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ABSTRACT 

A hypothesis is made that delamination can be driven by pockets of energy concentration (PECs) in 
the form of pockets of tensile stress and shear stress on and around the interface between a thin film 
and a thick substrate, where PECs can be caused by thermal, electrochemical or other processes. Based 
on this hypothesis, three analytical mechanical models are developed to predict several aspects of thin-
film spallation failure including nucleation, stable and unstable growth, size of spallation and final 
kinking off. The predictions from the developed models are compared against experimental results and 
excellent agreement is observed.  

1 INTRODUCTION  

Thin solid films are found in many different applications fulfilling various roles such as confine-
ment of electric charge in integrated electronic circuits, thermal insulation in thermal barrier coatings 
(TBCs), and protection against corrosion, friction and wear in surface coatings. Although thin films 
are not usually expected to have a primary load-carrying capability, they often experience residual 
stresses due to the fabrication process and/or working conditions. Residual stresses are a major cause 
of film cracks and debonding. Buckling-driven delamination is a typical example of film failure under 
in-plane compressive residual stress, which has been extensively studied in the last few decades. How-
ever, the experimental studies [1, 2] reveal a completely new failure behaviour of thin layer materials. 
A hypothesis is proposed in the present work to explain this behaviour. According to this hypothesis, 
delamination can be driven by PECs in the form of pockets of tensile stress and shear stress, with the 
former being dominant on and around the interface between a thin film and a thick substrate, where 
PECs can be caused by a number of different processes, including thermal cooling, chemical reactions 
and etc. Based on this hypothesis, circular-edged spallations are considered. Three mechanical models 
are established using partition theories for mixed-mode fracture based on classical plate theory, first-
order shear-deformable plate theory and full 2D elasticity. 

2 THEORY [3, 4] 

Fig. 1 shows a circular separation bubble of radius BR  of thin layer material of thickness h with 
the subscript B representing the edge of the bubble. The thin layer material is under in-plane biaxial 
compressive stresses 0 . The bubble shape is assumed to be radially sinusoidal and axisymmetric and 
represented by 
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Figure 1: A circular separation bubble of radius BR . 

with w  representing the upward deflection and A  the amplitude or the maximum separation. A 
clamped edge condition at BRr   is assumed because the thickness ratio between the thin layer and 

substrate is very small. The bubble energy is defined and calculated as 
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in which U  is the total energy in the bubble including the bending strain energy, in-plane strain ener-
gy and the interface fracture energy, and 0U  is the residual in-plane strain energy. E/)1( 2

00    

and cGh 00    where E  and   are the Young’s modulus and the Poison’s ratio respectively of the 

thin layer material, and cG  is the interface fracture toughness. It can be shown that aU  is always posi-

tive and monotonically increases with respect to the relaxation strain R
r  or the bubble amplitude A  

when    0
22 12hRB . In this work, aU  is called ‘bubble energy’. It comes from the PEC energy 

formed in the form of pockets of tensile stress and shear stress, with the former being dominant on and 
around the interface between a thin layer material and the thick substrate. The PECs can be caused by 
a number of different processes including thermal cooling, chemical reactions and etc. When the PEC 
energy is able to provide the bubble energy aU  for nucleation, nucleation of a separation bubble will 

occur. It is expected that the bubble energy aU  governs the growth behavior of a bubble. By using the 
mixed mode partition theories [5-11] and a linear failure criterion, the bubble energy at bubble growth 
is obtained. 
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The first term in Eq. (3) is the sum of the bending strain energy and surface energy while the rest is the 
relaxed in-plane strain energy, which is negligible if BR  is small. The first term is therefore regarded 

as the nucleation energy, that is,   cBNUa GRU 25.1   where BR  is very small. It is seen that one third 

of the nucleation energy is used to bend the separation outwards after nucleating the interface separa-
tion using two thirds of its energy. When the PEC is able to provide the bubble energy  

GRaU , it will 

drive the nucleation and growth of a separation bubble. Two scenarios can occur: One scenario is slow 
and stable growth which occurs when BR  is smaller than the critical buckling characteristic length. 

The other is unstable growth when BR  reaches the critical value of the buckling characteristic length. 

The stable bubble then becomes an unstable buckle. The initiation of unstable growth is found at 
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with the subscript UG denoting the initiation of unstable growth and 936.0 , and 
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  is the ratio between the plain strain energy density and interface fracture toughness. It will be seen 
later   plays key role for the mechanical behaviour of the bubble. There is no unstable growth when 

2 . Expansion of the expression in the square bracket in Eq. (4) for 2 , leads to 
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By differentiating  
GRaU  in Eq. (3) with respect to hRB , its maximum is found to occur at 
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with the subscript MU denoting the maximum. When 89  there is no solution. Expansion of the 

expression in the square bracket in Eq. (7) for 8/9 , leads to 
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Note that  MUBR  in Eq. (8) is approximately equal to the critical buckling radius of a circular bubble 

with a clamped edge condition. Substituting Eq. (8) into Eq. (3) gives the bubble energy when 
89  as 
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More importantly,  
GRaU  becomes zero at 
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When 23  there is no solution. Expansion of the expression in the square bracket in Eq. (10) for 

2/3 , leads to 
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At this moment if the kinetic energy due to fast unstable growth of the buckle is large enough to break 
the film at its edge, the buckle spalls. The subscript SP in the equations above denotes spallation. The 
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final kink-off angle   can be determined as 
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where cfG  is the fracture toughness of the thin layer material. 

