
· LOUGHBOROUGH 
UNIVERSITY OF TECHNOLOGY 

LIBRARY 

AUTHOR/FILING TITLE 

-----------~]1_/l~P~-~--~--------------------
--" -------------------------------- ------------_ _I 

ACCESSION/COPY NO. 

cr't o I '1-"' 4-~ "2.. ----------------- __ ...... -----------------------------
VOL. NO. CLASS MARK 

0401294528 

//Ill I 11111111111111111. 





Studies on selected organic - metal interactions of 
importance in the environment 

by 

Ian Mason 

A Doctoral Thesis submitted in part fulfilment of the 
requirements for the award of 

Doctor of Philosophy 
of the Loughborough University of Technology 

October 1995 

• 
Research supervisor: Dr. Peter Warwick 

Sponsored by British Nuclear Fuels plc. 

© Ian Mason 1995 





ABSTRACT 

This research project investigated the interaction between natural 
organics acids and selected metal ions. The aim of the project was to 
provide quantitative data on the speciation of metal ions when placed in 
systems containing natural organic acids. It was envisaged that such data 
will assist in the risk assessment of the Drigg low level waste site in 
Cumbria. The formation and complexing ability of these natural organic 
acids is discussed and the classing of these acids into high molecular 
weight organic acids and low molecular weight organic acids. Initial 
investigations used a potentiometric technique to study the interaction 
between nickel and europium and selected low molecular weight organic 
acids which were thought to occur in significant concentrations in soils 
and groundwaters. These experiments confirmed existing critically 
assessed literature values, and provided an experimental methodology for 
further 'in-house' measurement of such values. In addition, studies were 
also performed on systems containing two competing organic acids. 
Studies of such systems showed no synergistic effect and that they could 
be modelled using individual stability constants. A comprehensive 
investigation was performed on the interaction of nickel and europium 
with humic acid. High Performance Size Exclusion Chromatography 

. (HPSEC) was assessed for its applicability to study such systems and was 
found to be suitable. Stability constants were determined for europium 
and nickel with humic acid. All data was modelled using MINTEQA2, a 
geochemical speciation code. Further work on these systems was carried 
out by a column ion exchange technique which confirmed the HPSEC 
data. A comparison was then carried out between batch and column 
exchange with the conclusion that column gave lower metal bound to the 
humic at high concentrations due to competition from the resin. HPSEC 
was used to investigate systems of low molecular weight organic acids 
with humic acids. In these systems no evidence for mixed complexes was 
found and that there was good agreement between experimental data and 
model predictions. The role of humic acid at alkaline pH was also 
investigated. It was found that humic acid showed enhanced 
complexation with europium and that this was attributable to phenolic 
groups on the humic molecule. In conclusion, results have been 
generated which provide data for a number of important reactions that 
occur in the environment. 
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CHAPTER ONE 

Introduction 



1. INTRODUCTION 

1.1 Background 

If toxic metals breach the engineered barrier from a radioactive waste 

repository site, their transport through the Geosphere will primarily be 

determined by their concentration, the hydrogeology and the interaction 

of the toxic metals with the surronding media. This interaction is 

controlled by the type of speciation the pollutant adopts. In this particular 

environment, a large number of reagents are present which may complex 

with toxic metals forming soluble complexes which therefore may enhance 

the mobility of the toxic metals through the Geosphere. These reagents are 

inorganic, natural or anthropogenic organics. 

Although in the case of the anthropogenic organics (EDTA, NTA, etc), they 

form strong, stable complexes with metals and are very powerful chelating 

agents 1, their effects are confined to localised environments. 

However, natural organics produced from biological processes can occur 

everywhere, and hence their effects on metal migration through the 

Geosphere will be far more widespread. 

Natural organic acids can conveniently be classed into two groups, namely 

high molecular weight organic acids and low molecular weight organic 

acids. Both groups have the ability to form stable complexes with metal 

ions. As a consequence of this ability it is essential that their reactions 

with metal ions under a variety of conditions are understood so that 

geochemical speciation codes can quantitatively predict the speciation, 

and ultimately the migration, of toxic metal ions in the Geosphere. 
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1.2 Aims of the project 

The aims of the research are listed below: 

1. To identify the type of low molecular weight organic acids which are 

likely to be present in the far field of a waste repository site. 

2. To determine quantitatively the interactions of both low and high 

molecular weight organic acids with toxic metals of interest. 

3. To decide whether geochemical modelling codes, as they stand, are 

able to predict metal speciation in the presence of natural organic 

acids. 

4. To determine the role of naturally occurring high molecular weight 

organic acids in competition reactions with low molecular weight 

organic acids for metal complexation. 

5. To evaluate the complexation of toxic metals with high molecular 

weight organic acids at alkaline pH. 

6. Data provided from the report will be used in groundwater modelling 

studies of the Drigg low level disposal site 

1.3 Formation and Occnrrence of Low Molecular Weight Organic 

Acids in Soils and Groundwaters 

The formation of low molecular weight organic acids in soils and groundwater 

can occur through a number of processes. In theory, any soil or aquifer will 

contain these acids, but only in minor concentrations, with high molecular 

weight organic acids (humic substances) making up the majority of the 

organic matter. However a number of low molecular weight organic acids 

havebeen isolated from soils which are known to form strong complexes 

with metal ions ( eg citric, oxalic) 2• Early work on these acids highlighted 

their effect on the solubility of metals. 
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These acids may have been derived from plant residues, rhizosphere 

activity or microbial metabolism. 

Significant concentrations of small organic acids in groundwaters are rare 

due to the action of soil microflora which assimilate them. An example of 

this is found in leachates from Maxey Flats, where under anaerobic 

conditions, there was a decline in the concentration of organic acids up to 

six carbons in length 4• 

However, the concentrations of these aliphatic acids can be increased by a 

number of processes. In soils, the decay of freshly produced organic matter, 

as a result of complete or partial oxidation will produce citric and oxalic 

acids 5• Similarly the decomposition of plant residue by anaerobic 

proteolytic bacteria will have amongst its products acetic, propionic and 

butryic acids 6• It is this important factor of microbiological activity on 

natural or disposed organics that yields the production of these low 

molecular weight organic acids. Certain other micro-organisms will 

produce acetic, propionic, butryic, valeric acids whilst moulds can produce 

the amino acids tartaric and asparatic. 

Similarly degradation of organic waste will produce high concentrations of 

organic acids, in a waste repository site. It has been reported in the literature 

that organic acids generated from chemical degradation of cellulose have 

the capacity for metal chelation 7• Hydrolytic degradation has been 

shown to give a number of important organic acid products 8• For example 

cellulose, polyesters, nylons and polyurethanes could all undergo hydrolytic 

reactions to give a variety of products. Cellulose is particularly important 

due to its abundance and the ease that it undergoes hydrolysis reactions 

under alkaline conditions. This reaction is complex and its subsequent 

products are a wide mixture of acid products. One of the major products is 

lactic acid 9• In addition hydrolysis reactions on polyamides (nylons) and 

polyesters will give a mixture of carboxylic acids. 
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Microbial degradation can be under aerobic and anaerobic conditions and 

the first steps in both will involve the hydrolysation of various 

polysaccharides, proteins and fats to give intermediate products, including 

volatile organic acids and amino acids. These intermediates are generally 

more soluble than the original organic material. Only if there is sufficient 

oxygen will these intermediate products be oxidised to give the end products 

of carbon dioxide and water. 

In a landfill it has been shown that for fatty acids this hydrolysation can 

take from 6 months to 7 years 10
• In a waste repository site, aerobic 

metabolism will be dominant until all available oxygen is used up and then 

anaerobic metabolism will take over. As can be seen from Figure 1.1 and 

1.2 low molecular weight organic acids will be significant products under 

both these environments. In waste sites hydrolytic and fermentative 

bacteria, over a wide range of conditions, can produce simple organic 

acids as well as hydrogen and carbon dioxide. Although methanogenic 

bacteria are able to break down the acids there is evidence to suggest that 

the methanogenic bacteria do not become established in this environment 

due to mechanical or chemical changes and that these acids 

may build up 7• 

Thus, in summary, due to a number of processes on natural and 

anthropogenic organics, a number of low molecular weight organic acids 

in significant concentrations are likely to be present in the Geosphere to 

affect the speciation of toxic metal ions. 

4 
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1.3.1 Complexation with toxic metals 

Toxic metal cations released from a repository site show a strong tendency, 

due to a number of processes, to adsorb on mineral and soil surfaces. 

When these cations are complexed with organic acid ligands the charge of 

the complex will be less, or even reversed compared to that of the original 

metal cation. This change in charge may reduce the effect of the adsorption 

of the toxic metal onto a mineral or soil surface and hence increase the 

migration rate of the pollutant through the groundwater. The retention of 

metal ions is decreased by the formation of soluble complexes that shift 

metal ion exchange, physical sorption or solubility equilibria. Conversely, 

retention may be increased if the complexant itself sorbs onto the solid 

surface. 

Low molecular weight organic acids, show a varying degree of complexing 

ability from weak (acetic acid) to strong (gluconic acid). It has been 

suggested that low molecular weight organics that are weaker chelating 

agents than high molecular weight organic acids may have a synergistic 

effect when these marcomolecular acids are complexing with toxic metals "· 

Previous work on the complexation of toxic metals with low molecular 

weight organic acids has shown that the acid ligand increases the mobility 

of the radionuclide through the Geosphere. Experiments carried out under 

anaerobic conditions using columns with different compositions of soil 

type show that the presence of these acids will inhibit the adsorption of 

metals onto mineral surfaces. Work on acetic, propionic, butryic and 

valeric acids has shown their ability to enhance the migration of Ni, Zn 

and Pb through soil and into groundwater 12• 
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In order to understand the behaviour of the toxic metals, consideration 

must be first given to the speciation that the metal cation adopts. It has been 

shown that under equilibrium conditions, the speciation that a large percentage 

of a divalent metal adopts in the presence of a fatty acid concentration of 

0.3mol 1-1, is as mononvalent positively charged, uncharged and negatively 

charged complexes ie its positive charge has been reduced. In this state 

there is a severe reduction in the adsorption and precipitation of the metal 

cations 12
• 

Studies on acetic acid show that if it is in sufficient concentration, it will 

increase the migration of Am-241 13 under near-field conditions i.e: high pH 

environment. Similar studies on citric acid, showed that the sorption of 

uranium was reduced by two orders of magnitude 14• 

V sing potentiometric techniques under near natural conditions, the 

complexes of asparatic, tartaric and citric acids with the metal ions Co2+, 

Sr2+, La3+ and Eu3• were investigated with differing pH 15• 

Using ion exchange columns, the complexes of oxalic, tartaric and citric 

acids with various actinides has again yielded information on the structures 

of the complexes with varying pH 16• Results suggest that in general, high 

complexing abilities of weak acids to different metal ions are expected at 

pH values within or higher than the pK. values of those acids. 

Experiments carried out under near-field conditions with measurements 

made at pH-12 were performed at Harwell 17• Gluconic acid was 

shown to have the ability to complex with plutonium and give solubilities of 

>lQ-6M plutonium at the highest concentration (IQ-2M) of gluconic acid. 

Similar results were obtained for citric acid, whose strong complexation 

with thorium was noted. Oxalic acid also gave significant complexation 

with thorium. 

Hence, previous studies have indicated that such low molecular weight 

organic acids may play an important role in the migration of toxic metals. 

8 



1.4 High Molecular Weight Organic Acids 

High molecular weight organic acids, or humic substances, play a 

fundamental part in the environmental chemistry of toxic metals. They are 

known to be strong complexing agents 1& 19
·
20

·
21

, able to reduce the free metal 

concentration and solubilize compounds, thus leading to enhanced 

migration through the groundwater. Alternatively, they can form insoluble 

complexes with metal ions, which can immobilize the toxic metal. They 

are also reducing agents 22 capable of affecting the oxidation state of a 

metal ion. 

Within the general term of humic substances are three major components, 

defined in terms of their solubility as a function of pH"-': 

Humin 

Humic acid 

Fulvic acid 

- that fraction of humic substance that is not soluble in 

water at any pH value. 

- that fraction of humic substance that is not soluble in 

water under pH conditions below 2. 

- that fraction of humic substance that is soluble in water 

under all pH conditions. 

For the last 200 years an extensive literature has developed on the 

geochemical role of these substances, and yet, there still remains 

uncertainity has to the precise role of humic substances in the environment. 
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1.4.1 Formation and Occurence of High Molecular Weight 

Organic Acids 

The synthesis of humic and fulvic acids has been the subject of many 

investigations and, as such, a number of different theories have been 

proposed 24
·
25

• However, although each theory has its merits none has yet 

explained all aspects of humic formation. 

An unification of the most realistic postulations in older theories were 

accumulated in the polyphenol (PP) theory of Stevenson 26• This stated that 

humic formation involves the synthesis of polyphenols as a pre-requisite. 

However, this theory still leaves unanswered a number of questions 

concerning the different pathways leading to humic formation. To 

overcome this, a recent theory has been proposed 27• 

In this study, humic formation is only considered as occuring from lignin, 

carbohydrates and nitrogenous compounds since other plant materials are 

insignificant in comparision. 

The transformation of lignin is due to it being an energy source to 

microorganisms, which solubilise the lignin by depolymerisation, from 

which polyphenols are synthesised by the microorganisms. These phenols 

then follow two pathways. Part of the phenols may be oxidised by enzymes 

like laccase, tryosinase and peroxidase to quinones. Further oxidation will 

lead to polycondensation and to formation of humic substances. Phenols 

which do not undergo this pathway, undergo a series of reactions until they 

form aliphatic acids which then enter the Kreb's cycle 28• 

Similar tci lignin, carbohydrates are also solubilised by microorganisms. In 

this state, certain organisms will form aromatic compounds. This 

aromatisation leads to the formation of humic substances. 

10 



The phenols and quinones which are produced by the action of 

microorganisms, under the influence of oxidising enzymes, will undergo 

condensation between themselves and with amino acids 29• This 

polymerisation may cause loss of COOH groups, and hence, the greater the 

degree of polymerisation the more loss of COOH groups per unit weight 

that will occur. This explains why fulvic acids are smallers molecules with 

more COOH groups per unit weight than the larger humic acids 30• Further 

evidence for this observation is that fulvic acids dominate under conditions 

where free radical polymerisation is suppressed eg: in anaerobic conditions. 

In conclusion on the formation of humic substances a number of general 

points can be made: 

l. Any carbon source which can be transformed to phenols by the action 

of microorganisms can serve as a pre-cursor to humic formation. 

2. Only organisms capable of transforming/producing phenols are able 

to assist in the formation of humic substances. 

3. The humic building units condense by a free radical mechanism to 

form humic substances. 

4. Any difference between humic and fulvic acids is due to the degree 

of polymerisation. 

A proposed structure of a humic acid molecule is shown in figure 1.3 31 • 

As a result of this formation, humic substances are ubiquitous in the 

environment and are the major organic fraction in soils. Humic substances 

also occur in all terrestrial waters. 

11 
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1.4.2 Complexation with metals 

Numerous studies have been undertaken on the binding behaviour of metal 

ions with high molecular weight organic acids. Due to the complex nature of 

humic substances a large range of analytical techniques have been used in 

these investigations, some which are listed in table 1.1. 

Method Value measured 

Ion exchange M or M• 

AA M or M• 

Colorimetry M or M• 

Equilbrium dialysis M 

Gel filtration M• 
Centifrugation M 

Solvent extraction M 

Potentiometry L• 
Differential Pulse Polargraphy M 

Spectrofluorimetry L•or L 
Spectrophotometry L 
Ion- selective electrode M 

Anodic Stripping Voltammetry M 

where M = 'free' metal 

M• = 'bound metal 

L = 'free' ligand 

L. =bound ligand 

Table 1.1: Methods used to measure metal- humic substances 

interactions 32 

A number of papers have dealt with the interaction between humic 

substances and copper. Cabaniss and Shuman 33 investigated these 

interactions by the measurement of the free copper by an ion selective 

electrode and also the free ligand by fluorescence. By both techniques 

13 



strong complexation was observed. This was also observed, using the 

same techniques by Gamble et al 34• Anodic stripping voltammetry has 

also been used in this system, where conditional formation constants 

were calculated to be 0.32 x 1()5 to 5.2 x 10' at pH 6.5. 

Extensive work using gel chromatography 35 determined binding 

constants for copper with fulvic acids from lake water and peat. The obtained 

constants were of the order of 10". In addition, the use of Mn0
2 

as a weak 

anion exchanger has been used to study copper- humic acid equilibria 36• 

A large amount of data has also been published with other first row transition 

row metals. Saar and Weber used an ion selective electrode to derive stability 

constants for the reaction of cadmium with water and soil derived fulvic 

acids 37• Similarly, the Schubert ion exchange method has been used to 

study the interaction of cadmium with humic substances from podzol BH' 

producing stability constants of the order 10'. 

Choppin 22 reviewed the role of humics on actinide migration. He 

reported stability constants for U0
2
2+ with soil, peat, marine and commercial 

humic and fulvic acids. In addition, the redox interactions of humic 

materials with metal ions were discussed. Soil fulvic acids reduced Pu(VI) 

and Pu(IV) 22• Good correlation was found between Pu(III,IV)/(Pu(V,VI) 

ratio and DOC (Dissolved Organic Carbon). 

Lathanide ion probe spectroscopy 38 has been used in an attempt to 

characterize metal binding sites on fulvic acid. A continuous multiple site 

ligand model was proposed from experimental results of europium with an 

aquatic fulvic acid from Suwannee River. 

Complexation of uranyl has also been studied using time - resolved laser­

induced fluorescence spectroscopy (TRLFS) 39, where no significant 

variation of the log K value was found in the pH range 2.7 to 6.5, and the 

ionic strengths of O.IM and lM. 
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In addition TRLFS has also been used on curium studies 40• From these 

results a stability constant of 5.90 was evaluated, which was independent 

of pH and ionic strength. 

Rainville and Weber 41 used a dialysis technique to measure the complexing 

capacity of a soil fulvic acid for the metal ions Cu2+, Cd2+, Mn2+, Ni2+, and 

Zn2+. They concluded that at the same pH, the values obtained for Cd2+, 

Mn2+, NF+, and Zn2+were similar, but for Cu2+ values were higher. 

A variety of electrochemical techniques have been used to study the 

complexation of cadmium and lead with humic acid 42
• It was concluded 

that lead complexes were more stable than cadmium complexes. 

In summary a large number of studies have been carried out on the 

interaction of humic substances with metal ions. However, the majority of 

these studies have not investigated the effect of secondary factors, such as 

varying pH, ionic strength, and the influence of competing ligands. To 

gain further insight into the role of humic substances in the migration of 

toxic metals such factors need to be investigated. 
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l.S Stability Constants 

l.S.l History 

Stability constants are best defined as a measure of the affinity of a ligand 

for a metal ion in solution. The first effective measurement began with the 

work of J. Bjerrum on the equilibria of transition metal-ammonia complexes 

in aqueous solution 43• In 1956 the work of Calvin and Smith 44 

utilised an exact algebraic treatment to determine stability constants and 

mass balance equations. This work led to a substantial amount of published 

data on the equilibria of metal ions with various ligands in aqueous solution. 

Unfortunately, a significant proportion of the work was poor quality, due 

to ill-defined controls and conditions. As a result, a large amount of 

published data was critically assessed for their validity and collected in a 

series of volumes called, Critical Table of Stability Constants 45
• 

Consequently, these volumes have now become established as benchmarks 

for future work. Recently, the advent of a large range of computational 

methods has allowed for a more rapid and more accurate determination of 

stability constants. 

l.S.2 Theory 

Stability constants for metal complex formation provide a measure of the 

affinity between a ligand and a metal ion in solution. 

The stability contant, K , is a quotient involving the activities of reacting 
eq 

species in solution and is given by: 

aA + bB ~cC + dD (1.1) 

K = {C}'{D}• 
<q 

(1.2) 

{A}'{B}b 
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This constant is directly related to the differences of Gibbs free energies of 

products and reactants in their standard states. 

Unfortunately activities of ionic species in solutions involve intricate 

calculations. Therefore, since concentrations parallel activities, when the ionic 

strength is controlled by a non-reacting electrolyte which is present at a 

concentration far in excess (- lOO times) of the reacting species, most 

equilibrium constants are determined at a constant ionic strength which is 

maintained by the supporting electrolyte. Therefore, the stability constant is 

now given by: 

K = [C]'[D]d 

[A]'[B]b 

(1.3) 

In this form, the quantites can be substituted directly into mass action 

equations. 

Any observed stability constant depends on the free energy change which is 

associated with a metal ion, M, during its transfer from an environment of 

solvent molecules and bulk electrolyte ions to one in which it is in close 

proximity with at least one ligand, L. Thus the stability constant gives an 

indication of the degree of displacement by a ligand, of an unknown number 

of solvent molecules, and background ions from the metal ion M. 

1.5.3 Effects on stability constants 

1.5.3.1 Temperature 

A change in temperature will result in a change in equilibria and hence a 

change in the equilibrium constant value. This shift will be dependent on the 

sign and the value ~H, the enthalpy change of the reaction. This can be 

expressed by the van't Hoff equation: 

dlnK= ~H0 (1.4) -- --
dT RP 
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If AH0 is virtually constant within a temperature range ofT,- T
2 

integration 

of the above expression gives: 

log 1<.,
2 
=log~<.,,+ AH(lff,- lff2) (1.5) 

19.145 

However, if the enthalpy change does not remain constant, a more 

complicated expression is needed: 

log 1<.,2 =log~<.,,+ AH0
TI (lff,- lff,) + (1.6) 

AC0p[li19.14(T,rr2 -1)- 118.314log T,ff2)l 

Thus, using these expressions, the dependence of equilibrium constants on 

temperature can be calculated. 

1.5.3.2 Ionic strength 

It is impractical to measure a thermodynamic equilibrium constant, since it 

requires ions to be in infinite dilution. Consequently constants are measured 

in finite solutions and are therefore not true constants and are multiplied by 

activity coefficients to obtain the true thermodynamic constant. This 

correction is governed by the concentrations of all the ions in the solution 

and their charges and the measurement of this is expressed as the ionic 

strength. The ionic strength, I is defined as: 

I= 0.5~cz2 (1.7) 

where c and z represent the concentration and charge of an individual ion 

respectively. In order to minimise the deviation from an ideal infinite dilute 

solution, a background electrolyte is usually employed. This background 

electrolyte should be a strong electrolyte, have negligible association with 

other species in the solution, a large solubility and contribute a negligible 

amount to the physical or chemical property being measured. 
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l.S.3.3 Ionic radius 

If the interaction between a metal and ligand is purely due to electrostatic 

interaction, then the stability constant for other metal ions of the same 

charge should be inveresely proportional to metal ion radii. Although for 

ions of similar electronic configuration this may be approximately valid, 

for metal ions of different groups it fails. 

l.S.3.4 Ionization potential and electronegativity 

When a complex is formed, electrons are lost from the central metal ion 

and gained by the donor ligands. Therefore, ionization potential has been 

used to determine the affinity for a metal ion and a ligand. This, although 

only a rough approximation due to electronic configurations changing 

during complex formation, nevertheless has produced fairly good 

relationships. It has been shown that for many metal ions the following 

relationship is valid 46
: 

log k
1 
= p(I-q) (1.8) 

where I is the ionization potential and p and q are constants which depend 

on only the ligand and experimental conditions, but not the metal ion. 

l.S.3.S Electronic conf~guration of the central ion 

Stability orders are found for transition metal complexes of which of 

particular importance is the Irving-Williams order. This order was 

determined by considering the ionic radii and the second ionization 

potential of the first row of the transition metals and can be illustrated by 

considering the values of metal complexes with EDTA: 
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Metal ion logk 
y2• 12.7 

er• 13.6 

Mn2+ 13.88 

Fe2+ 14.30 

Co2+ 16.45 

Ni2+ 18.4 

Cu2• 18.78 

Zn2+ 16.5 

Similar relationships involving the nature of the ligand, i.e: nature of the 

donor atom, the basicity of the ligand can also be used. 

