl+D3. 0 -1 

2 e2 e2-90 -90 Ds D4 0 -1 

3 d3 0 0 0 d3 1 0 

The transformation matrices from frame{O} to frame{1 }, frame{l} to frame{2}, and 

frame{2} to frame{3} based on D-H representation are respectively 

cose1 0 -sine1 D 2cose1 

T91 (0, 1) = sine! 0 cose1 D 2 sine1 

0 -1 0 Dl +D3 

0 0 0 1 

sine2 0 cose2 D 5sine2 100 0 
T92 (1, 2) = -cose2 0 sine2 -D5cose2 T93 (2, 3) 010 0 = 0 -1 0 D4 0 0 1 d3 

0 0 0 1 0 0 0 1 

Since there are six parameters required to describe the transformation of six degrees of 

freedom from joint 2 to 3, i.e. link 2 and 3 do not satisfy the D-H conventions, the D-H 

representation in the case that there is no intersection between Zi-l and Xi can not be 

directly used. The author derived the transformation representation from frame { 1} to 

frame{2} based on six degrees of freedom transformation as follows 

T92 (1, 2) = Trans (Z, D 4) Trans (X, D5) Rot (Z, 92) Rot (Y, 90)Rot (Z, 90) 

sine2 0 cose2 D5cose2 

= -cose2 0 sine2 D5sine2 

0 -1 0 D4 

0 0 0 1 

Therefore the transformation from frame{O} to frame{3} is 
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Xa X1 

(9) ( 10) 

z, 

L0~:: {n6 
x, 

( 11) (12) 

Figure C (continued) The assignment of coordinate systems to twelve 
possible three joint configurations 
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T9 (0, 3) = T91 (0, 1) X T92 (1, 2) X T93 (2, 3) 

where 

sine2cose1 sine1 cose1 cose2 P9x 

= sine1 sine2 -cose1 sine, cose2 P 91 

cose2 0 -sine2 P9, 

0 0 0 1 

C.S Three revolute axes along Z, Y and X directions in articulation 

AppendixC 

For the case of (10) in Figure 4.6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.1 0. The link parameter table 

required to use the 0-H matrix is then 

Link Variable ej <Xj 3j dj COS<Xj sin<Xj 

1 e1 e1 -90 02 01+03 0 -1 
2 e2 02-90 -90 Os 04 0 -1 

3 03 03 0 06 0 1 0 

The transformation matrices from frame{O} to frame{l}, frame{l} to frame{2}, frame{2} 

to frame{3} and frame{O} to frame{3} are respectively 

TIOI (0, 1) 

cose1 0 -sine1 D2cose1 

= sine, 0 cose1 D2sine1 

0 -1 0 D1 +D3 

0 0 0 1 
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sin92 0 cos92 D 5cos92 

= -cos92 0 sin92 D5sin92 

cos93 -sin93 0 D 6cos93 

= sin93 cos93 0 D 6sin93 
0 -1 0 D4 0 0 1 0 
0 0 0 1 0 0 0 1 

ce1se2ce3 +S01se3 se1ce3 - ce1se2se3 ce1ce2 P 10x 

= se1se2ce3 - ce1se3 -se1se2se3 - ce1ce3 se1ce2 P10y 

ce2ce3 -ce2se3 -se2 P 10, 

0 0 0 1 

where "S" and "C" denotes sin and cos functions respectively, and 

P10y = (D6sin92cos93 +D5cos92 +D2) sin91 + (-D6sin93 +D4) cos91 

P 10, = D6cos92cos93 -D5 sin92 +D1 +D3 

C.9 Three revolute axes along Z, Y and Y directions in articulation 

For the case of (11) in Figure 4.6, the coordinate frame assignment of three revolute axes 

articulated in the Z, Y, and Y directions is shown in Figure C.11. The link parameter table 

required to use the D-H matrix is then 

Link Variable ei <lj 3j dj COS<lj sin<lj 

1 el el -90 D2 Dl+D3 0 -1 
2 e2 82-90 0 D7 D4 1 0 
3 e3 e3 0 D6 0 1 0 

The transformation matrices from frame{O} to frame{1}, frame{1} to frame{2}, and 

frame{2} to frame{3} based on D-H representation are respectively 
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cosa2 -sina2 0 D7cosa2 cosa3 -sina3 0 D6cosa3 

