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Abbrevations 

ATMP: Advanced Therapy Medicinal Products 
CD: Cluster of Differentiation  
CD34: A cell surface marker attributed to Haematopoietic Progenitor Cells 
cCD34: collected CD34+ cells, prior to processing 
CLIA: Clinical Laboratory Improvement Amendments 
CMCF: Cell Manipulation Core Facility ( a laboratory at DFCI ) 
CP: Process Capability ( CP ), indicator of process capability 
CPK: Process Capability Index ( CPK ), adjustment of CP for the effect of a non-centred distribution 
CTQ: Critical to Quality ( attributes ) 
DFCI: Dana Farber Cancer Institute 
GCSF: Granulocyte Colony Stimulating Factor 
GMP: Good Manufacturing Practise 
cGMP: US GMP ( ‘current’ GMP ) 
GvHD: Graft versus Host Disease 
FDA: US Food and Drug Administration 
HPC: Haematopoietic Progenitor Cell 
HSCT: Haematopoietic Stem Cell Therapy 
MHRA: Medicines and Healthcare products Regulatory Agency 
MNC: Mononuclear Cells 
NHSBT: National Health Service Blood and Transplant 
QA: Quality Assurance 
QC: Quality Control 
Raw Material: Additional components added to the therapeutic product such as anti-coagulants  
RBC: Red Blood Cell 
RM: Regenerative Medicine 
SOP: Standard Operating Procedure 
SROC: Spearman’s Rank Order Correlation 
Starting Material: The active, biological therapeutic component of the product 
tCD34: transplanted CD34+ cells, post-processing 
TNC: Total Nucleated Cells 
WBC: White Blood Cell 
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‘It is much more important to know what kind of patient has a disease than to know what kind of 

disease a patient has’ 

– Caleb Hillier Parry (1755 – 1822) 

 

“When you can measure what you are speaking about, and express it in numbers, you know 

something about it, when you cannot express it in numbers, your knowledge is of a meagre and 

unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely, in your thoughts 

advanced to the stage of science.” 

 

― William Thomson, 1st Baron Kelvin ( 1824 – 1907 ) 
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Chapter 1 Introduction 

1.0   Regenerative Medicine 
Regenerative medicines (RMs), including cellular therapy, are set to revolutionize healthcare by 

improving patient quality of life and reducing costs due to their substantial long term health 

benefits. They are unique in that they can replace or regenerate the original cells or tissue and 

restore normal function [1]. 

One particular RM is stem cell therapy, which contains a self-renewing progenitor cell with the 

capability to differentiate into any cell type of the body due to their unique ability to proliferate into 

specialized cells and tissues. This has exciting possibilities for treatment of chronic disease and 

injury. 

Current, existing therapies include long term drug regimes, cadaveric/xenogeneic organ 

transplantation and medical devices; which manage rather than cure diseases, have considerable 

immunological implications, or do not grow to adapt to a growing patient or condition, respectively.  

RMs such as stem cells offer considerable advantages in avoiding these long term regimes by 

restoring natural function – such as in diabetes patients [2]. Immune rejection and graft-versus-host 

disease ( GvHD ) can be avoided by using transplanted tissue grown from the recipients own cells [3]. 

Joints can be rebuilt with biological materials that will grow and maintain themselves over the 

lifetime of the patient, rather than needing to be replaced as they wear out.  

Additionally RMs can be used to offset side effects of current therapies – such as the use of 

peripheral blood progenitor cell transplantation after aggressive radiotherapy to repopulate the 

patient’s bone marrow [4]. Unmet clinical need, such as Parkinson’s Disease [5], may also be treated 

via the use of regenerative medicine. 
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1.2  Manufacture 
However, there is much to be done before a viable and robust industry can be established to 

support regenerative medicine [6][7]. Improvements must be made in our understanding of the 

highly-regulated manufacturing processes and how to optimize them, and how to quantitatively 

characterize biological therapies from both a manufacturing perspective and from a therapeutic 

viability perspective.  

The challenge for cellular therapy is even greater, as we are still developing tools for measuring 

cellular characteristics, and living materials have a greater degree of complexity than anything prior 

in the traditional pharmaceutical sense. 

As pharmaceutical therapies are defined in terms of their active ingredient so must cellular 

therapies. Definition and characterization of the therapeutic agent not only satisfies regulatory 

requirements, but allows a greater understanding of mode of action and dose-response 

relationships. Biological raw materials ( such as those required from cellular therapy ) have a greater 

complexity, sensitivity and plasticity [8] than their more traditional pharmaceutical counterparts – 

partly due to the inherent variation of their source: human beings. 

As a consequence of the development of civilization and technology, humans can live in remarkable 

extremes of conditions, and consciously alter them to suit themselves. Depending on culture or 

location, we vary by diet, lifestyle, age and weight amongst a myriad of other characteristics, in 

addition to the ethnicity [9] defined by our genetics. These all become important factors to consider 

when we begin to approach ourselves as sources of starting material – in particular, by how much do 

we vary in respect to the raw material in question and how much does this variation affect the final 

product and its clinical outcome? 

This is in addition to the more traditional concerns of engineers when defining and controlling a 

manufacturing process. Currently, both input variation and process variables are poorly controlled in 

cellular therapies – determination of measurements such as cell confluence or viability are largely 
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assessed on an individual basis based on operator experience, much akin to when traditional 

engineering training used Masters and Apprentices to control variation by the passage of craft or 

trade skills [10]. Progress is being made here though, with the use of Standard Operating Procedures 

(SOPs), and element of standards of practice – one of the seven tactics suggested by Byrnes for 

reducing variation [11]. Nevertheless, there are established tools, from traditional manufacturing 

and engineering which may be applicable to a biological RM process. 

Significantly producing a commercial-scale cell therapy will require a manufacturing process that is 

either designed around biological variation, designed to control it or reduced prior to manufacture. 

This is a precursor to control strategy design, a key step in understanding the dose/response 

relationship, and an element in both the application of Good Manufacturing Practice ( GMP ) [12] 

and in designing a scalable process. 

Therefore these processes will either need to be designed for biological variation, or absolutely 

controlled [13]. Firstly, the range of deviation at input must be established – the baseline amongst 

the donor population. Having this will allow stratification of variation in terms of donor 

characteristics, such as weight or age, and what effect these have on the quality and efficacy of the 

final product. This may highlight key variables that have a significant impact on patient benefit – the 

Critical-To-Quality (CTQ) attributes of the input material. 

1.3  Variation 
Variation in manufacturing process will depend on five factors: humans, environmental changes, 

machine and measurement variation, differences in methodology and fluctuation in the raw 

material. We can reduce operator variation using SOPs, mechanisation and automation, as 

demonstrated by Liu et al [14], which will be key to development of a robust and cost effective 

process. Operator variance can be reduced by use of mechanisation – such as the introduction of 

multi-channel pipettes, but automation is the ultimate step in reducing the influence of the operator 

( assuming that automation is robust and repeatable in its own right) . This also has the added 
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benefit of forcing us to systematically approach process improvement and design, using data to drive 

improvement, with the robotic guarantee that the only deviation in the process will be a factor of 

the raw material (and any human error in programming or machine failure). 

Another unique factor of RM is the importance of the living cell as a product, something that has not 

yet needed to be considered in the pharmaceutical industry, and the sensitivity of the cell to 

environmental and automation factors ( e.g. shear stress as a function of mixing ). The therapeutic 

potential of the cell relies on an extremely complex interlocking system of chemicals, organelles and 

proteins – of which a slight change can be enough to make the cell unviable for its intended process. 

1.4  Blood 
To account for the extent and distribution of variation, a representative exemplar must be chosen to 

benchmark current and future cellular therapies. This can then be used to qualitatively determine 

the critical steps in the manufacturing process and measure them quantitatively. 

There are currently very few cellular therapies on the market [15], the main and most established 

being bone marrow transplantation and peripheral blood progenitor cell transfusion. These involve 

isolation, processing, implantation and registry of outcomes, without the manufacturing and 

regulatory complications of an expansion step, and are therefore well suited as case studies to 

explore the impact of biological variation. As donor information is taken at the initial stages and 

patient response is recorded in the form of a transplant registry, they offer a unique opportunity to 

provide information as to the baseline variation. 

Haematopoietic Stem Cell Transplantation ( HSCT ) utilises Haematopoietic Progenitor Cells (HPCs) 

derived from blood or bone marrow; raw materials inherently variable due to donor-specific factors 

such as geography, ethnicity, gender and quality of life. HSCT utilizes the therapeutic potential of 

these progenitor cells to differentiate into various cell types within the body and can be used for a 

range of clinical applications such as recovery therapy; where the patient’s own cells are used to 

revivify their bone marrow after particularly harsh cancer treatment. 



22 | P a g e  
 

As this type of HSCT is classified under FDA guidelines as 'minimally manipulated', the effects of          

variation can be studied in the isolation, processing and implantation steps, and the subsequent 

outcome, without the regulatory and manufacturing burden of an expansion step – making HSCT an 

ideal exemplar to benchmark this type of RM and to inform approaches to manufacturing advanced 

therapy medicinal products ( ATMPs ) that are more than minimally manipulated. 

As HSCT is a minimally manipulated product the variation attributed to the expansion step will be 

out of scope of this work. In addition, variation as a function of genetics will be acknowledged as a 

possible contributor but will be outside of the scope of this work due to time and resource 

constraints, as a result of the added complexity. 

1.5  Problem Statement 
For cellular therapy to become a mainstream, frontline option, the regulator, clinician and patient 

need to be satisfied about its long-term efficacy, cost benefit and safety – especially when in 

competition with existing, proven alternatives. 

Cellular therapies are currently produced in small numbers, for relatively few patients in a clinical 

setting. This approach does not have the capability to produce in volume, to meet future demand. 

Given the limited space, budget and manpower of our clinical centres there will be a requirement for 

mechanisation and/or automation. 

The extent and range of variation within cellular therapy remains anecdotal, therefore the key novel 

outcomes for this research will be the qualitative and quantitative understanding of variation. This 

will aid the understanding of the complexity of manufacturing and product development as a result 

of living starting materials. Only by understanding the process sufficiently and demonstrating the 

ability to manufacture a fully defined product at a consistent standard will any RM meet regulatory 

requirements.  

Understanding the variation that is encountered in the starting material, and the process, means an 

understanding of the tolerances and the specification that a machine or a process needs to be 
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designed around – to tolerate or control. This is the primary rationale behind the quantification of 

biological variation. 

Consequently, this thesis will 

• Review current research into biological and stem cell therapy related variation, and identify 

key sources of information and data for analysis 

• Use this identified data to quantify biological variation in starting materials and the 

therapeutic product, using a blood-based stem cell therapy exemplar, both overall and as a 

function of allogeneic and autologous donors. 

• Compare this variation globally to a specific single clinical processing site. 

• Compare this variation between ‘healthy’ and ‘sick’ donors. 

• Identification of potential sources of variation, triage in order of influence, and provide 

informed suggestions for solutions and / or research directions to solutions. 

• Use public forums to gauge stakeholder appreciation and spread understanding and 

awareness of the importance of the fundamental engineering and scientific principles 

required to make regenerative medicines a successful long-term endeavour. 

This will then propose the most prudent research and development direction in tackling biological 

variation in blood-based therapy, whilst identifying and justifying areas of lower value or research 

priority. 
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1.6  Thesis Structure 
This thesis is comprised of 6 chapters, which present the background and context for the research 

and the novel content of the research. 

• Chapter 1 is an introduction that presents the context of the work, the aims and objectives, and 

the structure of the thesis. 

• The literature review in Chapter 2 describes the rationale and importance of quantifying 

variation, establishing confidence in the novelty of this research and providing the vocabulary 

and background to appreciate the challenges behind the headline breakthroughs. 

• Chapter 3 describes the variation within a global, unwell sub-population using an extensive 

literature meta-analysis based on the PRISMA guidelines This is intended to give a background 

basis of variation from multiple centres in multiple countries. The level of overall variation in 

HSCT is given, and stratified into allogeneic and autologous therapy. 

• Chapter 4 describes the variation within a localised, unwell sub-population, from the Dana 

Farber Cancer Institute ( DFCI ), Harvard, Boston, by data mining product and process records for 

patient and product measurements. This also includes an in-depth discussion about the 

challenges of manufacturing in the clinic, and potential observed sources of variation such as 

operator variation, process protocols and measurement techniques. 

• Chapter 5 describes the variation within a national, healthy sub-population, using data provided 

by the UK Biobank. This includes discussion of the effect of physical metrics such as weight and 

age on biological metrics such as white blood cell count, and some notable observations about 

appropriate sampling, ‘big data’ and direct comparisons between this healthy dataset and the 

relatively ‘unwell’ dataset collected from DFCI. 

• Chapter 6 will summarise the findings of this thesis and discuss future work and direction.
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Chapter 2 Focused Literature Review 
 

This review aims to discuss the effect of variation on blood based cellular therapies including bone 

marrow transplantation ( BMT ), peripheral blood progenitor cells ( PBPC ) and umbilical cord blood ( 

UCB ). There will be a particular focus on PBPCs. The effect of variation from the source, process and 

operator and its effect on graft characteristics and clinical outcome will then be discussed. Other 

factors such as dosage, clinical practise variation, and the subsequent effect on clinical outcome – 

patient benefit – will be examined. 

Figure 2.0 is a generic HSCT process map around which the following review has been structured. 

Key sections have been highlighted and page numbers given for corresponding sections. 

The following topics will be discussed: 

  
Haematopoietic stem cell therapy 2.1 

Blood and blood disorders 2.2 
Manufacturing Issues 2.3 

Variation 2.4 
Spread and distribution of biological variation 2.5 
Manufacturing and the practise of medicine 2.6 

Process design and automation 2.7 
Scale 2.8 

Patient Access and Confidence 2.9 
Summary 2.10 
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Figure 2.0: Generic Process Map for HSCT 

 

Direction of process 

Optional/ alternative direction 

Key 
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2.1 Regenerative Medicine  
Regenerative Medicines (RMs), including Cellular Therapies, are set to revolutionise healthcare by 

improving patient quality of life and reducing costs due to their substantial long term health 

benefits. They are unique in that they can replace or regenerate the original cells or tissue and 

restore normal function [1]. 

The keystones of cellular therapy are stem cells. They are the self-renewing progenitors of all 

specialised cells and tissues within the body. They also have the unique ability to proliferate into 

these specialised cells and tissues. Primarily, stem cells are involved with embryonic and foetal 

growth, growing and forming all the structures of the human body. However, recent evidence has 

shown that ‘niches’ of stem cells exist within the adult body and contribute towards repair [16]–[18]. 

Current, existing therapies include long term drug regimes, cadaveric/xenogeneic organ 

transplantation and medical devices; which manage rather than cure diseases, have considerable 

immunological implications, or do not grow to adapt to a growing patient or condition, respectively. 

RMs such as stem cells offer considerable advantages in avoiding these long term regimes by 

restoring natural function – such as in diabetes patients [2]. Immune rejection and graft-versus-host 

disease ( GvHD ) can be avoided by transplanted tissue grown from the recipients own cells [3]. 

Joints can be rebuilt with biological materials that will grow and maintain themselves over the 

lifetime of the patient, rather than needing to be replaced as they wear out. Additionally RMs can be 

used to offset side effects of current therapies – such as the use of peripheral blood progenitor cell 

transplantation after aggressive radiotherapy to repopulate the patient’s bone marrow [19]. Unmet 

clinical need, such as  Parkinson’s disease [5], may also be treated via the use of regenerative 

medicine. 

With the threat of radiation exposure due to atomic energy and weaponry in the late 1940s, there 

was considerable effort put into protection or recovery of bone marrow, which is particularly 

vulnerable to irradiation. Bone marrow was first shown to have a therapeutic effect in 1957 [20] 
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where a transplant provided haematological reconstruction in two leukaemia patients following 

radiotherapy. Early progress of bone marrow transplantation was slow due to consistently low 

survival rates, because of the high incidences of GvHD.  

GvHD is a complication following transplantation where the recipients’ body identifies the donor 

tissue as foreign and attacks it. It has two forms; acute and chronic. Acute GvHD is relatively short-

term, manifests within three months and includes abdominal pain and skin rash. Chronic GvHD can 

last a lifetime, manifest after three months and includes weight loss, fatigue and vision impairment.  

With the discovery of the Human Leukocyte Antigen (HLA) system [21] – the cell-surface marker 

system that controls the immune system’s ‘friend or foe’ response – there was a significant increase 

in survival rates, as donors and recipients could be matched. By 2006 over 50,000 BMTs had been 

carried out, and today over 40,000 haematopoietic stem cell transplantations per year are carried 

out, worldwide [22].  

Current routine cellular therapies, such as Haematopoietic Stem Cell Therapy ( HSCT ), are produced 

in a batch-to-batch manner, typically in a clinical laboratory environment, under special legislation 

such as the European Hospital Exception Clause [23] and the FDA’s Investigational New Drug 

Exemption [24]. To meet future demand an appropriate bio-manufacturing process is likely to be 

required to replace some or all of the current manual processing. A quality-by-design approach to 

process control that is designed around or controls the variation inherent to biological raw materials 

is a key prerequisite to biological manufacturing at scale and an ongoing challenge for the 

entrepreneurs, manufacturers and regulators. 

HSCT is one of the few cellular therapies currently in routine use [15], and is well established 

worldwide. The therapeutic potential of this therapy originates from the haematopoietic progenitor 

cells. HSCT utilises the unique properties of these progenitor cells, isolated from peripheral blood, 

bone marrow or cord blood for clinical applications such as the revivification of a patient’s bone 

marrow following potent chemotherapy or radiotherapy.  It also allows cancer patients to receive 
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higher doses of chemotherapy than their bone marrow would usually tolerate. Infusion of 

haematopoietic stem cells occurs in a similar manner to a simple blood transfusion, intravenously 

over a period of time. 

Between 1990 and 2000, out of 44,165 allogeneic HSC procedures in Europe, 75.9% were used in the 

treatment of leukaemia ( i.e. acute myeloid leukaemia and myelodysplastic syndrome ), 12.9% were 

used in the treatment of non-malignant disorders ( i.e. thalassemia, Fanconi Anemia ), 8.9% for 

lymphoproliferative disorders and 0.6% for solid tumours [22]. 

As pharmaceutical dose is defined in terms of grams per kilogram and purity of active ingredient, so 

must HSCTs. Blood-based therapies are characterised by their cell content, specifically cells per 

kilogram of patient weight, and may include total nucleated cells ( TNC ) and CD34+ cells as a 

measure. The number of TNCs / product is the more traditional, commonly reported parameter for 

cell dose and represents the number of cells present excluding red blood cells and platelets. A more 

specific characterisation uses the Cluster of Designation (CD) cell surface marker system. Clusters are 

involved in critical cellular functions, and are therefore indicative of particular cell types, enabling 

identification of specific cell types. CD number 34 is a particular marker found on haematopoietic 

progenitor cells ( although not all CD34+ cells are HPCs [25] ). 

The prevalence of HSCT makes it an ideal exemplar to benchmark the variation encountered in 

cellular therapies. It occupies a unique regulatory niche in that it is ‘minimally manipulated’, so has 

the potential as a case study for informing the process design for more complex, future biological 

manufacturing of products that are more than minimally manipulated and fall into more challenging 

regulatory classifications such as Advanced Therapy Medicinal Products ( ATMPs ) [26] 
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2.1.1  Autologous versus Allogeneic 
HSCs can be harvested from both autologous and allogeneic donors.  

There are two methods of HSCT: allogeneic and autologous. Autologous therapy involves removing 

and returning one person’s cells, and tends to be used as a ‘rescue therapy’ after harsh 

chemotherapy or radiotherapy. Allogeneic therapy involves two people; a donor and a patient, and 

it is dependent on matching the donor to the patient immunologically using the Human Leukocyte 

Antigen ( HLA )  system [27]. The degree of HLA-matching will determine the probability of graft 

rejection and GvHD. It has the benefit of utilising cells from a healthy donor, rather than an ill donor, 

and tends to be used to replace a defective marrow or immune system. 

Autologous donors are also the recipients of the HSCs – such as when a person’s cells are returned 

to them after particularly harsh chemotherapy or radiotherapy as a ‘rescue therapy’. Autologous 

donors will therefore tend to be ‘unwell’ individuals. 

Allogeneic therapy has the potential to be more effective and cost effective, as allogeneic stem cells 

extracted in large numbers from healthy donors could be physiologically, metabolically and 

genetically more stable [28]. An allogeneic model of manufacture has the potential to offer more 

consistent production and supply, by banking and expanding healthy cells of an ideal set of 

characteristics. However allogeneic therapy is associated with immunological complications, graft 

rejection ( Host versus Graft Disease ) and rejection of the recipient ( Graft versus Host Disease ) 

[29]. 
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2.1.2  Procedures 
The source of HSCs can be further stratified into three cell sources: bone marrow, peripheral blood 

and cord blood. 

Sourcing HSCs from bone marrow is known as aspiration and is a surgical procedure, performed 

under local or general anaesthesia [30]. Bone marrow is removed from the iliac crest in the hip bone 

( or more rarely, the sternum ) via an aspiration needle. Several aspirations may be required to reach 

the required volume. As this is an open, surgical procedure, there tends to be more severe 

complications and risks, such as infection of the bone marrow. 

Sourcing HSCs from peripheral blood is known as apheresis and uses a specially designed machine 

that filters the circulating blood, separating the stem cells from the whole blood and returning the 

remaining volume to the donor [31]. HSCs circulate in the whole blood in low concentrations, but 

this number can be increased with the use of mobilisation agents such as granulocyte colony-

stimulating factors (G-CSFs) which stimulate the bone marrow to release HSCs into the circulating 

peripheral blood. This is a relatively closed procedure, using two needles in an out-patient clinic, but 

infection is still a risk, as is cytotoxic shock from any additives used in the machine, such as acid 

citrate dextrose. Peripheral blood appears to have a greater risk of both acute and chronic GvHD 

compared to bone marrow [32] [33]. Demiriz et al bids us to bear in mind the following when 

choosing peripheral blood sourced stem cells over bone marrow sourced stem cells; chronic GvHD 

risk increases in addition to indication-specific benefits and drawbacks, such as survival rate increase 

for advanced stage chronic myeloid leukaemia      ( CML ) patients and survival rate decrease in 

chronic phase CML patients [34]. However stem cells harvested from peripheral blood resulted in 

improved cell yield and faster engraftment, as well as a decrease in immediate transplant-related 

complications and reduced cost, compared to bone marrow sourced stem cells [35]. 

Sourcing HSCs from umbilical cord involves extraction of the cord blood from the umbilical cord and 

placenta shortly after birth [36]. Traditionally, these organs were discarded after birth, but now 

represent a considerable source of therapeutic stem cells. There is minimal risk to the donor, as 
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these are naturally occurring by-products. Cord blood units can be a good alternative to unrelated 

transplantations with mismatched HLA tissue types [34]. 

Given these source-specific benefits and drawbacks, there also appears to be indication specific 

benefits, such as bone marrow being the preferred source for unrelated donor transplantation in the 

treatment of serum amyloid A ( SAA ) [37]. This hints at a much more complex, and interesting 

interaction between cell type, and function, with specific indications and disease modes of action. 

There is evidence that these sources produce functionally different sub-populations of cells. In 

Lathers et al cultures from peripheral blood and cord blood had entirely different allo-stimulatory 

capabilities – therefore their effectiveness at stimulating an anti-tumour immune response [38]. 

2.2 Manufacturing Issues 
 

2.2.1  Defining HSCTs 
Blood-based cellular therapies are defined in terms of cell dose. This can include TNCs, mono-

nucleated cells ( MNCs ) and CD34+ cells. 

TNC is the most frequently reported parameter in the literature for cell dose, and is usually reported 

as the number of cells administered per kilogram of recipient bodyweight. This cell population 

includes all cells that contain a nucleus which excludes red blood cells and platelets, and has 

historically been used to access the adequacy of peripheral blood progenitor cell grafts [4]. 

Unfortunately, TNC is a measure of cell identity and does not discriminate between live and dead 

cells so a further measure that is indicative of cell quality is required.  

Colony forming assays [39], Trypan Blue staining [40] and 7AAD DNA staining [41] are used to 

determine the viability of the cell. The former two methods can be subjective analytical techniques, 

whilst the latter is a more objective analysis, assuming that dead cells will not have intact cell 

membranes and therefore expelled DNA can be measured and quantified.  
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2.2.2  CD34+ Cells 
A more specific measure of identity is the CD marker system. Clusters of Designation ( CD ) can be 

involved in cell signalling or adhesion, and as a side-effect of their function can be used to identify 

cell lineages and types by testing for cell surface molecules using immunophenotyping of cells. 

A cell is measured for having been positive or negative for a particular marker. Cell surface 

molecules are involved in critical cellular function, and are therefore indicative of specific cell types, 

enabling identification of specific cell types. CD34 for example, is found on haematopoietic stem 

cells – but not exclusively as endothelial cells also test positive for CD34 [42][43][44], and tumours of 

an epithelial origin[45][46]. As succinctly summarised by Ivanovic et al [25]: 

‘It should…be repeatedly stressed the fact that the majority of haematopoietic 
stem and progenitor cells express CD34+ does not mean that all CD34+ cells are 

stem cells or progenitors.’ 

 

Therefore, a CD34+ cell population represents a heterogeneous population and is not a definitive 

measure of haematopoietic stem cells. A further specific marker is CD number 133 [47], which can 

be found on haematopoietic progenitor cells – but also endothelial and epithelial cells. 

Currently CD34 is the most accepted and widespread measure of haematopoietic stem cell content, 

and whilst it is not an absolute measure of the number of stem cells, it is commonly treated as such     

( an analogue ) for the purposes of cell dose and starting material specification. 

2.2.3 Potency Assays 

“Living cells are complex entities and only limited control over cell propagation 

and manipulation in vitro is possible.” [48] 

There is a great need for reference standards, potency assays and surrogates for potency [49][48]. 

The US Food and Drug Association ( FDA ) has identified four expectations for the characterisation of 

cell based therapies; identify, purity, safety and potency [50]. Further measures of cell product 

characterisation can be found in Table 1 of Bravery et al [51] and include physicochemical 
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characterisation, biological characterisation, potency, comparability testing, biocompatibility, 

stability and stability testing, and release assays. 

TNC and CD34+ cell counts are not indicative of quality or efficacy, but are measures of identity. 

Unlike pharmaceutical drugs, such as aspirin, where identity is indicative of efficacy, cells are living, 

plastic entities that are capable of changing form and function, and potentially dying. 

Reference standards are artefacts of a known composition used to enforce comparability and 

standardisation, such as the International Prototype Kilogram for weight. The IPK is a platinum-

iridium ingot kept by the International Bureau of Weights and Measures in France. Reference 

artefacts are a particular challenge for cellular therapy given the in-flux and complex nature of the 

cell itself, and the mutability and fragility of its physical form [51]. Even artefacts of physical 

measurements ( i.e. second, metre, kilogram, ampere, kelvin, and candela ) are prone to change or 

degradation over time and are shifting towards energy constants [52], that are less likely to change 

over time - so artefacts representative of cells may well be of particular difficulty. 

Potential reference cell lines would need to be consistent and representative of the quantifying 

characteristic – whatever measure or measures of quality are identified for that particular cell type, 

and be able to reproduce these characteristics in spite of the potential for these cell types to change 

phenotype and life cycle, in addition to storage considerations. A demonstration would have to be 

made that these cells can be grown in multiple facilities across the globe, or a small number of sites 

can reliably produce and send out reference samples that are comparable. The number of variables 

involved in this endeavour are considerable.  

An alternative would be a reference artefact, a man-made construct that exhibits specific 

characteristics that are reflective of appropriate measures of quality – such as cell surface markers in 

a given ratio that reflects a given cell state and identity. 
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The keystone concept for these reference materials is the identification of appropriate measures of 

quality that can be replicated artificially, or in a controlled manner, that are representative of the 

state of the therapeutic agent, which on application will exhibit a desirable patient outcome. 

Identification of these measures of quality are reliant on the relationship between cell 

characteristics, patient safety and therapeutic efficacy. A defining factor in this relationship is 

controlling the variation to an extent that it has minimal effect on patient safety or benefit. 

2.3 Variation 

“Various aspects of cells in culture or in vivo are in constant flux, including 

changes in mitochondria, methylation profiles, and other epigenetic changes as 

well as genomic changes. Many of these changes are of little consequence, but 

other [rarer] events such as loss of a tumor suppressor or activation of an 

oncogene can be highly significant in terms of both efficacy and safety. Both 

researchers and regulatory authorities need to determine how to distinguish 

trivial changes from potentially dangerous alterations, and whether appropriate 

tests are available or even feasible.” [53] 

 

As the source of HSCs, human beings are inherently variable due to a multitude of factors that affect 

physical and biological characteristics, such as age, weight, diet, lifestyle and quality of life. This 

variation is important as it determines the quality and quantity of the starting material used in 

production of a therapeutic, and has an impact on the final product and therefore patient outcome. 

The cornerstones of manufacturing are the ability to make the same product repeatedly, at multiple 

locations, to a given set of standards and specifications. 

This is in addition to the more traditional concerns of engineers when defining and controlling a 

manufacturing process. Currently, both input variation and process variables are poorly controlled in 

cellular therapies – determination of measurements such as cell confluence or viability are largely 
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assessed on an individual basis based on operator experience, much akin to when traditional 

engineering training used Masters and Apprentices to control variation by the passage of craft or 

trade skills [10]. 

Progress is being made here though, with the use of Standard Operating Procedures, an element of 

standards of practise (SOPs) – one of the seven tactics suggested by Byrnes for reducing variation 

[11]. Additionally, there are established tools, from traditional manufacturing and engineering which 

can potentially be applied to a biological process.  

Operator variance can be reduced by use of mechanisation – such as the introduction of multi-

channel pipettes, but automation is the ultimate step in reducing the influence of the operator. 

Automation has the added benefit of forcing us to systematically approach process improvement 

and design, using data to drive improvement, with the robotic guarantee that the only deviation in 

the process will be a factor of the starting material (and any human error in programming or 

machine failure of course).  

2.4 Spread and Distribution of Biological Variation 
Biological variation, as a function of the donor, can be defined as either intra or inter-donor 

variation.  

Intra-donor variation ( within-person ) is the effect of changes within a specific donor due to certain 

internal or external circumstances, such as changes in blood composition due to seasonality, 

circadian rhythm, exercise, extent of specific illnesses and the particular method of isolating the raw 

material [55][56]. 

Inter-donor variation ( between-person ) is the most visually apparent of sources and concerns the 

differences between individuals such as age, weight, lifestyle choice and ethnicity [57][58][59]. 

This donor variation affects the quantity and quality of the starting material for a given cellular 

therapeutic, the therapeutic building blocks for the medicinal agent. However, this is not the only 

factor influencing biological variation, because the starting material is but the beginning of a chain of 
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events that will lead to the final therapeutic product, involving a number of processes and personnel 

intervention. 

These events are illustrated in Figure 2.0, a generic process map for HSCT, designed to illustrate the 

many factors involved. These include the physical isolation of the starting material, the processing of 

the starting material and any other ingredients required, the influence of the operator and the 

measurement system, cryopreservation, transport and storage where necessary, clinical practise and 

dosage, the disease state of the patient and the resultant patient outcome. 

2.5 Manufacture and the Practice of Medicine 
Clinical practice is of particular importance, as without a standardised method of application, any 

effects of standardisation or control of earlier steps may not be felt by the patient. Additionally, it 

may be difficult to build up statistical confidence in the outcome of a specific therapy, if there is no 

commonality for comparison. Furthermore, clinical practise introduces two further sources of 

variation, the so called ‘wanted’ and ‘unwanted’ variation [60]. 

Wanted variation has already been described as intra- or inter-donor variability, but unwanted 

variation is that which is caused by not applying the ‘best’ practise in the clinic and the most up-to-

date protocols and is a result of the skill, knowledge, willingness and resources of the clinic [61][62]. 

This is highly dependent on the skills and resources of the given therapeutic centre, and is sensitive 

to geographical variation. This type of variation is particularly important from a patient perspective 

and the pursuit of clinical trials, as this leads to variation in the quality of treatment and the 

potential outcome and survival chances of the patient [62]. 

Several potential sources of variation will now be discussed. 

2.5.1  Source 
Human beings are inherently variable due to a multitude of factors that affect physical and biological 

characteristics, such as age, weight, diet, lifestyle and quality of life. 

As the source of starting material in allogeneic therapy, donors could potentially be stratified in 

terms of desirable qualities that are indicative of controllable cell numbers or more efficacious cells. 
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However, currently the criteria for donors is highly variable: in Karp et al, major blood collection 

centres were evaluated in 17 different countries, and found a wide range of donor inclusion criteria, 

including minimal deferral time after pregnancy or tattoos, minimum donor weight and amount of 

whole blood taken during collection [63]. Whilst each centre will have its justification for its criteria, 

as allogeneic therapies are drawn from a worldwide pool of donors, to match the disparate tissue 

matching criteria of the patient, donations from different centres will not be equivalent. Ekhurt et al 

suggests a number of criteria leading to permanent and temporary postponement in allogeneic 

donor selection which they have listed in their paper under Table 1 and Table 2 [64].  

In one large scale South Korean study, different blood groups yielded different cell numbers within 

their cord blood units, in particular blood group ‘O’ showed an increased number of TNCs, CD34+ 

cells and CD34+cells/TNC cells compared with any other blood group [65]. 

2.5.2  Age 
Age is a universal characteristic measurement of humans, and it is our cells that define this age ( or 

to be more precise, our telomeres [66] ). As age affects the quality or characteristics of our cells, it is 

reasonable to assume that age will affect the quantity and quality of HSCs isolated from a given 

donor.  

This is highlighted within mesenchymal ( adult ) stem cells in Maijenberg et al where age is 

associated with different stem cell subsets being prevalent depending on the age of the patient – 

CD271bright CD146+ is the main subset in adults, whilst CD271bright CD146- is the main subset in 

paediatric and foetal bone marrow. This suggests a more complex relationship than a simple linear 

relationship between cell numbers and age, more indicative with the complex state changes that 

come with age – particularly between paediatric and adult donors. 

This difference between paediatric and adult donors is also shown in HPCs, illustrated by a marked 

increase in mobilised CD34+ cells compared to any other age group [67][68][69]. This may be 
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representative of an ‘unsettled’ growing system, with a higher demand for stem cells, compared to 

the more steady-state adult biological system. 

Further evidence for the relationship between donor age and the peripheral blood content of the 

starting material is inconclusive. A number of studies has concluded that there is no significant 

correlation [70][71][72], whereas others have shown a marked decrease in HPCs with age [73], 

particularly in donors over 38 [74] and over 55 years old [75][68]. However, in umbilical cord blood, 

maternal age and race had no effect on yield [76]. 

The aforementioned have focused exclusively on cell number, but as was identified earlier, cell 

number is not indicative of cell quality. Baxter et al used colony forming unit assays with 

mesenchymal stem cells to determine that as the donor’s age increased, the number of colony 

forming units decreased – indicating that as the donor increases in age the ‘quality’ of the cells 

decreased ( or at least their ability to form colonies ) [77]. 

Although this is not a definitive consensus, it appears that younger donors produce higher quality 

cells in higher numbers, compared to their older, adult counterparts. This is appropriate given the 

emerging potential use of paediatric HSCs in reduction of morbidity and mortality, and applied uses 

in gene therapy, autoimmune diseases and inherited metabolic disorders [78]. This conclusion might 

promote the use of PBSCs over BM stem cells for older patients, as PBSC donations tend to contain 

higher proportions of CD34+ cells. Age may therefore affect the variation of quality in HSCT. 

2.5.3  Weight 
Weight is another universal characteristic and is of particular therapeutic interest, as dosage and 

stem cells are typically measured against patient weight. However, this is a simplistic measurement 

of body mass, as it does not take into account body type, corresponding height or fitness levels – the 

same weight may be representative of a shorter, larger individual and a taller, thinner individual, or 

different levels of physical health. 
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With respect to processing and sourcing stem cells, it is the donor weight that is important for 

analysis of the effect of weight. Recipient weight, as more widely reported, is important for 

determining cell dose and location of the graft, but for isolation of starting material and 

correspondence between weight and characteristics of the graft, the donor’s weight is the key 

metric ( of course, in autologous therapy, the donor is the patient ). This could potentially explain 

the reason for the considerable lack of donor characteristics in the literature, with the focus being 

on the patient and their benefit. 