1.6 Measurement of stability constants 

A large number of analytical techniques have been used in the 

determination and measurement of stability constants: 

Potentiometry 

Spectrophotometry 

Specific ion EMF measurements 

NMR spectroscopy 

Polarography 

Ion exchange 

Colorimetry 

Ionic conductivity 

Liquid partiton equilibria 

Reaction kinetics 

Partial pressure measurement 

Solubility measurement 

Although, there are numerous methods, in the majority of cases, it is 

potentiometry and spectrophotometry that are most commonly used. 
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1.7 Stability constants involving metals and humic substances 

For a reaction involving a metal ion, M, and a 'simple' (ie: of known 

molecular weight and structure) ligand L, the equlibrium can be 

represented as shown below: 

M+L~ML (1.9) 

For this reaction the stability constant, K, is given by the expression: 

K= [ML] 

[M][L] 

(1.10) 

Unfortunately this cannot be applied in the case of humic and fulvic acids. 

This is due to their lack of chemical and physical specifications. Humic 

acids are made up of complex mixtures of different functional groups 

which each individually have differing affinities for metal ions. In addition, 

they are polyelectrolytes and hence, exert an electrostatic factor in the 

binding with metal ions. 

To account for this heterogeneous nature a number of theoretical aspects 

have been developed to attempt to mimic metal - humic interactions. 

1.7.1 Methods to evaluate metal- humic interactions 

Essentially methods to determine the strength of interaction between metal 

ions and humic substances can be classed into two distinct groups. These 

are discrete models and continuous models. To highlight the differences 

between these two groups, a discrete and continuous model have been 

adopted in this research project. The theoretical and mathematical aspects 

of these two approaches will be considered here. 
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1. 7.2 Discrete model- the Scatcbard Plot 

To simplify the heterogenous nature of humic substances, the differing 

complexing sites on a humic molecule, are grouped into two types of sites. 

These are called 'strong sites' and 'weak sites.' This simplification is the 

building block for the Scatchard plot 47• The plot attempts to bridge the gap 

between a single stability constant value for a metal- humic interaction 

and the contiuous range of stability constants which are produced by more 

rigorous mathematical interpretations. 

Presented here is a modified version of the basic Scatchard approach which 

avoids the shortcomings of the basic method as discussed by Dzombak and 

Morel 48• 

As stated, a single stability constant value is insufficient to describe the 

interaction between a metal ion and a humic molecule. This is due not 

only to the different functional groups on the humic molecule but also due 

to its polyelectrolytic nature which changes as the metal loading on the 

humic molecule varies. 

Therefore if we consider that the humic molecule has two types of sites 

(strong site, 'Sand weak sites, ws) then the following equilibria will occur: 

for which 

M +'S ~ M'S 

'K = [M'S] 

[M]['S] 

Similarly for the weak sites: 

for which, WK= [MWS] 

(M](wS) 

( 1.11) 

(1.12) 

(1.13) 

(1.14) 

22 



In addition, the site concentrations are given by: 

['S] = [M'S] - [M'S] m a< 

Combining of equations 1.14 and l.I5,1.16leads to: 

Since, 

[MS] 

[M] 

[M'S] 
- ='K([M'S] - [M'S]) 
[M] mu 

[MS] = [M'S] + [MwS] 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

To derive values for 'K and wK, experiments are performed where the humic 

acid concentration is kept constant and the total metal concentration is varied 

over several orders of magnitude, such that for each total metal value the 

amount of metal bound and the amount of metal free is determined. 

From such data a graph of [MS]/[M] vs [MS] is constructed. The graph is 

composed of two parts, an initial steep linear slope which corresponds to 

the strong sites of a humic molecule, and a less steep slope which 

corresponds to the weak sites. From the gradients of these two linear 

segments, stability constant values can be calculated. 

Additionally, total concentrations of both strong and weak sites may be 

estimated by extrapolation of the two linear segments to the x- axis. 
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1. 7.3 Continuous Model- The Differential Equilibrium Function 
(DEF) 

A criticism against the Scatchard approach, is that it is an over 

simplification of metal -humic interactions and that the two derived 

stability constants have no real physio-chemical significance. 

The differential equilibrium function 49 offers a more rigorous 

interpretation of metal - humic interactions since it provides a contiuous 

distribution of equilibrium constants as a function of metal loading, thereby 

taking into consideration the inherent heterogenity of the humic molecule. 

If a series of experiments are considered where the humic concentration is 

kept constant and the metal concentration is varied, then for any point 

during that titration it is possible to calculate a stability constant K'. 

K'= IMib (1.20) 

IMIIL'I 

In this expression K' is referred to as the average equilibrium quotient, IMib 

is the total metal bound and IL'I represents all the sites on the humic 

·molecule not combined with M. Note that IL'I also includes protonated sites 

as well as free sites. At a constant pH, IL'I/ILI (where ILl refers to the total 

concentration of free sites only) will be constant, and therefore K' is only 

valid for a particular pH. Correspondingly K' will vary according to the 

degree of metal loading on the humic molecule: 

~ IMiLI 
K'= i __ _ (1.21) 

IMI~~L'I 
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This equation leads to: 

~iK' PL'I 
K' = ;__ __ 

~liL'I 

This equation shows that K' at any point in a metal titration is an average 

of the whole number of constants for all sites and is weighted by the 

unoccupied sites at that point. Since there is an infinite range of sites, then 

the ranges of iK* will be contiuous. This function, iK*, is termed the 

differential equilibrium function and is related to the average equilbitrum 

quotient, K', by: 

K* =- d(K'(l - <j>) 

d<j> 

(1.22) 

where <j> represents the fraction of all sites occupied and is given by the 

expression: 

(1.23) 

where Mb represent the metal bound and CL is the total site concentraion 

of the humic acid. 

A graph of K'(l-<j>) is plotted as a function of <j> with K* being obtained from 

the slope of curve for each value of <j>. A modification 31 allows calculation 

of K* from the humic acid concentration expressed in eg: g L-1
, thereby 

avoiding the necessity to determine the molar total concentration of 

sites, CL. 
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1.8 Summary 

In order to predict the behaviour of toxic metals and radionuc\ides in the 

Geosphere it is essential to fully understand the binding behaviour of these 

pollutants with the large number of complexants that are present in this 

environment. 

One of the most important groups of complexants are the natural organic 

acids. Due to the abundance and complexing ability of these natural organic 

acids in the Geosphere it is essential to quantitatively understand their 

interactions with toxic metals of interest in order to provide risk assessment 

on the potential release of these toxic metals to the Biosphere. 

This chapter has identified how these acids are formed and highlighted 

previous investigations that have been undertaken in studying the 

complexation with metals. 

By an understanding of the solution chemistry of these acid risk assessments 

on the movement of radionuclides from sites like Drigg can be made on 

the migration of radiopnuclides and toxic metals. 

However, there is a still a need to know, quantitatively, how these acids 

complex with metal ions under a variety of conditions. The aim of this 

work is to fill the gap in the current literature by investigating metal -

natural organic acid equilibria under a variety of experimental conditions 

eg: changing pH, competing ligands, varying ionic strength, competing 

metal ions. By investigating the effects of such phenomena, the results 

generated offer a greater insight into how toxic metals react with important 

organic acids in the environment. 
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CHAPTER TWO 

Potentiometric studies 
involving metal ions 
and low molecular 

weight organic acids 



2 INTRODUCTION 

2.1 Background 

An extensive database has developed in the literature concerning the 

interactions with organic ligands and metals. Unfortunately the published 

stability constants for a particular system sometimes vary over a few 

orders of magnitude. This discrepancy in results is invariably due to poor 

experimental design and the neglecting of quoting important parameters 

such as ionic strength and pH. In order to successfully predict the 

behaviour of toxic metals it is necessary to obtain accurate stability 

constants for metal -ligand equilibria, such that complex environmental 

systems containing a multitude of species can be quantified accurately 

with regards to speciation. 

As a consequence of these descrepancies, a methodology was developed 

whereby stability constants could be accurately measured by a standard 

technique and that values obtained could be critically compared with 

literature values, which had been previously assessed and whose values 

had been quoted under similar conditions of ionic strength and background 

electrolyte. 

The overall aim of the work was to provide a series of stability constants 

for a number of important low molecular weight organic acids, which 

would be expected to be present in groundwaters and soils, and be able to 

form complexes with the metal ions of interest. Two metals ion were 

chosen to be investigated, nickel and europium. These two metal were 

chosen because Ni2+ is a typical divalent metal ion in terms of its stability 

with organic ligands and Eu3+ is an analogue of the actinide elements. If 

the values produced from the work were in agreement with assessed 

literature values, or at least provided realistic values then the work could 

be further extended in the future for further 'in-house' measurement of 

stability constants, and to verify predictive calculations of metal-ligand 

interactions. 
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2.2 General experimental procedure 

For all simple and complex metal-ligand systems studied, the experimental 

work consisted of the following general procedure: 

(a) Detennination of carbonate contamination. 

(b) Protonation constant determination. 

(c) Stability constant determination. 

(d) Computational procedures. 

2.2.1 Determination of carbonate contamination 

In the potentiometric determination of acid protonation constants and 

metal-ligand stability constants, the presence of carbonate (from carbon 

dioxide in the atmosphere) can effect the values obtained. As a result, it is 

necessary to determine the amount of carbonate that is present in solution 

prior to the determinations of acid protonation and metal-ligand stability 

constants. 

2.2.2 Theory 

In the detennination of carbonate contamination by Gran's method 50
, a 

standard titration is performed. Increments of a standardised base solution 

are added to an acid solution up to a pH meter reading between 11 - 12. 

The following calculations can be used to determine the calculated p[H]. 

where 

p[H] =X 

p[H] =pKw -X 

(in acid region) 

(in basic region) 

(2.1) 

mmol,dd =initial millimoles of strong acid present. 

V N•OH =is the m1 of standard base of molarity 

Mba.., added. 

pKw = -log
10

([H•][QH-]) at the ionic strength 

employed. 
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Differences between p[H]
0

, and p[H]"Ic tend to be greater above pH 7, 

and this is due to the presence of carbonate in the solution. 

The underlying principle behind Gran's method for strong acids is that the 

free hydrogen ion concentration [H+] is reduced in direct proportion to the 

amount of standard base added. When the function (V
0 

+V N,011)1Q-MR is 

plotted, where MR is the reading on the pH meter against moles of base 

added the reading is exactly proportional to [H+] and therefore the overall 

term (V o +V N.o11)JQ-MR is proportional to the moles of hydrogen present. 

Therefore the intercept on the volume axis represents exact neutralization 

of the strong acid. 

If the value obtained from the intercept shows a carbonate contamination of 

above 2% (%v/v), then a fresh solution should be prepared. Values above 2% 

will have a significant affect on the stability constant values produced. 

2.2.3 Experimental 

The method involved an acid-base titration. The cell is shown in figure 2.1. 

It consisted of a double walled glass cell through which thermostated water 

was pumped through to maintain a constant temperature. Inlets were 

provided for a burette, pH glass electrode (Ross™ electrode combination 

pH Model81-02 connected to Orion Model 720A pH meter), and for the 

passage of nitrogen gas. The total volume of the glass cell was 

approximately 80ml. The following acid solution was made up in a reaction 

cell: 

Sml of standardized volumetric HCI solution 

Sml of I.OmolJ·' KC! 

45ml of analytical grade water 

To this solution l.Oml increments of standardised base solution were added. 

The system was allowed to equilibrate for a set period of time (>30sec) 

and pH readings were recorded. 

29 



Nitrogen in 

pH glass electrode Burette 
7 

~ 
\ 

Nitrogen out 

Water in 
\_ 

/ 

Water out 
/ 

Figure 2.1: Reaction cell used for potentiometric titrations 
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2.3 Protonation constant determination 

The protonation constant is a measure of the strength of a particular acid. 

The protonation constants of the acids are experimentally determined, so 

that the p[H] profile obtained for the acid alone can be compared with the 

acid-metal profile and to validate the experimental methodology. 

2.3.1 Experimental 

To determine the protonation constant for each acid, O.lml increments of 

standardized base were added to a well characterized solution, which 

contained a known concentration of acid and Sml of l.Omol 1·1 KCl as the 

supporting electrolyte. For each increment of base added, the system was 

allowed to equilibrate and the pH readings were recorded. 

The reaction solution was maintained at 25°C by the circulation of 

thermostated water through the double walled glass of the reaction cell. 

During the experimental determination, the cell was kept under an inert 

nitrogen atmosphere. 

The experiment was repeated several times in order to determine 

reproduceability of results. The protonation constants were determined 

from the experimental titration data by the computer program PKAS 51
• 

2.4 Stability constant determination 

Metal-ligand complexes may be considered as being formed by the 

displacement of one or more acidic protons from the ligand by the metal ion. 

Therefore, the addition of metal ions to a solution of a suitable ligand causes a 

drop in the pH of the solution. The greater the tendency for metals to combine 

with a given ligand , the greater the drop in pH. Thus, a titration method 

provides a quantitative approach for determining stability constants for reactions 

between metals and suitable Iigands, and gives a quick, simple method of 

testing for complexation and, one which can be used to show the degree of 

complexation that has occured. 
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2.4.1 Experimental 

In the reaction cell a known concentration of acid was placed, along with 

5ml of l.OmolJ·' KC\ as the supporting electrolyte. A known concentration 

of metal salt solution was added, and the entire solution was magnetically 

stirred under a nitrogen atmosphere. The temperature was kept constant by 

using thermostated water at 25°C. 

To the metal-acid solution, 0.1 ml increments of standardised base solution 

were added. After every increment of base added, the system was allowed to 

equilibrate and the pH readings were recorded. 

The experiment was repeated several times in order to determine the 

reproduceability of the results. 

For complex metal-ligand systems studied, the experimental work consisted 

of the following general procedure. 

To a mixture of well characterized acids, containing also 5ml of l.Omo!J·' 

KC\ as the supporting electrolyte, a known concentration of metal salt 

solution was added and the entire solution was magnetically stirred under 

a nitrogen atmosphere. The temperature was kept constant by using a 

thermostated water bath at 25"C. 

To the above reaction mixture, O.lml increments of standardized base 

solution were added. After every increment, the system was allowed to 

equilibrate and the pH readings recorded. 

From the experimental titration data the stability constants of the various 

metal-acid equi\ibria were determined using the BEST computer program 
51 
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2.5 Computational method 

In a potentiometric titration, the variable measured is -log[H+] and therefore, 

any calculation of the data should involve the measurement of p[H] directly. 

This is the main feature which distinguishes BEST and PKAS computer 

programs from other programs available for the calculation of equilibrium 

constants from potentiometric data. 

2.5.1 Procedure 

The calculation for computing stability constants in BEST involved the 

following sequence: 

a) A set of known and estimated overall stability constants (fl's) for a 

particular metal-acid system were inputted and [H+] was computed 

at all titration points. 

b) The weighted sums of the squares of the deviations in p[H] were 

computed using the following relationship: 

where U is the goodness of fit between the inputted stability 

constants and the titration curve, and w is given by: 

w = 1/(p[HJ,., - p[H]1_,)
2 

where w is a weighting factor which was used to lessen the influence 

of the less accurate p[H] values in the steeply sloped regions of the 

titration curve. 

c) The unknown stability constants were adjusted and the calculations 

repeated until no further minimization of U (the SIGFIT, i.e the 

goodness of fit) could be obtained, thus providing the final calculated fl 
values. This refinement of unknown log fl values proceeded as follows: 
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(i) enter the number of the species to be refined. 

(ii) enter an increment (say .8). 

The titration curve was then computed with a log fl + 0.800. If V was 

greater than before, then the curve was recomputed with a log f1 value-

0.800. This process of incrementation and computation was continued 

up to five times until a minimum V was found. If a minimum V was 

not obtained in the five attempts, the best minimum fit was computed 

and the computation stopped. 

PKAS, for protonation constant determination is a special case of the more 

general algorithm found in BEST. In protonation constant determination, as 

only two components are present, much simpler generalised equations 

become available and hence, the calculations are performed quicker. 

The determined stability constants from the experimental titration data were 

inputted into the SPE computer program 51• SPE is a FORTRAN 

computer program for the computation of species distribution from given 

equilibrium constants. SPE derives, from the given equilibrium data, species 
distribution of all the components in each system over the pH range 
studied. 

Within the SPE program was the additional subroutine PHASE, which took 

into account any solubility products. Hence, speciation plots were obtained 

showing species present in both aqueous and solid phases. 

From these speciation plots, tables were produced showing distribution of 

the metal over the pH range studied. 
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2.6 Metal • ligand systems 

2.6.1 Nickel • acetic acid system 

The carbonate concentration was calculated to be 0.8%. 

Determination of the protonation constant for acetic acid 

In the reaction cell the following solution was made up: 

20ml of 0.009914moll·' acetic acid 

(standardized against volumetric 0.10014moll·1 KOH) 

5ml of l.Omoll-1 KC! 

25ml of analytical grade water 

The cell was closed and equilibrated under nitrogen. The temperature was 

kept constant at 250C. Increments of 0.1 m! of 0.100 14moll·' KOH were 

added and when equilibrium was reached, the pH meter readings were 

recorded. The experiment was repeated a further five times for statistical 

analysis. The titration data was inputted into the FORTRAN 77 PKAS 

program 51 , which evaluated the protonation constant as shown in table 2.1. 

experimental run log~, 

1 4.56 

2 4.54 

3 4.54 

4 4.56 

5 4.56 

6 4.58 

average value 4.56± 0.2 

Table 2.1: Acetic acid protonation constants 
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Stability constants of nickel-acetic acid system 

In the reaction cell, the following solution was made up: 

5ml of l.Omo!J·' KC! 

20ml of 0.009914mo!I·' acetic acid (standardized against 

volumetric 0.10014mo!I·' KOH) 

20ml of 0.0104mo!J·' nickel (I!) nitrate 

5ml of analytical grade water 

A titration was performed with 0.10014mo1I·' KOH base solution. After 

every O.lml increment of base, pH readings were recorded. Initial 

experimental runs suggested that there was insufficient acetic acid to form 

any significant complexation with the nickel. Hence the following solution 

was made up in the reaction cell: 

5ml of l.Omol I·' KCI 

45ml of 0.0995mo!I·' acetic acid (standardized against 

l.00!6mo!l·' KOH solution) 

5ml of 0.0104mo1!·1 nickel (II) nitrate 

Again, a number of titrations were performed in order to achieve 

reproduceability of results. The results are shown in table 2.2. 

experimental run log k
1 

log k2 

1 0.86 0.27 

2 0.72 0.32 

3 0.70 0.39 

4 0.77 0.34 

5 0.79 0.33 

6 0.88 0.18 

average value 0.79± 0.08 0.36± 0.1 

Table 2.2: Nickel · acetic acid stability constants 
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The protonation constant values produced from the technique for acetic 

acid are in very good agreement with each other. Since acetic acid only 

contains one carboxylate group the titration curve of the neutralisation of 

the acid by base only shows one inflection point. This is shown in figure 2.2: 
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Figure 2.2: Titration curve of acetic acid 

The stability constant values produced by the potentiometric technique 

indicate the formation of weak complexes between the nickel and the 

acetate ion. This would be expected for the interaction between a transition 

metal ion and a simple monocarboxylic acid. The second stepwise stability 

constant (log k
1
) shows a large pecentage error and this is due to the small 

amount of this complex that was formed in the system studied. As the pH 

was progressively increased the nickel formed hydroxide complexes. 
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2.6.2 Nickel-lactic acid system 

The carbonate concentration was calculated to be 0.8%. 

Determination of the protonation constant for lactic acid 

The solution in the reaction cell was: 

20ml of 0.0093moll·1 lactic acid (standardized against O.ll8moll·' KOH) 

5ml of l.Omo!J·' KC! 

25ml of analytical grade water 

This was titrated against 0.118moll·' KOH solution, under a nitrogen 

atmosphere and a temperature kept constant at 25°C. Results are shown 

in table 2.3. 

experimental run log k111 

l 3.64 

2 3.66 

3 3.60 

4 3.65 

5 3.60 

6 3.62 

average value 3.63 ±0.3 

Table 2.3: Lactic acid protonation constant 

Determination of stability constants for nickel-lactic acid 

system 

The sol uti on in the reaction cell was: 

45ml of 0.0798moll·' lactic acid 

(standardized against l.Ol8moll·' KOH solution) 

5ml of 0.016moll·' nickel (11) nitrate 

5ml of l.Omolt·• KC! 

This solution was titrated against l.Ol8moll·' KOH. 
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Results are shown below in table 2.4: 

experimental run logk
1 

log k2 

l 1.46 0.78 

2 1.49 0.71 

3 1.42 0.83 

4 1.63 0.96 

5 1.71 0.90 

6 1.55 0.93 

average value 1.54 ± 0.15 0.85 ±0.12 

Table 2.4: Nickel- lactic acid stability constants 

The values produced from the technique indicate the formation of weak 

complexes between the nickel and the lactate ion. As with the acetic acid there 

is a large percentage error associated with log k, values. A titration curve of the 

nickel-lactic acid system is shown in figure 2.3 . 
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Figure 2.3: Nickel-lactic acid titration curve 

From the figure it can be seen that there are two inflection points. The second 

inflection point is due to the formation of nickel-hydroxo complexes. 
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2.6.3 Nickel-citric acid system 

The carbonate concentration was calculated to be 0.8%. 

Determination of the protonation constants for citric acid 

In the reaction cell: 

20ml of 0.00945moll- 1 citric acid 

(standardized against 0.1016moll-1 NaOH solution) 

Sml of l.OmoJI-1 KC! 

25ml of analytical grade water 

A titration was performed against 0.1055moll-1 NaOH. Results shown in 

table 2.5. 

experimental run kill kll2 kill 
1 5.82 4.18 2.74 

2 5.81 4.18 2.82 

3 5.68 4.38 3.05 

4 5.72 4.19 2.89 

5 5.63 4.09 2.75 

6 5.62 4.32 3.09 

average value 5.71 ± 0.10 4.22±0.15 2.89±0.17 

Table 2.5: Citric acid protonation constants 

Determination of the stability constants for nickel - citric 

acid system 

The solution in the reaction cell was: 

20ml of 0.00945moll-1 citric acid 

(standardized against 0.106mol1- 1 KOH solution) 

10ml of 0.01029moll-1 nickel (11) nitrate 

5ml of l.Omoll-1 KCl 

15ml of analytical grade water 
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This solution was titrated against 0.1055moll·' NaOH. Results are 

shown in table 2.6. 

experimental run log k
1 

log k2 

I 5.09 2.72 

2 5.30 2.76 

3 5.25 2.90 

4 5.25 2.86 

5 5.00 3.15 

6 5.25 2.62 

average value 5.19 ± 0.15 2.84±0.26 

Table 2.6: Nickel - citric acid stability constants 

The above stability constant values show the formation of fairly strong 

complexes between the nickel and the citric acid. The citrate ion has an overall 

charge of -3 and this high charge leads to a stronger interaction with the nickel 

than was the case for acetic or lactic acids. The titration curve of citric acid 

alone is shown in figure 2.4. Although it has three protonation constants the 

curve is continuous due to the close values for the constants . 
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Figure 2.4: Citric acid titration curve 
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2.6.4 Europium - acetic acid system 

The carbonate concentration was calculated as 1.5%. 

Determination of the protonation constant for acetic acid 

The experimental determination of the protonation constants of acetic acid 

has been described in section 2.6.1. 

Stability constants of europium - acetic acid system 

In the reaction cell the following solution was made up: 

lOml of 0.01017moil·' europium (Ill) chloride 

45ml of 0.1020moll·' acetic acid (standardized against 

1.0127moil·' KOH) 

5ml of l.Omoil·' KC! 

A tiration was performed with 1.0127moli·' KOH solution. Results are 

shown in table 2.7. 

experimental run log k
1 log k, log k

3 

1 2.04 1.27 0.42 

2 2.24 1.10 0.17 

3 2.14 1.30 0.16 

4 2.16 1.19 0.39 

5 2.22 1.09 0.33 

6 1.75 1.51 0.33 

average value 2.09±0.25 1.24 ± 0.21 0.30 ± 0.13 

Table 2. 7: Europium - acetic acid stability constants 

The above values again indicate the weak complexes formed by acetic acid. 

However, if the acetic acid is present in excess over europium in a particular 

system the overall formation constant, log ('
3 
= 3.63. This represents the 

formation of the fairly stable complex, Eu(Ace),. 
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2.6.5 Europium • lactic acid system 

The carbonate concentration was calculated as 1.7% 

Determination of protonation constant for lactic acid 
The protonation constant for lactic acid has been determined in section 2.6.2. 

