LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
" LIBRARY.

AUTHOR/FILING TITLE : }
i

ACCESSION/COPY NO. ’ : ,
Cro 1.9 5oy, B | ‘

e T S S e e e e G S U e S A PR EE R N e S S - -

VOL. NO. CLASS MARK ; _ ‘

Lo coéf IR

2g0cT 997 | I
26 JUN 1398 R

25,JUN 199 . |

0401295052

ﬂfﬂl (T

SALFOROET
STER, LEZ1LD
=T LY T o W)

S e |







THE DYNAMICS OF PERFECT STEERING
BOGIE VEHICLES AND ITS IMPROVEMENT
WITH A RECONFIGURABLE MECHANISM

by

WEI LI

A Doctoral Dissertation

Submitted in partial fulfilment of the requirements for the award of
doctor of philosophy of the Loughborough University of Technology

October 1995

Supervised by: Professor A. H. Wickens

© by WEI LI, 1995



B e iynemgn

T P'y

T T e

Class

P IUEIR o e

Acc

No. Oo 19y

% o Rt ;-mmmm

avfwe‘m%

e e -

i P




To my daughter, my wife and my mother
for their support, encouragement and suffering

with all my love forever



ABSTRACT

Even since railway vehicles were invented, railway scientists and engineers have
been putting a lot of effort in finding the solution to the fundamental conflict
between vehicle stability in the lateral plane and vehicle's capability of negotiating
curves, Many configurations of railway bogie vehicles have been proposed and
applied to minimise the conflict. The purpose of the research project is i) to create
new configurations that can decouple the basic conflict, ii) to investigate dynamic
behaviour of the new configurations and iii) to conceive a new mechanism that can
improve the dynamics of the new configurations.

Three configurations of body-steered bogie vehicles have been set up in the
research. The sufficient conditions for them to be capable of perfect steering have
been derived. They are called perfect steering vehicles when they satisfy these
sufficient conditions. Their curving ability, stability and ride performance have been
investigated. To overcome the disadvantages of the perfect steering vehicles, the

~ reconfigurable mechanism has been conceived. The improvement in the dynamic

behaviour of the perfect steering vehicles with the reconfigurable mechanism has
been demonstrated. A computer program has been developed to undertake the
simulation.

The steering capability of the perfect steering vehicles is much better than that of
conventional bogie vehicles. There are two modes of instability in the perfect
steering vehicles: low conicity instability and conventional instability in the perfect
steering vehicle. The perfect steering vehicles can decouple the conflict between
their conventional stability and curving. The improvement of stability and ride
performance of the perfect steering vehicles is, however, limited by the low conicity
instability.

When the reconfigurable mechanism is applied, a body-steered bogie vehicle can
become a perfect steering vehicle when on curves and can become a conventional
bogie vehicle when in other circumstances. Low conicity instability can be
eliminated when the reconfigurable mechanism is used. This class of vehicles
possess the advantages of both conventional bogie vehicles and perfect steering
vehicles, and thus, provide a very valuable solution for the fundamental confiicts
between the stability and steering ability and between ride performance and stability
of railway vehicles. The findings in this thesis have great significance in developing
perfect steering vehicles.
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Notation

half gauge (m)

half wheelset base (m) or acceleration (m/s?)
longitudinal geometric parameter of vehicle (m)
weighted acceleration (m/s?)

acceleration at point A, B, C, D, or E in Fig.5.1 (m/s%)
compatibility matrix

sub-compatibility matrix of leading bogie

roughness parameter of alignment irregularity (incpf)
roughness parameter of cross level irreguiarity (in%cpf)
coefficient matrix of vehicle disturbances

lateral geometric parameters of vehicle (m)

viscous damping or geometric parameter (N-s or N-s/m)
viscous damping matrix

distance between joint A and joint B in Fig.7.1 (m) -
system damping matrix

system elastic matrix

elastic sub-matrix of leading bogie

frt_:quency (Hz)

longitudinal creepage coefficient (N)

lateral creepage coefficient (N)

creepage coeffictent

creepage coefficient

force (N)

force matrix

force vector caused by cant deficiency

creep force vector caused by curvature

elastic force vector caused by curvature

geometric parameters defined by Eq.(3-2) or Eq.(3-5) (m?)
gravity acceleration (m/s2)

creepage damping matrix

vertical geometric parameters of vehicle (m)

height from the floor level to the carbody weight centre (m)

transfer function

conjugate of transfer function H{w)
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inertia of a mass (kg-m?)

wheelset number of vehicle

stiffness (N/m or N-m)

effective stiffness in steering linkages (N/m>)
bending stiffness {(N-m)

shear stiffness (N/m)

primary latera! stiffness (N/m)

primary yaw stiffness (N-m}
primary roll stiffness (N-m)

secondary lateral stiffness (N/m)
secondary yaw stiffness (N-m)

secondary roll stiffness (N-m)

stiffness between steering linkage lever and carbody (N/m)
stiffness between steering linkage lever and outboard wheelset (N/m) .
stiffness between steering linkage Iever and inboard wheelset (N/m)

stiffness between carbody and outboard wheelset (N/m)

. stiffness between carbody and inboard wheelset (N/m)

primary bending stiffness of outboard wheelset (N/m)
primary bending stiffness of inboard wheelset (N/m)
inter wheelset bending stiffness (N/m)

inter wheelset bending stiffness (N/m)

system stiffness matrix

half full length of vehicle (m)

half distance between two pivots (m)

geometric parameters of steering linkage levels (m)
length of transition curve {m)

mass (kg) or number of springs

moment (N-m)

system inertia matrix

number of degrees of freedom or order of Eigen-Equation
normal force (N)

creepage stiffness matrix

coefficients of Eigen-Equation

degeneracy of elastic matrix E

general displacement

relative displacement between reference and local coordinates

relative displacement between the inertia axes of a mass and its local coordinates

Vi
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relative displacement between two g

relative displacement between two g

force vector

nominal rolling radius of a wheelset (m)

rolling radius of the left wheel on a wheelset (m)
rolling radius of the right wheel on a wheelset (m)
radius of a curve (m)

correlation function

power spectrum density

time Iag between wheelsets (s)

force acted on joint B in Fig.7.1 (N)

gravity of a mass (N)

weighted factors of acceleration rms

single side power spectrum density

vehicle forward speed (m/s or km/h)

critical speed (s or km/h)

vehicle maximum speed on curve (km/h)
longitudinal coordinate or displacement (m)
disturbance matrix

lateral coordinate or displacement (m)
end of transition curve (m)

track alignment irregularity (m)

lateral displacement of right side rail (m)
lateral displacement of left side rail (m)
vertical coordinate or displacement (m)
track cross-level irregularity (m)

vertical displacement of right side rail (m)
vertical displacement of left side rail (in)

yaw stiffness ratio Koy fkgy ) or angle of corned pin in Fig.7.8

stiffness ratio (k, ”CP\I’ )

contact angle between rail and wheel
Routh's array

terms in transfer function H(w)

roll direction, rolt angle (rad) or spatial frequency (cpf)

low spatial break frequency (cpf) of alignment irregularity
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Subscript:
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bw

——

L ~ T =

high spatial break frequency (cpf) of alignment irregularity
low spatial break frequency (cpf) of cross level irregularity

high spatial break frequency (cpf} of cross level irregularity
cant deficiency {rad)

conicity or eigenvalue

equivatent conicity

mean ratio of rms

friction coefficient

proportion of rms

pitch direction or pitch angle (rad)

angular velocity of reference coordinates

contact parameter

angular frequency (1/s)

angular velocity of a mass (1/s)

natural frequency (1/s)

minitmum value frequency (1/s)

“angular velocity (1/s} of the inertia axes of a mass -

minimum conicity derived from low speed instability

longitudinal creepage

lateral creepage

spin creepage

yaw direction or yaw angle (rad)

relative yaw angle between leading bogie and carbody

relative yaw angle between outboard wheelset in leading bogie and carbody

carbody

between body and leading bogie
between body and wheelset
effective

inboard

outboard

primary suspension

track

secondary suspension
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bogie

leading bogie
trailing bogie
wheelset
longitudinal
lateral
vertical

roll

pitch

yaw




Chapter 1

INTRODUCTION

1.1 General Definitions

A bogie railway vehicle consists of several mass components such as wheelsets,
bogies and a carbody that are connected by springs and dampers. Each mass
component has six degrees of freedom, and the definitions and directions of the
degrees of freedom are shown in Fig.1.1. If a bogie vehicle is fore-and-aft
symmetric, the system can be decoupled into two sub-systems, one of which is used
to study the dynamics of the vehicle in the vertical plane and the other is used to
studied its dynamics in the lateral plane. The dynamics of railway vehicles in the
vertical plane is mainly used to study the vehicle strength and the dynamic loads on
track as well as ride performance, whilst the dynamics in the Jateral plane is used to -
"~ investigate vehicle behaviour such as stability, ride performance and curving: ‘In this-
research project, only the dynamics of railway bogie vehicles in the lateral plane is
involved, and only three out of six degrees of freedom of each mass component are
included in the dynarmic equations of a fore-and-aft symmetric bogie vehicle in the
lateral plane, which are lateral displacement, yaw angle and roll angle. One degree
of freedom in wheelsets will disappear since wheelsets are assumed not to leave
track, which is the roll angle of wheelset.

v

___0%

mass component

0, \éﬂq} N

7 x (longitudinal)

pitc A
E)yaw Y

Vo (vertical)

y
(lateral)

Figure 1.1 The definitions and directions of degrees of freedom




Chapter { Introduction

Usually, the bogies of railway vehicles can be divided into two axie bogies and three
axle bogies, but only two axle bogies are discussed in this thesis, Commonly, a
raitway bogie vehicle possesses two bogies, and the general configuration of two-
axle bogie vehicle is illustrated in Fig.1.2 where the mass components are connected
by several springs and dampers. If the springs and dampers are considered as
massless, there are seven mass components in a bogie vehicle, these being the four
wheelsets, two bogie frames and carbody. Mass components are assumed as rigid
bodies. The definitions of the springs are illustrated in Fig.1.2 in terms of stiffness
while the dampers are defined in terms of damping and are parallel with the springs
if they are applied. The connection between wheelset and bogie frame is called the
primary suspension and the connection between carbody and bogie frame is called
the secondary suspension, whilst the connection between wheelsets and carbody is
defined as the steering linkage.

N

=

kpo k sy

wheelset -

kpy ;

|~

bogie frame _~ 4
kbwi ? —é ksy

Figure 1.2 The definitions of the stiffnesses

A wheelset has two wheels that are connected firmly (conventional wheelset) or
independently (independent wheelset) by an axle. The diagram in Fig.1.3 shows a
conventional wheelset. lts wheels consist of a coned or profiled tread and a flange.
The radius of the wheel on the contact point between the wheel and rail is called the
rolling radius. When a wheelset moves out of its neutral (static stable) position, the
rolling radii of two wheels of the wheelset are not equal to each other due to the
profiles of these two wheel treads, as seen in Fig.3a, and the equivalent conicity

(simpilified as conicity A) is defined:
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Ay = %—;i | (1-1)

For a coned wheel, as shown in Fig.1.3b, the conicity is the tangent of the contact
angle & between rail and wheel.

The difference in the rolling radii results in different forward speeds in each wheel
and forces the wheelset to have a yaw angle such that the wheelset moves towards
its neutral position. When the wheelset crosses its neutral position, the same action
happens again and the wheelset is forced to move back, and the process goes on and
on, as shown in Fig.1.4. This motion is called the 'kinematic oscillation' of the
wheelset or wheelset 'hunting'.

rolling radius

r ,/—

(a) (b
Figure 1-3 Wheelset (a) and wheel profile (b)

Figure 1-4 kinematic oscillation of wheelset

track surface level out-board rail

in-board rail

\ N7

i

R 4 1
horizontal level

Figure 1.5 Curve definitions




Chapter I Introduction

A railway line consists of several sections: tangent tracks, uniform curves, spiral
transitions (connecting tangent tracks with uniform curves), switches and reverse
curves (two different direction curves connecting together). The positive direction
of a curve is defined as that the circle centre is on the right side of the vehicle when
it moves forward on the curve. The tracks on curves and spiral transitions are
superelevated (or canted) to overcome the centrifugal force, as shown in Fig.1.5.
The force produced by the cant deficiency is the unbalanced force between the
centrifugal force and the component of gravity on the track surface. Thus, the cant
deficiency is defined by:

2

Vo _
= —(,——= 1-2
q)d (q)r g R ( )
There are three kinds of track irregularities: isolated variations, periodic geometry
variations and random geometry variations. Strictly, the track random geometry

variations are not stationary processes. They can however, be reasonably assumed
as the stationary processes since the processes vary much slower than vehicle speed. .

-..Seven isolated variations are listed in the reference{l].. Only two of four random - . ..

geometry variations affect the dynamic behaviour of railway vehicles in the lateral
plane. They are defined as:

cross-level irregularity: Z, = (gg — z.)/2
(1-3)
alignment irregularity: y, = (yg + y. )2

The forces between a rail and a wheel on the contact patch in the horizontal plane
come from the creep between wheel and rail due to the material elasticity. The
creep between rail and wheel is measured by the non-dimenstonal term creepage that
is defined by:

longitudinal creepage:

£ = actual forward velocity - pure rolling forward velocity (1-42)
* forward velocity due to rolling

lateral creepage:

actual lateral velocity - pure rolling lateral velocity
€, = . : (1-4b)
forward velocity due to rolling
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spin creep:

E = angular velocity of upper body - angular velocity of lower body
¥ forward velocity due to rolling

(1-4c)

The forces caused by creep between rails and wheels are called creepage forces,
which govern the dynamic characteristics of wheelset motion. There are several
mathematical approaches to describe the relationships between the creepages and
creepage forces. Carter[2] first set up the mathematical model for the creepage
forces and applied it to railway vehicle system dynamics. The most significant and
accurate solution of the creepage forces was developed by Kalker[3-4]. Strictly,
the creepage forces are nonlinear function of the creepages, however, the linear
theory of Kalker is now widely applied in railway vehicle dynamics because the
creepage force can be considered as a linear function of creepage when creepage is
small, and then:

longztudmal Creepage force:

F, = —fiS, (1-5a)
lateral creepage force:

F, o= —fu8, — fals (1-5b)
spin creep moment:

Mz = fﬂEJy - f‘;ﬂ&sp (I-SC)

The full review of creepage theories is not included here, and the reader is referred
to [1].

1.2 The Fundamental Conflicts in Railway Vehicle Dynamics

When an unconstrained wheelset enters a curve, it tends to align itself. The simplest
case of an unconstrained wheelset moving on curves is that it moves on a uniform
curve without tangent acceleration and with zero cant deficiency. If it is considered
as rigid, the forward speed difference in the two wheels caused by the conicity aligns
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the wheelset to a radial position (in which the wheelset axle is perpendicular to the
tangent direction of curve), and the wheelset will move laterally toward the
outboard rail when the wheelset moves on a curve. The flange clearance (i.e. the
distance between wheel flange and rail side} will become zero and flange contact
(which often results in double point contact) occurs as the lateral displacement of
the wheelset increases. The flange contact results in severe wear of both wheel and
rail and increases the tendency of derailment. The lateral movement of the wheelset
increases as the conicity decreases, and high conicity therefore is useful in reducing
the lateral displacement of the wheelset when it is on curves. On the other hand, the
'kinematic oscillation’ will become unstable as the wheelset forward speed increases.
The critical speed v, is defined as the maximum speed at which a rigid body
(wheelsets, bogies or vehicles) is stable. Wickens{S5] fully demonstrated the
dynamic characteristics of single wheelset, and found that the critical speed of single
wheelset will reduce when its conicity becomes higher. One of the fundamental
conflicts of railway vehicle dynamics is thus the trade-off between the stability and
curve negotiation of railway vehicle with regard to wheelset conicity.

" When wheelsets aré mounted on a railway vehicle, the vehicle suspensions are able =~ ™~ """ 7 77

to constrain the wheelset motions, and the wheelset stability is improved by the
suspensions. The most important parameters in the suspensions constraining
wheelset motions are the primary lateral stiffness &, (mainly constraining wheelset
lateral motion) and the primary yaw stiffness &, (mainly constraining wheelset yaw
motion). The stiffnesses between the outboard wheelset and the inboard wheelset
are defined as the shear stiffness k, and the bending stiffness k, and are schematically
explained in Fig.1.6[6]. Similar definitions can apply to the stiffnesses between the
bogies. If there is no direct connection between the wheelsets, only the primary yaw
stiffness contributes to the wheelset bending stiffness. Similarly, only the secondary
yaw stiffness contributes to the bending stiffness between the bogies (this stiffness is
in fact the rotational stiffness, this thesis uses the term 'bending stiffness' instead of
the term 'rotational stiffness’) if there is no direct connection between the bogies.
Generally, the critical speed of vehicle can be increased when the stiffnesses,
especially the yaw stiffnesses, in the suspensions are high. In the other hand, the
ideal alignment direction for each rigid body of a railway vehicle to take on curves is
its own radial position, and an angle thus exists between the radial positions of each
pair of the rigid bodies when the vehicle is on curves. This angle is a relative yaw
between the pair of rigid bodies and can cause a moment between them, which
forces the pair of rigid bodies to leave their radial positions, if there is a bending

stiffness between them. It is obvious that soft bending stiffness causes less moment
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such that the rigid bodies can take more radial alignment. Vehicle curving therefore
requires soft bending stiffnesses that can reduce the critical speed. This
contradiction between the stability and curving of railway vehicles with regard to
vehicle suspensions represents another fundamental conflict in railway vehicle

KigE
oW X
gy

Figure 1.6, The schematic demonstration for the shear stiffness k&
and bending stiffness k, between wheelsets[6]

The other fundamental conflict in railway vehicle dynamics comes from the trade-off
between vehicle stability and ride performance. Track disturbances are transferred
into vehicle body through its suspensions. Although soft suspensions can reduce the
system responses, they degrade the vehicle stability. These fundamental conflicts

mainly dominate railway vehicle suspension design.
1.3 A Review of Bogie Configuration

The most important part of a railway bogie vehicle is its bogies, and the dynamic

behaviour of vehicles is mainly determined by their bogie configurations. Not only
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do bogies constrain wheelset motions, but they also support carbody and
accommodate traction motors. Although strength is an important factor that needs
to be considered in bogie design, it is not within the scope of this research. A
comprehensive review of bogie configurations related to vehicle performance has
been contributed by Wickens in 1991{8]. This section briefly reviews two main
kinds of bogie configurations (conventional and steerable) in connection with their
dynamic characteristics. The main difference between them is that the stiffnesses
(kpwo & Kiyp) between the wheelsets and carbody, as seen in Fig.1.2, are equal to
zero in a conventional bogie vehicle while they are not equal to zero for a steerable
bogie vehicle.

