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Abstract

Margin distribution is acknowledged as an important factor for improving the
generalization performance of classifiers. In this paper, we propose a novel
ensemble learning algorithm named Double Rotation Margin Forest (DRMF),
that aims to improve the margin distribution of the combined system over the
training set. We utilise random rotation to produce diverse base classifiers,
and optimize the margin distribution to exploit the diversity for producing an
optimal ensemble. We demonstrate that diverse base classifiers are beneficial
in deriving large-margin ensembles, and that therefore our proposed technique
will lead to good generalization performance. We examine our method on an
extensive set of benchmark classification tasks. The experimental results confirm
that DRMF outperforms other classical ensemble algorithms such as Bagging,
AdaBoostM1 and Rotation Forest. The success of DRMF is explained from the
viewpoints of margin distribution and diversity.

Keywords: Ensemble learning, margin distribution, diversity, fusion strategy,
rotation

1. Introduction

Ensemble learning has been an active research area in pattern recognition
and machine learning domains for more than twenty years [1, 29, 38, 45, 59].
Ensemble learning, also referred to as multiple classifier systems, committees of
learners, decision forest or consensus theory, is based on the idea of training a
set of base classifiers or regressors for a given learning task and combining their
outputs through a fusion strategy.

A significant amount of works have been focused on designing effective en-
semble classifiers [15, 20, 25, 39]. However, an exact explanation of the success
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of ensemble strategies is still an open problem. Some researchers explored how
an ensemble’s effectiveness is related to the large margin principle, which is
regarded as an important factor for improving classification [42, 51]. In this
paper, we propose a novel ensemble learning algorithm named Double Rotation
Margin Forest (DRMF), which is designed to improve the margin distribution
of ensembles by enhancing the diversity of base classifiers and exploiting this
diversity using an optimization technique.

In general, there are two well-accepted viewpoints – diversity and margin –
to explain the success of ensemble learning. Roughly speaking, the margin of a
sample is its distance from the decision boundary and thus reflects the confidence
of the classification. The margin distribution is acknowledged as an important
factor for improving the generalization performance of classifiers [2, 6, 11, 43, 49].
In [43], Shawe-Taylor et al. gave an upper bound of generalization error in terms
of the margin, while in [6] a similar bound was derived for neural networks
with small weights. The large margin principle has been employed to design
classification algorithms in [8, 14, 21, 26, 50].

The performance of ensemble learning methods, especially boosting, has
been attributed to the improvement of the margin distribution of the training
set [42, 51]. In AdaBoost, each new base classifier is trained by taking into
account the performance of the previous base classifiers. Training samples that
are misclassified by the current base classifiers play a more important role in
training the subsequent one. The success of Adaboost can thus be explained
from the margin distribution, where the optimization objective is to minimize
a margin distribution based exponential loss function. In [42], an upper bound
of the generalization error was derived in terms of the margins of the training
samples, and it was shown that the generalization performance was determined
by the margin distribution, the number of training samples and the number of
base classifiers. The efficacy of AdaBoost thus lies in its ability of effectively
improving the margin distribution. In [51], Wang et al. showed that a larger
Equilibrium margin (Emargin) and a smaller Emargin error can reduce the
generalization error, and demonstrated that AdaBoost can produce a larger
Emargin and a smaller Emargin error.

It is acknowledged that the diversity among the members of an ensemble
is crucial for performance improvement. Intuitively, no improvement can be
achieved when a set of identical classifiers are combined. Diversity thus allows
different classifiers to offer complementary information for classification, which
in turn can lead to better performance [28]. A number of techniques have been
proposed to introduce diversity. In general, we can divide these into two cat-
egories: classifier perturbation and sample perturbation approaches. Classifier
perturbation refers to the adoption of instability of learning algorithms [10, 36]
such as decision trees and neural networks. Since they are sensitive to initial-
ization, trained predictors may converge to different local minima if started
from different initializations, and diversity can thus be generated from trained
classifiers. Sample perturbation techniques train classifiers on different sample
subsets or feature subsets, and include bagging, boosting, random subspaces
and similar approaches [4, 7, 17, 41].
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Since both diversity and margin are argued to explain the success of ensemble
learning, it appears natural to question whether there is a connection between
the two. Tang et al. [46] proved that maximizing the diversity among base
classifiers is equivalent to optimizing the margin of an ensemble on the training
samples if the average classification accuracy is constant and maximal diversity
is achievable. Consequently, increasing the diversity among base classifiers is an
effective method to improve the margin of ensembles. Our work is motivated by
this conclusion, and our aim is to improve the margin distribution of ensembles.

In our proposed approach, we enhance the diversity of base classifiers by
perturbing the samples using double random rotation. This idea is inspired by
the PCA rotation proposed in the Rotation Forest algorithm [39]. In Rotation
Forest, a candidate feature set is randomly split into K subsets and Princi-
pal Component Analysis (PCA) is conducted on each subset to create diverse
training samples. Diversity is thus promoted through the random feature splits
for different base classifiers. In our work, the feature sets are also randomly
split into K subsets. In order to introduce further diversity between the base
classifiers, we apply PCA and Locality Sensitive Discriminant Analysis (LSDA).
In particular, we first perform unsupervised rotation with PCA, and then em-
ploy supervised large-margin rotation with LSDA. LSDA [12], as a supervised
method, is able to derive a projection which maximizes the margin between
data points from different classes. Our experimental results show that the ap-
plied Double Rotation can consistently enhance the diversity in a set of base
classifiers.