Larger individuals will require more blood to supply nutrients to this greater mass. This might be as a 

result of a greater level of exercise, and therefore it can be expected that the cardiovascular system 

has grown to accommodate and cope with this volume. Conversely, this mass might be a result of 

the obesity epidemic in the Western World [79], and this greater body mass and blood volume may 

be married to a cardiovascular system that is unable to cope over a long period of time leading to 

disease and dysfunction. This appears to correlate with the results from Keser et al who postulate 

that regular exercise increases the number of stem cells mobilised during autologous stem cell 

transplantation [80]. In particular, anaerobic training increases CD34+ counts in peripheral blood 

over aerobic and control groups [81]. 

It is reasonable to assume that a larger mass will result in a larger volume of blood, and therefore a 

larger population of cells, in particular red blood cells. Studies have demonstrated that there is a 

significant positive correlation between the weight of the donor, the density of the cell harvest for 

bone marrow [82] and peripheral blood [58], but specific cell populations have yet to be related 

specifically to weight in this review. 

Importantly for obese patients, Muller-Ehmsen et al has demonstrated that obesity is linked to a 

decrease in circulating progenitor cells in peripheral blood compared to donors with less body fat 

[83]. This suggests that whilst increasing body mass results in an increase volume, and in some cases 

number of cells, specific populations of cells may be intrinsically linked to the capability of other 
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organs, and that being of greater mass is no guarantee of a greater quantity of stem cells – in fact 

being over a certain BMI may actively limit the number of stem cells. Furthermore, obesity may be 

linked to lower survival rates compared to non-obese patients [84] ( although this was refuted for 

multiple myeloma, where BMI does not appear to affect progression-free survival, overall survival or 

mortality [85] ). 

Weight appears to be a more direct influence for umbilical cord blood content. Al-Sweedan et al 

gives evidence for a significant positive correlation between TNC count and neonatal weight, and 

between CD34+ cell numbers and neonatal / maternal weight [86]. This is potentially an interaction 

between the increased number of CD34+ cells in younger patients, and the cell/mass ratio that could 

be expected. Furthermore, Strohsnitter et al found that an incremental increase in cell concentration 

happened for every 500 g increase in neonatal weight [87], and another research group determined 

that birth weight also increased the median number of CD34+ cells [88]. Umbilical cord blood 

appears to have a much less complicated relationship with weight than its more mature 

counterparts in peripheral and bone marrow sourced blood, and must be associated with the rapid 

growth and proliferation present in the new-born biological system. Weight therefore may affect 

both the quality and quantity of HSCTs. 

2.5.4  Gender 
Gender is another fundamental distinction and is indicative of disparate body composition, 

chemistry and form. Research has shown that certain blood components, such as neutrophils and 

platelet counts are much higher in male donors compared to female donors, in all ethnic groups 

[59]. This may imply that a given culture from either gender will be functionally different to the 

other due to different ratios of nucleated cells, such as the strength of the GvHD response in 

allogeneic therapy due to different numbers of white blood cells. However for HSCT specifically, 

Zamora-Ortiz et al found no significant difference in cell numbers between genders, regardless of 

age, diagnosis or whether the HSCT was autologous or allogeneic [89]. 
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Morishita et al suggests that post-HSCT, different genders require a different rehabilitation approach 

with female donors responding well to exercise and male donors responding well to a rehabilitation 

programme that includes a psychological element [90]. This is possibly more indicative of the 

difference in mindset / social programming than physical differences between gender, and would 

affect the clinical variation that will occur in the application of the therapeutic at the end of the 

product process. 

2.5.5  Ethnicity 
There is an assumption that country of origin is indicative of ethnicity: the key difference is that race 

is a geographic and social term, whilst ethnicity is a genetic term, and significant ethnic overlap can 

occur within populations due to immigration and emigration. For example, British citizens originate 

from a wide range of different countries and their respective gene pools and ethnic variances. 

“…geography reflects race, ethnicity, social circumstance, lifestyle and culture 

attitude.” [62] 

It is important to define stratification by ethnic background as a result of genetic differences rather 

than socially defined race or belonging. That is not to say that geographical location will not have an 

effect: local water and air quality, prevalence of disease and access to medical services will all affect 

the health of the donor, and therefore their cell quality and quantity on donation, but in terms of 

inter-individual variation, ethnicity must be defined by genetic origin. 

Ethnicity is a potential source of variation between donors. Multiple studies have demonstrated 

fundamental and statistically significant differences in blood composition [59] such as lower CD34+ 

cells collected in Caucasian donors, compared to African-American, Hispanic or Asian donors [91] 

and higher proportions of CD34+ cells in Hispanic and Caucasian umbilical cord blood units [92]. 

Furthermore African-American donors appear to have lower CD34+ yields compared to other racial 

groups in some collection sites [93]. A large study of 10,776 donors with consistent mobilisation and 

controlling for age, gender, BMI and apheresis year found increasing CD34+ yields in obese African-
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American and Asian/Pacific Islander donors, and Hispanic male donors compared to Caucasian 

donors, with the greatest mobilisation yield across ethnic groups being most prominent in males in 

higher BMI categories [94]. This may be due to the disparate access ethnic groups have to 

autologous and allogeneic HSCT compared to Caucasian donors, and may be skewing these results 

[95].  

Due to the requirement for HLA tissue matching between donor and patient, it is unlikely a specific 

sub-population will become the ‘best’ source of HPSCs – particularly an ethnic group – but rather 

that the process and protocols for isolation of these cells may have to take into account variation as 

a function of donor ethnicity. 

2.5.6  Mobilisation 
Mobilisation is the individual drug and drug regime used to increase the number of circulating 

peripheral blood progenitor cells. HSCs are present within the circulating peripheral blood at a very 

low amount ( 0.04% ) [96][97]. Mobilisation agents stimulate the bone marrow to increase this 

circulating volume of HSCs, before isolation and collection for therapeutic use. The use of a 

mobilisation agent significantly increases the TNC and CD34+ cell yield [98]. Donors have been 

categorised as ‘low’ or ‘high’ mobilisers depending on how many CD34+ cells their apheresis 

procedure has yielded – in fact it has been suggested that different mobilisation regimes be used for 

different categories of mobilisers [99]. 

This is a direct influence on the variation in quantity of cells collected from a given individual and 

may well be one of the most important sources of variation – especially as the recommended drug 

and regime is widely disputed in the literature [100][101][102][103][104][105]. 

This becomes of increasing importance when the inter-individual variations are considered. Basal 

levels of CD34+ cell counts vary from individual to individual and do not appear to fluctuate over 

time [106]. This is consistent with lymphocyte counts, which over an inter and intra-day study did 

not appear to fluctuate [107]. This means that not only are mobilisation regimes and drugs widely 
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disparate, but the amount of original starting material is also, affecting the clinician’s decision to use 

mobilisation drugs and when, and how much these will mobilise between two given donors. 

Furthermore, recovery after mobilisation and donation is key to successful long term patient 

outcome. One study noted that post-PBSCT and conditioning a number of measured outcomes were 

adversely affected and not all these changes were reversed after 100 days – indicating that nutrition 

is of key importance for recovery post-PBSCT, and therefore greater chance of a positive long term 

patient outcome [108]. 

A sister metric to mobilisation is conditioning. This is treatment applied prior to HSCT for specific 

indications, such as chemotherapy and radiotherapy. Because these damage the bone marrow it has 

been suggested that the quality and quantity of HSC products will be affected as a result. Jiang et al 

tested the quality of stem cells via their homing capacity and long-term haematopoetic 

reconstitution and found that stem cell collections from ‘poor mobilisers’ to be equivalent to ‘good 

mobilisers’ [109]. However, Ivanovic et al found that cells obtained from ‘good’ mobilisers were 

associated with a much higher rate of proliferative and metabolic activation ( albeit with a decrease 

in their expansion rate ) [110] indicating that it is important to define the appropriate quality metric 

that is related to a specific patient outcome. 

In summary, the mobilisation regime is a key influence on both the quality and quantity of stem cells 

collected from the donor. This is of particular importance as this determines the characteristics of 

the starting material, prior to any further processing or manipulation that may decrease or increase 

either metric of variation. Further work in the medical community is needed to specifically link 

quality metrics with patient outcome, and define a universal standard for stem cell quality. 

2.5.7  Isolation 
Sourcing HSCs from bone marrow is known as aspiration and is a surgical procedure, performed 

under local or general anaesthesia. The greater the volume of marrow extracted, the greater the 

number of TNCs isolated [111]. However, large aspirations from a single site do not produce as many 
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TNCs as multiple aspirations from multiple sites [111], [112]. This is a function of the structure of 

bone, being made up of a honeycomb of ‘trabecular spaces’ that house a finite amount of marrow. 

As these spaces are drained of bone marrow, they fill with peripheral blood and contaminate the 

aspiration. Peripheral blood, being naturally low in progenitor cells will dilute the bone marrow and 

decrease the yield of progenitor cells ( by increasing the total volume ) [113]. Muschler et al 

recommends 2 ml aspiration from each site to prevent this [114]. It is also important to ensure the 

procedure itself does not reduce the quality of the cells isolated, for example aspiration needle 

diameter does not affect the viability of bone marrow cells isolated [115] therefore needle diameter 

can be designed for patient benefit and safety. 

However, multiple aspirations increases the time the patient is under anaesthesia, increases the 

physical puncture holes in the bone, and increases the donors blood loss both in total and as the 

peripheral blood fills the trabecular spaces [116] so a compromise must be reached between 

optimisation of isolation for quantity of cells and the risk to the patient as a result of the procedure. 

For example, Lannert et al used a needle with five holes instead of one, and although the yields were 

comparative, the operation time was greatly decreased because the collection rate was significantly 

increased ( therefore requiring less anaesthesia, or invasive manipulation ).  

The timing of aspiration also appears to have an effect on collected cell numbers, an important 

observation for maximising patient benefit against the risks of the procedure. In one study, equal 

volumes of bone marrow were aspirated, but an average of 6 fold higher yield in CD34+ cells 

occurred when the bone marrow was aspirated during the daytime and late afternoon, with a lower 

yield during the night [117].  

Sourcing HSCs from peripheral blood is known as apheresis and uses a specially designed machine 

that filters the circulating blood, separating the stem cells from the whole blood and returning the 

remaining volume to the donor. Optimisation of CD34+ cell collection is important to minimise cost 

and donor toxicity. The number of CD34+ cells harvested in an apheresis process will depend on the 
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CD34 concentration prior to harvest, the percentage drop of CD34 during harvest and the collection 

efficiency of the cell separator [118]. Collection efficiency does not appear to differ between 

different blood volumes which result in CD34+ yields equivalent to apheresis blood volumes in 

blastoma patients [119]. 

Different apheresis machines yield different cell numbers, benefits and drawbacks. Lower white 

blood cell ( WBC ) contamination was found in the COM.TEC and Spectra Optia systems compared to 

the traditional COBE Spectra, but at the expense of higher product volume and longer apheresis 

time. Higher collection efficacy and lower product volume favoured the newer Spectra Optia [120]. 

This implies improvement in understanding of the process and product requirements over time, and 

that the use of different equipment will yield different results – one of the key sources for variation 

between different centres is their access to different machines. Further studies confirm this 

advantage of the COBE Spectra over the Optia in collection efficiency at the cost of a longer 

apheresis time [121][122]. This is an advantage as long as the time taken for apheresis does not 

negatively affect the patient benefit, or incur greater costs as a result of the longer procedure, either 

directly or indirectly.  

Timing of this collection can be a key factor in cell number – Sung et al shows that by waiting for a 

higher level of peripheral white blood cell count ( 4,000 / µL compared to 1,000 / µL ) increases the 

number of CD34+ cells collected as a result, in children [123]. This may suggest, at least for 

paediatric patients, that WBC count can be a predictor of CD34+ cell count. 

Previous treatment however, such as radioimmunotherapy, significantly impairs the mobilisation of 

HSCs in follicular lymphoma compared to patients who did not receive radioimmunotherapy [124]. 

This implies that with autologous therapy, previous treatment regimens are going to be significant 

indicators of mobilisation, and the number of collection procedures that will need to take place to 

reach the required dose – which may affect the quality of cells, and the recovery of the patient. 
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Sourcing HSCs from umbilical cord involves extraction of the cord blood from the umbilical cord and 

placenta shortly after birth. Babies delivered by caesarean section had more CD34+ cells and 

volume, but less TNC [76] which may be indicative of a less stressful environment for mother and 

child. 
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2.6 Process Design and Automation 
 

2.6.1  Process 
As shown in the previous section, isolation of HPCs requires human intervention, processing and       

(depending on type and intended use ) storage and transport. These stages are heavily influenced by 

the operator, the equipment used and the protocol followed. It is important to control these factors 

to reduce the amount of variation introduced into an already variable material and potentially 

control or reduce the starting material’s variation. 

Traditional sources of variation within the process included operator error, systematic error, 

differences in protocols, technique and equipment, time between isolation and engraftment ( shelf-

life ), even the temperature of the operating theatre has been reported to affect aspiration volume 

[125]. 

The following sections will discuss various elements of the process and how they could potential 

influence the quality and quantity of HPCs isolated and/or therapeutically delivered to the patient. 

2.6.2  GMP and Manufacture 

“What has become clear over the last decade is that no universal cell type or 

generalized method of cell delivery will be universally applicable for therapy.” [53] 

Currently HSCT is supplied by small scale, clinical laboratory processing methods, highly subjective to 

individual skill and expertise, access to process and analysis equipment and limited by the resource 

and space available to the hospital. 

Academic and transfusion centres lead this small scale processing of regenerative medicines, 

however they have a tendency to lack expertise in regulatory matters, are too optimistic about 

deadlines and are not as rigorous with documentation and complex protocols [126]. Improvement of 

this may involve utilizing ‘on campus’ cross disciplinary capability, or outsourcing to contract 

research organisations. 
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To meet future demand for cellular therapies, and future therapies such as advanced therapy 

medicinal products these will need to be produced at a greater scale, that will require more 

consistent and controlled processing methodologies to both provide safe and efficacious therapies, 

but demonstrate confidence in the process and the product to both the regulator and the patient. 

This is a fundamental challenge in the field of regenerative medicine: the translation from laboratory 

to large scale manufacture. 

Manufacturing at scale will need to either accommodate or control the variation as a function of the 

starting material, and therefore will need to identify sources of controllable or uncontrollable 

variation and optimize the process accordingly [127]. Liu et al has already demonstrated that manual 

culture of human osteosarcoma ( HOS ) cells has a poor process capability compared to an 

equivalent automated process, as a result of the operator dependent variability [14]. Automation, or 

a degree of mechanization will have a greater degree of repeatability and standardization, as they 

are not subject to the motivations and interpretations of human operators, and can run at a larger 

scale and for longer than an equivalent staff. 

For autologous processes, expensive kit works on a 1-kit-1-product basis, meaning that a high degree 

of capital costs is locked in equipment that can only be utilized for one product at a given time. 

Regulatory agencies require that ATMPs be manufactured in a strictly controlled environment, free 

of contaminants. These standards are defined as Good Manufacturing Practices ( GMP ). Although 

this varies between the USA’s Food and Drug Administration and Europe’s European Medicines 

Agency, this is essentially manufacture within a clean room environment, which is a significant 

financial investment. 
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2.6.3  Operator 

The operator is only human. 

Cell culture can be alluded to being a subjective art form, dependant on the individual’s knowledge, 

technical skill and attitude. It has been likened to ‘gardening and cooking’ [128] in that the outcomes 

are largely dependent on who is in control. This is similar to when the trade craft system ( Masters 

and Apprentices ) was used to control manufacture before industrialisation. 

Operator variation is undesirable when producing a cell-based therapeutic product, because the 

efficacy of the product is dependent on the consistency of the process and therefore reliant on the 

technique and judgement of the operator. This may well be affected by the individual’s willpower 

and motivations – in fact a study demonstrated that the time of day, the individuals motivation and 

mood, may have important knock-on effects for patient benefit [129]. 

Human operators vary in skill and can demonstrate an increase in this skill over time – the effect of 

learning. Lannert et al demonstrates this effect, where the bone marrow collection volume increases 

and was maintained over time following a protocol change [130], demonstrating a ‘settling in’ period 

for manual operators. This is undesirable in cellular therapy because change in product quality or 

quantity may affect patient outcome or recovery, therefore the use of automation would remove 

this ‘learning period’. 

At the clinical end of the process the operator is still a key component, although these operators are 

now clinicians and nurses rather than technicians and scientists. Nurses are instrumental in ensuring 

low rates of infection and maintaining wellbeing following HSCT. Bevans et al compared 1,500 

nurses in 7 countries via an online questionnaire and although standard protocols were followed, 

some discrepancies between countries do exist, such as timing or application of less efficient or new 

practises [131]. This implies a different standard of care, and as a result different patient outcomes 

between the clinical centre and/or country of transplantation. Frassoni et al studied this further by 
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examining the variation in outcome as a function of different, but equally competent centres, and 

demonstrated that different centres had different survival rates and incidences of GvHD for 

comparable patients, depending on which centre they visited [132]. This may be due to centres 

specialising in different clinical indications, different caseload between centres or differences in 

equipment and training, but demonstrates that there is sufficient variation in simply the application 

of these therapies to have a noticeable effect on clinical outcome – and this is especially important 

given the highly variable nature of the material these processes begin with. 

Automation can dramatically reduce the level of operator variation [14], however the robot is only 

as good as the commands of the operator. If the incorrect commands are given, the process will be 

consistently inefficient. There is much work to be done before automated cell culture can 

completely replace manual culture, although this is a promising, if costly, future solution to the 

question of operator variation. 

In conclusion, the human element is a significant contributor towards the biological variation found 

in cellular therapies, although the methods for reducing this variation are traditionally recognised 

and not unfamiliar to a manufacturing and process engineer.  

2.6.4  Cost 
Cost is one of the key hurdles holding back development of tissue engineered products [133]. Many 

regenerative medicines are highly personalised and given that several analytical tests are 

destructive, it is not always feasible to make further products beyond the first for testing, or store 

material for later analysis. Industrial R&D, academic facilities, and in particular clinical laboratories 

have limited funding and resources for exhaustive testing and investigative studies to identify 

sources of variation – a potential reason for limited research and recognition in this area, and a 

justification for this body of work. 

In an ideal world, these biological materials would be fully classified and explored prior to 

application, but with the rise of sensational headlines and compassionate use, there is considerable 
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pressure for a potentially premature release of experimental therapeutics. These are expensive in of 

themselves   ( see below ) and so extra costs associated with exploratory research is unlikely to be 

justified. One potential solution of this is the use of a stem cell therapy results database, which could 

collate processing, product and patient outcome data into an investigational, diagnostic and 

prognostic tool that reallocates the investigatory burden from the clinic to third party researchers. 

In the Netherlands in 2012, the cost per patient of autologous stem cell transplantation were 

estimated to be  €45,670 and allogeneic sibling stem cell transplantation at €101,919, with costs for 

unrelated donors being considerable higher at €171,478 for allogeneic matched donors and 

€254,689 for allogeneic umbilical cord blood  with considerable costs being attributed towards 

hospital in-patient days, laboratory costs and donor search costs [134].  

The cost per patient in the US between 2007 and 2009, over a 100 day period for autologous HCT 

were on average $99,899 ( $73,914 – $140,555 ) and $203,026 ( $141,742 - $316,426 ) for allogeneic 

HCT, with the majority of costs being associated with the initial hospital in-patient days [135]. 

The uncertain success of regenerative medicine products has produced a commercial ‘valley of 

death’ that can potentially discourage investors and large industry [136], so much so that authorities 

in several countries have established specific organisations to facilitate translation of regenerative 

medicine products – such as the California Institute for Regenerative Medicine in the US, the Forum 

for Innovative Regenerative Medicine in Japan and the Cell and Gene Therapy Catapult in the UK. 

2.6.5  Regulations 

“There will therefore no doubt be regulatory issues that are specific to a 

particular cell type, particular modality of action, and specific method of 

delivery.” [53] 

Cell therapies, and other regenerative medicines are regulated on a case-by-case basis. These can be 

as ‘minimally manipulated’ such as HSCTs or as ‘advanced therapy medicinal products’ that are more 

than minimally manipulated, amongst a number of other classifications, such as medical devices. 
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The main regulatory bodies in the US ( FDA ) and EU ( MHRA, EMA ) differ enough to mean that 

regulatory approval in one state is not indicative of approval in another, and changes to process and 

protocol may result in a different product or outcome for the patient with these complex 

therapeutics.  

2.7 Scale 
The ability to produce cellular therapies at scale is a vital capability to supplying new regenerative 

medicines, especially if it becomes a viable frontline therapy. This requirement comes with a number 

of unique challenges. 

2.7.1  Multiple Site 

“…the data illustrate the feasibility of a mandatory data collection and data 

analysis system within a complex field of medicine. This provides a basis for a 

network for collaboration and exchange, a prime prerequisite for quality 

improvement.” [137] 

This is the challenge of repeatability and comparability: is a product manufactured in two factories 

identical in form and function from the perspective of the regulator and the products efficacy? This 

will require comparability of process, control over variation and the identification and 

implementation of a product specification - that may prove challenging if the mode of action of 

cellular therapies is unclear. 

Marschner et al warns that a large difference between regions in multinational clinical trials should 

be expected due to chance variation [138]. Mentz et al goes further to identify that trials across 

multiple regions include differences in patient characteristics, medical practise patterns and health 

policies, as well as concerns over unsatisfactory quality oversight [139]. 

However, if the centre data is adjusted for each centres particular mix of patient indications, the 

quality between centres in Switzerland was deemed to be equivalent [137] ( mortality rates were 
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different between centres, but some effort was made to explain this effect using the indication mix 

and treatment population ). 

Gee et al demonstrates that small scale manufacture of autologous bone marrow mononuclear cells 

can be made comparably across multiple sites ( n = 5 ) by using automated systems, standardised 

protocols and a centralised facility running quality control. This was achieved partly due to a 

standardised ‘training’ regimen for the manual cell culture. Further studies have shown that 

adherence to a given protocol can reduce the variation in results of CD34+ cell enumeration across 

multiple centres [140], indicating the importance of standard operating procedures. 

“One memorable example of statistical chance in subgroup analyses comes from 

the ISIS-2 trial. The authors presented a cautionary note when they showed that 

patients born under the Gemini or Libra astrological signs had higher mortality 

after randomization to aspirin than similar patients randomized to no aspirin.” 

[139] 

2.7.2  Cryopreservation and Storage 
Cryopreservation is an essential factor in long term storage of cell therapies due to their living 

nature. Usual preference and protocol within clinical centres is to infuse within 48 hours of 

collection, but this assumes that the patient can be prepared in time, the facility has the capacity 

and workload to meet the demand and that the patient’s conditioning regime / medical treatment is 

timed to facilitate this. 

Overnight storage at room temperature has been shown to decrease the quality of HPCs [141]. 

Cryopreservation is used in this instance to enable a better time frame and schedule for HSCT – to 

make sure the dose collected is adequate and the apheresis is timed with the patient’s in-patient 

days and conditioning regimen. Parody et al found no difference in viability, engraftment or speed of 

recovery by using frozen PBSCs over fresh PBSCs, but a greater incidence of acute GvHD in the frozen 

product likely due to the cryoprotectant [142]. Kim et al also confirms this similarity between fresh 



55 | P a g e  
 

and frozen PBSCs in terms of outcome [143], therefore it is reasonable to assume that 

cryopreservation does not introduce variation from a patient outcome perspective – although the 

cryoprotectant media is still a source of concern. Cryopreservation uses a cryo-protectant media, 

dimethyl sulfoxide ( DMSO ), that is toxic to the patient, but is necessary for keeping cells viable after 

thawing. 

Cryopreservation reduces the number of TNCs and CD34+ cells within a graft, and the viability of the 

graft falls [144]. Given the already variable nature of these cells, it is important to measure cells 

post-thaw to ensure the dose has fallen below the risk-benefit threshold since the pre-freeze 

measurement. This can be quite difficult because immediate testing may not capture apoptotic 

(dying) cells. However, from a long-term storage perspective, Winter at al demonstrated that once 

frozen viable cells numbers and viabilities did not significantly change over time – with a consistent 

stability for up to 15 years in cryo-storage. 

Delaying cryopreservation after isolation is a risk associated with the high workload, limited facilities 

of clinical centres or a geographical distance between collection and processing centres. Starting 

material could be left at room temperature whilst awaiting cryopreservation protocols. Fry et al 

examined the maximum time HPCs can be stored without losing their potency and found much 

higher cell recoveries post-thaw in samples that had been maintained at a refrigerated temperature 

prior to cryopreservation [145]. This suggests that there is a key protocol disparity between centres, 

and highlights the importance of refrigerated ‘waiting room’ storage, or refrigerated transport 

between sites, because being kept at room temperature in the interim is affecting cell quality and 

quantity, and increases the risk of an unsuccessful transplant. 

2.7.3  Perishability 
Much like many other foodstuffs and medicinal products, cellular therapy is perishable and has a 

‘use-by date’. With the product being a living cell, there will be a limited amount of time within 

which the product must be used fresh before it becomes detrimentally affected. Cryopreservation 

may alleviate this somewhat. 
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An example of this ‘use-by-date’ is illustrated in Bieback et al where the presence of stem-like cells 

could not be established within the umbilical cord after 15 hours from the point of birth [146]. HSCs 

appear to have a half-life within the patient of 12 hours [147]. 

Age of the graft is historically associated with the deformation of red blood cells in storage – the 

‘storage lesion’ [148] which is infrequently reported in stem cell registries [149]. It is unclear 

whether the storage lesion affects cell quantity or quality in a manner other than because of cell 

death. 

2.8 Confidence in Therapy 

“Real knowledge is to know the extent of one’s ignorance”  

- Confucius, 551-479 BC 

2.8.1  Clinical Variation 
The primary purpose of a therapeutic is to alleviate, treat or cure a patient’s symptoms, disease or 

damage. A potential future challenge will be the uniform application of these therapies, that they 

are used as intended in a comparable manner under the practice of medicine – there is a clear 

difference even in current medicine between what is defined as best practice and what actually 

happens [150]. 

Reasons for this difference in practice include differences in patient and indication population, lack 

of awareness of the latest medical knowledge, lack of clear guidance or a lack of organizational 

support [151]. This is an issue because clinical variation means differences in the standard of care 

between centres and patients will have different outcomes depending on the clinical centre, their 

particular clinical team, and/or country [62]. Adherence to general guidelines is sporadic, and is 

dependent on the indication and particulars of the individual patient [152]. 

Clinical variation in isolation is known to be an issue between individuals and centres; 
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“The same well-trained operation team was used throughout, so that variations in techniques

 between physicians and the fact that some physicians collect BM more rapidly or 

collecting larger volumes from each aspiration side should not influence the results.” [130] 

Clinicians are used to adapting therapy to suit a patient’s needs, but this makes building up the 

evidence to support future investment, use and confidence in these new regenerative medicines 

more difficult – and therefore therapies need to be comparable, traceable and results kept 

consistent and repeatable.  

This new field of medicine offers the opportunity to ‘start-from-scratch’ when it comes to how these 

therapies are defined, controlled and applied. One of the main reasons for lack of this control of 

adherence is worryingly that the clinical centres have ‘neither the will nor the resource’ to control 

clinical variation [61]. In some instances, clinicians may not have the understanding or have not been 

provided with the training in new medical techniques and therapeutics. With respect to 

improvement of different centres and clinicians practices, it has been noted that ( for red blood cell 

infusions ) clinicians are: 

“…not particularly interested in learning more about inappropriate transfusions 

[because] they believe their current practices are not deficient, and that it is 

others who need to be encouraged or educated to change their practices” [153] 

Loberiza et al has made the case that if clinical variation is an issue, then it would be prudent to 

identify whether the volume of procedures within a clinical centre affects the patient outcome, 

because this would make a viable case for centres of excellence i.e. restricting procedures to certain 

centres ensuring the best quality of care [154].  

With cellular therapies still being in its infancy and vulnerable to scandal and setbacks, it is of 

paramount importance that they are applied comparatively to be able to measure mode of action, 

effect of dose, and identify areas of risk and side-effects. Lindhal et al even goes on to implore his 
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colleagues to document and review their practice to establish routines and guidelines based on 

available evidence [60]. It is important that clinical centres work together to achieve this uniformity, 

and they are not unfamiliar with cross-collaboration ( this may be more viable in the UK’s NHS 

system, than in the USA’s more independent business orientated environment ); 

“The short time intervals mean that the clinical unit, the apheresis unit, and the 

laboratory must work together efficiently (and may need to be located within the 

same area) to optimize PBSC collection in poor mobilizers” [99]. 

Good will alone will not drive this process improvement [155], and needs to be driven top-down by 

the regulator and by the academic and medical community by providing overwhelming evidence as 

to its benefits. This may be as a result of redesigning clinical pathways [156] or the drive of 

particularly charismatic individuals [157]. 

2.8.2  Dose 
Dose in cellular therapies will be highly dependent on the ability to characterise the biological 

product.  

In pharmaceuticals, a given tablet is guaranteed to contain a given amount of a given active 

ingredient – to be within the limits set out in the product specification - and cellular therapies must 

be no different, at least from a patient benefit perspective. Dose should define the therapeutic 

effect and how it is used in terms of disease severity, or location of engraftment. 

The current consensus within PBPC transplantation is that a higher dose reduces mortality and 

stimulates an earlier recovery rate in certain cell types compared to a lower dose 

[158][159][160][161]. Recommendations vary between 2x106 CD34+ cells [158] to 5x106 CD34+ cells 

[160]. Lower doses appear to have a greater risk of mortality and a lower survival rate [162], 

potentially due to the same risks of the procedure but with less patient benefit as a result of a lower 

dose-effect. Higher doses appear to cause fever and an increased risk of GvHD [163]. 
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2.8.3  Patient Outcome 
Clinical outcome can be defined as the perceived and physiological benefit given to the patient by a 

particular therapeutic; in the case of haematological malignancies such as those treated by HPCs, 

this may include short and long term survival, rate of relapse and incidences of chronic or acute graft 

versus host disease. 

In 2011, Passweg et al, demonstrated it was unclear whether donor age had an effect on graft 

failure rates, incidence of GvHD or survival rates of the patient [164], however increasing patient age 

was shown to increase the mortality risk after HPC transplantation [165]. As previously shown, age 

of the donor affects the characteristics and qualities of the isolated cells so it is reasonable to 

assume there will be some effect of donor age on outcome, but this will only be further determined 

by more data or a greater understanding of the particular mode of action for HPCs. 

Similarly, information regarding the effect of donor ethnicity on clinical outcome is inconclusive. 

While Kollman et al and Ustün et al show that racial mismatch did not affect incidence of GvHD, 

relapse or survival rates between different ethnicities [166][167], Ballen et al demonstrated a minor 

increase in survival rate for Caucasian children over black children in umbilical cord blood 

transplantation [168]. Further work is required to isolate whether ethnicity has no effect, or whether 

this has a combinatorial effect with regards to age of the donor. If ethnicity transpires to have no 

effect on outcome (whilst it has already been established that different ethnic groups have different 

cell populations) light may be shed on whether the composition of the graft is important, or the 

quality of the cells themselves.  

Donor age appears to have no detrimental effect on PBSC transplantation for leukaemia, 

represented in terms of engraftment, maintenance of cell populations after one year, or risks of 

acute GvHD ( in a single centre study ) [169]. 

Information regarding donor gender is equally intriguing. In Gahrton et al, female donors are 

recommended for female patients to reduce to risk of negative outcomes, whilst there is no greater 
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risk for male patients being treated with female or male donor tissue, in myeloma [170]. There is 

insufficient evidence to draw definite conclusions on the significance of this, although the same 

paper suggested a sensitisation effect of females to males during pregnancy, and therefore having T 

cells keyed towards male antigens prior to donation. There is currently no data regarding the impact 

of weight, lifestyle or diet of the donor on clinical outcome. 

In conclusion, information regarding donor impact on clinical outcome is inconclusive, because 

attractive as it may be to draw conclusions from one or two studies. Further work is required to 

determine the effects of changing donor characteristics, and would be determined by examining the 

effect of the graft characteristics on the clinical outcome, then determining what factors causes 

those specific graft characteristics.  

2.9 Summary 
The journey from input to clinical outcome is a minefield of multiple factors and influences that can 

affect the characteristics and quality of the grafted tissue. There is an understandable focus on the 

patient and patient characteristics, but the recipient is but one (albeit critical) consideration in a 

chain of events leading from the characteristics of the donor, through mobilisation and isolation, 

manufacture and processing, transport and storage before application in the clinic. The human 

element introduces considerable variation into this process, from the inescapable variation in 

biological tissues and between patients/conditions, to operator variance, clinical application and 

administration and the universal application of standards and protocols.  

Here, it has been suggested that donor characteristics are a key factor in controlling or selecting 

graft characteristics, and that in turn these graft characteristics affect the clinical efficacy and safety 

of the final product. Variation in protocol, operator skill and techniques has also been shown to be 

another factor, one that is perhaps more easily controlled than biological variation itself, because 

the process is something we are historically well suited to control – given our experiences in 

traditional engineering. Further work is required to identify and stratify the critical steps in the 

process, and a greater onus on the donor characteristics and their effect – an issue thus far is that 
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very few studies are directly focused on the biological variation issue. 

This analysis of the literature has shown that there has been little/no work that has addressed the 

critical issue of quantification of the variation of the input to regenerative medicine manufacturing. 

Consequently, as outlined in the introduction, this thesis will address this to make a novel 

contribution via detailed studies of the literature, using large public databases, and by deep analysis 

in a major international clinical manufacturing setting. This begins in the next chapter with a 

systematic meta-analysis.
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Chapter 3 Systematic Literature Meta-Analysis 

3.0 Chapter Aims 

This chapter aims to quantify the variation in a global, multi-centre population, characterized by the 

reported data presented by the academic literature. The chapter aims to establish a baseline of 

variation across multiple centres for a unhealthy population. 

Figure 3.0 is a generic process map for an exemplar HSCT product, which has been included here to 

indicate the primary focus of this chapter with respect to the process as a whole ( indicated in 

orange). 

The following topics will be discussed: 

  
Chapter Aims and Introduction 3.0 and 3.1 

Systematic Meta-Analysis and Methodology 3.2, 3.3 and 3.4 
Results 3.5 

Further Stratification 3.6 
Source of Variation 3.7 

Limitations of the Meta-Analysis 3.8 
Conclusions 3.9 
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Figure 3.0: Generic Process Map indicating in orange the focus of this Chapter 
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3.1 Introduction 
Understanding the variation that is encountered in the starting material, and the HSCT process, 

means an understanding of the limits and the specification that a manufacturing machine needs to 

be designed around – to tolerate or control the biological variation – because only by a degree of 

mechanisation or automation can cellular therapy achieve the scale necessary for frontline medicine 

status. 

Chapter 2 reviewed the literature surrounding biological variation. This Chapter will use the medical 

literature to establish a baseline for biological variation as reported on a global scale. 

This Chapter is a systematic literature study, using specific guidelines and search terms to extract cell 

measurements and donor information from the medical literature to benchmark the current overall 

level of variation in Haematopoietic Stem Cell Therapy. It also intended to identify further specific 

sources of variation and inform further research. 

The information in this Chapter exists in the public domain, but has not been presented as an 

amalgamated whole prior to this Chapter. 

3.2 Quantifying Variation 
Quantifying variation will require elucidation of the baseline variation for the process input / output, 

and identification of causes of variation within this process, and their magnitude. This will identify 

Critical-to-Quality attributes and measurands that are key contributing factors towards the quality 

and efficacy of the final product, and determine the extent of common and special cause variation. 

As Lord Kelvin stated 100 years ago and still holds true today; 

‘…when you can measure what you are speaking about, and express it in 

numbers, you know something about it; but when you cannot express it in 

numbers, your knowledge is of a meagre and unsatisfactory kind’ [171] 

Control or reduction of variation decreases the number of product defects and increases product 

quality at a reduced cost [172]. Additionally, standardisation is a vital component to Good 
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Manufacturing Practice. This control may facilitate the production of a consistent product, with a 

known efficacy, at scale. For a biological therapeutic this means maximising patient quality of life 

and longevity, whilst minimising costs. 