Stability constants for europium • lactic acid system 

In the reaction cell the following solution was made up: 

45ml of 0.08775moll-1 lactic acid (standardized against 

1.0127moll-1 KOH) 
5ml of l.Omoll-1 KC! 

lOml of 0.01017moll-1 europium (Ill) chloride 

A titration was performed with l.Ol27moll-1 KOH solution. Results are 

shown in table 2.8. 

experimental run log k
1 

log k
2 

log k
3 

1 2.94 2.35 1.35 

2 3.44 2.35 1.35 

3 2.91 2.35 1.40 

4 2.90 2.34 1.46 

5 2.90 2.40 1.40 

6 2.90 2.34 1.46 

average value 3.00 ±0.27 2.36 ± 0.03 1.40±0.05 

Table 2.8: Europium • lactic acid stability constants 

From the above table, there is good consistency in the values produced from the 

experimental runs. As noted in the europium-acetic acid system if the lactic acid 

is in sufficient excess in a particular system then the europium will interact with 

the lactic acid to form a strong complex with an overall formation constant, 

log ~3 = 6.76. Such a complex would inhibit the formation of europium carbonate 

and europium hydroxide complexes until higher pHs are reached, and at typical 

groundwater pHs would predominate the europium speciation. 
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2.6.6 Europium • citric acid system 

The carbonate concentration was calculated as 1.1 %. 

Determination of the protonation constants for citric acid 

The experimental determination of the protonation constants for citric acid 

has been described in section 2.6.3. 

Stability constants of europium • citric acid system 

In the reaction cell the following solution was made up: 

10ml of 0.01017moii·' europium (lll) chloride 

20ml of 0.00945mol I-1 citric acid 

(standardized against 0.11004mo1I·' KOH solution) 

5ml of I.Omoll·' KCI 

15ml of analytical grade water 

A titration was performed with 0.1004moll·' KOH solution. 

experimental run log k, log k, 

1 6.68 4.68 

2 7.34 4.08 

3 7.42 3.70 

4 7.39 3.51 

5 7.50 3.67 

6 7.21 4.20 

average value 7.26±0.15 3.97±0.15 

Table 2.9: Europium • citric acid stability constants 

As with nickel, citric acid forms strong complexes with europium as shown 

in the above table. Its ability to form such complexes will inhibit formation 

of other europium complexes in groundwaters providing the citric acid is 

in sufficient concentration. 

44 



2.6. 7 Nickel • salicylic acid system 

The carbonate concentration was calculated has 0.5%. 

Determination of protonation constants for salicylic acid 

The following solution was used in this investigation: 

20ml of 0.0101 moi1-' salicylic acid 

(standardized against 0.105 mol I-' KOH solution) 

5ml of 1.0 moll-' KCI 

25ml of analytical grade water 

The solution was titrated against 0.105moll-' KOH solution. Results for 

these experiments are shown below in table 2.10. 

experimental run kHI kH2 

I 13.58 2.64 

2 13.32 2.67 

3 13.56 2.66 

4 13.10 2.65 

5 13.38 2.67 

6 13.44 2.65 

average value 13.40 ±0.24 2.66 ±0.02 

Table 2.10: Protonation constants for salicylic acid 
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Stability constants for nickel- salicylic acid 

In the reaction cell the following solution was made up: 

20ml of 0.0103moll·' salicylic acid 

(standardized against 0.09948moll·' KOH solution) 

5ml of l.Omoll·' KC! 

10ml of 0.01021moll·' nickel (Il) nitrate 

15ml of analytical grade water 

A titration was peformed with 0.09948moll·' KOH solution. Results are 

shown below in table 2.11. 

experimental run log k1 
log k2 

1 7.55 5.48 

2 7.12 4.72 

3 8.45 4.75 

4 7.47 4.76 

5 6.91 4.80 

6 7.05 5.66 

average value 7.43 ± 0.77 5.03 ±0.47 

Table 2.11: Nickel- salicylic acid stability constants 

Salicylic acid was chosen for investigation as it is proposed that salicylate 

groups are involved in the complexation of metal ions with humic substances. 

From table 2.11 it can be seen that the salicylate ion forms strong complexes 

with. nickel. Such values show the high affinity metal ions have for humic 

substances. Of interest in this study is the high first protonation constant for 

salicylic acid, which doesn't allow for the formation of the fully 

deprotonated salicylate ion until high pH. 
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2.6.8 Europium - salicylic acid system 

The carbonate concentration was calculated as 1.9%. 

Determination of the protonation constants for salicylic acid 

See section 2.6.7. 

Stability constants of europium - salicylic acid system 

In the reaction cell the following solution was made up: 

20ml of O.OIOimoii-1 salicylic acid 

(standardized against 0.1 05moii-1 KOH) 

5ml of l.Omoii-1 KCI 

lOml of 0.01017moii- 1 europium (Ill) chloride 

15ml of analytical grade water 

A titration was performed with 0.105moii-1 KOH solution. Results are 

shown below in table 2.12. 

experimental run log Jt..nL JogkMIIZL 

1 2.55 1.27 

2 2.68 1.31 

3 2.64 1.32 

4 2.66 1.27 

5 2.74 1.38 

6 2.79 1.35 

average value 2.68± 0.12 1.32 ± 0.05 

Table 2.12: Europium- salicylic acid stability constants 

Due to the high first protonation constant the formation of europium 

complexes with the fully dissociated salicylate ion did not occur, with 

europium carbonate and europium hydroxide complexes being formed 

instead. At nuetral and acidic pHs europium forms weak complexes with 

protonated salicylic acid. 

47 



2.6.9 Nickel - phthalic acid system 

The carbonate concentration was calculated as 0.7% 

Determination of the protonation constants for phthalic acid 

The following reaction solution was used in this investigation: 

20ml of 0.0173moll·' phthalic acid 

(dissolved in 6ml of O.lmo!J·' volumetric HCI). 

5ml of l.OmoJI·' KC! 

25ml of analytical grade water 

The solution was titrated aginst 0.106moll·' KOH solution. Initially, lml 

increments of base were added and the pH noted. Near the inflection point, 

O.lml increments of base were added. The results from these experiments are 

shown below in table 2.13. 

experimental run kill ~2 
I 4.89 3.09 

2 4.85 3.04 

3 4.83 3.01 

4 4.90 3.12 

5 4.50 2.63 

6 4.56 3.02 

average value 4.75±0.20 2.98±0.25 

Table 2.13: Phthalic acid protonation constants 
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Determination of stability constants for nickel - phthalic acid 

The following solution was used in this investigation: 

20ml of 0.01730moil·1 phthalic acid 

(dissolved in 6ml of O.lmoJ\·1 volumetric HCI) 

Sml of l.Omol l"' KC\ 

\Oml of 0.0102moil·' nickel (Il) nitrate 

15ml of analytical grade water 

Initially 1 ml increments of 0.1 06moll"' KOH were added and pH readings 

were recorded. Near the inflection point, O.lml increments of base solution 

\were added. Results are shown in table 2.14. 

experimental run logk, 

1 2.44 

2 2.67 

" 3 2.59 

4 2.70 

5 2.72 

6 2.33 

average value 2.57 ±0.20 

Table 2.14: Nickel- phthalic acid stability constants · · 

As with salicylic a:cid, phthalic acid was chosen as an analogue to the 

complexation group that occur on a humic substance. With nickel, 

phthalic acid forms weak complexes, as can be seen in table 2.14. With 

reference to chapter one and the idea of 'strong' and 'weak' sites on a 

humic molecule it is clear that phthalate groups represent the 'weak' sites 

on the humic molecule, with salicylate groups representing the 'strong' 

sites. 
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2.6.10 Europium • phthalic acid system 

The carbonate concentration was calculated as 0.8% 

Determination of the protonation constant for phthalic acid 

See section 2.5.9 

Determination of stability constants for europium • phthalic 

acid system 

In the reaction cell the following solution was made up: 

20ml of0.01017M phthalic acid (dissolved in 6rnl ofO.lM HCl) 

5ml of l.OM KCl 

!Oml of 0.01016M europium (Ill) chloride 

15ml of analytical grade water 

Initially, lml increments of 0.09948M KOH were added and pH readings 

were recorded. Near the inflection point, O.lml of increments were added. 

Results are shown below in table 2.15. 

experimental run log k, 

1 4.52 

2 4.06 

3 3.93 

4 4.19 

5 4.26 

6 3.66 

average value 4.11 ± 0.43 

Table 2.15: Europium· phthalic acid stability constants 

As with the nickel case, europium forms relatively weak complexes with 

phthalic acid. 
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2.7 S11mmary and Conclusions 

(1) Protonation constants 

experimental values literature values 

acetic log kH, = 4.56 log~~ =4.56 

lactic log~~ =3.63 log~~ =3.66 

citric log~~ =5.71 log~~ =5.70 
log km= 4.22 log ~2 =4.35 
log kH3 = 2.89 log kH3 = 2.90 

salicylic log kH, = 13.40 log kH, = 13.35 
log k,,2 = 2.66 log ~2 =2.81 

phthalic log kH, = 4.75 log~~ =4.93 
log k,

12 
= 2.98 log ~2 =2.75 

Table 2.15: Protonation constants for organic acids 

The experimentally derived protonation constants are in good agreement 

with critically assessed literature values. All literature values are at the 

same ionic strength as the experimental values. 

The acids represent a number of low molecular weight organic acids. Acetic 

acid with its one protonation constant, is representative of monocarboxylic 

acids such as formic and butanoic acids. In contrast, citric acid has three 

proton-bearing groups and is a hydroxocarboxylic acid. 

Saliclylic and phthalic acids were studied to mimic functional groups on 

humic acids. The large second protonation constant of salicylic acid 

indicates that the acid only becomes fully dissociated at high pH. 
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(2) Stability constants • nickel 

experimental values literature values 

acetic log k, = 0.79 log k, =0.74 
log Js = 0.36 log Js = 0.36 

lactic log k
1 
= 1.54 log k, = 1.79 

log k2 =0.85 log k2 = 0.99 

citric logk,=5.19 log k
1 
= 5.25 

log k
2 

= 2.84 log k, = 2.84 

phthalic log k, =2.57 logk,=2.17 

salicylic log k, =7.43 log k, =6.95 
log k

2 
=5.03 log k

2 
=4.75 

Overall, experimental derived results show agreement with literature values. 

All literature values are at the same ionic strength as the experimental values. 

The weak complexing ability of acetic acid is shown by its stability constants 

with nickel. In order for any appreciable amount of complexation to be 

observed the acetic acid concentration had to be far in excess of the nickel 

concentration. In contrast, citric acid due to its greater electrostatic attraction 

forms a strong complex with nickel. 

Salicylic acid forms far stronger complexes than phthalic acid and this is due to 

the hydroxyl group on the aromatic ring as opposed to the carboxylate group. 

The good agreement between experimental and literature values was taken as 

validation of the experimental design and methodology 
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(2) Stability constants - europium 

experimental values literature values 

acetic logk
1 
=2.09 log k1 = 1.94 

log Js = 1.24 log Js = 1.53 
log k3 = 0.30 log k

3 
= 0.60 

lactic log k
1 
=3.00 log k

1 
=3.0 

log Js = 2.36 log Js = 2.3 
log k, = 1.40 log k, = 1.4 

citric logk
1 
=7.26 logk

1 
=7.80 

log k
2 

= 3.<n log k
2 

=4.05 

phthalic log k
1 
= 4.11 log k

1 
=3.6 

salicylic Jog kMHIL = 2.68 Jog ~HIL = 2.59 

There is good agreement between experimental and literature values. All 

literature values are at the same ionic strength as the experimental values. 

The results again highlight the strong complexation of citric acid, in contrast 

to the weak complexes formed by acetic acid. 

Salicylic acid due to its high second protonation constant formed complexes 

of MH Sal type in the system studied. At higher pH where the salicylic 
' 

acid is fully dissociated, hydrolysis and carbonate reactions predominate 

for europi urn. 

Such equilibrium constants provide data for modelling of radionuclide 

migration through groundwaters, and in particular Drigg Ieachate where a 

number of volatile organic acids have been identified. 
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2.8 Competing systems 

The work involved investigating the complex equilibria involving two low 

molecular weight organic acids and selected metal ions, using potentiometric 

pH titrations. Experimental data obtained are used to calculate metal -ligand 

stability constants, and to determine metal speciation over a wide pH range, 

for the various complex equilibria studied. The systems that have been 

studied: 

I. nickel/citric acid/lactic acid 

2. nickel/acetic acid/lactic acid 

3. nickel/salicylic acid/lactic acid 

4. europium/citric acid/lactic acid 

5. europium/citric acid/acetic acid 

For competing ligand systems the following mass equations can be used 

to describe the overall equilibria of the system: 

(1) Metal added to a mixture ofligands 

If a metal, M is added to two ligands, Land L", then: 

....>. M+L ..,..- ML 

and M+ L*~ ML* 

KL = [ML] 

[M] [L) 

~* = [ML*) 

[M) [L*] 

Therefore, 2M+L+L* ~ ML+ML* 

Overall, K = [ML) [ML*) 

[M]2[L)[L*] 

Then, 
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(2) Ligand replacement 

M+L ~ ML 

and ML+L* ~ ML* +L 

Therefore, K = [ML*] [L] 

[ML] [L*] 

Overall, 

(3) Mixed ligands 

M+L~ ML 

and ML+L* ~ MLL* 

Therefore, 

Overall, 

K = [MLL*] 

[ML] [L*] 

K=K* X K L 

Application of the above formula will derive overall equilibrium 

constants for a competing ligand system and which may subsequently be 

incorporated into geochemical speciation codes. For the competing 

ligand systems that follow, overall equilibrium constants are calculated. 
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2.8.1 Nickel/citric acid/lactic acid system 

The carbonate concentration was calculated as 1.2%. 

Determination of the stability constants for metal acid 

equilibria 

In the reaction cell the following solution was made up: 

10m1 of 0.00989 moll' citric acid 

(standardised against 0.1021 moJJ·' KOH solution) 

30ml of 0.00925 moll' lactic acid 

(standardised against 0.1021 moJJ·' KOH solution) 

5ml of 1.0 moJJ·' KC! 

!Oml of 0.01022 moll·' nickel (II) nitrate 

A titration was performed with 0.1031 moll·' KOH solution. 

Results 
logk 

l. M+L~ ML 5.17 

2. 
_, 

M+ L* """" ML* 1.58 

3. ML*+L* ~ ML* 
' 2 

1.31 

where: M - nickel (Il) ion 

L - citrate ion 

L *-lactate ion 

The above stability constant values are similar to values obtained from 

the simple system containing one metal ion and one acid ligand 52
, and 

also with reported literature values 53• A speciation plot and table of the 

system are shown in figure 2.5 and table 2.1~. 
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Figure 2.5: Speciation plot of nickellcitric acid/lactic acid system 

pH Ni2+ NiCit· NiLac• Ni(OH), 

2.0 100.0 0.0 0.0 0.0 

3.0 95.8 1.0 3.2 0.0 

4.0 52.0 40.5 7.2 0.0 

5.0 15.0 81.7 3.1 0.0 

6.0 7.5 90.8 1.6 0.0 

7.0 6.3 92.2 1.4 0.0 

8.0 3.1 82.0 0.0 14.9 

9.0 0.3 45.0 0.0 54.7 

10.0 0.0 10.2 0.0 89.8 

11.0 0.0 0.3 0.0 99.7 

Table 2.18: Species table of nickeV( o/o) in nickeVcitric acid/lactic acid 
system 

At the starting pH, the majority of the nickel was present as the free aqua 

ion. With increasing pH more of the citric acid became deprotonated, and 

hence more citrate ion was formed, to complex with the nickel. Due to 

the far greater stability of the nickel - citrate complex relative to the 

lactate complex, virtually all of the nickel was bound to the citrate rather 

than the lactate ion. From the pH range 5.0 - 8.0, over 80% of the metal 
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was bound to the citrate ion. This complex inhibited the formation of 

hydroxo complexes. Little NiLac• species were formed. 

As the pH became progressively more alkaline, the nickel precipitated out 

as the hydroxide species. At pH ll virtually all the total nickel 

concentration precipitated out of solution. 

Addition of the nickel to the two organic acids can be speciated by an 

overall equilibrium constant, K, as outlined in section 2.8. 

Therefore the overall K for the addition of a metal ion to a mixture of two 

ligands: 

experimental values: K=K, xK2 

log K = 5.17 + 1.58 

logK=6.75 

Thus the above overall constant can be used to speciate the equilibria 

between the metal ion and the two organic acids. 
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2.8.2 Nickel/acetic acid/lactic acid system 

The carbonate concentration was calculated as \.2%. 

Determination of the stability constants for metal acid 

equilibria 

In the reaction cell the following solution was made up: 

20ml of O.Ol025moll·' acetic acid 

(standardised against 0.103mol 1·1 KOH solution) 

20ml of 0.00925molJ·' lactic acid 

(standardized against 0.103moJ1·1 KOH solution) 

5ml of \.OmoJI·' KCI 

lOml of 0.01022moll-' nickel (Il) nitrate 

A titration was performed with 0.103molJ·' KOH solution. 

Results 

logk
1 

\. M+L ~ ML 0.68 

2. M+L* ~ML* 
""" 

1.50 

where M- nickel (Il) ion. 
L - acetate ion. 
L * - lactate ion. 

There is good agreemnt between stability constants calculated from the 

above system and the single metal ligand systems. This suggests the lack 

of any synergistic effect in the above system, and that such systems can be 

speciated using individual metal ligand stability constants. 
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A speciation plot and table of the system are shown in figure 2.6 and table 

2.19. 
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Figure 2.6: Speciation plot of nickel/acetic acid/lactic acid system 

pH NP• NiAce• NiLac• Ni(OH), 

2,0 100.0 0.0 0.0 0.0 

3.0 97.2 0.4 2.6 0.0 

4.0 89.9 1.3 9.3 0.0 

5.0 85.8 1.7 12. I 0.0 

6.0 85.0 0.4 12.6 0.0 

7.0 19.0 0.0 3.0 76.8 

8.0 1.9 0.0 1.9 97.8 

9.0 0.2 0.0 0.0 99.8 

10.0 0.0 0.0 0.0 100.0 

11.0 0.0 0.0 0.0 100.0 

Table 2.19: Species table of nickel!(%) in nickel/acetic acid/lactic acid 
system 

Due to the low stability constant of nickel acetate, a negligible amount of the 

complex was formed in the system. Lactic acid complexed with approximately 

I 0% of the free nickel within the pH range 4.0 - 6.0. However, the majority 

of the total nickel remained as the free aqua ion until pH 7.0, when it 

formed the nickel hydroxide, and precipitated out of solution. 
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Again, for the addition of a metal to the two ligands an overall constant 

for the equilibria can be calculated. 

experimental values: K= K1 x !<., 
log K = 0.68 + 1.50 

log K = 2.18 

2.8.3 Nickel/salicylic acid/lactic acid system 

The carbonate concetration was calculated as 1.1 %. 

Determination of the stability constants for metal acid 

equilibria 

In the reaction cell the following solution was made up: 

lOml of0.0106moll·' salicylic acid 

(standardised against 0.1022mo!I·1 KOH solution) 

20ml of 0.00925moii·' lactic acid 

(standardised against 0.1022molt·' KOH solution) 

5ml of l.Omolt·' KC! 

lOml of 0.01022moll·' nickel (11) nitrate 

A titration was performed with 0.1022molt·' KOH solution. 

Results 
logk 

I. M+ L ;;_ ML 7.00 

2. M+L* ~ ML* 
' 

1.69 

3. ML*+L* ~ ML* " ' 
1.12 
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where M - nickel (Il) ion 

L - salicylate ion 

L *- lactate ion 

As in the previous mixed systems, there is good agreement between the 

above stability contants and those determined in the single metal ligand 

systems, and with those quoted in the literature. 

A speciation plot and table of the system is shown in figure 2.7 and table 

2.20. 
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Figure 2.7: Speciation plot of nickel/salicylic acid/lactic acid system 
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pH Ni2• NiSal NiLac• Ni(OH)
2 

2.0 100.0 0.0 0.0 0.0 
3.0 97.5 0.0 2.5 0.0 
4.0 90.6 0.0 9.4 0.0 
5.0 87.1 0.8 10.1 0.0 
6.0 86.5 4.5 9.0 0.0 
7.0 57.9 33.5 8.6 0.0 
8.0 2.1 0.3 0.0 97.6 
9.0 0.0 0.0 0.0 100.0 
10.0 0.0 0.0 0.0 100.0 
11.0 0.0 0.0 0.0 100.0 

Table 2.20: Species table of nickel/(%) in nickel/salicylic acid/lactic acid 
system 

Dissociation of the second proton of salicylic acid did not occur until 

high pH's. Hence, complexation of nickel to the salicylate ion did not 

occur until above pH 7. At acid pH's, the majority of the nickel remained 

as the free aqua ion. As seen in the previous system with a similar 

concentration of lactic acid, approximately 10% of the total nickel 

concentration was bound to the lactate ion. The presence of lactic acid in 

the mixture inhibited the formation of any complexes of the form 

MHxSal. 

For the system the overall constant was calculated: 

experimental values: K=K1 xK2 

log K = 7.00 + 1.69 

logK=8.69 

As with the previous systems no synergistic effect was observed between 

the two organic acids. 
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2.8.4 Europium/citric acid/lactic acid system 

The carbonate concentration was calculated as 0.5%. 

Determination of the stability constants for metal acid 

equilibria 

In the reaction cell the following solution was made up: 

lOml of 0.00989moll·' citric acid 

(standardised against 0.1201mol I-' KOH solution) 

40ml of 0.0820moll·' lactic acid 

(standardised against 1.0257moll·' KOH solution) 

Sml of l.Omol I-1 KCl 

lOml of O.OlOllmoll·' europium (Ill) chloride 

A titration was performed with 1.0257moll·' KOH solution. 

Results 

log 

1. M+L ~ML 7.42 

2. M+L* ~ML* 3.12 

3. ML*+L* ~ML,* 2.36 

4. ML,*+L* ~M~* 1.45 

where: M - europium (Ill) ion 
L - citrate ion 
L *- lactate ion 

A speciation plot and table of the system is shown in figure 2.8 and table 

2.21. 
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Figure 2.8: Speciation plot of europium/citric acid/lactic acid system 

pH Eu'• EuCit EuLac2
• Eu(Lac),' Eu(Lac)3 

Eu(OH), 

2.0 15.5 3.6 49.2 29.6 2.2 0.0 
3.0 3.1 12.9 28.0 46.4 9.6 0.0 
4.0 0.0 41.4 4.5 29.7 24.3 0.0 
5.0 0.0 74.2 1.2 11.3 13.4 0.0 
6.0 0.0 86.4 0.6 5.9 7.4 0.0 
7.0 0.0 88.5 0.5 4.9 6.1 0.0 
8.0 0.0 88.7 0.4 4.8 6.1 0.0 
9.0 0.0 88.8 0.0 4.8 6.1 0.0 
10.0 0.0 88.6 0.0 0.5 2.1 9.8 
11.0 0.0 48.4 0.0 0.0 0.1 51.1 

Table 2.21: Species table of europium/(%) in europium/citric acid/lactic 
acid system 
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Even at low pH's , the majority of the euorpium was complexed. Due to 

the excess of lactic acid, the species EuLac, Eu(Lac)2, Eu(Lac)3 were all 

present in siginificant concentrations up to pH 5.0. From pH range 5.0- 10.0, 

virtually all the europium was bound to the citrate ion. This EuCit 

complex inhibited the formation of any hydroxo complexes. This agrees 

with previous work done on the speciation of europium with citric acid 54
• 

With the excess lactate present, upon the addition of citrate a ligand displace­

ment reaction occurs. The equilibria for this reaction can be 

calculated using an overall constant: 

experimental values: K=K/K, 

log K = 7.42 -3.12 

logK=430 

2.8.5 Europium/citric acid/acetic acid system 

The carbonate concentration was calculated as 0.5%. 

