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Abstract 

The effect of a large amount of kaolin (China clay) on the viscosity, cure, hardness, 

Young’s modulus, tensile strength, elongation at break, stored energy density at 

break, tear energy and compression set resistance of some sulfur-cured natural 

rubber (NR), polybutadiene rubber (BR) and ethylene-propylene-diene rubber 

(EPDM) composites was investigated. The kaolin surface had been pre-treated with 

3-mercaptopropyltrimethoxysilane (MPTS) to improve its dispersion in the rubbers. 

For NR, the hardness and Young’s modulus improved, tensile strength and tear 

energy were unchanged and the remaining properties deteriorated when kaolin was 

added. The viscosity increased and the scorch and optimum cure times decreased 

whilst the cure rate rose with kaolin. For BR and EPDM, with the exception of the 

compression set resistance, all the properties including the viscosity gained from the 

kaolin. The kaolin was found to be extending or non-reinforcing filler for NR, and 

highly reinforcing for BR and EPDM. In addition, the scorch and optimum cure times 

and cure rate of BR benefitted, whereas with the exception of the scorch time, the 

optimum cure time and cure rate of EPDM were adversely affected by kaolin.  
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Introduction 

Solid fillers and curing chemicals perform two distinct functions in rubber compounds. 

Fillers increase the dynamic and mechanical properties1,2 and curing chemicals 

produce crosslinks between the rubber chains at elevated temperatures, i.e., 140-

220oC.3,4  Since the discovery of their reinforcing qualities almost 100 years ago, 

petroleum-based colloidal carbon blacks (CB) have been used extensively in rubber 

reinforcement.5,6  The term reinforcement is defined as the increases in properties 

such as tensile strength, tear strength, hardness, abrasion resistance and modulus.7 

Synthetic silicas have been replacing CBs in some applications for example tire 

tread compound8 and proved to be as effective as CBs. However, the surface of 

silicas possesses siloxane and silanol groups, which make the filler acidic9 and 

moisture adsorbing.10 Acidity and moisture are both detrimental to the cure of rubber 

compounds11 and can also cause loss of crosslink density in sulfur-cured rubbers.12 

Bifunctional organosilanes, known also as coupling agent, remedy the problems 

aforementioned and are used to enhance the reinforcing capability of silicas in 

rubber.12 Other fillers such as layer silicates13-18, carbon nanotubes19-21, and 

exfoliated graphene22,23 have been intensively researched as a potential reinforcing 

agent in rubber. Several examples of reviews24-27 suggest that the nanofillers 

mentioned above are a promising reinforcing agent to improve mechanical and 

dynamic properties of rubber particularly at low filler loading. Among the fillers, 

hydrous aluminium phyllosilicates or clay minerals such as montmorillonite (MMT) 

and kaolin have received much attention in recent years because they are relatively 

https://en.wikipedia.org/wiki/Hydrate
https://en.wikipedia.org/wiki/Aluminium
https://en.wikipedia.org/wiki/Silicate_minerals#Phyllosilicates
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inexpensive and also non-carcinogenic.  Since MMT consists of a triple-layer 

sandwich structure, hence its dispersion mechanism in rubber is different from 

carbon black and silica which have a spherical shape.28 As reported in literature28-32 

intercalation and exfoliation morphologies are used to characterise the clay layer 

dispersion in clay/polymer nanocomposites. The latter morphology is more desirable 

due to its high surface area, which is important in rubber reinforcement. 

Nevertheless, producing a high level of clay dispersion in rubber is still a challenge.     

     Several studies have looked into potential replacement of CB and silica with 

kaolin. Similar to silica, the kaolin surface possesses OH groups, which makes it 

polar and moisture adsorbing. To improve dispersion of the kaolin particles in rubber, 

the filler surface is often treated with silane.33 Previous studies where kaolin was 

used in natural rubber (NR) showed promising results. For example, in a study small 

amount of kaolin, i.e. 10 phr, was modified with sodium salt of rubber seed oil (SRSO) 

and mixed with NR.34 The rubber filled with SRSO-modified kaolin cured faster than 

that of a similar mix containing unmodified kaolin. In addition, the NR composites 

containing SRSO-modified kaolin showed considerable increases in tensile modulus, 

tensile strength, and elongation at break. This indicated kaolin potential as an 

organo-modified nanofiller.   

      In a study, importance of the surface organo-modification of kaolin was 

demonstrated.35 Metal salt of rubber seed oil (RSO-Na) was used to modify kaolin 

and then was introduced into NR. Rubber composites mixed with various 

compositions of pristine and modified kaolin (2-10 phr) were then prepared and 

tested. The results showed that the modified kaolin improved the cure and 

mechanical properties of the rubber composite compared to the pristine kaolin-filled 

rubber. For example, the viscosity and hardness increased with increase in filler 
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concentration. Furthermore, the extent of crosslink density and rubber-filler 

interaction also improved. It was concluded that the presence of the modified kaolin 

resulted in the formation of a higher number of crosslinks, which was attributed to the 

confinement of the rubber chains within the silicate galleries and consequently, to 

better interaction between the filler and the rubber.   

      Typical rubber formulation for commercial products such as NR-based conveyor 

belt cover consists of up to eleven different chemical additives including cure system 

and reinforcing filler. The cure system is made of sulfur, three accelerators (primary 

and secondary), and primary and secondary activators (zinc oxide and stearic acid), 

respectively), adding up to 9.7 parts per hundred rubber (phr) by weight.36 The 

reinforcing filler is carbon black (CB).36 In any rubber formulation, chemical curatives 

and solid fillers are indispensable. The former provides shape stability and the latter, 

reinforcement of the dynamic and mechanical properties of the cured rubber, which 

is essential for the performance, durability and life of the final product in service.37-38   

      Excessive use of the chemical curatives is harmful to health, safety, and the 

environment. According to the European Directive 67/548/EEC, zinc oxide is very 

toxic to aquatic organisms. Stearic acid causes skin and eye irritation and is 

classified as highly flammable.39 Both of these chemicals are used extensively as 

activator in sulfur vulcanization.36 & 40 Besides, CBs could be highly toxic and pose a 

considerable health risk associated with their use in rubber compounds.41 There is a 

need to replace CB with less harmful solid fillers. 