Understanding biological variation requires both a measure of the allowable variation that does not 

impinge safety or efficacy, and the achievable variation with current technology and skills. This can 

be represented as a process capability index ( CPK ) equal to the quotient of the allowable variation 

and the achievable variation, and compares the output of a given process with the specification set 

for the product. These ratios demonstrate the ability of a process to produce a product within set 

specification limits and compares the observable behaviour of the process with the customer set 

specification. It is a ratio of the distance from the process centre to the nearest specification limit 

divided by a measure of the process variability ( see Equations 1 – 3 below ) [173]. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉
𝐴𝐴𝐴𝐴ℎ𝐶𝐶𝐴𝐴𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉

 ( 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟏𝟏 ) 

𝐶𝐶𝑃𝑃 = �
𝑢𝑢𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶

6𝜎𝜎
,
𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶

6𝜎𝜎
�  ( 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟐𝟐 ) 

𝐶𝐶𝑃𝑃𝑃𝑃 = 𝑙𝑙𝐶𝐶𝑉𝑉 �
𝑢𝑢𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶 −  𝜇𝜇

3𝜎𝜎
,
𝜇𝜇 − 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶

3𝜎𝜎
�  ( 𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝟑𝟑 ) 

CP is a measure of the process capability assuming the mean is centred between specification limits, 

and assumes process output is normally distributed. CPK is the CP assuming the process mean may 

not be centred between the specification limits. The standard CPK level for a process in six sigma 

quality control is 2.0 [174]. CP demonstrates the manufacturer is capable of meeting the tolerances, 

but CPK demonstrates that the product meets the tolerance, by taking into account the process 

mean. CP is the tolerance width divided by 6 standard deviations (process variability). The minimum 

of the two ratios is used because it gives the worst-case scenario. In the context of normal 

manufacturing an acceptable CP is 1.33, and generally the higher the better [174]. 
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To use tools such as the capability indexes, the process should be in control before assessing 

capability. Variation is never eliminated entirely, and consists of two broad categories; common 

cause and special cause variation. Common cause variation is expected inherent variation as a 

function of the starting material and the process involved. Special cause variation is unexpected 

variation due to external factors or unaccounted variables – such as machine failure causing a 

product to deviate from tolerance. A process with only common cause variation is stable and 

predictable. Another regulatory challenge faced for cellular therapies is the comparability question, 

demonstrating that the process remains the same after a change – which at its extreme is doing the 

above, at multiple locations, whilst still remaining cost-effective [175]. 

This will require an understanding of the variation in the starting material, the patient / donor 

population, the effect of processing and clinical practice, and will ultimately inform strategies to 

account for this variation. This reflects the requirements of the MHRA [176]. Additionally, 

consultation with prescribers and surgeons is a pre-requisite to setting an achievable specification ( 

the limits of variation the product can meet without negatively affecting patient outcome ) and 

designing a manufacturing process with the appropriate ability to cope with this variation ( its 

tolerance range). 

3.3 Establishing a Baseline  

Considering the anecdotal evidence encountered by the author of the extent of biological variation, 

the next stage was to gather the experiences of clinical, industrial and academic bodies, evaluate the 

extent of the challenge and inform the methodology for the subsequent, data-driven steps. 

One outcome of these investigations has been the production of two generic process maps for HSCT, 

one of which has been used to illustrate the contents of each Chapter of this thesis ( Figure 3.0 ). 

Figure 3.1 is the precursor to this graphic, and includes hypothetical sources of variation. These two 

figures illustrate a typical procedure within a clinical laboratory environment for processing a single 

HSCT product. 
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Figure 3.1 illustrates several potential sources of variation. Process maps from Anthony Nolan and 

SOPs from the Dana Farber Cancer Institute were used to design these two Figures, and they were 

changed and improved as the research progressed. Discussion with key industrial stakeholders from 

GSK, NHS Blood and Transplant, Terumo BCT, the Dana Farber Cancer Institute, the Anthony Nolan 

Trust and delegates at international conferences, identified and expanded upon potential sources of 

variation and the reasons behind their influence. 

As a result, several clinical and open-source datasets were identified for data mining, including the 

European Bone Marrow Transplant (EBMT)’s and National Health Service Blood and Transplant 

(NHSBT)’s databases. Whilst exploring these avenues of research, one source of potential 

information on variation was the medical literature available in the public domain. This publicly 

available, free information could be used to established a baseline of the overall variation in HSCT 

and be used as a benchmark for comparison. 
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3.4 Systematic Meta-Analysis 
This systematic meta-analysis aimed to examine the literature of HSCT for a number of key 

predetermined variables. The primary objective of this analysis has been to gain a baseline 

understanding as to the extent of biological variation in collected and transplant cell metrics, under 

the practice of medicine, because this therapy is applied and manufactured in a hospital setting. 

Secondary objectives were data-dependent and included the effect of different processes, 

indications and donor / patient characteristics on the aforementioned cell metrics. 

 It was hypothesised that sufficient information may be present within the medical literature to 

complete a preliminary investigation into the extent of biological variation – sources, collected cell 

characteristics, product / dose characteristics, process specifics and patient outcomes – if the nature 

of such a dataset and its caveats were understood. The results of this investigation would identify 

key areas of interest, aspects requiring further refinement, and promote critical process 

development discussion between industrial, clinical and academic bodies. 

During the literature review ( Chapter 2 ) this hypothesis was tested when a handful of the papers 

read included information about cell numbers and distributions. For example Chevallier et al  

reported median proportion, number and volume of bone marrow, cord blood and leukapheresis 

product [177]. This also included range data; the minimum and maximum number recorded in the 

study. This information, alongside mean and median results could be used to benchmark the 

variation encountered in various blood and graft sources.  

After this discovery, a study was initiated to systematically examine the literature further with the 

aim to expanding this database of biological information that would inform the spread and 

distribution of biological variation. 

3.5 Methodology 
This meta-analysis was guided by the principles prescribed by the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses statement ( PRISMA [178] ) to ensure the approach and 

results were robust and systematic. One deviation was the use of a single operator ( the author ) for 
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extraction and analysis, so there may exist a bias that could have excluded some data-containing 

studies. A number of journal papers may have been excluded due to finite search terms, limitations 

of the database, and data published in languages other than English. Secondary objectives arose 

from a first appraisal of the literature and were aimed at examining correlations between human 

factors, processing methods, and the cell characteristics of the harvested material ( see Table 3.0 ). 

The online databases Web of Science and PubMed, were used to search the literature, using a 

number of pre-determined keywords, Medical Search Headings ( MeSH ) and publication dates ( see 

Table 3.1 ). Articles were restricted to English language unless a native translation was provided, and 

only refereed journals were used ( conference proceedings were excluded for example, as many did 

not contain numerical data that could be extracted ). The abstracts of the resultant studies were 

then screened for likelihood of containing cell data – for example those that were comparison / 

outcome studies or clinical trials.  Eligible publications were obtained in full and examined manually 

for patient, donor and graft characteristics guided by the variables in Table 3.0. These characteristics 

were identified by previous discussion and mind-mapping. The primary characteristics were 

mandatory for studies to pass through to the data extraction stage. Qualitative data such as 

methodology      ( where recorded ) was reduced to single word / numerical data. The name of the 

first author and a unique identification number was used to mark papers used for future reference. 

Data was extracted from the full article into a spreadsheet within Microsoft Excel. Both Excel and 

IBM SPSS 22.0 were used for data analysis. Literature that yielded data was downloaded and stored 

for future record alongside its unique identification number. Some papers yielded more than one 

observation, such as when comparisons were made between cell source, or mobilisation regime. 
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Primary Study Characteristics Secondary Study Characteristics Tertiary Study Characteristics 

Number of donors 
Donor gender 
Donor age* 
Donor weight ( kg )* 
Donor ethnicity 
Number of patients 
Patient gender 
Patient age* 
Patient weight ( kg )* 
Patient ethnicity 
Patient conditioning 
Autologous or allogeneic therapy 
Source of stem cells 
Collected TNC, MNC, CD34+, CFU-
GM and viability** 
Transplanted TNC, MNC, CD34+, 
CFU-GM and viability** 

Donor mobilisation drug 
Donor mobilisation regime 
Day of aspiration / apheresis 
Study start and end date 
Number of centres involved in 
study 
Country of study 
Patient indication 
Patient prior medication 
Patient prior stem cell therapy 

Named collection equipment 
Named processing equipment 
Named analytical equipment 
CD34+ elucidation method 
Number of aspirations / apheresis 
procedures / donor 
Apheresis flow rate used ( ml / min 
) 
Target apheresis volume ( ml ) 
Duration of apheresis ( mins ) 
Target apheresis CD34+ cell count 
Number of times donor complete 
blood volume was processed 
Number of grafts / transfusions per 
patient 
Collection aims for TNC, MNC and 
CD34+ cell populations 
Volume of Collection ( ml / kg ) 

*At time of procedure 
** mean, median, standard deviation, upper and lower ranges 
 

Table 3.0: Variable Table 
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  Search Terms Database Search 

Results 
Studies with 
Data 

A Autologous, haematopoietic, 
stem, cell, therapy ( 2003-2013) 

Web of 
Knowledge 

298 31 

B Autologous, haematopoietic, 
stem, cell, therapy ( 1992-2002) 

Web of 
Knowledge 

105 6 

C Allogeneic, haematopoietic, 
stem, cell, therapy ( 2003-2013) 

Web of 
Knowledge 

1183 36 

D Allogeneic, haematopoietic, 
stem, cell, therapy ( 1992-2002) 

Web of 
Knowledge 

125 4 

E Stem, cell, comparison (2003-
2013) 

Web of 
Knowledge 

585 9 

F Stem, cell, outcome ( 2003-
2013) 

Web of 
Knowledge 

894 40 

G Stem, cell, blood ( 2010-2015 )* Pubmed 458 30 

H Stem, cell, blood ( 2005-2009 )* Pubmed 486 71 

I Autologous, peripheral ( 2010-
2015 ) 

Pubmed 1321 42 

  *Clinical trials only Total 5458 269 

Table 3.1: Publication Search Terms 
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3.5.1 Statistical Tools 
Normally distributed data ( Figure 3.2 ) is required for a number of standard statistical tools, such as 

t tests and ANOVA. Depending on whether the data is normally distributed, or non-normally 

distributed, different statistical tools that are designed for those distributions, may be required – 

using the incorrect statistical tool may provide misleading results and conclusions. 

 

Non-normally distributed data ( Figure 3.3 ) occurs when there are too many extreme values, when 

the data is derived from more than one process, or operator, when round-off errors occur or when 

there is insufficient resolution on measurement devices, when data values are close to zero or when 

the data follows a different distribution such as exponential or binomial [179]. Normality can be 

tested statistically using Shapiro-Wilk’s test [180]. 

Figure 3.2: A normally distributed dataset, centralized around the mean 
value 

Mean 

Figure 3.3: A skewed, non-normally distributed dataset 

Mean 
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Non-normally distributed data can either be transformed mathematically into normally distributed 

data, or alternative statistical tools can be applied directly to the non-normal data. 

The shape of the distribution can be described with two metrics, skewness and kurtosis. Skew is the 

measure of symmetry, and kurtosis is a measure of the shape of the distribution. A skew of 0 is 

symmetrical, whilst a positive skew represents a long tail to the right and a negative skew represents 

a long tail to the left. A kurtosis of 0 is a Gaussian, normal distribution, with a positive kurtosis being 

indicative of a more peaked distribution and a negative kurtosis being indicative of a flatter 

distribution than the Gaussian. Neither of these measures have units. The Shapiro-Wilk’s test is an 

alternative to the skew and kurtosis of a distribution – if the data tests significant then the data is 

normal, if it doesn’t the data significantly deviates from a normal distribution [180]. 

The cell metrics of this dataset such as TNC and CD34+ cells were tested for normality using a 

Shapiro-Wilk test, and their distribution using skewness and kurtosis.  

3.6 Results and Discussion 

The primary output of this meta-analysis were several figures that demonstrate the extent of 

variation in transplanted cell dose found within the literature. There was insufficient data within the 

meta-analysis sources to produce a similar demonstration for cell content of the starting materials. 

TNC and CD34+ cell count was the most prevalent cell characteristic reported. 

This meta-analysis represents a specific sub-population of the data available in the public domain, 

derived from summaries of transplant case studies, clinical trials and comparison studies. This is not 

an exhaustive representation, but was obtained by examining 5,458 peer-reviewed journal articles 

between 1980 and 2015. This resulted in 269 articles that contained 491 observations including 

several donor, centre and graft variables. 

Data drawn from this meta-analysis originated from multiple global sources, clinical centres, 

clinicians / surgical teams, addressing different indications and derived from different patient and 
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donor demographics. Stratification into each of these subsets was not possible due to the limitations 

of the literature, however the dataset was scrutinised using Pareto analysis as a factor of location 

and indication of study.  

Pareto Analysis is one of the Seven Tools of Quality in the manufacturing sector, so named after the 

seven weapons used by the warrior monk (Sōhei) Benkei to triumph in battle [181]. The Pareto 

principle being commonly known as the 80/20 rule – the observation that 20% of the causes 

determine 80% of the problems [174]. The patient indication and the study country were examined 

using this principle to identify the factors with the highest influence – the most prevalent country or 

indication in the database for example. In this case each variable ( indication / country ) is plotted in 

descending order from highest to lowest contribution with an overlay of percentage cumulative 

contributions for indication ( Figure 3.4 ) and country ( Figure 3.5 ) respectively. 
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The content of the starting material is reported here as Collected CD34+ cells ( cCD34 ) and content 

of the therapeutic dose is reported here as Transplanted CD34+ cells ( tCD34 ), because these were 

the most common measures of cell content encountered and as such are the primary measurands 

used here to represent variation. The majority of studies reported their cell metrics as cells / kg ( 

patient weight ).  

Figure 3.4 is a Pareto chart for the indications included in this meta-analysis and from this it can be 

determined that leukaemias ( blood cancer ) make up the majority of the dataset, which is to be 

expected given that HSCT is primarily used for treating such indications. This suggests that the 

majority of the data found in other sources - NHS datasets, university hospital research for example 

– will be focused on this indication. As a result clinical centres or organisations specialising in this 

area are likely to have further useful data, and will be approached for further work ( see Chapter 4, 

DFCI ). 

Figure 3.5 illustrates strong contributions to this dataset from the USA, Germany, China and South 

Korea. EBMT represents contributions from the European Society for Blood and Marrow 

Transplantation, publications that were carried out as part of a multi-centre working party or group 

under their umbrella. This is a unique variable, as all other points in this analysis are representative 

of a single centre or country. 

3.6.1 Overall Variation in the Product 
 

Figure 3.6 plots the median TNC count ( y-axis ) against the median CD34+ cell count ( x-axis ) of the 

given cell dose for a given literature study. These two metrics have been plotted against each other 

as CD34+ cells are a sub-set of the TNC population, and it was intended to identify whether one is 

indicative of another in terms of cell number. Points represent the median cell count for a given 

study, and the lines represent the range of cell count within the given study. The range in dose given 

to patients within each study is represented by the lines spreading out from these points, and has 

been produced on a logarithmic scale to demonstrate the range as a ’cloud’. The variables in Figure 
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3.6 were plotted pairwise and is therefore limited to those studies that provided both median and 

range data for both TNC count and CD34+ cell count. 

This key figure emphasizes that the variation in HSCT dose in any given study from this dataset can 

be between one and four orders of magnitude about the median. As HSCT dose is determined on a 

case-by-case basis as a result of a minimal cell number ( as long as the dose is above this number, it 

is prescribed ), the variation shown in this diagram not only shows the variation as a function of 

posology, but as a result of biological, process and operator variation also ( given that variation is not 

currently actively controlled for, other than by minimal collection criteria and minimum dose 

criteria). 

This difference in cell dose raises concerns about comparable levels of efficacy and treatment within 

individual studies, and will only complicate attempts to discern the definitive mode of action for 

HSCT and the dose / response relationship. It is important to note that in some cases the transplant 

itself is only one component of the treatment plan. When it comes to larger scale production, this 

level of variation would not permit a stable and predictable manufacturing process and would be 

unacceptable within an equivalent non-biological process. However, there are a number of 

considerations regarding this dataset that must be taken into account; 

Limited data reported in many of the given studies meant that stratification according to patient 

indication or demographic, and donor metrics such as age, weight or ethnicity was not possible. To 

identify any common and special cause variation due to donor / patient metrics, further 

stratification that would allow this was not possible. Cell dose was inconsistently reported as either 

cells / kg patient, or donor bodyweight. Due to the presence of paediatric or bariatric donors / 

patients, several data-points may be skewed. 

Methodology was rarely reported, including isolation technique, patient mobilisation drug, regime, 

prior conditioning or apheresis procedure, for example. Considering the significant effect these can 

have on the cell content of the raw input material, these are important variables to stratify the 
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effect of differing processes on the variation. Whether fresh or cryopreserved cells were used was 

unclear in several cases; a further important stratification in the context of product efficacy and yield 

post-cryopreservation. However the substantial variation encountered in Figure 3.6 can be 

attributed to a number of broad categories ( albeit at an unknown magnitude and detail ). 
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3.6.2 Overall Variation, stratified into autologous and allogeneic sources   
  
Under the practice of medicine, the variation currently encountered in HSCT ( and represented by 

this sub-population ) can be between one and four orders of magnitude of the median amount. As 

an analogy, this is the difference between a pharmaceutical dose of 1 g and 10 kg. 

The range of both cCD34 and tCD34 was calculated for each study sample. An open-high-low-close ( 

OHLC ) chart, traditionally used to plot financial fluctuations, was used to plot each respective 

samples’ median, minimum and maximum cCD34 / tCD34. This format was used for biological data 

because it is a visually succinct method of demonstrating the extent of variation with respect to the 

median and with other studies. Figure 3.7 and Figure 3.8 represent the overall variation for collected 

( n = 102 ) and transplanted ( n = 275 ) CD34+ cell count. Point  (i) on Figure 3.8 exhibits no obvious 

characteristics that would differentiate itself from the other studies ( paediatric donor or a cord-

blood sourced transplant for example ). All data points were plotted according to their unique ID 

numbers. 

A number of studies have reported a minimum of zero collected or transplanted cell counts, which 

are very particular extremes. It is unlikely these are true values of zero but more likely insufficient 

cells were mobilised and were deemed to be unviable for transplant. These values, as much as they 

must be considered as a representation of an individual’s personalised medicine, skew the overall 

analysis of variation considerably. For the purposes of this analysis, collected/ transplanted cell 

counts of zero have not been used, to avoid this misleading skew. 
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Figure 3.7: An OHLC of CD34+ cell count within the Starting Material, as reported within the literature 

[ collected, n = 102 ] 
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Figure 3.8: An OHLC of CD34+ cell count within the final product, as reported within the literature 

[ transplanted, n = 275 ] 
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3.6.3 Stratification of the Overall Variation into Collected and Transplanted 
   

Allogeneic derived material can vary up to 6 orders of magnitude of the median cell count, whilst 

Autologous derived material can vary up to 4 orders of magnitude. Further stratification is required 

to discern the mechanism for this and to determine its impact and relevance. 

The population was split into autologous or allogeneic transplant and the stem cell source ( bone 

marrow, peripheral blood, cord blood, mixed, and not reported ). Only bone marrow, peripheral 

blood and mixed sources contained statistically significant numbers of data-points, therefore only 

these groups were included. Mixed source represents patients treated with both peripheral blood 

and bone marrow. 

A considerable number of cases included in the dataset had minimum CD34+ cell count values of 

zero. For the analysis that follows, these have been removed so as to not skew the range of variation 

– this can be up to 9 orders of magnitude of transplanted CD34+ cells if values of zero are included. 

The variation in collected CD34+ cell count ( Figure 3.7 ) is up to four orders of magnitude of the 

median mobilised amount ( 3.00 x 104  cells / kg to 4.45 x 108 cells / kg, n = 102 ).  

The variation in transplanted CD34+ cell count ( Figure 3.8 ) is up to six orders of magnitude of the 

median dose            ( 1.00 x 104 cells / kg to 1.21 x 109 cells / kg, n = 275 ). Point [i] exhibited no 

identifying features such as younger age, or lower weight that would explain its significantly lower 

median and range of CD34+ cells – a clear example of the variation within this starting material. 

Figure 3.9 stratifies transplanted CD34+ cell count into cell source and transplant type. For 

autologous therapy the range in CD34+ cell dose was between 6.00 x 104 cells / kg and 3.00 x 108 

cells / kg, ( n = 110 ). For allogeneic therapy the range in CD34+ cell dose was between 1.00 x 103 

cells / kg and 1.21 x 109 cells / kg, ( n = 188 ). The variation is two orders of magnitude higher in the 

allogeneic transplant fraction than in the autologous fraction. 
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Autologous bone marrow derived material appears to be under the most control ( 3.0 x 105 cells / kg 

to 2.1 x 107 cells / kg, n = 9 ), but is determined from only 9 results which is not a statistically reliable 

sample compared to the other sub-sets. However, autologous peripheral blood appears to be within 

2 and 3 orders of magnitude of the median dose ( 2.0 x 105 cells / kg to 3.0 x 108 cells / kg, n = 54 ). 

This is considerably more manageable than the variation demonstrated in allogeneic peripheral 

blood – up to six orders of magnitude ( 6.0 x 103 cells / kg – 1.21 x 109 cells / kg ) – a key starting 

material for HSCT. 

It may be noted that a number of studies reported median cell counts that fells below the average 

count represented by other studies. As a result, cord blood derived and paediatric data ( a total of 10 

and 18 data points for cCD34 and tCD34 respectively ) were removed from this analysis, so these 

values are a demonstration of the extremes of the inherent biological variation in adult bone 

marrow and peripheral blood –derived material only. 

A summary of the variation in CD34+ cell count, stratified into cell source and transplant type can be 

found below in Table 3.2. 

CD34+ Cell Count N Range ( cells / kg ) 
Collected, Overall 102 3.00 x 104  to 4.45 x 108  
Transplanted, Overall 275 1.00 x 104 to 1.21 x 109 
Transplanted, Autologous 110 6.00 x 104  to 3.00 x 108 
Transplanted, Allogeneic 188 1.00 x 103 to 1.21 x 109 
Autologous, Peripheral 54 2.00 x 105 to 1.10 x 108 
Autologous, Bone Marrow 9 9.00 x104 to 2.10 x107 
Autologous, Mixed 9 6.00 x104 to 2.57 x107 
Allogeneic, Peripheral 72 1.00 104 to 1.21 x109 
Allogeneic, Bone Marrow 40 1.00 x104 to 1.10 x109 
Allogeneic, Mixed 55  2.00 x104 to 8.00 x107 

Table 3.2: Summary of CD34+ Variation in the Meta-Analysis 
The difference between stratified and overall N values are due to missing values – such as papers 

reporting allogeneic median and ranges, but not cell source, for example 
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3.6.4 Variation as a Function of Time        

Overall, there has been limited improvement, or requirement for improvement in our ability to 

control the variation encountered in HSCT over the thirty years included in the meta-analysis 

population. 

Figure 3.10 represents the range of collected CD34+ cells and Figure 3.11 represents the range of 

transplanted CD34+ cells transplanted, ordered by time. Time has been represented by the year in 

which the individual studies commenced. This is the stage where the protocols were established and 

therefore represent the technology / methodology typical of the time. The mean length of study was 

7 years, and this explains the relative lack of data found between 2010 and 2015 because studies 

within this timeframe will still be in progress and not yet reported. Point (i) on Figure 3.10 exhibits 

no obvious characteristics that would differentiate itself from the other studies. 

A Spearman’s Rank-Order Correlation ( SROC ) was carried out to assess the relationship between 

CD34+ cell ranges ( collected and transplanted ) over time, and alleviate the Cluster Illusion [182] 

from data interpretation. The Cluster Illusion is the human tendency to see patterns amongst 

random data. Only paired observations were used for this analysis. SROC was chosen as the range of 

collected / transplanted CD34+ cells was not normally distributed, as confirmed by visual inspection 

of a histogram and a Shapiro-Wilks test ( p > 0.05 ). Preliminary analysis showed the relationship to 

be monotonic, as assessed by visual inspection of a scatterplot. There was a weak negative 

correlation between the range of CD34+ cells collected / transplanted and the year a given study 

commenced, rs = -0.295, p < 0.003 /  rs = -0.178, p < 0.003. 

There are a considerable number of other variables that may contribute to a correlation or not ( 

such as incremental improvements in technology, or institutional experience ) rather  than just study 

start year, however, some improvement was expected, as a factor of operator learning, improved 

regulations, procedural improvement in line with clinical best practice or incremental increases in 

the resolution of measuring equipment or improvement of processing technology. Additionally, the 
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number of unknowns ( of which some are summarised later ) are enough that any correlation could 

be argued to be insignificant or circumstantial. However the data still shows that, within this sub-

population, there has been very little improvement ( or apparent drive to improve ) in the 

community’s ability to control variation over time. 

 

  

Figure 3.10: Range of collected CD34+ cell count against the year of study starting 
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Figure 3.11: Range of transplanted CD34+ cell count against the year of study starting 
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3.6.5 Variation as a Function of Country        

This meta-analysis contains observations from 32 different countries and by multinationals, which 

are represented by 143 clinical centres. There is insufficient resolution to discern any specific 

advantage in terms of variation between any clinical centre or country. 

The geographical location and clinical centre of each study was recorded. A Pareto Analysis was 

carried out on the meta-analysis database to discern the leading contributors within this dataset. 

This identified ten countries that had significant presence. This was subsequently used to plot 

another OHLC chart ( Figure 3.12 ), segregated into a number of high impact countries. Only tCD34 

has sufficient data-points within the dataset to plot with significance.  

For each country, the number of centres contributing towards the result has been annotated. It is 

difficult to discern differences between countries without much greater resolution, as each of these 

centres will likely operate under different practices / equipment / staff and target different 

indications and patients. It could be interpreted however that Germany, with 11 centres, has a 

significantly greater control over variation than Sweden, with 2 centres, but it is difficult to make 

concrete observations.  

China in particular appears to have the most control over its variation, compared to other countries. 

An unfortunate stigma surrounds Chinese research ( so much so, that rules have been issued by the 

Chinese authorities regarding dishonesty in science publishing [183] ), but it is entirely possible that 

this control is as a direct result of the massive investment China is making into science and 

technology. In fact, China now spent more on research and development than the EU in 2013, and is 

expected to outspend the USA by 2020 [184]. 

There is however enough evidence here to suggest that there exists a dichotomy in practice 

between countries that results in varying levels of variation, and some countries appear to have 

much greater control over this than others. Italy is also particularly good. As a result, it is likely there 

are cultures of practice or technology that could be adopted to improve the global biological 
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variation challenge. Alternatively, larger countries such as China, may be incorporating a larger 

sample size of clinical centres.  
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3.6.6 Variation as a Function of Study Size        

As the number of donor / patients involved in a study increases, the amount of variation also 

increased. This suggests that using the current method for manufacturing HSCTs will produce 

products that are difficult to control when larger scale production is required. As previously stated, 

HSCTs are produced at a local, small scale level, typically in single batches in a clinical environment. 

To meet increasing demand, and to produce future therapeutics at scale, it may be necessary to 

replace some or all of the current manual processing methods. 

Figure 3.13 is a stratified scatter diagram of the range of tCD34 / kg / study against the number of 

donors in the study. SROCs were carried out for each subsection and have been included in this 

diagram ( a – f ). These statistically significant correlations demonstrate that as the size of the study 

increases ( and therefore the number of donors and products involved ) the total variation per study 

increases ( p < 0.01).  

From a variation perspective, this not only indicates that the current lab-based production methods 

find it increasingly difficult to process large volumes of product in a consistent manner, but will most 

likely be unsuitable for large scale production of a future therapeutic, without substantial variation 

in the output. 

The correlation between number of patients or donors per study and the range of tCD34+ cells is 

summarized in Table 3.3 below. 
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Transplant Type / Cell 
Source 

N SROC Value Sig. Value 

Autologous, Peripheral 86 -0.355 p<0.05 

Autologous, Bone 
Marrow 

9 -0.667 p<0.05 

Autologous, Mixed 13 -0.749 p<0.05 

Allogeneic, Peripheral 72 -0.456 p<0.05 

Allogeneic, Bone 
Marrow 

39 -0.803 p<0.05 

Allogeneic, Mixed 51 -0.422 p<0.05 

Table 3.3: Summary of the Correlation between study size and biological variation as a function of 
tCD34+ 
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3.7 Limitations of the Meta-Analysis        
Due to the disparate and aggregated nature of how data is reported and has been collected in this 

study, a number of limitations must be considered when regarding the results presented here. 

3.7.1 Outliers          

Traditionally outliers represent products that have fallen outside of specification, and are unfit for 

purpose in one way or another. In biological therapeutic manufacturing, ‘outliers’ can be 

representative of the heterogeneity of an individual’s biological state ( and/or the state of their 

personalised medicine ), so cannot be disregarded or discarded. As such, any bio-manufacturing 

process or medical mode of action must be capable of dealing with these outliers. The significant 

extent of variation demonstrated here includes these extremes, which in the absence of an 

alternative solution, must be incorporated into any control strategy.  

Several papers encountered during this study chose to report inter-quartile ranges, not true ranges. 

As a result, these were not included in this meta-analysis, because this removes 50% of the reported 

variation and consequently is not a complete picture of the extent of biological disparity with which 

a process would have to accommodate.  

3.7.2 Sampling Variation          

Considering the disparate nature of the raw data of this study it can be difficult to identify errors 

without comparison to the original source material. Every effort has been made to ensure that the 

database represents the values reported in the literature. 

Additionally, there may be an element of researcher bias with respect to the studies chosen in the 

selection phase, and which studies have been judged to not contain useful data. This may have 

resulted in data-containing papers being overlooked. For example, as noted above studies that 

reported interquartile ranges instead of ranges were disregarded. However, given the overall spread 

of the data from the reported sources the author does not anticipate any significant shift in 

statistical behaviour. 
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3.7.3 Duplicate Data          

Inclusion of data from conglomerate groups such as the EBMT means there is a risk of overlapping 

data. Because there was no access to the underlying raw data it is impossible to know whether the 

same donor / product information contributes towards the data reported in multiple papers. This is 

a problem that using dedicated raw data from a single clinical centre would not encounter. In this 

context effort has been made using SPSS to identify and remove duplicate study data from this 

database by cross examining median / range data between database entries. Several EBMT based 

studies were removed at the early stages for having overlapping data. 

3.7.4 Patient versus Donor          

Donor metrics such as weight were rarely reported, in particular in allogeneic therapy. In autologous 

therapy the donor is also the patient, and therefore the autologous literature ( with a natural focus 

on the patient ) provided more information regarding the source of the starting material.  

This study uses secondary data ( e.g. medians, ranges ) not raw data, so it would unwise to normalise 

for certain variables such as weight. However, as cCD34 and tCD34 were reported as cells per kg of 

patient bodyweight, ideally they would have to be first normalised to donor bodyweight – ( In 

autologous therapy, this is not an issue as the patient is also the donor ) – this would be an instance 

for allogeneic therapy of adding distance from the true value.  

3.7.5 Paediatric Analysis          

This meta-analysis contained a total of 18 paediatric donor-based studies and therefore a separate 

analysis regarding children has not been made, or a comparison between adult and paediatric cCD34 

and tCD34. However importantly, autoimmune disease, inherited metabolic disorders and gene 

therapy are all prime targets for paediatric therapy [78] and an understanding of the distribution of 

variation, and the differences between adult and children would advance our understanding of age-

targeted therapeutics. 
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A notable discrepancy between countries and organisations is the definition of the paediatric 

patient. This can vary between 16 and 19 years of age between example definitions such as the 

European Medicines Agency [185], UN Conventions [186], England’s National Service Framework 

[187] and the Children Act 1995 of Scotland [188]. In terms of this meta-analysis the definition of 

paediatric in Article 1 of the United Nation’s Convention for Rights of a Child was adopted, 

identifying all patients up to the age of 18 as paediatric, unless otherwise stated in the particular 

journal paper. 

3.6 Mobilisation / Conditioning Regime       

Mobilisation refers to the regimens and pharmaceuticals used to mobilise an individual’s stem cells 

from the bone marrow into the peripheral blood. Conditioning refers to the previous and ongoing 

treatment the individual is receiving for their current indication. 

These are difficult to quantify as they vary on a case-by-case basis, in terms of dosage, regime, drugs, 

clinician [189] and a combination of these. Additionally, details were not uniformly reported. These 

regimes are crucial factors [190] in the content and quality of the starting material for HSCT and 

proper characterisation and stratification is vital to a better understanding. This would be difficult to 

achieve without raw data. 

3.7 Apheresis / Aspiration Processes        

Following mobilisation there are the physical methods used to extract the starting material from an 

individual, whether it be via apheresis ( extraction from the peripheral blood in a clinical setting ) or 

aspiration ( extraction from the bone marrow in a surgical setting ). 

Details regarding the instrumentation used for apheresis, the flow rates, number of procedures or 

extractions were rarely reported. These factors all influence the number and quality of cells 

produced [56], so to make an accurate statement of the contributing variation sources, these need 

to be considered in any subsequent work. 
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Furthermore, it is not clear from the literature whether cCD34 is taken from the total collected cell 

count, or from a particular stage – or how many extractions were required to meet this target. It is 

common clinical practise to pool individual products to reach the specification set by the clinician, 

but it is unclear which ( if any ) of the reported metrics are single products or pooled products. 

The number of collections is also a key factor, particularly for patient health [108]. Multiple bone 

marrow aspirations are painful and repeatedly expose the donor to infection, and repeated 

apheresis procedures reduce the immediate effectiveness of the immune system.  Consequently, 

each single donor who is identical in every variable to another donor, who has contributed multiple 

times, is a different variable and must be accounted for. 

3.7.8 Cryopreservation and Transport        

It is unknown the extent and effect to which cryopreservation and transportation of product has had 

on the database, because it was not reported. It is known that cryopreservation negatively affects 

the total number of cells within the product [144], so this is a ‘hidden’ variable within this meta-

analysis. It is accepted that cryopreservation causes losses in TNC, viability and CD34+ cell numbers 

[144] but it is unclear as to whether this loss, in addition to biological variation, will cause the 

product dose to fall below the prescribers safety / dose specification because many product 

measurements are taken pre-cryopreservation. 

3.7.9 Multiple Centres          

Naturally the database can be further split into countries, and furthermore into clinical centres. 143 

centres or groups published data that contributed towards this meta-analysis. In the case of 

conglomerations such as the EBMT, it is impossible to discern the individual centres contributions 

from the literature study alone. There are several centres with multiple observations within the 

dataset, but in insufficient numbers to make meaningful statistical observations regarding the 

variation between and within centres. The ideal circumstance would be the use of raw data from 

single site clinical centres to allow this comparison. 
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3.7.10 Raw Materials versus Starting Materials       

Another ‘hidden’ variable are the additional chemicals added to the product such as anti-coagulants. 

The UK MHRA has defined these chemicals as ‘raw materials’, whilst the biological component is the 

‘starting material’ and it is important to understand the effect both have on each other and the 

process.  

Definitions are a crucial part of scientific and regulatory rigour, but tend to vary between disciplines 

and locations which is a reason why rulings ( such as the EU’s ruling on the definition of starting and 

raw materials ) are important. An observation made during this meta-analysis is the use of the term 

‘optimised’ to describe comparisons of variables or formula. This is not indicative of an optimised 

process, but a process improvement step; to label a process as optimised is to attach a very high 

ceiling of rigour and precision to the result and should be interpreted to mean a process is the best it 

can possibly get with current technology. 

3.7.11 Reported Data          

As the source of starting material, people can be stratified in terms of desirable qualities by the use 

of donor criteria. However this is not universally standardised; Karp et al  evaluated all the major 

blood collection centres in 17 countries and found a wide range of set donor criteria [63]. This 

included minimal deferral time after pregnancy or tattoos, minimum donor weight, haemoglobin 

levels, upper age limit and the amount of whole blood taken during donation. This was reflected in 

the wide range of variables reported ( and not reported ) in the literature. 

3.8 Conclusions 

This Chapter has identified a source of information regarding biological variation within HSCT within 

the medical literature, and has used this source to identify the range and spread of biological 

variation across this global, unhealthy population 
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This meta-analysis of publicly available data has been developed to provide a broad-scope 

demonstration of the challenge that biological variation imposes on the potential for controlling 

large scale bio-manufacture and will impose when manufacturing Advanced Therapy Medicinal 

Products. The primary output from this analysis is a series of results that represent the extent of 

biological variation in both collected and transplanted material for a clinical sub-population defined 

by the data available in the public domain.  

This meta-analysis has determined that the current variation encountered under the practice of 

medicine for hematopoietic stem cell therapy ( limited by the constraints of this sub-population ) can 

be up to 4 and 5 orders of magnitude of the median dose ( if the instances where no cells were 

collected or transplanted are discounted ). This is similar for the collected cell content. However, if 

the records where 0 cells were collected / transplanted are included, this would increase to 9 orders 

of magnitude. This level of variation would be unmanageable from a bio-manufacturing perspective. 

Additionally, comparing the ranges of collected and transplanted CD34+ cells over time, there is little 

evidence to suggest an improvement in the community’s ability to control variation in HSCT over the 

last three decades. There is a weak negative correlation between collected CD34+ cells and study 

start year, which may represent the improvement in apheresis technology, but the range of 

transplanted CD34+ cells remains inconsistent over the thirty-year time period examined in this 

meta-analysis. This has potential implications for comparable efficacy and patient outcome, and the 

exploration of HSCT’s mode of action. 