Determination of the stability constants for metal acid 

equilibria 

In the reaction cell the following solution was made up: 

lOml of 0.00989mo J·' citric acid 

(standardised against 0.1201moll·' KOH solution) 

30ml of 0.09557mol I-' acetic acid 

(standardised against 1.0257mo!I·' KOH solution) 

Sml of l.Omo!J·' KC! 

lOml of O.OlOllmoli·' europium (Ill) chloride 

A titration was performed with 1.0257mo!I·' KOH solution. 
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Results 

logk 

l. M+L~ML 8.10 

2. M+L*~ML* 2.24 

3. ML*+L* ~ ML,* 0.82 

4. ML2*+L**ML,* 0.74 

where: M - europium (Ill) ion 

L - citrate ion 

L *- acetate ion 

A speciation plot and table of the system is shown in figure 2.9 and table 

·2.22. 
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Figure 2.9: Speciation plot of europium/citric acid/acetic acid system 
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pH Eu'• EuCit EuAcel+ Eu(OH)
3 

2.0 89.7 10.1 0.1 0.0 
3.0 50.6 48.4 0.9 0.0 
4.0 30.2 67.6 2.2 0.0 
5.0 20.2 77.8 1.9 0.0 
6.0 19.0 79.1 1.9 0.0 
7.0 18.9 79.2 1.9 0.0 
8.0 18.8 79.2 1.9 0.0 
9.0 18.8 79.2 1.9 0.0 
10.0 4.0 64.8 0.4 30.8 -
11.0 0.2 53.2 0.0 46.6 

Table 2.22: Species table of europium/(%) in europium/citric acid/lactic 
acid system 

Over a large pH range, in excess of two thirds of the europium is bound to 

the citric acid. Since the stability constant of the europium citrate is far 

greater than europium acetate, very little of the europium acetate is formed. 

At higher pH's , hydrolysis takes place. 

For the system an overall constant can be calculated. 

experimental values: 

I 

K=K, xK2 

log K = 8.10 + 2.24 

logK= 10.34 
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2.9 Summary 

The experimental methodology and computational procedures have provided 

stability constant data that shows good agreement with literature values. 

The work has provided a collection of data which can provide a basis for 

subsequent studies involving low molecular weight organic acids and their 

role in toxic metal migration through the geosphere. 

For the various complex equilibria that have been studied, the following 

conclusions can be reached: 

1. Protonation constant values for acid and stability constant values for 

various metal - acid equilibria are in good agreement with critically 

assessed literature values at the same ionic strengths and temperatures. 

2. These systems can be modelled using simple mass action equations. 

From these individual stability constants, an overall stability constant 

for each complex system can be calculated. 

3. If the complexation between the metal and the organic acid is 

sufficiently stable, or if the contentration of the acid is sufficiently in 

excess then metal hydrolysis is suppressed. 

4. No synergistic effect was observed in the competing ligand systems 

and the stability constants calculated were in agreement with 

constants from the individual metal ligand systems. 

5. Overall equilibrium constants and individual constants can be 

incorporated into groundwtaer speciation models and assist in 

determining the speciation and likely migration of toxic metals. 
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2.10 Errors in the determination of stability constants 

There are many errors associated in the determination of stability constants. 

Measurment errors include incorrect calibration of the p[H] meter-electrode 

system, faulty or drifting measurements, impure ligand and incorrect 

preparation, standardization of acid, base and/or metal salt solutions. Also 

electronically faulty meter and recording errors. 

Calibration and electrode care is important. Calibration of the p[H] meter 

should be done on a regular basis. Manufacturers' recommendation for 

storage of the reference electrode should be practised. Careful observation 

should be made to ensure no crystallization of KC! in the opening that 

provides the liquid junction to the experimental solution, thus preventing 

normal conductivities between the electrodes performance and cause 

increasing drift 

A source of considerable errors results from inaccurate standardization of 

the reagents. For example, a small error in the concentration of a triprotonated 

ligand (eg: citric acid) would produce a three- fold error in the available 

concentration of the hydrogen ion. This may or may not dramatically effect 

the equilibrium constants from the major species present, but it could result 

in disproportionate errors in the constants calculated for minor solution 

species. 

Several others precautions which should be noted are maintenance of an 

inert atmosphere, careful temperature control, ionic strength and that the 

supporting electrolyte should be inert. Temperature control is necessary 

since electrode response for a given concentration of [H•] is a function of 

temperature. Also the chemical equilibrium is a function of temperature, 

and so the temperature should remain constant and be frequently 

monitored. 
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CHAPTER THREE 

Investigations into 
metal - humic acid 

binding 



3 INTRODUCTION 

As stated in chapter one, numerous studies have been conducted on the 

interactions of metals with humic substances. Unfortunately, constants 

produced vary by several orders of magnitude for a particular metal ion. 

This can be due to a number of factors, including choice of analytical 

technique, incorrect interpretation of the data and over-extrapolation of 

measured parameters. 

As a consequence, the aim of this study was to investigate a number of 

important factors: 

1. A quantitative determination of two experimental techniques, namely 

high pressure size exclusion chromatography and ion exchange. To 

determine the applicability of the techniques for the studying of metal 

humic substance systems. 

2. To determine the speciation of europium and nickel with humic acid, 

as a function of the metal concentration. 

3. To study the binding behaviour of such complexes and to 

experimentally investigate the theories of non-localised and localised 

binding of metals to humic substances. 

4. To critically evaluate the data and the results that the techniques 

produce and to offer future recommendations for their use. 

Initial studies were concerned with the application of a high pressure size 

exclusion chromatography study of metals with humic acids. From these 

studies ion exchange techniques were then applied to investigate factors 

such as pH and dissociation. 
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3.1 High Performance Size Exclusion Chromatography (HPSEC) 

An investigation was undertaken to study metal -humic acid interactions 

using a high pressure size exclusion chromatographic technique (HPSEC). 

Previous work had shown that the technique can easily separate the bound 

(eg europium humate) and free metal (eg europium) 55
• However, results from 

the technique sometimes tend to under estimate the amount of bound metal 

compared to other techniques (eg ion exchange) and more importantly, the 

amount of bound metal predicted by computer models 56
• 

Two potential problems of the HPSEC method could be dissociation of the 

metal humate complex and sorption within the HPSEC system. As the bound 

and free metal are separated down the chromatographic column, in order to 

restore the equilibrium dissociation of the metal - humate complex will occur 

according to Le Chatelier's principle. To investigate dissociation, identical 

samples were injected at two different flow rates and the amounts of bound 

and free metal eluted from the columns compared. To investigate the 

possibility of sorption, the activities of injected samples were measured in 

the absence and presence of the column. 

The complexation of both europium and nickel with Aldrich sodium humate 

was investigated in the study. 

The instrumentation used for high pressure size exclusion chromatography 

is shown schematically in figure 3.1. The instrumentation consists of a 

Philips PU 4000 Series Liquid Chromatograph, fitted with a PU 4100 

Gradient Pumping System, a PU 4021 Diode Array Detector (DAD), a 

Rheodyne injection valve with a lOOfll sample injection loop. The DAD 

and Radiometric series A-140 detector are controlled by PU 6003 and 

PU 6000 integration and control software. All injected samples were filtered 

through 0.45flm Acro discs prior to injection. All mobile phases were 

filtered through 0.45f.1m filter discs. The columns used were a TSK 

SWX3000L guard column and a TSK GW3000 analytical columns. 
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Figure 3.1: Schematic diagram of the High Pressure Size Exclusion 

Chromatographic apparatus used in europium - Aldrich sodium humate 

experiments. 
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3.2 Preliminary europium · Aldrich sodium humate 
experimental work 

Stock solutions . preparation 
A solution of IOOppm (weight by volume, w.v) Aldrich sodium humate 

was prepared as a stock solution. To this solution 0.0585g analar sodium 

chloride was added to make the ionic strength O.OlM. 

20111 of 152Eu (from Amersham stock solution containing 33.4 MBq mi-1 

and 0.07 mg mi- 1) was placed into Sml of HPLC water to make a stock 

solution of approximate activity of lMBq/ml. From this stock solution, 

l ml was added to a I Oml sample of the humic solution. From this solution 

lml was added to lOml HPLC water and 100!11 samples of this solution 

were injected onto the HPSEC.All europium- humic acid solutions were 

left for five days, since this was sufficient for the solutions to reach 

equilibrium 57
• 

Investigation of dissociation of metal-humate complexes 

To investigate dissociation, the same sample was injected six times at two 

different flow rates of .50ml/min and .25ml/min. The pH of the sample was 

6.0. The conditions of the column and detector for the .50ml/min set of 

experiments are summarised below: 

Flow rate - .50ml/min 

Pressure - 38 bars 

Mobile phase - HPLC water/O.lmoll- 1 EDTA 

UV absorption wavelength - 254nm 

Concentration of sample: 

aldrich sodium humate 

europium 

lOppm (w.v) 

1.390 x I0-7 mol!-1 

The following stepped elution and injection scheme was used to achieve 

separation of the humic bound europium and the 'free' europium through 

the HPSEC system. 

74 



Injection (2rnin before commencement ofEDTA flow) 

H 20 1 1 O.lmoll"' EDTA 

1----:6-:-0-nn-.:-n-s---' 
.___ ___ __._, ---' 

45rnins 15 rnins 

Figure 3.2: Stepped elution profile used in europium complexation study 

at flow rate .500ml/rnin 

The scheme employed in this europium complexation study has been 

successfully used in a previous investigation 58
• Water was chosen as the 

initial mobile phase to specifically enhance sorption, thereby allowing 

separation of the humic bound europium from the 'free' europium. Since 

water is used as the mobile phase the gyration radius of the humic acid 

will increase and hence will elute earlier 23• A mobile phase of O.lmoll·' 

EDTA was used as a second mobile phase to elute the 'free' europium. 

Figure 3.3 shows a typical DAD chromatogram and illustrates how the 

EDT A front reaches the UV detector immediately after the europium- humate 

complex. 

Figure 3.4 shows a typical radiometric chromatogram highlighting the 

bound and free europium. 

To determine the amount of europium bound the classical cut and weigh 

technique, as shown in figure 3.5 was used. Since the peaks are non-Gaussian 

(due to the heterogenity and molecular size fractions of the humic acid) 

and a 'tailing effect' is observed, integrated peak areas will overestimate 

the amount of free europium. 
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Figure 3.3: DAD chromatogram at 2.S4nm 
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Figure 3.5: The cut and weigh technique 

The results from the two different flow rates are shown in tables 3.1 and 3.2. 

The results were obtained by employing the previously mentioned classical 

cut and weigh technique. It is generally accepted that such a technique as an 

associated error of 2% on the measured parameters. 
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Run number Area ofEu-AHA complex peak/% En-free peak/% 

1 89.9 10.1 

2 93.3 6.7 

3 85.2 14.8 

4 89.3 10.7 

5 88.0 12.0 

6 94.3 5.7 

Average of Eu-AHA complex= 90.0 ± 4.5 

Table 3.1: Europium- Aldrich sodium humate results at .50m1/min 

Oowrate 

Run number Area of Eu-AHA complex peak/% En-free peak/% 

1 93.3 6.7 

2 86.9 13.1 

3 83.3 16.7 

4 84.2 15.8 

5 87.2 12.8 

6 92.2 7.8 

Average of Eu-AHA complex= 87.9 ± 5.0 

Table 3.2: Europium - Aldrich sodium humate results at .25m1/min 

flow rate 

From the above tables it was concluded that the change in flow rate had no 

effect on the europium- Aldrich sodium humate equilibria within 

experimental error. 
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Investigation of sorption of europium-humate and europium 

Sorption experiments were initially carried out in the absence and presence 

of the chromatographic size exclusion columns and with HPLC grade water 

as the mobile phase. Consequentally. a significant amount of sorption of free 

europium occurred within the columns. This highlights the need for the 

use of EDTA to desorb the free europium. 

To further investigate any sorption effects, the activities of samples were 

measured using the stepped elution method shown in figure 3.2, both in the 

absence and presence of the columns. The activity was collected by a 

Pharmarcia LKB Redifrac fraction collector and measured on a Philips 

PW4800 automatic gamma counter. For error analysis both sets of 

experiments were repeated in sextuplet. The results are shown in table 3.3 

and table 3.4. 

Run number measured activity/cpm 

1 131646 

2 133569 

3 129226 

4 127485 

5 125441 

6 130171 

average 129590 ± 4064 

Table 3.3: Sorption study of europium -Aldrich sodium humate 

(without columns) 
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Run number measured activity/cpm 

1 118122 

2 124150 

3 !09331 

4 117474 

5 128935 

6 126134 

average 120691 ± 5731 

Table 3.4: Sorption study of europium - Aldrich sodium humate 

(with columns) 

Results suggest that there is only slight sorption being observed and 

analysis of the data indicates this to be the free europium. This small loss 

in activity is negligible compared to the overall counts and is insignificant 

in the determination of metal speciation. Therefore the stepped elution 

scheme shown in figure 3.2 provides an excellent method for the separation 

of europium humate and free europium. 
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Conclusion 

From the preliminary work on the europium- Aldrich sodium humate 

equilibria the following conclusions can be reached: 

l. The amount of europium bound is approximately 90% of the total 

metal concentration. This agrees with ion exchange experiments 

performed on the same sample 56. 

2. Varying the flow rate from .SOrnl!min to .25mllmin had no effect, 

within experimental error, on the amount of complex formed. Thus, 

dissociation of the europium- humate complex during the time 

spent in the chromatographic columns is insignificant. 

3. Sorption effects are insignificant, as the major sorbing species is 'free' 

europium, which is subsequentally desorbed by the EDTA mobile phase. 

However, it is essential that elution schemes are sufficiently long to 

remove previous mobile phases. 

4. HPSEC is a useful analytical technique for speciation of metal -

humic equilibria, providing that the metal - humate complexes are 

of sufficient stability to pass through the column with minimal 

dissociation. 

From the above conclusions it was decided that further investigations into 

the europium humic acid system could be carried out using HPSEC. 
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3.3 Nickel - Aldrich sodium humate experimental work 

Table 3.5 shows samples covering a range of metal concentrations that had been 

prepared and used during a nickel - Aldrich sodium humate investigation using 

an ion exchange resin ""·These samples were used on the HPSEC 

investigation in order to obtain a direct comparison between the two 

techniques. The apparatus was the same as that used in the europium 

complexation experiments, except SynChroPak GPC-60 guard (50 x 4.6 

mm i.d.) and analytical (250 x 4.5 mm i.d.) size exclusion columns were 

used. The conditions of the column and the detector are summarised below: 

Flow rate - .23 ml/min 

Pressure - 36 bars 

Mobile phase - O.OSmoJI·' NaCI/O.SmoJI-1 

NaCI 

UV absorption wavelength - 254nm 

Each sample contained 60ppm (w.v) Aldrich sodium humate and O.OOlmolt-• 

4-morpholineethanesulfonic acid monohydrate (MES) buffer to maintain a 

pH6.9. 

Sample VolumeAHA Amount of Ni(NO,), Amount of Ni" 

(ml) solution added solution added ((li) 

I 5.00 so,.t of I X to-' moll'' 25 

2 5.00 25~•1 of I x lo-' moll-' 25 

3 5.00 50!-1( of ( X ((J' mo((-l 25 

4 5.00 25!-11 of I x I o-' mol (- 1 25 

5 5.00 so,.l of 1 x Jo-' moll-' 25 

6 5.00 25!-11 of I x to-' moll-' 25 

7 5.00 so,.l of I x I o--' moll-' 25 

8 5.00 25!-11 of I x I o--' moll'' 25 

9 5.00 SO~tl of I x lo-5 moll-' 25 

10 5.00 25!-11 of I x I o-• moll-' 25 

Table 3.5 - Nickel solutions used during the investigation 
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The following salt-gradient elution profile was used to achieve separation of 

the humic bound nickel and the 'free' nickel. This scheme was based on a 

previous study 58
• 

A = 0.05 M NaCI 

B = 0.50 M NaCI 

Injection 
(Run Start) 

l 
Equilibration 

35 mins. 15 mins. 

A(%) lOO 
B(%) 0 

lOO 
0 

lOO 
0 

10 mins. 

0 
lOO 

Flow rate = 0.230 ml mlri 1 

45mins. 

0 100 
100 0 

100 
0 

Figure 3.6: Salt-gradient profile used in Ni-AHA comp!exation study 

Figure 3.7 shows a typical chromatogram. Results for the nickel - Aldrich 

sodium humate study are shown in table 3.6. 

-[M], [ML] [M] [ML] log [ML] log [M] 

Total NI NI·AHA Ni-free [M] 
concentration complex (mol (·1) 

(mol I·') (mol 1'1) 

9.805 x IO' 4.510 x 105 9.354 X 10' 0.<>182 -4.346 -3.029 

4.927 x 10' 2.464x 10' 4.681 x 10' 0.0526 -4.608 -3.330 

9.811 x 10' 5.298 X 106 9.282 x 10' 0.0571 -5.726 -4.032 

4.955x 10' 2.973x 106 4.658x 10' 0.0638 -5.527 -4.332 

9.889 x 106 6.329 x 10' 9.256 x 1o' 0.0684 -6.199 -5.034 

4.988 X 106 3.492 x 10' 4.639 X 106 0.0753 -6.437 -5.334 

1.022 X 10' 7.358 x IO' 9.484 X 10' 0.0776 -7.133 -6.023 

5.325 X 10' 3.994 X 10° 4.926x 10' 0.0811 -7.399 -6.308 

1.357 X 10' 1.111 x 10° 1.246 x lo' 0.0892 -7.954 -6.904 

8.692 x 10' 8.692 X 109 7.823 X 10' 0.1111 -8.601 -7.106 

Table 3.6: Nickel· Aldrich sodium humate complexation study results 
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From the HPSEC data stability constants for the nickel humic acid system 

were calculated utilising three approaches: 

I. The strong and weak site Scatchard plot. 

2. A Scatchard plot with an equilibrium constant for each order of metal 

concentration. 

3. The differential equilibrium function (DEF). 

Figures 3.8 and 3.9 show plots utilising the Scatchard and DEF methods. 

Scatchard two-site plot 
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Figure 3.8: Scatchard plot of nickel · Aldrich sodium humate 
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Figure 3.9: DEF plot of nickel - Aldrich sodium humate 

Modelling approaches for determining metal - humic equilbrium 

constants 

Three mathematical approaches have been used in this study of nickel with 

Aldrich sodium humate. The Scatchard plot "7 has often been used in 

biochemistry and aquatic chemistry as a means of evaluating stability 

constants. With metal - humic interactions the plot of [ML]/[M] vs [ML] 

yields a curve which can be convienently divided into two linear segments. 

From the slopes of these two linear segments stability constants can be 

calculated which correspond to metal interactions with humic sites that fall 

into two distinct categories, namely strong and weak. Criticism against this 

approach is that the above intrepretion of metal - humic interactions is over­

simplified and that the two derived stability constants have no real physio­

chemical significance. A modified Scatchard approach, whereby an 

equilibrium constant is calculated for each order of metal concentration 

attempts to overcome this criticism whilst still supplying data which can be 

easily incorporated into geochemical speciation codes. The differential 

equilibrium function 49 is a more rigorous interpretation of metal- humic 

interactions since it provides a contiuous distibution of equilibrium constants 

as a function of metal loading, thereby accounting for the inherent 

heterogenity of humic molecules. 
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Table 3.7 shows a comparision of the three mathematical approaches for the 

evaluation of the nickel- Aldrich sodium humate equilibrium constants. 

order of metal Scatchard two Scatchard plot DEF 
concentration site approach metal concentration 

w-• 6.96 7.40 
J0-7 log 'K =4.28 5.49 6.51 

w-6 4.22 5.85 

w-s log •k = 1.64 3.46 4.25 

w--~ 2.33 3.42 

Table 3.7: Comparison of approaches used to evaluate equih"brium 

constants 

From the above table important conclusions can be drawn. The choice of 

interpretation of experimental data has a profound effect on the resulting 

stability constant. For a particular order of metal concentration in the nickel 

humic acid system the derived stability constant varies by at least a couple 

of orders of magnitude. For example at IQ-7, the two site approach produces 

a value of 4.28 as opposed to the continuous model which gives a value of 

6.51. Clearly, with regards to geochemical speciation this will have 

siginificant consequences when attempting to model such systems, since 

for accurate prediction of species in solution the stability constants should 

be known within 0.1 log unit. 

For reference, the above equilibrium constants are quoted with values from 

the literature in Appendix l. 
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To attempt to overcome the problem of stability constant determination, it was 

decided to interpret the data in terms of the amount of the metal bound to the 

humic acid and of the free metal, and not to produce stability constants from 

experimental data. Using this approach the problems of mathematical 

interpretation and its significance are avoided. Where stability constants are 

calculated, then they are done so by the Scatchard plot. This allows for 

incorporation into modelling codes. 

The amount of nickel bound determined by the HPSEC and ion exchange 

techniques are compared in table 3.8: 

[M], [ML] [ML] 

Total Nickel Nickel bound/% Nickel bound/% 

concentration HP SEC Ion exchange 

9.805 x 10-4 4.6 13.8 

4.927 X 104 5.0 11.1 

9.811 x 10-5 5.4 14.2 

4.955 X 10·5 6.0 21.2 

9.889 x 1o-6 6.4 30.4 

4.988x 10'6 7.0 44.0 

1.022 x 1o-6 7.2 60.0 

5.325 x 10-7 7.5 79.2 

1.357 X 1o-7 8.2 89.8 

8.692 x 1o-• 10.0 90.0 

Table 3.8: Comparison of nickel bound by HPSEC and Ion exchange 
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The amount of bound nickel determined by the HPSEC technique was 

considerably less than the amount determined by ion exchange. This 

possible under estimation of the amount of metal bound again may be 

due to sorption and/or dissociation of nickel -humate during the passage 

of the sample through the chromatographic column. The effect of sorption 

has been investigated 58 and was shown to be negligible. 

To investigate dissociation, experiments were peformed at three flow rates 

on one Ni-AHA sample. The results are shown in table 3.9: 

Flow rate % Nickel bound % Nickel free 

ml/min 

.230 7.0 93.0 

.500 12.4 87.6 

.750 15.3 84.7 

Table 3.9: Ni-AHA dissociation study experiments 

(M,= 1.357 x 10·7 moll'') 

The above results suggest that the nickel - humate complex is dissociating 

down the column, since at higher flow rates there is more nickel bound to 

the humic acid. This dissociation is far more signifcant in the nickel studies 

than in the europium experiments due to the Ni2+ being more labile than 

the Eu'•. 
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Conclusions 

From the experiments performed the following conclusions can be reached: 

1. The high pressure size exclusion chromatographic technique provides 

a measure of the amount of metal bound to humic acid. 

2. Results with europium are in agreement with ion exchange results 

and the effects of dissociation and sorption are negligible. 

3. However, results with nickel are not in agreement and operating at 

different flow rates has shown that the nickel - humate complex may 

well undergo dissociation. 

4. The data was interpretated by three techniques to evaluate stability 

constants. The interpretation of the data produces a wide range of 

values. 
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3.4 Europium • Aldrich sodium humate work 

Using the HPSEC method described in section 3.2.1 a range of concentrations 

of analar grade europium (III) chloride solutions, spiked with radioactive 

Eu-152 (from Amersham stock solution containing 33.4 MBq mi- 1 and 

0.07mg ml-1), were prepared in a background electrolyte of O.Olmoll-1 

analar sodium chloride. To each of these solutions lOppm (w.v) Aldrich 

sodium humate was added. The pH of the samples were adjusted to 6.0 by 

the dropwise addition of sodium hydroxide and/or hydrochloric acid. 

Conditions of the column and DAD detector are summarised below: 

Aow rate - .75 ml/min 

Pressure - 48 bars 

Mobile phase - HPLC water/O.lmoll-1 EDTA 

UV absorption wavelength - 254nm 

The stepped and injection scheme used to achieve separation of the 

organically bound europium and 'free' europium was as in the previous 

dissociation/sorption experiments. The eleunt was fraction collected. A 

radiochromatogram is shown in figure 3.7. 