      The aim of this study was to investigate effect of up to 140 phr of kaolin modified 

with a mercaptosilane on the viscosity, cure and mechanical properties of some 

commercially important rubber composites. The study used a new method for 
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measuring the exact amount of the chemical curatives required in the sulfur 

vulcanization of the rubbers. The idea was to substantially reduce the usage of these 

harmful chemicals and replace toxic carbon black and silica/silane filler systems with 

the much safer mineral kaolin.   

Experimental 

Materials and mixing  

The raw rubbers used were standard Malaysian natural rubber (NR) grade L 

(98wt%1,4-cis content; SMRL); high cis polybutadiene rubber (96wt% 1,4-cis content; 

Buna CB24, Bayer, Newbury, UK; not oil extended); ethylene-propylene-diene 

rubber (EPDM; 48wt% ethylene content,  9wt% ethylidene norbornene content, and 

13wt% oil content, Keltan 6251A, Lanxess, The Netherlands). The reinforcing filler 

was Mercap 100 (Imerys Ceramics, USA). Mercap 100 is kaolin (China clay; 

Al2Si2O5 (OH)4), the surface of which had been pre-treated with 3-mercaptopropyl- 

trimethoxysilane (MPTS) to reduce its polarity and prevent it from adsorbing moisture.  

As mentioned earlier, surface polarity and moisture are detrimental to the dispersion 

of filler particles in rubber and sulfur vulcanization of rubber compounds.9-12 MPTS 

contains less than 2wt% of sulfur. Mercap 100 has a very fine particle size of about 

0.3 micron and 25 m2/g surface area measured by nitrogen adsorption (Imerys 

Ceramics, USA). It contains approximately 90 parts per million (ppm) of sulfur, which 

primarily comes from trace secondary minerals, mainly pyrite (FeS2) with a melting 

point of 1,100oC. The kaolin was supplied in a plastic bag. The powder was placed in 

an oven at 80oC for at least 48 h to remove moisture if any before mixing it with the 

rubbers.  
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      In addition to the raw rubbers and kaolin, the other ingredients were elemental 

sulfur (curing agent, Solvay Barium Strontium, Hannover, Germany), N-tert-butyl-2-

benzothiazole sulfenamide (a fast-curing delayed-action accelerator with a melting 

point of 105oC, Santocure TBBS, Sovereign Chemicals, USA), zinc oxide (ZnO, an 

activator, Harcros Durham Chemicals, Durham, UK), stearic acid (an activator, 

Anchor Chemicals Ltd, UK); and N-(1,3-dimethylbutyl)-N-phenyl-p-phenylene- 

diamine (6PPD) (an antidegradant with a melting point of 45-51oC, Santoflex 13, 

Brussels, Belgium). 

      The raw rubbers were mixed with the chemical ingredients in a Haake Rheocord 

90 (Berlin, Germany), a small laboratory mixer with counter-rotating rotors, to 

produce compounds. The Banbury rotors and the mixing chamber were initially 

set at ambient temperature (23°C) and the rotor speed was set at 45rpm. The 

volume of the mixing chamber was 78 cm
3 and it was 60% full during mixing. Polylab 

monitor 4.17 software was used for controlling the mixing condition and storing data. 

To prepare the unfilled NR, BR and EPDM compounds, the raw rubber was 

introduced first into the mixer and mixed for 1 min and then sulfur, TBBS, ZnO, 

stearic acid and antidegradant were added and mixed for another 12 min. A similar 

procedure was used for making the kaolin-filled compounds where kaolin was added 

3 min after mixing started. The temperature of the compounds during mixing was 58-

62°C.  

Determination of the optimum amount of the chemical curatives in the 
sulfur-filled NR, BR and EPDM rubbers  
 
Sulfur is used extensively in the vulcanization of a wide range of industrial rubber 

articles. For example, the cure system in NR-based tyre belt skim compound has 5 

phr 42, in SBR/BR-based compound for footwear 2 phr 43, and in EPDM-based 
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general gaskets 1 phr of sulfur.44 In this study, the NR had 1 and 4 phr, BR 0.5 and 1 

phr, and EPDM 1 phr of sulfur. To react the sulfur with the rubber to form crosslinks, 

TBBS was added. The loading of TBBS was raised from 0.25 to 4.5 phr and forty 

seven compounds were made. Zinc oxide was used as primary activator to improve 

the effectiveness of TBBS during curing. The loading of ZnO in the rubbers with 

sulfur and TBBS was increased from 0 to 0.5 phr and forty four compounds were 

mixed. To evaluate effect of stearic acid (used as secondary activator with ZnO) on 

the cure properties of the rubbers with sulfur, TBBS and ZnO, twenty two 

compounds were prepared. The loading of stearic acid was raised from 0 to 2.5 phr 

to measure the amount needed to improve efficiency of the cure systems.  

Viscosity, cure properties, hardness, tensile properties, tear energy and 
compression set of the rubber vulcanizates 
 
The viscosity, cure properties, hardness, tensile properties and tear energy of the 

rubbers were measured according to the procedures described in the British 

Standards.   

 Viscosity: British Standard 1673, Part 3 (1969), using a Mooney viscometer  

   (Wallace Instruments, Surrey, UK) and the results were expressed as Mooney   

   Units (MU).  