T112 (1, 2) = sina2 cosa2 0 -D7sina2 T113 (2, 3) = sina3 cosa3 0 D6sina3 
0 0 1 D4 0 0 1 0 
0 0 0 1 0 0 0 1 

Since there are six parameters required to describe the transformation of six degrees of 

freedom from joint 2 to 3, i.e. link 2 and 3 do not satisfy the D-H conventions, the D-H 

representation in the case that there is no intersection between Zi-l and Xi can not be 

directly used. The author derived the transformation representation from frame{ 1) to 

frame{2) based on six degrees of freedom transformation as follows 

T112 ( 1, 2) = Rot (Z, 8
2

) Tra (Y, -D8) Tra (Z, D5) Tra (X, D7) Rot (Z, -90) 

sina2 cosa2 0 (D8sina2 + D 
7

cosa2) 

= -cosa2 sina2 0 (D7 sina2 -D
8

cosa2) 

o o 1 D5 

0 0 0 1 

Therefore the transformation from frame{O) to frame{3) is 

T11 (0, 3) = T111 (0, 1) X T112 (1, 2) xT113 (2, 3) 

where 

cosal sin (a2 + a3) cosal cos (a2 + a3) -sinal p llx 

= sina1 sin (a2 + a3) sina1 cos (a2 + 83) cos81 P lly 

cos (82 + a3) -sin (a2 + a3) 0 P llz 

0 0 0 1 

P11x = D6cosa1sin(a2+a3) + (D8sina2 +D7cosa2)cosa1 -D5sin81 +D2cosa1 (1) 

P 11y = D6sina1 sin (82 + a3) + (D8sina2 + D7cos82) sina1 + D5cos81 + D2 sin8
1 

(2) 

P11z = D6cos(82+a3) +D8cos82-D7sin82+D1 +D3 (3) 

From the above equations inverse solutions for the configuration 11 of three articulated axis 
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group can be obtained as follows. Divide P1y by D6sin91 and divide P1x by D6cos91 then 

P1"- ( (D8 sin92 +D7cos92) cos91 -D5sin91 +D2cos91) 

D6cos91 

P1,- ( (D8sin92 +D7cos92) sin91 +D5cos91 +D2sin91) 

D6sin91 

Divide (4) by (5) then 

(4) 

(5) 

(6) 

Substitute cos91 with cos2a = 1- sin2a in (6), move P1ycos91 to the right side of the 

equation and square both sides of the equation 

Therefore the roots for the above equation is 

From (8) 91 can be expressed as 

From P1y and P1 z equations the following equivalent forms can be derived 

P 1,- ( (D8sin92 + D7cos92) sin91 + D5cos91 + D2sin91) 

D6sin91 

(7) 

(8) 

(9) 

(10) 

(11) 

Square (10) and (11) and add both squared equations together by using cos2a = 1- sin2a 

then 
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Asin92 +Bcos92 +C = 0 

where 

B= 2(D1D5cose1 -PhD1 +D2D1sin91-P1p 8sin91 + (D1 +D3)D8sin91) sin(\ 
2 2 2 < >2 2 < > > 0 29 2 2 29 C = (D1+D2+Ptz+ D1 +D3 - Ptz D1 +D3 sm 1 +P11 +D5cos 1 

-2P1p 5cose1 +Di+2D5D2sin91cose1-2P1p 2sin91-1 

(12) 

(14) 

(15) 

Move Bcos82 to right side, substitute cos82 with cos a = J1- sin2a and square both sides 

the rearranged equation then 

(A2 +B2
) sin282 +2ACsin92 +C-B2 = 0 

Therefore the roots can be expressed as 

o -2AC±JA2C- (A2 +B2)B2 

sme2 = 2 2 
A +B 

The control value of second joint can be obtained from following equation 

-2AC±JA2C- (A2+B2)B2 
e =±----~-,.-o---~--

2 A2+B2 

Replace 81 and 82 in P1 z with (9) and (18) respectively 

C.lO Three revolute axes along Z, Z and Y directions in articulation 

(16) 

