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ABSTRACT
Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are known to be anti-inflammatory and to alter 
gene expression within the cells. Emerging evidence indicates that one of the mechanisms for this 
process involves the alteration of epigenetic markers, such as DNA methylation. The focus of this 
overview is to document the current evidence for n-3 PUFA effects on DNA methylation and how 
these may impact on the inflammatory processes.
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Introduction

n-3 polyunsaturated fatty acids and inflammation

Populations with a diet rich in omega-3 (n-3) polyunsatu-
rated fatty acids (PUFAs) have a lower incidence of chronic 
non-communicable diseases [1]. Evidence for n-3 PUFAs, 
such as eicosapentaenoic acid (EPA) and docosahexaenoic 
acid (DHA), on their ability to modulate inflammation has 
come from in vitro work [2–4], animal models [5–8] and 
human studies [4,9,10]; although the latter evidence is 
weaker as a consequence of more complex environmen-
tal factors. The mechanisms through which n-3 PUFAs 
promote an anti-inflammatory environment within the 
body are multiple and complex [11] (Figure 1). Early evi-
dence suggests that n-3 PUFAs exert these effects through 
changes in gene expression as a result of varied transcrip-
tion factor activation [12,13], but which may also arise from 
changes in epigenetic markers, such as DNA methylation.

Epigenetics

Epigenetics investigates heritable chemical modifica-
tions to the genome which are independent of the DNA 
sequence [14–16]. These chemical changes, including DNA 
methylation, histone modifications, chromatin remodel-
ling and non-coding RNAs [17–23], are vital for normal 
cellular development, cellular processes and cell-specific 
gene expression profiles [16,24]. Interactions between the 
environment, particularly diet, and the genome through 
epigenetic mechanisms lead to changes in phenotype and 

are implicated in many diseases [25–28]. They also provide 
a target for therapeutic interventions [29].

DNA methylation, a methyl group covalently attached 
to the fifth position of the pyrimidine ring to give 5-methyl-
cytosine (5mC), is most commonly found on a cytosine 
positioned next to a guanine (CpG) [30]. DNA methylation 
levels within the genome are cell and tissue specific, with 
changes observed during the human lifespan [31–33]. 
Dysregulation of 5mC has been associated with diseases, 
including cancer and cardiovascular disease [24,34,35]. 
DNA methylation is the most accessible and widely stud-
ied epigenetic mark [36] and has been shown to vary with 
nutrition, disease and age [37–39]. Here, we will discuss the 
emerging evidence for the interaction of n-3 PUFAs and 
DNA methylation, specifically discussing their impact on 
inflammation.

Cross-sectional epigenome-wide association 
studies

Epigenome-wide associations studies (EWAS), which 
despite their name, focus mainly on DNA methylation, 
have linked n-3 PUFA consumption with differential DNA 
methylation. However, there is a lack of EWAS that use bio-
chemical analysis to assess dietary n-3 PUFA, with a prefer-
ence towards the readily available, but less accurate, food 
frequency questionnaire (FFQ).

One prominent EWAS within a distinct population, the 
Yup’ik, from Alaska (n = 185) utilised biochemical analysis 
to investigate associations with DNA methylation [40]. The 
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total cholesterol [40]. However, Dekkers et al. [48] found 
that there was an effect of blood lipids (TG, HDL and LDL) 
on differential DNA methylation in the genes coding for 
six key regulators of lipid metabolism. It therefore, needs 
to be questioned if the differential methylation observed 
is due to the n-3 PUFAs in the diet, differences in blood 
lipid profiles, or both, and one method of addressing this 
is through closely controlled intervention studies.

Gestation and infant n-3 PUFA supplementation 
intervention studies

Epigenome-wide association studies

The impact of nutrition during early life is of increasing 
interest due to the plasticity of epigenetic regulation 
during development and the links to diseases in later life 
[49,50]. Supplementation during gestation or early infancy 
with n-3 PUFAs has therefore been studied to a greater 
extent than it has been in adults.