 Cure properties: British Standard 1673: Part 10 (1977), using oscillating disc   

   rheometer curemeter (ODR, Monsanto, Swindon, UK) at 160 ± 2oC. From the cure     

   traces (Figure 1), scorch time, ts2, which is the time for the onset of cure,    

   and the optimum cure time, t95, which is the time for the completion of cure were  

   determined. Torque which is the difference between the maximum and minimum  

   torque values on the cure trace of a compound and is an indication of crosslink  

  density changes in the rubber45 was also measured. ∆torque was afterwards     
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  plotted against  the loading of TBBS, ZnO, and stearic acid.   

 Cure rate index (CRI): British Standard 903: Part A60: Section 60.1. (1996). CRI is  

   an indication of the rate of cure in the rubber.    

 Hardness: British Standard 903: Part A26 (1995), using cylindrical samples  

   6 mm thick and 15 mm in diameter, in a Shore A Durometer hardness tester (The  

   Shore Instrument & MFG, Co., New York). The test temperature was 23.5oC.   

 Tensile stress-strain properties (tensile strength, elongation at break, stored energy  

   at break and Young’s modulus: British Standard 903: Part A2 (1995), in a  

   LR50K plus materials testing machine (Lloyd Instrument, UK), using standard  

   dumbbell test pieces. Lloyd Nexygen 4.5.1. was used to process and store the  

   data. The test temperature was 22oC and the crosshead speed was set at 100 

   mm/min.   

 Tear energy: British Standard 903: Part A3 (1995), in a LR50K plus materials  

   testing machine (Lloyd Instruments, UK), using trouser test pieces. The test  

   temperature was at ambient (23oC), tear angle 180o, and crosshead speed  

   was set at 50 mm/min. 

 Compression set: British Standard 903: Part A6 (1992), in circular steel  

   compression set jig, 210 mm in diameter, at 25% compression for 24 h at 70oC,  

   using cylindrical samples 6 mm thick and 15 mm in diameter. At the end of each  

   test, the sample was removed and allowed to cool down at room temperature  

   (20oC) for 30 min before the set was measured.    

Glass transition temperature of the rubber composites 

Tan  is the ratio between loss modulus and elastic modulus. The loss modulus 

represents the viscous component of modulus and includes all the energy dissipation 

processes during dynamic strain. The loss modulus, storage modulus and tan  were 

measured in DMAQ800 model CFL-50 (TA Instruments, USA), using Universal 
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Analysis 2000 Software Version 4.3A. Test pieces 35 mm long, 10 mm wide and 

approximately 2.8 mm thick were used. The tests were performed at 1Hz frequency. 

The samples were deflected 256 µm (nominal peak to peak displacement) during the 

test, and the sample temperature was raised from -130oC to 30oC at 3oC/min steps. 

The measurements were repeated to ensure reproducibility of the results. The glass 

transition temperature of the rubber composites was subsequently determined from 

the peak values on the tan vs temperature traces (Figure 2).   

Swelling tests in solvent  

The organic solvent used for the swelling tests was a laboratory reagent grade 

Toluene (Fisher Scientific, UK). In these tests, approximately 1.5 g of rubber was 

placed in 60 ml of the solvent in labelled bottles and allowed to swell for 50 days at 

20°C. The weight of the sample was measured every day until it reached equilibrium.  

The mass of the rubber in the kaolin-filled sample was calculated before it was 

placed in the solvent. Increase in the weight of the sample in the solvent was 

attributed to the swelling of the rubber phase. This excluded the dilution effect of the 

unswellable rigid kaolin from the measurements. The degree of swelling or solvent 

intake of the rubber in percentage was calculated, using the following expression: 

Degree of swelling =  
𝑊𝑠𝑟−𝑊𝑑𝑟

𝑊𝑑𝑟
 ˟ 100               (1) 

where Wsr is the weight of the swollen rubber and Wdr the weight of the dry rubber in  

the sample.  

X-ray diffraction analysis of the kaolin powder and internal structure of  
the NR composites 
 
The X-ray diffraction (XRD) patterns of the layered kaolin and NR composites 

(compounds 1-3; Table 1) were produced on a Bruker D2 diffractometer (Bruker, 
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Germany). The diffractometer was equipped with Cu Kα radiation (= 0.15418 nm), 

10 mA of current and 30 kV of voltage. A minimum of 3 g of dried kaolin powder was 

used to carry out the X-ray analysis of the mineral clay. Square flat sheets, 20 mm 

by 20 mm and 2.8 mm thick, of the cured rubbers were used for the X-ray analysis of 

the NR composites. The experiment was performed at low angle in the range  

2θ = 1-10oC with the scan rate of 0.02o/s. In addition, the spacing between the 

structural layers of the kaolin was measured according to the Bragg’s law (eq. (2)),  

n  = 2 d sin θ                    (2) 
 

where n is an integer,  is the X-ray wavelength, d is the interlayer spacing, and θ is 

the angle of diffraction.  Some XRD diffraction patterns of the solid kaolin particles 

and NR composites were subsequently produced (Figures 3 and 4).     