(17) 

(18) 

(19) 

(20) 

For the case of (12) in Figure 4o6, the coordinate frame assignment of three prismatic axes 

articulated in the Z, X, and Y directions is shown in Figure C.l2o The link parameter table 
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required to use the D-H matrix is then 

Link Variable 9j <Xj a;. di COS<Xj sin<Xj 

1 91 91 0 D2 Dl 1 0 
2 92 92 -90 D4 D3+Ds 0 -1 

3 93 93 0 D7 D6 1 0 

The transfonnation matrices from frame(O} to frame(1}, frame(1} to frame(2}, 

frame{2} to frame{3} and frame{O} to frame{3} are respectively 

r121 (O, 1) 

cos91 -sin91 0 D2cos91 

= sin91 cos91 0 D2sin91 

0 0 1 D1 

0 0 0 1 

cos92 0 -sin92 D4cos92 

r
122

( 1, 2) = sin92 0 cos92 D4 sin92 r
123

( 2, 3) 
0 -1 0 D3 +D5 

cos93 -sin93 0 D7cos93 

= sin93 cos93 0 D7 sin93 

0 0 1 D6 

0 0 0 1 0 0 0 1 

T12 (0,3) = r121 (0, 1) xr122 (1,2) xT123 (2,3) 

where 

cos (91 + 92) cos93 -cos (91 + 92) sin93 -sin (91 + 92) P l2x 

= sin (91 + 92) cos93 -sin (91 + 92) sin93 cos (91 + 92) P IZy 

-sin93 -cos93 0 P 12, 

0 0 0 1 

P12x = D7cos (91 + 92) cos93 -D6sin (91 + 92) +D4cos (91 + 92) +D2cos91 

P 12Y = D7 sin (91 + 92) cos93 + D6cos (91 + 92) + D 4sin (91 + 92) + D2 sin91 

P12, = -D7 sin93 +D3 +D5 +D1 • 
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AppendixD The derivation of times for simulation 

The derivation t:2' t1 and tl in trapezoidal velocity profile: 

If an axis group has a constant acceleration a and constant velocity v moving on a defmed 

path, then 

Ill 
v= axdt=ax(t1-t0) 

'• 

The distance of a two dimensional curve y = f(x) in the region of x = a and x = b can be 

obtained from 

s = J:Jt+ (:r xdx= g(x)i != g(b) -g(a) 

Let s =d, where d is the distance moved by articulated axes. 

The total length of a defined multi-segment path is then 

n n b, f:(ixldy)2 
S = ~:Si= I, J 1 + - xdx 

• • a dx •=I •=I I 
where, n = 1,2,3, .•• 

Since Jl + (: Y is not a simple function, a numerical integration method was employed 

to obtain the total length of the path. The trapezoidal rules are adopted to calculate the 

numerical value of S. With the defined velocity v and acceleration a, the path length can be 

used to calculate the total duration 12 of axes motion spent on the path. Based on known 

velocity and acceleration values, the distance moved is 
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where c = -K2 x t2 

To establish path control, a symmetric trapezoid (see Figure7.4.1) is assumed, i. e 

K1 = tan(9) , K2 = tan(l80-9) = -tan(9) = -K1 

On using K2 = -K1 and t2 = t0 + t1 and substituting into the above equation, then 

d = vx {t1-t0) +K1 Xt~ 
Letdequal S 

Since a is constant during the acceleration section of trapezoid then 

v(t} = axt ; when t = t0 , v(t) = v =constant , 
V 

hence t0 =-
a 

Therefore 

_ ((2v) (Sxi-K1 xl))= i+Sxa 
- --+ 2 vxa 

a (v x a ) 
whereK1 =a. 