It is clear that to make the next decisions on an appropriate bio-manufacturing strategy, a 

stratifiable source with greater resolution than is exhibited in this meta-analysis will be required; 

such as patient databases and centre-specific clinical records.  Clinical centres or organisations 

specialising in this area are likely to have further useful data, and will be approached for further 

work ( see Chapter 4, DFCI ). 
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Without the raw data that underlies the literature, quantification of the sources and extent of 

variation contributed by each variable will remain informed speculation. 

Consequently, the next step in this exploration is the acquisition and analysis of high quality datasets 

from single site clinical sources and petitioned national health resources, where the data represents 

individual cases, not summaries. This will allow stratification of the contributions of variables such as 

donor age or weight, process parameters and indication ( in the case of autologous therapy, where 

the donor is also the patient ) and an increased rigour and quality in the reported results. This will 

also allow access to absolute numbers of cells per collection / product as opposed to cells / kg. 

Additionally, using datasets from specific centres will allow normalisation of the variation with 

respect to centre specific variation, such as geographical, surgical, clinical and operator variation to a 

degree, because it is reasonable to state these should remain constant within a single centre. 

This chapter has also highlighted several potential concerns with the current reporting methodology 

for stem cell therapy. The amount of methodology and clinical practice data available within the 

public domain is limited, and can make it challenging to cross-reference studies and findings without 

seeking out the original data. A possible solution is to propose a reporting framework within stem 

cell therapy research with several agreed, predetermined and useful metrics that must be reported 

as standard – even if they occupy the ‘supplementary’ information section of online resources if it 

cannot be naturally written into the publication. One potential challenge with this is the highly 

personalized nature of regenerative medicines, particularly within oncology where at the clinicians 

discretion individual patient regimes may be changed, and therefore in some instances reporting this 

data may not be straightforward ( for example, different patients receiving different doses or types 

of chemotherapy drug compared to their trial or case study cohorts ).  

To meet this challenge cross-disciplinary collaboration between medical and engineering fields will 

be crucial [191]; sharing their combined experience and reaching compromises between the 

priorities will allow for identification of the sources of variation and the strategies required to 
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accommodate and control this variation for production to accommodate large numbers of patients – 

either in large volumes in concentrated facilities or by more distributed approaches. Variation 

cannot be eliminated completely, but it will need to be brought to a state where the differences in 

the product do not negatively affect patient outcome, and is a key step in establishing product 

specifications and achievable manufacturing limits.
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Chapter 4 Single Centre Variation 

4.0  Chapter Aims 
 

This chapter aims to quantify the variation encountered in a single clinical centre, characterized by 

the product and patient records available at the Dana Farber Cancer Institute in the USA. A particular 

aim of this research was to reduce the number of confounding variables, such as patient age and 

weight, and examine the capability of a large centre with respect to the control of variation. 

Figure 4.0 is a generic process map for an exemplar HSCT product, which has been included here to 

indicate the primary focus of this chapter with respect to the process as a whole ( indicated in 

orange). 

This chapter is split into two parts; a qualitative discussion surrounding issues and challenges 

encountered whilst on site and in discussion with hospital staff, and a quantitative section 

surrounding the data mining and analysis of DFCI’s Cell Manipulation Core Facility ( CMCF ) patient 

and product records. 

The following topics will be discussed: 

  
Chapter Aims and Introduction 4.1 

Introduction to the Dana Farber Cancer 
Institute and the Cell Manipulation Core 

Facility 

4.2 

Qualitative Analysis 4.3 
Quantitative Analysis 4.4 

Conclusions for a Single Clinical Centre 4.5 
Summary 4.6 
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Figure 4.0: Generic Process Map indicating in orange the focus of this Chapter 
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4.1  Introduction 
Understanding the variation that is encountered in the starting material, and the HSCT process, 

meant an understanding of the limits and the specification that a manufacturing machine needs to 

be designed around – to tolerate or control the biological variation – because only by a degree of 

mechanisation or automation can cellular therapy achieve the scale necessary for first line medicine 

status. Chapter 3 examined the extent of variation on a global scale. This Chapter will explore the 

extent and sources of variation within a single clinical centre. 

This Chapter is a case study of the Connell and O’Reilly Families Cell Manipulation Core Facility ( 

CMCF) at the Dana Farber Cancer Institute ( DFCI ) in Boston, Massachusetts. It reviews each area of 

the process ( step by step) in order to identify challenges in each area. This is followed by a statistical 

analysis of process and product characteristics as collected on site, followed by a discussion 

concerning the challenges variation imposes, and potential solutions.  

The information in this chapter is unprecedented in the public domain, and is part of an ongoing 

quality improvement programme at the hospital with the underpinning hypothesis and expectation 

that this single clinical centre should have dramatically improved control over variation than that 

shown in the Meta-analysis. 

DFCI is a teaching and specialist hospital that has been ranked fourth in the USA for cancer 

treatment [192]. It has a throughput of over 300,000 visits per year and is involved in approximately 

700 current clinical trials. 

The CMCF is a facility within the DFCI that produces cell therapies - from processing of 

haematopoietic stem cells, to generation of tumour vaccines and preparation of immune cell 

populations. It produces approximately 1,000 products per year, with 3,696 products being 

produced within this facility between 2010 and 2013. 

The CMCF carries out several product preparations and processes. This research focuses on the 

isolation and processing of peripheral blood derived haematopoietic stem cells. 
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The research is the result of two site visits, in addition to a number of external communications and 

extensive post-visit analysis and review. The first visit in 2013 was a week-long feasibility study to 

understand the processes involved in manufacturing a cell therapy in a clinical environment. The 

second visit in 2014 was a data mining exercise, where over a period of two weeks a database on 

product and process variation was manually collated. The time between these two visits was used to 

identify key data and improve understanding of the CMCF’s process. Access to electronic records 

and data was not available at the time for ethical reasons so data was manually transferred from 

physical records to the database – physical records contained a minimal amount of patient 

information, but the electronic databases would have allowed access to patient records and medical 

history. 

4.2  Methodology 
The purpose of the qualitative analysis was to interview and explore the experiences of those 

involved in the process, the culture surrounding biological manufacturing, and the day-to-day 

running of such a facility. This was completed by informal interview and experience within the 

centre. 

The purpose of the quantitative analysis was to build upon the data collected in the previous 

literature meta-analysis. Where that was representative of a global picture of variation, this analysis 

was based upon a single site’s records. The meta-analysis identified characteristics important in 

determining the extent of variation – such as transplanted CD34+ cell count – and these 

characteristics informed the requirements for the CMCF database. 

After the 2013 visit, the CMCF sent redacted examples of their patient and product records. 

Alongside the meta-analysis characteristics, these were used to design a database to facilitate the 

manual data mining process whilst on site. During the 2014 visit, these records were scrutinized, 

characteristics were identified and transferred manually to this database. Due to time constraints, 

some of these characteristics were triaged such as the Haematology Lab’s flow cytometry results. 
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4.21  Disclaimer 
It must be stated that any variation within Haematopoietic Stem Cell Transplantation is not 

indicative of the quality of the product provided by CMCF, or the expected patient benefit thereof.  

In this instance HSCT is a secondary therapeutic, used to alleviate the side effects of the primary 

therapeutic – chemotherapy / radiotherapy - which will have a more significant effect on patient 

outcome. 

4.22  The Anthony Nolan Trust 
In 2013, between visits to DFCI, two weeks were spent at the Anthony Nolan Cord Processing Facility 

in Nottingham, shadowing their process and informally interviewing their technicians on protocols, 

procedures and perceived sources of variation. This included receipt of cord blood units, volume 

reduction and separation of the buffy coat layer of the blood that contains HSCs using Biosafe’s 

SEPAX cell separation system, and the freezing / thawing process. This visit lead to the creation of 

Figure 4.0 which has been used throughout this thesis. This facility is not a transplant centre such as 

DFCI but a cord blood bank, receiving fresh cord units in the morning, selecting several units from 

these based on quality criteria, then processing and freezing the therapeutic fraction. For 

comparison, reference will be made to the different procedures and priorities between this cord 

blood bank and the single clinical transplant centre at the DFCI.  
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4.3  Qualitative Analysis 
What follows is a review and discussion of each key area of the HSCT process ( step-by-step ) in 

order to identify the sources and challenges of biological variation. 

4.3.1  Patient / Donor 
Humans are the source of starting material. Depending on whether the therapy in question is 

allogeneic ( donor ) or autologous ( patient ), this source will be distinctly different.  

Autologous therapy will primarily address, and be derived from, a sick population, and come with a 

number of caveats concerning cell quality and health—not to mention the effect on patient health 

by isolating and removing these cells. Additionally, autologous therapy requires the patient to be 

matched specifically to their own tissue, and from a manufacturing perspective, you cannot just 

discard material that falls out of specification. 

Allogeneic therapy is derived from a relatively healthy population that has been screened for a 

number of quality related metrics. Allogeneic therapy allows for screening and stratification of the 

donor. This is likely to be the route for gene therapy, or ‘off-the-shelf’ cell therapies - where “one 

batch will fit all”. This is a gross oversimplification considering the number of cell lines that may be 

required for an effective haplobank of cell lines ( potentially between 50 – 150 [193] ) that can 

match to the majority of the population. Theoretically, their diet and lifestyle could be improved 

prior to a donation, whereas an autologous donation is from a sick patient, undergoing a number of 

chemical or radiological regimes, with a much more limited environment, diet and lifestyle than an 

allogeneic donor might be expected to have. 

During the visit to the CMCF it was unclear whether there was a defined separation between 

paediatric and adult patients. The definition appeared to be subjective – and is in line with the wide 

variety of definitions discussed earlier ( Section 3.7.5 ) and remains an open question. 
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4.3.2  Starting Material 
There is a prescribed difference in terminology between raw and starting material. It is natural for a 

physical scientist or engineer to associate ‘raw material’ with the initial building blocks for a therapy 

- and this is true, to a degree. However, the author has been careful to distinguish between the two, 

especially in light of recent EU / MHRA guidelines [176] that refer to the isolated cells as the starting 

material, and the additional reagents / additives ( such as acid citrate dextrose ) as raw materials.  

Considering the disparity between fields such as medicine and engineering, it is useful to have a 

lexicon with clear compatible definitions. An example occurred during the literature meta-analysis, 

where protocols were described as having been optimised, but the English Oxford Dictionary 

definition of optimised is;  

‘Make the best or most effective use of (a situation or resource)’ 

 

Determining that a particular protocol or reagent is statistically or patently superior to another is 

laudable, but not optimised as might be defined by an engineer ( when referring to a process ). 

Referring to a process as being optimised, inspires a much different standard of quality depending 

on whom you speak to. It is a loaded term, with specific connotations. 

4.3.3  Conditioning / Mobilisation 
Conditioning refers to a procedure that a patient will undergo prior to HSCT, for example the 

radiotherapy for cancer treatment. Mobilisation refers to a procedure to draw out and mobilise 

Haematopoietic Stem Cells ( HPCs ) from the donor’s bone marrow, into the peripheral blood. 

Mobilisation agents such as granulocyte colony stimulating factors or G-CSFs [194] are used to 

promote the release of these HPCs by stimulating the bone marrow to produce granulocytes and 

stem cells. 

Given a similar patient group, different doses of mobilisation drug may potentially result in different 

numbers of cells isolated as a result. In some instances, several types of drugs may be used, as 

certain patients may be more responsive to one type over another – making reporting of trial 
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methodology complicated. Different conditioning regimes or intensities, number of previous 

treatments or ongoing treatments could potentially affect the quality of cells isolated, the number of 

cells isolated, and the health of the patient – as the isolation procedure may remove cells from the 

patient ( albeit temporarily ) that were fundamental to their ongoing disease response and/ or 

recovery. 

A blood test, and clinical judgement determines whether or not these procedures are carried out. If 

the circulating stem cell population from this test is not to a given level ( a one-sided specification ) 

then a pharmaceutical ( a G-CSF ) will be applied so that the donor exceeds this threshold. This is 

subjective to the clinician in question [195].  Some have defined this criterion as being below 10 cells 

/ µL of sample blood; others have defined this as below 5 cells / µL of sample blood. Mobilisation 

agents significantly increases the number of circulated stem cells, so this clinical variation becomes a 

concern, especially as many therapeutics are known to be formed by ‘pooling’ individual collections 

to meet the minimum dose ( pooling is when multiple apheresis products are combined to reach the 

proscribed clinical dose ). However, pooling is unlikely for ATMPs so this current solution will not 

translate to future therapies. 

4.3.4  Isolation - Aspiration / Apheresis 
Isolation refers to the extraction of material from the donor. Aspiration is an invasive procedure and 

involves surgery to extract material from the donor’s bone marrow. Apheresis is a procedure usually 

completed in clinic, and filters the desired cells from the donor’s circulating peripheral blood. 

The minimum collection criterion is usually 10 ml of bone marrow for every kilogram of donor 

bodyweight - however there is general reluctance to stick closely to this rule, likely due to the 

surgeon’s discretion with respect to the individual contributor’s health due to “outliers” and the 

clinical approach of reducing preventable death 

4.3.5  Physician 
Compared to the 94 centres within the literature meta-analysis, it is likely that the CMCF as a large 

and high performing centre, will adopt a consistent culture of practise, due to comparable SOPs, 
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equipment, facilities and oversight, and therefore it is expected to exhibit a much lower degree of 

variation. 

Each physician has the freedom to monitor and alter their treatment, alongside best clinical practise 

and knowledge ( practice of medicine ). It is recognised that although there will be a similar practise 

culture within a centre, each individual clinician may apply the same therapy differently. 

4.3.6  Measurement / Quality Control 
The purpose for this section on measurement is to highlight that before any variation as a result of 

the starting material can be considered, before the process adds or removes any variation, before 

the clinicians apply the therapeutic, there exists a degree of variation between the measured value 

and the true value. Without a representative and appropriate measurement system, any further 

conclusions must be taken into consideration that a degree of the variation may be to the 

measurement system.  

Appropriate sampling is a primary concern when carrying out measurements. In the case of 

destructive testing, such as the Tryphan Blue viability assay, it is not possible to test the complete 

starting material, so a sample is taken and it is assumed that this sample will be representative of 

the whole. With such a dynamic, heterogeneous population as a bag of cells, this is potentially 

difficult. However, inappropriate sampling can mean the measurement is incorrect so the sampling 

methodology is important.  

The products that were encountered by the author were contained within plastic transfer bags, with 

several seals and tubes to assist aseptic transfer and integration with equipment. Sampling can take 

the form of a blister pack that is attached to one of these tubes ( in the case of Anthony Nolan ), 

manually depressed and allowed to withdraw material, or a syringe ( in the case of CMCF ). It must 

be made clear that these samples are meant to be representative of the whole - the system within 

the bag is essentially an emulsion of liquid and cells, prone to settling, clumping and clotting and the 

sample that is taken may not represent what is in the bag. Considering that this sample is used to 
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make power calculations on what is in the full bag ( e.g. there are 100 cells in 1 ml therefore 100,000 

cells in 1 litre ). 

Measurements are taken for a specific purpose such as volume of chemical for a specific reaction for 

example. This may be more complex for cellular therapy as the mode of action is not yet clear: it is 

unsure whether the cells themselves are the therapeutic agent and how to appropriately measure 

cell identity or phenotype. 

Currently the CD marker system is used, which uses cell surface markers to determine the identity of 

the cell but these markers are not definitive. The CMCF uses a particular definition of stem cell - 

haematopoietic progenitor cells. They use a specific protocol, embodied by a proprietary product - 

BD Biosciences Stem-Kit [196] - for their CD34+ cell enumeration. This kit is applied via flow 

cytometry. Paraphrasing Ivanovic [25] in Section 2.2, all haematopoietic stem cells are CD34+ but 

not all CD34+ cells are haematopoietic stem cells.  

Tryphan Blue is used to determine the population of cells that are alive or dead ( with limited 

resolution and definition to the term ‘alive’. 7AAD [41] is a more complex test and can determine 

cell damage. This test is sensitive to DNA, and assuming a given cell is alive, its cell membrane will be 

intact and no DNA will be detected. If the cell is dead or dying the structural integrity of the cell 

membrane will not be intact, and increasing levels of DNA will be detected. 

Flow cytometry is an analytical instrument used in biological measurement [197], that suspends the 

cells of a given sample in a stream of fluid and passes them through an electronic detection 

apparatus. These cells are tagged for particular markers, such as the CD identity markers. This 

process is called “staining” and is carried out by attaching chemicals to cell surface molecules, then 

attaching a fluorescent marker to this chemical, which can then be detected by the cytometer. Part 

of the analysis involves a process known as ‘gating’. This step is where the results are displayed on a 

2D graph on a computer, and the operator will subjectively group ( ‘gate’ ) different cell populations. 
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Automated gating software is available, but CMCF technician opinion of this software currently 

varies between it being ‘terrible’ to ‘impractical and imprecise’. 

Additionally, depending on the source of the starting material ( bone marrow or peripheral blood ), 

the results can be easier or harder to interpret. Bone marrow, for example, is harder to gate than 

peripheral blood, because there is significant overlap between different cell type populations - thus 

is open to much greater operator variation. 

Considering that TNC count has been the accepted measure of dose for cellular therapies in the past, 

and now CD34+ cells are an accepted measurement, it could be said there has been an increase in 

the resolution of what is being measured. It is still a heterogeneous population, and until greater 

specificity is attained, it may be difficult to ascertain the therapeutic potential of cellular therapy and 

draw up appropriate dosage or mode of action. 

Another example of this specificity is the use of WBC counts. This is part of the QC testing process 

that also includes specific cell measurements such as red blood cells, platelets and haematocrit. The 

current accepted measurement for WBC count can be inappropriate when there is a high fat content 

within the product, such as with samples taken from obese patients. This skews WBC measurements 

so another more appropriate measurement is taken—differential white blood cell count, that takes 

this extra fat content into account. This differential WBC count is currently not an accepted 

measurement within the CMCF protocols and QA/QC requirements. Therefore each time it is 

required to be used it is being flagged incorrectly as ‘out of specification’ ( incorrectly because 

processing will remove the fat content ). Until this is approved by the clinical board, this exception 

must be continually made. 

To counter this potential measurement variation the operators at the CMCF are required to take 

part in Clinical Laboratory Improvement Amendments ( CLIA ) testing [198], once per year as part of 

a requirement by the Centres for Medicare and Medicaid services ( CMS ). The core of this testing is 

a requirement for the technician to achieve a value within 80% of the CLIA standard. However, if 
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viewed from a different perspective, this implies +/-20% of variation around a given value is allowed, 

and still considered acceptable. 

4.3.7  Middle, Edges and Outliers 
Conventional manufacturing is focused on the mean and the range of the products which may also 

be the case for biological manufacturing. The unique nature of the cell as a starting material may 

introduce a number of changes that may need to be made as to our approach. 

Using data collected from the CMCF process records, a histogram of transplanted CD34+ cell count 

has been plotted ( Figure 4.1 ). The mean and median values are shown to illustrate the statistical 

advantage of the median over the mean in skewed datasets. Note the long, skewed tail on the RHS. 

This figure raises two critical issues. One is the issue of statistical outliers, and the second is the 

distribution of the dataset and its effect on the statistical tools that can be used. 

Firstly, the mean will be unsuitable as biological measurements such as CD34+ cell count is not 

normally distributed and not centred around the mean, therefore the median is more suitable for 

heavily skewed datasets such as that shown in Figure 4.1. Traditionally manufacturing is focused on 

the median and range of a given process measurement, but this figure demonstrates that a third 

consideration will need to be included for cellular therapy manufacturing – outliers ( which would be 

discarded in traditional manufacturing ). 

4.3.8  Outliers 
In a traditional manufacturing sense, outliers refer to out of specification products. In statistics, 

outliers are usually removed to allow for more robust analysis. They may refer to errors, defects or 

abnormal events. In the cellular therapy world, however each outlier is either a representation of an 

individual’s state of health, or an irreplaceable patient-keyed product. Either way they cannot be 

removed or discarded. Any process for a given therapy must be able to accommodate these outliers 

which includes any future automated process or system.  
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Consider Figure 4.2, which represents a basic box and whisker plot. Box plots are highly descriptive 

summaries of the spread, quartiles and median of a given population. However, note the extreme 

points for lowest and highest values are exceeded by outliers, normally indicated in SPSS by circles 

for ‘out’ values and crosses for ‘far out’ values. These data points are part of the population, not 

outliers and therefore the box plots are not designed for when outliers are crucial parts of the data. 

However, they can be used to indicate where much of the dataset lies, and its distribution – the 

interquartile range and the median. 
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Figure 4.1: Distribution of CD34+ cells within the pre-freeze product, demonstrating a non-
normal distribution. 
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Figure 4.2 – Example Box and Whisker Plot 
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This raises issues for statistical analysis, because a primary assumption of many statistical tests ( 

such as the t test or ANOVA ) is that all significant outliers are removed, which may be problematic 

when these ‘outliers’ represent an individual’s state of health. 

Additionally, cell metrics are not normally distributed ( Figure 4.1 ). This may be exacerbated by a 

minimum collection criterion, and that these cell types have more situationally-dependant 

behaviour than red blood cells ( RBCs will be present in a given living person at all times, WBCs will 

vary depending on health and requirements ). This skew means a different statistical approach may 

be required. There is also a question as to how the product behaves therapeutically at the ‘long tails’ 

of these distributions – this is of particular interest to the Regulators who expect the process to 

perform consistently across the whole distribution. This is an unusual system for manufacturing and 

process engineers to face, and may require an original approach to statistical process design. 

4.3.9  Process Capability 
Process capability is a process design tool used to measure the state of a manufacturing 

process[199]. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉
𝐴𝐴𝐴𝐴ℎ𝐶𝐶𝐴𝐴𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴 𝑉𝑉𝐶𝐶𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉

 Equation 1 

So then allowable variation is set by the specification, in this case, the requirements of the clinician. 

This is difficult to set currently, because the complete specification for a cellular therapy is unknown 

- this would require an understanding of the mode of action for cellular therapy ( which will be 

challenging as blind/blind trials of cell therapies are unethical ). For this example, there is a one 

sided specification in the form of a minimum cell dose - the minimum number of cells to be 

considered efficacious. 

Achievable variation is that of the equipment and protocols, and the tolerances that can be routinely 

set on those protocols. It represents the current technological ability of the process. 



121 | P a g e  
 

To demonstrate the potential difficulties determining process capability for a biologic, what follows 

is a worked example, using data from the CMCF, and their one-sided specifications. ( A caveat is that 

these calculations are usually reserved for processes under control with an understanding of both 

common- and special-cause variation within the process. ) 

The formula for calculating process capability is; 

𝐶𝐶𝑃𝑃𝑃𝑃 = 𝑙𝑙𝐶𝐶𝑉𝑉 �
𝑢𝑢𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶 −  𝜇𝜇

3𝜎𝜎
,
𝜇𝜇 − 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶

3𝜎𝜎
� Equation 2 

Where µ is the estimated mean of the process, and σ is the standard deviation of the sample. 

HSCT does not have a two-sided specification. There are upper limits postulated by the academic 

community based upon incidences of Graft versus Host Disease ( GvHD ), but the current 

requirement set by the clinician is a single sided specification, so Equation 2 must be replaced; 

𝐶𝐶𝑃𝑃𝑃𝑃 =
𝜇𝜇 − 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉 𝑠𝑠𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶𝑠𝑠𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐴𝐴𝑉𝑉 𝐶𝐶𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶

3𝜎𝜎
  Equation 3 

The lower specification limit is known from SOPs. At the Anthony Nolan Trust this was 3 x 106 cells 

per kilogram of patient’s weight, and at the DFCI, this was 2 x 106 cells per kilogram of patient’s 

weight.  

This difference in value may be because the CMCF prescribes a higher cell count to account for 

losses during transport / cryopreservation, or because of the different immediate priorities of a 

transplant centre versus a cell bank such as Anthony Nolan, or due to differences in therapy and 

indication between centres. 

Figure 4.3 describes the required minimum dose set by the clinicians at DFCI during 2014. Note the 

prevalence of the minimum prescribed dose in the SOPs ( 2.00 x 106 cells / kg ) and subsequent 

higher doses as prescribed by the clinician for a particular patient and/or indication.  
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Figure 4.3: Minimum CD34+ cell dose prescribed, stratified into individual clinicians 
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Each colour on Figure 4.3 represents a different clinician’s requirement for a given patient. As the 

most common dose was 2 x 106 cells / kg were the most often used, it will be used as the lower 

specification limit in Equation 4. Additionally, this Figure suggests that there is not a set formal HSCT 

dose, just a minimum below which the usefulness of the therapy will not outweigh its risks. 

𝐶𝐶𝑃𝑃𝑃𝑃 =
𝜇𝜇 −  2𝐸𝐸6

3𝜎𝜎
 Equation 5 

The mean and the standard deviation of the process are now required. However, CD34+ cell count is 

known to be non-normally distributed ( Figure 4.1 ) and as such will need to be mathematically 

transformed to determine the normally distributed mean and standard deviation.  

Data is transformed by performing a deterministic mathematical function on each data point. A 

systematic examination [200] resulted in log(x) being the transformation that brought the 

distribution of the data closest to normality ( Figure 4.4 ). This also requires the specification to be 

appropriate for the transformation (e.g. the specification must also be in a log(x) format). 

𝐶𝐶𝑃𝑃𝑃𝑃 =
𝜇𝜇 − 2𝐸𝐸6

3𝜎𝜎
=

4.99𝐸𝐸8− 2.00𝐸𝐸6
3 ( 5.97𝐸𝐸8)

=
8.70

3(8.78)
=

8.70
26.33

= 0.33  Equation 6 

Where σ is the standard deviation and μ is the mean of the sample population. The standard 

deviation for the DFCI data is 5.97x108, and the mean for the DFCI data is 4.99x108. Both these 

values, and the minimum collection criteria (2.0x106) will need to be transformed by log(x). These 

values will therefore be 8.77, 8.70 and 6.30 respectively. 

As a result, for a one-sided specification of 2.0x106 cells / kg, this process would theoretically have a 

CPL of 0.33. 

Within traditional engineering a CPK value of 1.50 for a double sided specification or 1.45 for single 

sided specification[201] or more is usually considered acceptable. Previous work has shown that 

manual culture processes has a CP of 0.55 compared to an automated culture that had a CP of 1.32 

[14]. 



124 | P a g e  
 

Using the sigma conversion tables [202] ( Figure 4.5 ) this has an equivalent sigma level of 1.000 and 

is therefore indicative of 691,500 defects per million products. These tools are either unsuitable for 

use with such variable starting materials, or the starting materials are so wildly variable that these 

products will regularly fall outside of specification. It should be re-iterated that these calculations are 

normally not performed until the process has been determined to be in a state of statistical process 

control – if it is not, it is not stable and cannot be usually predicted using capacility indices. 
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Figure 4.4: Mathematical transformations 
of CD34+ cell count, for relative normality. 
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Figure 4.5: Sigma Conversion Table[202] 
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To summarise; 

• Cell measurements are non-parametric, and therefore requires statistical transformation to 

be applied, so these tools can be used. Note that the process capability equations require 

mean, and standard deviation, traditionally associated with normal distribution and 

symmetrical spread from a central point. These equations do not consider the spread, and 

distribution of these metrics.  

• An outcome-based specification based on either dose/response or mode of action does not 

exist, so current process capability calculations are based on minimum numbers of cells—

which can be compensated for by pooling multiple products 

Currently the traditional process capability equations may be unsuitable for HSCT. It is also unclear 

whether this ‘optimum’ minimum CPK is appropriate for biologics, or whether alternative tools will 

have to be derived to consider the non-normally distributed, outlier containing datasets of biological 

manufacturing. 
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4.3.10  Protocols 
Protocols refer to the Standard Operating Procedures ( SOPs ) used when manufacturing a product. 

These should guide an operator through the process in a way such that it can be replicated 

irrespective of the user. Cell culture remains mostly manual culture and is therefore subject to 

operator variation in its three main forms; inter, intra and learning ( see Chapter 3 ). 

Protocols will be subject to a certain degree of variation due to the subjective judgement of the 

operator. For HSCT the COBE 2991 cell processor is used at the CMCF for product washing, plasma 

depletion and red blood cell depletion. This is a centrifuge system similar to that found on the SEPAX 

cell separator ( as used by Anthony Nolan ), except the separation by COBE 2991 at the CMCF is 

controlled manually, rather than automatically. The distinction between the three main cell groups 

of blood ( plasma, buffy coat, and ‘heavies’ such as red blood cells ) is determined by eye, and is 

referred to in an SOP as ‘within about’ a small fraction of an inch. Therefore, the number of stem 

cells separated is dependent on the judgement of an operator, of which there will be multiple 

operators in a given facility, whose judgement may vary across time and shifts. 

4.3.11  Technicians 
Technicians, in their role as operators, are one source of operator variation.  

By examining variation at the single clinical centre ( characterised by the CMCF )  a limited personnel 

pool is assumed, all of whom should be trained to a comparable level. However, there will be 

differences in operator skill and experience and it is up to the facility to ensure that this difference 

does not reflect in the quality or efficacy of the product. A key observation was that it was 

considered by the technicians to be difficult to learn new processes, because each operator carried 

out the procedure differently, sufficiently enough that they could all not easily follow it. This implies 

that the SOPs are currently insufficiently detailed to capture the resolution needed for repeatability 

and reproducibility. More process understanding is required to reduce the level of expertise 

required to understand and follow the SOPs. It was also noted that technicians would benefit from 
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the use of process maps or visual aids to represent and guide the process - also indicative of 

insufficient SOP detail. 

This observation could be considered reassuring, because it implies that a significant degree of 

between-product variation may be due to operator variation. This is because some variation is not 

inherent to biological materials, but due to the human factor which the field has proven historically 

it is able to improve upon ( e.g. the mechanisation of firearms manufacturing and the automation of 

car manufacturing ). 

When asked, the technicians defined the greatest source of variation as that of donor mobilisation - 

what they saw as the source for wildly disparate numbers of cells and volume of material. 

Conversely the managers see the greatest source of variation as being the technicians, and see 

automation as key to reducing variation. It must be noted that variation has not been seen as a high 

priority, partially because HSCT is a secondary therapeutic, but also because deviations from their 

specification have been solved by pooling products. 

4.3.12  Cryopreservation 
Depending on the location of the donor, or the hospital, transportation of starting material or 

product may be required. Given the nature of the product, this will require cryopreservation to 

maintain viability, which is known to damage cells [144]. Product data from CMCF is recorded pre-

cryopreservation. In some cases, the product was not preserved, but given to the patient locally and 

in other instances the product may have been frozen and stored. As this process affects the cells - 

either killing them, pushing them down an apoptotic pathway ( towards dying ) or otherwise 

affecting their function - it can be assumed that the pre-cryopreservation cell numbers, will differ 

from the actual product given to the patient. Additionally, from an efficacy perspective, the quality 

of the product prior to cryopreservation will be different to that post-thaw. Consider the distribution 

in Figure 4.1, if there was a set specification, how many products would fall below this specification 

post-cryopreservation, given that the process will reduce the number of living cells? 
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The thawing process is also subjective, and potentially even more damaging. A water bath is used for 

thawing, and it was noted that technicians massaged the product to speed up the thaw. Considering 

the acicular nature of ice crystals, it is not unreasonable to consider the damage that might be 

caused [204]. 

4.4 Quantitative Analysis 

Disclaimer: This is a limited dataset. Due to time constraints of the amount of 
data that could be practically transferred within the two-week time window. 

Useful conclusions can be drawn, but the extent to which the data can be 
stratified is limited. There are a number of figures presented here that appear to 

demonstrate trends between variables, at least visually. Without proper 
stratification or normalisation for a network of other potential confounding 
variables, it is important to recognise that these trends may be inaccurate. 

 

This section investigates and discusses the data mined from the CMCF and the conclusions that can 

be drawn with respect to variation, and its effect on manufacture of future cellular therapy. It 

consists of a more detailed methodology section is in addition to a summary of what the database 

contains, then a section by section analysis of each Figure, their purpose and the lessons learned. 

This type of data has never been publicly reported and statistically analysed and provides ranges of 

variation and potential correlations with variables that may be clinically important or have 

implications for manufacturing and process controls. 

4.4.1  Methodology 
The limitation of the meta-analysis was that the journal papers did not provide enough resolution for 

more detailed analysis because important metrics were disparately reported. A single centre 

eliminates the differences in equipment and practise culture that can be found in the previous global 

‘picture’, and reduces the number of operators and clinicians involved, reduces the pool of donors, 

and may limit the number of indications ( and the method for which they are treated ). This gives a 

baseline for manufacturing engineers in terms of the ‘best-case’ scenario from which to work from. 
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Prior to the data mining exercise, a database was set up in Microsoft Access and was then 

transferred into IBM SPSS 22. Microsoft Access was abandoned on site at the CMCF, because it 

slowed the transfer process down and was much harder to add or remove variables as they were 

encountered. This database was informed and set up using the variables established in the meta-

analysis, and was then further refined by redacted patient records sent by the CMCF. Table 4.0 is a 

list of these variables.  
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Directly from 
Contributor 

“Hemolab” / QC Starting Material Pre-Freeze 
Product 

  

Autologous / 
Allogeneic 
Indication 
Blood Type 
Adult / 
Paediatric 
Weight 
Height 
Age 
Gender 
Initial / Product 
Flow  
White Blood Cell 
WBC x Dilution 
Red Blood Cells 
Haemoglobin 
Haematocrit 
Mean 
corpuscular 
volume 
Mean 
corpuscular 
haemoglobin 
Basophils 
Immunoglobulin 

Collection Date 
Received Date 
WBC 
Haemoglobin 
Haematocrit 
Myeloblasts 
Immature 
Neutrophils 
Neutrophils 
Eosinophil 
Polys 
Basophil 
Lymphocyte 
Promyelocyte 
Monocyte 
Myelocyte 
Meta 
Mean 
corpuscular 
haemoglobin 
concentration 
Platelets 
Red cell 
distribution width 
Platelet Size 
Lymphocyte 
Monocyte 
Eosinophil 

Initial Volume 
ACD Volume 
QC Volume 
Supernatant 
Volume 
Post-expression 
Volume 
Plasmalyte Added 
Initial Dilution, 
cell count, and 
viable cell count 
Tryphan Viability 

TNC Count 
TNC Count / kg 
CD34+ Cell Count 
CD34+ Cells / kg 
Volume 

Processing Type 
Unique ID 
Source 
Protocol 
Physician 
Product 
Collection Date 
Collection 
location 
Minimum and 
maximum cell 
dose 
Processing date 
Processing Tech 
Calculation Tech 
Analysis Tech 
TNC Recovery % 
Temperature 
Expiration Date 

  Table 2: List of Variables extracted from CMCF Database Table 4.0: List of Variables extracted from the CMCF Database 

• ACD Volume is the volume of acid citrate dextrose used ( an anticoagulant) 
• QC Volume refers to the volume taken from the total product for QC testing. 
• Supernatant volume is the volume removed from the product during centrifugation. 
• Post-expression volume is the amount remaining after the supernatant is removed.  
• Plasmalyte is raw material added to the post-expression product to make up to a given 

volume 
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Haematology laboratory analysis / quality control analysis / initial flow / product flow were all 

secondary but useful information. It was hypothesised that these could be used in a comparison 

with similar data from the UK Biobank to establish where DFCI’s patient and donor population sat on 

a relatively healthy UK baseline population. However due to time constraints this was ultimately 

given a lower collection priority in favour of starting material and process related variables, 

specifically those that related to collected and pre-freeze TNC count and CD34+ cell count. The aim 

of this triage was so that greater volumes of the ‘core’ characteristics could be collected and greater 

resolution on the ranges and distribution of the variation could be presented here. 

4.4.2  Statistical Analysis 
The unique deliverable of this chapter is the statistically robust number of data points used to 

analyse variation, in this Chapter and in Chapter 5, where previously only very small datasets could 

be used, such as the super-orphan treatment of ADA SCID with 15 patients [205]. 

Firstly, the spread of the data was analysed using scatter graphs and box & whisker plots. These give 

details as to the mean and median of the population, the minimum and maximum values ( including 

the range ), the standard deviation and the variance. 

Given that the majority of the biological data presented here is non-normally distributed ( see Figure 

4.1 ) the median is a more useful descriptive statistic than the mean, as it is more sensitive to 

skewed data. Furthermore, in these skewed datasets a larger mean than the median indicates a 

positive skew in the data, whilst a larger median indicates a negative skew in the data. 