In conventional bogie vehicles, bogie frames are mounted on wheelsets. There are
springs (and sometimes dampers) between them that provide stiffnesses in vertical,
longitudinal and lateral directions. Bogie frames are usually rigid and the carbody
freely pivots on bogie frames or is connected to the bogie frames by secondary
suspension. The critical speed of this class of vehicle can be made very high by
optimally choosing longitudinal (equivalent to yaw stiffness) and lateral stiffnesses.
“Even for the British Railways B4 bogie[8] developed empirically without either
stability or curving calculation in 1960, its critical speed reached 160km/h with low
conicity. This class of vehicle has been widely used in high speed railways with
various modifications because of the advantage in vehicle stability. However,
conventional vehicles cannot solve the conflict between stability and curving even
for well optimised conventional bogie vehicles. On one hand, it is necessary to have
enough longitudinal (yaw) stiffnesses to stabilise the vehicle; whilst on the other
hand, it is expected to have soft bending stiffness to achieve good curving. The
main task for vehicle designers is to look for an equilibrium point between these two
requirements under specified circumstances.

In order to improve the alignment ability, wheelset inter-connection bogie vehicles
and steerable vehicles have been proposed and applied. There is a mechanism to
assist wheelsets taking up radial alignment in steerable vehicles, and body-steered
bogie vehicles and active-steering bogie vehicles are two basic forms of steerable
vehicles. In a wheelset inter-connection bogie vehicle, the outboard wheelsets is
directly connected to the inboard wheelset by springs or radial arms. The
connection between wheelsets usvally adds two additional stiffnesses between
wheelsets (the shear stiffness k., and the bending stiffness k,,,,,). There are four
parameters that can be optimised such that the overall lateral stiffness of wheelset
can be increased beyond the limit for conventional bogies, and the overall yaw
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stiffness of wheelset can be reduced. This brings two benefits: firstly, the reduction
of overall bending stiffness improves curving and, secondly, under certain
conditions dynamic stability is improved as the destabilizing effect of the coupling
of inertia of the frame through the longitudinal stiffness is ameliorated'[8]. Cross-
bracing proposed by Scheffel[9], shown in Fig.1.7, is the most popular form of this
class of wvehicle. Scales[10] and List[11] designed separately two other
configurations. These classes of vehicle were named as ‘radial bogie vehicles' and
‘self-steering vehicles'. These terms are however, not accurate terms with regard to
the curving features of this class of vehicle because their wheelsets cannot take
radial alignment neither can they steer themselves. The real mechanism is that they
use wheelset inter-connection to increase the wheelset lateral stiffness and to reduce

the yaw stiffness between the wheelsets and bogie frames.

Body-steered bogie vehicles have a linkage between wheelsets and carbody, which .
has three effects in vehicle dynamic behaviour. Firstly, the relative displacements
between the carbody and wheelsets produce a moment in the linkage to force the
wheelsets to align more radially when the vehicle moves on curves and, secondly, .
the linkage can be considered as another suspension for the vehicle so that the

. __ system stability.is affected by. the linkage and, finally, the track disturbances can
transfer into the carbody through the linkage so that the vehicle ride quality is also
affected. The first two effects have been noted and comprehensively investigated
[12-20], but the last one has not been well studied.

== -4—*vr-;'1 ,c__\?—xl:

==

AXLE BOx ADAPTER

CENTER vOT

' __ s7ArS
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—_CROSS ANCHORS

N
e ——

Figure 1.7 Scheffel radial bogie[9]

The application of linkage between wheelsets and carbody can be dated back to the
last century[8], however, significant engineering progress was developed by Liechty
[21-22] in 1930's. In 1974, Schwanck[23] published the results of a body-steered
bogie vehicle experimented in DB, and reported that its basic advantages were in
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reducing wheel and rail wear, reducing traction resistance in curves and increasing
safety against derailment. The theoretical research and engineering development of
body-steered bogie vehicles became active in the 1980's. The most significant
theoretical research was independently contributed by Bell and Hedrick [12] and by
Smith, Anderson and Fortin[13-16,19-20], which will be reviewed in the following
paragraphs. Several other cases were reported individually: Weeks [17] reported
the development of a cross-bracing type of body-steered bogie vehicle that was
intended for use in the Central line of the London Underground system; Shen{18]
investigated the improvement of dynamic behaviour of a three-piece bogie vehicle
with a linkage between its wheelsets and carbody, and demonstrated the benefits in
curving, stability and dynamic response, which promotes opportunities to extend the
application for three-piece bogie.
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Figure 1.8 Bell & Hedrick's Model[12]

Actually, the steering mechanism of a body-steered bogie makes use of the relative
orientation between carbody and bogie or between carbody and wheelsets, which
develops when the vehicle moves on curves. Bell and Hedrick[12] studied the
curving and stability of forced-steering bogie vehicles, as shown in Fig.1.8, and
suggested that 'the steady state yaw angle that develops between the carbody and
the truck can be used as an indication of curve radius being traversed, and linkage
between the carbody and the wheelsets can be used to force the wheelsets into a
more radial alignment. Likewise the lateral displacement that occurs between the
carbody and truck can be used as an indication of cant deficiency, and linkages
can be designed to produce forces on the wheelsets as a function of the cant
deficiency'[12]. On the basis of their findings, they defined the fundamental
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difference between a forced-steering bogie and both the conventional and self-
steering bogies as the presence of forces on the wheelsets of the forced-steering
bogie being a function of the relative yaw and lateral displacement between the
carbody and bogie.

Smith and Anderson[18] investigated the dynamic behaviour of a guided steering
bogie, as shown in Fig.1.9, and their results led to the invention of the UTDC
Floating Frame bogic{20]. The elementary distinctions of the model in Fig.1.9 from
the mode! in Fig.1.8 are that: firstly, the wheelsets are pivoted on the bogie frame
and, secondly, each wheelset is separately connected to the carbody. They reported
that 'the only valid technique for positively steering the axles of two axle trucks is
through an input from the yaw of the truck relative to the carbody'[17].
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Figure 1.9 Smith & Anderson's Model[19]
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The linkage between the wheelsets and the carbody increases the system coupling
and therefore introduces new modes of instability. The most interesting mode of
instabilities in a body-steered bogie vehicle is low conicity instability, as seen in
Fig.1.10. Several papers[12,15,19] were published and analysed the mechanism of
low conicity instability. Bell and Hedrick[12] gave a simple physical explanation
that the longitudinal creepage reduces as conicity decreases so that there is not
sufficient longitudinal creepage force to balance the force produced by the steering
mechanism, thus the system become divergently unstable. This standpoint was also
supported by the results of Anderson and Fortin[15].
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Compared with both conventional and wheelset inter-connection bogie vehicles, the
basic advantage of body-steered bogie vehicles is that the steering ability of body-
steered bogie vehicles is greatly improved, which can reduce the conflict between
vehicle stability and curving. Most of the researches in this field have thus led to
successful practical implementation. The main drawback of body-steered bogies is
however, the low conicity instability as has been identified by most of the

researchers in this field.
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Figure 1.10 Stability against conicity of body-steered bogie vehicle{20]

It seems that most of the researchers in body-steered bogies have concentrated their
efforts on exploring the advantages of body-steered bogies in stability and curving
and on revealing the mechanism of steering and instabilitics. Several other aspects
of dynamic behaviour seem to have been investigated only in a limited manner. The
effect of the linkage between wheelsets and carbody on ride performance, the
influence of secondary suspension on stability, the effect of the bending stiffness
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between two bogies on curving and the mechanisms of oscillatory unstable modes in
low conicity are examples of this under researched work.

The concept of perfect steering was first proposed by Wickens[24] as without
generating creep between wheelset and rail on a uniform curve with zero cant
deficiency. First of all, he investigated the stability of asymmetric two-axle vehicle
possessing perfect steering[25], and then studied stability of a multi-axle vehicle
possessing perfect steering[26]. Recently, Wickens[27] has identified the necessary
conditions of perfect steering and stability for railway bogie vehicles, and
theoretically demonstrated that it is possible for a railway bogie vehicle with four
wheelsets to achieve perfect steering and to have a non-zero critical speed. He
schematically demonstrated several possible configurations for perfect steering
bogies and investigated the stability of one of these configurations[28]. His work in
this area provides a greater innovative freedom for both researchers and designers to
utilise. A perfect steering bogie vehicle has a similar steering linkage between the
wheelsets and carbody with other body-steered bogie vehicles. The fundamental
difference between a perfect steering bogie and other body-steered bogies is that all -

~ bending stiffnesses (k,'s) in the suspensions of a perfect steering vehicle are zero, -

and the stiffnesses in the steering linkages of a perfect steering vehicle do not
contribute any bending stiffnesses. The wheelsets in a perfect steering bogie vehicle
can therefore freely take their radial positions on a uniform curve with zero cant
deficiency. It is important to understand that "perfect steering" is a useful
abstraction, for there are many small effects which are present in reality but which
can be ignored for practical design purposes.

The dynamic characteristics of perfect steering bogie vehicles have not been studied
well although the feasibility of this class of vehicle has been theoretically proved by
Wickens[27]. The following aspects of the dynamic behaviour of perfect steering
bogie vehicles should therefore be carefully investigated before any practical
implementation occurs.

1. The conditions of perfect steering with regard to track are a uniform
curve and zero cant deficiency. The curvature of a uniform curve is a constant, but
the curvatures are not a constant along a spiral transition that connect a straight line
to a uniform curve. Moreover, most of uniform curves have cant deficiency. The
capability of negotiating a spiral transition curve and the ability versus cant
deficiency for each configuration of perfect steering bogie vehicle must be
considered.

13
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2. The linkage between wheelsets and carbody and zero yaw stiffness in
primary and secondary suspension affects vehicle stability. The stability analysis has
two objectives: firstly, to reveal the mechanism of instability and, secondly, to find
an acceptable approach to stabilise the system. Some analyses for the stability have
been contributed by Wickens[27], however, the optimisation of the suspensions and
steering linkages of perfect steering bogie vehicles with regard to their stability is
one of the subjects that need to be investigated further.

3. Track disturbances can be transferred into the carbody by the steering
linkage in a perfect steering bogie vehicle, which means that the linkage has a
negative effect on the ride performance. This area, as yet, has not been studied well
even for other kinds of body-steered bogie vehicles.

4. Since there are many possible configurations for perfect steering bogies,
the research in optimising the configurations for perfect steering bogies is very
desirable. '

1.4 Controlled Suspension Systems in Railway Vehicles

All components in the vehicle suspensions reviewed in the last section are passive.
‘A very fundamental limitation of passive elements is that its static deflection varies
as the inverse square of frequency: this limits the lower natural frequency to
approximately 1 Hz with a corresponding static deflection of order of 250 mm and
causes large dynamic deflections when external loads of the same frequency are
applied'[29]. The conflict between ride quality and rattle space is enhanced by this
limitation. There are other two principal limitations of passive systems[30], firstly,
passive systems by definition do not require any external power source, and
therefore can only store (e.g. springs) or dissipate (e.g. dampers) energy and,
secondly, passive systems are restricted to generating forces in response to local
relative motion. As the railway vehicle speed increases, the passive only suspension
systems face more challenge. It seems that passive systems reach their limitations
and hardly satisfy all requirements in some circumstances even though nonlinear
components (often air springs) are used.

Controlled suspensions to isolate body from disturbance were first conceived by
Panzer[31] in 1960's, however, their application in vehicles did not appear until the

14
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1970's when the cost of electronic components, especially 'Microchips’, became
acceptable for non-military engineering. The definition of 'controlled suspension’
here is any suspension that has mechatronic components to control the suspension
output, and usually, a controlled suspension unit consists of actuators, a
measurement and sensor unit and a controller. Controlled suspensions are classified
as active, semi-active, semi-passive and adaptive suspensions. Active suspension
system can continuously supply and modulate the flow of energy while semi-active
suspensions can only continually modulate the flow of energy. Semi-passive
systems switch between passive and active states, this concept being used to
minimise transient responses due to sudden changes. The forces generated in an
adaptive system are modulated by a mechanical device and are independent of local
variables, for example, the passive sequential hydraulic damper([32] and the vibrator-
controlled adaptive damper[33]. Physically, adaptive systems are passive systems.
Several control strategies (PID controller[34], LQR controller[35-36], LQG
controller [37] and VSS controller[38]) have been applied to controlled
suspensions. Preview control was first suggested by Bender[39] and was further
developed by several researchers[40-41]., Neural network control[42] has also -

recently been used in controlled suspensions. -

Of all controlled suspension systems, the active suspension form is the most
powerful systems with regard to improving the dynamic behaviour of railway
vehicles. Their potential advantages cited in[29] are derived from two basic
features[30]. Active suspensions can continually supply and modulate the flow of
energy and thus, forces can be generated which do not depend upon energy
previously stored by the suspension and, an active system may generate forces that
are functions of many variables, some of which may be remotely measured. The
former feature of active suspension is not available in a semi-active system because
there is no device that can store and release energy without any loss, while the latter
can be achieved in semi-active suspensions only when the whole system is in

dissipative state.

Some of the disadvantages of controlled suspensions are their complexity, difficult
installation, maintenance costs and their robustness and reliability. The applications
of controlled suspensions may depend on the balance between the economic factors

and the requirements for vehicle dynamic performance.

A very fundamental feature of controlled suspensions is that the components of the

(springs and dampers) suspension are the objects to be controlled. This is what
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distinguishes between a controlled suspension and a reconfigurable mechanism that
will be discussed in Chapter 7.

The applications and developments of controlled suspensions in road vehicles are
not discussed in this thesis. The reader who is interested in this area is referred
to[43]. Before the 1990's, the applications of controlled suspensions to railway
vehicles were concentrated on developing active systems in secondary suspension
[44-52] and tilting systems[53-58] to improve vehicle ride performance. Three
papers[29-30,46] have been published which review the developments of controlled
suspensions in that period. Recently, Goodall[59] published another paper
reviewing the recent development in active suspensions for railway vehicles. This
section gives a brief review only.

In the 1970's, the feasibility of active suspension was studied widely and .
experimented in several countries. Very valuable work was carried out in the |
British Railway Technical Centre[49-51]. They theoretically and experimentally
invéstigatcd various actuator configurations with regard to their cost, performance,
reliability and maintenance, as shown in Table 1{46].

Figure 1.11 Actively-guided bogie[60]

In recent years, the strategies of controlled suspensions have been developed in
applying controlled systems to improve vehicle curving performance. In 1992,
Wickens and Goodall[60] proposed the strategy of the actively-guided bogie, as
shown in Fig.1.11, which is one kind of active-steering bogie vehicles. The principal
feature of an actively-guided bogie is that wheelsets are steered in response to a
control system. The deviation of the vehicle from a track reference line, or the
relative yaw angles among the rigid bodies are used as feedback signals. The

actively-guided system however, only needs to work when the vehicle negotiates a
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curve. The concept seems as if a robot is planted into the wheelsets to steer them
through curves, and the conflict between stability and curving is therefore well
decoupled. The feasibility of practical implementation is discussed in[60]. Steering
action, tracking error and control system accuracy, however, affect the dynamic
performance,  Further investigation in the area has being carried out at
Loughborough University of Technology[61].

Suda{62] investigated the stability and curving of longitudinally asymmetric bogies
with semi-active strategy. A new bogie was built up based on his research results.
His research can be divided into two phases: firstly, he investigated the dynamic
behaviour of asymmetric bogies having an independent trailing wheelset and,
secondly, he developed a semi-active system. The bogie, as shown in Fig.1.12, 15 a
very complex implementation. Firstly, the wheelset needs to be switched from a
conventional wheelset into an independent wheelset when it is on the trailing
position, whilst the wheelset is changed back to a conventional wheelset when it is
on the leading position. Secondly, the dampers are switched on to provide a hard
longitudinal stiffness for the trailing wheelset and a soft longitudinal stiffness for the
leading wheelset. This control strategy is more like the reconfigurable mechanism
(which will be defined and discussed in Chapter 7) because the bogie works like two
different passive systems according to its moving direction.
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Figure 1.12 Suda's bogie[62]

Allen[63] reported the active bumpstop hold-off device developed by ABB
Transportation Ltd UK and applied it to the BR MK III coach with BT10 bogie.
The purpose of the device is to solve the conflict between ride quality and curving,.
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Soft suspensions lead a good ride quality in straight track, but cause a large lateral
movement of the carbody on curves which results in the carbody contacting the
lateral bumpstops at high speed. Only the primary suspension plays a role in
isolating track disturbance when the carbody contacts the bumpstops, and the ride
quality is therefore reduces. With the active bumpstop hold-off device, the most
significant improvement in vehicle performance is that the ride quality can be much
improved upon when the vehicle is subjected to large track irregularities at high cant
deficiency. Allen also claimed that the device can be applied to most passenger

vehicles, however, he did not give specific data related to the device.

Table 1 The active suspension systems of railway vehicles[46]

Eoad

e Control
Carrying LZlement
Element -

Advantages

Disadvantapges

L. Airspring with poeuntic
levelling vislve (low rate
tnlegrator contrel)

Simple and well developed
Ride independent ol load

Passive response only
Diflicult to modify transfer
lunction bulky

2. Airspring with poewmatic
servo-valve Chigh rate
integrator controt)

Easily udded to existing
suspensions

Relatively simple

Til possible

Liarge air consumption {except
for tilt alone)

Suitable servo-valve no
availuble

3. Airspring with displace-
ment air pump

Cun be added to existing
suspension

Low energy consumption
Tih possible

Moderately complicated
Butky lor tilting

Pneumatic
actuator

4. Airspring

Can be added 1o existing
suspensions
Tilt possible

Moderately high air
consumption
Moderately complicated

5. Clectromagnet

High bandwidth
Easy to control
Mechanically simple & rugged

High power consumption
Limited displacement (no tikt)

Eleetro-
magnet

6. Meochanics)
Spring

Uigh bandwidih
Eusy o control
Mechanically simple & rugged

Moderalely higin power
consumption .
Limited displacement (ho tilt)

1. Airspring  Electro-
nagnet

High bandwidth, cusy to
control

Mechanically simple & rugged
Acceptable power consump-
tion

Limited displacement (no ult)

8. Servo-hydraulic jack

High bundwidth
Easy to control.
Tilt possible

Fairly expensive
High maintenance
Bulky powcr puck

9. Mcchanical  Servo-
orgirspring hydraulic
jack

High bandwidth
Lasy to controt
Tily pussible

Fairly expensive
High maintenanice

10 Lileetro-mechaical
actinior (clectric motor &
batl serew)

High bandwidth
LEasy wo comrol
Tl possible

Mechanically bukky
hMuderutely high
matintenance

T Mechanical  Lleetro-
orabespring mevhinical
agiunior

High bandwidti
Lasy e control
Tity possible

Mulerately high
nuuntcnanee
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1.5 Research into Railway Vehicle Dynamics

It has been demonstrated that a railway bogie vehicle is a multi-body system with
nonlinear factors (creepages, nonlinear components) and stochastic disturbances,
and the elements in the suspensions can be passive, active, semi-active or a
combination of them. Railway vehicles are, therefore, one of most complex systems
in engineering. Even though it is impossible to analyse the dynamic behaviour of
this system comprehensively and precisely without computer technology, some
theoretical work explaining some physical phenomena had been done before the
computer became the obvious answer. Carter[2] first set up a creepage model for
the contact between wheel and rail, and also applied stability theorems to railway
vehicle dynamics. Combined with his creepage theory, he theoretically identified the
instability of a locomotive in the lateral plane[64]. In the 1950's, the newly formed
Office Research and Experiments (ORE) of the International Union of Railways
held a competition for the best analysis of the stability of a two-axle railway vehicle.
The three prize winning papers (de Possel, Boutefoy and Matsudaira) in fact all -
gave linearized analyses. In his paper, Matsudaira first introduced into the
mathematical model both longitudinal and lateral suspension flexibilities between
wheelset and bogie frame and his results indicated their potential importance.