[M], [ML] [M] [ML] log [ML] log [M] 

Total Eu Eu-AHA Eu-free [M] 
concentration ~omplex (moll'') 
(moll") · (moll") 

1.41 X 10'8 1.38 x w-• o3o x w-• 46.000 -7.860 -9523 

6.41 x w-• 6.09 X 10'8 3.21 X 10'9 18.972 -7.215 -8.494 

1.14 x 10·7 1.03 x w-7 1.10 X 10'8 9.364 -6.987 -7.959 

5.14 X 10'7 4.38 X 10'7 7.61 X Jo-8 5.756 -6.359 -7.118 

1.00 X !()'' ~.79 X Jo-7 3.21 X Jo-7 2.115 -6.168 -6.493 

5.00 X )()'' ~.03 X 10'6 2.98 X J0·6 0.681 -5.693 -5.526 

1.00 X 10'5 2.32 X 10'6 7.68 X 10'6 0.302 -5.634 -5.115 

5.00x w-s ppt 

1.00 X 1o-' j:>pt 

Table 3.10: Results of europium· Aldrich sodium humate systems 
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Europium· humic speciation at [Eu], = 5 x 10·' moll·' 
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Figure 3.7: Radiochromatogram of europium - Aldrich sodium humate 



Figure 3.9 shows a Scatchard plot of the data and the derived stability 

constants for europium- Aldrich sodium humate. 

Scatchard plot of europium · humic HPSEC data • 
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Figure 3.9: Scatchard plot of europium - aldrich sodium humate 

The above derived stability constants are compared with literatue values 

shown in Appendix l.The experimental data was modelled using 

MINTEQA2 59• MINTEQA2 is a geochemical speciation code, which has 

in its database thermodynamic values for DOM (dissolve organic matter) 

with selected metal ions. 

The experimentally determined stability constant values indicate the 

formation of a strong complex between humic acid and europium. 

Extrapolation of the above data to trace levels of metal (eg: 10·12 moll·'), 

as would be found in groundwaters, would yield even higher stability 

constants values. The comparison between experimental and model data 

is shown in figure 3.10. 
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Figure 3.10: Speciation of europium- Aldrich sodium humate study 

Conclusion 

Analysis of the HPSEC data and the derived stability constants are in good 

agreement with previous reported literature values. The experimental data is 

also consistent with an ion exchange study on this system. Comparison of the 

experimental data with the computer speciation code MINTEQA2 shows 

reasonable agreement over the europium concentration range. Any 

discrepancies between model and experimental could be due to differing sites 

capacities between the Aldrich sodium humate used experimentally and 

Suwannee fulvic acid used in the MINTEQA2 database. MINTEQA2 also 

employs a Gaussian distribution for its metal-DOM (dissolved organic matter) 

interaction with a stability constant log K value of 6.4 and a standard deviation 

of 1.7 to account for the continuous range of log K's associated with humic 

material. However, over the entire metal concentration range the experimental 

results are consistently lower than the model predictions. 
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3.5 Ion exchange studies 

Theory/Background 

The exchange equilibria that are fundamental in ion exchange involves the 

following: 

(i) electrical neutrality is always maintained. 

(ii) ion exchangers behave as ionised salts. 

(iii) the active ions in the ion exchanger are mobile. 

The mechanism of ion exchange can be viewed in terms of the Law of Mass 

Action. An ion exchange reaction proceeds as follows: 

(3.1) 

where R stands for the non-exchangeable part of the resin, and X+ and y+ 

for the mutually exchangeable ion. Since the reaction is reversible the Law 

of Mass Action may be applied. 

(3.2) 

where the subscripts rand s refer to resin and solution phases respectively. 

In a solution containing an ion exchanger, complexing ligand and a metal 

ion, the metal will partition itself between the resin phase and the solution 

phase and will do so to satisfy the equilibrium constant for the resin and the 

stability constant of the complex in solution. The ion exchanger can operate 

in both batch and column modes. In column ion exchange the cation exchanger 

will remove any cationic species from the passing solution. This removal of 
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species will effect the equilibrium of the complexes in solution. 

Most studies of metal - humic acid using ion exchangers have been carried 

out using the batch method, and particularly the Schubert method 60
·
61

• The 

Schubert method, involves the distribution of trace metal ion between the 

ion exchange resin and the complexing ligand in solution. 

In the absence of complexing ligand L the distribution coefficient, D , of the 
0 

metal is given by: 

D = [Mx+] 
0 --'" 

[M"] soln 
(3.3) 

where [M"] and [M"] 
1 

represent the amount of metal on the resin and in 
res son 

solution respectively. 

When a ligand is added to the system, the metal is redistributed. 

D = [Mx+] 
--"" 
:E [M] (3.4) 

where :E [M] =M,+ Mb i.e: the free and bound metal respectively in solution. 

Combining equations 3.3 and 3.4leads to: 

D - 1 = M = :E R[U 
0 b PI 

D M, 

Hence when n = 1 (ie: a stoichiometry of 1:1): 

log 0
0

-1 =log~+ log [L] 

D 

(3.5) 

(3.6) 

By applying this equation the stability constant, ~. can be calculated. 



Unfortunately, in the case of humic acids it is difficult to calculate the free 

ligand concentration accurately. To overcome this problem, and to compare 

results by cation column ion exchange as well as HPSEC results, the Schubert 

method was modified by allowing a range of metal concentrations to be 

investigated. 

In the Schubert method, trace metal concentrations are used relative to the 

amount of exchangeable sites on the resin and hence equation 3.3 is valid. 

However as the metal concentration is increased more exchangeable ions are 

displaced and the free resin concentration no longer remains constanL 

Consequently, a more rigorous approach is needed to define the equilibria 

taking place. The cation exchange reaction can be represented as: 

M"+ xNaRes .= M(Res)x + xNa• (3.7) 

with the equilibrium constant given by 

K = [M(Res)x][Na•]' 

[M"][NaRes]' 

And for the reaction with the complexing ligand: 

~ = [Mlf·Y] 

[M'•][LY·] 

Rearrangement of equation 3.8: 

[M"]= [M(Res)x] 

K([NaRes]/[Na])' 
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(3.8) 

(3.9) 

(3.10) 

(3.11) 



For low metal concentrations: 

[Mx+] = [M(Res)x] 

(3.12) 

With increasing metal concentrations: 

[MX+] = [MRes]/D M Res 
(3.13) 

where DMR•• represents the distribution of the metal between the resin and the 

solution at higher metal concentrations. 

Thus having experimentally measured [M],01.,;oo and determined [MX+], [ML] 

can be calculated: 

[ML] = [M] - [M<+] 
solution 

(3.14) 

Hence, by using the above approach a series of [ML] can be calculated for 

each metal concentration. 

The aim of the ion exchange studies was to investigate the following effects: 

(i) To compare cation column ion exchange with both HPSEC results and 

MINTEQA2 model predictions. 

(ii) To investigate the effect of pH on europium humate interaction. 

(iii) To compare batch and column ion exchange since one is a dynamic 

process (column) and the other an equilibrium process (batch). 

(iv) To apply the column and batch techniques for nickel humate equilibria 

and to compare with the europium systems. 
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3.5.1 Experimental set-up for column cation exchange experiments 

The ion exchange procedure used to investigate metal - ligand interactions was 

based on a technique described by Choppin 57• The Dowex 50x4 100-200 

mesh cation exchange resin used in the experiments was prepared by loading 

the resin (-SOg) on to a chromatographic column and successively washing 

with numerous bed volumes of concentrated HCl, distilled water, O.lmoll-1 

EDTA, distilled water again and finally O.lmoll- 1 NaOH solution. Finally 

the column of ion exchange resin was washed with the appropriate buffer 

solution used to prepare the metal - humic samples. Each SOOf.ll sample of 

solution under investigation was rapidly separated on a short column of 

freshly prepared resin (12mm i.d x 38mm length) which had been placed 

to a depth of 4cm in a plastic column fitted with a clean glass wool plug at 

the bottom of the column. The samples were eluted with Sml of the same 

buffer. The eluates were monitored for y and/or~ activity as appropriate. 

From a knowledge of the initial activity of each sample, and the eluted 

activities, the percentage of bound metal in each solution was calculated. 

3.5.2 Column ion exchange control experiments 

The following set of experiments were performed to show that all the activity 

that was injected onto the column was removed by the buffer solution. A 

sample was prepared, containing SOppm humic acid and 1 xlQ-5 moll-1 analar 

grade europium (Ill) chloride +radio labelled Eu-152 (from Amersham 

251MBq ml- 1 with 0.538mg ml-1 inactive Eu carrier) in a background 

electrolyte ofO.Olmoll-1 NaC\0
4 

held at pH6.5 by O.Olmol I-1 MES buffer 

solution. 

A SOOf.ll sample of the above solution was injected onto an ion exchange 

column. The column was eluted with Sml of O.Olmoll-1 MES buffer solution 

at pH 6.5 to remove the bound europium and then Sml of O.lmoll-1 EDTA to 

remove the free europium from the column. The experiment was repeated 

several times and the results (corrected for background) are shown in table 

3.11. 
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Eu total activity Eu bound activity Eu free activit) bound+ free (bound + free )/total 

/cpm /cpm /cpm /cpm /% 

112352 68574 42783 111357 99.1 

112352 66783 43075 109858 97.8 

112352 66049 43992 110041 97.9 

112352 66054 44002 110056 98.0 

112352 67121 43321 110442 98.3 

112352 68079 43088 111167 98.9 

Table 3.11: Cation exchange control experiments 

The result show that over 98% of the europium that is injected onto the 

column is eluted using MES buffer and EDTA eluants. 

Another control experiment was performed to prove that no free europium is 

removed by theMES buffer. To investigate this a solution containing 1 xlQ-5 

moll·' EuCI3.6H,Q + Eu-152 were prepared in a O.lmoll·' NaCI04 with 

the pH of the solution being maintained at pH 6.5 by O.Olmolt·' MES 

buffer solution. 

A 500f!l sample was injected onto a column of ion exchange and the 

column was eluted with 2 x 5ml O.Olmoll·' MES buffer solution at pH 6.5. 

No activity was eluted from the column. The column was then eluted 

with 5ml ofO.Olmoll-1 EDTA which removed all the activity. 
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3.5.3 Europium- humic acid system 

The europium - humic acid solutions under investigation were as in 

section 3.4. The results for the europium - humic acid system are shown 

below in table 3.12: 

[M], [ML] [M] [ML] log [ML] .log [M] 
TotalEu Eu-AHA Eu-free [M] 
concentration complex (mol t') 
(mott·') (moll·') 

L4t x w-• 1.39 x w-• 2.00 X 1Q·<O 69.500 -7.857 -9.699 

6.41 x w-• 6.t3 x w-• 2.82 X tQ-9 21.738 -7.2t3 -8.550 

1.14 X tQ-7 l.Ot X 1Q·' L30x w-• 7.769 -6.996 -7.886 

5.t4 X tQ-7 4.25 X t0"7 8.94 x w-• 4.754 -6.372 -7.049 

1.00 X 10"6 7.37 X 10"7 2.63 X tQ·7 2.802 -6.t33 -6.580 

5.00 X t0"6 2.28 X I0-6 2.72 X t0"6 0.838 -5.642 -5.565 

1.00 X tO"' 2.8t X tQ-6 7.t9 X tQ-6 0.391 -5.551 -5.143 

5.00 x w-• ppt 

1.00 x w-• pp! 

Table 3.12: Ion exchange results on europium- humic acid system 

The above results were plotted with the HPSEC results and the 

MINTEQA2 model predictions as shown in figure 3.11. 

102 



~ 

t" 
~ 

:l: 
~ 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 
-8.0 

Mb lE 

Mb HPSEC 

Mb model 

-7.5 

Europium • humic system 

-7.0 -6.5 -6.0 -5.5 -5.0 

log [M]t 

Figure 3.11: Comparision of HPSEC!Ion exchange/MINTEQA2 results on 

europium • humic acid system 

Discussion 

Over the metal concentration range used in the study there is good agreement 

between the ion exchange and HPSEC techniques. Such agreement was 

taken as validation of both techniques. However, both experimental 

techniques give consistently less metal bound than the MINTEQA2 model 

predictions. As with previous comparisons with MINTEQA2, discrepancies 

may be due to the heterogeneuous nature of the humic acid which results 

in a non-Gaussian distribution of log k values rather than a single value. 

Although MINTEQA2 attempts to mimic the heterogeneuous nature of 

humic acid it does so by adopting a mean log k = 6.4 with a standard 

deviation of o = 1.7 with a Gaussian spread of log k values. Analysis of 

Scatchard plots suggests that a Gaussian spread is inappropriate to mimic 

the complexing ability of sites on a humic molecule. 
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3.5.4 Ion exchange pH studies by column cation exchange 

To investigate the effect of pH on the interaction of europium with humic acid 

and hence to determine the amount of metal bound, a series of samples were 

prepared with each sample containing 50ppm humic acid and an approprate 

amount of analar europium (Ill) chloride such that each series contained an 

europium concentration range from 10-s to 1Q-"moll-'. All solutions were 

prepared in a background electrolyte of 0.1moll-' NaClO 
4 

and 0.01moll-' 

MES, PES, CAPS buffer solutions as appropriate for the pH. The series 

covered a pH range of 3.5- 7.5. The amount of metal bound as a function of 

the total metal concentration is shown in figure 3.12. 

Europium speciation as a function of pH 

100 - % [ML] pH 3.5 

90 - % [MI.] pH 4.5 
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Figure 3.12: Ion exchange studies on the pH effect of europium with humic 

acid 
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From the results the following conclusions can be made: 

I. There is a significant increase in the amount of europium bound from pH 

3.5 to 4.5. This is inevitably due to the deprotonation of carboxylate 

groups on the humic molecule. This deprotonation will have two effects 

on the binding behaviour of the humic molecule with europium. Firstly, 

theincrease in pH from 3.5 to 4.5\essens the competitive effect of 

protons for the carboxylate groups and allows the europium to bind. 

Secondly the deprotonation of the groups on the humic molecule will 

cause the molecule to uncoil, thereby allowing easier access to binding 

groups on the molecule. 

2. At the low metal concentrations between the pH range of 5.5- 7.5 over 

95% of the total metal concentration is bound. Within this pH range the 

competition effect due to protons, hydroxide and carbonate ligands for 

the europium are negligible. 

3. As the metal concentration is increased there is a gradual decrease in the 

amount of metal bound to the humic acid. This indicates that strong 

binding groups on the humic molecule complex with the europium first 

and as the europium concentration is increased weaker binding groups on 

the humic molecule become complexed. 

4. Between the pH range 5.5 to 6.5, at high metal concentrations there is a 

significant increase in the amount of metal bound. This is due to the 

dissociation of all carboxylate groups on the humic molecule. 

Unfortunately, the technique could not be applied at higher pHs due to 

the presence of anionic negative complexes, hence the dissociation of 

phenolic groups and their effect on metal binding could not be 

investigated. 
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J.S.S Further studies - a comparison between batch and column 

Background /theory 

A mechanism has been proposed to describe the binding between metal and 

humic substances 62·63• The mechanism involves two types of binding, 

localised and non-localised. Localised involves binding between the metal 

and complexing groups on the humic molecule, where as non-localised 

binding is the electrostatic attraction only of the positive metal ion with the 

negative field that is associated with the polyelectrolytic humic molecule. 

As a result of this proposed mechanism, cation column exchange 

experiments were carried out to determine the equilibria between 

the non-localised metal bound and the localised metal bound. As a metal -

humic acid solution was passed down a column of cation exchanger the 

resin 'stripped' off the non-localised bound metal. The collected eluent 

was left to re-equilibrate and then passed down through another column of 

resin. Again the same amount of metal was stripped off from the humic, 

indicating the equilibria between non-localised and localised binding. 

To further investigate the proposed mechanism, batch ion exchange 

experiments were performed for both nickel and europium and the results 

compared with corresponding column data. The aim was to validate the 

data from both techniques and to gather insight into the mechanism of 

metal - humic acid behaviour. 

In addition, batch experiments may also provide further information on the 

binding of metals to humic substances since the batch technique is an 

equilibrium process as opposed to the dynamic process of column 

techniques. 
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3.5.6 Batch experimental - general procedure 

All solutions used in the batch experiments were prepared using the 

following general procedure. 

Stock solutions ofO.Olmoll·' MES buffer in O.lmoll·' NaCI04 at pH 6.5 

were prepared. 10"1noll·1 stock solutions of NF+ and Eu3+ were made up 

using the above buffer solution, in 250cm3 volumetric flasks. From these 

metal stock solutions, accurate dilutions of metal solutions were prepared 

in the O.Olmoll·' MES buffer/O.lmoll·' NaC104 solution. A 250cm3 

solution of lOOppm Aldrich humic acid was also prepared in the buffer 

solution. 

Radioactive Eu-152 and Ni-63 were prepared in 20ml buffer stocks: 

Ni-63 

Eu-152 

- 27!!1 from 37MBq in 1000!!1 

- 1100!!1 from 4.63MBq in 5000!!1 

Approximately O.lg of Dowex SO"x4 100-200 mesh size cation resin was 

weighed into a pre-weighed plastic vial. To the plastic vial 5.0ml of 

lOOppm Aldrich humic acid (where appropriate) was added or 5ml of buffer 

solution. The required amount of standard metal solution was added and 

the solution volume was adjusted to 9.5ml. The vial was weighed. To the 

solution O.Sml of Eu-152 or Ni-63 from the above working radioactive 

stock solutions were added to make a total volume of lo-ml and the vial 

was re-weighed. The samples were left to equilibrate for five days before 

O.Sml aliquots were taken to determine the activity present 
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3.5.7 Europium cation batch results 

The following samples were prepared to determine the distribution 

coefficient of the metal when in the presence of the resin. A range of europium 

concentrations, as shown in table 3.13, were prepared as described above in 

section 3.4.6. For each metal concentration the distribution coefficient, Do' 

was determined from the initial activity of the solution and after equilibration 

with the resin. A plot of 0
0 

against log [MJ.e, is shown in figure 3.13. 

[M], [MJ.., .. ,to. [M]..,. D 
0 

3.678 X 10'8 1.318 X JO·' 3.553 X 10"7 269.0 

8.678 X 10"8 3.553 X JO·' 8.323 X 10"7 234.3 

1.368 X 10"7 5.176 X 10"9 1.316 X 10"6 254.3 

5.368 X 10'7 2.257 X JO·B 5.142 X 10"6 227.8 

1.037 x w·• 4.292 X 10"8 9.941 x w·• 231.6 

5.037 X 10"6 3.567 X 10"7 4.680 X 10"5 131.2 

1.004 X 10"5 1.071 X 10"6 8.969 X 10"5 83.7 

5.004 X 10"5 1.225 X 10"5 3.779 X 10"5 30.8 

Table 3.13: Batch ion exchange· Do calibration results 
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Figure 3.13: D. curve for europium 

As can be seen from the above graph. the D 
0 

for europium is relatively 

constant, within 10% error until high concentrations of metal on the resin 

are reached. Hence when a complex.ing ligand is introduced, due to its 

ability to remove europium from the resin, the distibution coefficient will 

again remain constant for almost the entire europium concentration range. 

For experiments where humic acid is present, a range of europium 

concentrations were used as shown in table 3.14, each with radiolabelled 

Eu-152. After 5 days equilibration aliquots of the solution were taken and 

the distribution coefficient, D"'" was calculated. 
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[M], [MJ,..,, ... [M],... DMRos [M••] [ML] 

3.678x tO"' 3.670 X t()"8 8.000" t0" 10 271 2.952 X tO"" 3.670 X t()"8 

8.678 x 10·• 8.676 X t ()"8 2.000 X 10"10 271 7.380 x 10·" 8.676 x to·• 

1.368 X 10"7 1.359 X t0"7 9.000 x to·• 27t 3.321 x to·n 1.359 X 10"7 

5.368 X 10"7 5.355 X 10"7 1.300 X 10·' 271 4.797 X 10"11 5.355 X t0"7 

1.037 x 10·• 1.021 X t0"6 1.600 x 10·7 27t 5.904 x 10·10 1.020 X tO"' 

5.037 X t0"6 5.010 X 10"6 2.700 X t0"7 27t 9.963 X 1()"" 5.009" tO"' 

1.004 x 10·5 9.281 X 10"6 7.590 x 10·• 213 3.568 X 10"8 9.245x to·• 

2.504 x t0·5 1.932 X tO·S 5.680 X t 0"5 t31 4.329 X 10·7 1.889 X t0"5 

5.005 X 10·5 3.535 X 10"5 1.469 X la-' 79 1.864 X 1 0"6 3.344 X 10·5 

7.504x 10·5 5.328 X 10·5 2.t72 X 10"4 40 6. 725 X t 0"6 4.655 X t()"5 

Table 3.14: Batch ion exchange results for europium humate 

Aliquots of the prepared samples were also injected onto a column of ion 

exchange resin using the technique as described in section 3.4.1. The 

results of these experiments are shown below in table 3.15. 

[M], [M]bound [M],,... 

3.678 x w-• 3.608 x w-• 7.000 x w-w 
8.678 x w-• 8.469 X lQ-B 1.820 X 10·9 

1.368 x 10·' 1.320 X 10"7 4.780 x w-• 
5.368 X 10"7 5.153 X 10"7 2.148 x w-• 
1.037 x 10·6 8.885x 10·' 1.483 X 10"7 

5.037x 10·6 3.989x 10·6 1.047 X 10"6 

1.004 X lQ-5 5.420 x 10·6 4.617 x 10·6 

Table 3.15: Column ion exchange results for europium humate 
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The aim of the experiment was to compare the batch and column ion exchange 

techniques, specifically in terms of the amount of europium bound to the 

humic acid. This comparison of the two techniques is shown in figure 3.14. 

Europium humic acid study by batch and 

column ion exchange techniques 

"' log [ML] ,., y = - 6.6268e-2 + 0.99057x R'2 = 1.000 
• log [ML 1 •• , 

·5.5 

-6.0 

-6.5 
log [ML] 

-7.0 

-7.5 

-8.0 

y = -3.1202 + 8.912le-2x- 6.6480e-2x'2 R'2 = 0.999 

-7.5 -7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 

log [M], 

Figure 3.14: Europium humic acid binding- comparison between 

batch and column techniques 

From figure 3.14 it can be seen that both batch and column ion exchange 

techniques correspond over most of the europium concentration range. 

However, at high metal concentrations there is a divergence between the 

metal bound by both techniques. This indicates that in the column technique 

at high metalloadings on the humic acid, the europium is stripped from 

the humic by the column of resin. 
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3.5.8 Nickel cation experiments 

To further investigate the comparison between column and batch 

techniques a series of experiments were carried out to investigtae the 

binding of nickel with humic acid. 

A set of nickel -humic acid samples were prepared in a background of 

0.1 moll·' NaCI0
4 
+ 0.01 moll·' MES buffer at pH 6.5. The humic acid 

concentration was 50ppm, and the nickel concentrations were as shown 

in table 3.16. In each sample Ni-63 (from Amersham International, 

37Mbq in 0.093 moJJ·' HCI) was added as described in the batch general 

procedure. Results are shown in3,16. 

[M], [M]boond [M],,... %M bound 

5.440 x w-• 5.152 x w-• 2.883 x w-9 94.7 

1.540 X 10·7 1.404 x w-' 1.355 X 10-s 91.2 

5.544x w-' 4.840 x w-' 7.041 x w-• ·87.3 

1.054 X 10·6 8.443 X [Q-7 2.097x 10"7 80.1 

2.554 x 10·6 1.739 x 10·6 8.147 X JQ-7 68.1 

5.054x 10"6 2.396 x w-6 2.658 x w-6 47.4 

1.005 x w-5 2.643 x w-6 7.407 x w-6 26.3 

2.505 x w-5 4.559 X 10·6 2.049 x w-5 18.2 

5.005 x w-5 6.857 x w-6 4.319 X 10·5 13.7 
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3.5.9 Nickel cation batch results 

The following samples were prepared to determine the distribution 

coefficient of the metal when in the presence of the resin. A range of nickel 

concentrations, as shown in table 3.17, were prepared as described in the 

general procedure. For each metal concentration the distribution coefficient, 

D , was determined from the initial activity ofthe solution and after 
0 

equilibration with the resin. A plot of D against log [M] is shown in 
o res 

figure 3.15. 