Assessment of the kaolin filler and dispersion of the kaolin particles in 
the rubbers by electron microscopy    

The kaolin was investigated by a transmission electron microscope (TEM) model 

2000FX (JEOL, Japan). A small amount of the dry kaolin powder, approximately 0.1 

g in weight, was placed in a glass tube and mixed with 3 ml of a HPLC grade 

methanol solvent (Fisher Scientific, UK). The glass tube was then placed in an 

ultrasonic machine for 15 minutes in order to disperse the kaolin particles in the 

solvent. After this time elapsed, an electron transparent standard holey carbon film 

10-20 nm thick was placed on a copper mesh grid 25 microns thick for TEM samples 

and inserted in the tube to collect the kaolin nanoparticles. The grid was recovered 

and placed on a clean tissue paper to remove excess solvent and left in a clean 

cabinet at room temperature (~20oC) for 24 hours to allow the solvent to fully 

evaporate before placing it in the TEM. Some micrographs were then prepared for 

final analysis (Figure 5).     
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      To select a suitable mixing time for incorporating the kaolin in the rubbers, the 

mixing time was increased to 24 min to disperse the kaolin particles fully in the 

rubber. Twenty-four hours after the mixing ended, the rubbers were examined in a 

scanning electron microscope (SEM) to assess the filler dispersion. Dispersion of the 

kaolin particles in the rubber was assessed by a Cambridge Instruments Stereoscan 

360 Tungsten filament scanning electron microscope. Small pieces of the uncured 

rubber were placed in liquid nitrogen for 3 min and then fractured to create two fresh 

surfaces. The samples, 9 mm2 in area and 7 mm thick, were coated with gold and 

then examined and photographed in the SEM. The degree of dispersion of the kaolin 

particles in the rubber was then studied from SEM micrographs. After the 

micrographs were examined, a total mixing time of 13 min was found to be sufficient 

to fully disperse the kaolin particles in the rubbers (Figure 6). This mixing time was 

then used to make rubber compounds for this study. 

Results and discussion  

New optimum sulfur cure systems for the rubbers 

Figure 7 shows torque as a function of TBBS loading for the NR rubbers with 1 and 

4 phr sulfur. For the rubber with 1 phr sulfur, torque increased from 5 to 23 dNm as 

the loading of TBBS was raised to 1.5 phr, and it continued rising at a much slower 

rate to about 32 dNm when the loading of TBBS reached 3.5 phr. The addition of 1.5 

phr TBBS was sufficient to react the sulfur with the rubber to form crosslinks.  For the 

rubber with 4 phr sulfur, torque increased from 24 to 41 dNm as the loading of 

TBBS was increased from 0.5 to 3.5 phr. Subsequently, torque rose to 43 dNm 

when an additional 1 phr TBBS was incorporated in the rubber.  Clearly, 3.5 phr 

TBBS was sufficient to react the sulfur with the rubber.  
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      To enhance the efficiency of cure in the NR with sulfur and TBBS, ZnO was 

added (Figure 8). The addition of 0.2 phr ZnO to the rubber with 1 phr sulfur and 1.5 

phr TBBS was enough to improve the efficiency of TBBS as indicated by increase in 

torque from 21 to 26 dNm. However, when the loading of ZnO was raised to 0.5 phr, 

Δtorque rose at a much slower rate to about 33 dNm. Similarly, Δtorque for the 

rubber with 4 phr sulfur and 3.5 phr TBBS reached optimum value at 0.2 phr ZnO 

and thereafter the rise was marginal. Note that a small amount of ZnO, i.e. as low as 

0.2 phr, when added as primary activator, improved the performance of TBBS to 

such a degree during curing as shown by increase in torque.  

      Stearic acid is a fatty acid that is added as co-activator with ZnO in sulfur 

vulcanization. It also acts as plasticiser and internal lubricant between polymer 

chains, and aids dispersion of solid ingredients in the rubber. Zinc stearate is formed 

when stearic acid reacts with ZnO and is an essential cure activator.46 The loading of 

stearic acid in the NR with 1phr sulfur, 1.5 phr TBBS and 0.2 phr ZnO was raised 

from 0 to 2.5 phr to increase the dispersion and solubility of ZnO and enhance 

efficiency of the curing reaction in the rubber. Figure 9 shows torque versus stearic 

acid loading. The inclusion of stearic acid in the cure system had no benefit for 

torque at all, which stayed constant at about 27 dNm. It is abundantly clear that 

ZnO is a very effective primary activator in improving the performance of TBBS in the 

absence of secondary activators such as stearic acid.     

      Figure 10 shows torque as a function of TBBS loading for the BR rubbers with 

0.5 and 1 phr sulfur. For the rubber with 0.5 phr sulfur, torque increased from 25 to 

45 dNm as the loading of TBBS was raised to 1.75 phr, and then it stopped rising 

once the loading of TBBS reached 3 phr. The addition of 1.75 phr TBBS was 

sufficient to react the sulfur with the rubber to form crosslinks.  For the rubber with 1 
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phr sulfur, torque increased from 39 to 61 dNm as the loading of TBBS was raised 

from 0.5 to 3 phr. Subsequently, torque remained essentially unchanged when an 

additional 0.8 phr TBBS was incorporated in the rubber. Clearly, 3 phr TBBS was 

sufficient to react the sulfur with the rubber.  

      Zinc oxide was then added to enhance the efficiency of cure in the BR with sulfur 

and TBBS. For the rubber with 0.5 phr sulfur and 1.75 phr TBBS, the addition of 0.2 

phr ZnO was enough to make TBBS more effective as indicated by increase in 

torque from 62 to 71 dNm. But when the loading of ZnO was raised to 0.35 phr, 

Δtorque showed no increase and remained at about 72 dNm (Figure 11). ΔTorque 

for the rubber with 1 phr sulfur and 3 phr TBBS reached optimum value, i.e. 92 dNm, 

at 0.2 phr ZnO, and afterwards it rose marginally to about 94 dNm when an extra 

0.25 phr ZnO was added. Notably, when 0.5 phr stearic acid was added to the BR 

with 0.5 phr sulfur, 1.75 phr TBBS and 0.2 phr ZnO, Δtorque first decreased sharply 

from 71 to 50 dNm and then remained almost steady until the loading of stearic acid 

reached 2.5 phr. Evidently, small amounts of stearic acid, i.e. up to 0.5 phr, were 

detrimental to the crosslink density of the rubber as indicated by drop in Δtorque 

(Figure 9).    