The minimum, maximum and range data is also presented. This is the most basic representation of 

the variation encountered, as these values represent the smallest and largest cell populations within 

a given time frame. They demonstrate the extremes of biological variation, and the potential 

extremes that a corresponding manufacturing process will need to be capable of addressing. 

The standard deviation is a measure of dispersion of the data. This determines how tightly the 

dataset is grouped around the mean. A high standard deviation represents data that is spread out 
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over a wider range of values. Variance is a measure of spread of the data, and determines how far 

each number in the set is from the mean. A large variance indicates that numbers in the population 

are far from the mean. 

Variance has been included as it is not based upon the mean ( which may be skewed in non-normally 

distributed data ) but based on the distances from a given data point to another, so may be a more 

representative measure of spread in non-normally distributed data. 

Independent samples median tests, independent Mann-Whitney tests ( for two independent groups, 

such as gender ) and independent sample Kruskal Wallis ( for multiple independent groups ) tests 

have been used to measure whether the median or the distribution of population differs significantly 

between groups [206]. The Kruskal-Wallis test is the non-parametric equivalent of the one-way 

ANOVA, that determines whether there are statistically significant differences between two or more 

groups of an independent variable on a continuous or ordinal dependent variable.  

There are several assumptions that must be met to use the K-W test; 

• One dependent variable measured on a continuous or ordinal level 

• One independent variable consisting of two or more categorical independent groups 

• Independence of observations - no relationship between the observations in each group - 

e.g. different participants in each group. 

• Distribution of scores for each group of your independent variable e.g. males and females, 

have the same or different shape ( having the same shape means having the same 

variability). 

A statistically significant K-W test means that the differences in distribution between groups is 

significant. Further tests can be done to determine the extent of this significance. 
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4.4.3  Database Contents Summary 
The final database is summarized in Table 4.1. 

The database contains information relating to 410 products, processed between the 2nd January 

2014 and the 5th September 2014. There were 287 autologous products for patients between the 

ages of 6 months and 76 years old, and 123 allogeneic products from donors aged between 3 

months and 69 years old. There were 11 paediatric patients. 

Out of the 410 products, 212 were volume reduction processes and 51 were not manipulated ( 

filtered, but otherwise untouched ). 147 products involved more bespoke processes such as gene 

therapy. Further details of the indications being treated were not readily available in the product 

records however, Figure 4.6 is a Pareto diagram of the known indications. This is only representative 

of a small ( n = 101 ) section of the population, but mirrors the literature meta-analysis ( Figure 3.4 in 

Chapter 3) in that the majority of patients are undergoing treatment for leukaemia ( blood cancers ). 

This limitation is due to privacy concerns surrounding access to patient records. 

 

 

 

Processed Products N = 410   

Autologous 287 6 months – 76 years 
old 

 

Allogeneic 123 3 months – 69 years 
old 

 

( Including 
Paediatric ) 

11   

    

Protocols Used  N = 410   

Volume Reduction 212   

Filtered, manipulated 51   

Other, bespoke 147   

Table 4.1: Contents of the DFCI-LU Database 
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Figure 4.6: Pareto Analysis of Indications reported in CMCF database.  

• AML: acute myeloid leukaemia 
• MDS: myelo dysplastic syndrome 
• CLL: chronic lymphocytic leukaemia 
• NHL: non-hodgkins lymphoma  
• ALL: acute lymphoblastic leukaemia  
• MALHS:  a gene therapy target 
• MF: mycosis fungoides  
• MM: multiple myeloma  
• CMML: chronic myelomonocytic leukemia  
• TLYM: a gene therapy for leukemia 
• FL: follicular lymphoma  
• MANTLE: mantle cell lymphoma  
• CTCL: cutaneous t-cell lymphoma 
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4.5  Results 
The primary objective of this analysis was to determine the extent of biological variation 

encountered in a single centre, in a statistically robust manner. 

The secondary objective of this analysis was to determine how processing and donor metrics such as 

protocol or patient weight and age affect the variation encountered in the subsequent starting 

material and final pre-freeze product. It is important to note this was not intended to be an analysis 

of the relationship between these metrics, but rather to capture their respective effect on the extent 

of biological variation. 

Four variables were chosen as measurands of biological variation, determined as important from the 

literature data and clinical discussion. These four metrics were: 

• Volume of the Starting Material, post-apheresis 

• TNC Count of the Starting material, post-apheresis 

• TNC Count of the Product, pre-freeze 

• CD34+ Cell Count of the Product, pre-freeze 

CD34+ cell content of the starting material was not measured by the CMCF so it is currently unclear 

as to the effect of the various processing steps on the yield of CD34+ cells in the final product. 

Each of these four metrics have been examined for overall spread and distribution, split into both 

autologous and allogeneic sourced material, and examined with respect to patient age, weight and 

gender ( so the subsequent results will focus on autologous therapy only ). Allogeneic sourced data 

has been collected but in significantly smaller numbers as this externally donated material is 

obtained off-site and so limited information was available with respect to allogeneic donor 

characteristics such as age, weight and gender. 

An investigation into the effect of operator variation was also carried out, using the CD34+ cell count 

of the product, and the yield of TNCs as metrics to discern whether different operators have any 

effect on these different metrics. 
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4.5.1  Overall Variation 
Overall variation in the pre-freeze product – that is to say that the product prior to being 

cryopreserved or given to the patient – is demonstrated in the next three diagrams. 

These have been illustrated in a similar manner as the literature meta-analysis, and a direct 

comparison has been given between the variation in the single clinical centre ( CMCF ) versus the 

variation in the 94 clinical centres ( Chapter 3 ). Key information is represented on the Figures, with 

more detailed statistical information within the Tables. 

Figure 4.7 is a scatter diagram showing the variation and spread of the absolute cell numbers within 

the pre-freeze product, in terms of CD34+ cell count and total nucleated cell count. These have been 

plotted on the same axis as CD34+ cells are a subset of the TNC cell count. The overall variation in 

absolute cell numbers is between 4.80x105 cells to 4.14 x109 CD34+ cells and 2.00x109 cells to 2.62 

x1011 total nucleated cells ( Table 4.2 ). 

Figure 4.8 is also a scatter diagram, but unlike the absolute cell count in Figure 4.7 this demonstrates 

the variation in terms of cells per kilogram in the final product. This is important because it 

incorporates the variation due to different weights, but also because dose per kilogram is the 

recognisable medical metric and is how cellular therapy is currently measured and dosed. The 

overall variation in cells per kilogram is between 7.92x104 to 7.41 x107 CD34+ cells / kg and 5.28x107 

to 2.87 x109 total nucleated cells / kg ( Table 4.2 ). When these are measured in cells per kilogram, 

the range, standard deviation and variance drop by at least two orders of magnitude as weight 

becomes normalised, potentially indicating that weight is a source of variation and indicating it is 

important to report measurements in a uniform manner to allow comparison. To this end, both 

absolute and cells per kilogram will be reported in this Chapter. 

Figure 4.9 is one of the most meaningful results from this Chapter. It overlays the data obtained 

from the CMCF, with each point in blue representing an individual product’s cell characteristics, with 

the previous results shown and presented in Chapter 3, with each orange point representing the 
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median product cell count for each study and the ranges. From this diagram an earlier hypothesis ( 

Section 4.1 ) can be addressed: the variation in a single centre is indeed significantly less than the 

spread of the 94 centres ( 4.80 x 106 to 4.14 x 109 CD34 + cells / kg within the CMCF compared to 6.0 

x 104 to 1.10 x 109 CD34+ cells / kg within the Meta-analysis, Figure 4.9 ) but is still in itself 

significant. 

The single centre has greater control over its variation in product than many of the other centres in 

the Meta-analysis, however there is still significant variation that may indeed be inherent to the 

biological starting material, if a single, highly rated clinical centre still retains a high level of variation. 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

TNC 
(Product) 

410 6.45x1010 5.94x1010 2.00x109 2.62x1011 2.60x1011 3.56x1010 1.28x1021 

CD34 
(Product) 

410 4.99x108 3.06x108 4.80x106 4.14x109 4.13x109 5.97x108 3.56x1017 

Table 4.2: CD34+ Cell Count and TNC Count of the Pre-Freeze Product 
  

Figure 4.7: CD34+ Cell Count and TNC Count of the Pre-Freeze Product ( log10 scale ) 

 

2.00x109 to 2.62 x1011 cells 

4.80x105 to 4.14 x109 cells 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

TNC / kg 
(product) 

410 8.07x108 7.42x108 5.28x107 2.87x109 2.82x109 4.29x108 1.84x1017 

CD34 / kg  
(product) 

410 6.51x106 3.95x106 7.92x104 7.41x107 7.40x107 8.65x106 7.48x1013 

Table 4.3: CD34+ Cell Count and TNC Count of the Pre-Freeze Product per kilogram of patient 
bodyweight 

  

Figure 4.8: CD34+ Cell Count and TNC Count of the Pre-Freeze Product per kilogram of patient bodyweight 

5.28x107 to 2.87 x109 cells / kg 

7.92x104 to 7.41 x107 cells / kg 
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4.5.2  Starting Material: Initial Volume 
This metric is one of the foremost and fundamental considerations for manufacturing cell therapies, 

as it will affect the equipment, machinery, and in extreme cases facilities, used to produce the 

product. At the CMCF, initial volume refers to the volume of the apheresis product received from the 

hospital ( either locally, or shipped from another facility ), and is measured in millilitres ( ml ). 

Firstly, variation as a function of initial post-apheresis volume was between 31.90 ml and 730.60 ml ( 

Figure 4.10, Table 4.4 ). This is perhaps indicative of entirely different configurations, even 

machines, to be able to automate a process that had this amount of input variation. The standard 

deviation and visual inspection of Figure 4.10 demonstrates that although, overall the variance is 

high, there is a clustering around the median ( 348.90 ml ) that could be considered as two 

populations – this central ‘expected’ cluster and the outlying data points. 

Figure 4.11 is a histogram of the spread of starting material volume. Conversely to visual inspection, 

initial volume is not normally distributed, likely due to the long tails either-side of the main peak. 

This is confirmed by the high kurtosis value ( 4.550 ) and by the Shapiro Wilk’s test ( p > 0.05 ). It is 

these long tails that are skewing the distribution from what would otherwise be a normal 

distribution, or close to, given the skewness value ( 0.396 ). Perhaps in a regular manufacturing 

process these extremes could be controlled for, but these are indicative of an individual patient’s 

apheresis volume and is too valuable to discard. 

In Figure 4.12 this initial volume has been split between autologous sourced material ( i.e. a patient, 

presumably sick ) and allogeneic sourced material ( i.e. an external donor, presumably healthy ). 

Visually, autologous sourced material has a much tighter distribution than allogeneic, perhaps 

indicative of a single centre’s procedures and techniques, compared to the ‘pool’ of potential 

centres that an allogeneic donation may have been sourced from. Statistically however, by 

independent samples median and Kruskal-Wallis test, the median and distribution of both 

autologous and allogeneic are not significantly different ( p > 0.948 and p > 0.979, respectively ). The 

spread of the data, represented by the variance, is almost five times as high in allogeneic sourced 
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material likely due to the lack of clustering that is apparent in the autologous material – this may be 

due to the lack of measured records for allogeneic, and that with sufficient numbers this may also be 

reflected in the allogeneic material. ( Please note that as absolute cell numbers were unavailable in 

the Meta-analysis, cells / kg has been used ) 

Figure 4.13 splits Figure 4.11 into autologous and allogeneic sourced material, and has examined the 

normality of each subset. By Shapiro Wilk’s test both autologous and allogeneic starting volume are 

not normally distributed ( p > 0.05 ) although visual inspection and the statistical metrics for 

allogeneic would suggest external donor sourced material is closer to normality than autologous 

sourced material. However with the large amount of spread and the long tailed edges ( and a 

kurtosis and skew of 4.229 / 0.597 and 1.343 / 0.400 for autologous and allogeneic, respectively ) it 

is these extremes that ensure that this metric is non-normally distributed.  
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Initial 
Volume 
( ml ) 

 
406 

 
351.78 

 
348.90 

 
31.90 

 
730.60 

 
698.70 

 
81.28 

 
6607.22 

Table 4.4: Initial Volume of the Starting Material ( post-apheresis ) against the date of collection 
 

  

Figure 4.10: Initial Volume of the Starting Material ( post-apheresis ) against the date of collection 

31.90 ml to 730.60 ml 
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Figure 4.11: Histogram showing the spread and distribution of the initial volume of the starting 
material ( post-apheresis ) 
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Figure 4.12: Initial Volume of the Starting Material ( post-apheresis ) against the date of collection, 
split into autologous and allogeneic sourced material 

 

Volume 
( ml ) 

Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Autologous 285 348.28 348.90 41.00 543.2 502.20 56.83 3230.12 
Allogeneic 121 360.05 352.10 31.90 730.60 698.70 120.65 14556.58 
Table 4.5: Initial Volume of the Starting Material ( post-apheresis ) against the date of collection, 

split into autologous and allogeneic sourced material 
 

41.0 ml to 543.2 ml 

31.9 ml to 730.6 ml 
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Figure 4.13: Histogram showing the spread and distribution of the initial volume of the starting 
material ( post-apheresis ) for autologous and allogeneic therapy respectively 
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4.5.3  Starting Material: Total Nucleated Cell Count 
This metric is the least specific of the two cellular metrics used in this analysis, however it is a 

traditional quality metric and stem cells are a member of this cell population. Total nucleated cell 

count refers to the number of nucleated cells within a given sample, and is not indicative of a 

specific cell type. At the CMCF, initial TNC count is a measure of the number of cells within the 

apheresis product received from the hospital and is measured in either ‘absolute’ cell numbers, or 

cells per kg ( patient weight ). 

This analysis has now moved on towards cellular measurements therefore figure axes are reported 

in scientific notation. 

The spread of TNCs within the starting material, overall, is between 2.20x109 cells and 2.70x1011 cells 

around the median value of 5.81x109 cells ( Figure 4.14, Table 4.6 ). This less variable from a 

manufacturing perspective compared to the variation in TNC count shown in the literature meta-

analysis ( between zero and 9.24x109) ( Figure 4.9 ), but 2 orders of magnitude in process variation 

would still be unmanageable. 

The trend of non-normally distributed biological measurands is continued in Figure 4.15, but unlike 

initial volume which is much more central ( skewness of 0.396 ), TNC is skewed towards the left hand 

side ( skewness of 1.485 ). Both have a similar kurtosis ( 4.550 and 4.054 ), the tendency for long tails 

except where before in initial volume there were two long tails either side of the main distribution, 

where TNC is much closer to zero, there is one main, long tail that encompasses the more variant 

data points. Normality was tested for using Shapiro Wilk’s test to confirm this visual inspection and 

was found to be non-parametric ( p > 0.05 ). 

TNC count within the starting material was further split into autologous and allogeneic sourced 

material in Figure 4.16 and Table 4.7. From visual inspection, the variation in autologous material 

appears to be much higher than allogeneic, mainly due to a few ‘outliers’ above the 2x1011 cells 

mark, and there appears to be a much more central clustering. However, from a statistical 
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standpoint, autologous material has a much higher variance between data points and only a slighter 

higher standard deviation. Independent samples median and Mann-Whitney tests were used to 

examine the statistical differences in median and distribution and it was found that both autologous 

and allogeneic material has significantly different medians and distributions ( p > 0.05 ) implying that 

these are two distinctly different subsets of the population. However, given that allogeneic only has 

34 data points this may be due to an unrepresentative sample of the population compared to 

autologous material. 

Examination of these two subsets in Figure 4.17 appear to show a similar distribution to Figure 4.15, 

although a Shapiro Wilk’s test found that allogeneic material is normally distributed ( p < 0.996 ). 

This may be a factor of the sampling issue as mentioned above, but the skewness and kurtosis is 

indicative of a normal distribution ( 0.068 and 0.089 respectively ). Autologous therapy is similarly 

distributed as before, with a skewness and kurtosis of 1.706 and 4.909 respectively, with the long-

tailed edge that is becoming iconic of these biological measurements. 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

TNC Count 
(Starting 
Material) 

 

319 

 

6.56x1010 

 

5.81x1010 

 

2.20x109 

 

2.70x1011 

 

2.68x1011 

 

3.86x1010 

 

1.49x1021 

Table 4.6: Total Nucleated Cell Count of the Starting Material ( post-apheresis ) against the date of 
collection 

  

Figure 4.14: Total Nucleated Cell Count of the Starting Material ( post-apheresis ) against the date of 
collection 

2.20x109 cells to 2.70x1011 cells 
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Figure 4.15: Histogram showing the spread and distribution of the total nucleated cell count of the 
starting material ( post-apheresis ) 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Autologous 285 6.30x1010 5.38x1010 2.20x109 2.70x1011 2.68x1011 3.88x1010 1.51x1021 

Allogeneic 34 8.76x1010 8.47x1010 2.51x1010 1.55x1011 1.30x1011 2.83x1010 8.02x1020 

Table 4.7: Total Nucleated Cell count of the starting material ( post-apheresis ) against the date of 
collection of autologous and allogeneic sourced material 

  

Figure 4.16: Total Nucleated Cell count of the starting material ( post-apheresis ) against the date of 
collection of autologous and allogeneic sourced material 

2.20x109 to 2.70x1011 cells 

2.51x1010 to 1.55x1011 cells 
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Figure 4.17: Histogram showing the spread and distribution of the total nucleated cell count of the 
starting material ( post-apheresis ) for autologous and allogeneic sourced material 
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4.5.4  Pre-Freeze Product: Total Nucleated Cell Count 
At the CMCF pre-freeze total nucleated cell count refers to the number of nucleated cells measured 

in the final product, prior to cryopreservation and therapeutic application. It is also measured in 

absolute cell numbers, or cells per kg ( patient weight ). It represents the output of the overall 

process and therefore represents an element of the input variation and the CMCF manufacturing 

process, and how they can manage that variation as a manufacturing centre and how clinical 

practise subsequently is able to use the product. 

Figure 4.18 and Table 4.8 illustrate the spread of TNCs in the product. Compared to Figure 4.14, and 

the starting material, the distribution and spread is surprisingly similar, but with a slight decrease in 

range, standard deviation and variance which could be attributed to the process methodology. The 

range of TNCs is 2.00x109 cells to 2.62x1011 cells. Given the consistently high yields recorded by the 

CMCF ( see Figure 4.41 ) this is perhaps unsurprising, and may demonstrate that their process does 

not introduce any further variation in TNC overall ( but also, does not reduce it ). 

The process has also not affected the distributions of biological metrics – Figure 4.19 shows that 

similarly to Figure 4.15, total nucleated cell count is skewed to the left, with a long right-handed tail. 

Pre-Freeze TNC cell count was not normally distributed, as assessed by Shapiro-Wilk’s test ( p > .05 ). 

Kurtosis and skewness were 3.700 and 1.333 respectively. The kurtosis of TNCs post-process is 

moderately smaller, perhaps indicating that the process has reduced some of the extreme values by 

merit of the volume reduction process.  

Figure 4.20 splits pre-freeze TNC count into autologous and allogeneic source. The range of cell 

count for autologous is between 2.00x109 cells and 2.62x1011 cells, and the range of cell count for 

allogeneic is 7.90x109 cells and 1.68x1011 cells. By visual inspection, both appear to be relatively 

similar to each other, apart from the clustering ( likely due to having almost double the number of 

data points ) with a similar range, standard deviation and variance. However, incorporating the 

number of data points an independent samples median and Mann-Whitney test determine that both 

the medians and distributions of autologous and allogeneic TNCs are significantly different from 
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each other (  p > 0.05). This is comparable to those of the initial total nucleated count, and the 

process can potentially be attributed towards the mild decrease in spread and variation represented 

by a decrease in range, standard deviation and variance ( compared with Figure 4.16, Table 4.7 ). 

Given the minimal effect of the process on TNC, a similar distribution is found in the pre-freeze 

product as was found in the initial starting material – autologous material is non-normally 

distributed and allogeneic is normally distributed ( p > 0.05, p > 0.098 respectively ) ( Figure 4.21 ). 

Autologous material is distributed as expected, given previous distributions, with a left hand skew 

and a long right hand tail, but allogeneic appears to be more centrally distributed ( Kurtosis and 

skewness for autologous and allogeneic material were 5.424 / 1.810 and 0.593 / 0.273 respectively ). 

This could potentially be attributed towards the significantly fewer data points for allogeneic, or an 

attribute specific to allogeneic sourced material, such as the storage and collection process of the 

donor programme for example. 

Given that the dataset contains only a subset of the potential data at the CMCF, specific focus was 

given to the autologous sourced product characteristics. These were uniformly reported, carried out 

on-site, and were more likely to contain patient metrics such as age, weight and gender. 

What follows is an examination of these three metrics with respect to pre-freeze total nucleated cell 

count and CD34+ cell count.  
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

TNC 
(Product) 

 

410 

 

6.45x1010 

 

5.94x1010 

 

2.00x109 

 

2.62x1011 

 

2.60x1011 

 

3.57x1010 

 

1.28x1021 

Table 4.8: Total Nucleated Cell Count of the product ( pre-freeze ) against the date of collection 
  

Figure 4.18: Total Nucleated Cell Count of the product ( pre-freeze ) against the date of collection 

2.00x109 cells to 2.62x1011 cells 
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Figure 4.19: Histogram showing the spread and distribution of the total nucleated cell count of the 
product ( pre-freeze ) 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Autologous 287 5.93x1010 5.27x1010 2.00x109 2.62x1011 2.60x1011 3.70x1010 1.37x1021 

Allogeneic 123 7.67x1010 7.27x1010 7.90x109 1.68x1011 1.60x1011 2.91x1010 8.49x1021 

Table 4.9: Total Nucleated Cell count of the product ( pre-freeze ) against the date of collection of 
autologous and allogeneic sourced material 

 

 

 

  

Figure 4.20: Total Nucleated Cell count of the product ( pre-freeze ) against the date of collection of 
autologous and allogeneic sourced material 

2.00x109 cells to 2.62x1011 cells 

7.90x109 cells to 1.68x1011 cells 
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Figure 4.21: Histogram showing the spread and distribution of the total nucleated cell count of the 
product ( pre-freeze ) for autologous and allogeneic sourced material 
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4.5.4a  Pre-Freeze Product: Total Nucleated Cell Count and Patient Weight 

Patient ( or donor ) weight is likely to be one of the major contributors towards variation in cell 

numbers ( and potentially quality, for bariatric [ obese ] patients ). 

Unless specified otherwise, the following analysis is based upon autologous sourced material, from a 

‘sick’ population, where the patient’s weight is the contributing factor ( in allogeneic sourced 

material, the patient’s weight would not be the correct factor, as it is the donor’s material and 

therefore their weight that may have an effect ). 

Figure 4.22 is a scatter diagram of the pre-freeze total nucleated cell count ( absolute cell numbers ) 

against the corresponding patient’s weight in kilograms. The mean and median patient weights have 

been indicated on the Figure, for reference. What is significant is that a given weight is not indicative 

of a given cell count. There are patients around the mean weight ( 82.3 kg ) that could have between 

2.8x1010 cells ( for 85.0kg ) and 2.0x1011 cells ( for 81.20kg ). A further point is that weight is not 

necessarily indicative of size or unhealthy size – a similar weight could represent a shorter or taller 

individual, a more athletic or a more obese individual -  further in detail stratification of the 

relationship between weight and health may be crucial to understand the quality and quantity of 

variation in the starting material. 

Figure 4.23 splits the data shown in the previous figure into 10 kg sized bins of weight, to examine 

the amount of variation and spread within a given weight bracket – it is therefore easier to note the 

aforementioned point about the lack of correlation between weight and total nucleated cell count. 

The greatest ranges appear to be within the lower weight category ( 20 kg -30 kg ) and further for 

the categories of 80 kg -90 kg, 90kg -100kg and 110 kg -120 kg. the latter may be reflective of the 

wide range of body sizes and compositions that can be reflected by these weights, as mentioned 

before. This is also reflected by increased variance at these categories ( Table 4.10 ).  
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Figure 4.22: Pre-Freeze TNC Count against Patient Weight ( kg ) 

 

Median 

78.7 kg 

Mean 

82.3 kg 

Standard Deviation: 23.5 
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Figure 4.23: Pre-Freeze TNC Count against Patient Weight ( kg ) binned into 10 kg bins 

 

Patient Weight( 10 kg bins ) 
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4.5.4b  Pre-Freeze Product: Total Nucleated Cell Count and Patient Age 

Between paediatric and geriatric patients, between the changes due to menopause and ageing, and 

the diseases and conditions that can be attributed to biological age, patient age is also likely to be a 

key contributor towards variation. 

Unless specified otherwise, the following analysis is based upon autologous sourced material, from a 

‘sick’ population, where the patient’s age is the contributing factor. Paediatric has been defined as 

18 years old or younger and geriatric has been defined as 65 years old or older. This dataset is 

weighted towards an older population with the majority of the dataset existing above 40 years old. 

Figure 4.24 shows the absolute TNC count of a given pre-freeze product against the corresponding 

patient’s age in years. This has been further split into three categories: paediatric, adult and 

geriatric, as indicated on the Figure. Table 4.11 gives further details about the spread and 

distribution of these categories, with geriatric having a wider, core spread but smaller range ( 3.46x 

1010 cells and 1.91 x 1011 cells ) than adult patients’ tighter spread but larger range ( 2.53 x 1011 cells 

and 2.57 x 1011 cells ). Variance is similar between adult and geriatric populations ( 1.25 x 1021 and 

1.20 x 1021 ), with paediatric patients’ being the most variable by any of the three metrics ( 2.11 x 

1021 ). Furthermore, assuming these are discrete sections of the population, by independent samples 

median and Kruskal-Wallis’ test, they have significantly different medians ( 4.65 x 1010, 6.59 x 1010, 

6.29x1010 for paediatric, adult and geriatric respectively ) and distributions. Whilst this conclusion is 

to be treated with care, given the other confounding factors such as weight, this may be indicative 

that certain age groups may be more suitable for donation, from a manufacturing starting material 

perspective, which may be useful to allogeneic therapy, where donors can be selected, but indicates 

what variation will have to be managed for autologous therapy. 

To allow for visual stratification and examination, the patient ages within Figure 4.24 have been 

stratified into 5 year bins and represented as a further scatter diagram in Figure 4.25. The three age 

categories have been indicated in blue. There appear to be peaks in variance between the ages of 6-
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10, 11-15, 26-30, 41-45 56-60, 61-65 and 66-70 ( Table 4.12 ), potentially indicative of comparatively 

tumultuous biological ages that are affecting the corresponding about of TNCs collected and 

processed. 

The aforementioned category, weight, may be a key contributor towards patient derived variation. 

Figure 4.26 is a scatter diagram of binned patient age against the total nucleated cell count per 

kilogram of patient weight, to accommodate the variation that may be encountered as a factor of 

variant bodyweight. Age categories have also been added in blue. 

The previous peaks in variance are now no longer apparent, with fairly consistent variance across all 

age groups, apart from notable decreases between the ages of 26 and 30 ( Table 4.13 ). This may 

imply that weight introduces a significant amount of variation, and care must be taken to use the 

correct units of measurement when comparing, or carrying out process control measurements. The 

danger is that using cells / kg is a measure of the state of the donating patient, rather than the state 

of the product itself, and absolute cells, or cells / litre ( with volume being representative of the 

transfer bag itself ) may be more indicative of the variation within the product itself. 

Given that the pre-freeze product at the CMCF was 100 ml in size, uniformly, absolute cell numbers 

in this case are representative of cells within a given product, of a fixed volume.  
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

1 – 18 11 4.65x1010 2.16x1010 2.00x109 1.31x1011 1.29x1011 4.59x1010 2.11x1021 

19 – 
64 

264 6.59x1010 6.04x1010 4.80x109 2.62x1011 2.57x1011 2.53x1010 1.25x1021 

65+ 131 6.29x1019 5.95x1010 6.10x109 1.97x1011 1.91x1011 3.46x1010 1.20x1021 

Table 4.11: Pre-Freeze TNC Count against Patient Age ( years ), stratified into paediatric ( ≤18 ), adult 
( ≥19,≤64 ) and geriatric ( ≥65 ). 

  

          Paediatric                                               Adult                                               Geriatric
    

Figure 4.24: Pre-Freeze TNC Count against Patient Age ( years ) 

Paediatric has been define as 18 years or younger, and has been indicated in orange on the diagram. 

 

2.00x109 cells –  

1.31x1011 cells 

( n = 11 ) 

6.10x109 cells  - 
1.97x1011 cells 

( n = 131 ) 

4.80x109 cells –  

2.62x1011 cells 

( n = 264 ) 
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Figure 4.25: Pre-Freeze TNC Count against Patient Age ( years ) binned into 5 year segments 

Paediatric, adult and geriatric populations have been indicated in blue 

          Paediatric                                               Adult                                               Geriatric
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Figure 4.26: Pre-Freeze TNC Count / kg Patient bodyweight against Patient Age ( years ) binned into 
5 year segments 

 

          Paediatric                                               Adult                                               Geriatric
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4.5.4c  Pre-Freeze Product: Total Nucleated Cell Count and Patient Gender 

Both genders in human exhibit specific traits, and these traits may be a factor in the extent of 

variation as a result from using male versus female donors. 

Unless specified otherwise, the following analysis is based upon autologous sourced material, from a 

‘sick’ population, where the patient’s gender is the contributing factor. 

Figure 4.27 is a scatter diagram of pre-freeze total nucleated cell count against the corresponding 

patient’s gender. Male patients appear to have considerably higher variation in terms of range 

compared to female patients ( 2.56 x 1011 cells in males compared to 1.20 x 1011 cells in females), so 

this data was represented further in Figure 4.28 as a box and whisker plot. 

This shows a much higher variance ( 1.81x1021 in males compared to 6.02x1020 in females ) and a 

slightly higher standard deviation and range in male patients compared to female patients ( a 

standard deviation of 4.25 x 1010 cells in males compared to 2.45 x 1010 cells in females )( Table 4.14 

). In fact, independent sample median and Kruskal-Wallis tests consider male and female subsets’ 

median and distribution to be significantly different ( p > 0.05, p > 0.05 ). From this, it could be 

surmised that, for an as yet unknown reason, that female patients exhibit much less variation than 

male patients exhibit.  
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Figure 4.27: Pre-freeze TNC Count compared with Patient Gender 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Male 145 7.22x1010 6.42x1010 6.10x109 2.62x1011 2.56x1011 4.25x1010 1.81x1021 

Female 135 4.56x1010 4.13x1010 2.00x109 1.22x1011 1.20x1011 2.45x1010 6.02x1020 

Table 4.14: Pre-freeze TNC Count compared with Patient Gender 
 

Figure 4.28: Pre-freeze TNC Count compared with Patient Gender ( box and whisker plot ) 
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4.5.5  Pre-Freeze Product: CD34+ Cell Count 

Pre-freeze CD34+ cell count refers to the number of cells within the final product, prior to 

cryopreservation and therapeutic application, that have been detected with this specific cell surface 

marker. This marker is indicative of HPCs, and is used as the specific measurement of cell identity 

and efficacy for HSCTs at the CMCF. It has been measured here in absolute cell numbers, which is 

normally indicative of the number of cells within 100 ml ( the target product volume ). It represents 

the specific measurement for therapeutic identity and is therefore the most important characteristic 

to examine with respect to biological variation. 

Figure 4.29 illustrates the spread of CD34+ cells in the product. This cell population was not 

measured in the initial starting material, prior to the process, so a comparison cannot be drawn 

between CD34+ cell yields. The range of CD34+ cells for all products produced between January and 

October of 2014 was between 4.80x106 cells and 4.14x109 cells ( Table 4.15 ). Given that CD34+ cells 

are a subset of TNCs, it is unsurprising that the range, standard deviation and variance are 

considerably less for CD34+ cells. 

The distribution of CD34+ cells is considerably more skewed than TNCs ( Figure 4.30 ). Visual 

inspection alone is sufficient to identify the significant skew representative of a non-normal 

distribution, which was confirmed by Shapiro-Wilk’s test ( p > 0.05 ). The skewness is twice that 

found in TNC ( 1.333 to 2.876 ) and three times that found in TNC ( 3.700 to 11.160 ), representing a 

sharp peak and a longer tail. This illustrates the earlier regulatory and therapeutic challenge of 

identifying the differences ( if any ) in therapeutic potential between those products that reside 

within the main peak, and those that reside in the longer tail – are these representative of different 

qualities or efficacies. 

Figure 4.31 splits pre-freeze absolute CD34+ cell count into autologous and allogeneic source. The 

range of cell count for autologous is between 4.80x106 cells and 4.14x109 cells, and the range of cell 

count for allogeneic is between 4.00x107 cells and 1.82x109 cells. By visual inspection autologous 
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sourced material appears to have much higher variation, with a higher spread than allogeneic 

(represented in Table 4.16 with a higher range, standard deviation and variance ). This may be due 

to the ‘sick’ state of the autologous patients, compared to the relatively healthy allogeneic donors. 

An independent sample median and Mann-Whitney test demonstrate that these two populations’ 

median and distribution are significantly different from one another ( p > 0.05, p > 0.05 ). 

Distributions of CD34+ cells are non-normally distributed regardless of source ( Figure 4.32 ). Pre-

Freeze TNC cell count was not normally distributed for either autologous or allogeneic sourced 

material as assessed by Shapiro-Wilk’s test ( p > .05, p >0.098 respectively ). Kurtosis and skewness 

for autologous sourced material were 9.733and 2.881 respectively and 0.957 and 0.873 for 

allogeneic sourced material respectively. 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

CD34  

(Product) 

410 4.99x108 3.06x108 4.80x106 4.14x109 4.12x109 5.97x108 3.56x1017 

Table 4.15: CD34+ Cell Count of the product ( pre-freeze ) against the date of collection 

Figure 4.29: CD34+ Cell Count of the product ( pre-freeze ) against the date of collection 

4.80x106 cells  to 4.14x109 cells 
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Figure 4.30: Histogram showing the spread and distribution of the CD34+ cell count of the product ( 
pre-freeze ) 
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 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Autologous 287 4.75x108 2.34x108 4.80x106 4.14x109 4.13x109 6.74x108 4.55x1017 

Allogeneic 123 5.55x108 5.06x108 4.00x107 1.82x109 1.78x109 3.50x108 1.23x1017 

Table 4.16: CD34+ Cell Count of the product ( pre-freeze ) against the date of collection, 
split into autologous and allogeneic sourced material 

Figure 4.31: CD34+ Cell Count of the product ( pre-freeze ) against the date of collection by 
autologous and allogeneic source material 
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Figure 4.32: Histogram showing the spread and distribution of the CD34+ cell count of the product ( 
pre-freeze ) for autologous and allogeneic sourced material 
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4.5.5a  Pre-Freeze Product: CD34+ Cell Count and Patient Weight 

Patient ( or donor ) weight is likely to be one of the major contributors towards variation in cell 

numbers ( and potentially quality, for bariatric patients ). This is especially important for obese 

patients, whose circulatory system may not be sufficiently adapted to their size and as a result may 

have less circulating stem cells than an equivalent healthier individual. 

Unless specified otherwise, the following analysis is based upon autologous sourced material, from a 

‘sick’ population, where the patient’s weight is the contributing factor ( in allogeneic sourced 

material, the patient’s weight would not be the correct factor, as it is the donor’s material and 

therefore their weight that may have an effect ). 

Figure 4.33 is a scatter diagram of the pre-freeze absolute CD34+ cell count against the 

corresponding patient’s weight in kilograms. Similarly to Figure 4.22, weight is not correlated with 

CD34+ cell count, and a patient with the mean weight ( 82.3 kg ) may produce between zero and 

4.0x109 CD34+ cells.  

Figure 4.34 splits the weight categories in the previous figure into 10 kg sized bins, to examine the 

amount of variation and spread within a given weight bracket. By visual inspection there is 

considerably more variation in the amount of produced CD34+ cells within the central weight 

categories, compared to the extremes, likely due to the myriad of body shapes and health categories 

these central measurements could encompass, compared to a 10 kg paediatric patient and a 150 kg+ 

obese patient. This could explain the particularly high standard deviations and variances attributed 

to the 80.01 to 90.00 kg category ( 1.00 x 109 cells and 9.00x1017 cells )  and the 120.01 to 130.00 

category (  1.00 x 109 cells and 1.00 x 1018 cells ) ( Table 4.17 ).  
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  Figure 4.33: Pre-Freeze CD34+ Cell Count against Patient Weight ( kg ) 

 

Median 

78.7kg 

Mean 

82.3kg 
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Figure 4.34: Pre-Freeze CD34+ Cell Count against Patient Weight ( 10 kg bins ) 
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4.5.5b  Pre-Freeze Product: CD34+ Cell Count and Patient Age 

Between paediatric and geriatric patients, between the changes due to menopause and ageing, and 

the diseases and conditions that can be attributed to biological age, patient age is also likely to be a 

key contributor towards variation. 