Now, it is worth noting that the above development applies to all the three fracture mode partition 
theories, i.e. the classical, shear deformable plate [5-9] and 2D elasticity [10, 11] partition theories. 
However, the interface fracture toughness cG  should be, respectively for the three partition theories, 
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where IcG  is critical mode I ERR and IcIIc GG  . In the next section, predictions from the theory are 
compared against experimental observations from Refs. 1 and 2. 

3 EXPERIMENTAL ASSESSMENTS 

Tolpygo and Clarke [1, 2] presented an excellent experimental study on the room temperature cir-
cular spallation of α-alumina films grown by oxidation on Fe-Cr-Al alloy. The theory in Section 2 is 
applied to predict spallation behaviour [1, 2]. The material properties of the oxide film are taken from 
Refs. 1 and 2 and are as follows: The Young’s modulus of the oxide film is GPa 040E  and the 
Poisson’s ratio is 25.0 . The mode I critical ERR of the interface is mN 6.8IcG  and the critical 

mode I ERR of the oxide film is mN 20cfG . The ratio 5 IcIIc GG  is used, which is consid-

ered by the authors to be a representative value. First, Eq. (6) is used to predict the initiation of unsta-
ble growth, and Eq. (11) is used to predict the size of spallation. The solid dots in Fig. 2 represent a 
series of measurements of the size of individual separations as a function of time at room temperature. 
The time of 0 min corresponds to the moment when the specimen was placed under the microscope 
and its temperature was close to ambient. Fig. 2a shows data from four different separation bubbles on 
a single specimen after isothermal oxidation for 25 h at 1200°C and cooling at 20°C min-1. The bub-
bles were successively monitored using optical microscopy. All of the bubbles grew at a constant 
compressive stress of GPa 4.046.40  , which was measured in the adherent oxide far away from 
the separations. The whole process includes nucleation, stable growth, unstable growth, and final 
spallation. The nucleation of separation bubbles was not recorded due to the difficulty of making time-
ly observations of nucleating bubbles using this monitoring technique. Stable growth, however, with a 
radius far smaller than the critical buckling value, was readily observed. At a certain critical radius, 
which is again far smaller than the critical buckling radius, unstable growth abruptly occurs and final 
spallation takes place. It is pertinent that all four separations start unstable growth at approximately the 
same radius, and then all eventually spall off also at approximately the same radius. Two specimens 
with thicker oxide layers were produced with 50 h and 100 h of oxidation and are shown in Figs. 2b 
and c respectively. The growth behaviors of two separation bubbles are shown in Fig. 2b. Again, the 
two separations start unstable growth at approximately the same radius, and then both eventually spall 
off also at approximately the same radius. Fig. 2c shows the growth behavior of one separation bubble. 
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The horizontal lines in Figs. 2a–c represent the predictions from Eq. (6) for the initiation of unstable 
growth and Eq. (11) for final spallation. It is very impressive to see that the predictions from Eqs. (6) 
and (11) have 

 

Figure 2: Separation bubble radius versus time at room temperature for three different samples [2]. 

Excellent agreement with the test results. It is worth noting that Eqs. (6) and (11) are common to all 
three mechanical models (based on the classical plate, first-order shear-deformable plate and 2D elas-
ticity partition theories) as long as the value of the parameter   meets the requirements of Eqs. (6) 
and (11). 

Next, comparisons are made between measurements of the kink-off angle and predictions from Eq. 
(12). The critical mode I ERR of the oxide film is mN 20cfG . For Fig. 2a, the value of 

  μm 10.9tan h  was measured approximately from Fig. 3 in Ref. [2], which is a similar case. The 
classical, shear deformable plate and 2D elasticity partition theories give

  μm 5.7,μm 0.15,μm 8.3tan h , respectively. No test value for Fig. 2b was found in Tolpygo and 

Clarke’s studies [1, 2]. For Fig. 2c,   μm 46.13tan h  was measured approximately from Fig. 5 in 
Ref. (2), which is a similar case. The classical, shear deformable plate and 2D elasticity partition theo-
ries give   μm 0.12,μm 9.23,μm 1.6tan h , respectively. The averages of the measurements of the 
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four diameters at 0°, 90° and ±45° were used to obtain the test values. It is seen that the 2D elasticity 
model gives good predictions but the other two models do not. 

It can be concluded at this point that the 2D elasticity model predicts the whole delamination pro-
cess very well, including the initiation of unstable growth, size of spallation and kink-off angle. The 
other two models, however, only give good predictions of the initiation of unstable growth and the size 
of spallation. 

4 CONCLUSIONS 

PECs can be formed by pockets of tensile stress and shear stress on and around the interface be-
tween a thin film and a thick substrate, which can be caused by a number of different processes, in-
cluding thermal effects, chemical effects and etc. PECs can cause interface spallation failure of thin 
films. Theory has been developed to predict several aspects of thin-film spallation failure by using par-
tition theories for mixed-mode fracture based on classical plate theory, first-order shear-deformable 
plate theory [5-9] and full 2D elasticity [10, 11]. The three models all give accurate predictions of the 
initiation of unstable growth of separation bubbles and the size of spallation. The 2D elasticity model 
also gives accurate predictions of the final kink-off size but the classical plate and first-order shear-
deformable plate models are unable to. The nucleation and stable growth of a separation bubble are 
solely driven by the bubble energy but unstable growth is driven by both bubble energy and buckling. 
Final kinking off is controlled by the toughness of the interface and the film and the maximum bubble 
energy. The 2D elasticity partition theory governs the microscopic brittle interface fracture instead of 
the classical partition theory which governs the macroscopic brittle interface fracture. The present me-
chanical models reveal a new failure mechanism of thin layer materials under compressive residual 
stress and will be particularly useful to study the spallation failure of thermal barrier coating material 
systems. 
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