      Figure 12 demonstrates Δtorque versus TBBS loading for the EPDM with 1 phr 

sulfur.  ΔTorque increased steeply from 26 to 42 dNm as the loading of TBBS was 

boosted from 0.25 to 1 phr. Subsequently, there was no improvement in Δtorque 

once the amount of TBBS reached 3.8 phr. Apparently, 1 phr TBBS was enough to 

react the sulfur with the rubber.  Zinc oxide was later added to improve the efficiency 

of TBBS. ΔTorque rose noticeably from 41 dNm at 0 phr ZnO to 56 dNm at 0.075 phr 

ZnO and the rate of increase slowed down significantly thereafter. Δtorque then 

reached to about 67 dNm when the loading of ZnO was raised by an additional 0.325 
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phr (Figure 13). It is remarkable that a small amount of ZnO, i.e. as low as 0.075 phr, 

had such a major influence on the performance of TBBS in the cure system as 

indicated by a significant rise in Δtorque. When 0.5 phr stearic acid was mixed with 

the EPDM with 1 phr sulfur, 1 phr TBBS and 0.075 phr ZnO, torque decreased from 

56 to 47 dNm and subsequently continued decreasing slowly to about 42 dNm when 

the amount of stearic acid was raised to 2.5 phr (Figure 9). The crosslink density as 

shown by Δtorque did not benefit from the addition of stearic acid to the rubber and 

consequently it can be eliminated from the cure system completely. In the absence 

of stearic acid, no zinc stearate was formed in the rubber. Hence, zinc stearate is not 

an essential ingredient in the curing of rubber as has been claimed.46  

      After these measurements were completed, three cure systems were selected 

for further work. For NR, the cure system consisted of 4 phr sulfur, 3.5 phr TBBS, 

and 0.2 phr ZnO; for BR, 0.5 phr sulfur, 1.75 phr TBBS and 0.2 phr ZnO; for EPDM, 

1 phr sulfur, 1 phr TBBS and 0.075 phr ZnO. To protect the rubbers against 

environmental ageing, 1 phr antidegradant (6PPD) was also added. Note that there 

were only three chemicals in the cure systems, i.e. sulfur, TBBS and ZnO, which 

added up to 7.7 phr in the NR compounds, 2.45 phr in the BR compounds and 2.075 

phr in the EPDM compound. This is a significant reduction both in the number and 

amount of the chemicals in the cure system. In addition to the chemical curatives, 

the NR compounds had 60 and 140 phr kaolin and the BR and EPDM compounds 

60 phr kaolin (compounds 1-7, Table 1). These compounds were mixed as described 

already and their viscosity and cure properties measured. They were then cured at 

160oC and their hardness, tensile properties and tear energy determined.   

Effect of kaolin on the viscosity and cure properties of the rubber 
compounds  
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The inclusion of kaolin affected the viscosity and cure properties of the rubbers not in 

the same way. The viscosity of NR increased from 44 to 85 MU when 140 phr kaolin 

was added (Figure 14). A similar trend was also observed for BR and EPDM where 

the viscosity rose from 42 to 66 MU and from 70 to 89 MU, respectively after 60 phr 

kaolin was mixed (Table 1). This was expected, since the inclusion of solid particles 

in raw rubber raises the rubber viscosity.47 

      The ts2 and t95 of NR shortened from 4.7 to 2.1 min and 8.3 to 3.1 min, 

respectively with 140 phr kaolin (Figure 15). The rate of cure as indicated by CRI 

benefitted greatly from kaolin and increased from 27.8 at 0 phr kaolin to 100 min-1 at 

140 phr kaolin loading (Figure 16). Probably, this was the highest cure rate ever 

reported for a sulfur-cured NR-based compound. As mentioned earlier, torque is an 

indication of crosslink density changes in the rubber. torque for NR increased from 

43 to 69 dNm as the loading of kaolin was raised from 0 phr to 140 phr , which 

indicated a large rise in the crosslink density of the rubber (Figure 17).  

      For BR, the addition of kaolin shortened the ts2 and t95 from 11.3 to 3.5 min and 

47.5 to 12.5 min, respectively. The rate of cure also improved from 2.8 to 11.1 min-1. 

Though, kaolin had a detrimental effect on the crosslink density of the rubber 

because torque decreased from 72 to 56 dNm (Table 1).  

      For EPDM, the ts2 decreased from 6.2 to 2.6 min but surprisingly, the t95 

increased from 21.5 to 40 min when 60 phr kaolin was added. Compound 7 had a 

marching cure and the torque kept increasing as a function of time. To calculate an 

optimum cure time for this compound, an arbitrary maximum torque value was 

considered. Hence, there was some uncertainty regarding the exact optimum cure 

time of this compound. But, it was evident that kaolin retarded the cure, causing it to 
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march indefinitely. It is worth mentioning that the remaining compounds in Table 1 

had equilibrium cure (Figure 1). The rate of cure declined as shown by a large fall in 

CRI from 6.5 to 2.7 min-1. The rubber lost some crosslinks as demonstrated by 

reduction in torque from 55 to 44.5 dNm (Table 1). This revealed the damaging 

effect of kaolin on the crosslink density of both BR and EPDM.            