[M], [MJ, • .,... [M}ro, D 
0 

5.440 x w-• 5.382 x tQ-9 4.902 x t07 91.07 

t.540 x w-' 1.580 X !08 1.386 x to• 87.72 

5.544 x t07 5.69t x w-• 5.487 x to• 96.42 

t.o54 x w-• L107x tO' 9.433 x to• 85.2t 

2.554 x w-• 2.638 x w-' 2.291 X 10"5 86.82 

5.054 x to• 5.394 x t07 4.515x 10' 83.70 

1.005 X t05 1.251 x to• 8.799 X t05 70.34 

2.505 X 1Q·S 4.229 X 1Q-S 2.082 x w-• 49.23 

5.005 X 10-s 1.4t5 x tO' 3.590 x w-• 25.37 

1.000 x to• 7.42t X 10-s 2.579 x w-• 3.475 

Table 3.17: Batch ion exchange results for nickel humate 
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Figure 3.15: D. calibration curve for nickel 

As can be seen from the calibration curve, the Do for nickel remains fairly 

constant until high concentrations of metal are on the resin. As with the 

europium case, when humic acid is introduced into such a system, due to 

its ability to remove the metal from the resin, the distribution constant will 

again remain constant for almost the entire concentration range. 

For experiments involving humic acid present, a range of nickel 

concentrations were used as shown in table 3.19, each with radiolabelled 

Ni-63. After 5 days equilibration aliquots of the solution were taken and 

the distribution coefficient, D"'" was calculated. 
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[M], [MJ...,,~on [M],... D M Res 
[M"] [ML] 

5.440 X JO·' 5.210x to- 2.300 X t0"8 9t 2.527 X t0"10 5.t85 X tQ-8 

\.540 X JO·S \.486 X tO" 5.400 X t0"8 9t 5.934 X t0"10 \.480 X t0"7 

5.544 X t0"7 5.030 X tO" 5.t40x t0"7 9t 5.648 X t0"9 4.974x tO·' 

\.054 X 10"7 9.40t X 10· 1.139 X 10"6 9t \.252 X !()"' 9.276 X t0"7 

2.554 X 10"6 2.205 X tO" 3.490 x to·• 9t 3.835 X t0"8 2.t67x 10·• 

5.054 X t0"6 4.502 X tO" 5.520 X t0"6 9t 6.066 x.tO"' 4.44t X t0"6 

L005 x to·• 8.279 X tO" l.77t X t0"5 86 2.059 X tQ-7 8.073 X t0"6 

2.505 X 10·5 \.773 X tO" 7.320 X to·5 74 9.892 X tQ-7 ].674 X t0"5 

5.005x JO·' 2.990x 10· 2.0t5 X to·4 44 4.580 X tO"' 2.532 X tQ-5 

Table 3.18: Batch ion exchange resnlts for nickel humate 

The aim of the experiment was to compare the batch and column ion 

exchange techniques, specifically in terms of the amount of nickel bound 

to the humic acid. This comparison is shown in figure 3.16. 
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Figure 3.16: Nickel humic acid binding· comparison between batch 

and column techniques 

From the above figure it can be seen that, as in the europium case there is 

a divergence between the column and batch results as the metal 

concentration is increased. The divergence between the two techniques 

occurs at lower metal concentrations than in the europium case. Again the 

results indicate the removal of weakly bound nickel from the humic acid 

as the solution passes through the column of ion exchange resin. Since 

nickel forms weaker complexes than europium with the humic acid, the 

stripping by the resin will occur at lower nickel concentrations than for 

europium. 
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3.6 Conclusions on column and batch ion exchange results 

The aim of the experiments was to investigate the batch and column 

techniques. At low concentrations of metal, the two techniques give similar 

results of metal bound. However, as the total metal concentration is 

increased there is a divergence between the two techniques with the cation 

column exchange technique giving lower metal bound results. To explain 

these results, it is suggested that at high metal concentrations more of the 

metal bound becomes attached to weak sites on the humic acid. As a 

sample proceeds down the column of resin, these weak sites undergo 

dissociation and thus europium is removed by the resin. For nickel this 

phenonema is observed at lower total metal concentration due to the 

weaker binding of nickel with humic acid. 

It should also be noted that the affinity for europium by the cation 

exchange resin will be greater than for nickel due to the higher charge of 

the europium ion. This should have the effect of removing the europium 

from the humic acid at lower total metal concentrations. However the 

experimental results suggest that this does not occur and this is due the 

high stability of the europium humate complex over a large range of 

metal concentrations. 

A comparison of both techniques for both europium and nickel is shown 

in figure 3.17. 
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both batch and column ion exchange 

118 



CHAPTER FOUR 

The role of low molecular 
weight organic acids on 

metal - humic interactions 

. ' 



4.1 Introduction 

The aim of the work was to investigate equilibria involving the interactions 

of a metal when in the presence of both high molecular weight organics and 

low molecular weight organic acids. Specifically, the investigations were 

designed to ascertain the possible formation of mixed ligand complexes. If 

such complexes exist, it is essential that their interaction with metals are 

quantitatively understood and are incorporated into geochemical speciation 

codes. Since in aquifer systems there a large number of ligands to complex 

with toxic metal ions the probability of mixed complexes being formed is 

high. In the literature there is a lack of sufficient data for such species, 

particularly for natural organic acids. The only thorough investigation has 

been in the study of the mixed complexes of the amino acids 64• 

For simple ligands, it is possible to calculate the stability constant of a 

mixed ligand system from the individual stability constants: 

Therefore, 

MA2 + MB2 ~ 2MAB 

K= [MAB]2 

[MA
2

] [MB2] 

= (~AB)2 
~/~z" 

(4.1) 

where j3A8 , 13/, and ~28 , are the overall formation constants for the 

complexes MAB, MA
2
, and MB

2 
respectively. 

The formation of mixed complexes can further be promoted by a number 

of effects: 

a) Steric factors 

If a metal is coordinated to a bulky ligand, then it is more likely that 

a smaller ligand will occupy the second coordination position. 
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b) m-bond formation 

Log K will be greater if the ligands A and B possess Jt-acceptor 

systems. 

c) Intramolecular bonds 

If the two ligands are sufficiently large, bonds will develop between 

them which will be independent of the metal ion. These bonds can be 

divided into: 

i. Hydrogen bonds. 

ii. Covalent bonds formed specifically between A and B in the 

coordination sphere of the cation, which serves as a catalyst 

for the formation of this bond. 

iii Ionic interactions between A and B when each possesses a 

charged lateral chain. 

iv. Aromatic ring packing. 

v. Hydrophobic interaction between aliphatic and aromatic 

lateral chain. 

Also within such systems it is possible to form bonds without the presence 

of metal. For this to occur the bond energies of (i) - (v) must be sufficiently 

high. Such bonds can be termed as intermolecular and the two ligands, A 

and B, behave as a single entity, AB, and offer two complexing sites. If A 

and B are large enough then they can act as two independent sites. 

Thus it can be seen that many of the above factors may be applicable when 

dealing with metal complexation equilibria involving humic substances. 

Consequently, there is a clear need to determine whether mixed complex 

formation does occur between humic acid and other organic complexing 

agents, or that they behave as discrete entities. Conversely, even if mixed 

complexes do not exist can systems involving mixtures of organic acids be 

successfully predicted with current individual equilibrium constants as 

used by geochemical speciation codes? 
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4.2 Experimental 

The possibility of mixed ligand complex formation, resulting from the 

interaction of europium with mixtures of high and low molecular weight 

naturally occuring organic acids was investigated. Three systems were 

studied containing europium with humic acid in the presence of (i) acetic 

acid (ii) oxalic acid and (iii) citric acid. The various mixtures were 

analysed using high performance size exclusion chromatography (HPSEC). 

To facilitate the measurements C-14labelled low molecular weight organic 

acids and Eu-152 were used. 

Seven series of samples were prepared, all in O.Olmoll-1 NaCl at pH 6.0. 

Within each series the Eu3• concentrations ranged from -1 xl0-8 to 1 x 10"4 

moll-1 , but the acid concentrations were held constant as shown in table 

4.1. At higher europium concentrations precipitation of europium-humate 

was observed. The C-14labelled acids were obtained from Amersham 

International (citric acid), NEN Research products (oxalic acid) and ICN 

Radiochemicals, Inc. (acetic acid) with specific activities of 4.07GBq/mmol, 

0.19GBq/mmol and 0.592GBq/mmol respectively. All concentrations were 

calculated taking into account dilutions and where appropriate the presence 

of radioactive tracer material. The composition of the samples is shown in 

table 4.1. 

Results from the europium- humic acid system only have been given in 

section 3.4. 
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Series* humic acetic oxalic citric 
/(gl"') /(moll"') /(moll"') /(moll"') 

1 0.010 ------ ------ ------
2 ------ ------ ------ 1.05 X IQ-6 

3 0.010 ------ ------ 1.05 X \Q-6 

4 ------ ------ 1.04 X IQ-S ------
5 0.010 ------ 1.04 X IQ-S ------
6 ------ 1.04 x w-2 ------ ------
7 0.010 1.04 X 10-2 ------ ------

Table 4.1: Composition of samples 

*Within each series Eu3+ concentrations ranged from lQ-8 to 1Q-4moll-'. 

The europium contained trace amounts of Eu-152 and the three low 

molecular weight acids, acetic, oxalic and citric contained C-14. The 

humic acid was not labelled. 

4.3 Experimental procedures 

The HPSEC experiments were conducted using the technique described in 

section 3.4. The eluate flowed through a Canberra Packard Flo-one/Beta 

Radiometric A140 detector, containing a 500ft! flow through cell. Liquid 

scintillation cocktail (Ecoscint A: National Diagnostics) was mixed with the 

column eluate to permit the eluted fl activity to be monitored. Upstream of the 

mixing chamber a splitter, within the detector, was used to divert part of the 

eluate to a LKB Redifrac fraction collector. The collected fractions were 

monitored for y activity using a Philips PW 4800 y counter. Elution profiles 

of both the f1 activity associated with the low molecular weight organic acid 

species and they activity of the Eu3+ containing species were obtained. The 

lOOftl injected samples and the bulk mobile phases were 0.45ftm filtered 

with Acro discs and filters. Using the previous europium stepped elution 

scheme the organically complexed europium species were eluted in HPLC 

grade water and the free europium in 0.1 moll-' EDTA, at a constant flow 

rate of 0.75ml min-1• The chromatographic peak areas were used to 

determine the percentage of bound europium in each sample. 
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4.4 Europium · citric acid system 

The HPSEC method was used to investigate the equilibria between europium 

and citric acid. A range of europium chloride solutions was prepared in a 

background electrolyte of O.Olmol I-' sodium chloride. To each of these 

solutions lml of I x lQ-'molJ·' citric acid was added to make a total citric 

acid concentration of l x lQ-6moJI-1• The pH of each solution was adjusted 

to 6.0 by the dropwise addition of sodium hydroxide and/or hydrochloric 

acid. Conditions of the column and DAD detector are summarised below: 

Flow rate - .75ml/min 

Pressure - 38 bars 

Mobile phase - HPLC water/O.lmoJI-1 

EDTA 

UV absorption wavelength - 2\0nm 

The previously used stepped and injection scheme as shown in figure 3.2 

was employed to achieve separation of the organically bound and 'free' 

europium. Initial control experiments, in the absence of citric acid, showed 

that all the europium was desorbed by the EDTA mobile phase. In addition, 

control experiments were performed to determine the retention time of the 

citric acid. A DAD chromatogram of citric acid is shown in figure 4.4 and 

table 4.3 shows the results of the europium- citric acid system. 
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Figure 4.4: An UV-Vis chromatogram of citric acid 
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Results 

[M), [ML] [M) (ML] log [ML] log [M] 

Total Eu Eu-Citrate Eu-free (M] 
eoncentratio11 complex (moll·') 
(moll·') (moll·') 

tAt x w·• 1.40 x w·• 0.10 X to·• 141.0 -7.854 -10.00 

6.41 x w·• 6.17x 10·• 2.40 X 10·9 25.71 -7.210 -8.620 

1.14 X 10"7 1.08 x to·' 6.oo x w·• 18.00 -6.967 -8.222 

5.14 X 10"7 4.73 X 10"7 4.10 x w·• 11.54 -6.325 -7.387 

1.00 x w·• 8.86 X 10"7 1.14 x to·' 7.772 -6.053 -6.943 

5.00 X 10"' 9.15 X Hr' 4.09 X 10"' 0.224 -6.039 -5.388 

1.00 x Hr' 8.30 X 107 9.17 X JO·' 0.091 -6.081 -5.038 

5.00 X 10"5 5.00x JO·' 4.95 X 105 0.010 -6.301 -4.305 

1.00 X 104 n/a 

Table 4.3: Results of europium - citric acid system 

A typical radiochromatogram of these experiments is shown in figure 4.4. 
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Figure 4.4: Radiochromatogram of europium • citric acid system 

An important observation can be made from the above chromatogram and 

the citric acid chromatogram shown in figure 4.3. The retention time of the 

citric acid is much shorter than one would expect if the column was 

behaving purely as a size exclusion column. This has also been observed 

for citric acid with TSK columns in the literature 65
• The effect has 

been attributed to electrostatic repulsion between the citric acid and the 

silica gel column packing. In the context of this study the repulsion 

exhibited by the citric acid is beneficial since it provides clear resolution 

between the europium citrate complex and the free europium. 
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The experimental data shown in table 4.3 was modelled using MINTEQA2. The 

comparision between experimental results and model results is shown in 

figure 4.5: 
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Figure 4.5: Europium - citric acid speciation 

The agreement between the model results and the HPSEC experimental 

results is very good over the metal concentration range. However, as in the 

previous europium-humate study, the experimentally determined percentage 

of bound metal is consistently below that determined by the model. 

Nevertheless the close agreement is taken as evidence of the validity of the 

HPSEC technique and its usefulness in the speciation of metal - ligand 

interactions, providing the complexes formed are sufficiently stable. 
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4.5 Europium - humic acid - citric acid system 

The experimental set up, as described in sections 4.1 was again used in this 

investigation. In addition, the citric acid was spiked with radioactive C-14 

labelled citric acid. This radiolabelled citric acid was monitored using a Ao­

one Beta radio detector. The results of the europium/humid citric system are 

shown in table 4.4. 

[M], [ML] [M] [ML] log [ML] log [M] 

Total Eu Eu·bound Eu~free [M] 
concentration complex (mol t') 
(moll·') (moll-') 

1.41" w-' 1.39" 10"8 2.00 x W'" 69.500 -7.857 -9.699 

6.41 " 1Qc8 633 " l()c8 8.00 X 1Qc10 79.125 -7.199 -9Jffl 

1.14" 1Qc7 1.12 X 1Qc7 2.00" 1 Qc' 56.000 -6.951 -8.699 

5.14x 1Qc' 5.00" 1Qc7 1.40 X 1Qc8 35.714 -6.301 -7.854 

1.00 X 1Qc6 8.54 X 1Qc7 1.46 x w-' 5.849 -6.069 -6.836 

5.00 " 1 Qc' 2.54 " 1 Qc' 2.46 X 1Qc' 1.033 -5.595 -5.609 

1.00" 1Qc5 2.99 x w-• 1.01 x w-• 0.426 -5.524 -5.154 

5.00" w-s ppt 

1.00 X 1Qc• ppt 

Table 4.4: Results of europium - humic acid - citric acid system 

A radiochromatogram of these experiments is shown in figure 4.6. 
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Figure 4.5: Radiochromatogram of europium/humic/citric acid system 

The experimental data was modelled using MINTEQA2. The comparision 

between experimental data and model predictions is shown in figure 4.7. 
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Figure 4.7: Speciation plot of europium- humic acid· citric acid 
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The objective of these experiments was to determine whether europium in 

the presence of humic and citric acids will form mixed complexes. The 

HPSEC experimental results suggested that mixed complexes did not exist 

within the range of europium, citric and humic concentrations used in the 

investigation. Evidence for the absence of mixed ligand complex formation 

was obtained by comparing the HPSEC experimental data with speciation 

modelling results obtained by using the MINTEQA2 code. This code does 

not contain equilibrium data for mixed ligand complexes, and successfully 

modelled the experimental results using individual stability constants for 

europium- humate and europium- citrate. 

Unfortunately, poor resolution between citric and humic acids was observed. 

However, there was no change in the retention time of the radiolabelled 

citric acid both in the absence and presence of humic acid which suggested 

that there was no interaction between the two acids. Further evidence for 

the lack of interaction was also shown by the Gaussian symmetry retained 

by the citric acid chromatogram when in the presence of humic ?cid. 
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4.6 Europium • oxalic acid system 

The experimental conditions were as previously described in section 4.1, 

with 1ml of 1 x\Q-"moll-1 oxalic acid added to make a total oxalic acid 

concentration of 1 x1o-1no11·•. The results of the europium- oxalic acid 

system are shown in table 4.5: 

Results 

[M], [ML] [M] [ML] log [ML] log [M] -
Total Eu Eu-oxalate Eu8 free [M] 
concentration complex (moll-') 

(moll-') (mol I-') 

1.41 x w-• 1.:!6 x w-• 1.50 x w-• 8.400 -7.900 -8.8:!4 

6.41 X tQ-8 5.:!6 X tQ-8 1.15 X tQ-8 4.574 -7.:!79 -7.940 

l.t4 X J0·7 9.:!9 x w-• 2.11 x to·• 4.403 -7.032 -7.676 

5.t4x to-7 4.t7x w-' 9.70x to-• 4.299 -7.0t3 -6.456 

1.00 X tQ-6 7.% x to·' :!.04 X to·' 3.90:! -6.099 -6.690 

5.00 x w-• 3.4t x w-' 1.59 X tQ-6 :!.t45 -5.467 -5.799 

1.00 X 10-s 5.9t x w-• 4.09 X to·' 1.445 -5.2:!8 -5.388 

5.00 X 10-s 7.t0 X to-' 4.:!9 X to·' O.t66 -5.t49 -4.368 

1.00 X tQ-4 6.90 X J0·6 9.3t X tQ-5 0.074 -5.t6t -4.03t 

Table 4.5: Results of europium· oxalic acid system 

An example of a radiochromatogram recorded as part of these experiments 

is shown in figure 4.8. 
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Figure 4.8: Radiochromatogram of europium oxalic acid system 

The experimental data was modelled using MINTEQA2. The comparision 

between experimental and modelling is shown in figure 4.9. 

132 



~ 
,;;. 
~ 

~ 

. :o 

' j -- ··~. 

/ 
.. - iii':-'LC 

' ' .:..: . ..l 

I 
::- ~ 

·i ~- ·5.5 ·5.0 -4.5 -4.0 
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Agreement between the HPSEC experimental data and MINfEQA2 model 

predictions is good over the metal concentration range, although as in the 

previous europium/humic/citric investigation the experimentally 

determined metal bound is consistently less than model predictions. 
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4.7 Europium· humic acid· oxalic acid system 

The same experimental procedure that was used as in the europium- citric­

humic system was used in this investigation. The radiolabelled oxalic acid 

was monitored using the Ao-one Beta radio detector. Results from the 

europiurnlhumic/oxalic acid system are shown in table 4.6. 

Results 

[M], [ML] [M] [ML] log [ML] log [M] 

Total Eu Eu-bound Eu-free [M] 
concentration complex (moll-') 

(moll'') (moll-~ 

L4t X 10'8 L37 x 10·• 4.00 X t0 10 34.298 -7.863 -9.398 

6.4t X 108 6.t8 x 10·• 230x 10·• 26.870 -7.209 -8.638 

1.14 X 10'7 L07 X tO' 7.00 X t09 t5.286 -6.97t -8. t55 

5.t4 X 10'7 4.70 X 10·7 4.40 X to·• 10.682 -6.328 -7.357 

LOO x IQ-' 7.92 X to·' 2.08 X tQ-7 3.808 -6.10t -6.682 

5.00 X t06 3.38 X t06 L62 X 10'" 2.086 -5.472 -5.790 

LOO x tQ-5 5.63 X to·• 4.37 X to·6 L288 -5.249 -5360 

5.00 X 10-s ppt 

LOO x to"' ppt 

Table 4.6: Results of europium • humic acid • oxalic acid system 

An example radiochromatogram, showing the speciation of the europium, 

ofthese experiments is shown in figure 4.10. 
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Figure 4.10: Radiochromatogram of europium/humic/oxalic acid system 

The results of the HPSEC experiments for the europium- humic acid- oxalic 

acid systems are shown with the MINTEQA2 predictions in figure 4.11: 

Europium- oxalic- humic system HPSEC/MINTEQA2 

100 

MINTEQA2 

• / 
90 

~ ·1 5 
::;; 

HPSEC 

• 

70 i 
1 

00 

50 
-8.0 -7 5 .; 0 -6 5 ·6.0 ·5.5 ·5.0 

log [M] 
t 

Figure 4.11: Speciation for europium. humic acid· oxalic acid system 
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Agreement between experimental data and model predictions over the metal 

concentration range is reasonable. Monitoring of the radiolabelled oxalic 

acid showed no shift in retention time and therefore no interaction with 

the europium humate complex suggesting again, that mixed ligand 

formation was not evident. The system was also modelled using SPE, a general purpose 

speciation program. These results are shown in table 4.7: 

HP SEC SPE 

log [Eu], %Eu0x %EuHu log [Eu], %Eu0x %EuHu 

-7.851 0.0 <r7.3 -7.851 0.0 99.0 

-7.193 0.0 96.4 -7.193 0.0 99.0 

-6.943 0.0 93.8 -6.943 0.0 99.0 

-6.289 2.3 89.1 -6.289 3.0 91.5 

-6.000 5.1 84.1 -6.000 5.3 84.7 

-5.301 22.0 45.5 -5.301 24.0 47.0 

-5.000 27.9 28.4 -5.000 32.5 29.0 

Table 4.7: Comparison ofHPSEC results and SPE model predictions 

for the europium/humic/oxalic acid system 

The parameters inputted into SPE were obtained from the individual 

europium- humic acid and europium oxalic systems. Again the agree­

ment between experimental results and SPE predictions indicates that 

mixed ligand formation in the europium- humic- oxalic system does not 

occur. 
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4.8 Europium • acetic acid system 

The same experimental conditions that were used previously in section 4.3. 

were also used in this investigation. A lml solution of 1 x 10"1moii-' acetic 

acid was added to give a total acetic acid concentration of 1 x lO""rnoll-1
• 

Experimental results showed that a significant amount of the europium 

complex was dissociating during separation of the bound and free europium. 

4.9 Conclusions 

Mixed ligand complex formation was not observed under the conditions 

employed and speciation modelling of the mixed systems was successfully 

achieved using appropriate combinations of single ligand constants. The 

absence of mixed complex formation could be attributable to a number of 

parameters. The process being observed in the systems studied indicates 

direct ligand exchange of low molecular weight organic acids for the humic 

acid with no stable intermediate mixed complex formation. Further 

investigations should be directed into the study of interactions between 

humic acid and amino acids since amino acids have been shown to form 

mixed complexes between themselves. 

Further analysis of the data indicates that under groundwater conditions, 

humic acids would dominate the speciation of toxic metals. 
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4.10 Previous work 

The work presented in this chapter does not support the findings of Maes 

et al 67·68 who, employing a modified Schubert method, found evidence 

for mixed complex formation. To investigate any possible discrepancies in 

the previous work, the Maes et al theory and data was reviewed. 

The work involved a large number of ion exchange experiments. The 

Schubert method was based on the following relationship: 

KoD- 1 =('\,[HA]+ ...... + ~m[HA]m = Mb 

KD A M,*A (4.2) 

Where Ko 
0 
and~ are the distribution coefficients of the metal ion in the 

absence and in the presence of humic acid (HA). ~ 1 and ~m represent the 

. overall stability constants, where m is the maximum number of ligands that 

can be bound by the metal. The 'A' term is the side reaction coefficient 

which accounts for the contribution of ligands, other than the humic acid, 

which have the capacity to complex with the metal. For example, in the 

presence of a ligand, L, the side reaction coefficient A equals: 

(4.3) 

Experimentally the concentration ratio of the metal bound by the humic 

acid to the free metal (MJMr) is calculated from the distribution 

measurements and taking into account the side reaction coefficient The 

slope of the plot log (K0

0 /K0 -1) *A versus log [HA] is close to unity 

indicating a stoichometry of 1:1 for the metal humate complex. 

Consequently, equation 4.1 can be reduced to: 

lo,~0 - '=log~. +log [HA]- log A (4.4) 

From the above the stability constant can be calculated from the distribution 
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data, the HA concentration and the calculated side reaction coefficient. 

Typically the experimental procedure involves approximately 0.1g resin 

equilibrated with, for a set period of time, a known volume and 

concentration Eu spiked with Eu-152 solution and complexing ligand with a 

background electrolyte to adjust the ionic strength. A Kd measurement is 

made and then varying humic acid concentrations are added. 