The most important part of railway vehicle dynamics is the wheelset dynamics.
Wickens[5] fully investigated the dynamics of a single wheelset. A more accurate
solution to the motion of a single wheelset was given by de Pater[65]. In order to
study the contact problems between rails and wheels, Yang[66] made some
contribution based on a nonlinear solution for wheelset motion.

The hunting instability is the major instability mode for railway bogie vehicles. In
the 60's and 70's, a comprehensive investigation on the hunting instability of railway
bogie vehicles was carried out by Matsudaira[67], British Railway[68-70] and
Association of American Railroads[71-74] independently.

To simplify the complication, several models have been proposed to investigate the
curving performance of railway vehicles[1]:

i) Steady State[75-77] ---- Curving is assumed to continue indefinitely at a

constant radius curve with constant speed where all components of a
vehicle traverse perfect circular paths;
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i) Quasi-Steady (kinematic}{78] ---- A general curve is negotiated, but,
acceleration is ignored. The response of a vehicle is determined at
discrete locations along the curved track by applying the kinematic
constraints;

ili) Dynamic State[79] ---- The complete equations of motion for the vehicle
system are developed to account for arbitrary track curvature, speed and
track input.

The first models are usually used to investigate the capability of a railway vehicle
when negotiating curves while the last model is mainly applied to predict the
dynamic responses when a vehicle moves on a curve.

The effects of track irregularities on the vehicle dynamic responses were
theoretically and experimentally studied in the 70's[80-83]. The theory of railway
vehicle dynamics has been summarised by Wickens and Gilchrist[84] and the

. dynamic equations have been documented by ORE[85]. Wickens has been studying

the solution for the conflict between vehicle lateral stability and steering ability since
the 70's[86-87]. Hedrick et al[88-89] extensively studied the performance limits of
railway bogie vehicles,

"The objective of research in this field has been twofold: firstly, the development of
sufficiently detailed and validated mathematical models that permit the simulation
of actual motion on a specified stretch of track so that the performance of a
specific design can be analysed, or a particular incident recreated (thus, by
simulation the overall performance of a vehicle can be checked) and, secondly,

 analytical studied in which the description of the mechanism of various phenomena

by the simplest model possible can be used to explore new suspension and vehicle
design concepts and to develop a basis for understanding and physical insight.
Ideally, though this is still largely in the future, the subject of vehicle dynamics
should not only deal with analysis but also methods of synthesis in which the
various possibilities for design are exposed." by Wickens[8]

Computer simulation has been playing an important role in the research of rail
vehicle dynamics since the 1970's. The purpose of computer simulation is twofold:
firstly, to explore the mechanism of various physical phenomena relating to new
vehicle configuration and, secondly, to predict or analyse the dynamic behaviour of
a specific vehicle in a specific environment. The former is best suited to a simple
model in order to reveal fundamental physical features, whereas the latter considers
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detail that results in very complex computer models. Various software packages
investigating the dynamic behaviour of railway vehicles have been developed since
the 70's, for example, VAMPIRE[90] and MEDYNA[91]. VAMPIRE is one of the
most successful computer software packages in railway vehicle dynamics, and has
been developed by British Railway Research since the 1960's. Garg and
Dukkipatifl] published a book that systematically introduced the dynamics of
railway vehicles in 1984. Dukkipati[92] later published another book summarising
the techniques and the considerations in computer simulation. The application of

software packages is often restricted by their complex and cost.

1.6 The Objectives of This Research

It has been shown that the railway vehicle system is very complex. It is impossible
to simulate the system completely and precisely even with the most complex
computer simulation models. Simplifications are necessary and mainly depend on
the research objectives.

The objectives of this research project can be divided into parts:

1. to investigate further the dynamic behaviour of perfect steering bogie
vehicles and to explore their advantages as well as to expose their weaknesses and;

2. to study the improvement of the dynamic performance of perfect steering
bogie vehicles by applying the reconfigurable mechanism.

Several configurations of perfect steering bogie vehicles will be investigated. The
research interests here are to expose various phenomena in the dynamic behaviour
of these perfect steering bogie vehicles and to reveal the physical mechanism behind
the phenomena. The results will have general and important significance to guide
railway vehicle engineers in their practice. Without doubt, perfect steering bogies
have their disadvantages, and several strategies can be employed to overcome, or at
least to improve, these weaknesses. One of the strategies is the reconfigurable
mechanism which will be presented in the thesis. Its feasibility and advantages will
also be discussed and the improvement in the dynamic behaviour of perfect steering
vehicles by applying reconfigurable mechanism will be presented.
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To simplify the system complexity, several assumptions with the coincidence of the
research objectives are made in the simulation models: firstly, it is assumed that all
mass components are rigid bodies and, secondly, all springs and dampers are
considered as massless and linear and, thirdly, the effects of flange contact are not
taken into account and, finally, Kalker's linear creepage theory is used for
calculating creepage forces. The whole vehicle system is therefore linearised, and
the advantages of linear models are that the system complexity can be simplified so
that the physical phenomena in the dynamic performance of perfect steering vehicles
can be revealed. Tt can also be used to evaluate the dynamic behaviour of systems.

Chapter 2 will deal with the fundamental equations of railway vehicle dynamics.
The dynamic behaviour of perfect steering bogie vehicles will be discussed in
Chapter 3 (steering ability), Chapter 4 (stability) and Chapter 5 (ride performance).
Chapter 6 will summarise the advantages and disadvantages of perfect steering
bogie vehicles. The features and feasibility of the reconfigurable mechanism will be
presented in Chapter 7, and the improvements in the dynamic behaviour will also be
included in this chapter when the reconfigurable mechanism is applied to the perfect .
steering bogie vehicles. The last chapter will conclude the achievements and
findings, and will illustrate the applications of the research results.
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Chapter 2

DYNAMIC EQUATIONS

This chapter will deal with the essential dynamic equations of railway vehicles.
Some of the processes used to derive the equations are exciuded because they are
well documented in several references[1,5,84-85], however, it should be noted that
every equation presented in this chapter has been deduced by the author
independently.

2.1 Coordinate Systems And Accelerations

Three basic coordinate systems are used to defined the motions of a rigid body in
railway vehicle dynamics, and all three coordinate systems will move with the
vehicle. The coordinate system (oxyz), is the reference while the system (oxyz), is
the local coordinate system and is on the track nominal centre but takes the radial
direction of a rigid body, and the reference (oxyz), is equal to the local {oxyz), if
only one mass moves along a track. These two systems are illustrated in Fig.2.1.
The other coordinate system is the inertia axes of the rigid body, which is not
illustrated in Fig.2.1. In this thesis, the reference (oxyz), is chosen to be at the
centre of gravity of carbody in its radial position. The transform relation between
two coordinate systems is defined by Eq.(2-1) if R = 0 and 6, ¢ and y are small.

i 1 -y -0 Z l—_ 1 vy 9 {

J = (v L -opJ J =|-v 1 ¢)J

k 0 ¢ L)\ & k -0 -0 1)k
(oxyz)y (oxyz}o (oxyz)p (exyz),

(2-1)
The inertial acceleration of a rigid body is defined by the expression:

G, = 4 + OxR + Ox(®xR) + 20xR, + R, @2

r

where, O is the angular velocity of the reference coordinate (oxyz),.

The angular accelerations of a mass can be found by applying the Euler
Equation[93]:
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(2-3)

I
INg
=

where, £ is the angular velocity of the weight centre of a rigid body and,

® is the angular velocity of the rigid body.

track central line

Figure. 2.1 Coordinate Systems

For a wheelset moving along a straight railway line, (oxyz), = (0xyz), they can be
considered as the absolute reference if its forward speed v, is a constant. If the

coordinate system (oxyz),, represents the inertia axes of the wheelset, the terms in
Eq.(2-2) and Eq.(2-3) for the wheelset become:

a = 0
R, = xi, + y, +
® =0 2-4)
Q = ¢,i, + Yk,
& = b0, - 2], + U,k
r

For a wheelset moving along a curve, (oxyz), = (0xyz),, they possess the angular

velocity v/R and the centripetal acceleration v 2/R even when v, = constant. If the

coordinate system (oxyz),, still represents the inertia axes of the wheelset, the terms
in Eq.(2-2) and Eq.(2-3) for the wheelset are:
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Figure 2.2 curve coordinate

When a railway vehicle is on a straight line, the radial directions of all rigid bodies
are identical, and only difference between the two local coordinate systems is in x
direction and is a constant, and therefore any of local coordinate systems can be
considered as the reference (oxyz), which is the absolute reference if the vehicle
forward speed v_ is a constant. When a vehicle is on a curve, there is a relative yaw
angle between the radial positions of two rigid bodies since the track central line
changes its direction on the curve, which results in a yaw angle and a lateral shift
between the two local coordinate systems, ie. (oxyz), # (oxyz), as shown in
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Fig.2.2. g is defined as the general displacement of a local (oxyz), in the reference
(oxyz), and the general relative displacement between two g's is defined as Ag, i.e.
Aq =g, - g while g is defined as the general displacement of the inertia axes of a
rigid body in its local {oxyz), and the general relative displacement between two ¢'s
is defined by 8¢, i.e. 8¢ = G, - §;.

2.2 Track Definitions

A transition curve that is an example of a spiral in mathematical terms is used to
connect a straight line and a uniform curve. Several spirals can be used for the
purpose, and one example is the Clothoid spiral. A cubic parabola is used as a close
approximation to the Clothoid spiral in BR[94] because of the difficulties in
measuring and re-setting Clothoid spiral. In the thesis, a cubic parabola, as shown
in Fig.2.3, is used as the transition curve and is defined by:

y = —hy (2-6)

The length of the cubic parabola is calculated by[94]:

3
L= 3Zm§xR @D
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Figure 2.3 cubic parabola transition and circle.
We have L = 100m and y; = 5.7m when V_, = 100 km/h and R = 305m. The

tangent angle of the cubic parabola is the radial position of the rigid bodies and is
the negative derivative of Eq.(2-6), i.e.
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__EX _ 3

¥, = Fo —er (2-8)

The curvature of the cubic parabola is defined by:

_1_ 6y, X
R L (1+9y x* 15"

(2-9)

2.3 Dynamic Equations Of Unconstrained Wheelset[5,65-66]

The diagram in Fig.2.4 shows the forces acting on an unconstrained wheelset when
it moves on a curve. Applying the Newton's second law and the Euler Equation, the
dynamic equations of the wheelset are:

mea, = F,+Fp and le®: — InQyox+ Iy = > M: (2-10)

wty
}*

yR
Figure 2.4 The force diagram of a wheelset

Applying Eq.(2-5) to Eq.(2-2) and Eq.(2-3), we have:

2

vy .
a, = yw+—R*+fn<I>r

and

T = InQydx + IyQutdy = IM[%(KR”—)H';}W]-M”_"@, +0,) (2-11)
¥

0
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if neglecting the small high order components. Since ¢, = — 6y /a, where ¢ << 1,

the above equation can be simplified as follows:

Tz — LnQyx + TyQutyy = Iwz[i(v—ﬂ) + fl']w ]1- [w}.})_o.@r
‘ dt R r

For an unconstrained wheelset, the forces acting in the horizontal plane are due to
creepages. Referring to Equs.(2-1)--(2-5), the creepage forces without considering

track irregularities are obtained from:

2 .
F;'L + Fp =—( I Yo —2faV,,)
1]
2 2
ZMZ = _(Zao-fll \i;w + 2a0f.112' yw + 2C“"Of;l ) (2'123)
v, : A R

if Kalker's linear theory Eq.(1-5) is applied. If there are alignment and cross-level
irregularities on track, the creepage forces for a straight line can be found as:

2f, . ‘
Fy +Fp= -(-——gﬁyw -2fo¥,)
o

. 2
3 M, = ...(_2“: TR LNV TN, ﬁ,?u—z%) (2-12b)

0 Iy Ty )

since ry - 1y =2A(y, - ¥, - rg0,) from Eq.(1-1).

Thus, the dynamic equations of an unconstrained wheelset can be simplified as:

2fy

mwj;w + ).’w - zfnww = _Ww¢d - mro(];r
V]
.. 2aif, . 2a,f, M 2aif, v, - Ve .
I + Z7os + Z001 e, - _ ZToJin + _.LRI + _GI

(2-13a)
if the track irregularities are not taken into account. For straight track without track
irregularities, they become:

2 .
Jn Yo — 2fp¥, = 0
0

2
2a; 1 W, + 2aofnl'e y

W w
¥y K

mwj}w +

L.y, + = 0 (2-13b)
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For straight lines with the track alignment and cross-level irregularities, they

become:
mwj;w + 2f22 )-’w - ZfZZWw = 0
Vo
2
. . 2
Iwzww + 2a0fil Ww + 2a0fille yw = aOf;lle ya + 2ali)fll’"e 2zr: (2'130)

Vo ) 4 a,

For the steady state, Eq.(2-13a) becomes:

2
2fpv, = W0, 2apfude Yo = L TRRPY
r R
. dq _dgdx dq ,
Since —~ =2 —=v, —=v.q°, Eq.(2-13a) becomes:
o g ? Ba- 13
2 ,
L2y~ 2pw, = W,
0
2ag.fll ‘I’:‘; + 2a0fllle yw = - Q’ag.fll (2_15)
Vo r R

when v, = 0. This state is called the kinematic state.

In steady state, the lateral displacement of an unconstrained wheelset can be
obtained from Eq.(2-14), which is:

61010 o)

€

This is the distance between the track central line and the wheelset pure rolling lire,
and is inversely proportional to both the wheelset equivalent conicity and the curve
radius. If the limitation y of flange contact is Smm, 7mm or 10mm respectively, the
minimum radii Rmin to let an unconstrained wheelset move on its pure rolling line are
listed Table 2-1 versus wheelset conicities. The yaw angle of wheelset related to its
radial position is called the attack angle, which will be zero when the wheelset rolls
on the pure rolling line if the cant deficiency is zero, as shown in Eq.(2-14).
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Table 2-1 Minimum radius (m) to possess the pure rolling line

A 025 05 [ 075 1 A25 [ .15 2 3

Rminwhen y=5mm | 2592 ) 1296 | 864 | 648 | 518 | 432 | 324 | 216

Rmin when y =7 mm 1851 | 926 | 617 | 463 | 370 | 309 | 231 | 154

Rminwhen y=10mm | 1296 | 648 | 432 | 324 | 259 | 216 | 162 | 108

24 Dynamic Equations of a Railway Bogie Vehicle

Applying the assumptions listed in section 1.6, the dynamic equations of a railway
vehicle with n degrees of freedom, m stiffnesses and m viscous dampings can be
found as:

M§ + (G+C)j + (N+E)q = Q (2-17)

where, M is the inertial matrix and is diagonal,
G is the creepage damping matrix,
N is the creepage stiffness matrix, _
C is the viscous damping matrix of the vehicle dampers,
E is the system elastic matrix,
Q is the force vector.

G and N can be found easily based on the dynamic equations Eq.(2-13) of an
unconstrained wheelset. Applying the compatibility matrix method suggested by
Wickens[27], the elastic matrix E and the viscous damping matrix C can be
expressed as:

E = a"[k]a C = a'[c]a (2-18)

where, a is called the m X n compatibility matrix, in which the column represents the
deformations of each spring k; caused by an unit displacement of g; (i.e.
deformation vector & = aq); [k] and [c] are m X m diagonal matrixes and k;; (or ¢;;)
is the stiffness (or the damping) corresponding to the strains (or the strain rates)
represented by the {'th row of a.

Without considering track irregularities, the dynamic equation Eq.(2-18) becomes:

For steady state: (N+E)q = F_,, +F,, +F (2-19)

cant creep
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For kinematic state: Gy + (N+E)q = F,, +F_, +F (2-20)

where, F_,, 1s the force vector caused by cant deficiency,
Feep 18 the extra creepage force vector due to curve,

Iy is the extra elastic force vector in the suspensions due to curve,

F,. and F_,. can also be found from the dynamic equations Eq.(2-13) of an

cant creep
unconstrained wheelset. Since {G;} represents the vector of the displacements

between the local coordinates and the reference, and referring to Fig.2.5, the force
produced by stiffness k; due to {7} is:

F, = —a"[k]a{g} (2-21)

It can be proved that:
a'lkla = k{a,) {a,) (2-22)

if [%;] is diagonal, and thus the elastic forces in the system caused by curvature are:
F, = - ) kia,)"{a,}{7@) (2-23)

i=l

track central line

_______ N B
—h-""‘~..._,_ .q.{aw

carbody weight centre T

o _

Y

Figure 2.5 Geometric layout of vehicle rigid bodies on curves
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Eq.(2-19) is a linear equation and can be solved easily while Eq.(2-20) is a
differential equation and will be solved with numerical integration techniques. Since
two important factors, those being curvature and system elasticity, are both included
in Eq.(2-20), the solutions of the equations can explore the relationship between the
suspension elasticity and curvature, and the results can therefore be used to evaluate
the effects of the system elasticity on the vehicle's capability of negotiating curves
when curvature varies.

Since only the elements, which are associated with wheelset displacements in the
vector {q'}, exist in Eq.(2-20), this equation is split into two sub-equations:

G{q’}[l;zn + (N+E)[];2j,l:n]{q}[l:n1 = (Fn +Fcreep +FE)|E:21'] (2-24)
(Nt E)o it @i = Fan + Foep + Fedpjerm

where, j is the number of wheelsets.

2.5 Perfect Steering Conditions

Perfect steering occurs when a curve can be negotiated without creep. All
wheelsets must take up a radial position and move outwards to the pure rolling line,
which without any elastic restraint would generate creep forces. It follows that
there must be a further degeneracy in the elastic stiffness matrix corresponding to
this bending mode. Wickens[27] proved that the necessary condition for a railway
vehicle to possess the capability of perfect steering with non-zero critical speed is:

3<P<j (2-25)

where, P is the degeneracy of the elastic matrix E and j is the number of wheelsets.
The first '<' in Eq.(2-25) is the necessary condition for a railway bogie vehicle
capable of perfect steering. The physical explanation for this is that firstly, the
whole vehicle can move laterally and can yaw as one rigid body without causing any
elastic deformation, (the degeneracy of the matrix E must be at least two) and
secondly, perfect steering results in no elastic deformation in the vehicle and
produces another degeneracy, and thus the necessary condition for a railway bogie
vehicle capable of perfect steering is that the degeneracy of the elastic matrix E
must be at least equal to or bigger than 3. The second '<' in Eq.(2-25) is the

necessary condition for a railway bogie vehicle to be stable. The reason for this is
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that the kinematic equation Eq.(2-20) has a solution if P > j, which means that
undamped kinematic oscillation modes occur in the system.