Unless specified otherwise, the following analysis is based upon autologous sourced material, from a 

‘sick’ population, where the patient’s age is the contributing factor. 

Figure 4.35 shows the absolute CD34+ cell count of a given pre-freeze product against the 

corresponding patient’s age in years. This has been further split into three categories: paediatric, 

adult and geriatric, as indicated on the Figure. Table 4.18 gives further details as to the spread and 

distribution within these categories. Assuming that these three age categories are discrete 

independent sections of the population, by independent Kruskal-Wallis’ test, they have significantly 

different distributions ( p > 0.05 ). 

Figure 4.36 is a scatter diagram that stratifies patient age in five year bins against pre-freeze 

absolute CD34+ cell count. Unlike TNCs, variance in CD34+ is highest in only two age categories: 16 

to 20 year olds ( 2.04 x 1018 cells ) and 36 to 40 year olds ( 1.74 x 1018 cells ), implying that it is within 

these age groups that the greatest amount of variation in CD34+ cell numbers is found. Given that 

these categories are based upon n = 5 and n = 4, this conclusion is not as statistically robust ( Table 

4.19 ). For a statistically meaningful examination of age groups more data is required in the younger 

patient categories. Furthermore, if biological state changes were more fixed, attention could be 

focused on these areas to determine whether these state changes – puberty or menopause for 

example – affect the variation in CD34+ cell count. These metrics are subjective to the individual so 

this may be less straightforward in practise.   
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 Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

CD34+ 
Cells 

410 4.99x108 3.06x108 4.80x106 4.14x109 4.13x109 5.97x108 3.56x1017 

1 - 18 11 6.75x108 3.83x108 1.50x107 3.27x109 3.26x109 9.42x108 8.87x1017 

19 - 64 264 5.34x108 3.45x108 1.30x107 4.14x109 4.13x109 5.93x108 3.51x1017 

65+ 131 4.10x108 2.34x108 4.80x106 3.77x109 3.77x109 5.69x108 3.23x1017 

Table 4.18: Pre-Freeze CD34+ Cell Count against Patient Age ( years ) overall, and split into 
paediatric, adult and geriatric age groups 

Figure 4.35: Pre-Freeze CD34+ Cell Count against Patient Age ( years ) 

     Paediatric                                               Adult                                                  
Geriatric    

1.50x106 cells –  

3.27x109 cells 

( n = 11 ) 

4.80x106 cells – 
3.77x109 cells  

( n = 131 ) 

1.30x107 cells – 

 4.14x109 cells 

( n = 264 ) 
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Figure 4.36: Pre-Freeze CD34+ Cell Count against Patient Age ( 5 year bins ) 
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4.5.5c  Pre-Freeze Product: CD34+ Cell Count and Patient Gender 

Both genders exhibit specific traits, and these traits may be a factor in the extent of variation as a 

result from using male versus female donors. 

Unless specified otherwise, the following analysis is based upon autologous sourced material, from a 

‘sick’ population, where the patient’s gender is the contributing factor. 

Figure 4.37 is a scatter diagram of pre-freeze CD34+ cell count grouped according to the 

corresponding patient’s gender. This was to identify whether there were any differences in biological 

variation as a function of the gender of the donor.  

Contrary to the higher variation found in TNC count for male patients, variation is higher for female 

derived material in terms of CD34+ cell count with respect to range, standard deviation and 

variance. Male patients have a CD34+ range, standard deviation and variance of 3.71 x 109 cells / kg, 

6.61 x 108 cells / kg and 4.37 x 1017 cells / kg respectively, compared to 4.13 x 109 cells / kg, 7.00 x 

108 cells / kg and 4.89 x 1017 cells / kg for female patients ( Table 4.20 ). This is due to a number of 

‘outliers’ in the female category, circled in blue on Figure 4.38. 

An independent samples median test considers male and female sourced material to be of equal 

medians ( p > 0.146 ). However, the greater number of extreme values in the female sourced 

material, as highlighted above, means that the subsequent Kruskal-Wallis test found that the 

distributions are not equal for male and female derived material ( p > 0.05 ).  
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Figure 4.37: Pre-Freeze CD34+ Cell Count against Patient Gender 
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Figure 4.38: Pre-Freeze CD34+ Cell Count against Patient Gender ( box and whisker plot ) 

 

Cells Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Male 145 5.26x108 2.39x108 9.00x106 3.72x109 3.71x109 6.61x108 4.37x1017 

Female 135 4.36x108 1.96x108 4.80x106 4.14x109 4.13x109 7.00x108 4.89x1017 

Table 4.20: Pre-Freeze CD34+ Cell Count against Patient Gender 
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4.5.6  Operator Variation 
Technicians, in their role as operators, are the primary source of operator variation. By examining 

variation at the single clinical centre ( characterised by the CMCF )  a limited personnel pool is 

assumed, all of whom should be trained to a comparable level.  

At the CMCF, the technician responsible for the process, for the calculations in the product and 

process records, and the QC analysis is recorded. Using this information, comparisons can be made 

between individuals to identify if any variation encountered in the product can be attributed 

towards an individual - and therefore surmise that operator variation is a significant challenge. This 

was intended to be a proof-of-concept, rather than an individual ‘witchhunt’ and as such, the 

technician’s identities has been redacted. Figure 4.39 is a comparison of the CD34+ cell count in the 

product grouped according to the technician recorded as having carried out the process. There were 

originally 9 technicians within the timeframe, but one was removed as they had only carried out 2 

processes within the period. From visual inspection, it is quite difficult to discern the variation 

between individuals so the data was transferred to a box and whisker plot in Figure 4.40. 

It has already been established that CD34+ cell count is non-normally distributed, so an 

independent-samples Kruskal-Wallis test was used to compare whether the variation can be 

attributed to operator variation. According to the results of this test, the distribution of CD34+ cell 

count were the same across the categories ( technicians ).  

However, CD34+ cell count is perhaps not an ideal measure to discern the effects of operator 

variation. In the absence of a quality metric that is related to cell efficacy, TNC yield might be an 

appropriate examination of operator skill as it is a direct measurement of a ‘before and after’ state 

with respect to the process. 

Figure 4.41 and Table 4.22 groups technicians against the calculated TNC cell yield. A line has been 

drawn at 100%, to indicate whether product yields meet, or exceed 100%. Exceeding 100% would 

indicate more cells had been created during the process than was originally collected. Reiterating an 
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earlier statement, in some cases different technicians will carry out the calculations for the process 

records than the technician who may be carrying out the process. Figure 4.42 is a comparison 

between the recorded TNC yield in the CMCF process records and a yield calculated by the author 

from the CMCF initial and product absolute TNC counts. The majority of these yields align with each 

other in a linear relationship ( R2 Linear = 0.896, y = 1.89+ 0.98x, where x is calculated yield and y is 

reported yield , but one point of interest is where the calculated yield exceeds 100% but the 

recorded yield caps at 100%. This may be reflective of the fact that more cells will not be created 

during the process, and to cap the yield at 100%. This may also be a result of different analytical 

techniques – or rather various levels of resolution at the QC stages in the initial product and the final 

product.  

Cell yield is non-normally distributed ( Figure 4.43, Shapiro-Wilk’s test p < 0.05 ) so the independent 

samples median test and the independent samples Kruskal-Wallis test was used to compare the 

median and distributions between operators. The median and distributions were found to be the 

same across the categories ( technicians ) ( p < 0.534 and p < 0.609 respectively ). This could 

potentially mean that different operators do not have different effects on the product variation.  
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Figure 4.39: Pre-Freeze CD34+ Cell Count against Processing Technician ( redacted ) 
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Figure 4.40: Pre-Freeze CD34+ Cell Count against Processing Technician ( redacted, box and whisker 
plot ) 
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Figure 4.41: Calculated TNC Yield against Processing Technician ( redacted, box and whisker plot ) 
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Figure 4.42: Yield of absolute TNC count, compared between recorded value and calculated value 

 

R2 Linear = 0.896 

Y = 1.89+ 0.98x, where x is 
calculated yield and y is reported 
yield 
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Table 4.22: Calculated TNC Yield against Processing Technician ( redacted ) 
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Figure 4.43: Calculated TNC Yield against Processing Technician 
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4.5  Single Clinical Centre Conclusions and Summary 
 

This chapter has aimed to quantify the variation encountered in a single clinical centre, characterized 

by the product and patient records available at the Dana Farber Cancer Institute in Boston, USA. 

A particular aim of this chapter was to reduce the number of confounding variables, such as patient 

age and weight, and examine the capability of a large centre with respect to the control of variation. 

Biological variation in cell therapies, such as blood-based therapies, is currently accepted for two 

main reasons;  

1. Cellular therapy such as HSCTs are delivered under a one-sided specification. This is the 

minimum amount determined by the overseeing physician to salve the symptoms of the 

primary therapeutic ( bone marrow recovery in chemotherapy for example ).  

2. A number of cellular therapies are experimental and are offered under difficult 

circumstances where the alternative may mean death for the patient.  

For cellular therapy to become a frontline therapy, the regulator needs to be satisfied as to long 

term efficacy and safety – especially in the face of approved alternatives. These therapies are 

produced in small numbers for relatively few patients. To become a viable frontline option, we need 

the capability to produce in volume. Given that i) Smart people do not scale - if the process requires 

a certain level of intuition and process understanding, this limits the potential employment 

subpopulation that can be hired from, that would be capable of manufacturing these products and, 

ii) hospitals do not have the space or manpower to scale up, traditionally: there will need to be a 

degree of mechanization or automation. 

This is the primary rationale behind the investigation of biological variation. Understanding the 

variation that is encountered in the starting material, and the process, means an understanding of 

the tolerances and the specification that a machine or piece of equipment needs to be designed 
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around – to tolerate or control – because only by a degree of mechanization or automation can 

frontline cellular therapy be achieved as an option to the patient. 

4.5.1  Extent of Variation in Product at a Single Site 
 

This chapter has concluded that the variation in absolute CD34+ cell count at a single clinical centre 

is between 4.80x105 cells and 4.14x109 cells. There appears to be greater variation in autologous 

therapy ( 4.80x106 cells to 4.14x109 cells ) than allogeneic therapy ( 4.00x107 cells to 1.82x109 cells ) ( 

Figure 4.9 ). 

This translates to variation between 7.92x104 cells / kg and 7.41x107 cells / kg. Compared to the 

Meta-Analysis in Chapter 3 ( 6.0x104 cells / kg to 1.10x109 cells / kg ), this is a significant reduction 

and an example to other clinical centres that the CMCF has particular cultures of practice, 

technology and biological considerations they can learn from. However, the variation is still 3 orders 

of magnitude and an issue that needs to be addressed. 

4.5.2  Where is this variation coming from? 
 

There are several sources of variation. Traditionally, these are split into two broad categories; 

common and special cause variation. Common cause variation is naturally occurring variation as a 

function of the process. Special cause variation is variation caused by an event of change. 

Determining what is common and what is special cause variation is key to process design for 

automation.  

Within the clinical centre several sources have been identified; 

• Biological 

• Operator 

• Process 

• Measurement 

• Data Storage and Handling 
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4.5.3  Biological 
 

Autologous therapies are derived from unwell donors and will be dependent on the disease state of 

the individual, and the extent to which the disease affects the quality of the donated cells. 

Allogeneic therapies are derived from comparatively healthy and screened donors and may be 

potentially sources of healthier or higher quality cells.  

Biological variation as a function of the patient and/or donor may be completely uncontrollable. 

Currently, with a one-sided specification based on a minimum dose required, this variation has been 

successfully managed with the current quality criteria and by the practice of medicine. However, for 

mainline cellular therapies, where these quality criteria may be different, this initial biological 

variation may be of greater import. Perhaps the emphasis will be on quality rather than quantity ( 

and what do we measure as an analogue of quality ? ), or perhaps a greater number of cells will be 

required. Whether there are specific protocols that can be followed to increase the number of 

isolated cells, or environmental / dietary changes that can be imposed in the donor to guarantee 

greater quality is unclear. 

A potentially key stage in the introduction of variation, in either quantity or quality, is that of 

mobilisation and conditioning – something identified by the technicians at the clinical centre as the 

largest source of variation. These stages are either actively designed to increase the number of cells 

produced by the body, or as part of a prior medical intervention necessary to treat the patient’s 

indication.  

The amount of mobilisation drug used ( if at all, and there are various drugs used ) is dependent on 

the clinicians discretion as to whether it is required, based upon the number of circulating cells of 

note in the peripheral blood stream. In addition, the number of cells ‘mobilised’ will depend on the 

health of the individual, and will vary between individuals as a function of their own biological 

makeup. This is obviously a key step in determining how many cells and of what quality is available 

at the start of the process. Whether this is something that can be investigated, ethically and 
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financially, is another matter, but what may assist in reducing the variation seen is a common 

framework for when these therapeutics are used, how much, and in what situation. If these are 

applied in a predictable manner it is much easier to determine their effect on overall statistical 

variation. 

In a potential fully automated system, this input is one of the key stages outside the GMP-in-a-box 

ideal situation, and must be treated with care. It will determine the volume of liquid, volume of cells 

and quality of cells a potential machine may have to be designed to deal with – especially as it is 

unethical to discard a sick patient’s cells based purely on volume constraints, particularly where 

multiple applications and/or products may be required. This assumes a machine will not be designed 

for a given and fixed volume or number of cells, but be able to flexibly handle various incoming 

volumes and/or cells, as reflected in the case for starting materials at the CMCF. 

4.5.4  Operator 
 

Currently cellular therapies are produced manually, heavily reliant on the skill, experience and 

intuition of the individual operator in question. This may be currently sufficient to meet low scale 

demand for therapies, but greater demand will require either an increase in operators or an 

improved process. Clinicians are also operators in this process. 

One of the challenges with passing on operator knowledge is the prevalence of intuition and 

interpretation of SOPs. This can make training fresh staff, or teaching existing staff new techniques 

difficult. A potential solution is the use of in-situ technology ( tablet devices for example ) that allow 

the operator to ‘tick’ off steps in the process, that simultaneously inform the laboratory manager 

and the clinician ( potentially allowing for a product ETA ). This may assist further training by 

allowing a visual learning tool for processes, which would allow greater visualisation and 

understanding of the process. 
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There are two types of operator, skilled and less skilled. These give rise to their own unique quirks to 

applying protocols. Unless specifically instructed and monitored, a skilled operator with knowledge 

of the process may interpret the protocol in a manner they see as ‘better’ – in the face of what has 

been agreed on an investigational new drug license ( IND ) for example. An unskilled operator 

however may skip, or rush steps in the protocol as they do not understand the import of that step. 

Perhaps an annotated informal SOP or process diagram that walks the user through the stages, 

illustrating the reasons why, with links to supporting research would assist in this interpretation, 

assuming they would read them. These are not currently available at DFCI. 

A further, third point of note is the attention span and concentration of the operator, regardless of 

skill. Fatigue will affect quality of work, and cleanroom environments are not comfortable working 

environments for long shift work. Furthermore the user must be mindful of the psychological effect 

of chronology – a protocol followed during the last hour of a shift will not be as rigidly followed, and 

may be rushed ( ‘Friday feeling’ ) compared to midday process. When the quality and efficacy of the 

product is so heavily reliant on the work ethic and diligence of a human operator it is in the best 

interests of the institute to minimise fatigue and boredom, and from this perspective mechanisation 

and automation have advantages. 

4.5.5  Process 
 

What isn’t known is the extent to which the manual culture influences the overall variation. To meet 

regulatory requirements, not to mention acceptable comparability, processes need to result in a 

product that falls within a given specification. This will change between products, because many of 

these regenerative medicines are highly customised to the patient, but the process must still be 

capable of reliably meeting a given specification on demand.  

To provide further clarity of detail of the causes of variation, more than the few hundred data points 

indicated here are required. This is because there needs to be statistically significant data-points in 
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each subset to determine causality – for example disease state, both type and severity ( for 

autologous ), donor characteristics that are indicative of health, process methodology, metrics of the 

initial starting material and to identify the technician responsible for each process. The latter is not 

to ostracise them, but to identify whether the variation as a function of the operator is not a key 

contributing factor. 

Cryopreservation and the subsequent thawing process are another example of processes that will 

occur outside of the processing stages and are potentially large sources of variation, both in quality 

and volume. This is simply because the current methods of freezing and thawing kills cells. 

Particularly as thawing methods are relatively uncontrolled, using water baths, and ‘crunching’ up 

frozen samples to ease the thawing process. There are a number of equipment providers offering 

more controlled thawing processes, but these are expensive and proprietary solutions to simple 

challenges – the main challenge from the authors perspective is ensuring whatever the potential 

solution, it cannot compromise the product, and does not require a whole rethink of the process, as 

this will not be feasible, affordable or adoptable. 

4.5.6  Measurement 
 

Flow cytometry is currently the cellular measurement instrument of choice allowing measurement 

of cells numbers of a specific type by counting fluorescent molecules attached to characteristic cell 

surface markers. However this is not entirely automated, and one key stage ( ‘gating’ ) is entirely at 

the discretion of the operator. This stage essentially requires said operator to select and box subsets 

of cells on screen, and can vary depending on the operator. Given the number of cells that may or 

may not be included by moving the box a few pixels to the left or right on the screen, or the difficulty 

in gating certain types of cells, or our confidence in the measuring system, this begs some poignant 

questions as to the reliability of our measurements, and by extension the extent of variation.  

This is clearly a key area of research and improvement for the field, in terms of comparability of 

equipment, repeatability of results given a fixed standard regardless of operator and whether they 
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provide the level of precision and confidence we require. Measurement is the keystone for accessing 

and improving biological variation. 

4.5.7  Data Storage and Handling 
 

Patient and process records are stored in various disparate databases, in different formats, that can 

be difficult to cross-reference. The format and standards of paperwork is known to differ between 

clinical centres, making comparison and large scale data mining difficult.  

One way to provide confidence to the regulator of the efficacy and safety of stem cell therapy is to 

develop and enforce a common reporting platform for patient and process records within cellular 

therapy that can be shared within the medical community. Not only will this provide historical 

evidence to back up the establishment of regenerative medicines, but potentially allow for 

diagnostic and prognostic tools to be developed. These tools could predict the effectiveness of these 

therapies for a given patient, and indicate where established alternatives may be more efficacious 

(especially given the estimated costs of cellular therapies).
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Chapter 5 UK Biobank 

5. 1 Chapter Aims 

This chapter aims to quantify the variation encountered in a general, ambulatory sub-population 

of the UK, represented by the participants of the UK Biobank. 

Figure 5.0 is a representation of a generic HSCT process map. This chapter specifically examines 

the factors affecting the contribution of patient and/or donor variation, as indicated on this 

figure in the coloured box. 

The following topics will be discussed: 

  

Chapter Aims and Introduction to UK Biobank 5.1 and 5.2 

Materials and Methods 5.3 
Analysis of Results 5.4 

Conclusion and  Discussion 5.5 

Future work with the UK Biobank 5.6 

Summary 5.7 
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Figure 5.0: Generic Process Map indicating in orange the focus of this Chapter 
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5.2 Introduction to UK Biobank 

UK Biobank is a unique health resource and a charity, established with the aim of improving the 

prevention, diagnosis and treatment of a wide range of serious and life-threatening illnesses. It 

consists of a databank and a biological sample bank from over 500,000 recruited individuals, 

between the ages of 40 and 69, with donors sampled between 2006 and 2010. This Biobank is 

intended to be a resource for investigating potential causes of disease development. 

The large sample size allows for statistically significant investigation of possible influencing 

factors, such as ethnicity or diet, that may prove to be risk factor when it comes to particular 

diseases and conditions. 

5.2.1  Analysis of Variation: Biobank 

The literature meta-analysis ( Chapter 3 ) demonstrated the distribution of biological variation 

across a notionally unhealthy baseline represented by the medical literature and across multiple 

centres and countries. The CMCF data ( Chapter 4 ) has demonstrated the distribution of 

biological variation in a localised unwell population at a single centre. The aim of the analysis of 

the UK Biobank is to illustrate the variation inherent of a specific healthy sub-population of one 

country, with significant numerical power. 

UK Biobank presents the opportunity to investigate further into specific patient and donor 

metrics that were previously unavailable, such as medical history, lifestyle specifics such as 

smoking and consistent physical measurement such as weight.
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5.3 Materials and Methods 

The UK Biobank project collected biological samples and questionnaire data from volunteers in 

22 centres around the UK. The qualitative data and the biological samples were then transferred 

to a central processing and storage facility in Manchester. 

Biological samples included urine and blood. Pre-prepared vials containing the appropriate 

amount of additives such as preservatives were used to extract peripheral blood using a 

hypodermic attachment. These containers were labelled, barcoded and sent to the central 

processing laboratory in temperature controlled shipping conditions. These were then centrally 

analysed using flow cytometry and added to the primary database. Together with the recorded 

physical and questionnaire results, this presents a robust platform for medical analysis and 

cross-comparison. This data is held by the UK Biobank and researchers can apply to investigate 

specific research questions, on the basis that they will publish the results and pay a small 

processing fee. 

The application for this chapter focused specifically on the physical measurements of the donor, 

the questionnaire results – particularly those focused on diet and health – and the results of the 

whole blood test carried out on corresponding sample. 

Figures 5.1 – 5.4 represent those specific measurements from the UK Biobank database required 

by this Chapter’s application.  

These results were chosen based on the experiences with the medical literature and subsequent 

meta-analysis, and the clinical process records at the CMCF. These results included previous 

medication ( Figure 5.1 ) physical metrics such as diet, weight and age ( Figure 5.2 ), sleep 

duration, ECG and pulse rates ( Figure 5.3  ). 

Unfortunately, UK Biobank does not currently directly measure cell markers that specifically 

identify stem cells such as the HSCs measured in the previous chapters. CD34+ cell counts would 
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have been appropriate to directly compare the relatively healthy population of the UK Biobank 

to the relatively unwell population at the Dana Farber Cancer Institute. UK Biobank does 

however record red blood cell counts, white blood cell counts and the specific subsets of white 

blood cells such as leukocytes and monocytes ( Figure 5.4 ). As the CMCF also recorded these 

subsets, a comparison between the two centres could be made. Biological variation is explored 

and measured in this Chapter as a function of white blood cells rather than haematopoietic stem 

cells. 

The CMCF recorded WBC count as “x103 cells / µl” and UK Biobank recorded WBC count as “x109 

cells / L” so these were converted into “cells / litre” to allow for more robust and universal 

comparison between each other.  

Access to this resource, which consisted of an online database that needed to be downloaded 

and un-encrypted ( using a proprietary MS-DOS based software suite and an encryption key ), 

was granted in 2014. The comma-separated variation output was then imported into IBM’s SPSS 

22.0 statistics package. This software was chosen due to the authors previous experience with 

the software, and Microsoft Excel’s inability to deal with large datasets. Nominal data fields, 

such as gender, were originally coded as numerical identities ( 1 = male, 2 = female ).  

During December 2014, UK Biobank undertook a detailed review of their haematology data to 

investigate potential anomalies highlighted by researchers. This meant that this data could not 

be responsibly analysed until 2016. A preliminary analysis was carried out at risk to ensure the 

results of the UK Biobank chapter remained relevant and informed with respect to the other 

developing Chapters, as well as suitable methodology applied, but the subsequent results were 

treated with caution. 

As a result, it was advised that further research that incorporated these results be postponed 

until the issues were resolved. Upon release, this new 2016 haematology data was combined 

with the older 2014 data containing participant characteristics and measurements. 
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The application to the UK Biobank consisted of two types of metrics that were requested; 

participant metrics and blood composition metrics; 

• Participant Metrics. These measurements were either physical, or as part of the questionnaire, 

and were requested to determine whether these had any effect on the variation measured in the 

corresponding blood measurements.  

• Blood Composition Metrics: These are characteristics specifically of the tested donor’s blood 

content including white and red blood cell counts. These are the measurands being directly 

examined to quantify variation and may be affected by the physical and lifestyle metrics of the 

previous category 
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5.3.1  UK Biobank Application - Requested Measurands 
Access to the information within UK Biobank is granted as part of a detailed application process 

including experimental design and required variables. The following section justifies the choice 

of variables. ( see Figure 5.1 - 5.4 ) 

Pregnancy and menopause were included in this analysis because of the biological changes that 

come as a result of these two life phases, and whether the advent of these phases has an effect 

on the variation encountered as a result – this may have implications for future cellular therapy, 

such as using female donors over, or under, a certain age for allogeneic therapy. 

Assessment centre, and attending date were included to examine the effect of geographical 

location on the variation and spread of biological data; is there more biological variation on the 

coast? If certain conditions are indicative of more or less variation or cell quality, are there 

greater or lesser incidences of those conditions depending on location? What effect does living 

in a rural area have, if any? More likely, these assessment centres represent sub-sets of the 

population, with particular ethnic and genetic makeups – much like the reasoning behind setting 

up blood donation centres in specific locations to capture more of a specific, rarer blood group 

or type. 

Job code, and the other similar metrics shown in the top right corner of Figure 5.1, were 

included with the intention of determining whether sedentary jobs such as office work affect cell 

characteristics differently to more manual or active jobs. 

Medication, treatment, operation code and the other metrics in the bottom right corner of 

Figure 5.1 were included because of previous experience in the previous Chapters as to the 

effect of the mobilisation and conditioning regime. These are likely to be the most influential 

factors for amount and quality of cells, and were therefore included to examine their 

subsequent effect, if any, on biological variation. This is important because patients are likely to 

have had previous medical intervention, are currently on a pharmaceutical programme, or being 
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given treatment for a comorbidity or parallel indication, and therefore the effect of these states 

must be investigated as they are the likely state of health of the recipients of stem cell therapy. 

Diet, included tea intake, alcohol and tobacco intake ( Figure 5.3 ) were included for similar 

reasons as the previous metrics, as they contain chemical agents that affect body chemistry, 

metabolism and health, and may have a bearing on the quality of stem cells. They were included 

here to determine whether they have an adverse effect on biological variation. 

Ethnic background was included as an analogue for the grouping due to genetics. However, 

there is a difference between ethnicity and race – the difference between political statement 

and genetic composition, where the latter is the more vital component for biological variation. 

BMI and weight are fundamental physical measurements. Further physical measurements such 

as body fat and impedance were included as further, more detailed physical measurements. 

Pulse rate and blood pressure were included, alongside overall health rating, as direct physical 

measurements of a person’s relative health. Further health metrics such as fitness test duration 

and ECG were also included for this reason ( Figure 5.3 ). 

All available blood measurands were requested including cell counts, cell percentages and cell 

volumes amongst others. As there were no direct comparisons with Chapter 2, 3 and 4 metrics ( 

TNC and CD34+ ) these were all included as Dana Farber included these cell counts and 

percentages and would provide a direct comparison of where the ‘unwell’ population 

corresponds to the ‘healthy’ population, in respect to data spread and variation. 
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5.3.2  Statistical Analysis of UK Biobank Data 
Unless stated otherwise, white blood cell count is measured as cells per litre. Absolute cell 

numbers and cells per kilogram were unavailable in the UK Biobank database. 

Graphical representations including biological measurements such as white blood cells were 

plotted on a logarithmic scale to allow for visual inspection of spread and distribution that would 

otherwise be difficult on a linear scale. 

Pareto charts, typically used to identify the key 20% of a population that delivers 80% of the 

observable effect, were used to describe the certain characteristics of the Biobank dataset – in 

particular health state and ethnicity. These are favoured as they are useful visual tools for 

examining the contents of a dataset, and have been used in previous chapters to positive effect. 

These were created within SPSS 22.0 by using it’s ‘Quality Control’ test entitled ‘Pareto Chart’. 

The spread and distribution of biological measurements such as white blood cells were 

represented graphically as scatter charts and box and whisker charts. Box and whisker plots 

were used to demonstrate the core statistical data and the outliers, the spread of the core data 

versus the extremes, and provide a more accessible format for graphical comparison between 

groups, such as age or weight. However, box and whisker plots do not handle extensive 

statistical outliers well, so scatter diagrams have been included. Scatter charts were used to 

illustrate the spread of biological measurements, and plot the cell count of each individual 

product, representing all the data. 

In the same manner as the CMCF database, distributions of cell metrics from the UK Biobank 

were analysed for normality, including graphical representation as a histogram. These biological 

measurements were also found to be non-normal and consequentially similar non-parametric 

statistical tools to those used in Chapter 4 to compare median and distribution of the data were 

used: Pearson product-moment correlation co-efficient was used to measure linear correlation 
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the Mann-Whitney test for two independent groups ( e.g gender) and the  Kruskal-Wallis test for 

multiple independent groups ( e.g. weight groups ) ( see Section 4.4.2 ). 

5.4 Analysis of Results 
A summary of the contents of the UK Biobank database can be found in Table 5.0. The greater 

resolution of the UK Biobank ( n = 502,664 ) has allowed analysis of participant / patient specific 

characteristics such as lifestyle medical history and other physical metrics ( e.g. weight ) that 

were previously impossible. 

Blood specific measurements such as white blood cell counts were recorded at three time 

intervals: initial testing, repeat testing and imaging. Analysis within this chapter is based upon 

the counts recorded at initial testing, as this time period contains the largest proportion of the 

dataset. 

 

 

  

  Valid N Minimum Maximum Mean Median 
Unique ID  502,664 - - - - 
Gender Male 229,182 - - - - 
 Female 273,467 - - - - 
Birth Year  502,649 1934 1971 1952 1950 
Age  502,649 45 82 64.46 66.00 
Weight ( kg )  499,874 30.0 197.7 78.1 76.4 
BMI  499,543 12.12 74.68 27.43 26.74 

TABLE 5.0: Summary of Participants within UK Biobank 
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5.4.1  Overall Variation as a function of White Blood Cell Count / Litre 

To date, UK Biobank does not measure total nucleated cell count or CD34+ cell count, the 

measures of cell identity used in Chapter 2, Chapter 3 and Chapter 4. However, UK Biobank’s 

haematology data includes a complete blood count, which was also included in the CMCF’s 

database in Chapter 4. Blood cells such as white blood cells are generated from HPCs and are 

morphologically difficult to discern from HPCs, so white blood cell count was used as an 

analogue in this Chapter to examine biological variation in the relatively healthy population of 

UK Biobank. As this count also exists in the CMCF’s database, a comparison can also be made 

between the relatively healthy population of UK Biobank and the relatively sick members of the 

CMCF’s database. 

White blood cells were reported as “x109 cells / litre” and as such, due to a lack of corresponding 

fields, an accurate measure of absolute cells count or cell count per kilogram of patient 

bodyweight (such as those found in previous chapters, or reported in the literature ) was 

unavailable. Appropriate conversions were made within both UK Biobank and CMCF data so that 

white blood cell count was reported in corresponding units ( cells / litre ). 

Two participants of the UK Biobank were recorded as having a white blood cell of zero. 

Disregarding the likelihood of these being errors, it is unlikely an equivalent biological process 

will continue if its starting material has zero functional therapeutic cells, and as a result these 

two participants have been removed from all subsequent analysis. 

Figure 5.5 is a scatter plot of white blood cell count per litre per individual measured, measured 

against unique participant ID to illustrate the spread and distribution of this biological metric. 

There are clear groupings between the regular expected spread, and outliers outside of this 

regular spread. This is reminiscent of Parnaby’s manufacturing process descriptions of ‘regular 

runners’, ‘repeaters and ‘strangers’ [207]. The former two refers to product types the 

manufacturing facility is regularly exposed to and prepared for, whilst the latter represent 
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dramatic changes in process. On Figure 5.5 this is represented by the central band, where the 

majority of the donor characteristics lie – the band of variation that a theoretical processing 

machine, with this starting material as its input, would be required to regularly handle. The 

samples outside of this band represent starting material the machine would not be prepared to 

handle, and could require adaptation or even a different process. 

If this graph represents the biological variation of a potential starting material then it represents 

the variation a particular process or automated system would have to manage or control – 

approximately between 2.4x109 cells / litre and 1.6x1010  cells / litre regularly ( as indicated by 

‘runners and repeaters’ marked on Figure 5.5 ) and between 7.00x107 cells / litre and 3.90x1011 

cells / litre irregularly ( as indicated by ‘strangers and aliens’ variation marked on Figure 5.5) ( 

Table 5.1 ). 

This is a variation of four orders of magnitude around the median ( 6.65x109 cells / litre ), a 

similar degree of variation as to what has been found in prior Chapters, but for total nucleated 

cell count. 

Figure 5.6 compares the white blood cell count distributions of the UK Biobank dataset and the 

previously described CMCF dataset from the Dana Farber Cancer Institute. The CMCF dataset is 

the comparatively ‘unwell’ population, and has a higher average white blood cell count than the 

heathier population from UK Biobank, in terms of mean, median and spread of the data ( Table 

5.1 ). The variance of the CMCF white blood cell count is also much higher, indicating the 

variation in cell count between any given individual is much higher for the unwell, CMCF 

population – this is potentially a result of the extreme state the CMCF patients are in.  
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“Runners and Repeaters” 

“Strangers and Aliens” 

FIGURE 5.5: Scatter plot demonstrating the spread of white blood cells per litre 
measured per individual participant 

Parnaby’s runners, repeaters, strangers and aliens have been indicated 
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 Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

WBC 
Count 478,290 6.89x109 6.65x109 4.00x107 3.90x1011 3.90x1011 2.12x109 4.51x1018 

  

 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

WBC 
Count     282 1.69x1011 1.50x1011 9.91x109 3.77x1011 3.67x1011 8.37x1010 7.01x1021 

TABLE 5.1: Comparison of WBC Count / L overall between UK Biobank and CMCF data. 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 

24,372 entries from UK Biobank containing missing data – no white blood cell reading for example. At least 
1,583 participants of those entries could not be measured for various reasons ( e.g. they declined, 
equipment failure ). 2 entries were removed as the white blood cell count equalled zero, and would 
substantially skew the range of reported variation. This brought the overall total to 478,290 instead of the 
502, 664 shown in Table 5.0. 
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5.4.2  Variation as a function of Participant Age 

UK Biobank had a mandate to recruit a particular demographic - 45 to 69 year olds. As a result, 

the population of UK Biobank is weighted towards a more mature population than the Meta-

analysis (Chapter 3 )  or CMCF ( Chapter 4 ) datasets, which included paediatric patients and 

donors. 

Due to the increase in life expectancy and the subsequent growth of the ageing population, this 

demographic is important, particular as age related diseases and dysfunctions may be a key 

target for regenerative medicine. 

White blood cell count per litre relative to age in years has been plotted in Figure 5.7. Age 

appears to have an insignificant effect on the variation of WBCs, but there is a marked increase 

in the number of extreme values from 60 years old and onwards. This particular spike in 

‘outliers’ and the subsequent increase in the spread of cell counts may be a result of the diverse 

ways in which people age relative to one another. This is especially noticeable in Figure 5.8, 

where age has been grouped into five year intervals, and plotted against WBC count / litre. The 

mean and core values represented by the standard deviation within the box of the box and 

whisker plot remains relatively constant across age groups, but there is a dramatic increase in 

outliers as the patient’s age increases. This may be due to the increase likelihood of the effects 

of ageing, or age-related diseases – which is of particular important with the current ageing 

population being a likely target for future regenerative medicines. 

Table 5.2 represents the white blood cell count corresponding to these age groups, for both the 

UK Biobank data, and for the CMCF data, to allow comparison. The median cell count remains 

relatively comparable, with an increasing range in cell count as the participants age increased – 

this appears to be the case for the CMCF data although there are almost no outliers – which may 

be a product of the much smaller dataset ( Figure 5.9 ). It is noticeable that the significant 

participant numbers in the UK Biobank allow the dataset to settle irrespective of influencing 
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factors, whereas the CMCF is a small enough dataset to be strongly influenced, and this is 

reflected in the box and whisker plot in Figure 5.9. There is significantly less data in the CMCF 

dataset, and the danger is that unlike UK Biobank which has enough data to be a representative 

sample, the small, restricted sample of the CMCF dataset hasn’t settled around the average and 

is much more likely to be skewed by extreme values. 

 

The median values and the distributions between age groups were statistically assessed using an 

independent samples median test and a Kruskal-Wallis test. The median white blood cell count 

and the distribution were significantly different between age groups for UK Biobank ( p < 0.05 ) 

but were not for the CMCF ( p = 0.086 and p = 0.070 ). From visual inspection of Figure 5.9 this 

would appear to be the opposite, but this is likely to be the confounding effect of the multiple 

statistical outliers in the UK Biobank. 