Effect of kaolin on the hardness and mechanical properties of the rubber 
composites   
 
Table 2 summarizes the hardness and mechanical properties of the rubber 

composites. These properties benefitted to a great extent from the addition and 

progressive increases in the loading of kaolin. For NR, the hardness increased by 64% 

when 60 phr kaolin was added and the trend continued rising by another 28% when 

the loading of kaolin reached 140 phr. Similarly, the Young’s modulus rose by 170% 

with 60 phr kaolin and then by an extra 148% when the full amount of kaolin, i.e. 140 

phr, was reached. This was expected, since when soft rubber is replaced with solid 

filler, the rubber becomes harder, causing the Young’s modulus to increase. The 

tensile strength and tear energy were unchanged and the elongation at break and 

stored energy density at break deteriorated by a total of 65% and 34%, respectively 

when 140 phr kaolin was mixed with the rubber. Notably, the compression set of the 

rubber was adversely affected by the addition of kaolin. For the unfilled rubber, the 

set was 41%, and it then rose to 64% and 71%, when 60 and 140 phr kaolin was 

added, respectively.  

      Kaolin was very beneficial to the properties of BR and EPDM. For BR, the 

hardness increased by 23% and for EPDM, by 34%, respectively when 60 phr kaolin 

was incorporated in the rubbers. For BR, the tensile strength, elongation at break 

and Young’s modulus rose by 759%, 256% and 114%, respectively. The 
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compression set of the unfilled rubber was 9.4%, and subsequently rose to 26% 

when 60 phr kaolin was mixed with the rubber.  

      The effect of kaolin on the properties of EPDM was even more impressive. For 

this rubber, the tensile strength, elongation at break and Young’s modulus improved 

by 964%, 332% and 71%, respectively. The properties related to fracture were also 

enhanced very substantially. For BR, the stored energy density at break and tear 

energy were increased by 2442% and 536%, respectively and for EPDM, by 3133% 

and 1479%, respectively. The compression set of the unfilled rubber was 39%, and 

afterward increased to 48% with 60 phr kaolin. Hence kaolin was detrimental to the 

compression set resistance of these rubbers.  

      Evidently, kaolin is extending or non-reinforcing filler for the strain-induced 

crystallizing NR, and highly reinforcing for the non-crystallizing BR and EPDM. Since 

kaolin has a platelet structure (Figure 5), it may be assumed that the mechanism by 

which rubber is reinforced may be different to that by spherical particles such as CB 

and silica. The results suggest that strain-induced crystallizing NR benefits less from 

kaolin than the non-crystallizing BR and EPDM do.  In a study48, some rubber 

composites were obtained by mixing NR, BR, and EPDM with up to 60 phr kaolin. 

The cure system consisted of 3 phr primary and secondary accelerators and 4 phr 

primary and secondary activators, adding up to 7 phr, as well as 2.5 phr sulfur. The 

kaolin-filled rubber composites had outstanding mechanical and thermal properties. 

For the NR composite, the highest hardness (38 Shore A), tensile strength (10.10 

MPa) and elongation at break (296%) were recorded at 40 phr loading of kaolin. For 

the BR composite, the highest hardness (58 Shore A), tensile strength (7.75 MPa) 

and elongation at break (53%) were measured at 50 phr loading of kaolin. Finally, for 

the EPDM composite, the highest hardness (58 Shore A), tensile strength (9.26 MPa) 
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and elongation at break (208%) were determined at 50 phr kaolin, respectively. Our 

results compared well with the reported ones above. For instance, the filled EPDM 

composite had a hardness of 55 Shore A, tensile strength of 14.9 MPa and an 

elongation at break of 1512%, significantly better than those reported for the EPDM 

above, in spite of the cure system having one accelerator and one activator, adding 

up to 2.075 phr (Table 1). All the indications are that kaolin reinforces rubber 

effectively, and reduction in the use of the chemical curatives in the vulcanization 

process does not affect the mechanical properties of the rubbers adversely.   

      There are various factors which affect reinforcement of rubbers by solid fillers. 

They are filler-rubber interaction49,50, filler-filler interaction51, and formation of 

crosslinks in rubber.4,40  Increasing mixing time is an effective way to disperse solid 

fillers in rubber compounds.52  As Figure 6 shows, the kaolin particles dispersed well 

in the rubber matrix. The reinforcing effect of kaolin on the mechanical properties 

was optimized through good dispersion53 and consequently the filler-filler interaction 

was minimal. The rubber breaks down during mixing, which causes reduction in 

molecular weight and viscosity. This is often compensated by the reinforcing effect of 

the filler. The reduction in molecular weight is attributed to the mechanical rupture of 

the primary carbon-carbon bonds that are present along the backbone of the rubber 

chains.54 For example, for unfilled NR, a mixing time of 11 min reduced the 

molecular weight by roughly 25%55 and its viscosity by 13%.56 As the results in Table 

2 show, in spite of a long mixing, i.e. 13 min, the mechanical properties of the BR 

and EPDM composites improved significantly when kaolin was added. This showed 

the reinforcing capabilities of kaolin.   

      Solid fillers reinforce rubber properties because of their large surface area. There 

were at least two contributions made to the rubber-kaolin interaction. Kaolin had a 
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surface area of 25 m2/g and this provided area for bound rubber to form. The 

formation of bound rubber increases with factors such as temperature, time, surface 

activity and surface area of the filler.5 A mixing temperature of 58-62oC and a mixing 

time of 13 min provided a favourable condition for bound rubber to form in the 

composites. In addition, the silanization of the kaolin surface with MPTS, helped to 

improve the filler dispersion and increased the available surface area for rubber to 

interact with the filler to form bound rubber. Viscosity increases as a function of 

bound rubber, and bound rubber improves as a function of filler surface area and 

filler loading.57 The results in Table 1show large increases in the viscosity for the 

kaolin-filled rubbers, signifying bound rubber formation in the composites. Effect of 

bound rubber on the filler-rubber interaction has been studied extensively and all the 

results suggest major enhancement of this property when bound rubber forms.5  

      In a study, modified kaolin was introduced into NR and cured at 140oC for 10 min 

to produce some composites.35 The interspacing between the kaolin layers 

measured by XRD was from 7 to 14 Ao. The presence of the modified kaolin resulted 

in increase in the torque value caused by the formation of a higher number of 

crosslinks, which was attributed to the confinement of the rubber chains within the 

silicate galleries and hence to better interaction between the filler and the rubber. 