If ¢4 = 0, Eq.(2-19) becomes (N + E)q = F_._ + F;, and the equation
becomes (N + E)q = FE,, if Fg =0. If each wheelset moves on its own
pure rolling line, (N + E)q,,. = 0 and q,, = 0 arc obtained, and perfect

steering is realised. The sufficient condition for a railway vehicle capable of perfect
steering is therefore that the elastic force vector Fy caused by curvature must be

Zero, i.e.
F. =0 (2-26)

The sufficient -condition Eq.(2-26) for bogie vehicles capable of perfect steering
means that all bending stiffnesses in the vehicle must be eliminated. This is easily
explained by referring to Fig.2.5. All rigid bodies of the vehicle should take their
own radial positions when perfect steering is required. The relative yaw angles (Ay)
among the rigid bodies are not equal to zero when the vehicle is on a uniform curve -
even with zero cant deficiency. If there is a yaw stiffness between any pair of rigid
bodies, the moment produced due to the relative yaw angles (Aw) will force this pair
of rigid bodies to move away from their radial position and perfect steering no
longer exists. For example, if the secondary bending stiffness exists, the moment
between the leading bogie frame and the carbody will resist the leading bogie frame
in taking up its radial position. The leading bogie frame thus has an anticlockwise
yaw related to its radial position. This yaw will be transferred to the wheelsets
through the primary lateral stiffness and force the wheelsets to leave their pure
rolling line, and a similar analysis can be applied to the trailing bogie. Perfect
steering cannot, therefore, be achieved if any bending stiffnesses exists in the
vehicle.

2.6 Displacement Vector

The essential configuration of the bogie vehicle models that are investigated in this
thesis is schematically illustrated in Fig.2.6. As shown there are two bogies each
with two wheelsets, each wheelset having two degrees of freedom (lateral and yaw),
each bogie frame and carbody having three degrees of freedom (lateral, yaw and
roll). There are a total of seventeen degrees of freedom in the system.
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(b) y-z plane view
Figure 2.6 Schematic diagram of a bogie vehicle

The general displacement vector q is arranged as:

4" = {Yu1 Vor Ye2 Va2 Yz Was Yas Vel Yoo ¥ Omo
Yrr Ve Ol % W O} (2-27)

The inertia parameters and some of the geometric parameters which have been used
in the simulation are listed in Table 2.2,
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2.7 Ride Performance

Two approaches can be applied to evaluate the ride performance of vehicles, one of
which being to simulate the system response in the time domain, and another to find
the response in the frequency domain. The former is often applied to study the
transient response of the system while the latter is employed to estimate the overall
response. In this chapter, only the latter is of concern. The theories used to analyse
the frequency response of linear systems are well developed. The chapter only gives
out the necessary definitions and their equations, and the reader is advised to view
references[95-99] for more details.

2.7.1 Power Spectral Density (PSD) and Root Mean Square (rms)

If y(t) is one of the responses of a linear system and x(t) is one of the system inputs,

the power spectral density PSD of y(t) is defined by:

5,(0) = H(w)s, (0)H (0) (2-28)

where, s,() is PSD of x(t),
H(w) is the transfer function of x(t) to y(t),
H*(®) is the conjugate of H(w).

If {y(t)} represents the response vector of a linear system and {x(t)} is the system
input vector, the power spectral density PSD of {y(t)} is given by:

S,(0). = H(0)S,(0)(H'(e)) (2-29)

where, S () is the PSD of the system input vector {x(t)},
H(w) is the system transfer function,
H*(®) is the conjugate of H(w).

The power spectral density PSD has the following properties:

Property 1: if % =d’%ﬂ and F=d'% PSD's of x and X are:

dr’
S;(0) = 0’S(w) and S (w) = 0'S(w) (2-30)

Property 2: if ® =2mrf, the single side PSD is:
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W(f) = 4rS (w=2xrf) (2-31)
Property 3: if Efx2] represents the Mean Square of x(t), it is found from:

Ex'] = [Cs.(@ydo = [W(Hdf (232)

Property 4: the cross-power spectral density satisfies:

S, (@) = 5, (@) (2-33)

Property 5: the cross-power spectral density between x(t) and x(t-t,) satisfies:

S (0) = S, (w)e ™ (2-34)

x(l)x(l—lk)

2.7.2 PSD of Track Irregularities

Track irregularities are random processes depending on track situations such as the
track maintenance, sleepers and rails. The parameters of the American Track
Standard[1] are used to define the power spectral density of track irregularities in
the simulation. They are defined by:

Acq}ic

Cross-level S.(0) = D000 (2-35)
) Aa 2‘.:r 2 + 2“ )
Alignment | S.(6) 4:&2( ¢(2¢ " ¢;: ‘) (2-36)

where, ¢ is space frequency (¢ = %ﬂ }, and v, is the vehicle forward speed and f

is time frequency (Hz). In the simulation, the values in Table 2.3 are used.

Table 2.3 Values of the parameters in Eq.(2-35) and Eq.(2-36)

A, 0.3x10-* in?/cpf A, 0.3x10* in%/cpf
de 7.1x10-3 cpf DLy 10.0x10-3 cpf
Boc 4.0x102 cpf 3 5.6x102 cpf
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For time frequency f, Eq.(5-8) and Eq.(5-9) become:

Cross-level s = s (2-37)
) Vo
. 1. f
Alignment S,(fy = —S5,(=) (2-38)
Voo Yo

If there is no correlation between Cross-level and Alignment irregularities and the
vehicle has four wheelsets, the PSD's of track irregularities can be expressed as:

-Svfan O Sifau 0 Sxa'lJ 0 Sxald 0
O chll 0 sxclz 0 SIL‘[! SIEM
svaI 0 S«‘azz 0 S'taZB 0 Xaz4 0
0 Sl’cz: 0 chzz Sxm SI¢-24
S, (@) = Sy 0 St 0 tars 0 St 0 (2-39)
0 er:ll 0 ch:z s~"c3: 0 S 34
Sxau 0 S"‘nd! 0 sxutﬁ 0 qu“
0 sxmu 0 chn 0 Si‘au 0 s*}-u
where,
sxc._(m) = 5, (@)™ and s, }_((n) = 5, (W)™ (2-40)
if cif ai wif
For the same railway, if the track is a stiff body, we have
5, (@) = s, (o) and 5@ = s, (0) (241
Letting
T
SX = (Sa SC Sﬂ SC Sa SC Sﬂ SL‘ )
and
-1 0 e—imrl 0 e—its)f;, 0 e—f(ﬂi; 0 T
0 1 0 ™0 A
e™ 0 1 0 e’™ 0 e” ™ 0
_ I A ¢ 1 0 ™ 0 e
S((D) - el'ﬂ)f: 0 el'(l)t‘ 0 1 0 e—l'(ull 0
0‘ elwrz 0 ‘el(ﬂq 0 . 1 0 e*t(&)“.
em)l; 0 ei(:)tz 0 . em.v' 0 1 0
-0 el(ﬂt; 0 el(l)fz 0 em)!l O 1 ]
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the PSD of track irregularities is:

S.(@) = 5(w)s () (2-42)
where,

t, = 2aly, t, = 2y,

t, = (2+2a)lv, t, = (21-2a)!v,

2.7.3 The Transfer Function of a Railway Bogie Vehicle

If the track irregularities are the only disturbances of a railway vehicle, Eq.(2-18)

becomes:

(Ms* + Ds + Ks)q(s) = AX(s) (2-43)

after applying the Laplace transform to Eq.(2-18), where A is a constant matrix and
D=G+Cand K=N+E.

There are only eight inputs on the right side of Eq.(2-43). It is therefore necessary
to rearrange Eq.(2-43) before finding the transfer function between the track
irregularities and the system responses.

Letting

P = K - Mo’ + Do . (2-44)
(a} = {q, ! gq; 1 q,}

and dividing Eq.(2-44) into three groups of equations; the first group being the
wheelset dynamic equations in which there are eight equations, the second being the
bogie dynamic equations in which there are six equations, and the last group being
the body dynamic equation in which there are three equations, Eq.(2-43) becomes:

P (0)q,(0) + P(o)g(0) + P(o)g,(0) = A,,X(0)
P,(0)q,{(0) + Pjo)g;(0) + P(o)q, (o) 0 (2-45)
P, (0)q,(0) + Piw)g;(e0) + P(o)g,(o)

I
S

where,
P,(®) is a 8x8 matrix, P,(®) is a 8x6 matrix,
P.(®) is a 8x3 matrix, P,(®) is a 6x8 matrix,
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P.(®) is a 6x6 matrix, Py(®) is a 6x3 matrix,

P.(m) is a 3x8 matrix, Pg(®) is a 3%6 matrix,

Py(w) is a 3x3 matrix,  X(®) is the vector of the wheelset inputs,
A, 4, is the sub-matrix of A with 8x8 elements

and then we have

il

q,(0) + H%(G))qT((D) + H%((x})qb((x}) HYW(G))X((D)
H,(0)q,(0) + a:(®) + Hy(0)g,(@) = 0 (2-46)
H%((D)qw((l)) + H%(o))qT(o)) + qb(m) = 0

where,

I

P (0)P,(w)
P;' (®)P, (o)
P;' ()P, (w)

H,(0) = P(@)F0) Hy,(o)
H, (0) = P (o)) H, (o)
H,(0) = P'{0)P(w) H,(o)
Hy(0) = Py (0)P(0)

(2-47)

il

The transfer functions of wheelsets, bogies and carbody with track irregularities are

therefore:

q.(0) = H(0)X(0)
q;(®) H,(0)X(w) (2-48)
q,(0) = Hy(0)X(0)

where,
H (o) = 47(0)H, (o)
H,(0) = AA(0)H, (0) (2-49)
Hi(0) = A47(0)H, (0)

and

A(o) = [I - Hy(o)Hy(0)] [Hy(0)H,(0) - H,(o)]
Az(m) = - H%(m)Ai((’)) - H%((O)
Ayw) = 1T + Hy(0)a (o) + Hy(0)A,(0) (2-50)

The auto-power spectral density PSD's of system responses are:
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S.{(0) = H(0)S,(0)H(e))
S:(w) = H,(®)S,(0)H;(0) (2-51)
Sp(0) = H,(o)S, (0)(Hi(w)"

and their Cross-PSD's are:

S, (0) =H, ()8, (0)(H;(0))" Sy, (@) =H,(0)S, (@) H;(e)’

St (@)= H,(@)S, (@)(H;(0)" Sy (0)=H,;(0)S, (0)(H;(w))’

S.» () =H (0)S, (@)(H;(0)" 8, (0)=H;(0)S, (0)(H(e)
(2-52)

2.8 Computer Programming

All the simulation results have been produced by the computer program developed

by the author. The strategy and block diagrams of the computer program have been

published and are included in Appendix C while the instructions of the computer

program are listed in Appendix D. The relevant theory on Matrix and Numerical

Mathematics can be found in references[100-101]." The computer program needs to
_ be linked with NAG Library[102].
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Table 2.2 The inertia parameters and some of geometric parameters of vehicle

Inertia Parameters: kg or kg-m?
wheelset mass m,, 1250
wheelset inertia in x axis [, 700
wheelset inertia in z axis I, 700
bogie frame mass my - - 2500
bogie frame inertia in x axis [, 1000
bogie frame inertia in z axis Iy, 3500
carbody mass m, 25000
carbody inertia in x axis fi,, 30000
carbody inertia in z axis I, 1000000
Geometric Parameters: _ m
wheel radius 0.45
wheelset base @ 1.25
half of bogie pivot distance { 875 |
half of full vehicle body length [; 11.5
height from wheelset to primary suspension A 0.0
height from primary suspension to bogie frame h, 02
height from bogie frame to secondary suspension #5 04
height from secondary suspension to carbody weight centre A, 1.0
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Chapter 3

PERFECT STEERING BOGIE VEHICLE MODELS
AND THEIR CAPABILITY IN NEGOTIATING CURVES

This chapter presents three vehicle configurations capable of perfect steering,
considering their capability in negotiating a cubic parabola transition curve and their
ability to accommodate cant deficiency. The steering mechanism of the models is
analysed and the effects of the geometric errors in the steering linkages on the vehicle
curving are investigated. The Arabic numerals in the figures of this chapter stand for
the following wheelset sequence: 1--the outboard wheelset in the leading bogie, 2--the
inboard wheelset in the leading bogie, 3--the inboard wheelset in the trailing bogie¢ and
4--the outboard wheelset in the trailing bogie.

3.1 Perfect Steering Bogie Vehicles

Most of the researchers in the field have noticed that a reduction in primary yaw
stiffness would lead to better curving, but reduce stability. In order to decrease the
conflict between stability and curving, wheelset inter-connected bogie vehicles and
body-steered bogie vehicles have been invented and applied, which have been reviewed
in Chapter 1. A wheelset inter-connected bogic vehicle uses the inter wheelset
stiffnesses to reduce the primary yaw stiffness and thereby achieve stability and
improve steering ability; while a body-steered bogie vehicle shifts some of the primary
yaw stiffness to the stiffnesses in steering linkages to achieve the same goal. The
steering linkages in body-steered bogie vehicles can, however, be designed such that
the moment produced by the steering linkages achieves some equilibrium with the
moment produced by the yaw stiffnesses in the suspensions. The steering ability of
body-steered bogie vehicles can, therefore, be much better than that of wheelset inter-
connected bogie vehicles.

There are not many references discussing the effect of secondary yaw stiffness on
curving. There are two reasons that may be used to explain this fact: firstly, secondary
yaw stiffness is much softer than primary yaw stiffness such that the influence of
sccondary yaw stiffness on curving is sheltered if primary yaw stiffness exists in
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vehicles and, secondly, some bogie vehicles are freight vehicles that do not have

secondary yaw stiffness.
3.1.1 Configurations

Referring to Eq.(2-15), a railway vehicle with two bogies and four wheelsets will be
kinematically unstable if the degeneracy P of the elastic matrix E is greater than 4. A
conventional bogie vehicle will therefore be unstable if both the primary and secondary
yaw stiffnesses are equal to zero because the degeneracy P of its elastic matrix E is
equal to 8. At least two more independent stiffnesses need to be applied into each
bogie to stabilise the vehicle. These two stiffnesses should not make any contribution
to vehicle bending stiffnesses if perfect steering is required. There are many forms in
which the combination of two independent stiffnesses can be added to a bogie. This
chapter demonstrates three kinds of configurations, as illustrated in Fig.3.1, Fig.3.2
and Fig.3.3, in which two independent stiffnesses are applied into each bogie when

primary and secondary yaw stiffnesses are eliminated from conventional bogie vehicles.
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Figare 3.1 Configuration of a perfect steering bogie

In Fig.3.1, the outboard wheelsets are directly connected to the carbody by spring %,
and the wheelisets in the same bogie are connected by %,,. Since these two stiffnesses
are independent, the degeneracy of E reduces from 8 to 4 and the necessary condition
of stability is then satisfied. A feature of this kind of steering linkage is that two
wheelset motion modes (yaw and lateral) are directly coupled with all carbody motions
{yaw, roll and lateral) by the linkage. The dynamic behaviour of the vehicle is going to
be published and is listed in Appendix A.

43



Chapter 3 Perfect Steering Bogie Vehicle Models_and Their Capability ...

f

!
Sy et
by Gl yh S b
1 i s el 2 k| ’
bj[b"_ wl L4l ksx bJIbz
— N2 T WYY T - -
Ko\ .
_ |
_r . e—
S | 3
1
/) Ly J

(a) horizontal type

k I [
<. 2

L | N

SN

-

i {\';} LN l

{b) vertical type
Figure 3.2 The configuration of perfect steering bogie vehicle (Model I).

For the configuration given in Fig.3.2, the outboard and inboard wheelsets are
independently connected with a linkage to the carbody and bogie frame, and there is no
inter wheelset stiffness such that the outboard and inboard wheelsets are steered by
each linkage separately. This configuration is called Model 1 to simplify further
description. [Each linkage creates an independent effective stiffness so that the
degeneracy of E reduces from 8 to 4 and the necessary condition of stability is then
satisfied. These two effective stiffnesses created by the linkages in one of bogies are
given by:
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k, = Koo Kuw k, = Ky Koy (3-1)
Wk, + Lk, (L +1,)k, + Pk,

The full form of the compatibility matrix a for this model is listed at Table 3.1 with the
diagonal elements of the system stiffness matrix [k] being defined by:

{ky} = diag{kpy kpw kp¢ key kpw Koo Koy Koy Koy Koy Ky Fpp !

kSy kSlP kS¢ kSy ksw kS¢ I kel kez kez kel } (3-2)
LetaT = [a,la,la} |a;[]T, where the subscripts p and s stand for the primary and
secondary suspensions; the subscript LL stands for the steering linkage in the leading
bogie and the subscript LT for the steering linkage in the trailing bogie, the sub-
compatibility a;; for the leading bogie can be simplified as:

Wio Wi Yo Yy Yo Wwi Y Y
aLL: [_bl [1 0 bz ('{l + lz) -b3 1!'2} - -gl ’ 0 . g?. --g3
0 bS ([3 + 14) -b4 [3 -bﬁ l4 0 g4 - gs -gﬁ
(3-23)

since the effective stiffnesses of Eq.(3-1) in one of bogies only affect the elasticity of
four degrees of freedom (/. W.: Wr and y), and the elastic sub-matrix E that is
only associated with the effective stiffnesses in the leading bogie is:

k

el

EL=aL_[

0

0 keZ

Ju-

glzkel
0

=88k,
g.,8:k,

0
gk,
— 8485k,
— 8,86k,

— 88k,
— 8425k,

ggkel +g52ke2 ~ 8:8:k,4 + 8585k

- gzggkel + gsgéke2

2183k,
— 848k

gszkel +g62ke2 i
(3-2b)

The outboard and inboard wheelsets are connected by the same lever to the carbody

and bogie frame in the model given in Fig.3.3. This model will be referred to as Model

II. Three stiffnesses are added to each bogie by this linkage and are given by:
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Figure 3.3 The configuration of perfect steering bogie vehicle (Model II).
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It can be proved, however, that only two of them are independent; for example, £, can
be formed from k,, and k_,, and thus the degeneracy of E is 4 such that the necessary
condition of stability is then satisfied. Inter wheelset stiffness k5 exists in this model
and the full form of the compatibility matrix a for this model! is listed in Table 3.2 with
the diagonal elements of the system stiffness matrix [k] being defined by:

{ky) = diaglk,, ky Ky Koy ko Koy Ky ki Koy Ky Koy Koy |

P!

ksy ksb ksfl) ksy ksb ksd: Ikel ke2 ke3 ke2 kel kel} (3'5)

The sub-matrix of the compatibility matrix a;; is given by:

WW() "[jwi "[ITL w.’»