We further exploit the diversity and improve the margin distribution with
an optimal fusion strategy. In principle, there are two kinds of fusion strategies.
One approach is to combine all available classifiers, e.g., in simple (plurality)
voting (SV) [28] or through linear or non-linear combination rules [5, 9, 19, 48].
The other method is to derive selective ensembles, or pruned ensembles such
as LP-Adaboost [23] or genetic algorithm (GA)-based approaches [53], which
only select a fraction of the base classifiers for decision making and discard
the others. Clearly, the key problem here is how to find an optimal subset of
base classifiers [32]. In the GASEN approach [55], neural networks are selected
based on evolved weights to constitute the ensemble. In [54], the subset selection
problem is formulated as a quadratic integer programming problem, and semi-
definite programming is adopted to select the base classifiers. Both GASEN and
semi-definite programming are global optimization methods and thus their com-
putational complexity is rather high. Suboptimal ensemble pruning methods
were proposed to overcome this drawback, including reduce-error pruning [31],
margin distance minimization (MDM) [33], orientation ordering [34], boosting-
based ordering [35], and expectation propagation [13]. In practice, users would
prefer sparse ensembles since computational resources are often limited [57].
In this paper, we introduce a technique to improve the margin distribution by
minimizing the margin induced classification loss. In our pruned ensembles, the
weights of base classifiers are trained with L1 regularized squared loss [56]. The
base classifiers are then sorted according to their weights, and those with large
weights are selected in the final ensemble.
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Our presented work comprises three major contributions. First, since di-
versity is considered to be an important factor which affects the classification
margin, Double Rotation is proposed to enhance the diversity among base clas-
sifiers. Second, we present a new pruned fusion method based on the Lasso
technique for generating ensembles with optimal margin and sparse weight vec-
tors, where the weights are learned through minimization of the regularized
squared loss function. Third, we present an extensive set of experiments to
evaluate the effectiveness and explain the rationality of the proposed algorithm.
We convincingly show that it can improve the margin distribution to a great
extent and lead to powerful ensembles.

The remainder of the paper is organized as follows. Related work is in-
troduced in Section 2. Section 3 describes our proposed algorithm, while an
analysis in terms of parameter sensitivity and robustness is presented in Sec-
tion 4. Section 5 presents the experimental results and explores the rationality
of DRMF. Finally, Section 6 offers conclusions and future work.

2. Related Work

Assume that xi = [xi1, · · · , xin]T is a sample represented by a set F of n
features and every sample is generated independently at random according to
some fixed but unknown distribution D. Let X be an N × n matrix containing
the training set and Y = [y1, · · · , yN ]T be an N -dimensional vector containing
the class labels for the data, where yi is a class label of xi from the set of
the class labels {ω1, · · · , ωc}. Let {C1, · · · , CL} be the set of base classifiers
in an ensemble. In this paper, our aim is to obtain an ensemble system with
small generalization error via optimizing the margin distribution. Here, the
generalization error of a classifier Cj is the probability of Cj(x) 6= y when an
example (x, y) is chosen at random according to the distribution D and denoted
as PD[Cj(x) 6= y]. The margin distribution is a function of θ which gives the
fraction of samples whose margin is smaller than θ. A good margin distribution
means that most examples have large margins.

Definition 1. Given xi ∈ X, hij(j = 1, 2 · · · , L) is the output of xi from Cj.
We define

dij =

{

1, if yi = hij

−1, if yi 6= hij
, (1)

where yi is the real class label of xi.

From this definition, we know that dij = 1 if xi is correctly classified by Cj;
otherwise dij = −1.

Definition 2. [42] Given xi ∈ X, the margin of xi in terms of the ensemble is
defined as

m(xi) =

L
∑

j=1

wjdij , (2)

where wj is the weight of Cj and wj > 0.
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In [42, 51], it is shown that a small generalization error for a voting classifier
can be obtained by a good margin distribution on the training set. Obviously,
the performances of the base classifiers have a significant effect on the margin of
xi. At the same time, the diversity among base classifiers is another key factor.
In [46], the underlying relationship between diversity and margin was analyzed.

Theorem 1. [46] Let Θ be the average classification accuracy of the base clas-
sifiers. If Θ is regarded as a constant and if maximum diversity is achievable,
maximization of the diversity among base classifiers is equivalent to maximiza-
tion of the minimal margin of the ensemble on the training samples.

It should be noted that our aim is not to maximize the minimal margin of
the ensemble, but to optimize the margin distribution. We use a disagreement
measure [30] to measure the diversity of the base classifiers in our approach.
The diversity between classifiers Cj and Ck is thus computed as

Disjk =
N01 +N10

N11 +N10 +N01 +N00
, (3)

where N00 denotes the number of samples misclassified by both classifiers, N11

is the number of samples correctly classified by both, N10 denotes the number
of samples which were correctly classified by Cj but misclassified by Ck, and N01

denotes the number of samples misclassified by Cj but correctly classified by Ck.
For multiple base classifiers, the overall diversity is computed as the average
diversity of classifier pairs.

In [39], Rodŕıguez and Kuncheva designed a method to generate ensembles
based on feature transformation. The diversity of base classifiers is promoted by
random splits of the feature set into different subsets. The original feature space
is split into K subspaces (the subsets may be disjoint or may intersect). Then,
PCA is applied to linearly rotate the subspaces along the “rotation” matrix.
Diversity is obtained by random splits of the feature set.

Cai et al. [12] proposed a supervised algorithm for feature transformation,
which can find a projection that maximizes the margin between different classes.
For xi ∈ X , denote by Υ(xi) = {x1

i , · · · , xe
i } the set of its e nearest neighbors

and by yi the class label of xi. We define

Υs(xi) = {xj
i |y

j
i = yi, 1 ≤ j ≤ e}, (4)

and
Υb(xi) = {xj

i |y
j
i 6= yi, 1 ≤ j ≤ e}, (5)

so that Υs(xi) contains the neighbors which share the same label with xi, while
Υb(xi) is the set of the neighbors which belong to the other classes.

For any xi and xj , we define

Vb,ij =

{

1 if xi ∈ Υb(xj) or xj ∈ Υb(xi)
0 otherwise

, (6)
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and

Vs,ij =

{

1 if xi ∈ Υs(xj) or xj ∈ Υs(xi)
0 otherwise

. (7)

Vb and Vs thus give the weight matrices of the between-class graph Gb and the
within-class graph Gs respectively.

The objective of Locality Sensitive Discriminant Analysis (LSDA) is to map
the within-class graph and the between-class graph to a line so that the con-
nected points of Gs stay as close as possible while the connected points of Gb

are as distant as possible. Suppose x1, · · · , xN are mapped to z1, · · · , zN and
zi = ϑTxi where ϑ is a projection vector. In order to compute z1, · · · , zN , the
following Locality Sensitive Discriminant (LSD) objective functions are opti-
mized:

min
∑

ij

(zi − zj)
2Vs,ij , (8)

max
∑

ij

(zi − zj)
2Vb,ij . (9)

This optimization can be translated into maximum eigenvalue solutions to the
generalized eigenvalue problem

XT (pΛb + (1 − p)Vs)Xϑ = λXTQsXϑ, (10)

where X is an N × n matrix, Qs is a diagonal matrix whose entries are the
column sums of Vs, and Λb = Qb − Vb where Qb is a diagonal matrix whose
entries are column sums of Vb. From the LSD objective functions, it can be
seen that LSDA can discover both geometrical and discriminant structures in
the data.