With the desired velocity v and acceleration a (see Figure 7.4.2), t2 is the estimated time 

spent on the specified path. The next step is to find the corresponding point (xi, Yi) at a 

specific time ti. In evaluating the position Pi(xi, Yi) it is extremely difficult to establish an 

explicit equation for the relationship between the X coordinate and the curve length S, 

therefore it is often impossible to calculate the exact point Pi(xio Yi) on the path with a 

given time ti (because from s = J :Jl + (:Z r dx. it is impossible for most curves to 

obtain the inverse function x = g(s)). If an explicit relationship y = y(t), x = x(t) is defined, 

then the point P1{xio Yi) can be obtained through this set of equations. An approximate 
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relationship describing x = x(t) can be established through the kinematic analysis with 

reference to the desired path. While the end-point of an articulated motion primitive is 

moving on a specified path, the defined acceleration and velocity can be divided into two 

elements along x and y directions. The slope of the curve at the point P,{xi, Yi) can be 

obtained from the relationship y' = -if<x> , and 9 can thus be obtained. The distance 

moved along the X direction can be approximately expressed as (see Figure 7 .4.2). 

and 

where x (lj) is the distance moved along the X direction at time ti; 

V x ( ti) is the elementary velocity along the X direction at time ti ; 

ax(lj) is the acceleration along the X direction at time ti ; 

t is the time interval ; 

x (ti+I) is the estimated distance that the motion primitive will have moved after a time 

interval llt . 

Times t0, t1 and t2 can be used to evaluate the velocity v and acceleration a in Figure 7.4.1 

in the above calculations. Using such an approach x (lj+1), y (ti+J) can be easily obtained 

knowing the path specification equation y = f(x). After calculating values for x (lj+J) (or xi 

for short) and y (ti+J) (or Yi for short) on the path, these cartesian coordinates need to be 

converted into axis coordinates so that the chosen machine axes of motion can establish the 

target position on the path. The inverse kinematic transformation equations described in 
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chapter 6 can be employed to calculate the axis coordinates at time ti+I· 

Although the velocity and acceleration at time ti are used to calculate the distance for time 

interval M, improved accuracy can be achieved by using the velocity and acceleration at 

the mid-point between x; and xi+ I· This is achieved at the expense of recalculating xi+ I with 

mid-point v and a after the first time calculation of xi+ I· 
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AppendixE An example of a CAMLINKS motion file 

This appendix gives an example of the data format used in a CAMLINKS motion profile. 

The motion output of the following file is only partially listed. The main objective is to 

show the data format for various motion profiles used in CAMLINKS. 

Results of motion design for CAMLINKS 
Motion output is linear 
At start of segment one, input = 0.00 
At start of segment one, output = 0.00 
Input speed (cmp) = 60.00 
Segment number: 1 Segment type: dwell 
input- start: 0.00 end: 60.00 
output - start: 0.00 end: 0.00 

segment valid - true 

Values across segment of 

input 

O.OOOOOOOE+OO 
1.8181818E+OO 
3.6363637E+OO 
5.4545456E+OO 
7.2727274E+OO 
9 .0909091E+OO 
1.0909091E+Ol 

5.HIH1822E-+Ul 
6.0000000E+Ol 

output 

O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 

I 
O.()(J()()()()()E+OO 
O.OOOOOOOE+OO 

output vel 

O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 

I 
O.()(J()()()()()E+OO 
O.OOOOOOOE+OO 

change: 
change: 

output ace 

O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 
O.OOOOOOOE+OO 

O.()(J()()()()()E+OO 
O.OOOOOOOE+OO 

Segment number: 2 Segment type: polynomial 
input - start: 60.00 end: 180.00 change: 
output - start: 0.00 end: 100.00 change: 

segment valid - true 
pinpvia = S.OOOOOOOE-01 
reqal= 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r=l.OOOOOOOE+02 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
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ord(reqmask)= 
o= 0 
o= 0 
o= 1 
0= 3 
0= 3 
o= 3 
o= 3 
0= 3 
o= 2 
0= 1 
0= 1 
0= 3 
po1= 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = 9.9999934E+02 
p = -1.4999987E+03 
p = 5.9999948E+02 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 
p = O.OOOOOOOEtOO 