I N CR AT b (L, +1,+L)  -b, 1
H 0 —b,(,+1) b, I b, I,
b, byl, —b,(L,+1) 0

lijo wwi "IITL W;,
& 0 & -s (3-6a)
0 -8 8 &

87 8 -8 O

and the elastic sub-matrix E, that is associated with the effective stiffnesses in the
leading bogie is given by:

k, 0 0
E. = a;|0 k, Ola, =
0 0 k, |
[ gk + g7k, &8sk - (88K +8180k3) 8185k, ]
_ 8:85k,s 8eka t8iky  —(8a85ka + 880k, ~ 848cke
~(8.8ks +8185k3) —(BaZske +8e8oks) E3k, + g:?kez + g92k¢3 = 8283k, + 8586k
A 8185k ~ B8k, = 8285ka + 8585k g3k, +8ckes

(3-6b}

All effective stiffnesses in these two configurations are merely yaw stiffnesses because
they only associate to the yaw motions of rigid bodies. Indeed, the steering linkages of
Model I have a similar form to the guided bogie vehicle suggested by Smith and
Anderson[19] while the steering linkage of Model II closes to the form of the forced
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bogie vehicle proposed by Bell and Hedrick[12]. In their configurations, however, the
steering linkages provide the bending stiffness.

body

ksb

k pb
bogie
wheelset

k

1
Figure 3.4 The simplified bogie vehicle

A body-steered bogie vehicle can be simplified according to the system in Fig.3.4,
where the stiffnesses k,, k, and k; are the yaw stiffnesses and come from the steering
linkages while the bending stiffnesses &, and k, come from the suspension yaw
stiffnesses and are independent of the stiffnesses in the steering linkages. In perfect
steering vehicles, we have &k = kg = 0. If the ratio of the absolute displacements
between the carbody (gq,), bogie frame (g;) and wheelset (g,) is a constant, it is
possible to set up the ratio for the stiffnesses k;, &k, and k, letting the moments act on
each rigid body be equal to zero whenever the displacements take place. For example,
if the ratio of the displacements between the carbody, bogie frame and wheelset is (g, :
qr: qy) = (0 :-1: 2), the moments acting on each rigid body can be equal to zero
when the ratio of stiffnesses k;, k, and k, satisfies (k, : &, 1 &) = (1 : 2 :1). In
conventional bogie vehicles, we have k, = k, =k, = 0. It is impossible to set up the
relationship between the bending stiffnesses k,, and kg, to let the moments acting on
each rigid body be zero when their displacements are non-zero. In other body-steered
bogie vehicles, both the bending stiffnesses and the stiffnesses in the steering linkages
are not equal to zero. Since the bending stiffnesses in suspensions are independent of
the stiffnesses k,, k, and k; in the steering linkages while the stiffnesses &/, k, and k; are
dependent of each other, it is impossible to establish a relationship between the
bending stiffnesses and the stiffnesses in the steering linkages which will permit the
-forces acting on each rigid body to be zero, for any particular relationship between the
displacements among the rigid bodies, if both the bending stiffnesses and the steering
linkages exist.
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In steady state, the relationship of the displacements {7} depends on the curvature and
some of the geometric parameters of vehicles. For example, the displacements {7} of
the outboard wheelset, the leading bogie and the carbody are ({, + a)/R, /R and 0, the
relationship between them being ([, + a) : {; : 0. Fortunately, this relationship is
governed only by the vehicle geometry and it can be easily proven that the ratio
between any pair of the elements in {g} is a constant and is determined only by the
vehicle geometry in steady state. It is therefore possible to set up the relationships
between the stiffnesses &, k, and k, to give E{Ag}= 0 for perfect steering vehicles.
The most important fact is that the relationship E{AgG}= 0 is only decided by the
vehicle geometry. The next sub-section concentrates on finding the relationships for
Model I and Model II.

3.1.2 Perfect Steering Linkages

Since there is no yaw stiffness in the suspension of a perfect steering vehicle, one of
the functions of the steering linkages in perfect steering vehicles is to provide the

constraints for the yaw motions of the vehicle rigid bodies, but not to cause any’
bending stiffness. In satisfying the sufficient condition for perfect steering Eq.(2-26),

the force vector Fj defined in Eq.(2-23) should be zero, The sufficient conditions for

the configurations of Model I and Model II to possess perfect steering capability are

that the geometric parameters of their steering linkages must satisfy the following:

For Model I
b(b-b) _ : b(bs —by) _ _b (3-7)
b,(b,— b)) Iy+a b,(bs —b;) Ihy—a .

and for Model II: |
bby—=b) _ L . b(b-b) _ L (3-8)

by (b, —b,) L+a  bib,—-b) L-a

If the steering linkages are horizontally mounted, the following relationships can be
derived from Eq.(3-7):

abb, _ ab,b,

b, : by, =
ab, ~ (b, — b)), ab; — (b, — b)),

(3-9)

Becauseof b, > 0 and b, > 0, we have:
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i > 2 (3-10)

Using the parameters listed in Table 2.2, {,/a = 7. In order to have enough space to
fit the levers of the steering linkages, letting b, -4, =0.1m and b, -5, =0.1m, we
have b, = 0.75m and bs = 0.75m such that b, = 0.85m, by = 12.75m, b, = 0.65m and by
= 9.75m are obtained. It appears that &, and &, are too large to be realised in practical
applications.

A similar situation to that above occurs in Model II if the steering linkages are
horizontally mounted. Eq.(3-8) can be transformed into:

b, = abb, or b, = abyb, (3-11}
ab ~(b; ~ b)), (b, — b)), ~ab,
and because of b, > 0, we have:
bk _h_ _h (3-12).

Letting b, —b, =0.1m, b, = b, =0.15m and b, = 0.75m, we have b, = 1.00m, b; =
0.85m and b, = 12.75m. The above analysis shows that it is impossible to mount the

steering linkages horizontally in practical situations if perfect steering is required.

If the linkages are vertically fitted, wehave by - b, =1, b, - b, =, and b, - bs =I5, by
- b, = I, for Model I. The sufficient condition for perfect steering can be derived from
Eq.(3-7) whereby:

b1 _ b : b(h+h) _ b (3-13)
b, (L +1,) I, +a A ly—a :
In Model II, for the sufficient condition of perfect steering, Eq.(3-8) becomes:
b(l,+ 1) _ [, : b, (I, +1,) _ A (3-14)
by(, +1,+ ) l,+a b, I ly—a

Letting b, = b, = b, = b, = bs = b, the geometric relationship for the linkage levers in
Model 1 1s:

(3-15)
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The geometric relationship for the linkage lever in Model 1 is:

L= Ly &4 = 1 (3-16)

In this research, we have:

InModelI: I, =1.05m, [,=0.15m, [,=09mandl,=0.15m;
InModel II: [, =0.9mand !, =1, =0.15m.

The interesting thing is that the conditions {Eq.(3-15) and Eq.(3-16)} for Model I and
Model II capable of perfect steering are independent of curvature and the stiffnesses in
the steering linkages. The steering linkages are called the perfect steering linkages if
the geometric parameters of the levers in the steering linkages satisfy Eq.(3-15) for
Model I or Eq.(3-16) for Model I1. | |

In order to explore the dynamic behaviour of Model I and Model II, two sets of. .

stiffnesses and dampings for each model are used in this research. They are listed in
Table 3.3 (for Model I) and Table 3.4 (for Model II). The parameters in Set I
represent a 'soft' steering linkage system and those in Set 2 stand for a 'stiff' steering
linkage system. The parameters listed in Table 3.5 are of a conventional bogie vehicle.

3.2 Perfect Steering And Flange Clearance

The angle between the wheelset rolling direction and the track tangent direction 1s
called the attack angle. If the conditions in Eq.(3-15) and Eq.(3-16) exist, ail ngid
bodies of Model I and Model II take their radial positions and the attack angle of each
wheelset is equal to zero when the vehicles are on a uniform curve with zero cant
deficiency; perfect steering being achieved. These occurrences are independent of the
vehicle suspension elasticity and steering linkage stiffness, and of the degrees of track
curvatures. When these conditions prevail, the wheelsets will laterally move to their
pure rolling line, realising perfect steering. If the distance between the wheelset pure
rolling line and the track central line is not big enough, flange clearance disappears and
flange contact occurs. Perfect steering does not exist if flange contact occurs.
Another condition for perfect steering is therefore that the distance between the pure
rolling line of the wheelsets and the track central line must be less than the maximum
flange clearance. In Eq.(2-16), the distance between the pure rolling line and the track
central line is proportional to 1/A, so that high equivalent conicity can be used to avoid
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flange contact if other parameters are fixed. The minimum conicity that can avoid
flange contact is called the necessary conicity A, in the thesis. In the figures of this
chapter, Minimum conicity stands for the necessary conicity A,

The lateral displacements ¥.'s of wheelsets from the track central line along their

radial directions are shown in Fig.3.5 where the flange clearance is set to Smm. The
lateral displacements of the perfect steering vehicle wheelsets are much smaller than
those of the conventional bogie vehicle. From the results in Fig.3.5, the reduction in
the lateral displacements of the perfect steering vehicles allows Model I and Model IT
to achieve perfect steering without causing flange contact if the radii of curves R 2
200m, since an equivalent conicity of around 0.3 has been measured by BR researchers
[103] in practical cases. If the radii of curves become R < 200m, it is necessary to
increase the equivalent conicities of wheelsets or/and to extend the flange clearance to
prevent flange contact. Further increment in wheelset conicity may cause the problems
with regard to stability and ride quality, and will be investigated in the subsequent
chapters. The extension of track gauge can increase the flange clearance, but if

extended too much, the equivalent conicity may be reduced[66]. It is therefore

unlikely that perfect steering vehicles will achieve perfect steering on sharp curves.
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CONICITY CONICITY
(a) Perfect Steering Vehicles {b) Conventional Vehicle

Figure 3.5 The lateral displacements of wheelsets when R =200 m, ¢,=0

Compared with the conventional vehicle, Model I and Model II have two advantages
in curving: firstly, they dramatically reduce the lateral displacements of wheelsets and,
secondly, the wheelsets can take on their radial position if perfect steering is realised.
These advantages can greatly decrease the forces that act on track, and therefore, two
benefits arise: firstly, the wear between wheels and rails can be greatly reduced so that
the maintenance of both tracks and wheelsets is cut down and, secondly, the potential

of derailment is reduced, giving improved vehicle safety.
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3.3 Geometric Errors in the Steering Linkages

The geometric parameters of the perfect steering linkages are theoretically defined by
Eq.(3-15) for Model I and Eq.(3-16) for Model Ii. In practical applications, however,
the real products are unlikely to match the theoretical design precisely, and the
discrepancies exist with the geometric parameters, The geometric errors in the
steering linkages will break the sufficient conditions for bogie vehicles capable of
perfect steering, and thus cause the elastic forces ¥y # 0 even on steady state. The
effects of geometric errors in the steering linkages on the dynamic behaviour of the
perfect steering vehicles will be investigated in several chapters of this thesis. This
section studies the effects of geemetric errors on the curving of Model 1 and Model 1I.
There are many possible combinations of geometric errors, one form being defined in
Fig.3.6. The percentage alterations of the effective stiffnesses of the steering linkages
are listed in Table 3.6 (Model I) and in Table 3.7 (Model II) separately when the
stiffnesses of Set 2 are used. The geometric errors framed in bold in Table 3.6 and

Table 3.7 are used in the section, and the elastic forces Fg caused by these geometric

errors are listed in Table 3.8, where the curve radius is R = 200m.

The steering mechanism of Model I and Model II is similar to that of the forced
steering vehicle[12] and the guided bogie vehicle[19] when the geometric errors exist
in the steering linkages of Model I and Model II. When the geometric errors in the
steering linkages occur, the results in Table 3.8 show that the effective stiffnesses in
the steering linkages of Model I and Model II will contribute to the bending stiffnesses.
The essential difference between perfect steering vehicles and other body-steered bogie
vehicles is that there are neither primary nor secondary yaw stiffnesses in perfect
steering vehicles. The steering linkages in the forced steering vehicle[12] and the
guided bogie vehicle[19] are designed to reduce the forces produced by the bending

- stiffnesses and to assist in the wheelsets taking more radial alignment, In Model I and

Model II, the bending stiffnesses caused by the geometric errors in the steering
linkages will result in the wheelsets moving away from their radial positions rather than
assisting in them taking radial alignment because there is no any bending stiffness in the
suspensions of Model I and Model II. Each wheelset will therefore move away from
its radial position and its attack angle will no longer equal zero when the geometric
errors exist in the steering linkages. Both the attack angle of wheelset and the lateral
displacement away from its pure rolling line result in the creepage between wheels and
rails. The attack angles, lateral displacements away from the track central line and
resultant creepages of the wheelsets are illustrated in Fig.3.7 (Model I) and Fig.3.8
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(Modei II) as the functions of conicity when the elastic force Fg caused by the

geometric errors (listed in Table 3.8) is used.

body KK, X body ©
~NNNX + body
I L B
[ l A
inboard | |{ outboard ) |
N , inboard |
_W_x - whegls;t |
wheelset + * é
| _ N wheelset ) <
: 9 1114
2§ A ﬁ + o
A
outboard
" wheelset
{a) Model I (b) Model II

Figure 3.6 Schematic demonstration of geometric errors in steering linkages

The effects of the geometric errors in the steering linkages on the wheelset attack
angles obviously depend on the configuration and elasticity of the steering linkages.
Stiff steering linkages result in large elastic forces Fg, as is shown in Table 3.8, and
thus the attack angles will increase as the steering linkages become stiff. The resultant
creepages also rise as the steering linkages become stiff because they are in proportion
to the attack angles. When the steering linkages are soft, the attack angles and
resultant creepages of Model I are larger than those of Model II when the geometric
errors exist. Conversely, the differences in the attack angles and resultant creepages
between Model I and Model II are not so obvious when their steering linkages are stiff.
This means that the attack angles and resultant creepages are not sensitive to the
configurations of steering linkages when they are stiff. The lateral displacements of the
wheelsets are also iflustrated in Fig.3.7 (Model I) and Fig.3.8 (Model II). Since the
steering linkages only produce yaw moments when geometric errors exist, the
influence of the geometric errors on the wheelset lateral displacements is much less
than on the attack angles, Although the geometric errors have little influence on the
lateral displacements of wheelset, this influence may still be vital in some cases because
of flange contact. The results in Fig.3.9 show that the necessary conicity in avoiding
flange contact increases when the geometric errors exist. Moreover, the necessary
conicity becomes larger as soon as the geometric errors exist regardless of whether the
steering levers become longer or shorter or whether the steering linkages are stiff or
soft.

54



Chapter 3 Perfect Steering Bogie Vehicle Models and Their Capability ...

0.0006
g D.0004 7 I M imos CoMIC Hy }
I
L
~0.0002 1
n
b}
-
(V] a
z ——
a
X
0 -0, 0002
2 [ ]
-
-
€ -n.co0¢ m

-0.6008

a a.1 0.2 0.3 0.4 0.9
CONICTTY

(a) wheelset attack angles of Model I when

[1 =1.155m and I3 = 0.99m (soft linkage)

0.DDCE
00004
o
]
v
¥ 0.0002 1 /II]
o
u
(5] Q
z
I J | I —
¥ -0.0002
E Hirimm comicity
T -g.0004

-0, 0004

01 0.2 0.3 0.4 0.5
CONICITY

(¢) wheelset attack angles of Model I when
;= 0.945m and i3 = 0.831m (soft linkage)

0.0013

CREEFPAGE

RESULTANT

]

1E-05

) .2 0.3 0.4 0.5
CONICITY

(e) resultant creepages of Model I when
{1 =1.155m and I3 = 0.99m (soft linkage)

Q.007

RESULTANT CREEPAGE
=
a
3
o

Rininge conicity

0.1 0.2 0.2 0.1 0.5
LORICITY

(g) resultant creepages of Model I when
1) =0.945m and I3 = 0.81m (soft linkage)

1 e
E?\V

ATTACK ANGLES Cradd
e
g .

g

-0.0008

Mingnon camiciiy

] o1 &2 ) 0.4 05
CONICITY

(b) wheelset attack angles of Model I when

=1

0.000§

ATTACK ANGLES frad3?
' '

-0, 0008

0.0004 1

0.0002 4

B
N

%

.155m and I3 = 0.99m (stiff linkage}

f

Miniem conicity

0.1 0.2 ] 0.4 0.5
CONICITY

(d) wheelset attack angles of Model I when

!1 = 0.945m and I3 = 0.8 lm (stiff linkage)
D.ﬂﬂl_‘

ED.DWI .
ey [ 0.2 0.3 0 0.5

CONICITY

() resultant creepages of Model I when

=1

0.00] 7

RESULTANT CREEFPAGE

E-08

.155m and i3 = 0.99m (stiff linkage)
ﬂ —~——
X 0,2 0.3 [X) 0.5
CONICITY

(h) resultant creepages of Model I when

L= 0

55

.945m and {3 = 0.81m (stiff linkage)



Chaprer 3 _Perfect Steering Bogie Vehicle dels and Their Capability .. ‘

; : T
[ //f_ - /“-‘
. ~0.005 & -n.005
€ ~0.011 X -0.01
a -
- 143 5
§ 0.015 g4!.()!.5 @
§ 0.02 v § -0.02 T
0 [ i8] 0.2 b.2 0.4 0.5 0.1 0.2 a.3 L] 0.5
CONICITY CONICLTY
{i) wheelset lateral shifts of Model I when {j) wheelset lateral shifts of Model I when
{1 = 1.155m and {3 = 0.99m (soft linkage} {1 = 1.155m and Iy = 0.99m (stiff linkage)
o D
o ] o el
w -0.008 v, -0.005
o =
'% -0.01 é 0.01
s £ 7o
i -t.0154 204 ] [[rumoeon iy | L -00m [P comery )
§ -0.02 T T § =0.02
0 0.1 0.2 0.3 0.1 0.5 0 0.3 0.2 0.3 ot 0.5
CONICHTY CONICITY
(k) wheelset lateral shifts of Model I when (1) wheelset lateral shifts of Model I when
{1 =0.945m and I3 = 0.81m (soft linkage) Iy = 0.945m and Iy = 0.81m (stiff linkage)

Figure 3.7 The wheelset attack angles, resultant creepages and lateral shifts
of Model I when the geometric errors exist and R = 200m

. 0008 0.0008
~ 0.000% ~ D.0001
3 H
Yo B omema  oom —
L o [u} 0
z é m Mninum comicaty
§ -D.0002 4 é 0 rsz T
€ oon -
oeed 5.1 0.2 0.3 X! 0.5 -0-booe o1 ) 3 0 0.5
CONICITY CONIC1TY
(a) wheelset attack angles of Model IT (b) wheelset attack angles of Model II when
when Iy = 0.99m (soft linkage) Iy = 0.99m (stiff linkage)

56



Chapter 3_Perfect Steering Bogie Vehicle Models and Their Capability ...