3. Algorithm Description

As shown above, diversity is an important factor to improve margin dis-
tribution. In [42, 51], the relationship between the generalization performance
and the margin distribution of the training set was derived. It was found that
if a voting classifier generates a good margin distribution, the generalization
error will be small. Motivated by these results, we propose a novel technique
to generate diverse base classifiers and to exploit diversity for producing good
ensembles with an optimal margin distribution.

3.1. Double Rotation

Double Rotation aims to enhance the diversity among base classifiers. In
order to construct the training set for the base classifier Cj, we first split the
feature set F randomly into K subsets Fij(i = 1, 2 · · · ,K) which contain M =
xn/Ky features (xn/Ky rounds n/K to the nearest integer) and denote by Xij

the data subset with features Fij . We then eliminate a random subset of the
classes and draw γ ·N samples by bootstrapping from Xij to obtain a new set
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X ′
ij . We apply PCA onX ′

ij to obtain the coefficients of the principal components

a1
i,j , · · · , aMi

i,j
1. From these we construct a “rotation” matrix Rj

Rj =











a1
1,j , · · · , aM1

1,j 0 · · · 0

0 a1
2,j , · · · , aM2

2,j · · · 0

0 0
. . . 0

0 0 · · · a1
K,j , · · · , aMK

K,j











. (11)

The columns of Rj are rearranged so that they correspond to the original fea-
tures. If we denote the rearranged rotation matrix as Ra

j , then XRa
j is taken

as a new training set. We then repeat the above process but replace PCA
with LSDA and obtain a new rotation matrix Sa

j . Finally, Cj is trained with
(XRa

jS
a
j , Y ).

The pseudocode of the Double Rotation algorithm is formulated in Algo-
rithm 1.

Double Rotation integrates two different feature transformation algorithms
for boosting the diversity among base classifiers. In DRMF, the base classifiers
are trained with the data (XRa

jS
a
j , Y ) based on the J48 algorithm, an imple-

mentation of C4.5 in the WEKA library [27].

3.2. Ensemble Pruning by optimizing margin distribution

Based on the above procedure, we obtain a set of diverse decision tree clas-
sifiers. Now, we exploit this diversity to construct an optimal ensemble.

Given x ∈ X , hxj ∈ {−1, 1} as the output of x from Cj, and wj as the weight
of Cj, the final decision function is

f(x) = sgn(

L
∑

j=1

wjhxj). (12)

Here, f(x) can be seen as a linear classifier in a new input space, where every
sample x is represented as an L-dimensional vector [hx1, · · · , hxL]TL×1, and then
wj(j = 1, 2, · · · , L) can be seen as the coefficients of this function. Based on the
conclusion in [44], a bound of the generalization error for the linear classifier
can be derived as follows.

Theorem 2. For ∆ > 0, t ∈ ℜ, consider a fixed but unknown probability distri-
bution on the input space Φ with support in the ball of radius R about the origin.
Then, with probability 1 − δ over randomly drawn training set X of size N for
all β > 0 the generalization of the linear classifier f(x) on the input space is
bounded by

ǫ(N, η, δ) =
2

N
(η log2(

8eN

η
) log2(32N) + log2(

8N

δ
)), (13)

1The reason for eliminating a random subset of classes and drawing γ · N samples by
bootstrapping is to avoid identical coefficients of principal components when the same feature
subset is chosen for different classifiers.
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Algorithm 1 Double Rotation.

Input:
X : the training set (N × n matrix)
Y : the labels of the training data set (N × 1 matrix)
L: the number of classifiers in the ensemble
F : the feature set
K: the number of subsets
γ: the ratio of bootstrap sample in the training set

Output:
classifier Cj

1: Split F randomly into K subsets Fij(i = 1, 2 · · · ,K) so that each feature
subset contains M = xn/Ky features

2: for i = 1, 2 · · · ,K do

3: Let Xij be the dataset X for the features in Fij

4: Eliminate a random subset of classes Xij

5: Select γ ·N samples from Xij by bootstrapping and denote the new set
by X ′

ij

6: Apply PCA on X ′
ij to obtain the coefficients of the principal components

a1
i,j , · · · , aMi

i,j

7: end for

8: Organize the obtained coefficients into a sparse “rotation” matrix Rj as
defined in Eq. (11)

9: Construct Ra
j by rearranging the columns of Rj so that they correspond to

the original features
10: Use XRa

j as the new training data set and rerun the above process but
replace PCA with LSDA to obtain a new rotation matrix Sa

j

11: Build the classifier Cj using (XRa
jS

a
j , Y ) as the training set

where

η = ⌊64.5(R2 + ∆2)(‖W‖2 + E(X, (W, t), β)2/∆2)

β2
⌋, (14)

provided N ≥ 2/ǫ, and η ≤ eN .

In Theorem 2, W = [w1, · · · , wL]TL×1, x = [hx1, · · · , hxL]TL×1, y is the real

class label of x and t = 0. Besides, E(X, (W, t), β) =
√

∑

(x,y)∈X

ϕ((x, y), (W, t), β)2

and ϕ((x, y), (W, t), β) = max{0, β − y(〈WT · x〉 − t)}. We can see that with
β given, a small R and E(X, (W, t), β) can lead to a good linear classifier. In
fact, R is related to the number of base classifiers in the ensemble since if
there are fewer base classifiers, R will become smaller. On the other hand,

y(〈WT ·x〉− t) = y(〈WT ·x〉) = y(
L
∑

j=1

wjhxj) =
L
∑

j=1

wjyhxj =
L
∑

j=1

wjdxj = m(x)
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when t = 0 and y, hxj ∈ {−1, 1}. Thus, E(X, (W, t), β) can be understood as
the root of the squared loss of ensembles, which is determined by the margin dis-
tribution of the ensemble. Based on the theorem, we can design an optimization
objective to learn the weights of the base classifiers.

Definition 3. Given xi ∈ X, the classification loss of xi is computed as

l(xi) = [1 −m(xi)]
2, (15)

where m(xi) is the margin of xi. Then, the classification loss of X is

l(X) =

n
∑

i=1

l(xi) = ‖U −DW‖2
2, (16)

where U = [1, · · · , 1]TN×1,W = [w1, · · · , wL]TL×1 and D = {dij}N×L.