EWAS in combination pre-and post-intervention can 
be used to investigate the impact of n-3 PUFA supple-
mentation on differentially methylated regions (DMRs) 
throughout the genome. Two intervention studies took 
slightly different approaches, the first supplemented the 
mothers with 3.7  g/day EPA  +  DHA (n  =  36) or placebo 
(n = 34, placebo details not provided) from 20 weeks of 
gestation to delivery [51]. The second study supplemented 

Yup’ik have a traditional diet rich in fish which is changing 
with westernisation [41], allowing for stratification of this 
population into high and low PUFA consumption. Using 
red blood cell (RBC) nitrogen stable isotope (δ15 N), pre-
viously associated with EPA and DHA RBC levels [42], to 
separate into these high and low PUFA groups, associa-
tions with CpG methylation of biologically relevant targets, 
including genes involved in T-cell homeostasis were found 
[40]. Increased DNA methylation with high PUFA consump-
tion was observed in 78% of the significant associations 
[40]; with genomic instability occurring with hypometh-
ylation [43], the increased methylation observed may, 
therefore, be beneficial to the stability of the genome. A 
separate cohort, Greek pre-adolescents (n = 69), also found 
associations between dietary fats and DNA methylation, 
including sites within pathways linked to inflammation; 
nuclear factor kappa B (NFκB), peroxisome proliferator-ac-
tivated receptor (PPARα), leptin (LEP) and interleukin (IL)-6 
[44]. However, the dietary fat intake for the cohort was 
assessed using FFQs, which did not directly measure the 
levels of n-3 PUFAs that have made it to the target tissue 
from the food.

Consistent with previous supplementation studies 
[45,46] and dietary salmon consumption [47], the Yup’ik 
cohort found individuals with higher n-3 PUFA intake 
had significantly lower levels of plasma triglyceride (TG), 
increased high-density lipoproteins (HDL), and higher but 
not significant levels of low-density lipoproteins (LDL) and 

Figure 1. Mechanisms Omega-3 polyunsaturated fatty acids (n-3 PUFAs) action to promote an anti-inflammatory environment.
Notes: GPR120, G-coupled protein recptor 120; NFkB, nuclear factor kappa B; n-6 PUFAs, omega 6 polyunsaturated fatty acids; SPM, Specialised pro-resolving 
mediators; TLR4, toll like receptor 4.



26   ﻿ B. HUSSEY ET AL.

9-month-old infants with either 1.6  g/day EPA  +  DHA 
(n = 6) or placebo 3.1 g/day linoleic acid (n = 6, LA in the 
form of sunflower oil) for nine months [52]. Neither inves-
tigation found a significant difference in DNA methylation 
between those taking the n-3 PUFA and those taking the 
placebo after adjusting for multiple testing [51,52].

However, a third more recent large randomised con-
trol trial (RCT) supplementing mothers during gestation 
with 0.8 g/day DHA + 0.1 g/day EPA (n = 190) or vegeta-
ble oil (n = 179), found that there were significant differ-
ences between DMRs, including those relating to immune 
function, between the two experimental groups [53]. The 
dose of n-3 PUFAs in this third study was much lower, in 
addition, due to the larger cohort it was possible to split 
the analysis between the sexes, with males being found to 
have a greater number of DMRs than females. The lack of 
findings in the first two studies referred to above may be 
due to the small, mixed sex samples used and future stud-
ies could be designed to eliminate this possibility. There 
are significant differences in the way males and females 
metabolise and store n-3 PUFAs [54–56] as well as differ-
ences in global methylation levels between the sexes [57]; 
as seen by the clear effect observed between sexes in the 
third study [53]. It is therefore, important to note that when 
using small sample sizes with n-3 PUFA and DNA methyl-
ation studies, a lack of separation of the sexes may result 
in critical results being overlooked.

Notably, all studies presented thus far have utilised the 
Infinium Human Methylation 450 k arrays. This technology 
measures DNA methylation at over 450,000 individual CpG 
sites throughout the genome. And although a powerful 
tool in explorative work in determining DMRs, there are 
limitations to the use of 450 k array data, including mul-
tiple testing, the need for complicated normalisation and 
the generation of artefactual data [58]. Therefore, targeted 
analysis of specific targets including candidate genes must 
be completed to confirm findings, and investigate differ-
ential methylation and biological relevance.

Specific targets and candidate genes

Long interspersed nucleotide element 1 (LINE1)
Measuring the levels of DNA methylation in repetitive 
elements, such as long interspersed nucleotide elements 
(LINEs) can provide a proxy for global DNA methylation [59]. 
It has been estimated that repetitive transposable elements 
account for 45% of the genome [60] and they contain one-
third of the genomes DNA methylation [61,62] to repress their 
transcription [63]. Associations between LINE1 methylation 
and lifestyle factors, including physical activity and nutrition 
[57,64–67] have been found and have also been shown to 
be associated with both disease [68–70] and ageing [71,72].

Lee et al. investigated the DNA methylation of LINE1 
in cord blood mononuclear cells (CBMCs) from mothers 
who received 0.4 g/day DHA (n = 131) or placebo (n = 130, 
olive oil) during gestation [73]. Neither this study or the 
third RCT above found any differences in LINE1 methyla-
tion between supplementation and control groups [53,73]. 
However, Lee et al. did find an interaction between smok-
ing status and DHA supplementation; CBMCs of mothers 
who smoked and took the DHA during gestation had sig-
nificantly higher LINE1 methylation levels than the CBMCs 
of smoking mothers in the control group [73]. This sug-
gests a complex interaction between multiple environ-
mental stimuli and the epigenome.