0.0006
% 0.0001 |
: [1a3 ] )
. D.DOUE'I J Mmaue contciiy
u —
o o ot
z -
ks
¥ 00002 4 /—Lm
S
€ 2,004

~[. D006 T

P o1 0.4 0.8

0.2 0.3
CON[CITY

(c) wheelset attack angles of Model Il
when Iy = 0.845m (soft linkage)

0.00% 7

7

:| BnIcLly

RESULTANT CREEPAGES
=)
/KIQ
2
n

JE-DS -
0 o1 0.4 a.5

0.2 0.3
CONICTTY

(e) resultant creepages of Model 11
when Iy = 0.99m (soft linkage)

0.001

£-05

RESULTANT CREEPAGE
o
PR T S S T
ol f

[} 0.t Bt 0.5

2 0.
CONICITY

(g) resultant creepages of Model IT
when [] = 0.845m (soft linkage)

N 0
g
[
L -0.005
ra
& X
z
@ -u.mw
W
E Hinimu conmciy l
{1 -0.815
o 183
o
u
n)
I
T e
’ 0.1 0.2 0.1 .4 0.5
conclLTy

(i} wheelset lateral shifts of Model I
when I = 0.99m (soft linkage)

0.0006
~ 0.0004
k-]
n
-
~ 90,0002 4
I
u
6] [
z
T |
¥ ~0.0002
&
ol Aininun coni<ity ]
T 000D+

-0.0006 —

0.1 0.4 0.%

0.2 c3
CONICITY

(d) attack angles of Model IT when
i1 = 0.845m (stiff linkage)

0,001
a2
[
5]
Li
L
[+3
=]
= 0,000} 4
'E_ E Hineon tontcity
o )
= ] . .
[
LJ
a

K-8 v 4 r N

G o.1 0.2 0.3 D.s 0.6

CONICITY

(f) resultant creepages of Model 11
when Ij = 0.99m (stiff linkage)

0,001
w 4
o 4
a
S (e ]
u
o
U \%
; 0.0UDIE .
E :1 Maniene comiciiy [
@ 1
a 4
S

1605 —— —— —

] 0.1 0.2 0.3 0.4 Dn.5

CONICITY

(h) resultant creepages of Model il
when {1 = 0.845m (stiff linkage)

2

-0.005 /’—

WHEELSET LATERAL SHIFTS m>

-8t
Hinasus comcliiy i
-0.015 113
-0.02 —— —r—r
o 2.1 D 0.3 [X] 0.5
coNICITY

(7) wheelset lateral shifts of Model II
when [ = 0.99m (stiff linkage)



Chapter 3_Perfect Steering Bogie Vehicle Models_and Their Capability ...

-0.006 -0.005

-D.0154 -0.015

HWHEELSET LATERAL SHIFTS <m>
WHEELSET LATERAL SHIFTS {m3

-0.02 0 0.t 0.2 0.3 04 0.5

0.1 0.2 0.3 0.4 0.5 CONICLTY

CONICITY

(k) wheelset lateral shifts of Model II (I) wheelset lateral Shift.s of: Modei II
when ] = 0.845m (soft linkage) when /1 = 0.845m (stiff linkage}

Figure 3.8 The wheelset attack angles, resultant creepages and lateral shifts
of Model II when the geometric errors exist and R = 200m

I .

Model | soft Model Il soft Modal | stiff Model 11 stiff

0.6

H-10% 00% [B10%

conicity
0.4

0.2

Figure 3.9 The necessary conicity to avoid flange contact

The steering linkage of Model II is roughly demonstrated in Fig.3.10 and is used to
analyse the influence of geometric error on the wheelset attack angles. The dark solid
lines in Fig.3.10 show the equilibrium positions of rigid bodies when there is no
geometric error whilst the dash lines shows the equilibrium positions of rigid bodies
when there is a geometric error. When there is no geometric error, each rigid body
takes up its own radial position (a linear displacement g, for joint A, b, for joint B and
¢, for joint C), and then the linkage lever has an angle o,. When there is a geometric
error (I; = I,y + Al)) in the lever, the relationships a, = g, and o, < & are set up if the
carbody is assumed as the motionless reference. The equations of b, < b, and ¢, < ¢,
can be obtained. These equations mean that the elastic deformations of the springs
connected to the wheelsets with the steering linkage lever become smaller when the
geometric error exists. The forces caused by the elastic deformations of the springs
are therefore reduced. To reach to the new equilibrium position, the outboard
wheelset must have a negative (anticlockwise) attack angle while the inboard wheelset
must have a positive (clockwise) attack angle, which is consistent with the simulation
results in Fig.3.8b. It is easy to apply the analysis to other cases.
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The above analyses about the effects of the geometric errors in the steering linkages on
the vehicle curving also have a practical significance for other body-steered bogie
vehicles. In body-steered bogie vehicles, the steering linkages are designed to reduce
the forces produced by the bending stiffnesses in the suspensions due to curvature.
The stiffness and geometry of the steering linkage will affect the steering mechanism.
The analyses and results in this section can be applied to guide the design of the
steering linkages for body-steered bogie vehicles.

a, steering lever
carbody '
| :
! / A4
/
[
\2\\/
in-board wheelset Lo
in-board wheels S E
NN / el
~ € | ,// C
Ny . —75
. / ] L 1 0
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o B s "
1 ' s
{ bQ x
SCNER

Figure 3.10 Diagram of the rigid bodies positions for the leading bogie
of Model I when [, = I, + Al

3.4 Effects of Cant Deficiency

Eq.(2-15) shows that an unconstrained wheelset will have a yaw angle related to its
radial position when cant deficiency exists (¢; # 0). For a whole vehicle, this
movement will be transferred to other rigid bodies by its suspensions and/or steering
linkages. Other rigid bodies may no longer take their radial alignment, and thus the
relative yaw vector {8w} # 0 produces. Since the cant deficiency acts on every rigid
body, the carbody and the bogie frames will move laterally, which may also cause the
suspensions and linkages to deform, i.e. the relative displacement vector {8y} # O.

59



Chapter 3 Perfect Steering Bogie Vehicle Models and Their Capability ..,

The vehicle will finally reach to an equilibrium state and each rigid body of the vehicle
will now be on a new position that corresponds to the cant deficiency. Perfect steering
cannot be achieved if cant deficiencyis non-zero.

The effect of cant deficiency acts on any class of railway vehicles. The question that
arises 18 whether perfect steering vehicles still have the advantages on accommodating
cant deficiency over other classes of bogie vehicles. The most important point is
whether perfect steering vehicles can still avoid flange contact when ¢, # 0. Two
extreme situations are considered in evaluating the capability of perfect steering
vehicles with regard to accommodating cant deficiency, these being ¢, # -0.11rad
(inboard cant deficiency) and ¢y # 0.053rad (outboard cant deficiency). The lateral
displacements of the wheelsets are displayed in Fig.3.11 when the cant deficiencies are
utilised in the calculation. Comparing these results with Fig.3.5, the alterations of the
lateral movements of the wheelsets are not obvious and the alteration in the necessary
conicity (in Fig.3.12) to avoid flange contact is very small, and it is thus possible for
both models to avoid flange contact even if cant deficiency exists.

Although the wheelset attack angles of Model I and Model II become non-zero when
cant deficiency exists, as shown in Fig.3.13, they are quite small. The following
analysis can be used to explain this fact. When cant deficiency exists, the yaw angle of
an unconstrained wheelset can be obtained from Eq.(2-15). We have

W, =-6.875x10-5 when ¢, #-0.11rad and, , = 3.313x10% when ¢, # 0.053rad

If the bogie frame is assumed as the reference, the relative yaw angle between the
wheelset and bogie frame is (Sy + Ay), where 8y =, and Ay = a/R = 6.25x103. It
is obvious that Ay >> §y. For the whole vehicle, the relative displacement vector that
is {Aq + dq} will cause the deformations in the suspensions and steering linkages and
produce the elastic forces E{Aq + 8q}. In perfect steering vehicles, F, = E{Aq} = 0,
the displacements of the rigid bodies are produced only by the force E{6q} and thus
are small even if cant deficiency is non-zero.

Since Model IT has the inter wheelset stiffness & ., the differences between the wheelset

e3r
attack angles of Model II are more sensitive to the system elasticity than those
associated with Model 1, as seen in Fig.3.13, which means that the equilibrium
positions of perfect steering vehicles depend on the vehicle configuration and the

system elasticity when ¢, # 0.
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Figure 3.13. The wheelset attack angles when R =200 m, ¢, =-0.11

3.5 Kinematic State of Perfect Steering Vehicles on a Cubic Parabola
Transition

Since the curvature of the transition is not a constant, the relative displacement vector

{Aq} caused by the curvature is not constant, i.e. {Aq} # constant. The elastic force

vector Py defined by Eq.(2-23) cannot be zero on any transition curve even for perfect
steering vehicles. To explore the effect of system elasticity on the steering ability

associated with transition curves, the kinematic state is applied. The transition curve

defined in Fig.2.3 is used in the calculation. In other words, the proeblem becomes

finding the solution to solve the differential equation Eq.(2-24) along the transition.

To simplify the matter, the cant deficiency on the transition is assumed to be zero. The

solutions of Eq.(2-24) therefore reveal the influence of the curvature difference and the:

vehicle elasticity on the steering ability of perfect steering vehicles. The basic interest

is the same as before, i.e. whether the perfect steering vehicles have flange contact in
the transition.

Two values of conicity are used, these being A = 0.1 and A = 0.3. The lateral
displacements and attack angles of the wheelsets are illustrated in Fig.3.14 (Model I) &
Fig.3.15 (Model II) when Model I and Model II are on the transition. Flange contact
certainly occurs in both perfect steering vehicles when the conicity A = 0.1, whilst it
can be avoided when A = 0.3, If the conicity can rise as the wheelsets laterally move, it

is possible for the perfect steering vehicles to avoid flange contact on the transition. In
practice, the equivalent conicity usually rises as wheelsets laterally move[103].

The latera! displacements and the attack angles of the perfect steering vehicles on the

transition are much smaller than those of the conventional bogie vehicle (as shown in
Fig.3.16). The reason for this is that the curvature difference produces the relative
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displacements {Aq}, but one of the functions of the steering linkages is to reduce the
elastic forces caused by {Aq}. This function of the steering linkages is still effective
whenever the relative displacements {Aq} exist. Consider now the moments acting on
the outboard wheelset in the leading bogie due to {Aq]) if the carbody is considered as
the inertia reference. For Model 1, this is:

My, = VLIL+L) Yy~ LV,,1k,

and for the conventional bogie vehicle,
Mwo = (qf-bn - waa) kpb

where, the subscript b represents displacement related to the carbody. Since there are:
(L+L)>1 and Wig, < Wiy,

we have
W e = Wwo N > L+ 5 W, - 1 Wl

The difference between I( Wiy ~ Wywo M and (! + L )W p - [, W,,]! can be very
big. For example, when this outboard wheelset is 50m away from the curve starting
point, i.e. x = 50m, referring to Fig.2.3, from Eq.(2-8), we have

W = 0.0140531 and ¥y, = 0.0119498
So,

Wt = Wiwo N = 2.1033510°3
but,

WL+ L)Wy, - LWl = 4.15995%104

The analysis above shows that the moment acting on the outboard wheelset in the
leading bogie of the conventional bogie vehicle is much greater than that of the perfect
steering vehicles even if ky, = b%k,;. The similar analysis can be applied to otber rigid
bodies and to Model II, and it can be found that the elastic force Fy caused by the
curvature variation in transition curves in the perfect steering vehicles are much smaller
than those in conventional bogie vehicles, and their capability of negotiating transitions

is therefore better than that of conventional bogie vehicles.
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3.6 Summary

Several conclusions can be derived from the analysis and results above.

Since the curvature of a uniform curve is a constant, the relative displacement vector

{Aq} = constant is true. It is possible to design a linkage to eliminate the elastic forces

in the vehicles caused by the curvature if there is no bending stiffness in their

suspensions. To achieve this, all stiffnesses in the suspensions and linkages should not

make any contribution to the bending stiffnesses.

The wheelsets of the perfect steering wvehicles negotiate uniform curves as

unconstrained wheelsets if the elastic force Fg = 0 and ¢; = 0. This means that the

wheelsets should be free as much as possible rather than input some steering ‘

mechanism to steer them. This conclusion has a very general significance for the
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practice of body-steered bogie vehicles in which the steering linkages should be

designed to minimise the elastic force vector F.

The wheelsets of the perfect steering vehicles roll on their pure rolling lines as soon as
perfect steering is realised no matter what the vehicle configuration is and what the
elasticity of the suspensions and steering linkages is. One of the conditions allowing
perfect steering vehicles to achieve perfect steering is therefore to let the wheelsets roll
on their pure rolling line. This distance between the pure rolling line and the track
central line is determined by the curvature and the equivalent conicity, and should be
smaller than the maximum flange clearance. In order to achieve perfect steering, the
equivalent conicity of the perfect steering vehicles should be increased as the
curvatures become larger, and thus a special design for wheel profile would be
required for the applications of perfect steering vehicles in sharp curves (such as in
underground rajlways and light railways).

The effects of cant deficiency and curvature variation on the steering ability of the
perfect steering vehicles are much less than those of conventional bogie vehicles.
Although cant deficiency and curvature variation will cause the attack angles in perfect
steering vehicles, they do not much affect the lateral displacements of the wheelsets
from the pure rolling lines. This advantage of perfect steering. vehicles can much
reduce the possibility of flange contact.

The advantages of Model 1 and Model II on curving over the conventional bogie
vehicle are obvious. The capabilities of both perfect steering vehicles with regard to
cant deficiencies and alignment on transitions are much better than those of the
conventional bogie vehicle. The vehicle safety with regard to derailment and the

reduction in the wear for both rails and wheels are therefore much improved upon.

The most significant factor affecting the steering ability of Model I and Model II is the
geometric errors in their steering linkages, and thus the accuracy in the geometric
parameters of the steering linkages is very important.

It should be noted again that the perfect steering linkages are unlikely to be arranged in
the horizontal plane in practical applications.

These conclusions are based on the results and analyses in this chapter. They can be

used to estimate the influences of the system elasticity on the curving of perfect
steering vehicles, but the full understanding on the curving behaviour of perfect
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Chapter 3 Perfect

steering vehicles depends on the dynamic responses of perfect steering vehicles on

curves, which is a candidate for future research projects.

Table 3.1 The compatibility matrix of ModelI
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Table 3.2 The compatibility matrix of Model II
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Table 3.3 Stiffnesses and dampings of Model I

Stiffnesses: Set 1 Set 2
primary {ateral stiffness &, 6 MN/m 5 MN/m
primary rolling stiffness kp,, 1 MN-m - 1 MN-m
secondary lateral stiffness &, 0.1 MN/m 0.1 MN/m
secondary rolling stiffness Kog 1 MN-m I MN-m
linkage stiffness & 0.4 MN/m 2 MN/m
linkage stiffness &, . 0.4 MN/m 2 MN/m
linkage stiffness k., 8.5 MN/m 60 MN/m
linkage stiffness k5 8.5 MN/m 60 MN/m
other stiffnesses 0 0
Dampings:

primary rolling damping Cop 10 KN-m-s 10 KN-m-s
secondary lateral damping ¢, 60 KN-s/m 60 KN-s/m
secondary rolling damping cg, 60 KN-m-s 60 KN-m-s
other dampings 0 0
Table 3.4 Stiffnesses and dampings of Model IT

Stiffnesses: Set | Set 2
primary lateral stiffness kpy 8 MN/m 15 MN/m
primary rolling stiffness kp¢ 1 MN-m 1 MN-m
secondary lateral stiffness k'sy 0.6 MN/m 0.3 MN/m
secondary rolling stiffness &, 1 MN-m 1 MN-m
linkage stiffness Ky 0.12 MN/m 0.5 MN/m
linkage stiffness &, 5 MN/m 70 MN/m
linkage stiffness &, 5 MN/m 70 MN/m
other stiffnesses 0 0
Dampings:

primary rolling damping Cpo 10 KN-m-s L0 KN-m-s
secondary lateral damping cg, 60 KN-s/m 60 KN-s/m
secondary rolling damping Cst 60 KN-m-s 60 KN-m-s
other dampings ¢ 0
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Table 3.5 Stiffnesses and dampings of the conventional bogie vehicle

Stiffnesses:

primary lateral stiffness koy 40 MN/m
primary bending stiffness kpb 60 MN-m
primary rolling stiffness &, I MN-m
secondary lateral stiffness k, 0.1 MN/m
secondary bending stiffness &y, ! MN-m
secondary rolling stiffness k4 1 MN-m
other stiffnesses 0
Dampings

primary rolling damping Cps 10 KN-m-s
secondary lateral damping cg, 60 KN-s/m
secondary rolling damping Csp 60 KN-m-s
other dampings 0

Table 3.6a Alteration (%) of k., when geometric errors exist in Model 1

-10% -3% 0% 5% 10%
-10% 40.99 15.29 7.78 .86 -1.92
-5% 34.33 10.8 3.85 -2.59 -5.19
0% 27.97 6.44 0 -5.98 -9.98
5% 24.47 2.2 -3.75 9.3 -13.75
10% 16.12 -1.89 -7.39 -12.55 -17.36
Table 3.6b Alteration (%) of k,, when geometric errors exist in Model I
-10% -5% 0% 3% 10%
-10% 23.46 16.42 9.86 376 -1.92
-5% 17.22 10.8 4.81 -8 -5.19
0% 11.33 549 g -5.15 -9.98
5% 5.79 46 -4.56 9.3 -13.75
10% 0.57 -4.26 -3.89 -13.24 -17.36
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Table 3.7 Alteration (%) of k,, when geometric errors exist in Model I

-10% 5% 0% 3% 10%

-10% 2.02 0.81 -0.43 -1.07 -2.96
-5% 249 1.22 0 -1.28 -2.58
0% 2.51 1.27 0 -1.29 -2.59
5% 2.08 0.84 -0.43 -1.71 -3.0
10% 1.22 -0.01 -1.26 -2.54 -3.83

Table 3.8 Elastic forces Fy caused by geometric errors in the steering linkages

Model I Model I Model I Model 11

1, =1.155,1,=099 | I, =0945,1;=0.81 | [ = 099 I = 0.81
Y - 10.9576 KN 192213KN | - 4.7843KN 42398 KN
My 157828 KN - 164374 KN 47843KN| - 4.2398KN
My - 15.7828 KN 164374KN | -4.7843KN 42398 KN
My 10.9576 KN ~19.2213 KN 47843KN|  -4.2398KN
My - 12743 KN -84033KN | - 1.0362KN 1.3249 KN
Myrr 12743 KN 8.4033 KN 1.0362KN | - 1.3249KN
My 0 0 0 0
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Chapter 4

STABILITY OF PERFECT STEERING BOGIE VEHICLES

The steering mechanisms of Model I and Model II as well as their advantages in
curving over conventional bogie vehicles were studied in the previous chapter. In
order to achieve perfect steering, not only must the bending stiffnesses of perfect
steering vehicles be eliminated, but also their steering linkages ought to satisfy
certain conditions. These factors will promote some new problems with regard to
stability that do not occur in other classes of bogie vehicles. This chapter will
investigate the stability of Model I and Model II with special regard to the
instabilities, and the effects of system elasticity and damping on the stability.

4.1 Stability Criteria [104-105]

By applying the Laplace transform to a linear system, its Eigen-Equation can be
expressed as:

Shs = 0 @

=0
where, #/2 is the number of degrees of freedom.