The above function only considers the classification loss related to the margin
distribution. The number of base classifiers is not taken into account. However,
from Theorem 2 we know that only few base classifiers should be included in
ensembles, and consequently the weight vector should be sparse. A sparse model
is expected to improve the generalization performance [18, 22, 58]. In order to
obtain a sparse weight vector, we add the L1 norm regularization term of the
weight vector into the loss function. The regularized loss function is then

JW = argmin‖U −DW‖2
2 + λ‖W‖1. (17)

This is the well-known Lasso problem [47]. While Lasso has been employed
in regression ensembles [24], we here apply it to classification tasks. Lasso can
be explained as a large margin solution in classification in terms of the infinite
norm [40]. By minimizing JW , we obtain the weights wj(j = 1, 2, · · · , L) of the
base classifiers.

Given the weight coefficients, the base classifiers are sorted, and then a sub-
optimal subset is selected for classifying previously unseen samples. Algorithm 2
describes the approach in pseudocode.

Essentially, our proposed technique is an ordered aggregation pruning method
based on the weights of the base classifiers, where the weights are trained by
minimizing a margin induced classification loss.

4. Algorithm analysis

There are several parameters to be set in our proposed algorithm. In this
section, we discuss how these parameters affect the performance of the generated
classifier.

First, we discuss how to set K, i.e. the number of splits. We do this based
on numerical experiments on various UCI [3] datasets. We set K to 2, 3, 4, 5,
and then compare the resulting performances of DRMF. The ratio of bootstrap
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Algorithm 2 Margin Based Pruning

Input:
X : the training set (N × n matrix)
Y : the labels of the training set (N × 1 matrix)
Cj(j = 1, 2, · · · , L): the base classifiers
x: a test sample

Output:
the label of x;

1: Apply Cj(j = 1, 2, · · · , L) on the training set X , and compare the classifi-
cation results with Y to obtain D from Definition 3

2: Minimize JW = argmin‖U −DW‖2
2 + λ‖W‖1 to obtain the weights wj(j =

1, 2, · · · , L)
3: Sort the base classifiers according to their weights in descending order

Csj(sj = 1, 2, · · · , L)
4: for j = 1, 2, · · · , L do

5: Classify the training set X with the classifiers {Cs1, Cs2, · · · , Csj} and
combine their outputs using simple voting to obtain the predicted labels of
X

6: Compare the classification results with Y and compute the corresponding
accuracy ψj

7: end for

8: Choose the subset of base classifier {Cs1, Cs2, · · · , CsB} that produces the
maximal accuracy ψB in {ψ1, ψ2, · · · , ψL}

9: Use the ensemble {Cs1, Cs2, · · · , CsB} to classify the unseen sample x

samples was set to 0.75, the number of candidate base classifiers was 100 and
J48 decision trees from the WEKA library [27] were used as base classifiers.

Table 1 describes the 20 classification tasks we used. For every classification
task and data set, standard 10-fold cross validation was performed.

In Table 2, we report the classification performance of DRMF with different
random splits. As we can see from there, K has some influence on the perfor-
mance of the generated ensembles. Since random splits of the features lead to
different rotations, diverse base classifiers are generated. However, if K is too
large, the number of features in each subset may become too small and hence
not sufficient to effectively represent the learning task, thus leading to a drop
in performance. Clearly, a tradeoff between the diversity and the performances
of the base classifiers should be made. The experimental results in Table 2 in-
dicate that DRMF produces good performance if K = 2, and we consequently
set K = 2 in the remainder of experiments.

In DRMF, the number of candidate base classifiers should be set before
training. Hence, next we investigate how many candidate base classifiers are
sufficient to lead to a good ensemble. We thus perform experiments varying the

10



Table 1: Statistics of classification tasks.
Dataset Instances Discrete Features Continuous Features Classes

australian 690 8 6 2

crx 690 9 6 2

cmc 1473 7 2 3

derm 366 0 34 6

german 1000 13 7 2

glass 214 0 9 6

heart 270 0 13 2

horse 368 15 7 2

ICU 200 16 4 3

iono 351 0 34 2

iris 150 0 4 3

movement 360 0 90 15

pima 768 0 8 2

rice 104 0 5 2

spectf 269 0 44 2

thyroid 215 0 5 3

wiscon 699 0 9 2

wdbc 569 0 30 2

yeast 1484 0 7 2

zoo 101 15 1 7

Table 2: Classification performance of DRMF with different numbers of splits.

Data set K=2 K=3 K=4 K=5

australian 88.11±3.48 87.24±4.10 87.10±2.94 87.97±3.63

crx 86.37±13.66 86.22±15.01 86.53±13.58 86.37±14.28

cmc 54.24±3.25 54.45±3.75 55.54±3.43 52.89±2.65

derm 96.75±3.84 95.95±4.28 96.19±3.22 95.71±3.20

german 77.80±2.94 76.70 ±3.33 75.60±3.63 76.40±4.01

glass 76.64±10.61 73.37±8.64 75.69±11.01 62.06±14.65

heart 84.44±4.88 83.70± 5.00 86.30±3.51 80.00±6.34

horse 93.49±3.83 91.85±5.25 92.94±4.06 93.21±3.88

ICU 93.56±4.80 89.45±11.53 93.61±3.99 90.98±8.51

iono 93.47±4.76 95.24±3.69 93.52±5.05 95.21±4.56

iris 98.67± 2.81 94.00±4.92 96.00±3.44 96.00±3.44

movement 82.44±16.29 81.56±17.95 81.00±16.63 80.22±19.09

pima 78.78±3.76 77.35±4.90 77.87±4.61 73.57±3.65

rice 89.82±13.17 79.05±10.04 79.96±10.70 79.05±10.04

spectf 82.48±7.91 83.28±3.08 82.58±7.00 83.94±7.63

thyroid 96.26±4.86 93.48±7.92 93.96±8.17 93.48±5.93

wiscon 97.86±2.36 97.57 ±3.16 96.57±3.24 92.99±3.71

wdbc 97.72±1.66 95.80 ±3.42 97.21±2.49 96.84±2.58

yeast 73.25±3.47 72.57±3.73 70.68±5.80 70.68±5.80

zoo 94.39±8.39 92.39±11.40 93.14±9.63 94.39±8.39

Average 86.83 85.06 85.60 84.10
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Table 3: Classification performance with different numbers of candidate base classifiers.