The XRD indicated a gallery spacing of about 7 Ao for the kaolin used in this study. 

Since the size of a carbon atom along the backbone of hydrocarbon rubber is about 

3 Ao,58 it is likely that some segments of the rubber chains entered into the kaolin 

galleries during mixing, causing strong interaction between the two. This in turn, 

could have enhanced the kaolin-rubber interaction and improved the properties of 

the BR and EPDM composites (Table 2). It seems that confinement of the rubber 

chains within a layered structure is a major factor in the ability of mineral fillers such 



20 
 

as kaolin to reinforce the rubber properties. Apparently, this was not so for the NR 

composite.  

      The NR viscosity increased by approximately 64% when the loading of kaolin 

was raised from 60 to 140 phr (Table 1). When the viscosity rose, higher shear 

forces were produced in the rubber, resulting in a more efficient break down of the 

filler aggregates, better dispersion of the filler particles and more surface area for the 

rubber chains to interact with (Figure 6). Consequently, more bound rubber was 

formed in the kaolin-filled composites.  Furthermore for NR, the peaks on the XRD 

patterns of the kaolin-filled composites were the same as the ones appearing on the 

XRD pattern of the kaolin particles but getting larger as more kaolin was added (cf. 

Figure 3 with Figure 4). It was concluded that there was no evidence of 

crystallization in the rubber. Small amounts of suitable impurities accelerate the 

crystallization process markedly in NR in the absence of strain, presumably by 

promoting crystal nucleation.59 Clearly, this was not the case with kaolin.   

      As mentioned earlier, Δtorque is an indication of crosslink density changes in 

rubber. The Δtorque of the NR composites increased from 43 to 69 dNm when the 

loading of kaolin was raised from 0 to 140 phr, respectively (Table 1). This indicated 

a significant rise in the crosslink density of the composite. For the BR and EPDM 

composites, torque decreased by approximately 22% and 19%, respectively when 

60 phr kaolin was added (Table 1).   

     The compression set of the composites increased when kaolin was incorporated 

in the rubber (Table 2). In the swelling tests, the unfilled NR composite solvent intake 

was 489%, and decreased to 347% and 335% for the composites with 60 and 140 

phr kaolin, respectively. The decrease in solvent intake correlated well with the 

increase in torque (Table 1), since higher crosslink density inhibits chain mobility 
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and reduces swelling.46 But the compression set increased by 73% when the kaolin 

loading was raised to 140 phr. This trend did not match that of the torque (Table 2) 

because higher crosslink density should have reduced the set. The reason for this 

discrepancy is not immediately clear but it is likely that the NR composites had more 

physical links and less chemical crosslinks, which affected both the extent of swelling 

and Δtorque.   

      For the unfilled and filled BR and unfilled and filled EPDM composites, the 

solvent intake was 360% and 428%, and 263% and 323%, respectively. The higher 

solvent intake indicated lesser crosslink density or lower torque than the unfilled 

counterparts. This meant higher compression set for the filled composites. As shown 

in Table 2, the filled BR and EPDM composites did have lower torques, which 

implied lesser crosslink density and higher compression set. It appeared that kaolin 

was detrimental to the crosslink density of these composites. It is expected that 

swelling of the BR and EPDM composites was affected mostly by the chemical 

crosslinks and less by the physical ones. Therefore, chemical and physical 

crosslinks influenced the torque and solvent intake in these composites though the 

exact contribution to the crosslink density remains to be determined.    

      Glass transition temperature is governed by the extent of chain mobility within 

the rubber network. When chain mobility is inhibited, e.g. by the presence of 

chemical and/or physical crosslinks between the rubber chains and strong rubber-

filler interaction, Tg rises.60 The Tg of the unfilled NR composite was -41oC and rose 

to about -42 and -43oC when the filler loading was 60 phr and 140 phr, respectively 

(Table 2). The Tg for the unfilled and filled BR composites and unfilled and filled 

EPDM composites were -100oC and -97oC, and -42oC and -40oC, respectively. The 

kaolin filler raised the Tg of the composites by up to three degrees centigrade.  
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Conclusions  

From this study, the following main conclusions can be drawn.  

1.  A new method measured the exact optimum amount of TBBS accelerator and 

ZnO activator at a given loading of sulfur in the composites of NR, BR and EPDM 

and eliminated stearic acid from the cure system entirely. The requirement for ZnO 

was 0.075-0.2 phr. interestingly, in spite of using less chemical curatives in sulfur 

vulcanization, the rubber composites were fully cured with outstanding properties.        

2. Kaolin was extending or non-reinforcing filler for the strain-induced crystallizing 

NR and highly reinforcing for the non-crystallizing BR and EPDM.  