If the system's number of degrees of freedom is not beyond a manageable quantity,
the system stability can be analysed by theoretical criteria expressed via equations.
The criterion of Routh[104] is used in this chapter to decide upon system stability,
which is that when n = 3, the necessary and sufficient conditions for a stable system
are:

p,>0, p>0, p,>0, A,=p, p,—p; p,>0 it p,>0 (4-2a)
and when n = 4, the necessary and sufficient conditions for a stable system are:

p;>0, p,>0, p,>0, py>0, Ay=pp,p,—pip,—pip, >0 (4-2b)
if p,>0
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If the Eigen-Equation Eq.(4-1) is a real equation, there are three ways in which a
transition from stability to instability can occur{104]:

1) A real root can cross from the left to the right half of the s-plane by moving along
the real axis and passing through the origin;

2) A root can cross from the left to the right half-plane as a result of its real part
jumping from -co to 4-o0;

3) A pair of conjugate complex roots having negative real parts can become
conjugate imaginary roots and then move into the right half-plane as conjugate
complex roots having positive real parts.

A system is on a stability boundary of the first kind if p, = 0 and all the remaining
stability conditions are satisfied; for when p, = 0, s = 0 is obviously a root of
Eq.(4-1). A system is on a stability boundary of the second kind if p, = 0 and all the
remaining stability conditions are satisfied; for when p, = 0, it is obvious that one
root of Eq.(4-1) tends to infinity. It can be proved[104] that a system is on a
stability boundary of third kind if A | = 0, where A, is the Routh's array, and all the -
remaining stability conditions are satisfied.

If po < 0 and all the remaining stability conditions are satisfied, there is at least one
positive real root for Eq.(4-1), and thus the system will be divergent unstable, whilst
the system is going to be unstable in an oscillatory manner if A, > 0 becomes
A,.; <0 and all the remaining stability conditions are satisfied. The condition py > 0
is therefore used to examine the divergent instability of a system, while the condition
A, > 0is used to inspect its oscillatory instability if all other stability conditions are
satisfied.

When the system's number of degrees of freedom is too large, it is impossible to
apply theoretical criteria as defined by equations in order to determine the system
stability. The most convenient method of studying the system stability is to apply a
numerical method in finding the eigenvalues of Eq.(4-1). The modes of stability and
instability are defined by Table 4.1, where the impulse response correspondent to
eigenvalue is illustrated. Only asymptotically stable modes are considered as stable
in this thesis because it is difficult to decide marginally stable modes in the numerical
calculation due to the accuracy of numerical solutions. Indeed, marginally unstable
modes are not real cases in a railway vehicle system because of nonlinear factors,
and therefore, the necessary and sufficient conditions for a railway vehicle to be
stable in numerical solutions are:
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Real(}) < O (4-3)

Referring to Eq.(2-17), the Eigen-Equation of arailway vehicle is defined by:

[AX-J| = 0 . 4-4)

where,

0 I
= 4-5
1 [—M" (G+C) —-M“'(N+E)] *-3)

Table 4.1 The definitions of stable and uﬁstable modes[104]

Lacation of characterisfic .
roots in 5~ Impulse response
w x(rq
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w x{:
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4.2 Eigenvalues of Bogie Vehicles

For a bogie vehicle defined by Eq.(2-17), Eq.(4-4) produces seventeen pairs of
eigenvalues that are illustrated in Fig.4.1 as functions of vehicle speed. Each
eigenvalue is represented by two curves (one for real part and another for imaginary
part) with the same mark in the same diagram. The unit of imaginary parts of
eigenvalues in Fig.4.1 is frequency f (1/s).
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Figure 4.1 Eigenvalues of the conventional bogie vehicle
as function of speed, A = 0.2

Three pairs of eigenvalues with small frequencies and small absolute real parts have
a little alteration versus the vehicle speed. These three eigenvalues are mainly
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associated with the carbody motions, as illustrated in Fig.4.la. Since this
conventional bogie vehicle is fore-and-aft symmetric with regard to elasticity, the
performance of the leading bogie and the trailing bogie with regard to stability
should be very similar. The eigenvalues mainly linked with the bogie motions are
illustrated in Fig.4.1b, where each pair of curves stands for two cigenvalues, giving
six pairs of the eigenvalues in this diagram. Another eight eigenvalues mainly
associated with wheelset motions are displayed in Fig.4.1c-f where each pair of
curves represents two eigenvalues. Four of the eight eigenvalues as displayed in
Fig.4.1c have very large negative real parts and their imaginary parts are zero when
the vehicle speed is low, while other four of the eight eigenvalues associated with
the wheelset motions have the frequencies that are close to the kinematic frequency
w= 2nf=v, %oro [5] of unconstrained wheelset, as shown in Fig.4.1d&f

Two of the eigenvalues with frequencies close to the kinematic frequency have the
real parts that become positive as the vehicle velocity increases, as seen in Fig.4.1d,
and other two eigenvalues of which real parts and imaginary parts are separately
displayed in Fig.4.1e&f have the big negative real parts as seen in Fig.4.le. The

results in Fig.4.1 indicate that the instabilities of this vehicle are mainly associated |

with the wheelset motions.

If the inter wheelset shear stiffness is zero, the sub-elasticity matrix E; of a bogie
can be written as:

Yar War Yoz W2 1 Ve dr
'x 0 0 0 x X x ]
0 kK 0 &%k O -~k 0

0 0 %x 0 x X X

E. = [0 &k 0 &k 0 ~k 0 (4-6)

x 0 x 0 x X X
X =k X =k O (k+k;+%x) O

X 0 x 0 0 0 0 |

where, X presents non-zero elements.

For a conventional bogie vehicle, k, = k; = k,,, and k, = 0 if there is no direct
connection between the outboard and inboard wheelsets. For Model I and Model
11, k,, &, (=0 for Model I) and &, are contributed by the steering linkages. This
indicates that the effective stiffnesses of the steering linkages are at the positions of
the primary yaw stiffness of the conventional bogie in the elastic sub-matrix E,
which means that the steering linkages provide the constraints for wheelset and
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bogie yaw motions. From this point, the effects of the effective stiffnesses in the
linkages on the stability can be considered equivalent to those of the primary yaw
stiffness in conventional bogie vehicle.
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Figure 4.2 Some of eigenvalues of Model I as function of speed,
A = 0.2, stiff linkage
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Figure 4.3 Some of eigenvalues of Model II as function of speed,
A =0.2 and stiff linkage

Some of the eigenvalues of perfect steering vehicles are displayed in Fig.4.2 (Model

I) and in Fig.4.3 (Model II) separately when the wheelset conicity A = 0.2 (the

parameters of Set 2 in Table 3.3 and Table 3.4 being used in these figures). The
eigenvalues in Fig.4.2a and Fig.4.3a are associated with the wheelset motions since
their frequencies close to the kinematic frequency of wheelset. The tendency of the
eigenvalues of wheelset in Fig.4.2a and Fig.4.3a is similar to that in Fig.4.1d while
the eigenvalues of the bogie motions in Fig.4.2b and Fig.4.3b are consistent with the
results in Fig.4.1b. This indicates that the stability of the perfect steering vehicles
well matches that of conventional bogie vehicles when conicity A = 0.2. The
eigenvalues associated with the kinematic frequency of wheelset in Model I and
Model II are slightly different from those of the conventional bogie vehicle. These
two eigenvalues in Model I and Model II are slightly split, which implies that one of
the bogies is more stable than the other. The reason for this is that the bogies are
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not symmetric with regard to elasticity due to elasticity of the outboard wheelset not
being equal to that of the inboard wheelset when the’ steering linkages exist. The
difference of stability between the leading bogie and the trailing bogie has been
noted and explained by Wickens[7,25] when the elasticity of the bogie is
asymmetric, and this fact will be studied further in this chapter.

4.3 Instability Modes of the Perfect Steering Vehicles

The various instabilities of Model I and Model II are shown in Fig.4.4 where the
critical speed is a function of conicity. Both Model I and Model I will be unstable
if the conicity is less than a certain value, as is seen in Fig.4.4, and this physical
phenomenon is called low conicity instability. There are two instabilities associated
with low conicity: when the conicity is very low, the critical speed is close to zero,
and thus this instability is called low speed instability that is labelled by D in Fig.4.4;
and then the critical speed will increases as the conicity rises when the conicity is n
the range indicated by O2 in Fig.4.4, and the instability in O2 is called dynamic
instability in low conicity since the critical speed is much greater than zero. The
critical speed in the arca marked by Ol in Fig.4.4 decreases as the conicity
increases, and the instability in O! is called conventional instability that also occurs

in conventional bogie vehicles.
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4.3.1 Low Speed Instability in Low Conicity

When the conicity is very low, instability occurs and the critical speed is very low, as
is shown in Fig.4.5. The results in Fig.4.5 show that the frequencies of low speed

instability are very close to the kinematic frequency @ = 2w f =y, % . of
00

unconstrained wheelset, which indicates that the low speed instability of Model I
and Model II is associated with the wheelset motions. Low speed instability can be

either static (divergent) or oscillatory since the wave length & = a(,% of this
©

motion is not zero even when ® — 0 and v, — 0. Another feature of low speed
instability is that only one of these eigenvalues throughout each perfect steering
vehicle has a positive real part, which implies that low speed instability only occurs

in one of the bogies.
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(a) real parts (b) frequencies
Figure 4.5 The wheelset eigenvalues as function of speed
when conicity A = 0.02, * -- Model I, + -- Model II

4.3.2 Dynamic Instability in Low Conicity

The eigenvalues of unstable motions are illustrated in Fig.4.6 when A = 0,04, The
frequencies of these motions in each perfect steering vehicle are very close to those
illustrated in Fig.4.1, which means that the motions represented by the eigenvalues
are the same in both types of vehicle. Since the frequencies of these motions are
close to the kinematic frequency of wheelset, the unstable motions are associated
with the wheelset motions. The difference between each perfect steering vehicle
and the conventional bogic vehicle exists in the real parts of the associated
eigenvalues. In the conventional bogie vehicle (Fig.4.6a), the real parts of the two
cigenvalues are very close, which means that the performance in stability of both the
leading and trailing bogies is very similar. In each perfect steering vehicle
(Fig.4.6c), the real parts of the two eigenvalues split as the speed increases, which
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means that one of the bogies turns unstable while another becomes more stable. It
has also found that dynamic instability in low conicity disappears if the steering
linkages are too stiff or too soft, which will be studied further in section 4.5. Since
low speed instability and dynamic instability in low conicity both happen in low
conicity, the term low conicity instability includes both of them.
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Figure 4.6 The eigenvalues (as function of speed) associated
with the wheelset motions when A = 0.04

4.3.3 Conventional Instability

The critical speed of the perfect steering vehicles decreases as the conicity increases
in conventional instability, as seen in Fig.4.4, The eigenvalues of the unstable
motions are displayed in Fig.4.2a (for Model I) and Fig.4.3a (for Model II) when
conicity A = 0.2. Since the frequencies of the motions approximate to the kinematic
frequency of wheelset, the unstable modes are related to the wheelset motions. The
real parts of the two pairs of eigenvalues are very close, which means that the
performance of the leading bogie in conventional stability is similar to that of the
trailing bogie in Model I and Model II. The fundamental difference between
dynamic instability in low conicity and conventional instability, therefore, is that only
one of the bogies is unstable in dynamic instability in low conicity whilst both bogies
are unstable in conventional instability. The conventionally unstable mode occurs in
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any class of bogie vehicle and has been well studied[67-74]. In this chapter, the
mechanism of conventional instability is, therefore, not included, but the influences
of steering linkage elasticity on the conventional instability of Model I and Model II
will be investigated in section 4.5.

4.4 Theoretical Analysis of Low Conicity Instability

Bell and Hedrick([12] as well as Smith, Anderson and Fortin[15-16,19] have studied
low conicity instability of body-steered bogie vehicles in 1980's, and more recent
contribution has been made by Wickens[28] when he investigated the stability of
one kind of perfect steering vehicle. This section applies the stability criteria on
bogie sub-systems and theoretically explores the mechanism of low conicity
instability for perfect steering vehicles.

4.4.1 Bogie Sub-Systems

When the vehicle forward speed is low, the carbody can be considered as the inertia
reference. Since the primary suspension is stiff, the wheelsets can be assumed to be
pinned to the bogie frames. It is also assumed that the roll motions are very small
and can be ignored. Using these assumptions, the'bogies of Model I and Model II
can be simplified to those as shown in Fig.4.7. Smith, Anderson and Fortin[15,19]
assumed that the bogie frames were pinned to the carbody, and thus there were only
three degrees of freedom in their bogie sub-system, these being the wheelset yaws
(Vyor W) and bogie frame yaw (y;). For most bogie vehicles, however, the
secondary suspension exists and is very soft, and the bogie frames can thus have a
large lateral movement related to the carbody as compared with its yaw motion.
Wickens[28] has considered this lateral motion (y;) of the bogie frame in his bogie
sub-system, and thus there are four degrees of freedom in his model. In this sub-
section, both the bogie sub-systems are used to study low conicity instability of
Model I and Model 11

Referring to Fig.4.7, the lateral displacements of the wheelsets in the models are
defined by:

For the bogie sub-system with three degrees of freedom

Yo = aVYq and Yi = —avVy, (4-7a)
For the bogie sub-system with four degrees of freedom
Ywo = @VWrtyp and Yi = —aVWgptyp (4-7b)
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Figure 4.7 Simplified bogie models
The lateral creepage forces F, and F, are therefore determined by:

For the bogie sub-system with three degrees of freedom
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For the bogie sub-system with four degrees of freedom

2 .
Fwo = _[% (awT+yT)_2f22wwo]

L]
2 .
R = =B atn i -24 vl (4-8b)
o]

For Model I, the dynamic equations of the bogie sub-system with four degrees of
freedom are:

. Daif. .

Iwwwo + Mwwo + 2a—()f‘[&‘)’\’\rt) + klwwo - kZWT = O
Vo o
2

Iw{]'.’wi + M\E’M + M)’m + kY, - ky; = 0
Vo f

Liyy + ky, - by, - kv, = aF, - aF;

my. = F, + F, (4-9)

where, the definition of each stiffness k; can be found in Eq.(3-2). For Model II, the
dynamic equations for the bogie sub-system with four degrees of freedom can be

derived as:
2
Iw ll’wo + 2a0fi1 lilwo + 2'aﬂﬁth-yv\m +k["l’wo +k2wwi _kSII',T = 0
Vo hy '
2
I, \T’wi + 280fy Wm + 2a0f,17t Vi TR+ —ky, = O
Vo A
Ly, + ke — kv, - Ky, = aF, - aF,
m]'j';T = Fwo + Fm (4—10)

where, each £; can be found from Eq.(3-5). For the bogie sub-systems with three
degrees of freedom, only the first three equations in Eq.(4-9) (Model 1) and in
Eq.(4-10) (Model I1) are of concern.

4.4.2 Instability at Low Speed

. d . .
By letting % = —— =y, e replacing F, and F; by Eq.(4-8b), using v, — 0

and then by applying the Laplace transform, the dynamic equations of the bogie sub-
system with four degrees of freedom for Model I become:

(202 5+ k) g (5) + (C2IE g 3G (5 + 2%0TiR 5 (5=

By 1y
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Qalf, s+ k), (5)— ( % ”la+k W (s) + =21

s )

24,

Yr(s)=0

(4a° fo5 + ks W (8) = (2af, + k)W, () +(2af,, — k)W, (5)=0

2552(5) = Yols) = Guls) = 0

(4-11)

For the system with three degrees of freedom, only the first three equations above

and y; = 0 are of concern. The Eigen-Equation of the bogie sub-system is defined

by:

For the bogie sub-system with three degrees of freedom:

PSS + pst + ps + p =0 (4-12a)
For the bogie sub-system with four degrees of freedom:

pst + ps + pst + ps + p, =0 (4-12b)
where, for Eq.(4-12a),

p, = 4dasfixdd’f,

P = zagf;l x4a2f22(kt +k3)+4a3f;?ks

P = 2a5f(k +k)ks +4a’ ok, + 200 f,, (0,8, — 00,8,)

o = kkk,—ko,p, + k0B, (4-13a)
and for Eq.(4-12b),

P, = 4a§flf ><4a:2f22

Py = 24 f, x4 f,(k, + k) +da]fik,

Py = [2agfy,(k +k)ks +4a’ frlky + 2ag f;, (0B, — 0,B,)]

+Sag‘12f|?fzz 'y
5
p = [hkk —ko,B, +oB )+
+£a—(;f—“&[zazfzz (ky + Ky} + ag £k )
0
ayfi A
P - _o;fi_[(kl + &y Yes + (0, + o,)(PB, — Bz)] (4-13b)
[}

and

o = (25%hiy g, a, = (F%%ny )

K s
B, = (2afy t+k) B, = (k, —2afy)
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The system with three degrees of freedom will be discussed first. To satisfy the
necessary and sufficient conditions of stability in Eq.(4-2), all the coefficients in the
Eigen-Equation must be greater than zero, i.e. p; > 0. It is obvious that p, > 0 and
P, > 0, and it can be easily proved that p, > 0 if A > 0. From p, > 0, it can be

proved that the wheelset conicity must satisfy the following condition:

r,  (kki+kE —kkk)+2af, (kk, —kk,)
2a,f,a 2af,, (k, + k) + Ik, — kk,

A >

(4-14)

For a conventional bogie vehicle with fore-and-aft symmetric configuration, we
have k = k, = k; = k, = ks/2, and thus it js divergent stable if A > 0.

For Model I, referring to Eq.(3-2), &'s in Eq.(4-14) are defined by:

k& == glzkel’ ky = 8&k, ky = gikezs
k, 8485k ks = gzzkel + 3?‘7%2’ S T &

I

So, we have

kk? + k2 — k ks = 0.

and
kk, - kk, = 313 (& — &)k, k,

Thus, Eq.(4-14) becomes:

hotn 2,(8, — &) (4-152)
ayfy 2af, (1 k, +1/k,) + g(2, — &)

Since g = bl, g = b({,+1), g = bl and that the geometric
parameters of the steering levers in Model I must satisfy Eq.(3-15) (the sufficient
condition for Model I capable of perfect steering), we have

7 b1
OfZZ - 270 o = E-’ (4-15]3)
a.fy @ f (U k, +17k,)+ b°I2l,

If &, = k, and k,, = k,, in Eq.(3-1), we have k,, = £, and Eq.(4-15D)
becomes:
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RS oS lolzzbzke
ap ki, 2azf22 +lolzzb2ke

= (4-15¢)

Since Eq.(4-14) and Eq.(4-15) are deduced from p, > 0, the instability will be
divergent if Eq.(4-15) does not exist. In other words, the bogie sub-system with
three degrees of freedom is a divergént unstable system if A < &. Indeed, the Eigen-
Equation Eq.(4-12a) of the bogie sub-system with three degrees of freedom is a
third order equation, and for a third order equation, at least one real root exists.
This indicates that the bogie sub-system with three degrees of freedom has a non-
oscillatory motion that will become divergent unstable when A < .