Data set L=20 L=40 L=60 L=80 L=100

australian 86.96±3.01 88.13±3.98 87.54±2.90 87.97±3.27 88.11±3.48

crx 85.66±14.10 85.51±14.66 85.64±15.10 86.81±13.20 86.37±13.66

cmc 52.82±3.41 53.97±3.30 53.70±3.28 54.18±2.95 54.24±3.25

derm 96.47±3.90 96.98±4.24 95.91±5.26 96.47±4.12 96.75±3.84

german 75.40±3.60 77.00±3.40 77.00 ±3.02 77.70±2.45 77.80±2.94

glass 72.44±12.14 74.44±11.43 74.89±13.25 78.14±10.91 76.64±10.61

heart 83.33±3.60 83.70±4.68 84.81± 4.43 84.81±4.77 84.44±4.88

horse 92.95±4.06 92.94±4.06 93.49±3.38 93.22±3.39 93.49±3.83

ICU 94.04±4.69 94.04±4.69 93.56±4.80 94.09±5.21 93.56±4.80

iono 93.20±4.00 92.92±4.60 93.49±4.95 93.77±5.09 93.47±4.76

iris 94.67±5.26 94.67±5.26 94.67±5.26 96.67±4.71 98.67± 2.81

movement 80.56±15.15 82.78±16.50 82.78±16.57 82.44±16.29 82.44±16.29

pima 77.87±4.98 78.52±3.90 78.39±4.53 78.39±4.32 78.78±3.76

rice 89.73±10.18 88.82±10.46 90.73±12.86 89.82±13.17 89.82±13.17

spectf 82.61±5.18 83.34±4.39 82.12±7.21 83.25±7.01 82.48±7.91

thyroid 94.83±6.10 95.30±6.31 94.83±5.21 95.78±5.19 96.26±4.86

wiscon 97.34±2.59 97.43±2.59 97.71 ±2.15 97.34±2.59 97.86±2.36

wdbc 97.19±2.06 97.72±1.66 98.43 ±1.53 97.72±1.66 97.72±1.66

yeast 73.11±3.26 73.45±3.12 73.45±3.64 73.38±3.61 73.25±3.47

zoo 94.39±8.39 94.39±8.39 94.39±8.39 94.39±8.39 94.39±8.39

Average 85.78 86.30 86.38 86.82 86.83

number of base classifiers L as 20, 40, 60, 80 and 100, respectively. Table 3
compares the classification performance of DRMF with these settings for L. As
we can see from there, the overall performance improves when L becomes larger.
However, if L > 80, the difference is not significant, and we consequently use
L = 100 in the following experiments.

In Margin Based Pruning (Algorithm 2), we utilize simple voting in lines 5
and 9. That is, the class that receives the largest number of votes is considered
as the final decision. In contrast, in weighted voting, the votes are weighted
and the ensemble decision is the class with the largest sum of weights of votes.
Since we calculate the weights in line 2 of Algorithm 2, a natural question that
arises is whether applying a weighted voting strategy would give better results.
To answer this, we give, in Table 4, the classification accuracies and the number
of selected base classifiers2 using the two fusion strategies. From Table 4 we
can observe that simple voting performs typically better than weighted voting,
while it also leads to smaller ensembles.

To further investigate why simple voting is better than weighted voting,
we perform some additional experiments to explore the relationship between
the weights of the base classifiers and their classification performances. Fig. 1
shows the relationship between the classification accuracy and the ranking of

2Different fusion strategies will lead to different ensemble sizes.
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Table 4: Classification performance and number of selected base classifiers for pruned simple
voting (PSV) and pruned weighted voting (PWV).

Data set PSV accuracy PSV no. class. PWV accuracy PWV no. class.

australian 88.11±3.48 13.9 87.10±3.83 71.4

crx 86.37±13.66 18.2 85.50±12.22 80.6

cmc 54.24±3.25 26.9 52.55±3.07 81.7

derm 96.75±3.84 4.2 96.47±5.38 3.7

german 77.80±2.94 20.6 76.70 ±3.43 72.6

glass 76.64±10.61 9.8 78.51±7.88 39.8

heart 84.44±4.88 15.4 82.59± 4.95 25.5

horse 93.49±3.83 4.4 91.03 ±4.24 3.7

ICU 93.56±4.80 2.4 94.14±4.35 11.9

iono 93.47±4.76 4.9 90.95±6.61 2.6

iris 98.67± 2.81 6.6 98.00±3.22 1

movement 82.44±16.29 11.5 79.33±20.35 7.2

pima 78.78±3.76 17.2 77.35±4.44 72.7

rice 89.82±13.17 4.8 84.98±12.79 51.4

spectf 82.48±7.91 4.9 80.24±8.33 2.6

thyroid 96.26±4.86 1.8 95.78±5.19 1.2

wiscon 97.86±2.36 4.4 97.86 ±2.54 70

wdbc 97.72±1.66 8.5 97.01±2.05 3.9

yeast 73.25±3.47 24.8 71.69±3.89 70.6

zoo 94.39±8.39 1.3 93.39±8.24 1

Average 86.83 10.33 85.56 33.76

their weights. Here, the x-axis indicates the ranking of the weight with 1 indi-
cating the largest weight of the base classifier and 100 the smallest. From Fig. 1
we can conclude that base classifiers with large weights do not necessarily have
better classification performance compared to those with small weights. Weight
learning considers both the diversity among base classifiers and their perfor-
mances and hence while the weights can be used to rank the base classifiers,
they do not reflect their classification performances.

In our algorithm, the base classifiers are added to the ensemble one by one.
Base classifiers with the large weights are included first. Fig. 2 plots the clas-
sification accuracies when the base classifiers are added, for both simple and
weighted voting. From there, we can notice that the best classification accuracy
obtained by simple voting is often higher than that of weighted voting, confirm-
ing that simple voting can produce better performance than weighted voting.
We can also see that fusion based on only a subset of base classifiers is better
than combining all of them, which is consistent with the findings from [55].