If we consider the equilibria in solution when only europium (concentration -

I0-6 moll-1) and the competing ligand (in this case oxalic acid) are present, 

the speciation of europium as a function of the oxalic concentration will be 

as shown in figure 4.12: 

_____,.__ Eu,. 
90 ----+-- EuOxal,. 

--a-- Eu(Oxal),-- Eu(Oxal),-'-80 

70 

60 
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40 

30 
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10 

0~-F~~~~~~~~~~~ 
-7.0 -6.5 -6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 

log [Oxal], 

Figure 4.12: Europium speciation as a function of oxalic acid 
concentration 

As can be seen from the above speciation plot the overall charge of the 

europium species changes as the oxalic acid concentration is increased. This 

will have a profound effect on the Kod measurement. The ion exchange utilises 
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a cation exchanger in batch equilibrium with the solution under study. Clearly 

at low oxalic acid concentrations when the europium is present as cationic 

species the K0 
0 

value will be large. However with increasing oxalic acid 

concentration less europium will be bound to the resin and subsequently the 

measured Ko 
0 

will decrease. At such large oxalic acid concentrations the 

amount of europium bound to the resin will be minimal. Upon the addition of 

humic acid to the system the distribution coefficient will change little since the 

majority of the europium is present in solution in the form of anionic oxalate 

complexes. Consequently the ratio Ko 
0
/K

0 
will tend to unity. Refering to 

equation 4.3: 

logf~o- I}= log~.+ log [HA] -log A (4.4) 

As a function of increasing oxalic acid concentration the expression log K0

0/~ 
-1 will tend to unity and thus remain constant Also the amount of humic 

acid added is constant (typically 50ppm). Hence the stability constant, ~1 , 

becomes a direct function of A, the side reaction coefficient 

The authors state that mixed complex formation only becomes significant at 

critical concentrations of competing ligands. For a europium concentration 

of 10·6 moll·' and 50ppm humic acid the critical concentration for oxalic 

acid before mixed complex formation is observed is -10·3 moll·'. If the A 

term is calculated for 1 x 10·5 mol I-' oxalate concentration we obtain: 

A = 1 + :E ~\ [L]" 

A= 1 + {354813 * 1 X 10"5} + {7413102413 * [1 X lQ-5]2} 

A =2.096 

log A =0.32 

If the A term is recalculated using an oxalate concentration of 1 x 10"2 moll·'. 
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A= 1 + {354813 * 1 X 10"2} + {7413102413 * [1 X 10·2
]

2
} 

+ {3.09 X 1013 * [1 X 10·2]'} 

A =31644858 

1ogA=7.50 

Obviously, the stability constant~. will change greatly over the oxalic acid 

concentration range of 10·5 to 10·2 moll"'. However, this does not appear to be 

due the formation of a mixed complex but a consequence of the limits of 

experimental design i.e: the distribution coefficient has a limiting factor, so as 

more oxalic acid is added to the system the only term in equation 4.4 is the 

'A' the side reaction coefficient. This rise in the 'A' term accounts for the 

observed increase in ~-

141 



CHAPTER FIVE 

The role of humic acid at 
alkaline pH 

. " 



: 

5.1 Introduction and review 

Virtually all equilibrium studies performed on humic substances have 

been at acidic or neutral pH. This is to eliminate the presence of any other 

equilibrium reactions involving other complexing agents. Unfortunately, 

in geochemica\ systems and waste repository sites it is necessary to consider 

the presence of other agents and in particular, the possible formation of 

hydroxides and carbonates at pHs above neutral. The competitive effect of 

these inorganic ions on metal-humate complexes will determine the 

· speciation, and ultimately the migration of metal ions in high pH 

environments. 

At present, it is unclear whether humic substances can effectively compete 

for the speciation of a toxic metal at alkaline pH. If they are able to do so, 

it is likely they are able to because of two mechanisms: humic substances 

have phenolic structures which show very strong complexation with metal 

ions. It is envisaged 69 has the pH is increased these phenolic groups 

become deprotonated and participate in binding with metals. Alternatively, 

humic substances, via either phenolic or carboxylate groups form mixed 

complexes with inorganic ligands such as carbonate or hydroxide 68
• 

The aim of this study is to investigate the role of humic substances at 

alkaline pH and to determine if humic substances play any significant part 

in the speciation of a toxic metal at such high pHs, since this will 

ultimately effect the metals migration through a groundwater system. If 

humic substances are important, can current geochemical models 

accurately predict their role. 

142 



5.2 Humic acid studies 

Due to their heterogenity and polymeric nature, humic substances undergo 

changes in geochemica\ configuration if conditions of a particular system 

change. 

The aim of this study was to determine whether humic substances change 

their shape as a function of pH. This change may have important 

consequences, since it may open up more comp\exing sites on a humic 

molecule and hence increase the complexing ability of the humic acid. 

Although studies have been performed on humic substances to look at their 

size 70·71 , none have been performed as a function of pH. 

To investigate this phenomena, two techniques were employed; atomic force 

microscopy and ultrafiltration. 

5.2.1 Atomic Force Microscope 

The atomic force microscope (AFM) was invented by Binning, Quate and 

Gerber in 198672• Essentially it consists of a sharp, stylus tip connected to 

a cantilever. This cantilever is deflected as the tip interacts with the surface. 

The deflection is measured by means of a laser beam that is deflected off 

the cantilever to a photodiode. The ouput from the photodiode maintains a 

steady displacement by varying voltage to a piezoelectric control. Thus the 

varying voltage replicates the surface topography. As well as giving atomic 

resolution of surfaces the AFM has the added advantage in that the sample 

being scanned does not need to be a conductor. 

Microscopical studies on humic substances have been limited and their is 

further scope for work in this field. Early morphological studies on humic 

and fulvic acids utilised transmission and scanning electron microscope 

(TEM, SEM) 7374• The problems with these electron microscope techniques 

was in sample preparation. For example the need for uniform distribution 

of the sample over a support surface as well as the problems of surface 

tension force. 
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which tend to agglomerate the samples. To overcome these problems involved 

in sample preparation, Stevenson and Schnitzer 75developed new preparatory 

techniques and obtained high resolution TEM images. From the results five 

major types of structure were observed with both humic and fulvic acids. 

Initial investigations on the structure of humic acid were performed by a 

scanning tunneling microscope. However, due to the non-conductive nature 

of the humic acid sample, the AFM technique was preferred. To investigate 

the use of AFM a concentrated (>200ppm) Aldrich sodium humate samples 

were prepared in HPLC grade water. The samples were then pi petted onto 

cleaned glass microscope slide. The samples were allowed to dry and then 

scanned using the AFM at the Company Research Laboratories (CRL) at 

the BNFL Springfields site. An AFM image of the samples is shown in 

figure 5.1. 

From the figure small spheroid structures can be seen, varying in diameter 

from between 50nm to 200nm diameter. Due to the concentration of the 

sample the glass slide was coated with humic acid and therefore discrete 

structures could not be identified. Nevertheless, the AFM had identified 

and measured discrete structures of the humic acid sample. 

Further studies were carried out on two Aldrich sodium humate samples 

deposited on glass substrates and under pHs of 2.6 and 11.2. AFM images 

of these samples are shown in figures 5.2 and 5.3. 

Although it appears their is a change in shape of the humic acid as a 

function oflhe pH it is in fact due to dragging of the humic acid by the 

AFM tip, thereby causing elongation of the sample as it is dragged by the tip. 

Nevertheless, with future refinement of both the equipment and technique 

AFM has the potential to clearly define humic acid geometry. 
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Figure 5.1: Concentrated aldrich sodium humate on glass 
substrate 
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Figure 5.2: Aldrich sodium humate sample at pH 2.6 
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Figure 5.3: Aldrich sodium humate sample at pH 11.2 
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S.3 Ultrafiltration studies 

A series of ultrafiltration experiments were performed to observe any 

change in size of humic acid as a function of pH. Three 2.50ml samples of 

50ppm Aldrich humic acid were prepared at pHs 4.2, 6.5 and 11.6. All 

samples were filtered using the following general procedure. 

1 OOml of the sample solution was placed into an Am icon 8050 stirred 

ultrafiltration unit, above a filter membrane (45mm in diameter cut from a 

150mm membrane disc). All filter membranes were soaked in sodium 

chloride (5% w/v) solution then in copious amounts of distilled water. The 

unit was assembled and a nitrogen atmosphere applied. 

The first !Oml collected from the cell was discarded, the next lOml was 

kept for analysis and the remainder of the solution was filtered. The 

membrane filter was changed after each run for the next pore size 

membrane and the experiment repeated. 

The membrane pores sizes were: 

Membrane Code 

YCOS 

YMl 

YMS 

YMIO 

YM30 

YMIOO 

Pore Size 

<lnm 

-lnm 

<1.3nm 

<1.7nm 

<2.lnm 

<Snm 

The ultra-violet absorbance at 254nm of each of the initial three samples 

was measured and of all the subsequent filtrates. From the results the 

percentage of humic acid at the three pHs passing through each filter 

could be calculated. 
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Table 5.1 shows the results obtained from the ultrafiltration experiments. 

pore size pH4.2 pH6.5 pH 11.6 

5nm 95.56% 95.19% 83.29% 

2.lnm 80.49% 84.03% 38.12% 

1.7nm 59.74% 56.11% 26.36% 

l.3nm 32.47% 27.93% 15.66% 

-lnm 26.01% 9.01% 6.00% 

<1nm 7.11% 1.49% 1.86% 

Table 5.1: Percentage of total humic acid concentration passing through 
filters 

From the above table it can clearly be seen that as the pH is increased the 

amount of humic passing through the 1.7nm filter pores size is markedly 

decreased. This suggests that at alkaline pH the humic acid has uncoiled in 

shape and therefore is unable to filter through the smaller filter pore sizes 

as easily as at acidic neutral pHs. Such an observation leads to the theory 

of phenolic groups dissociating at high pH, thus causing electrostatic 

repulsion and allowing the humic acid molecule to uncoil. A column graph 

of the above results is shown in figure 5.4. Such a result will have 

important implications for metal - humic acid binding since at high pH 

more complexing sites on the humic acid molecule may become 
available for binding. 
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Figure 5.4: A column graph showing humic acid passing through filters as 
a function of pH 

5.4 Preliminary investigations in the study of metal - humic acid 
complexation at alkaline pH 

Initial studies into the study of the complexing ability of humic acid at 

alkaline pH involved the use of a number of techniques. All the techniques 

used proved ineffective in the determination of equilibria at high pH. 

Below is a summary of the techniques and a brief description of the 

problems encountered in the application of these techniques. 

5.4.1 Ion exchange - cation 

The ion exchange technique as described in section 3.4.1 was attempted 

at pHs of 10. 11. 12 in 0.01 moll·' CAPS buffer in a background electrolyte of 
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O.lmoJI-1 NaCIO,. The test solution contained l x Jo-'moll-1 Eu3
• + 

radiolabelled Eu-152 in the presence of SOppm Aldrich humic acid. and 

O.OlmoJI-1 analar sodium carbonate. In all experiments over 98% of the 

injected europium activity was eluted with Sml of the O.Olmol)-1 CAPS/ 

0.1 moJJ·' NaCIO • background buffer solution. Clearly at high pH the 

europium is forming anionic complexes but due to all the species in the 

test solution being anionic, the cation column ion exchange experiments 

were unable to differentiate between species. 

5.4.2 Ion exchange - anion 

Scoping experiments were performed by column exchange using a weak 

anion exchanger, diethylaminoethylcellulose (DEAE) resin (from Whatman). 

The resin was pretreated using the following procedure. SOg of dry DEAE 

cellulose was mixed in lOOOml of O.SmolJ·' HCI for l hour, by flushing the 

acid solution through a glass chromatographic column. The resin was then 

rinsed with copious amounts of distilled water before being resuspended in 

O.Smo!L-1 NaOH for l hour. The resin was then again rinsed with distilled 

water until the pH was neutral. Fines were removed by suspending small 

amounts of the resin (-S-lOg dry weight) in a lOOOml graduated cylinder of 

distilled water and settling for l hour before removing the supematent. The 

pretreated resin was stored in darkness. 

Control experiments were performed using three test solutions prepared in a 

buffer solution ofO.OlmoJI·' CAPS/O.lmo!J·' NaCl04 at pH 10.1. The three 

tests solutions contained C-14 sodium carbonate (supplied by ICN 

Radiochemicals 2.lGBq/mmol), a SOppm solution of Aldrich humic acid and a 

solution of l x lQ-5moJI·' Eu3• + radiolabelled Eu-152, respectively. In both the 

sodium carbonate and humic acid solutions the resin retained both the 

radiolabelled C-14 sodium carbonate and the SOppm Aldrich humic acid 

(determined by UV-Vis measurement). Unfortunately, the resin also retained a 

significant proportion ( -30%) of the solution containing the Eu3
• solution only. 

The failure of the europium to be totally excluded from the column mean't that 

quantitative experiments could not be carried out. 
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5.4.3 Dialysis 

Although dialysis experiments have been reported in the literature for the 

measurement of europium -humic acid equilibria, problems were 

encountered in the use of dialysis membranes due to sorption of the 

europium on the dialysis membrane and on the clips. 

Similar experiments using ultrafiltration and potentiometry also proved 

ineffectual due to sorption and hydrolysis problems, respectively. 

5.5 HPSEC studies on the role of humic acid on the complexation of 

europium at high pH 

Due to the ineffectiveness of the above techniques it was decided to undertake 

a major study using the HPSEC technique. Unfortunately due to the 

integrity of the silica gel columns the pH of the mobile phase could not be 

greater than 8.5. 

The aim of the experiments was to compare the complexing ability of humic 

acid at two pHs, 6.5 and 8.5. At pH 6.5 competition for the metal ion from 

other complexing agents other than humic acid is minimal. Specifically at 

pH 8.5 increasing amounts of sodium bicarbonate would be added to the 

system as a competing ligand. By knowing the stability constants of europium 

carbonate complexes it would indicate the stability of the europium humate 

complex. 

5.5.1 HPSEC study of europium· humic acid at pH 6.5 

Using the HPSEC method described in section 3.2.1 a range of concentrations 

of analar grade europium (Ill) chloride solutions, spiked with radioactive Eu-

152 (from Amersham 251MBq ml·' with 0.538mg mJ- 1 inactive Eu carrier), 

were prepared in a background electrolyte of0.01moli-'MES/0.1moll·1 

NaClO 
4 

at pH 6.5. To each of these solutions SOppm (w.v) A1drich humic 

acid was added. Conditions of the column and DAD detector are summarised 

below: 
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Flow rate -.50ml/min 

Pressure - 27 bars 

Mobile phase - HPLC water/0.1 moll·' EDTA 

UV absorption wavelength - 254nm 

The stepped and injection scheme as shown in figure 3.2 was used to 

achieve separation of the organically bound europium and 'free' 

europium. Results of the experiments are shown below in table 5.1. 

[M], [ML] [M] [ML] log [ML] log [M] 

Total Eu Eu-AHA Eu-free [M] 
concentratiOii complex (mol ... ) 
(moll·') (mol ... ) 

3.678 X 10' 3.601 ' 10' 7.724 ~ JQHl -16.619 -7.-1-1-1 -9.112 

8.678X 10' 8.-161' 10-' 2170x 10-' 39.000 -7.073 -8.66-1 

1.368X 10" 1.326 X 10" ~.241 ' 10-' 31.258 -6.878 -8.373 

5.368 X 10" 5.121' 10" 2.-169' 10-' 20.739 -6.291 -7.607 

1.037 X 10' 8AOOx I()" 1.970' 10" ~.263 -6076 -6.705 

5.037 X 10' 3.68.2 ' 10-' 1.355' Hi' 2.717 -5.4~ -5.869 

I.~ X 10' 5.100 x I(}' ~.~X Hi' . 1.033 -5.292 -5.306 

5.00.1 X W' 7.106 x I(}' ~.293' Hi' 0.166 -5.1~ -4.367 

Table S.l: Results of europium- humic acid system at pH 6.5 

From the above data, a Scatchard plot was obtained as shown in figure 

5.5. From the plot, stability constants were obtained corresponding to the 

europium interaction with strong and weak sites of the humic acid. 
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Figure 5.5: Scatchard plot of europium humic acid 

5.5.2 HPSEC study of europium - humic acid at pH 8.5 

To investigate the role of humic acid at pH 8-5 in the presence of sodium 

bicarbonate the HPSEC was modified to achieve separation of the 

bicarbonate/carbonate from the humic acid. To prevent the use of EDTA 

in the mobile phase a low europium concentration was used which would 

allow for negligible free europium in the system. 

A single mobile phase was used in this HPSEC investigation. The mobile 

phase consisted of O.Olmoll·' CAPS/O.lmoll·' NaC104 at pH 8.5. Initial 

control experiments were perfomed to determine the retention times of 

humic acid and sodium bicarbonate through the chromatographic columns 

and detectors. 
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The retention time of a SOppm humic acid solution is shown below in 

figure 5.6. The conditions of the column are shown below: 

Figure 5.6: A DAD chromatogram of SOppm humic acid 
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Once the humic acid retention time was established, a !Oml volume test 

solution was prepared containing 1 x 10-5 moll-' sodium bicarbonate which 

contained 25f.ll aliquot of radiolabelled C-14 sodium bicarbonate (from 

JCN Radiochemicals, 2.1GBq/mmol) and was injected into the HPSEC 

under the same conditions as the previous humic acid sample. A 

radiochromatogram of the sodium bicarbonate is shown in figure 5.7. 
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As can be seen from figures 5.6 and 5.7 there is good resolution between 

the humic acid and the sodium bicarbonate with maximum peak retention 

times of 13min 50secs and 22min 23secs respectively. 

To investigate the equilibria of the above ligands with europium a range of 

solutions were prepared containing 1x J0·7mo!J· 1 analar europium (Ill) 

chloride+ radiolabelled Eu-152, 50ppm (w.v) Aldrich humic acid and a 

series of sodium bicarbonate concentrations ranging from 1()·7 to J0·2 moJ1· 1 

with each series also containing radiolabelled C-14 sodium bicarbonate. 

(from ICN Radiochemicals 2.1GBq/mmol). All samples were prepared in 

the O.Omo!J·1 CAPS/0.1 moll" 1 NaCIO. buffer solution at pH 8.5. 

As described in section 43, in the Canberra Packard Flo-one!Beta Radiometric 

AI40 detector liquid scintillation cocktail (EcoscintA: National Diagnostics) 

was mixed with the column eluate to permit the eluted~ activity to be 

monitored. Upstream of the mixing chamber a splitter, within the detector, 

was used to divert part of the eluate to an LKB Redifrac fraction collector. 

The collected fractions were monitored for y activity using a Philips PW 

4800 y counter. 

The conditions of the HPSEC and the DAD are summarised below: 

Flow rate - .50 mllmin 

Pressure - 24 bars 

Mobile phase - O.Olmoll·1 CAPS/0.1moll· 1 

NaCI04 

UV absorption wavelength - 210nm 

A radiochromatogram of the europium activity at a sodium bicarbonate 

concentration of 1 x J0·5 molt·1 is shown in figure 5.8. 
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Results for the series are shown below in table 5.2. 

{NaHCO,], % europium humate %europium carbonate 

t.(X)' l<f" I 00.0 0.0 

l.Oih Ill' IIXl.U 0.0 

1.00 '{ 10~ 100.0 00 

\.IX)' 10' I CO 0 1)0 

\.IX)' 10" h2.5 .r.s 

I.IXh 10' 2"10 >C.O 

Table 5.2: Speciation of europium as a function of sodium bicarbonate 
concentration 

To illustrate the change in speciation of the europium as a function of the 

increasing concentration of sodium bicarbonate a radiochromatogram of 

the radiolabel\ed europium is shown in figure 5.9. 
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Figure 5.9: Radiocbromatogram of europium • humic acid • sodium 
bicarbonate ( 1 x 10·3 moll'') 
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In addition to the europium chromatogram, figure 5.10 shows a 

radiochromatogram of the C-14labelled sodium bicarbonate. 

From figure 5.10 it can be seen that there is no change in the retention time 

of the radiolabelled sodium bicarbonate. Since no actvity has eluted with 

the humic acid, this is strong evidence for the absence of mixed complexes, 

since any significant mixed complex formation would have resulted in 

some of the C-14 activity eluting from the chromatographic columns with 

the same retention times as the humic acid. Therefore, in the system studied 

the humic acid and the sodium bicarbonate behave as single ligands. This 

conclusion again does not support the fmdings of Maes et al 69 who 

observed mixed complex formation at high concentrations of carbonate. 

A criticism against the HPSEC technique employed in these investigations 

is that the ratio of inactive to active sodium bicarbonate is extremely high 

and no C- 14 activity is associated with the humic acid is may not be due 

to the lack of formation of mixed complex formation but may be a 

consequence of the high inactive to active ratio. 

To test this hypothesis, a highly active sample of sodium bicarbonate was 

prepared. at a total sodium bicarbonate concentration of -1 x lQ-3 moll·'. 

The activity was such that if any mixed complex was formed then there 

was sufficent radiolabelled sodium bicarbonate to confirm this. Figure 5.11 

shows the C-14 radiochromatogram for this experiment. Clearly, activity 

is not associated with the humic acid retention time. This again confirms 

the lack of mixed complex formation in the system. 
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Figure 5.11: Radiochromatogram of europium· humic acid· sodium 
bicarbonate (lx 10·3 moll·') 

Conclusions 

From figure 5.11 and 5.12 it appears that there is no evidence for the 

formation of mixed complexes. To further investigate the following 

parameters were inputted into MINTEQA2 so <<;at the speciation of the 

system could be modelled. 

europium • humic acid: 

strong site concentration 

strong site interaction, log 'K 

weak site concentration 

weak site interaction, log 'K 

= 8.1 x l0"7 moiJ·' 

=7.80 

= 7.8 x l~o(J·' 

=5.72 
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log k
1 
=6.96 

log k
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= 7.22 

The above parameters were inputted into MINTEQA2 and the system was 

modelled as a function of increasing sodium bicarbonate concentration. The 

comparison between the model predictions and the experimental data is 

shown in figure 5.12. 
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Figure 5.12: Speciation of europium- humic acid -sodium bicarbonate 
systems. Comparison of experimental data with model predictions 
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It can be seen that there is poor correlation between experimental data and 

model predictions. At a sodium bicarbonate concentration of 1 xlQ-4 moll-1
, the 

model predicts -13% of the total europium bound to the humic acid, where 

as experimentally it is found to be >99%. 

Clearly the inputted parameters used to model europium - humic acid 

binding,at pH 6.5 are not appropriate at pH 8.5, since they provide a far 

lower estimate of the metal bound than was experimentally found. This is 

in contrast to previous systems in the research project which have been 

modelled and where model predictions have consistently predicted more 

metal bound than was experimentally observed. 

The conclusion is that at pH 8.5 humic acid shows a marked increase in its 

binding for europium and therefore humics can compete with high levels 

of carbonate concentrations. 
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6.1 Summary and Conclusions 

This research project has identified a number of important reactions that 

are likely to occur if a toxic metal breaches a waste disposal site and 

enters soils and groundwaters.lt has generated quantitative data for these 

reactions unde a variety of conditions. 

Natural organic acids have been recognised as important agents in the 

speciation, and hence migration, of toxic metals. A literture search 

identified organic acids such as acetic and citric acids has being both 

sufficiently abundant within the Geosphere and having the ability to form 

complexes with metals. Additionally, high molecular weight organics, 

such as fulvic and humic acids are in sufficient concentration within the 

environment to have a major effect on the speciation of toxic metals. 

Initial experimental investigations were concerned with potentiometric 

titrations of selected low molecular weight organic acids with the metal 

ions, nickel and europium. Results have shown the benefits of 

potentiometry over other analytical techniques. lt is fast, requires simple 

equipment, and involves the measurement of a variable (i.e: H+) over 

several orders of magnitude. The application of state of the art 

computational methods for analysis of the data allows for accurate 

determination of both protonation constants for acids and 

stability constants for metals. Additionally, it provides an efficient 

method for other metal-ligand equilibria and may be used to derive 

values for organic pollutants in the environment and their interactions 

with metals. 