Cytokine genes
In addition to LINE1 methylation, cytokine gene DNA 
methylation was also investigated by Lee et al., with no 
significant differences in methylation of TNFa, IL13, GATA3, 
STAT3, IL10 and FOXP3 being observed. However, the pro-
motor methylation was lower (not significantly) for IFNy in 
those supplemented with DHA [73]. The study was novel 
in that the supplementation only contained DHA and 
was also at a low dose compared to many other studies. 
As observed in cell membranes where there is a dose-re-
sponse increase in the incorporation of n-3 PUFAs, it is 
likely that an increase in the dose may have led to more 
significant changes in DNA methylation. In vitro studies 
provide evidence of differing effects of EPA and DHA on 
inflammation [74,75], it would be interesting to see if there 
are differing effects on the epigenome had a separate EPA 
supplementation group had been included. The compari-
son between EPA and DHA is often lacking in human stud-
ies due to the increased cost and a greater availability of 
mixed n-3 PUFA supplements commercially.

Adult n-3 PUFA supplementation intervention 
studies

Candidate targets

PUFAs are important structural components of cells mem-
branes. Consumption of foods rich in n-3 PUFAs, such as 
salmon, result in increased incorporation and modification 
of the cell phospholipid membrane [47]. Composition of 
the membrane is altered by clustering of lipids rafts con-
taining the n-3 PUFAs, resulting in the formation of large 
raft domains [76]. As shown in murine obesity models [77] 
and HeLa cells [78] large lipid rafts can suppress the cell 
activation by impaired signalling, ultimately affecting cell 
function through suppression of downstream pathways, 
including those involved in inflammation. Leptin is local-
ised to these lipid rafts and its expression is reduced by n-3 
PUFAs [79]. In humans, cross-sectional evidence indicates 
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by the FADS2 and FADS1 genes respectively, are rate- 
limiting steps in this metabolic pathway [88,89]. Genetic 
polymorphisms of these genes and others related to the 
PUFA metabolism can significantly alter the levels of PUFAs 
within the body [90] and differential methylation is likely 
to have a similar effect. The methylation of FADS1 is altered 
by a low-calorie diet with a small interaction with n-3 PUFA 
supplementation [84]. When investigated alone, with a 
higher dose of n-3 PUFA supplementation, no significant 
changes in methylation were observed in FADS1 or the 
elongation gene ELOVL-2 [91]. However, the methylation of 
two other fatty acid metabolism genes, FADS2 and ELOVL-
5, increased with supplementation; with a larger number 
of CpG sites changing methylation in females than males 
and a negative relationship between the DNA methylation 
and the gene mRNA levels observed [91].

Future targets: inflammatory gene methylation

Modulation of inflammatory gene expression occurs 
through transcription factors, such as peroxisome pro-
liferator-activated receptor gamma (PPARγ). Interactions 
between PPARγ and fatty acids result in a decrease in 
cytokine expression [92]. In a cancer cell line, treatment 
with EPA and DHA has been shown to increase expression 
of PPARγ gene, PPARG [93]. In murine models of diabetes, 
expression of PPARG is known to be modulated by DNA 
methylation within its promotor [94] and differential meth-
ylation is observed in type two diabetes mellitus (T2DM) 
[95], however the impact of n-3 PUFAs on PPARG DNA 
methylation has not been measured. Epigenetic regulation 
of the PPAR coactivator 1 alpha (PCG-1α) gene, PPARGC1A, 
has been implicated in T2DM in humans [96]. The regula-
tion of the PPARGC1A appears to be influenced by changes 
in DNA methylation and has been shown to interact with 
PPARγ. In men, DNA methylation of the PPARGC1A gene 
promotor is significantly increased after a high-fat over-
feeding diet [97]. Whereas, in obese patients fed a low- 
calorie diet, the methylation of PPARGC1A has been shown 
to decrease [98].

Inflammatory diseases are often characterised with 
chronic activation of NFkB transcription factor and release 
of inflammatory cytokines [99] and therefore, an impor-
tant target for changes in DNA methylation by n-3 PUFAs. 
Associations between dietary fats and DNA methyla-
tion in the NFkB pathway, measured using the Infinium 
450 k array, were observed in the Greek pre-adolescent 
cross-sectional cohort [44], and therefore, may provide 
valuable targets within intervention studies.