Paediatric patients are noticeably absent here, with none from UK Biobank and only 18 from the 

CMCF. This is also a key demographic target for regenerative medicine, especially gene therapy, 

so further paediatric data would be required for a complete picture – to analyse the effects of 

age within a large dataset like UK Biobank. 

 

 

 

 

 

  

FIGURE  5.7: Scatter plot demonstrating the spread of WBC count per litre measured 
per individual participant, against that participants age in years 

The blue section indicates the dramatic increase in outliers mentioned in the text. 
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FIGURE  5.8: Box and whisker plot demonstrating the spread of WBC count per litre measured per 
individual participant, against that participants age in years ( binned into five year categories ) 
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Current 
Age 

Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

FIGURE  5.9: Stratified box-plot of WBC count per litre into binned age groups ( 5 years ) 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 

Note the more varied spread of data in the CMCF chart, and where there is insufficient 
data for a box plot ( age 6 to 10 for example ). The blue section indicates where the age 
groups of UK Biobank are, within the CMCF age ranges. 
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Patient 
Age 

Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

<0 0 - - - - - - - 
1 – 5 5 7.50x1010 7.10x1010 9.91x109 1.96x1011 1.86x1011 7.30x1010 5.33x1021 

6 – 10 1 6.06x1010 6.06x1010 - - - - - 
11 – 15 3 2.05x1011 1.53x1011 1.42x1011 3.20x1011 1.78x1011 9.98x1010 9.96 

x1021 
16 – 20 4 2.32x1011 2.23x1011 1.43x1011 3.40x1011 1.96x1011 8.09x1010 6.55x1021 
21 – 25 2 1.10x1011 1.10x1011 4.58x1010 1.73x1011 1.27x1011 9.01x1010 8.13x1021 
26 – 30 5 1.22x1011 1.28x1011 9.50x1010 1.34x1011 3.91x1010 1.61x1010 2.61x1020 

31 – 35 3 2.02x1011 1.59x1011 1.48x1010 2.99x1011 1.51x1011 8.41x1010 7.07x1021 
36 – 40 4 1.69x1011 1.53x1011 9.57x1010 2.72x1011 1.77x1011 7.72x1010 5.96x1021 
41 – 45 27 1.58x1011 1.27x1011 2.19x1010 3.73x1011 3.51x1011 9.08x1010 8.25x1021 
46 – 50 11 1.89x1011 1.75x1011 8.26x1010 3.43x1011 2.61x1011 9.09x1010 8.26x1021 
51 – 55 30 1.73x1011 1.67x1011 4.58x1010 2.92x1011 2.48x1011 6.91x1010 4.78x1021 
56 – 60 43 1.88x1011 1.82x1011 7.23x1010 3.71x1011 2.99x1011 8.54x1010 7.29x1021 
61 – 65 64 1.72x1011 1.50x1011 4.08x1010 3.64x1011 3.24x1011 7.90x1010 6.25x1021 
66 – 70 68 1.60x1011 1.26x1011 3.40x1010 3.77x1011 3.42x1011 9.11x1010 8.31x1021 
71 – 75 7 2.04x1011 1.97x1011 7.92x1010 2.68x1011 1.89x1011 7.03x1010 4.94x1021 
76+ 2 1.82x1011 1.82x1011 1.82x1011 1.82x1011 6.80x108 4.81x1010 2.31x1017 

  

<45 2 7.44x109 7.44x109 6.63x109 8.24x109 1.61x109 1.14x109 1.30x1018 
46 – 50 26,942 6.89x109 6.67x109 9.00x107 1.93x1010 1.92x1010 1.83x109 3.35x1018 
51 – 55 59,631 6.88x109 6.65x109 1.90x108 8.87x1010 8.85x1010 1.88x109 3.53x1018 
56 – 60 68,698 6.83x109 6.60x109 1.00x109 3.90x1011 3.89x1010 2.48x109 6.13x1018 
61 – 65 80,089 6.78x109 6.55x109 8.00x107 1.28x1011 1.27x1011 1.98x109 3.91x1018 
66 – 70 111,857 6.85x109 6.60x109 1.30x108 1.13x1011 1.13x1011 2.02x109 4.09x1018 
71 – 75 98,530 7.00x109 6.77x109 4.00x107 1.90x1011 1.89x1011 2.30x109 5.29x1018 
76 – 80 32,525 7.04x109 6.80x109 9.80x108 1.04x1011 1.02x1011 2.06x109 4.24x1018 
81+ 1 8.00x109 8.00x109 8.00x109 8.00x109 0 - - 

TABLE 5.2: WBC per litre for UK Biobank participants stratified into binned age groups of 5 years 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 
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5.4.3  Variation as a function of Participant Gender 

UK Biobank contains 229,182 male participants and 273,467 female participants ( as of April 

2016). 

The range of white blood cell counts for male participants is between 8.00x107 to 1.90x1011 cells 

per litre, and for male participants is between 4.00x107 and 3.90x1011 cells per litre. 

White blood cell count per litre relative to gender has been plotted in Figure 5.10. White blood 

cell count per litre relative to gender, for both UK Biobank and CMCF datasets has been plotted 

in Figure 5.11. 

The median WBC per litre is higher for male participants than female patients, for both UKB and 

CMCF ( Table 5.3 ). However, this may be due to the male population of UKB having a larger 

average weight than the female population ( 84.3 kg for men and 69.1 kg for women ) and 

therefore a greater number of white blood cells per person on average. 

There is an increased range ( and therefore overall variation from a manufacturing perspective 

as a raw material ) for female participants over male participants, although by visual inspection 

of the box and whisker plot this may be due to a small number of extreme cases. In fact, when a 

random smaller sample of the UKB population was taken ( 20% ) the mean and median was the 

same, but the range, standard deviation and variance was higher for male participants. This 

demonstrates how sensitive these tests are to the extreme values / outliers and how dependent 

the spread of the data becomes due to these ‘outliers’. As a result it becomes difficult to 

compare extreme ranges between UKB and the CMCF as anything other than a complete 

dataset. It also identifies that a complete picture of the variation at the CMCF may be difficult to 

obtain with such a small sample of the population ( as taking a sample of UKB gives a completely 

different perspective on the variation, due to the dependent nature on these random, individual 

cases at the extremes ). For either the whole population or the 20% randomized sample 



234 | P a g e  
 

however, both the median and the distributions are significantly different between genders ( p < 

0.05 ) indicating that genders are distinct subpopulations with respect of white blood cells, and 

that variation may be different between the two. For the whole population of UKB, the variance 

between participants is higher for female participants – meaning the product to product 

variation in terms of cell number will be higher – but the range of male participant’s white blood 

cell counts are higher – meaning the process will have to accommodate a wider spread of white 

blood cell counts for male sourced starting material over female sourced material. If a similar 

result is found for HSCs and other stem cells this indicates that the gender of the donor will have 

significant effects on manufacturing process design. 

  

FIGURE  5.10: Box and Whisker plot of UK Biobank white blood cell count per 
litre per individual against their respective gender. 
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FIGURE 5.11: Stratified box-plot of WBC Count / L into gender 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 
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 Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Male 219,317 6.92x109 6.69x109 8.00x107 1.90x1011 1.89x1011 2.19x109 4.81x1018 

Female 258,958 6.86x109 6.62x109 4.00x107 3.90x1011 3.90x1011 2.06x109 4.25x1018 

 Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Male 144 1.93x1011 1.83x1011 2.19x1010 3.76x1011 3.54x1011 8.59x1010 7.38x1021 

Female 134 1.43x1011 1.27x1011 9.91x109 3.77x1011 3.67x1011 7.42x1010 5.50x1021 

 

TABLE 5.3: WBC per litre for UK Biobank participants stratified into gender 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 

As before, the difference between the number of male and female participants of UK Biobank 
shown here and those shown in Table 5.0 are missing data points where participants have not 
given a white blood cell count, or one has not been recorded. So although 229,182 male and 
273,467 female participants were recruited, white blood cell count was only recorded for 219,317 
male and 258,958 female donors. 
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5.4.4  Variation as a function of Participant Weight 
 

Weight is a key physical metric for determining biological measurements such as blood. As a 

participant’s physical mass increases, so will the volume of blood required to supply the body 

with nutrients. Whether the circulatory system of a given participant can cope with this volume 

of blood and physical mass is another matter ( obesity and physical fitness ). Weight is a 

commonly used metric in medicine, used to determine pharmaceutical dose for example. 

The average weight of a given participant in the UK Biobank is 78.1 kg ( mean ) and 76.4 kg ( 

median ) ( n = 499,874 ) ( Table 5.4 ). 

Table 5.5 shows the white blood cell count for binned weight categories, for both UKB and CMCF 

datasets. Figure 5.12 is a box and whisker plot of white blood cell count / litre against 

corresponding weight, where weight has been categorised into 10 kilogram bins. Figure 5.13 is a 

box and whisker plot of white blood cell count / litre against weight for both UKB and CMCF 

datasets. The blue section identifies comparable weights, and that the CMCF contains paediatric 

or very low weight patients that UK Biobank doesn’t. 

Differences between weight categories was determined by independent samples median test 

and independent sample Kruskal-Wallis test. In both the overall population and a representative, 

randomly chosen sample of the population ( 20% ) these groups are significantly different in 

terms of both median white blood cell count and distribution of cell counts ( p < 0.05 for both ). 

This is unsurprising as the median cell count increases with participant weight. 

This is also the case for CMCF data ( p < 0.05 for both median and distribution ). 

The spread of the data does not appear to be correlated to weight. Variation and spread in the 

data tends to tail off towards the heavier weights; this is likely because of the variety of body 

types that can be encapsulated within lighter weights ( shorter and heavier versus taller and 

thinner for example ) compared to the heavier weights which are likely to be more limiting in 
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body shape ( and therefore variation in the amount of blood required to supply ) ( Figure 5.12 

and Figure 5.13). 

This effect may well be dependent on the significant clustering around the median value, where 

most the data occurs, and further work may benefit from a full spectrum of weight categories 

with an equal and representative number of cases. 

Figure 5.12 is particular is interesting for a variation and outliers perspective, as the median 

white blood cell count appears to increase with patient size, and the interquartile ranges appear 

to be comparable between weight categories, but the outliers and the far outliers ( the circles 

and crosses) have considerable impact on the expected spread of white blood cell counts for a 

given starting material for each category. 

For a given weight category, such as the modal category 70.1 kg to 80.0 kg, the number of 

‘outliers’ can be calculated. For data points to be considered outliers in the box and whisker plot, 

they need to be outside of 1.5 times the interquartile range ( the width of the ‘box’ ) above the 

25th quartile or the 75th quartile ( the brackets of the box and whisker plot ). As a result, for the 

70.1 kg to 80.0 kg category there are 1,257 outliers, which account for 1.05% of the total 

category. Without these outliers the range of cell count within this category is between 2.29x109 

cells / litre and 1.12x1010 cells / litre ( as opposed to 4.00x107 cells / litre to 1.07x1011 cells / litre 

including these outliers ). If it could be identified whether there are factors that contribute to 

these ‘outliers’ or whether they are part of the naturally occurring biological variation is an 

important result as it would determine whether a manufacturing process can work within the 

boundaries of a box and whisker plot, or whether these outliers must be considered. These 

outliers are a small proportion of the overall population and cannot be easily discounted ( these 

are 1,257 people ) but they have a strong influence on the extreme values of the data which is 

the specific focus of this research. 
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FIGURE  5.12: Box and Whisker plot of calculated WBC count per litre per individual plotted 
against their respective weight in kilograms ( binned into 10kg intervals ) 
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 Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Weight  
( kg ) 

499,874 78.1 76.4 30.0 197.7 167.7 15.9 254.3 

TABLE 5.4: Summary of Participant Weight ( kg ) 
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FIGURE 5.13: Stratified box-plot of WBC Count / L into binned weight groups ( 10 kg ) 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 

The blue section indicates the corresponding UK biobank weight range. 
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Weight 
( kg ) 

Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

<30 1 7.03x109 7.03x109 7.03x109 7.03x109 0 - - 
30.1 – 40.0 111 6.50x109 6.28x109 2.86x109 1.23x1010 9.46x109 1.90x109 3.62x1018 

40.1 – 50.0 5,461 6.71x109 6.42x109 1.59x109 2.52x1010 2.36x1010 1.94x109 3.77x1018 
50.1 – 60.0 48,773 6.64x109 6.40x109 8.00x108 1.25x1011 1.14x1011 2.05x109 4.21x1018 
60.1 – 70.0 106,876 6.72x109 6.49x109 9.00x107 3.90x1011 3.90x1011 2.42x109 5.84x1018 
70.1 – 80.0 119,627 6.82x109 6.60x109 4.00x107 1.07x1011 1.07x1011 1.98x109 3.93x1018 
80.1 – 90.0 97,825 6.94x109 6.70x109 6.40x108 1.81x1011 1.81x1011 2.04x109 4.15x1018 
90.1 – 100.0 55,698 7.08x109 6.87x109 7.00x107 1.46x1011 1.46x1011 2.06x109 4.23x1018 
100.1 – 110.0 25,480 7.27x109 7.06x109 1.90x108 8.08x1010 8.06x1010 1.97x109 3.89x1018 
110.1 – 120.0 10,166 7.50x109 7.30x109 9.80x108 4.06x1010 3.97x1010 1.96x109 3.82x1018 
120.1 – 130.0 4,018 7.69x109 7.50x109 2.20x109 2.25x1010 2.03x1010 1.91x109 3.63x1018 
130.1 – 140.0 1,538 7.93x109 7.71x109 3.10x109 1.97x1010 1.66x1010 1.97x109 3.89x1018 
140.1 – 150.0 658 7.98x109 7.90x109 2.80x109 1.67x1010 1.39x1010 1.82x109 3.32x1018 
150.1 – 160.0 253 8.23x109 8.01x109 2.30x109 1.43x1010 1.20x1010 1.89x109 3.56x1018 
160.1 – 170.0 113 7.91x109 7.61x109 4.28x109 2.07x1010 1.64x1010 2.47x109 6.12x1018 
170.1 – 180.0 58 8.31x109 8.33x109 4.20x109 1.85x1010 1.43x1010 2.29x109 5.23x1018 
180.1 – 190.0 13 8.34x109 8.51x109 6.40x109 1.19x1010 5.50x109 1.66x109 2.76x1018 
190.1+ 7 9.03x109 8.10x109 5.20x109 1.26x1010 7.30x109 2.86x109 8.16x1018 

 

 

Weight  
( kg ) 

Valid 
N 

Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

<0 0 - - - - - - - 
.01 – 10.00 2 1.83x1010 1.83x1010 9.91x109 2.67x1010 1.68x1010 1.19x1010 1.41x1020 

10.01  -20.00 2 7.10x1010 7.10x1010 7.10x1010 7.10x1010 - - - 
20.01 – 30.00 2 1.28x1011 1.28x1011 6.06x1010 1.96x1011 1.36x1011 9.61x1010 9.23x1021 

30.01 – 40.00 0 - - - - - - - 
40.01 – 50.00 2 9.30x1010 9.30x1010 7.60x1010 1.10x1011 3.41x1010 2.41x1010 5.82x1020 

50.01 – 60.00 48 1.27x1011 1.17x1011 4.46x1010 3.77x1011 3.32x1011 6.20x1010 3.84x1021 

60.01 – 70.00 26 1.47x1011 1.39x1011 3.53x1010 2.92x1011 2.57x1011 6.67x1010 4.45x1021 
70.01 – 80.00 59 1.62x1011 1.48x1011 6.30x1010 3.43x1011 2.80x1011 7.21x1010 5.19x1021 
80.01 – 90.00 41 2.35x1011 2.48x1011 8.73x1010 3.76x1011 2.89x1011 8.70x1010 7.57x1021 
90.01 – 100.00 36 1.85x1011 1.77x1011 7.88x1010 3.70x1011 2.91x1011 7.95x1010 6.32x1021 
100.01 – 110.00 20 1.56x1011 1.41x1011 4.58x1010 2.68x1011 2.22x1011 6.82x1010 4.65x1021 
110.01 – 120.00 24 1.99x1011 1.76x1011 3.40x1010 3.64x1011 3.30x1011 1.03x1011 1.06x1022 

120.01 – 130.00 4 1.49x1011 1.56x1011 1.03x1011 1.92x1011 7.85x1010 3.33x1010 1.11x1021 
130.01 – 140.00 7 2.45x1011 2.69x1011 1.92x1011 2.96x1011 1.04x1011 4.62x1010 2.13x1021 
140.01 – 150.00 6 9.27x1010 7.83x1010 2.19x1010 1.94x1011 1.72x1011 6.53x1010 4.27x1021 
150.01+ 3 2.09x1011 2.23x1011 1.82x1011 2.23x1011 4.13x1010 2.38x1010 5.68x1020 

TABLE 5.5: WBC / L for UK Biobank participants stratified into binned weight groups of 10 kg 

UK Biobank data: Top, blue 

CMCF data: Bottom, orange 
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5.4.5  Variation as a function of Geography ( Assessment Centre ) 

Figure 5.14 is a map of the United Kingdom, indicating the locations of the assessment centres 

used in the UK Biobank study, with the central processing facility in Manchester highlighted in 

blue. 

Assessment centre and attending date were included in the original proposal to examine 

whether biological variation as a function of white blood cells was affected by the geographical 

location of different subpopulations ( Table 5.6 ) – are coastal towns less variable than industrial 

cities for example. These different sub-populations are likely to contain localised ratios of 

particular social class or ethnic groups – which is one of the reasons why blood banks are set up 

in particular areas of the UK. 

Figure 5.15 is a box and whisker plot illustrating the spread of white blood cells per litre 

between separate locations categorised by assessment centre. According to independent 

samples median test ( H ( 20 ) = 1,893.425, p < .05 ) and independent samples Kruskal-Wallis test 

( H ( 20 ) = 2,702.357, p < .05 ), the median cell count and distributions of cell counts are 

significantly different between centres, so it is reasonable to assume there is a geographically 

based reason for this difference. 

It stands to reason that there is a cause for these differences in median or spread of cell counts 

as a function of geographical location. This could be local environmental conditions such as 

quality of life or air or water quality – although air quality is unlikely to vary enough between 

cities in the UK to influence white blood cell count as it might if you compared the effect of air 

quality in London versus Beijing when compared. 

An alternative reason could be procedural differences at the collection centres, or the transit 

time and methodology – although UKB has put considerable effort into ensuring the equivalency 

of process and protocols between centres, and analyses samples in a centralised location. 
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Comparing the variation between geographical centres ( Figure 5.15 ) allows for further 

illustration of the compounding effect of patients with ‘extreme’ cell counts. Taking the most 

populated category ( Leeds, n = 44,215 ) as an example, and by counting those values that 

exceed 1.5 times the interquartile range outside of the 25th and 75th quartile, 5.5% ( 2,330 ) of 

this sub-population could be identified as outliers. Without these outliers the range of cell 

counts within the Leeds catchment area would be between 3.45x109 cells / litre and 9.90x109 

cells / litre but including these outliers ( but excluding the one zero value ) the range of cell 

counts is between 8.00x108 cells / litre and 8.68x1010 cells / litre. The question remains whether 

these ‘outliers’ are part of the natural background variation, the common cause variation, or 

whether these ‘outliers’ are as a result of a particular influence or factor ( special cause variation 

) and in which case, this factor or factors will need to be identified. Understanding these outliers 

will be critical for understanding the behaviour of the starting material and the process. 



245 | P a g e  
 

  

FIGURE  5.14: Geographical Locations of the UK Biobank assessment centres 
( red ) with the central processing facility in Manchester highlighted in blue. 

( Image courtesy of Google Maps under Fair Use Policy ) 
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  Count 

UK Biobank Assessment Centre Stockport ( Pilot ) 3,798 

 Manchester 13,941 
 Oxford 14,063 
 Cardiff 17,884 
 Glasgow 18,653 
 Edinburgh 17,202 
 Stoke 19,440 
 Reading 29,422 
 Bury 28,321 
 Newcastle 37,009 
 Leeds 44,215 
 Bristol 43,017 
 Barts 12,584 
 Nottingham 33,883 
 Sheffield 30,397 
 Liverpool 32,825 
 Middlesborough 21,289 
 Houndslow 28,880 
 Croydon 27,388 
 Birmingham 25,506 
 Swansea 2,283 
 Wrexham 649 
 Cheadle ( Revisit ) 0 

TABLE 5.6: Participants per UK Biobank Assessment Centres  
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FIGURE  5.15: Box and Whisker plot of WBC count per litre per individual, against the 
location of the assessment centre they attended 
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5.4.6  Variation as a function of Female Specific Measurands 

Menopause can be defined by a decrease in hormone production that results in the cessation of 

menstrual periods and being unable to conceive children. Considering the change in body 

chemistry, particularly hormones, it is reasonable to explore the effects of this change on white 

blood cell counts and any subsequent variation between those who have passed the climacteric 

and those who have not ( Table 5.7 ). 

Table 5.8 compares the white blood cell counts per litre for each participant against whether or 

not this change has happened – for over 60% of the female population in this sample this has 

happened. 

Figure 5.16 is a box and whisker plot of white blood cell count per litre for each participant 

grouped into the categories in Table 5.7: yes, no, not sure ( hysterectomy ), not sure ( other ) 

and prefer not to answer. An independent-samples median test and an independent samples 

Kruskal-Wallis test determined that these groups are significantly different from one another 

with respect to median WBC / L ( H(4) = 865.633, p < .05 ) and WBC distribution ( H(4) = 

1,225.230, p < .05 ).  

Median and mean white blood cell count per litre is higher in those participants who have not 

passed the climacteric, but the variance between cell counts appears to be higher for those who 

have. These differences are perhaps not dramatic enough to warrant donor / patient 

stratification according to menopause status. 

Another potential variable is pregnancy: again, a female specific measurand but has the 

potential to influence cell numbers and quality ( Table 5.9 ). 

Table 5.10 compares the white blood cell counts per litre for each participant, against whether 

they are pregnant or not ( or not sure ). An extremely small proportion of the population were 

pregnant at the time of assessment ( 0.05%, n = 150 ). 
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An independent-samples median test and an independent samples Kruskal-Wallis test 

determined that these groups are significantly different from one another with respect to 

median WBC / L ( H(2) = 62.261, p < .05 ) and WBC distribution ( H(2) = 124.762, p < .05 ). 

Pairwise comparisons were performed using Dunn's (1964) procedure with a Bonferroni 

correction for multiple comparisons. Adjusted p-values are presented. This post hoc analysis 

revealed statistically significant differences in white blood cell count per litre between all groups 

except no / unsure ( p = 0.615 ) when comparing median cell count. All other comparisons 

between groups were statistically significantly different ( p < 0.05 ). Given this limited data pool, 

it appears that this state change has an effect on both the median ( 8.70x109 cells / litre for 

pregnant and 6.62x109 cells / litre for not pregnant ) and the distribution of white blood cells. 

The variance appears to be similar, but with a much larger range of cell counts for participants 

who were not pregnant ( 3.90x1011  cells / litre ) compared to those who were ( 9.78x109 cells / 

litre ). 

The range of white blood cells per litre is between 4.00x107 cells / L and 3.90x1011 cells / litre for 

participants who are not pregnant and between 4.52x109 cells / L and 1.43x1010 cells / litre for 

pregnant participants. Without outliers ( 14 for pregnant, 14,088 for non-pregnant ) this is 

reduced to 5.32x109 cells / litre to 1.23x1010 cells / litre for non-pregnant and 3.38x109 cells / 

litre to 1.00x1010 cells / litre for pregnant participants. 
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  Count 

Menopause Yes 165,441 
 No 64,097 
 Not sure – had a hysterectomy 31,187 
 Not sure – other 11,734 
 Prefer not to answer 539 

TABLE 5.7: Menopause Status 
 

 
Menopause Valid N Mean Median Minimum Maximum Range Standard 

Deviation 
Variance 

Prefer not to 
answer 

485 7.28x109 7.00x109 2.95x109 2.22x1010 1.93x1010 2.19x109 4.80x1018 

No 60,605 7.02x109 6.80x109 9.00x107 2.54x1010 2.53x1010 1.83x109 3.35x1018 
Yes 156,926 6.76x109 6.53x109 0 1.39x1011 1.39x1011 1.96x109 3.84x1018 
Not sure – 
had a 
hysterectomy 

29,587 6.98x109 6.76x109 1.08x109 4.66x1010 4.55x1010 1.86x109 3.46x1018 

Not sure - 
other 

11,074 6.95x109 6.68x109 1.30x109 3.90x1011 3.88x1011 4.10x109 1.68x1018 

TABLE 5.8: White Blood Cell Count against Menopause Status 
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FIGURE  5.16: Box and whisker plot comparing whether female participants have 
had menopause with the white blood cell count per litre pre individual 



252 | P a g e  
 

 

 

 

 

 

 

 

 

Pregnant Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

No 258,261 6.85x109 6.62x109 4.00x107 3.90x1011 3.90x1011 2.06x109 4.25x1018 

Yes 137 8.78x109 8.70x109 4.52x109 1.43x1010 9.78x109 2.09x109 4.36x1018 

Unsure 208 7.20x109 7.00x109 3.40x109 1.57x1010 1.23x1010 1.99x109 3.98x1018 

TABLE 5.10: White Blood Cell Count compared against Pregnancy 
 

  

  Count 
Pregnant Yes 150 
 No 272,259 
 Unsure 222 

TABLE 5.9: Distribution of participants who were pregnant 
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5.4.7  Variation as a function of Smoking 

Smoking is known to decrease the level of circulating CD34+ progenitor cells in young women 

[208], an increased risk factor for haematopoietic stem cell transplantation [209] and a 

reduction in overall survival rate in allogeneic stem cell transplantation, to name a few, 

therefore whether or not the patient and/or donor smokes is a key factor in the quality and 

quantity of stem cells provided, and whether or not they have the desired clinical result. The 

problem is measuring cell count is not indicative of cell quality, which is a likely result of 

smoking.  

226,096 participants of the UK Biobank either currently smoke or have previously smoked, 

compared to 273,616 participants who have never smoked ( Table 5.11  ). 

Table 5.12 illustrates the statistics surrounding white blood cell count per litre against smokers 

and non-smokers. An independent sample median test ( H( 3 ) = 13,382.399, p < 0.05 ) and an 

independent sample Kruskal-Wallis test  ( H( 3 ) = 21,599.988, p < 0.05 ) have shown that the 

median and distribution of these groups are significantly different from one another. Pairwise 

comparison showed that each group was significantly different from one another ( p < .05 ) In 

fact, the median and mean white blood cell counts increases between participants who have 

never smoked, to those who have previously smoked, to current smokers, indicating that 

smoking increases the number of circulated white blood cells – not necessarily a good thing 

considering their role within the body ( 6.48x109[never smoked], 6.64x109 [previous smoker], 

7.88x109 [current smoker] ). Furthermore, the variance – the spread between data-points – also 

increases from participants who have never smoked to those that have, suggesting that the 

variation in white blood cell count is much higher for those who smoke against those who do not 

( 3.66x1018 [never smoked], 4.95x1018 [previous smoker], 5.66x1018 [current smoker]). 

Figure 5.17 is a box and whisker plot of white blood cell count per litre for each participant, 

grouped into whether they have previously smoked, currently smoke, or have never smoked. 
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The category including those who have previously smoked appears to be the most variable in 

terms of range ( likely due to two extreme values at the lower scale ) - this is may be 

representative of the highly variable states that ‘previous smoker’ could fall into, in terms of 

when they stopped smoking and how many they used to smoke, and for how long. 

 

 

  Count 
Smoking Status Current 52,991 
 Previous 173,105 
 Never 273,616 
 Prefer not to answer 2,059 

TABLE 5.11: Distribution of participants who smoked 
 
 

 

 

 

 

 

Smoking Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Prefer 
not to 
answer 

1,927 7.14x109 6.86x109 2.89x109 7.36x1010 7.08x1010 2.43x109 5.91x1018 

Never 260,398 6.67x109 6.48x109 4.00x107 1.39x1011 1.39x1011 1.91x109 3.66x1018 

Previous 165,305 6.85x109 6.64x109 7.00x107 3.90x1011 3.90x1011 2.22x109 4.95x1018 

Current 50,161 8.10x109 7.88x109 9.00x108 1.81x1011 1.81x1011 2.38x109 5.66x1018 

TABLE 5.12: WBC Count / L compared with smoking status 
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FIGURE  5.17: Box and whisker plot comparing the smoking status of 
participants against their corresponding white blood cell count per litre 
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5.4.8  Variation as a function of Alcohol 

Alcohol consumption is prevalent in Western culture. In the UKB, only 8% of the population 

completely abstains from alcohol ( Table 5.13 ). Recent research [210] has suggested that bone 

marrow stem cells are sensitive to by-products of alcohol and can cause permanent DNA 

damage, so it is important to identify whether this alcohol consumption is affecting the amount 

and variation of cell counts, and subsequent changes in cell quality. 

Table 5.13 compares the frequency of alcohol consumption against corresponding participants 

white blood cell counts per litre. Figure 5.18 is a box and whisker plot comparing the frequency 

of alcohol consumption against corresponding participants white blood cell counts per litre. 

Alcohol consumption frequency is not a quantitative measure of alcohol consumption, and is as 

a result of a participant’s opinion when answering the questionnaire – what constitutes 

consumption in units of alcohol and how does this differ between individuals? As such it is 

unlikely to highlight particular effects of alcohol consumption unless the effect was particularly 

significant.   
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Alcohol 
Frequency 

Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Prefer not 
to answer 

549 7.19x109 6.81 x109 1.59x109 1.90x1010 1.74x1010 2.11x109 4.46x1018 

Daily / 
Almost 
daily 

97,312 6.77x109 6.55 x109 7.70x108 1.90x1011 1.89x1011 2.01x109 4.04x1018 

3-4 / 
week 

110,352 6.73x109 6.50 x109 8.00x107 1.81x1011 1.81x1011 2.08x109 4.32x1018 

1-2 / 
week 

123,302 6.88x109 6.66 x109 9.00x107 1.46x1011 1.46x1011 1.94x109 3.76x1018 

1-3 / 
month 

53,045 7.01x109 6.78 x109 9.00x107 1.05x1011 1.05x1011 2.06x109 4.26x1018 

Special 
occasion 
only 

54,858 7.12x109 6.90 x109 4.00x107 1.13x1011 1.13x1011 2.15x109 4.61x1018 

Never 38,355 7.12x109 6.86 x109 9.00x108 3.90x1011 3.89x1011 2.93x109 8.60x1018 

TABLE 5.13: WBC Count / L compared with alcohol intake frequency 
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FIGURE  5.18: Box and whisker plot comparing the alcohol intake frequency of 
participants against their corresponding white blood cell count per litre 
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5.4.9  Variation as a function of Sleep 

Sleep is a necessary part of life and a key factor in physical and mental wellbeing – lack of sleep 

can be detrimental to mental health and increases long term risk of heart disease, increased 

blood pressure and diabetes. In fact, in mice, sleep deprivation reduces the ability of donor HSCs 

to engraft and reconstitute in an irradiated ‘patient’ by more than 50% [211]. Additionally, 

human patients undergoing HSCT suffer from reduced and irregular sleep patterns [212][213] . 

As a result, quality and quantity of sleep before transplantation may be a key factor in both the 

functional ability of donated cells, but the variation and quantity too. 

Table 5.14 compares the white blood cell count per litre of participants against their 

corresponding, self-declared sleep duration in hours. Unfortunately, there is not anything clear 

cut to support the above hypothesis, bar a slight reduction in both median and variance around 

the 7 hours category. Categories beyond the 16 hours per day do not have enough statistical 

power ( i.e. they are usually single cases ) but inspire curiosity as to the circumstances of the 

individual that has 23 hours of sleep per day and whether this is a clerical error. The bulk of the 

participants have between five and nine hours of sleep per night. 

Figure 5.19 is a box and whisker plot of white blood cell count per litre against the 

corresponding participant’s duration of daily sleep in hours. The clustering of data-points 

between five and nine hours can be clearly seen, as well as a sharp increase in the number of 

data-points declared as statistical outliers. 
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Duration 
of sleep 

Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

<1 / Day 0 - - - - - - - 
Prefer 
not to 
answer 

347 7.43x109 7.00 x109 1.59x109 8.02x1010 7.86x1010 4.46x109 1.99x1019 

Do not 
know 

2,786 7.24x109 6.97x109 2.30x109 1.04x1011 1.01x1011 2.66x109 7.10x1018 

1 32 7.24x109 7.08x109 3.78x109 1.27x1010 8.92x109 1.87x109 3.48x1018 
2 162 7.70x109 7.48x109 3.15x109 2.23x1010 1.92x1010 2.46x109 6.03x1018 
3 772 7.33x109 7.00x109 2.70x109 1.92x1010 1.65x1010 2.06x109 4.25x1018 
4 4,349 7.22x109 6.98x109 2.50x109 2.52x1010 2.27x1010 2.04x109 4.16x1018 
5 20,727 7.03x109 6.80x109 7.00x107 5.59x1010 5.58x1010 1.99x109 3.95x1018 
6 91,204 6.90x109 6.68x109 9.00x108 1.28x1011 1.27x1011 2.05x109 4.21x1018 
7 183,552 6.79x109 6.57x109 8.00x107 1.90x1011 1.89x1011 2.05x109 4.19x1018 
8 137,499 6.89x109 6.67x109 4.00x107 3.90x1011 3.90x1011 2.24x109 5.01x1018 
9 27,651 7.06x109 6.82x109 4.00x107 1.05x1011 1.05x1011 2.14x109 4.57x1018 
10 6,698 7.30x109 7.06x109 8.00x108 2.98x1010 2.90x1010 1.98x109 3.93x1018 
11 639 7.51x109 7.15x109 1.90x109 8.62x1010 8.43x1010 3.80x109 1.44x1019 
12 1,087 7.61x109 7.30x109 2.20x109 8.08x1010 7.86x1010 3.07x109 9.39x1018 
13 70 7.24x109 6.91x109 4.41x109 1.81x1010 1.37x1010 2.21x109 4.88x1018 
14 91 7.65x109 7.47x109 3.37x109 1.41x1010 1.07x1010 1.86x109 3.47x1018 
15 48 7.46x109 7.24x109 3.73x109 1.56x1010 1.18x1010 2.25x109 5.05x1018 
16 42 7.82x109 7.61x109 4.08x109 1.36x1010 9.52x109 2.17x109 4.71x1018 
17 1 4.10x109 4.10x109 4.10x109 4.10x109 0 - - 
18 10 6.80x109 6.74x109 5.34x109 8.22x109 2.88x109 9.83x109 9.65x1017 
19 2 9.55x109 9.55x109 5.60x109 1.35x1010 7.90x109 5.59x109 3.12x1019 
20 7 7.26x109 7.70x109 4.00x109 9.88x109 5.88x109 1.80x109 3.25x1018 
21 1 6.40x109 6.40x109 6.40x109 6.40x109 0 - - 
22 1 3.61x109 3.61x109 3.61x109 3.61x109 0 - - 
23 1 9.24x109 9.24x109 9.24x109 9.24x109 0 - - 

TABLE 5.14: WBC count / L against daily sleep duration 
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FIGURE  5.19: WBC Count / L against recorded daily sleep duration ( hours ) 
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5.4.10  Variation as a function of Health 
This is a qualitative measure of health as determined by the participant themselves, in answer to 

the question – “In general, how would you rate your health”.  

Figure 5.20 is a Pareto chart of the results of this question. The most common health state is 

‘good’, then ‘fair’, then ‘excellent’, and finally ‘poor’. This is a subjective measure of health, but 

gives an indication of the average health of the population. Overall health rating is not a 

quantitative measure of health, and is as a result of a participant’s opinion when answering the 

questionnaire, not a medical professional. Additionally, a study like UK Biobank is likely to attract 

those who are more health conscious and may have a biased opinion as to what constitutes 

good or excellent health – either in their favour or against it. More objective measures may 

include physical measurements such as blood pressure, fitness and mental health. 

The median cell count ( H( 5 ) = 8,422.004, p < 0.05 ) and the distribution ( H( 5 ) = 12,523.480, p 

< 0.05 ) of cell counts between categories were found to be significantly different, apart from 

the categories of excellent / prefer not to answer ( p = 0.200 ), good / prefer not to answer ( p = 

1.000 ), do not know / prefer not to answer( p = 0.375 ), fair / prefer not to answer ( p = 0.252 ) 

and fair / do not know ( p = 1.000 ) for median cell count and good  /prefer not to answer ( p = 

1.000 ) and fair / do not know ( p = 1.000 ) for distributions. As a result, median and distributions 

can be compared between those other categories. 