The values produced for nickel and europium are in good agreement with 

IUPAC critically assesed literature data. Such values can be incorporated 

into risk assessments and groundwater speciation models of the Drigg 

low level waste site and assist in a better understanding of the solution 

chemistry. It should be noted that such values must always be used in 

conjunction with the concentrations of ligands. For example, 
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the values for acetic acid with both nickel and europium illustrate the 

weak complexing beahaviour of the acetate ion. However, if the acetic 

acid is in sufficent excess over both the toxic metal and other competing 

ligands (as may well be the case for Drigg leachates), then the acetic acid 

will have major influenec on the speciation of the metal ion and a 

significant percentage of the metal may well be present as acetate 

c?mplexes. 

Salicylic and phthalic acids were studied as simple analogues to 

functional groups that are thought to occur on humic acids. Both for 

nickel and europium the stability constants highlighted the strong 

complexation of the salicylate anion. and the correspondingly weak 

complexation of the phthalate anion. 

Extension of the potentiometric technique to competing ligand systems 

showed a number of significant results. Firstly, in the systems studied 

there was no evidence of any synergistic effects and the values obtained 

for individual metal-ligand equilibria were in a agreement with earlier 

experimental results. Additionally, overall equilibrium constants were 

derived and could be applied to such competing systems. Speciation plots 

of such systems allow for accurate determination of the concentrations 

for the various metal complexes that exist. 

A comprehensive evaluation of High Performance Size Exclusion 

Chromatography (HPSEC) and its suitability for the study of equilibria 

between metals and humic acids highlighted the problems of dissociation 

with nickel - humate complexes. However for europium the technique 

proved suitable and provided a range of data for various europium 

concentrations. By application of the Scatchard Plot, stability constants 

were obtained for europium with humic acid. Such values agree with 

earlier studies 7"
77

• 
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Further comparison of the HPSEC results was carried out by using a 

column ion exchange technique. There was good agreement with both 

techniques and with the MINTEQA2 speciation model. 

Stability constants generated from the HPSEC experimental data 

indicated the strong complexing ability of humic acid. It should be borne 

in mind that the concentrations of metal used in these experiments are 

likely to be several orders of magnitude higher than concentrations of 

toxic metals found in soils and groundwaters. As a result the stability 

constants generated from the experimental data are likely to be an under­

estimation of the even stronger binding that will occur under 

environmental conditions. At very low metal conce,ntrations the metal 

will bind to the strongest sites on the humic acid. As the metal 

concentration is increased weaker sites on the humic acid will be become 

complexed, hence producing a lower average stability constant. 

Further work on metal acid equilibria was performed by ion exchange 

using two techniques, batch and column. Since metal - humate 

complexes are negative, ion exchange provides a fast and easy way to 

determine the amounts of 'free' and bound metal. Column cation 

exchange was used to study the complexation between europium and 

humic acid as a function of pH. Analysis of the data illustrated the 

evidence for carboxylate groups with pKa's of between 4-5 on the humic 

acid molecule. 

A comparison was carried out between batch and column ion exchange 

techniques for both nickel and europium. With both metals as the metal 

concentration was increased, column ion exchange gave lower metal 

bound for a given total metal concentration than batch. The conclusion 

from this observation was that weak complexed sites on the humic acid 

molecule dissociated as the 'free' and bound metal were separated down 

the column of resin. The result again indicates the theory that 

progressievly weaker sites on the humic acid are taken by increasing 

metal loading. However, it cannot be concluded that these weak sites are 

metal bound to the electric field associated with the humic acid. 
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The HPSEC was developed to monitor experiments involving competing 

high and low molecular weight organic acids and their interactions with 

europium. The use of radiolabelled europium allowed for a powerful 

technique and quantitative speciation of the europium. The overall con­

clusion from these experiments was no evidence for mixed complexes. A 

possible exaplanation for this could be that in a system containing euro­

pium- citric acid - humic acid the europium will first bind to the citrate 

anion to form a neutral or negatively charged complex. Due to the nega­

tive charge of the humic acid, by electrostatic repulsion, the europium 

citrate is repelled and cannot approach the binding sites on the humic 

acid molecule. However the usefulness of the HPSEC technique for 

investigating such systems should be extended to look at other systems 

involving organic acid, such as amino acids and organic pollutants with 

humic acids. 

Application of MINTEQA2 to the mixed systems produced reasonable 

estimates of the amounts of metal bound as a function of the total metal 

concentration. 

Investigation of the role of humic acid at alkaline highlighted the 

problems of applying a number of analytical techniques at high pH. 

Ultrafiltration indicated the increase in size of humic acid molecules as 

the pH is increased. This is attributed to the dissociation of the functional 

groups on the humic acid, thereby causing electrostatic repulsion. 

HPSEC, as with the previous mixed systems, was used to investigate the 

equilibria of europium when in the presence of humic acid and increasing 

concentrations of carbonate. Again there was no evidence of mixed 

complexes between the metal and the humic acid and carbonate. 

However, the humic acid did show enhance binding with the europium at 

pH 8.5 relative to the stability constants that were determined at pH 6.5. 

As a consequence of this stronger complexation the majority of the total 

concentration of europium was bound to the humic acid until high 
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concentrations of carbonate. It is envisaged that as the pH is increased 

phenolic groups on the humic acid become dissociated and are therefore 

available to bind with the europium. Additionally, as the humic acid 

uncoils with the change in pH more functional groups on the molecule 

become accessible for binding with the europium. 

Under these alkaline conditions, MINTEQA2 failed to predict the 

speciation of the europium. This highlights the need to correctly interpret 

stability constants involving humic substances and to define rigorously 

the parameters under which the constants are operable. The results have 

shown that MINTEQA2 is able to model experimental data at pH 6.5 but 

at higher pH is unable to do so. 

In conclusion, the study of natural organic acids in this research has 

indicated their importance as complexants for metals in groundwaters. 

Their effects have been determined under varying conditions of metal 

concentration, pH and competing ligands. From these studies quantitative 

data has been generated concerning the equilibria with metal ions. 
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Below is given a number of stability constants for the reaction of metal 

ions with humic acid under the conditions used. 

Ion Acid log~ 1 log~ 2 (l pH 

uo l+ 
2 

HA 5.1 8.9 0.47 4.04 0.1 

7.6 11.5 8 

6.7 11.5 6 0.01 

7.8 3.5-7 0.1 

-.FA 7.4 13.0 6 0.01 

U4+ HA 7.0 11.5 6 0.01 

FA 6.6 11.6 6 0.01 

Th4+ HA 13.2 18.4 0.54 5.03 0.1 

10.7 15.8 0.37 3.99 0.1 

17 1.0 0.1 

FA 10.8 15.1 0.84 5.00 0.1 

Pu4+ HA 18.8 20.0 1.0 8 

12.4 17.2 ' -4 

Am3• HA 14.4 15.7 1.0 8 

6.8 10.6 4.5 0.1 

6.4 10.6 6.5 

Eu3+ HA 13.3 14.6 1.0 8 0.1 

7.4 10.3 4.5 0.1 

6.2 4.47 0.05 

5.9 4.48 0.1 

Ca2• HA 2.25 0.44 3.88 0.1 

3.32 0.65 5.01 0.1 
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Abstract 

The possibility of mixed ligand complex formation, resulting from the interaction of 

europium with mixtures of high and low molecular weight naturally occurring organic 

acids has been investigated. Three systems were studied containing europium with humic 

acid in the presence of (i) acetic acid (ii) oxalic acid and (iii) citric acid. The various 

mixtures were analysed using both high performance size exclusion chromatography 

(HPSEC) and ion exchange (I. Ex). To facilitate the measurements C-l4labelled low 

molecular weight acids and Eu-152 were used. The observed amounts of complexation in 

the mixed systems were compared with predicted amounts. Predictions were based both on 

. the complexation parameters derived from analyses of the individual ligand systems and on 

modelling experiments using MINTEQA2. The agreement of the observed and predicted 

results was taken as evidence that mixed ligand complexes were absent under the 

conditions employed. 

Introduction 

The mobility of radionuclides in the environment is partly determined by their speciation. 

Consequently their complexation by naturally occurring high molecular weight humic and 

fulvic acids (HA and FA) has been the focus of much research. However, the role of low 

molecular weight acids has received less attention. Low molecular weight acids, eg acetic 

l 



(HOAc), oxalic (If, Ox) and citric (~Cit) arise from processes such as plant degradation, 

rhizosphere activity and microbial metabolism (1). These acids also complex metal ions and 

column studies, for example, have shown that in soil matrices the complexes formed possess 

enhanced mobilities compared to the original non-complexed metal species (2). Evidence of 

mixed ligand complexes containing both high and low molecular weight acids also exists 

(3). Recently certain geochemical speciation codes, eg PHREEQE (4) and MINTEQA2 (5) 

have been modified to include provision for metal HA and FA interactions. The possible 

existence of mixed ligand complexes if not taken into account may introduce errors in 

speciation modelling. 

For these reasons, an investigation has been conducted into the complexation 

behaviour of europium (Eu-III), a typical trivalent metal often used as an analogue of 

trivalent actinides, with the aforementioned ligands. The evidence for mixed ligand complex 

formation has been assessed primarily by comparing the observed amounts of complexation 

in the mixed systems with amounts predicted using, experimentally derived, conditional 

stability constants (K values) for the single systems. For the physico-chemical significance 

of the derived K values the reader is referred to the Appendix. Close agreement between 

observed and predicted complexation behaviour, within the analytical range investigated, 

has been taken to mean that either mixed ligand complexes are absent or that their impact on 

speciation modelling is insignificant. , 

Comparisons between observed and predicted levels of complexation were also made 

by modelling the complexation behaviour of the various systems with MINTEQA2. 

Preparation of samples 

Seven series of samples were prepared, all in O.Olmoll·' NaCI at pH= 6.0. Within each 

series the Eu-III concentrations ranged from- I x I0-8 to I x JQ-"moll·', but the acid 

concentrations were held constant as shown in Table I. At higher europium concentrations 

precipitation of En-humate was observed. Apart from· the technical grade Aldrich sodium 

humate used all the chemicals were of A.R. quality or better. The C-14labelled acids were 

obtained from Amersham International (citric acid), NEN Research products (oxalic acid) 

and ICN Radiochemicals, Inc. (acetic acid) with specific activities of 4.07GBq/mmol, 

0.19GBq/mmol and 0.592GBq/mmol respectively. All concentrations were calculated taking 
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into account dilutions and where appropriate the presence of radioactive tracer material. 

Experimental procedures 

A variety of methods are available for determining metal humic complexation parameters. 

Unfortunately different methods can give different results. To validate the current study 

two techniques were used , High Performance Size Exclusion Chromatography (HPSEC) 

and Ion Exchange (I. Ex). 

HPSEC technique 

The HPSEC experiments were conducted using a previously described technique (6) but 

important details are included here for convenience. A Philips PU 4000 series liquid 

chromatograph was used. The eluate flowed through a Canberra Packard Ao-one/Beta 

Radiometric A 140 detector, containing a 500pl flow through cell. Liquid scintillation 

cocktail (EcoScint A: National Diagnostics) was mixed with the column eluate to permit 

the eluted j3 activity to be monitored. Upstream of the mixing chamber a splitter, within the 

detector, was used to divert part of the eluate to an LKB Redifrac fraction collector. The 

collected fractions were monitored fory activity using a Philips PW 4800 y counter. 

Elution profiles of both the j3 activity associated with the low molecular weight acid 

species and they activity of the Eu-III contain\ng species were obtained. The 100 pi 

injected samples and the bulk mobile phases were 0.45pm filtered with Acro discs and 

filters. Using a stepped elution scheme the organically complexed europium species were 

eluted in HPLC grade water and the free europium in 0.1moii·1 EDTA, at a constant flow 

rate of 0.750ml min·1• The chromatographic peak areas were used to determine the 

percentage of bound Eu-III in each sample. 

I. Ex technique 

The LEx procedure was based on a technique described by Choppin (7) designed to be a 

rapid technique allowing labile metal ligand complexes to be analysed. The Dowex 50x4, 

100-200 mesh cation exchange resin was prepared by successively washing with 

concentrated HCI, distilled water, O.Imoii·1 EDTA, distilled water again and finally 

O.lmoii-1 NaOH solution. Each 500Jtl sample was rapidly separated on a short column of 
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freshly prepared resin (12rnrn i.d x 38rnrn length). Columns were pre-equilibrated by 

washing with sodium acetate buffer (pH = 6.0, O.OOlmoll·') and the samples were eluted 

with 5ml of the same buffer. The eluates were monitored for y and/or~ activity as 

appropriate. From a knowledge of the initial activity of each sample and the eluted 

activities the percentage of bound Eu-III in each solution was calculated. 

Results and Discussion 

(a) Single ligand systems 

The results of the Eu-citric acid (Eu-Cit), Eu-oxalic acid (Eu-Ox), Eu-acetic acid (Eu-OAc) 

and Eu-humic acid'(Eu-Hu) experiments are depicted graphically in Figure 1. The graphs 

show the variation of the bound Eu-III as a function of the total Eu-III added, as 

determined using the HPSEC and I. Ex. techniques and predicted using MINTEQA2. With 

the exception of the Eu-OAc, HPSEC, results the close agreement of the two sets of 

experimental results in each case and the reasonable agreement with MINTEQA2 

predictions was taken as evidence of the reliability of the procedures. The low results for 

the Eu-OAc system, obtained using HPSEC, were attributed to the !ability of the Eu-OAc 

complex, so for this system only the I.Ex. results were subsequently used. The conditional 

stability constants (K values) required for modelling purposes were obtained from plots of 

[ML]I[M] v [M] which were constructed for iach system. ML represents the bound 

europium, M the free europium and [ ] denotes concentration in moll·'. The slopes of the 

graphs gave the K values (see Appendix). A typical graph which illustrates the I. Ex. 

results for the Eu-Cit system is shown in figure 2. 

Using the equations A6, Al5, Al6 and literature KA values at pH 6.0 the following 

relationships can be demonstrated to hold: 

For the HOAc system 

for the H,Ox system 

and for the H
3
Cit system 

K=0.96K.,L 

K = 0.98 KML + 0.018 ~IlL 

K = 0.275 KML + 0.685 ~ + 0.039 ~ L , 
KMH,L' KMHL and KML represent the stability constants of the possible 1: I europium 

complexes produced in the different sytems due to the various protonated forms of the 

ligands. It can be seen that, with the exception of the ~Cit system, the derived K values 

are very close to the K.,L values. Inspection of literature stability constants showed that the 
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derived conditional constants were consistent with the above equations. However, it must 

be emphasised that any agreement between the K and~ values is irrelevant with respect 

to the modelling approach adopted. 

The major reason for adopting the graphical method for determining K values was to 

maintain consistency with the simplified Scatchard method used to interpret the Eu-Hu 

results. A modification of the Scatchard approach (9) was used because I;. values cannot 

be known initially or accurately for humic materials and metal humate stability constants 

vary with metal loading. For simplicity the humic material was assumed to possess only 

strongly (5L) and weakly binding (wL) sites. The slope of the early part of the 

:] v [ML) plot ~rovided the strong site constant (5K) whilst the latter part provided the 

weak constant (wK). The derivation of the complelCation parameters for the Eu-Hu system 

using HPSEC is shown in Figure 3. A reaction stoichiometry of one europium ion to one 

site was assumed. For a fuller explanation of the approach the reader is referred to 

reference (6). The derived 5K and wK values do not have rigorous thermodynamic 

significance. Their use here was justified because they were used only to model the 

binding behaviour of the Eu-Hu system under the conditions employed. 

The complete set of parameters derived for the individual ligand systems are 

collected in Table 2. The closeness ofthe experimental values was taken as vindication of 

the techniques. Except in the case of the Eu-OAC system which used the LEx. results only, 
' 

the speciation of Eu in the mixed systems, was predicted using the averaged HPSEC and 

LEx. parameters. Predictions were made using SPE, a general purpose speciation program 

(10), with the acid parameter inputs modified to take account of the conditional nature of 

the derived stability constants. 

Mixed ligand systems 

The results of the mixed ligand experiments are presented in Figure 4. The closeness of the 

observed HPSEC and I. Ex results with the predicted complexation behaviour, using SPE 

with the experimentally derived parameters, and the MINTEQA2 model indicated that 

either mixed ligand complexes were absent or that their formation was insignificant in 

terms of successful speciation modelling. 

The results of the individual analyses of the Eu-Hu-Ox samples using HPSEC are 
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presented in Table 3 along with the predicted speciation using the experimentally derived 

single ligand K values. The agreement between the observed and predicted speciation 

again pointed to the absence of mixed ligand species in the Eu-Hu-Ox system. 

If mixed ligand complexes had been formed evidence would have emerged from the 

HPSEC ~ and y elution profiles. 

Figure 5 shows the ~ and y chromatograrns for a typical Eu-Hu-Ox sample. It can be 

seen that no observable~ activity due to C-14labelled oxalate species eluted with the 

humate peak. Similarly the ~ and y chromatograms for the Eu-Hu-Cit and Eu-Hu-OAc 

systems showed no evidence of mixed activity species and therefore mixed ligand 

complexes. 

Conclusions 

Mixed ligand complex formation was not observed under the conditions employed and 

speciation modelling of the mixed systems was successfully achieved using appropriate 

combinations of single ligand constants. The results apparently do not support the 

findings of Dierckx et a! (3). However these authors stated that mixed ligand complex 

formation may not occur until a certain critical concentration ratio of the competing 

ligands has been exceeded. Further studies with even higher levels of competing low 

molecular weight organic acids ligands are pla;med. 
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Appendix 

Physico-chemical siginficance ofK values derived from [ML]!IM] v [ML] plots 

The principles underpinning the graphical derivation of K values are explained below. 

Preliminary trials using MINTEQA2 to model the Eu-OAc, Eu-Ox and Eu-Cit systems 

indicated that only 1:1 complexes were important for the ligand concentrations used. 

Monoprotic Jigands eg HOAc 

The formation of a 1:1 complex between a metal (M) and a simple monoprotic ligand 

(HL) requires two equilibria to be simultaneously satisfied, ie the acid dissociation of the 

ligand:-

which is governed by an acid dissociation constant (K A) given by 

and the complexation reaction:-

M+L~ML 

which is governed by a stability constant (KML) given by 

K~lL = 

(Apart from H+ charges are omitted). 

' [ML] 

[M][L] 

After equilibrium has been achieved in any such system the original total ligand 

concentration (CL) is given by 

CL = [ML] + [L] + [HL] 

:. from equation Al 

+ 
[ML] + [L] + [H J[L] 

KA 

+ 

= [MLJ+(l+[H ])[L] 
KA 

9 

(Al) 

(A2) 

(A3) 



.. [L] = 
CL -[ML] 

[H+] 
1+-­

KA 

Substitution of this expression for [L] into equation A2 and rearrangement gives 

[ML] 
[M] = 

(A4) 

(AS) 

It is apparent from equation AS that for such a I: I system, at constant pH, a complexation 

graph of ~~I " [MLJ will be linear with a slope (K) given by 

K = -K~1L 
[H+] 

1+--
KA 

(A6) 

Equation A6 shows that K does not equal KML' but is related to it by the acid properties of 

the system, ie the pH and the pKA (pK~ = -log10 KA) of the ligand. 

Inspection of equation AS shows that the x-intercept, which gives the maximum possible 

value of [ML], occurs when [ML] =CL. 

Diprotic Iigands eg H20x 

The formation of only 1:1 complexes between a metal (M) and a simple diprotic ligand 

(H
2
L) can be treated similarly. The various equilibria which co-exist and the corresponding 

equilibrium constants are:-

and 

M+L =ML 

for which K~ = 

for which K: = 

[H+][HL] 

[H
2
L] 

[H+][L] 

[HL) 

[ML) 
for which K,1L = [M][L] 

. [MHL] 
M+ HL = MHL for whtch K,11 IL = [M][HL) 

10 

(A7) 

(AS) 

(A9) 

(AlO) 



The total concentration ofligand (CJ after attainment of equilibrium in any such system is 

given by 

CL = [H2L] + [HL] + [L] + [ML] + [MHL] 

= [H+][HL] + [HL] + [L] + [ML] + [MHL] 
K' 

A 

+ 
= (lH ] + I) [HL] + [L] + [ML] + [MHL] 

K' 
A 

(All) 

from equation (A7) 

T" + 

= ([H ] + 1) (lH ][L]) + [L] + [ML] + [MHL] from equation (AS) 
K' K" A A 

I) [L] + [ML] + [MHL] 

(AI2) 

Now [ML] + [MHL] K [L] K [HL] 
[M] = ~IL + WIL from equations (A9) and (AIO) 

[H+][L] 
= KML [L] + K~HIL K" 

A 

( 
K [H+]) 

= K + Ml-H, [L] 
ML K" 

A . 

11 

from equation (AS) 

(AB) 



:. substituting for [L] using equation 6.12 

~ [H+J 
(KML + :,; ) 

[ML]+[MHL] =----::--.:::...A- (cL -([MLJ+[MHLJ)) 
(M] ( [H+f [H+] ) 

....:........::.-+ --+ 1 
K' K" K" A A A 

(Al4) 

Consequently a graph of [MLJ ~IHLJ v [1\ILJ + [1\UILI is linear at constant pH, with a slope (K) 

given by 

K 
K +~ [H+] 

ML K" 
K 

A 
= (Al5) 

[H+]2 [H+] 
+--+I 

K' K" 
A A 

K" 
A 

The x-intercept which is independent of pH and corresponds to the maximum possible 

value of [ML] + [MHL] =CL once again. 

Triprotic Iigands eg H,Cit 

In an analogous fashion it can be shown that when only 1:1 complexes are important with 

a triprotic ligand the slope of the graph (K) is given by: 

+ K [H+]2 

(
K K,HIL (H I MH,L ) 

~iL + K '" + K " K "' 
K = ---~-~A~--~~A~~A __ _ 

( 
!H? [H? [H+] ) _ __:___: __ + + -- + 1 

K ' K " K "' K " K "' K "' A A A A A A 

(A16) 
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Table 1 Composition of samples 

Series* [HA] [HOAc] [H,Ox] (H
3
Cit] 

/(gl"') /(mol t-1) /(mol 1"1) /(mol 1"1) 

1 0.010 
2 1.05 X 10-6 

3 0.010 1.05 x 10-6 

4 1.04 x 10-5 

5 0.010 1.04 X IQ-5 

6 1.04 x 10-2 

7 0.010 1.04 X IQ-2 

*Within each series Eu-III concentrations ranged from lQ-8 to 1Q-4M. 

The europium contained trace amounts of Eu-152 and the three low molecular weight 

acids, HOAc, H,Ox and H.Cit containd C-14. The HA was not labelled. 



Table 2 Complexation parameters derived for the individual ligand systems 

System Complexation Parameters 

Eu-Cit 

Eu-Ox 

Eu-OAc 
Eu-Hu 

HP SEC 

log K = 7.35 ± 0.08 

log K = 5.79 ± 0.10 

log K = 1.2* 
logsK = 8.54 ± 0.16 
log wK = 6.21 ± 0.05 
s~ = 8.19 (± 1.18)xl0·8 moll­
w~ = 2.43 (± 0.08)xl0-6 moll·' 

* only first data point calculated. 

I. Ex. 

log K = 7.37 ± 0.01 

log K = 5.94± 0.17 

log K = 2.20 ± 0.25 
log sK = 8.34 ± 0.33 
log wK = 6.27 ± 0.04 
s~ = 6.56 (± 1.62)xl0-8 moll·' 
w~ = 1.58 (± 0.05)xl0·6 moll·' 



Table 3 HPSEC and SPE data for the europium • oxalic • humic system 

HP SEC SPE 

log [Eu]t %Eu0x %EuHu log [Eu]t %Eu0x %EuHu 

-7.851 0.0 97.3 -7.851 0.0 99.0 

-7.193 0.0 %.4 -7.193 0.0 99.0 

-6.943 0.0 93.8 -6.943 0.0 99.0 

-6.289 2.3 89.1 -6.289 3.0 91.5 

-6.000 5.1 84.1 -6.000 5.3 84.7 

-5.301 22.0 45.5 -5.301 24.0 47.0 

-5.000 27.9 28.4 -5.000 32.5 29.0 
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Figure 1: Binding behaviour of the various Eu-111 single acid ligand systems, determined using 

HPSEC (•) and Ion Exchange (+)and predicted using MINTEQA2 (+) 
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