Values across segment of 

input 

6.0000000Et{)l 
6.1791044Et{)l 
6.3582086Et{)l 
6.5373128Et{)I 

1.72H35H1E+U2 
I. 7462685Et{)2 
1.7641790Et{)2 
1.7820894Et{)2 
1.8000000Et{)2 

output 

O.OOOOOOOEtOO 
3.2508817E.03 
2.5422221E.02 
8.3850175E-02 

9.9HU5!121E+Ul 
9.9916237Et{)l 
9.9974668Et{)l 
9 .9996793Et{) I 

. 1.0000006Et{)2 

output vel 

O.OOOOOOOEtOO 
1.9454984Et00 
7.54 79620Et00 
1.6464382Et{)l 

I 
2.H364136E+Ul 
1.6466583Et{)l 
7 .5487059Et00 
1.9467774Et00 
1.4648437E.03 

output ace 

O.OOOOOOOEtOO 
7.7024048Et{)2 
1.4704589Et{)3 
2.1028102Et{)3 

-2.66944HHE+U3 
-2.1028093E+03 
-1.4 704628E+03 
-7.7023922E+02 
8.7890613E.03 

Segment number: 3 Segment type: polynomial 
input- start: 180.00 end: 220.00 change: 40.00 
output- start: 100.00 end: 100.00 change: 0.00 

segment valid - true 
pinpvia = S.OOOOOOOE-01 
reqal= 
r = O.OOOOOOOEtOO 
r = O.OOOOOOOEtOO 
r = O.OOOOOOOEtOO 
r = O.OOOOOOOEtOO 
r = O.OOOOOOOEtOO 
r = O.OOOOOOOEtOO 

351 

AppendixE 



r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = l.OOOOOOOE+02 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
ord(reqmask)= 
o= 0 
o= 0 
o= 1 
o= 3 
0= 3 
o= 3 
0= 3 
0= 3 
o= 2 
0= 1 
0= 1 
o= 3 
pol= 
p = 1.0000006E+02 
p = 1.6276042E-04 
p = O.OOOOOOOE+OO 
p = -9.7656184E-04 
p = 1.3020822E-03 
p = -4.8828083E-04 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 

Values across segment of 

input 

1.8000000E-Hl2 
1.8181817E-Hl2 
1.8363636E+02 

I 
2.1 W9'19\lll+{)'.l 

output 

1.0000006E-Hl2 
1.0000007E-Hl2 
1.0000007E+02 

l.(J()()()(J()bll+{)'.l 

output vel 

1.4648437E-03 
1.4146745E-03 
1.2806503E-03 

I 
-1.3W67221l-U3 

output ace 

O.OOOOOOOE+OO 
-1.9032499E-02 
-3.3280870E-02 

-7.543712HE-OH 

Segment number: 4 Segment type: polynomial 
input - start: 220.00 end: 360.00 change: 
output - start: 100.00 end: 0.00 change: 

segment valid - true 
pinpvia = 5.0000000E-01 
reqal= 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
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r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r= 6.1035156£-05 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
r = O.OOOOOOOE+OO 
ord(reqmask)= 
o= 0 
o= 0 
0= 1 
0= 3 
o= 3 
o= 3 
0= 3 
o= 3 
o= 2 
o= 1 
o= 1 
o= 3 
po1= 
p = 1.0000006£+02 
p = 5.0931704£-04 
p = O.OOOOOOOE+OO 
p =-9.9999934£+02 
p = 1.4999987£+03 
p =-5.9999948£+02 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 
p = O.OOOOOOOE+OO 

Values across segment of 

input 

2.1999999E+02 
2.2179487E+02 
2.2358973E+02 

3.5641l1l.:Jl:!+UZ 
3.5820513E+02 
3.6000000E+02 

output 

1.0000006E+02 
1.0000007E+02 
1.0000007E+02 

I 
1.62\116USJ:!-U'l. 
2.0527839E.{)3 
0.0000006E+02 

output vel 

1.4648437E.{)3 
1.4146745E.{)3 
1.2806503E.{)3 

-4.!116!176\ll:!+UU 
-1.2354911E+OO 
-1.2555803E-03 
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output ace 

O.OOOOOOOE+OO 
-1.9032499E-02 
-3.3280870E-02 

i 
\1.4U:J464ll:!+U2 
4.8923507E+02 
-6.4572703E-03 
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