Margin Based Pruning has two main components. One is to learn the weights
for the base classifiers via the minimization of JW , while the other is to select the
base classifiers. Some of the weights might be zero, and we consequently tested
whether the classification performance is affected if we remove base classifier
with zero weights. For this, in Table 5, we compare the fusion accuracy of
base classifiers that receive non-zero weights (denoted by LASSO in Table 5)
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Figure 1: Classification accuracies of base classifiers with different ranking in terms of their
weights.

with the fusion accuracy of DRMF. It can be seen that DRMF performs better
than LASSO, and thus that Steps 3 to 8 in Algorithm 2 are indeed useful
for improving the classification performance. We also analyze the differences
between the base classifiers selected by the two strategies. From Table 5 it is
apparent that the average accuracy of the base classifiers in DRMF is higher
than that of the base classifiers that receive non-zero weights, and the diversity
among base classifiers in DRMF is also higher than that of the base classifiers
with non-zero weights.

Finally, we compare the robustness of DRMF with that of Rotation Forest
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Figure 2: Variation of classification accuracies with different numbers of selected base classi-
fiers when simple voting and weighted voting are used.

and J48. For that, we first generate noisy samples by randomly revising the
labels of some training samples with the percentage of relabeled samples varying
from 3% to 30%. Fig. 3 shows the variation of classification accuracies when
we increase the noise rate in the training set. As is apparent, DRMF shows
superior robustness compared to both Rotation Forest and J48. In particular,
for DRMF the variation of the classification accuracies remains small as the rate
of mislabeled samples increases.

We further consider the robustness of the algorithms with respect to at-
tribute noise and add Gaussian noise to the features of the training data. The
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Table 5: Comparison of different strategies used in selecting base classifiers (FA=fusion accu-
racy, AA=average accuracy).

Data FA FA Diversity Diversity AA AA

set (LASSO) (DRMF) (LASSO) (DRMF) (LASSO) (DRMF)

australian 86.09±3.88 88.11±3.48 0.1122 0.1318 83.73 84.22

crx 83.61±18.39 86.37±13.66 0.0993 0.1357 82.25 82.54

cmc 52.41±3.70 54.24±3.25 0.3493 0.3517 47.08 47.19

derm 97.86±2.45 96.75±3.84 0.1872 0.1776 86.27 87.59

german 75.40±3.17 77.80±2.94 0.2713 0.2986 69.37 69.15

glass 71.01±11.00 76.64±10.61 0.2951 0.3232 60.98 62.30

heart 82.59±4.95 84.44±4.88 0.2407 0.2562 75.07 75.81

horse 91.04±4.76 93.49±3.83 0.1465 0.1585 86.89 88.12

ICU 92.08±2.31 93.56±4.80 0.0295 0.0317 87.06 89.58

iono 95.73±4.51 93.47±4.76 0.2112 0.2330 86.73 87.61

iris 95.33±6.32 98.67± 2.81 0.0164 0.0180 94.49 98.57

movement 80.44±16.59 82.44±16.29 0.3307 0.3255 59.48 61.37

pima 76.17±4.57 78.78±3.76 0.2236 0.2332 72.52 73.27

rice 83.89±8.78 89.82±13.17 0.1208 0.1212 79.97 83.37

spectf 81.00±6.09 82.48±7.91 0.2420 0.2362 75.50 77.07

thyroid 95.78±4.16 96.26±4.86 0.1083 0.1451 92.55 95.58

wiscon 97.28±2.65 97.86±2.36 0.0366 0.0520 95.77 95.61

wdbc 97.55±2.05 97.72±1.66 0.0838 0.0789 93.40 94.13

yeast 71.62±4.32 73.25±3.47 0.1195 0.1383 70.55 70.86

zoo 94.39±8.39 94.39±8.39 0.1045 0.0667 87.29 93.89

Average 85.06 86.83 0.1664 0.1757 79.35 80.89

mean of the noise is zero, while we vary the standard deviation from 0 to 0.5,
and show the results in Fig. 4. As we can observe from there, DRMF is more ro-
bust with respect to attribute noise than J48, and performs similarly compared
to Rotation Forest.

5. Simulation and Experimental Analysis

In this section, we compare DRMF with some other representative classifica-
tion algorithms including J48, Rotation Forest, AdaBoostM1,and Bagging, on
the 20 datasets from Table 1. For all ensembles, base classifiers are generated
using J48. For DRMF and Rotation Forest, we set K = 2, the rate of bootstrap
sampling to 0.75 and the number L of base classifiers to 100. The parameters of
Bagging and AdaBoostM1 were kept as their default values in WEKA, while the
number of base classifiers was also set to 100. We performed standard 10-fold
cross validation to compute the classification performance. Table 6 gives the
classification accuracies on all datasets together with the standard deviations
for all evaluated algorithms.

We further employ a test for statistical significance, namely the Nemenyi
test [37], to compare the algorithms. In this test, the critical difference [16] for
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Figure 3: Variation of classification accuracies when varying the rate of class noise.

the five algorithms and 20 data sets at significance level α = 0.05 is

CD = q0.05

√

k(k + 1)

6N
= 2.728 ×

√

5 × (5 + 1)

6 × 20
= 1.364, (18)

where q0.05 is the critical value for the two-tailed Nemenyi test, k is the number
of the algorithms and N is the number of data sets.

The average ranks for DRMF, J48, Bagging, AdaBoostM1 and Rotation
Forest were thus found to be 1.55, 4.36, 3.00, 3.05, and 3.03, respectively, and
the average rank differences between DRMF and the other methods were 4.375−
1.55 = 2.825 > 1.364, 3.00 − 1.55 = 1.45 > 1.364, 3.05 − 1.55 = 1.50 > 1.364,
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Figure 4: Variation of classification accuracies when varying the rate of attribute noise.

and 3.025− 1.55 = 1.475 > 1.364. Consequently, DRMF was shown to perform
statistically significantly better than all other methods.

Next, we discuss why, compared with Rotation Forest, DRMF is able to
further boost the classification performance. First, it can be seen that the pa-
rameter K in DRMF and Rotation Forest was set to 2 in the above experiments.
From Table 2 we know, that K = 2 is suitable for DRMF. In order to verify
whether K = 2 is also suitable for Rotation Forest, the classification perfor-
mances of Rotation Forest with different numbers of splits are given in Table 7.
From there, we can see that Rotation Forest also produces good performance if
K = 2.
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Table 6: Performance comparison with other classifiers.