Figure 5.21 is a box and whisker plot illustrating the white blood cell count per litre per 

individual against their overall health rating. The median and variances in cell count rises from 

‘excellent’ down to ‘poor’ health, although it is important to bear in mind the non-quantitative 

nature of this measure of health. That said, comparing the two extremes, there is a noted 

increases in the variation between data-points, an increase in median cell count and standard 

deviation ( illustrating that the central spread of data is wider ) and a slight increase in range ( 

although as already identified, range can be strongly influenced by singular extreme values ) ( 

Table 5.15 ). 
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 Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Prefer 
not to 
answer 

326 6.94x109 6.60x109 1.24x109 1.51x1010 1.38x1010 2.10x109 4.39x1018 

Do not 
know 

2,043 7.25x109 7.00x109 2.22x109 2.91x1010 2.69x1010 2.16x109 4.67x1018 

Excellent 78,382 6.48x109 6.30x109 9.00x107 1.02x1011 1.02x1011 1.71x109 2.93x1018 
Good 275,802 6.79x109 6.60x109 4.00x107 1.90x1011 1.89x1011 1.91x109 3.64x1018 
Fair 99,895 7.28x109 7.02x109 7.00x107 3.90x1011 3.90x1011 2.64x109 6.96x1018 
Poor 21,132 7.76x109 7.44x109 1.00x109 1.13x1011 1.12x1011 2.78x109 7.73x1018 

TABLE 5.15: WBC count / L against overall health rating 
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FIGURE  5.20: Pareto Chart of Participant Health Rating 
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FIGURE  5.21: A box and whisker plot of overall health rating and 
corresponding WBC count / L per individual 
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5.4.11  Variation as a function of Ethnicity 
 

Ethnicity, from a biological variation perspective is a complicated measure. The overwhelming 

majority of the UK Biobank identify as being ‘British’ ( Table 5.16 n = 442,72 ), but from a genetic 

and environmental perspective – the reason ethnicity would be examined as a cause of variation 

– being British is not indicative of a genetic sub-group, but rather a geographical allegiance. To 

fully understand ethnicity, it must be as a result of particular ethnic groups’ genetic disposition – 

the traits likely to influence the comparative quality and/or quantity of cells, and if there are any 

unique quirks to a specific genetic group. As a result, even if British was identified as originating 

from English, Scottish, Irish or Welsh descent, genetically these groups will originate from very 

particular genetic origins – Anglo Saxon, or Germanic tribes for example. 

As a result, it is difficult at this level to identify differences in ethnic group as a result of these 

questionnaires. 

Figure 5.22 is a box and whisker plot of average white blood cell count against ethnic 

background. The ‘British’ category has been removed, for the reasons discussed above. Future 

work should involve studying a large sample of different ethnic groups, from different 

continents, to clearly define whether there is any genetic segregation in terms of stem cell 

numbers of efficacy.  
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  Count 
Ethnic Background British 442,702 
 Any other white background 16,342 
 Irish 13,215 
 Indian 5,951 
 Other ethnic group 4,560 
 Caribbean 4,520 
 African 3,396 
 Pakistani 1,837 
 Any other Asian background 1,815 
 Prefer not to answer 1,663 
 Chinese 1,574 
 Any other mixed background 1,033 
 White and Asian 831 
 White and Black Caribbean 620 
 White 571 
 White and Black African 425 
 Bangladeshi 236 
 Do not know 217 
 Any other black background 123 
 Mixed 49 
 Asian or Asian British 43 
 Black or Black British 27 

TABLE 5.16: Ethnic Background 
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FIGURE 5.22 A box and whisker plot of declared ethnic background 
and corresponding WBC Count per litre per individual 
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5.4.12  ‘Unhealthy’ Biobank Participants 
 

The participants of the UK Biobank survey are notionally healthy, a baseline of the UK adult 

population – however there are participants who have had or have serious illness such as cancer 

so it is important to stratify these participants and compare the relatively healthy population 

with that of the sick population. This is particularly interesting in conjuncture with the CMCF 

dataset which was almost exclusively a sick population. 

The following section compares the white blood cell counts and distributions of UK Biobank 

participants who either have or haven’t had cancer. The aim of this is to identify whether there 

is a significant difference between a healthy and a sick population that has been processed and 

analysed in a comparable manner. 

In this example, ‘healthy’ participants have been identified as those who have declared being 

cancer-free, and ‘un-healthy’ participants have been identified as those who have declared on 

the questionnaire that they have had or have cancer, in some form or another ( Table 5.17 ).  

Figure 5.23 is a comparative scatter diagram of ‘healthy’ and ‘un-healthy’ UKB participants with 

respect to cancer. Variation as a function of both range and variance between individuals is 

higher for those individuals who have had cancer compared to those who have not. There is also 

a much wider spread of data points around the mean for those who have had cancer compared 

to those who have not. 

This is contrary to what was shown earlier, where the relatively healthy UKB population had a 

higher variation than the relatively unwell population at the Dana Farber Cancer Institute. This is 

likely due to the wide variety of results covered by ‘has or had cancer’ in terms of type, severity, 

longevity, treatment type and whether the patient is in remission or not, compared to a 

comparatively stable, ambulatory population. 
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This example does not take into account, however, the differences between cancer patients – 

when did the illness occur, what is its severity and what treatment has been applied, are they in 

remission – this example has assumed that exposure at some level to a malignancy will have a 

noticeable effect on biological variation as a function of white blood cells. The more interesting 

investigation would be the variation as a function of cell quality and function with respect to 

cancer stage and type – something that is not possible with this dataset, but would be a more 

appropriate measure of variation ( it is unlikely cancer will affect numbers of cells further than 

an overall increase as a result of immune response, or decrease as a result of radiotherapy for 

example ).  

  

 Valid N Mean Median Minimum Maximum Range Standard 
Deviation 

Variance 

Has / 
Has 
Had 
Cancer 

39,275 6.99x109 6.58x109 1.00x109 3.90x1011 3.90x1011 4.24x109 1.80x1019 

Has not 
Had 
Cancer 

439,015 6.88x109 6.66x109 4.00x107 1.04x1011 1.04x1011 1.82x109 3.30x1018 

TABLE 5.17: WBC count / L for UK Biobank participants that have had or have cancer versus 
those who have not 
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FIGURE  5.23: Scatter diagram of WBC count / L for UK Biobank 
participants that have had or have cancer versus those who have not 
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5.5 Conclusion and Discussion 
 

The aim of this chapter was to quantify the variation encountered in a general, healthy 

population, characterised by the UK Biobank. 

This variation is that of a statistically robust, healthy representation of the population to 

augment the global ‘unwell’ population characterised by the literature meta-analysis and the 

localised ‘unwell’ population characterised by the Dana Farber database. 

The variation in white blood cells / litre can be between 7.00 x 107 cells / litre and 3.90 x 1011 

cells / litre – four orders of magnitude. 

As a representation of a healthy population, UK Biobank is an opportunity to study the baseline 

population in the UK for overall biological variation and potential influencing factors. This may 

inform future allogeneic cell sources and the design of stem cell processing and automation. It 

may also contribute to our understanding of the differences between the cell state for a healthy 

donor compared to an unwell patient. 

Both UK Biobank WBC and TNC have similar ranges ( range = 3.90 x 1011 and 3.86 x 1011 ), similar 

distributions around the mean ( standard deviation = 2.12 x 109 and 2.10 x 109 ), and similar data 

spread ( variance = 4.51 x 1018 / 4.42 x 1018 ). 

The range of WBC count / litre between Biobank and DFCI are almost identical ( 3.90 x 1011 cells 

/ litre and 3.67x1011 cells / litre respectively, Table 5.1 ), however the spread of the data around 

the mean is considerably higher in the DFCI dataset, and the distribution of the data ( variance ) 

is also much higher – indicating that the ‘unwell’ population at DFCI is much more variable than 

the relatively healthy population of the Biobank. 

The implication is that whilst healthy and unhealthy populations appear to have similar ranges, 

at least for white blood cells and total nucleated cells, unhealthy populations ( DFCI ) appear to 

be more spread out from the mean value, and therefore more greatly variable from case to case. 
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Presumably as a result of the disparate indications, their severity and subsequent influence on 

quality and quantity of cells. 

Databases made available in Chapters 3 and 4 have been unable to examine the effect of patient 

influences such as physical and lifestyle metrics, because the data has either been unavailable in 

the public domain or protected by patient confidentiality. The UK Biobank data has allowed 

some light to be shed on these potential sources of variation that have previously been 

unexplored. 

The influences examined in this chapter ( smoking, alcohol, sleep, ethnicity, age, weight, gender 

and geography ) all appear to have very mild influences on variation, implying that the actual 

mechanisms that influence variation are less likely to be a handful of key metrics, but a 

multiplicative effect based upon many different variables. However, other potentially influential 

metrics such as disease state, medication and diet have not been examined and these have the 

potential to be greatly influential. 

• Gender appears to have some small effect on the amount of variation in white blood cells and 

total nucleated cells encountered.  

• Increasing age appears to increase the amount of variation in white blood cells and total 

nucleated cells encountered.  

• Increasing weight appears to decrease the amount of variation in WBCs and TNCs. 

Assessment centre, analogous of geographical area, appears to have a statistically significant 

effect on WBC count. This may represent the differences between built up, industrial, country 

and coastal regions in terms of lifestyle and air quality for example. 

Ethnicity is not representative of genetic makeup within the UK population as citizens from 

various genetic backgrounds identify as British, and therefore this metric cannot be used to 

stratify the dataset appropriately. A more genetic based stratification would be more 

appropriate in this instance. 
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However, the UK Biobank has a distinct lack of direct data corresponding the stem cell quantity 

or potential quality, such as cells positive for the CD34 marker, and as a result data from this 

Chapter has acted in a more illustrative and informative role, rather than a direct role for HSCT.  

5.5.1  Outliers 
A significant observation from the UK Biobank data is the considerable number of “outliers”. As 

mentioned in earlier Chapters outliers in traditional manufacturing would be discard material or 

our-of-specification products however in cellular therapy they cannot be discarded. Similarly, to 

assess variation, these outliers are representative of an individual’s state of health, and cannot 

be removed to smoothen the statistical distribution. Understanding these outliers will be critical 

for understanding the behaviour of the starting material and the process. 

5.5.2  Sampling 
One important observation as a result of this Chapter has been the sampling used for the UK 

Biobank. For the purposes of variation analysis, the assumption is that this is a representative 

sample of the UK population, and it is likely that this is the case. However, these studies were 

carried out on a volunteer / targeted basis and has the potential to influence the population 

recruited as a result – those of a particular mindset that may be reflective of their lifestyle, or 

health. 

UK Biobank is a sample of the population as a whole; the question is whether it is representative 

of the population. Specifically, for this use of the data, is variation found in this population 

representative of the variation found in the recipients of the treatment? 
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5.5.3  Big Data 
This dataset provided the opportunity to examine biological measurements on a large, 

statistically robust scale, with a wide and detailed variety of variables. This statistical power has 

allowed much more detailed analysis of patient variables than was previously possible and as 

such highlights the importance of big data analysis for biological systems. Unlike pharmaceutical 

drugs, with one particular ( designed ) mode of action by a typically inert and quantifiable 

chemical, biological therapies such as stem cells are highly complex, living materials with 

multiple potential modes of action and interactions and a capability to change and grow in situ. 

Big data such as Biobank allows for enough statistical power to examine the myriad of 

potentially influential variables for example, Elsevier’s genetic data mining 

(https://pharma.elsevier.com/pharma-rd/using-text-mining-to-find-treatments-for-rare-

diseases/ ). 

DFCI demonstrated that biological and donor characteristic data is available, but not in the 

public domain. This will be a similar case in other key transplant centres, although in the US 

these are likely to be discouraged from data sharing due to commercial interests. The NHS is in 

prime position, however, to make use of a large amount of patient metrics and corresponding 

stem cell metrics to begin to build up a database of evidence to support both the efficacy of cell 

therapy, and the potential processing pitfalls such as biological variation. However, this data 

could not be held by a commercial entity due to the sensitivity and privacy of patient 

information, and the potential scandals surrounding profit based data mining of private 

information – for example see the NHS Big Data scandal in 2014 [214] [215]and more recently 

the Google Deepmind privacy breach in May 2016 [216]. Therefore, it is important for not-for-

profit charity organisations such as UK Biobank to hold this information. 

This chapter has demonstrated the amount and distribution of variation in an ambulatory, 

statistically robust population that has significant outliers. 
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5.6 Future Work with UK Biobank 
 

Datasets such as the UK Biobank could be a key contributor to our understanding of biological 

process control issues. Other large datasets such as those held by national health services or 

large pharmaceutical companies could also be critical. Datasets such as UK Biobank have the 

potential to examine a wide variety of patient and processing metrics that may not be available 

in the public domain. 

A potential future project would involve an international collaboration of cellular therapy 

processing, that stores predetermined metrics such as process data and donor characteristics to 

build up a large dataset of biological variation and biological processing, which the community 

can build upon and speed up the adoption and manufacture of cellular therapy. 

In the more immediate future, the UK Biobank would benefit from further analysis of specific 

lifestyle metrics and its effect on white blood cell counts – such as diet or exercise. A question 

that needs to be asked is whether variation as a function of white blood cell numbers is 

applicable to examining the variation of cellular therapy, specifically blood. Further important 

factors are medications, supplements and lifestyle as a function of jobs and activeness.  

A further point of research would be to examine the difference in genetic markers of donors, 

and the corresponding cellular metrics. This would warrant examination of variation as a 

function of cell numbers ( through cell surface markers ) and cell quality ( likely as a result of 

7AAD staining of the correct cell population. Although whether cells are alive or dead, as a result 

of the 7AAD staining, is a measure of live or dead, rather than the ability of the cell to provide a 

therapeutic effect ). 

With a large number of variables such as those found in UK Biobank, the NHS, or the EBMT 

records, more intelligent statistical tools will be required – such as dimension reduction of 
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variables or regression analysis – that can investigate the influence of factors as a whole rather 

than individually.  

An interesting future point could be the investigation of analogues for stem cells that can be 

used, that are cheaper and faster than the current systems. With the increase in demand these 

technologies will decrease in cost as a function of supply and demand, but if a cheaper 

alternative could be discovered, such as a chemical or particular physical measurement, that is a 

predictable analogue of a type of cell, it would be much easier, faster and cheaper for real time 

monitoring and quality control tests that would contribute to the improvement of the individual 

product and the whole product process as a whole. 

To investigate some of the mysteries highlighted in this Chapter, an EPSRC DTC mini-project was 

designed to investigate certain other factors, specifically the influence of weight on white blood 

cell count variation. This project was on-going at the time of writing and may form part of 

further publication in the future.  



278 | P a g e  
 

5.7 Summary 

 
Biological variation as a function of white blood cell count in the healthy population represented 

by UK biobank, can be up to four orders of magnitude around the median. 

Gender appears to have negligible effect on this variation. 

Increasing donor age appears to mildly increase this variation. 

Increasing weight appears to mildly decrease this variation. 

Lifestyle factors such as smoking, alcohol and geographical location appear to have small 

statistically significant effects on variation 

Big datasets such as UK Biobank may be important in establishing mode of action and public / 

investor confidence in cellular therapy 

Variation in the UK Biobank is lower than that found in the unwell population of the CMCF – 

however the variation in the ‘unhealthy’ sub-population is higher than that of the ‘healthy’ sub-

population ( as a function of cancer incidence ). 
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Chapter 6: Conclusions and Areas of Future Work 

6.0 Thesis Aims 

For cellular therapies to become a frontline option for healthcare providers, the regulator, clinician 

and patient need to be satisfied as to the therapy’s long term efficacy and safety – especially when 

these therapies are in competition with existing, proven alternatives. 

Cellular therapies are currently produced in small batches, for relatively few patients, in a 

predominantly clinical setting. This method of production does not have the capability to produce in 

the volume that may be required to meet future demand. Given the limited space, budget, and 

manpower of our clinical centres, there will be a necessity for a degree of mechanisation and/or 

automation. 

Before the work presented in this thesis, the extent and range of variation within cellular therapy 

was anecdotal. Understanding the variation that is encountered in the starting material, and during 

the process, will lead to an understanding of the limits and the specification that a machine or a 

process needs to be designed around – either to tolerate or control. 

This research has presented an analysis of the range, distribution and sources of biological variation 

for a representative exemplar, based upon an in-depth study of clinical datasets and medical 

literature which will inform manufacturing and product development within the cell therapy field. 

This is a key stage in understanding the process – being able to manufacture a fully defined product 

at a consistent standard and/or designing new manufacturing technologies that meet, or inform, 

regulatory requirements. 
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6.1 Summary of the Thesis and its Conclusions 

This thesis has: 

• Reviewed the current research into biological and stem cell therapy related variation, and identified 

key data sources for further analysis such as the EBMT, NHSBT, UK Biobank and the medical literature. 

• Used a number of identified data sources to quantify biological variation, using a blood-based stem 

cell therapy exemplar, both overall, and as a function of allogeneic and autologous donors 

• Examined variation from a global perspective and a single centre perspective, by comparing the 

medical literature with the data collected from the Dana Farber Cancer Institute, at a statistically 

valuable scale. 

• Examined variation from a “healthy” and “sick” donor perspective, by comparing the “sick” sub-

populations provided by the Dana Farber Cancer Institute, and the medical literature, against the 

“healthy” sub-population provided by the UK Biobank, at a statistically valuable scale 

• Identified several potential sources of variation, a number of which are a result of biological systems 

and will present new and unique challenges, and a number of which are more traditional in nature 

and have the potential to be addressed through application of traditional manufacturing tools and 

approaches. 

• Through the use of public forums, it has been identified that biological variation is a universal concern 

for the field, but this has not yet been formally and publicly discussed in depth. The author believes 

this may be because of the vulnerability that may come from identified such a commercial weakness 

to competitors or regulators. 

Table 6.0 illustrates the significant novel contributions of the thesis, whether this work has been 

published or presented elsewhere, and where this novelty can be found within the thesis. Table 6.1 

summarises the biological variation quantified by this research, stratified into transplant type and 

information source. 
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  Published/ 
Presented 

Novelty Chapter 

Sources of Variation    
 Patient/ donor characteristics Presented Novel 2 – 5 
 Measurement variation Presented Novel 2 – 4 
 Operator variation Presented Novel 2 – 4 
 Process variation Presented Novel 2 – 4 
 Practice of medicine Presented Novel 2 – 5 
Spread of Variation    
 Total nucleated cell count Published Sign. Novelty 3, 4 
 CD34+ cell count Published Sign. Novelty 3, 4 
 White blood cell count Presented Novel 5 
 Apheresis volume Presented Sign. Novelty 4 
 Outliers Presented Sign. Novelty 3, 4, 5 
 Distributions Presented Sign. Novelty 3, 4, 5 

Table 6.0: Summary of Thesis Novelty 
 

Source Population Transplant 
Type 

N CD34+ cell 
count/ kg 

WBC count 
/ L 

Orders of 
Magnitude 

Medical 
literature 

Unhealthy, 
global 

Autologous 110 6.00x104 to 
3.00x108 

 4 

Medical 
literature 

Unhealthy, 
global 

Allogeneic 188 1.00x103 to 
1.21x109 

 6 

UK Biobank Ambulatory, 
UK/ 

national 

Autologous 478,290  4.00x107 to 
3.90x1011 

4 

CMCF/ 
DFCI 

Unhealthy, 
single site 

Autologous 287 4.80x106 to 
4.14x109 

 3 

CMCF/ 
DFCI 

Unhealthy, 
single site 

Autologous 282  9.91x109 to 
3.77x1011 

2 

CMCF/ 
DFCI 

Unhealthy, 
single site 

Allogeneic 123 4.00x107 to 
1.82x109 

 2 

Figure 6.1: Summary of Biological Variation in HSCT, quantified during this research 
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6.2 Future Work 
This work has identified several priority research questions. 

• Variation has been quantified in terms of cell numbers, but now requires quantification in terms of 

cell quality, and for this to be related to patient outcome. Given the number of separate, 

commercially competing entities, and the small scale of clinical trials, a large scale collaborative effort 

will be required to facilitate statistically significant results. 

• How do we measure cell efficacy and quality? 

• How much variation is acceptable without negatively affecting patient outcome or safety? 

• What is the difference in terms of cell quality and function between cells from paediatric and adult 

donors, and will the variation have to be approached differently depending on which group is used? 

• What is the interaction between patient/ donor weight, and biological variation in terms of numbers 

and quality? 

• What is the effect of biological variation as a function of genetic differences? This is a key question, in 

particular for gene therapy. Can specific quality metrics of the donor be quantified in terms of specific 

genetic structures and what effect does variation in genetic stricture have in practical terms as a 

function of viable cell numbers, and patient outcome? 

• What is the effect of patient indication and disease severity on stem cell quality, particularly in 

autologous therapy? 

• What is the effect of lifestyle measurements such as diet on stem cell quantity and quality – 

particularly during the lead up to stem cell donation – and is there a regime that could be followed to 

ensure higher collection quality? 

• Standardisation is required for apheresis procedure, cryopreservation and thawing, stem cell 

measurement in terms of flow cytometry, and whether there are any cheaper measurement 

analogues, that are representative of stem cell quality 

• What statistical tools are appropriate for analysing non-normal biological data – do we require new 

tools, or can we adapt the more traditional engineering tools? What will be the standard – 

transformation of data, or tools specifically designed for these datasets? How are outliers going to be 

dealt with when many statistical tools are reliant on outliers being removed? 
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• How does the product behave from a therapeutic point of view at the centre of the distribution 

versus the trailing edges and the extremes? Is the therapeutic and safety profile different? This will be 

of critical importance to the regulators of stem cell therapies. 

Four general but critical areas of research will now be discussed. Increased understanding in these 

areas is key to further progression in this field. 

6.2.1 Patient Variation/ Weight 

Donor and patient weight is a readily available, key physical measurement tied into the practice of 

medicine, used to tailor treatment plans and drug regimens and traditionally used to measure 

medication dose.  

Weight is currently used in regenerative medicine in a similar fashion to determine dose, however 

defining dose is more than a simple correlation between size and the number or quality of cells. This 

may be due to the difference in body health between patients of a given weight – such as a weight 

due to muscle versus weight due to fat content. Although cell quality has not been measured 

directly because of changing weight, being heavier because of healthy or unhealthy reasons may 

have implications for cardiovascular strain and blood chemistry that may affect stem cell quality, and 

therefore warrants further research. 

This is an important, topical question given the rise of obesity, in the Western world in particular, 

and the respective availability and price of unhealthy versus healthy food. 

Furthermore, lighter patients may fall into the paediatric patient category – a sub-population that 

was unfortunately not strongly represented in any of the databases used in this thesis’ research. 

Paediatric patients have a different biological situation than adult patients and it is important that 

these are treated and explored as separate biological states ( which is why comparisons will need to 

be made between cell number and quality of adult and paediatric patients ). This will be of particular 

importance in gene therapy, where this is the ideal treatment age to diagnose and treat various 

malignant indications before they develop. 
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Weight will also influence the volume of circulating blood and the number of cells as a result. It has 

been identified that there is not a simple relationship between the two, but differing weights of 

patients will yield different volumes of starting material, in addition to differing volumes not being 

indicative of particular numbers of cells. Exploration of the effect of varying weight with respect to 

biological variation as a function of cell number and cell quality is a key area of research and will 

require collaboration between sports scientists, utilising their knowledge of physical health, and 

clinical researchers. 

6.2.2 Relationships between components of blood 

Compared to pharmaceutical drugs, stem cell therapy has a particular challenge due to the nature of 

the therapeutic product which is more sensitive than pharmaceutical drugs, is constantly in a state 

of flux and is extremely complex – possibly beyond our current understanding. Stem cell 

measurements are approximate, and any new developments in biological metrology that can 

improve this resolution or sensitivity, will take time to build up a supporting evidence base. 

Furthermore, the specific mode of action of cellular therapies is unclear – is the patient benefit a 

result of direct engraftment, or due to the release of cell signalling molecules due to their presence? 

Total nucleated cells and CD34+ cells are not directly correlated, as previously illustrated using cord 

blood by May Win Naing [217]. Both of these variables vary significantly, to a degree that would be 

unmanageable in a traditional manufacturing process. Therefore, one of the key research directions 

should be exploration of the interaction between cell populations and quality, in particular what 

biological factors affect the production, number and quality of stem cell populations, and if there are 

any analogues for these factors that we can measure in an easier, or cheaper manner. This would 

facilitate a faster turn-around time for quality control testing, which is a current concern in a fast-

paced clinical environment with time sensitive products. 
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Additionally, a more consistent approach to measurement would allow for greater confidence in the 

clinical effect of these new therapies, both from the perspective of the healthcare provider, and the 

regulator.  

Measurement of the stem cell content in a given product is time consuming, and has the potential to 

be influenced by the operator and the chosen methodology, so it is imperative that we as a 

community improve our understanding of how to appropriately measure the starting material during 

the process, intermediates at individual process steps and within the final product, in an accurate 

and comparative manner. This will facilitate comparison between academic research, clinical trials 

and patient outcomes, identify potential side effects and improve process design within the 

manufacturing and development community. 

Because of its complexity, the work in this thesis has chosen to not determine or take account of the 

contribution of variation in the performance of the measurement system to either the variation in 

individual process steps or the overall process. Given that the therapeutic products we are 

concerned with are based upon stem cells and that their characterisation is still an active area of 

research dependent on a better understanding of the performance of these products in the clinic, 

this highlights the critical requirement for work in measurement system analysis for core 

characterisation techniques. 

Exploration of these issues will require collaboration between the haematology, developmental 

biology and metrology fields – those who are familiar with the interaction between blood 

components and blood chemistry and can stratify and quantity the mechanisms for stem cell 

production, and how they can be measured ( both in ideal circumstances such as clear media, and 

realistic circumstances such as ‘dirty’ media and inflamed biological systems ). 

6.2.3 The interface with the practice of medicine 

One of the key conclusions from this thesis has been that although there are several traditional 

sources of variation, such as process control and operator variation, there remains significant 
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variation that can be attributed towards the biological system and one of the more potential 

influential factors is the use of conditioning and mobilisation regimes. 

These interventions are both determined exclusively by the individual healthcare providers approach 

and practice of medicine, and will vary depending on the centre and individual. Both regimes 

dramatically change the state if the donor’s cell populations, and potentially their cell quality, and as 

a result increasing the evidence base of the relationship between these regimes and the quality of 

donated stem cells is a crucial next step in establishing their effect on patient outcome. 

This will require close collaboration with the individual clinical fields and understanding and working 

around the practice of medicine as it expertly balances risk and patient benefit.  

6.2.4 Manufacturing control 

The motivation behind this thesis is to scrutinize the current state of play within the biological 

therapy world from a manufacturing perspective – the key objective being how to facilitate 

repeatable and comparable manufacture at scale that a cellular therapy ‘big win’ will require, and 

begin to predict and model these processes in the face of biological variation. 

During traditional manufacturing, there is a focus on two key measurements of the product, its 

mean and range. This thesis has focused on establishing the range of the product, but in fact has 

identified the presence and importance of a third measurement – the outliers. Usually, these are 

removed statistically during data analysis, or physically discarded as out of specification products, 

but in the case of biological therapeutics these products are a limited and precious resource that is 

both expensive and immoral to waste or discard. As a result, it is critical that we identify the cause of 

these extremes and whether they are truly outliers or extreme patient states we will have to work 

with. 

There is significant variation not just in cell number, but physical volume of starting material. Within 

this research this variation could be between 30 ml and 700 ml, and these are indicative of 
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completely different scales of physical manipulation and storage, particularly when automation is 

concerned. Additionally, a given volume is not representative of a given number of cells, and smaller 

volumes may contain higher numbers of key cell populations. This is particularly concerning when 

this research has identified that several clinical centres triage and discard donations away based on 

weight or physical volume, and that they may be trading high quality donations in favour of higher 

volumes. This implies that more appropriate analogues of quality are required. 

The non-normally skewed distribution of much biological data is also an important consideration, 

such as how the product behaves from an efficacy and safety perspective at the trailing edges. The 

regulator and the clinician will need to be reassured as to whether the product works the same way 

and has the same effect regardless of its position in this distribution – is the product less safe, less 

efficacious or less viable at its extremes? A focused effort is required on examining current statistical 

tools such as six sigma, and how we can apply them to address non-normally distributed data from a 

processing perspective, or whether we need to design new tools that are specific to biological 

manufacturing. 

This issue will require large scale collaboration between multiple organisations and stakeholders, as 

it will underpin biological manufacturing moving forward. Engineering and biology will need to reach 

an appropriate compromise on the level of acceptable variation, and this will require an 

investigation of the relationship between a given level of variation and the resultant patient 

outcome. For ethical reasons, this is highly likely to be a retroactive study of historical data. 

6.3 High Priority Research Areas to Understand and Control Variation 

This research has identified several potential sources of variation and areas of research that will be 

required to understand biological variation, and therefore process control, and large-scale 

manufacturing for biological therapies. 

The generic process map for HSCT ( see Figure 6.2 ) will now be used to identify sources of variation 

and triage them according to research priority – low, medium and high. This aims to support the 
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allocation of the limited resources available to the community and its key stakeholders, in both time 

and manpower. 

A foremost and critical observation is that biological variation does not need to be eliminated, just 

controlled sufficiently such that it does not negatively affect patient outcome, or safety. Removing 

all variation or addressing all the sources may not be feasible, or possible, especially given the 

urgency of which these therapies are needed. 

• Patient/ Donor [LOW]: This may be impractical to control as there will be a background level of 

variation as a function of differences in ethnicity, age, gender, lifestyle, etc. Developers are 

encouraged to work around this variation, as there are other areas of significant improvement that 

will have more immediate, and tangible effects 

• Autologous [LOW]: Patients cannot be stratified according to quality metrics, so variation as a 

function of an individual’s state of health may have to be accepted and worked around 

• Allogeneic [LOW]: Donors could be stratified according to quality metrics, but this is dependent on 

appropriate and representative markers of therapeutic effectiveness. This would require a large and 

robust clinical dataset, so developers are encouraged to work around this variation in the first 

instance. 

• Genetics [HIGH]: Genetic variation was not addressed in this thesis and will require a high level of 

basis science research in the academic and clinical setting – this is a traditional academic research 

question. 

• Conditioning [HIGH]: An understanding of how previous therapeutics and interventions, prior to 

stem cell therapy, affect the quality of isolated cells and its subsequent clinical effectiveness is 

required. This would require a large scale, robust, clinical dataset and a systematic and rigorous 

investigation. 

• Mobilisation [HIGH]: A wide range of pharmaceuticals and regimes exist, and their application varies 

between centre, clinician and patient. This step has the potential to influence quality and quantity of 

cells within the process starting material for a cell therapy product. This would require a large scale, 
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robust, clinical dataset and a systematic and rigorous investigation and a parallel and rigorous 

manufacturing science investigation. 

• Isolation [LOW]: Isolation is already supported by a large and experienced industry as part of the 

supply chain. 

• Measurement [HIGH]: Appropriate measures of cell identity, phenotype, and function are required. 

These will inform the generation of key quality metrics that currently do not exist. 

o Potency Assays: Specifications for cell therapy products will require a large scale 

collaborative effort between developers, clinicians, regulators and academic researchers 

and is critical to the future of cell therapy products. Potency assays will also allow for 

examination of whether the current, pharmaceutical-based, approach to dosing for cell 

therapies is appropriate for biological medicines 

o Measuring key characteristics: 

 Cell Counting: Are our tools for cell counting fast and reliable enough for the future 

of cell therapy? This is a question for manufacturing scientists working alongside 

key measurement authorities such as NIBSC, NIST and LGC. 

 Cell surface markers: The use of gating in flow cytometry has the potential to 

introduce significant measurement variation, is dependent on the operator’s skill 

and judgement ( which may not be transferable ) and can vary depending on who is 

carrying out the measurement. In addition, the identification of quality associated 

cell surface markers may allow for generation of a quality-based reference artefact 

that can be used to benchmark future measurements. This is a large-scale question 

for multiple authorities: clinical and academic researchers with guidance and advice 

from measurement authorities such as NIBSC, NIST and LGC. 

 Statistical tools: New tools are required to handle non-normally distributed data, or 

the application of existing tools. The question needs to be raised as to whether 

traditional manufacturing and process statistical tools are appropriate for biological 

therapies, and to what extent will they need to be redesigned or adapted to deal 

with the highly variable and sensitive therapeutic agents. This will require a high 
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level of cerebral research from mathematicians in tandem with processing and 

manufacturing scientists. 

 Standardisation: This is the first step in traceability of measurement, and will need 

equivalency between national and international centres. This is reliant on the 

justification of a given measurement system based on statistically robust evidence, 

and the co-operation between regulators in key influential states such as the USA, 

EU and Asian markets. 

• Raw Material [LOW]: Raw materials are subject to existing pharmaceutical guidance and regulations 

regarding process control and variation, as part of the supply chain.  

• Cryopreservation [MEDIUM]: Basic investigative research is required to determine whether 

cryopreservation and subsequent thawing effects the therapeutic function of a cell therapy product. 

This includes whether the thawing process affects the cell’s phenotype or efficacy, and whether any 

resultant apoptosis or cell death brings the number of cells in the dose below the safety or efficacy 

threshold. Cryopreservation and thawing protocols require standardisation – particularly thawing 

which can include massaging bags of ice crystals. This will require academic investigation coupled 

with clinical researchers. 

• Processing [MEDIUM]: Cell therapy products are currently produced via manual cell culture, which is 

subjective to the operator and limited in scale. Automation may be required, but is dependent on 

appropriate measures of quality and a sufficient understanding of the process to replicate safely. 

Care must be taken to avoid replication of operator bias or error. This is a supply chain issue, 

currently locked by a problematic business case, and could be unlocked, or encouraged by 

demonstrating true comparability between machines. This will require a collaboration between 

academic research, alongside the supply chain manufacturers and standards organisations such as 

LGC and NIBSC. 

• Technicians [MEDIUM]: A better understanding of the process, or an alternative way of representing 

SOPs and protocols may improve replication and reduce errors in the current manual processing 

setting – one of the key observations from the clinical centre was how difficult new protocols were to 

learn and copy from others due to personal alternations of SOPs.  
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• Practice of Medicine [MEDIUM]: We need to understand exactly how new therapies are being used 

in the clinic, especially when this differs from intended use. Developers will have to work around this 

practice of medicine, but it is important that we understand how these therapies are being used. 

Alongside appropriate measures of quality, this is critical to understanding dosing of cell therapy 

products and raises questions about liability in the event of adverse effects ( by using a product in a 

different way as was intended by the manufacturer, and by the regulations that have been 

established ). By understanding this relationship, developers can work around this requirement to 

personalise therapy, and build it into the development process. It may not be feasible to remove 

variation as a function of clinical practice due to this highly-personalised nature of healthcare 

reflecting the needs of individual patients. The medical regulator will have to work closely with the 

product/ process regulator, alongside the developer, to achieve this. 

6.4 Summary 

The extent of variation has been established, in terms of cell numbers, for existing blood-based stem 

cell therapy. This variation is currently accepted under the practice of medicine, as it can be 

controlled in the clinic by “pooling” products together to meet minimum collection criteria, and by 

reducing the volume of larger products. 

More advanced therapeutics are likely to be complicated by the presence of an expansion and 

growth stage in the process, although this may compensate for pooling and volume reduction by 

being able to grow specific numbers of cells – assuming that the product does not become 

contaminated by this step, or more critically for cellular therapy, does not proliferate into an 

unwanted, or unsafe cell type/ line. 

Autologous therapies will remain reliant on patient specific factors, but allogeneic therapies may be 

able to source donor material, in terms of quality and quantity, based on critical quality attributes. 

The next stage in the investigation of variation is the correlation between variation and product 

quality, which will require a cost-effective and representative quality metric.  
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If variation can be related to a quantifiable measure of quality, then the amount of acceptable 

variation with respect to patient outcome can be established, and a manufacturing process designed 

accordingly. Currently, the amount of variation can be up to six orders of magnitude around the 

median, so it is important to establish how much variation is acceptable without affecting patient 

safety, or product efficacy. 

Clinical centres such as the Dana Farber Cancer Institute or the UK National Health Service holds 

information about products and patients in multiple databases – patient records, process records, 

outcome registries – and they may be difficult to access and compare without proper ethical 

approval and security measures. Unlocking and utilising these databases is important.  

New and astounding advances in biological medicines have the potential to revolutionise healthcare, 

but before this can be a reality, we must prove their long-term safety and efficacy, their cost-

effectiveness and demonstrate the capability to produce them at a sufficient scale. This cannot be 

achieved without addressing questions of biological variation, appropriate measurement and 

statistical tools, and an understanding of the interface between engineers, scientists and clinicians. 

This will require a collaborative framework between industrial and commercially driven 

stakeholders, working in the interests of patients, aligning together to address dramatically unmet 

clinical needs and creating the future of medicine. 
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