      It is predictable that reduction in the use of ZnO and stearic acid will improve 

health and safety at work-place, reduce cost, and minimise damage to the 

environment.  The use of MPTS pre-tread kaolin in conjunction with the new method 

for measuring the exact amount of the curatives in sulfur vulcanization provides an 

effective means for designing green composites for industrial applications. The 

indications are that MPTS pre-treated kaolin is an ideal replacement for carbon black 

and silica/silane systems in rubber reinforcement, at least for non-crystallizing BR 

and EPDM rubbers. 
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Table 1. Formulations, Mooney viscosity and cure properties of the rubber 

compounds 

Formulation 
(phr) 

Compound no 

1 2 3 4 5 6 7 

NR* 100 100 100 - - - - 

BR* - - - 100 100 - - 

EPDM* - - - - - 100 100 

Sulfur  4 4 4 0.5 0.5 1 1 

TBBS 3.5 3.5 3.5 1.75 1.75 1 1 

ZnO 0.2 0.2 0.2 0.2 0.2 0.075 0.075 

Santoflex 13 1 1 1 1 1 1 1 

Kaolin  0 60 140 0 60 0 60 

Mooney 
viscosity   

ML(1+4, 100oC)  

44 52 85 42 66 70 89 

Curemeter data at 160oC  

ML 
(dNm) 

 12 15 20 15 19 16 19.5 

MH 
(dNm) 

55 79 89 87 75 71 64 

Torque 
(dNm) 

43 64 69 72 56 55 44.5 

ts2 
(min) 

4.7 3.2 2.1 11.3 3.5  6.2 2.6 

t95 
(min) 

8.3 4.8 3.1 47.5 12.5 21.5 40 

CRI (min-1) 27.8 62.5 100 2.8 11.1 6.5 2.7 

 

*The viscosity of the raw NR, BR and EPDM rubbers were 89, 46, and 88 MU, 

respectively.     
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Table 2. Hardness and mechanical properties of the rubber vulcanizates  

Properties  Compound no 

1 2 3 4 5 6 7 

Hardness 
(Shore A) 

33 54 69 44 54 41 55 

Range of 
values 

 (Shore A) 

32-35 51-55 68-70 43-44 54-56 41-42 55-56 

Tensile 
strength 
(MPa) 

22 22 20 1.7 14.6 1.4 14.9 

Range of 
values  
(MPa) 

21-22 21-22 18-21 1.5-1.8 14.5-
15.5 

1.3-1.7 14.7-
17.5 

Elongation at 
break (%) 

1667 997 587 250 889 350 1512 

Range of 
values (%) 

1645-
1669 

994-999 577-628 239-283 878-950 333-370 1492-
1651 

Young’s 
modulus 
(MPa) 

1.0  2.7  6.7 1.4 3.0 1.4 2.4 

Range of 
values (MPa) 

1.0-1.1 2.3-3.2 5.8-11.6 1.4-1.7 2.8-3.0 1.3-1.4 1.8-2.7 

Compression 
set (%) 

41 64 71 9.4 26 39 48 

Range of 
values (%) 

39-42 61-65 71-71 9.4-9.4 26-28 37.5-39 46-50 

Stored energy 
density at 

break (mJ/m3) 

90 90 59 2.4 61 3.0 97 

Range of 
values 

(mJ/m3) 

90-91 86-91 54-65 2.4-3.0 60-70 2.9-3.7 96-121 

Tear energy 
(kJ/m2) 

13 13 14 1.1 7 1.9 30 

Range of 
values 

(mJ/m3) 

11-15 11-20 11-20 0.76-1.7 4.6-11.5 1.3-2.0 26-32 

Glass 
transition 

temperature, 
Tg (oC) 

-41 -43 -42 -100 -97 -42 -40 

Degree of 
swelling (%)  

489 347 335 360 428 263 323 
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Figure 1. Typical torque vs time cure trace produced by ODR at 160oC. Data for  
compound 5 in Table 1. ΔTorque = Tmax – Tmin. 
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Figure 2. Typical DMA traces for the NR composite with140 phr kaolin. 
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Figure 3. XRD diffraction pattern for the solid kaolin particles. 
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Figure 4. XRD diffraction patterns for the NR composites  
(compound s 1-3 Table 1). 
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Figure 5. Transmission electron micrograph showing kaolin particles. 
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Figure 6. Scanning electron micrograph showing good dispersion of the kaolin 
particles in rubber matrix. Data for the NR composite with 60 phr kaolin after 13 

min mixing time. 
 

 

 

 

 

 

 

 

 

 

 



38 
 

 

 

 

 

.  

Figure 7. Torque versus TBBS loading for the NR with 1 phr sulfur (■), NR with 

4 phr  sulfur (). 
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Figure 8. ΔTorque versus ZnO loading for the NR with 1 phr sulfur and 1.5 phr 

TBBS (♦), NR with 4 phr sulfur and 3.5 phr TBBS (●). 
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Figure 9. Torque versus stearic acid loading for the NR with 1 phr sulfur, 1.5 phr 

TBBS and 0.2 phr ZnO (■), BR with 0.5 phr sulfur, 1.75 phr TBBS and 0.2 phr 

ZnO (♦), EPDM with 1 phr sulfur, 1 phr TBBS and 0.075 phr ZnO (). 
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Figure 10.  Torque versus TBBS for the BR with 0.5 phr sulfur (♦), and BR with 

1 phr sulfur (▲). 
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Figure 11. Torque versus ZnO loading for the BR with 0.5 phr sulfur and 1.75 phr  

TBBS (■), BR with 1 phr sulfur and 3 phr TBBS (▲). 
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Figure 12. Torque versus TBBS loading for the EPDM with 1 phr sulfur. 
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Figure 13.  Torque versus ZnO loading for the EPDM with 1 phr sulfur and 1 phr 
TBBS. 
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Figure 14.  Mooney viscosity versus kaolin loading for composites 1-3 in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

 

 

 

 

 

Figure 15. Optimum cure time, t95 and scorch time, ts2 versus kaolin loading for 

composites 1-3 in table 1. Optimum cure time (■), scorch time (). 
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Figure 16. Cure rate index versus kaolin loading for composites 1-3 in Table 1. 
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Figure 17. Torque versus kaolin loading for composites 1-3 in Table 1. 

 

 

 

 