Data set DRMF J48 Bagging AdaBoostM1 Rotation Forest

australian 88.11±3.48 83.05±5.40 86.55±6.07 86.10±5.01 85.83±5.09

crx 86.37±13.66 82.74±13.38 83.91±15.48 85.21±12.94 83.04±17.89

cmc 54.24±3.25 54.65±2.65 53.84±3.32 50.24±2.49 54.72±2.62

derm 96.75±3.84 93.73±4.50 96.39±3.72 95.12±3.30 97.10±3.19

german 77.80±2.94 70.30±3.40 75.60±3.17 76.00±3.53 74.40 ±4.79

glass 76.64±10.61 59.11±13.53 68.17±11.17 72.89±17.04 61.17±11.68

heart 84.44±4.88 76.67±5.25 82.22±7.77 80.00±5.84 81.48± 6.98

horse 93.49±3.83 96.19±2.65 97.27±2.27 97.56±0.86 91.02 ±4.64

ICU 93.56±4.80 81.03±29.12 84.14±29.72 84.14±29.83 90.45±12.03

iono 93.47±4.76 89.24±7.90 91.21±5.83 93.22±4.62 94.34±4.94

iris 98.67± 2.81 96.00±3.44 94.67±6.13 96.00±3.44 95.33±3.22

movement 82.44±16.29 62.44±16.89 68.89±17.73 74.11±18.82 82.00±20.92

pima 78.78±3.76 74.09±5.87 76.43±4.89 73.57±3.74 76.17±3.39

rice 89.82±13.17 79.05±10.04 83.89±8.78 83.89±8.78 81.98±8.95

spectf 82.48±7.91 73.47±8.47 78.78±10.74 78.46±9.85 80.26±6.15

thyroid 96.26±4.86 93.48±5.93 94.87±6.43 94.00±10.12 95.78±7.25

wiscon 97.86±2.36 94.57±2.10 96.43±3.03 95.71±3.01 96.57 ±2.87

wdbc 97.72±1.66 92.98±3.96 96.31±3.36 97.19±1.90 97.19 ±2.22

yeast 73.25±3.47 74.53±4.44 76.68±5.55 73.52±3.59 71.89±3.88

zoo 94.39±8.39 90.76±10.26 93.30±7.07 96.38±5.75 90.65±9.13

Table 7: Classification performances of RF with different numbers of splits.

Data set K=2 K=3 K=4 K=5

australian 85.83±5.09 85.80±3.83 86.09±3.53 84.34±3.62

crx 83.04±17.89 82.18±17.54 82.89±15.68 83.75±16.00

cmc 54.72±2.62 52.68±2.60 53.02±4.37 52.89±2.65

derm 97.10±3.19 97.78±2.87 97.26±2.93 97.02±2.99

german 74.40 ±4.79 75.30±3.97 75.10±5.09 74.80±4.87

glass 61.17±11.68 66.33±10.64 71.42±13.53 60.22±15.34

heart 81.48± 6.98 84.81±4.08 83.33±6.11 77.41±9.31

horse 91.02 ±4.64 91.84±3.66 91.56±3.77 92.66±3.39

ICU 90.45±12.03 90.45±13.92 87.29±17.86 87.29±21.75

iono 94.34±4.94 93.50±4.95 94.06±5.21 93.50±4.95

iris 95.33±3.22 94.00±4.92 96.00±3.44 96.00±3.44

movement 82.00±20.92 80.89±21.25 78.11±23.44 80.33±20.03

pima 76.17±3.39 75.13±5.20 74.74±5.04 73.57±3.65

rice 81.98±8.95 79.05±10.04 79.96±10.70 79.05±10.04

spectf 80.26±6.15 80.99±7.46 78.86±7.67 81.01±5.52

thyroid 95.78±7.25 93.48±7.92 93.96±8.17 93.48±5.93

wiscon 96.57 ±2.87 97.43±2.92 96.00±3.29 92.99±3.71

wdbc 97.19 ±2.22 97.38±2.64 97.73±2.33 97.02±2.62

yeast 71.89±3.88 70.55±5.80 70.68±5.80 70.68±6.05

zoo 90.65±9.13 90.28±8.34 88.65±9.04 92.39±9.24

Average 84.07 83.99 83.84 83.02
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Table 8: Classification performances with different rotation and fusion strategies.

Data set RF DRSF PRMF DRMF

australian 85.83±5.09 86.09±3.88 88.02±3.95 88.11±3.48

crx 83.04±17.89 83.61±18.39 85.94±14.06 86.37±13.66

cmc 54.72±2.62 52.41±3.70 55.67±2.15 54.24±3.25

derm 97.10±3.19 97.86±2.45 97.26±2.62 96.75±3.84

german 74.40 ±4.79 75.40±3.17 76.50±5.10 77.80±2.94

glass 61.17±11.68 58.81±11.78 75.28±8.38 76.64±10.61

heart 81.48± 6.98 82.59±4.95 83.70±5.58 84.44±4.88

horse 91.02 ±4.64 91.04±4.76 92.67±4.42 93.49±3.83

ICU 90.45±12.03 91.55±3.34 91.98±11.08 93.56±4.80

iono 94.34±4.94 95.73±4.51 95.16±2.74 93.47±4.76

iris 95.33±3.22 95.33±6.32 96.00±3.44 98.67± 2.81

movement 82.00±20.92 80.44±16.59 82.89±18.13 82.44±16.29

pima 76.17±3.39 76.17±4.57 76.05±3.99 78.78±3.76

rice 81.98±8.95 83.89±8.78 87.82±10.99 89.82±13.17

spectf 80.26±6.15 81.00±6.09 82.39±5.96 82.48±7.91

thyroid 95.78±7.25 95.78±4.16 95.76±6.12 96.26±4.86

wiscon 96.57 ±2.87 97.28±2.65 97.28±2.47 97.86±2.36

wdbc 97.19 ±2.22 97.55±2.05 97.18±3.04 97.72±1.66

yeast 71.89±3.88 71.62±4.32 73.11±3.18 73.25±3.47

zoo 90.65±9.13 93.76±10.06 92.28±8.00 94.39±8.39

Average 84.07 84.40 86.15 86.83

The difference between DRMF and Rotation Forest mainly comprises two
parts: the use of Double Rotation to generate the base classifiers, and Margin
Based Pruning. Thus, we explore whether they are both necessary for improving
the classification performance of the ensemble. For this, we test four combina-
tions: Rotation Forest (RF); a combination of Double Rotation and the fusion
strategy in Rotation Forest i.e. simple voting of all base classifiers (DRSF), a
combination of PCA rotation and Margin Based Pruning (PRMF), and DRMF.
The results are presented in Table 8. As we can confirm from there, both Dou-
ble Rotation and Margin Based Pruning are indeed useful for improving the
classification performance.