As previously described, there was no change in DNA 
methylation being observed in cytokine DNA methylation 
levels with gestational supplementation [73]. However, the 
study used low doses of DHA and it has not been investi-
gated in adult intervention studies or with combined EPA 

differential methylation in the leptin pathway genes with 
varying n-3 PUFA status [44], and epigenetic control of LEP 
has been demonstrated in a murine model [80]. However, 
using a candidate gene approach, n-3 PUFA supplemen-
tation has been shown to have no effect on LEP, leptin 
receptor (LEPR) or pro-opiomelanocortin (POMC) promotor 
methylation in a murine model [81].

The membrane glycoprotein which promotes inflam-
mation in monocytes and macrophages, cluster of dif-
ferentiation 36 (CD36), has been found to be increased 
as the result of n-3 PUFA in vitro [82] and in animals [83]. 
CD36 promotor methylation was significantly reduced, 
when adjusted for baseline body weight, in a weight loss 
and n-3 PUFA supplementation study in Spanish young 
adult overweight females [84]. However, changes in DNA 
methylation in cluster of differentiation (CD14), pyruvate 
dehydrogenase kinase 4 (PDK4) and fatty acid desaturase 
1 (FADS1) was only significant as a result of the low-cal-
orie diet and not the supplementation. Had the gene 
expression been studied we may have expected to see 
an increase in the mRNA for these genes. This effect is the 
counter to that expected from n-3 PUFAs where in human 
studies, decreased expression of CD36, CD14 and PDK4 
mRNA is observed in peripheral blood mononuclear cells 
(PBMCs) isolated after supplementation [13]. It is possible 
that the low-calorie diet impacted on the DNA methylation 
to a greater extent than the n-3 PUFAs, which only atten-
uated the decrease in methylation of CD36 once adjusted 
for baseline body weight [84].

There are relatively few studies that have investigated 
the effect of n-3 PUFA supplementation on DNA methyla-
tion in adults, and of these many have confounding factors. 
Addressing the confounding factors of this study [84], the 
participants were asked not to consume seafood and to 
follow a detailed diet plan during the intervention period 
to minimise variability. However, the Spanish diet is high 
in shellfish/fish, on average 88.6  g/person/day are con-
sumed [85], and therefore, the researchers may have sim-
ply replaced the n-3 PUFAs that the participants obtained 
from their diets with the supplementation. Although no 
biochemical measurements for EPA and DHA were pro-
vided in this paper [84], earlier work from the same cohort 
found only a small difference in EPA and DHA after the 
intervention, with no data comparing baseline to endpoint 
[86]. Future studies should include measurement of n-3 
PUFA incorporation in to the investigated cell membranes, 
for example, into PBMCs.

Endogenous metabolism of PUFAs occurs within a cell, 
the initial step in the metabolic pathway takes places in the 
endoplasmic reticulum where LA and alpha-linolenic acid 
(ALA) undergo elongation of the fatty acid carbon chain by 
fatty acid enlongase (ELOVL) and desaturation by insertion 
of double bonds by Δ6-desaturase and Δ5-desaturase [87]. 
The Δ6-desaturase and Δ5-desaturase enzymes, encoded 
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to occur. The largest incorporation of n-3 PUFAs into eryth-
rocyte membranes is within the first 4 weeks of supple-
mentation and it is not known if the epigenetic changes 
occur within the same time frame. There are fewer studies 
that measure the incorporation into PBMCs and none that 
consider CpG methylation alongside incorporation.

The majority of intervention studies investigating epi-
genetic changes do not account for the impact of the inter-
vention on the cell population from which the DNA was 
extracted. This results in multiple complications, firstly if 
the influence of n-3 PUFAs is specific to one cell type it may 
not be observed if the cells are not separated prior to anal-
ysis. Secondly, changes may be falsely observed or masked 
with variations in cell populations. Differentiation into the 
cell subtypes found within blood requires changes within 
the epigenetic signatures and therefore, the observed 
changes in percentage methylation for an individual CpG 
may be the result of a change in the cell population rather 
than a result of the intervention. Data can be normalised 
to account for the proportion of different cells [52,91] and 
this is a consideration future studies should make.

Conclusion

Associations between n-3 PUFAs and differential DNA 
methylation have been demonstrated, with further evi-
dence of n-3 PUFA impact on DNA methylation seen in 
supplementation interventions. A more targeted approach 
to the effects of n-3 PUFAs, and use of well-controlled sup-
plementation studies, both in vitro and in vivo, could eluci-
date a mechanism through which n-3 PUFAs alter the DNA 
methylation within the inflammatory landscape.
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