Further, we compute the margin distribution of the ensembles generated
using the above four classification algorithms, where the margin of a sample
is computed as the difference between the number of correct votes and the
maximum number of the votes received by any wrong label [42]. A large margin
is understood as a “confident” classification, and thus we would desire that large
margins of the training samples are derived. Fig. 5 shows the margin distribution
when RF, DRSF, PRMF and DRMF are used. We can observe, that compared
with RF, DRMF improves the margin distribution on the training set, which
confirms that both Double Rotation and Margin Based Pruning are helpful for
improving the margin distribution.

So, why does Double Rotation improve the margin distribution of the train-
ing set? From Theorem 1, we know that the margin of the training samples has
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Figure 5: Margin cumulative frequency of training samples for RF, DRSF, PRMF and DRMF.

an underlying relationship with the diversity of the base classifiers. We thus
compare the diversity of the base classifiers when employing Double Rotation
and PCA rotation, and show the results in Fig. 6. From there we can notice
that the diversity among base classifiers is consistently enhanced after Double
Rotation. However, from Fig. 7 we see that the average accuracies of the two
kinds of base classifiers are almost the same. Consequently, we can derive that
the improvements of the margin distribution come from the diversity, and not
from the improved accuracies of the base classifiers.

Finally, we conducted some experiments to validate the effectiveness of the
proposed Margin Based Pruning (Margin-P) algorithm and compared it with
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other ensemble pruning techniques based on the margin including MeanD-M [52]
and the improved version of MDM [32, 33]. MeanD-M optimizes the average
margin via a backward elimination strategy. In particular, it ranks the contri-
bution and importance of every base classifier Cj in the temporary ensemble Γ
by observing the decrease of the average margin when removing Cj from the en-
semble. During each step, the least important classifier Cmin with the minimum
decrease of the average margin is eliminated from the ensemble and the ensem-
ble thus shrinks to its subset Γ

′

= Γ \ Cmin. Then, the base classifiers in Γ
′

are
reordered and the above process is repeated. MDM selects base classifiers via
a forward selection strategy where base classifiers are sequentially added based
on a specified rule. In particular, the classifier selected in the u-th iteration is

su = arg min
j

d(o,
1

u
(cj +

u−1
∑

t=1

cst
)), (19)

where cj is the N -dimensional signature vector of Cj whose i-th component
(cj)i is 1 if the sample xi is correctly classified by Cj and is -1 otherwise. j
runs through the classifiers outside the temporary ensemble and d(v1,v2) is the
distance between vectors v1 and v2. In [33], the objective point o is placed in
the first quadrant with equal components oi = p (e.g., p = 0.075). An improved
version of MDM is proposed [32], which uses a moving objective point o that
allows p(u) to vary with the size of the sub-ensemble u. Exploratory experiments
show that a value p(u) ∝ √

u is appropriate. improved version for comparison
with our method.
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Figure 7: Box plots of classification accuracies with different rotation strategies.

In MeanD-M, base classifiers are eliminated from the original ensemble one
by one and the sub-ensemble with the best accuracy on the test set is used to
estimate its performance. Thus, we also use the best accuracy on the test set
to estimate the classification performance for MDM and Margin-P. The results
of the experiment are given in Table 9. From there, we can confirm that our
algorithm does indeed performs better than the pruning strategies in most cases.

6. Conclusions and Future Work

Ensemble learning is an effective approach to improve the generalization
performance of a classification system. In this paper, we have proposed Double
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Table 9: The best test performances based on different pruning methods.

Data set MeanD-M MDM Margin-P

australian 88.41±3.48 87.54±2.99 88.98±3.16

crx 86.22±15.11 87.23±14.20 87.81±13.71

cmc 55.94±2.97 56.08±4.00 56.62±3.48

derm 98.41±2.21 98.13±2.16 98.41±2.21

german 78.60 ±2.17 79.00±2.49 79.50±3.06

glass 77.60±10.62 75.24±7.89 79.94±9.89

heart 86.30± 3.92 85.93±4.55 87.04±3.15

horse 94.59 ±4.37 93.50±3.64 94.85±3.70

ICU 93.61±5.31 94.56±5.06 94.61±4.29

iono 97.12±3.66 96.60±3.71 96.84±3.27

iris 98.00±4.50 97.33±3.44 98.67± 2.81

movement 85.33±16.04 83.67±16.06 85.44±15.87

pima 78.91±3.15 79.43±4.10 80.86±3.39

rice 91.55±8.24 91.34±8.29 94.36±6.48

spectf 85.86±4.25 85.11±7.27 86.62±5.56

thyroid 97.19±4.58 96.69±4.51 97.64±4.62

wiscon 98.00 ±2.25 98.43±1.96 98.14±2.13

wdbc 98.60 ±1.38 98.25±1.42 98.42±1.29

yeast 73.92±3.41 74.12±4.08 74.46±2.32

zoo 95.39±8.41 95.39±8.41 95.39±8.41

Average 87.98 87.68 88.73

Rotation Margin Forest (DRMF) as an effective new ensemble learning algo-
rithm. The idea of DRMF is to improve the generalization performance by
improving the margin distribution on the training set. Extensive experimental
results on 20 benchmark datasets confirm that DRMF provides a competent en-
semble learner, and allows us to draw several conclusions: (1) Double Rotation
with PCA and LSDA is able to generate diverse base classifiers; (2) The margin
distribution of the ensemble system is improved if a set of diverse base clas-
sifiers is exploited by optimizing a regularized loss function, and consequently
the classification performance of the ensemble is enhanced; (3) The DRMF al-
gorithm outperforms classical ensemble learning techniques such as Bagging,
AdaBoostM1 and Rotation Forest.

Our work is motivated by the idea that diversity among base classifiers can
improve the margin distribution of the ensemble. However, no deep discussion
on this issue has been reported so far. Further theoretical analysis on the
relationship between diversity and margin is thus required. While in this paper,
we use Double Rotation to create diversity, some other techniques could also
be introduced. A systematic discussion on generating diversity would therefore
present an important task. Although DRMF is presented as an approach to
create homogenous ensembles (e.g., based only on decision trees as the base
classifiers), it is straightforward to use DRMF to learn and prune heterogeneous
classifiers for ensemble learning. Exploring the effectiveness of DRMF in such
a setting might be an interesting avenue.
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