The oscillatory instability can be investigated by applying the condition A, =
Dy PPy P >0. If p, p,— p; p, >0 exists, the oscillatory motion of the system

is stable, otherwise, it is unstable. From this condition, the following restriction for

conicity can be derived:

k,—k
nofn _ (k, — k) - A =€ (4-16)
aofyy 4afy + K —k,
where,
r[4k? +2aikk,/a® — k2 — k2]

, = >0
2aqaf,,(4af,, +k,—k,)

For fore-and-aft symmetric conventional bogie vehicles, k, = k, and { < 0, and thus,

the oscillatory motion of the bogie sub-system of a conventional bogie vehicle with
fore-and-aft symmetric configuration is stable if A > 0.

For Model 1, it is obvious that & > { is true if the same definitions of £,'s as those
in Eq.(4-15) are used. In order to let £ > 0 in Eq.(4-16), the effective stiffness &, (=
k,, = k,,) must satisfy the following equation:

R 10 ) M @-17)
4a°g —(a" —2a,)(g, +g5)

This means that oscillatory instability at low speed occurs when the steering linkage
is soft and also implies that soft steering linkage promotes this instability. The
physical cause of oscillatory instability at low speed is the constraint of wheelset in
yaw motion being too weak to hold the wheelsets if the steering linkage is too soft.
This is true as only the steering linkage provides the constraint for wheelset yaw
motion in Model I and Model II.

86



Chapter 4 _Stability of Perfect Steering Bogie Vehicles

Investigation of the bogie sub-system with three degrees of freedom identities two
instabilities at low speed: the divergent instability and the oscillatory instability. The
system is both divergent and oscillatory unstable if A < {; divergent unstable but
oscillatory stable if { < A < & or; both divergent and oscillatory stable if A > &, Stiff
steering linkage will promote divergent instability and increase & while soft steering
linkage will develop oscillatory instability and increase {. This bogie sub-system
also demonstrates that low speed instabilities do not appear in fore-and-aft
symmetric conventional bogie vehicles.

For the bogie sub-system with four degrees of freedom, we have p, > 0 and p, > 0,
and since p, in Eq.(4-13b) is larger than p, in Eq.(4-13a) if A > 0, we have p, > 0 if
A > 0. For divergent stability, the following relationship can be derived from p, > O:

A>0
and
r,  A4af,(k,—k)+(k,~ &:4)2 — (k, + k; )}k,

3 (4-18a)
4a,af;, 4af,, + kz -k,

For a fore-and-aft symmetric conventional bogie vehicle, the condition p, > 0 exists
if A > 0 due to k, = k,. Using the definitions of ;s in Eq.(3-2), this relationship

becomes:

A > b @ -s)-s( ek _ g (4-18b)
4a0af“ 4af22 +(g, - &s )kc

For E >0, we have
Aafy (8, — 85) -8 (8 +8)'k, > 0

Thus, the conditions p, > 0 and A > 0 can only be satisfied if

4a)22(gz—g5) da(l, +1,~ f
g (g, +g) b+l +1!)2 2 btl

fﬂ ~0.4f, (4-18c)

The formulae in Eq.(4-18) indicate that the bogie sub-system can be divergent
unstable if the steering linkage is too soft.

The condition of oscillatory stability can be obtained from:

Az =PPy Py _PFP:; "P:?Po >0

87



Chapter 4 _Stability of Perfect Steering Bogie Vehicles

which can be rewritten as:
P PP — PPy '-'p32p0 /p)>0
This condition can be divided into two conditions:

i) p>0 and PaPy— Dy —p:polpl >0 or,
i) p,<0 and  p,ps—pp—piP/ P <0

The condition ii) cannot be true because the system would be unstable and
D,y = P1Ps— Paby ! p, >0 if p; <0, and thus only the condition i) is valid to decide

the system stability. For p, > 0, the following condition is obtained:

2o _To (ki +kkd — kkoks) + 2af,, (kpky — kik,) T
2a,f,, al2afy, (k, + k) +kk, —kk, )+ [2a° f,, (k + k) + 2al £, k5]
(4-19)
For a conventional bogie vehicle with fore-and-aft symmetric configuration, we

have k, = k, = k3 = k, = ks/2, and thus it is oscillatory stable if A > 0. Applying
k's defined by Eq.(3-2) to Eq.(4-19), we have:

o> oS 28, — &) =z (4-202)
aofyy Bafy 1k, +8(8, —8s)+ Zagfil(gg +g§)/(aglzke)

and by applying the condition Eq.(3-15) for Model I capable of perfect steering, the
above expression becomes:

rofn b llg ly

=C 4-20b
aof,, 4a’fy, 1k, + 0Ll +2a(a* + ) f, 1 (Lk,) S ( )

>

Another condition for stability can be derived from p,p, — p,p, ~ pip,/ p, >0, but

the process in finding it is very complex and is not necessary to present here with
regard to the purpose of this section.

The application of the bogie sub-system with four degrees of freedom can also
identify two instabilities at low speed: the divergent instability and the oscillatory
instability. Since { > & exists, the system is both divergent and oscillatory unstable
ifA < E; oscillatory unstable but divergent stable if E <A< E or; both divergent

and oscillatory stable if A > E Stiff steering linkage promotes the oscillatory
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instability and increases E while soft steering linkage develops divergent instability
and increases &. This bogie sub-system also demonstrates that low speed

instabilities do not appear in fore-and-aft symmetric conventional bogie vehicles.

For the bogie sub-system with three degrees of freedom, there are two low speed
instability modes: divergent and oscillatory. Oscillatory instability occurs in much
lower value of conicity than does divergent instability. For the bogie sub-system

with four degrees of freedom, there are also two low conicity instability modes:
| divergent and oscillatory, however here, divergent instability occurs in much 1dwer
value of conicity than does oscillatory instability. The low speed instabilities
illustrated in Fig.4.5 are oscillatory because the frequencies are greater than zero
and are associated with the kinematic frequencies of wheelset. In the development
of Eq.(4-15), Eq.(4-16), Eq.(4-18) and Eq.(4-20} and in the resuits of Fig.4.5, the
condition of k, = k,; = k, is used. Referring to the results derived by Wickens{28],
low speed instability is oscillatory when k, = k,; = k,,.

Applying the parameters given in Table 3.3 to Eq.(4-15) and Eq.(4-19), we have:

£ = 0.0167 and { =0.0073 (for the soft steering linkage Set 1) and,
' £ =0.092 and E = (.043 (for the stiff steering linkage Set 2).

From the results in Fig.4.4a&b, low speed instability occurs when the conicity is less
than 0.01 for the soft steering linkage and less than 0.035 for the stiff steering
linkage. The conditions derived from the bogie sub-system with four degrees of
freedom are thus more close to the simulated results than those derived from the
bogie sub-system with three degrees of freedom.

For divergent instability, the following explanation has been widely accepted
[12,15,19,28]. Steering forces produced by steering linkages effectively reduce the
longitudinal creepage force, and when the conicity is low, there is not enough
longitudinal creepage force to restore the wheelsets back to their balance position as

soon as the wheelsets have yaw motion, and thus divergent instability occurs.

€ and E are both called the minimum conicity, and Eq.(4-15) and Eq.(4-20) show
that € or Z depend on the geometric parameters b and / of the levers of steering

linkages as well as the vehicle geometric parameters a and ;. Obviously, any gain in
b, I, and I, will increase the steering effect and promote low speed instability, whilst
long wheelset base a will decrease the steering effect and thus stabilise the system.
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Eq.(4-15) and Eq.(4-20) indicate that low speed instability will occur even in high
conicity except when one of the effective stiffnesses k, and k, is zero.
Unfortunately, the degeneracy P of the elastic matrix E is greater than 4 if any of the
effective stiffnesses is zero. The perfect steering vehicle cannot be stable at all
because the necessary condition of stability Eq.(2-25) is no long satisfied. Low
speed instability is thus unavoidable in the perfect steering vehicle if conicity is too
low or if the steering linkage is too stiff. This is one of the basic features that
distinguishes perfect steering vehicles from other body-steered bogie vehicles.
Theoretically, if a body-steered bogie vehicle possesses primary and secondary yaw
stiffnesses, it can have non-zero critical speed even if its effective stiffnesses in the
steering linkages are zero because the degeneracy of its elastic matrix E still equals
or less than 4.

ToJx

W

The minimum conicity (§ & -C-) — when k&, — oo, which means that the

minimum conicity also depends on contact parameters. If f,; > f,,, the minimum
conicity reduces, and the physical reason for this is that a larger longitudinal
creepage coefficient produces a larger creepage yaw moment, which can resist the
wheelset yaw motion promoted by the steering linkage, and that a smaller lateral
creepage force ﬁrields a smaller moment that forces the bogie frame to have a yaw
motion so that the minimum conicity is reduced. A larger gauge a, means that the
arm of the longitudinal creepage moment becomes longer, and so increases the
moment and reduces the minimum conicity.

By applying the similar analyses to Model II, the Eigen-Equation of Eq.(4-15) is:

For the bogie sub-system with three degrees of freedom:

P, + pst 4+ ps + p, =0 (4-21a)

For the bogie sub-system with four degrees of freedom:
pst + p,s + pps + ps 4+ p =0 (4-21b)

where, for Eq.(4-21a),
Py = 4613]‘;? x4a2f22
P = 2af; x4a’ f, (k, +k,) + 4ag fiks

po= 2a0f, Uk +k)ks + 40" fokk, + 200 £, (0B, — 0,8,) — 40’ fiu K]
po = kkk - klaZﬂZ + k4051B1 - kzzks +ky (0,3, —o1,,) (4-22a)
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and for Eq.(4-21b),

Py = A fixda’fy

py = 282fyx4a fy, (K, + k) + dal £k,

P = [2a§f;1 (k1 + k4)k6 + 4a2f22ktk4 + 203]‘;1 (a‘lBI - azﬁz )= 402-)(.221(22]
. 8aja’f:f, A

ro .
P = kkk _klazﬁz +koB - kzzks +k2(azl3r —aIBZ) +
+-2ﬂﬁ&[2a2fn(k, +k, — 2k,) + 242 f k]
)
= Shhig sk, ok - 2
Py = [(k, + k4 —2k,) 6+(a]+a2)(ﬁl B,)] (4-22b)
0
and

2 2

o, = —~—-—2a°f“la—k3 o, ——2‘51"jr”7"c1—l~‘lc5
X K

B, = 2f,a+k, B, = k —-2fna

For the bogie sub-system with three degrees of freedom, divergent instability will
occur if p, > 0 in Eq.(4-22a); so we have

y fzz[kz(kz+k4) _ks(k1 +k2)]
aof,, 2af, (k + 2k, + k) + ky(k, + k, ) = k. (k, + k,)

+ II (4-23)

where,
A k (k2 + K2y +khs — 2k kg — kok?
2a,f,a 2af, (k + 2k, + k) + k,(k, + k) — k (k, + k,)

For a conventional bogie vehicle with fore-and-aft symmetric configuration and
without inter wheelset connection, wehave k, = k;, = k, = k; = kJ/2 and k, =0,
and thus it is static stable if A > 0. For Model II, using the definitions of k's in
Eq.(3-5), it can be proved that IT = 0 and Eq.(4-23) becomes:

fofn : r__ =& (424a)
tofiy 2af IR (11 R, +1/ k) + 487k, 1y IRy 1+ T

where .
T = g(g—8) + 888 /k,—8/k, )k,

Eq.(4-24a) is different from Eq.(4-15a) since the effective stiffness k,, exists. If k,,
= kyp b = [ and %, = k, = k, and by applying the condition Eq.(3-16) for
Model II capable of perfect steering, we have k, = k, and (ky - k) = 202k Pla
and Eq.(4-24a) becomes:
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7o S b1k,
a,f,, 2a°f, + LIk,

> {4-24b)

Here, Eq.(4-24b) is exactly the same as Eq.(4-15c), which means that a bogie sub-
system with three degrees of freedom cannot distinguish the divergent instability of
Model I from that of Model II.

The condition of oscillatory instability for Model II can be derived from the
condition p, p, — p, p, >0, and is:

[4k,(k, + ajks 1 a” 12) — k2 =K2J(k, + a3 ks 1 a® / 2))

A>E—To ~da’k k2l al - 2k kK, - ¢
2aay fy, (4afy, +k,—k,)k +alk, 1a* 12—k,)

(4-25)

It can be also proved that & > £ and that the effective stiffness &, must be less than a
certain value if £ > 0. Eq.(4-25) thus demonstrates that the perfect steering vehicle
will be oscillatory unstable in low conicity if its steering linkage is too soft.

Since the bogie sub-system with four degrees of freedom will be divergent unstable
if py > G in Eq.(4-22b), we have:

A > o (dafy + ks —k )k — k) — ko (k + R, ~2k) T
4aa, f;, 4af,, +k, =k,

To let & >0, the effective stiffnesses k,; and k,, must satisfy:
(8, +85)'k, + 28k, < dafy(g,—8)!sg (4-26)

Oscillatory instability will not happen if A, = p,p,p,—p;p, — p2p, >0 which can
turn into the conditions p, > 0 and p,p, — p,p, — p2p,/ p, >0, and thus the bogie
sub-system with four degrees of freedom to be.oscillatory unstable if p, < O, the
condition being:

1o for (ky +k, )y — k) = T (4-27)

>
aofyy Safypk, +(k +k,) (k, ~ k) +2a3 f, ksl a
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For a conventional bogie vehicle with fore-and-aft symmetric configuration and
without inter wheelset connection, we have k, = %43 = ky = k5 = k/2and k, =0
such that A > 0 exists, and thus it is oscillatory stable.

The effective stiffness k., is included in the condition Eq.(4-27) but disappears in the
condition Eq.(4-24), which implies that the bogie sub-system with four degrees of
freedom more closes to the physical system. Moreover, the condition Eq.(4-19) for
Model I to be oscillatory stable at low speed is different from the condition Eq.(4-
27) for Model II to be oscillatory stable at low speed, which means that the
conditions obtained from the bogie sub-system with four degrees of freedom can
distinguish the difference between Model I and Model 1I with regard to oscillatory
instability at low speed, and thus the bogie sub-system with four degrees of freedom
is more accurate than the sub-system with three degrees of freedom.

For Model II, from Eq.(4-24b) and Eq.(4-27), we have

& = 0.0288 and E = 0.022 for the stiff steering linkage (Set 2) and,
€ = 0.0053 and E = (0.0045 for the soft steering linkage (Set 1).

These resuits are very close to the simulated results in Fig.4.1b, where low speed
instability does not happen even if the conicity is equal to 0.005 with soft steering
linkage, but happens if the conicity is less than 0.03 for stiff steering linkage.

The above analysis can only be applied to the leading bogie. With regard to the
trailing bogie, some of the elements in the matrix defined by Eq.(3-2b) and Eq.(3-
5b) will change position. For the trailing bogie: &, becomes &, and k, becomes k,,
and therefore, the minimum conicity & and { becomes negative for the trailing
bogie, which means that the trailing bogie will be stable at low speed when the
vehicles move forward, but it will be unstable at low speed when the vehicles move
backward. Low speed instability in low conicity therefore only appears in one of the
bogies and depends on the direction of the moving vehicles. The analysis in this
sub-section can be applied to other body-steered bogie vehicles, since the bogie sub-
systems in Fig.4.7 have the general features of body-steered bogies. The steering
linkages of other body-steered bogie vehicles, however, do not need to satisfy
perfect steering conditions .

From Eq.(4-15a) to Eq.(4-15b) and from Eq.(4-20a) to Eq.(4-20b), the condition
Eq.(3-15) for Model I capable of perfect steering is used, which means that the low
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speed stability of the perfect steering vehicle is also affected by the perfect steering
condition. For other classes of body-steered bogie vehicle, however, perfect
steering is not required and thus the minimum conicity can be zero, for example, § =
E =0 if g, = g5 (i.e. I| + I, = I;). This analysis implies that low speed instability can
be eliminated for body-steered bogie vehicles if perfect steering is not required. The
similar analysis can be applied to the configuration of Model II, in which condition
eliminating low speed instability is k; = k5. It should be noted that the condition
PsDs— DDy — PaDy ! P, >0 has not been discussed, and that primary and secondary
yaw stiffnesses are not included in the above analysis, and thus low speed instability

of other body-steered bogie vehicles may still occur evenif g, = g; or k; = k..
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Figure 4.8 The critical speed contours as function of k,| & &,

The results in Eq.(4-17), Eq.(4-20), Eq.(4-24) and Eq.(4-27) show that the
minimum conicity will increase as any of the effective stiffness increases and that
low speed instability not only occurs in low conicity, but also occurs in high conicity
if the steering linkage is too stiff. The simulated results in Fig.4.8 illustrate the
various situations: when the effective stiffness is approximately 107, the critical
speed can be very high if conicity is less than 0.1; when the effective stiffness
increases to 108, the high critical speed can be achieved only when conicity is
greater than 0.15; when the effective stiffness is close to 10°%, low speed instability

occurs at any conicity.
4.4.3 Dynamic Instability in Low Conicity

If the inertia of the mass components is taken into account, by reviewing the modeis
in Fig.4.5 and letting
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2
s = pt 4 2%fup where, D=-%
Iy, dt

The dynamic equation Eq.(4-9) for the bogie sub-system with three degrees of
freedom becomes:

k 2a, f, A k

g 4+ S + (Zduh . B - 0

( Iw )wwo ( Iwro a Iw )WT

s + By, - Eebr, 4 Ky 2o (4-28)
1, 15 1,

(S + ES—)IPT —_ Mz_\pw‘) + Mwwi = 0
I; I I;

If the difference between 2a%1; and 2a3/1,, is neglected, the Eigen-Equation is:
S+ pST + pS + pp =0

For the condition p, > 0, we have:

o 2af, (kky ~ ik, )+ (2 +kkE = 1k kky 1 1,)
2a,f,a 2af, (k, + k) + k k, — ki,

A >

(4-292)

or
ro  kki+kks —Ikik /I,

A >
¢ 2a,f,a 2af, (k + k) + k,k, — Kk,

= &, (4-29b)

It has been proved that kk. +k k> —kkk, = 0if k's come from Eq.(3-2). So,

we obtain:
kki + kki - Lkkk /I, > 0

Because of I, / I < 1, we have &, > &, which means that dynamic instability in low
conicity happens at a higher conicity than that of low speed instability in low
conicity. A similar result can also be obtained for Model II. These results cannot
explain fully and precisely the physical reasons for dynamic instability in low
conicity, since the carbody can no long stand for the inertia reference when the
critical speed is much greater than zero. These results, however, at least indicate
two facts: dynamic instability in low conicity occurs in higher conicity than low
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speed instability and, dynamic instability in low conicity only happens in one of the
bogies.

The real reasons causing dynamic instability in low conicity may depend on the
following factors. The damping produced by longitudinal creepage decreases as the
vehicle speed rises, and in the leading bogie, the forces yielded by the steering
mechanism always have the tendency to force the wheelsets to a yaw. When the
forces generated by the longitudinal creepages reduce to such a level that they
cannot eliminate this tendency as the vehicle speed increases, dynamic instability in
low conicity occurs.

4.5 Influences of the Parameters in the Steering Linkages and
Suspensions

The connection between the wheelsets and carbody has an effect on the increment
of wheelset base, which can improve vehicle stability, while the elastic sub-matrix of
bogie in Eq.(4-6) shows that the effective stiffnesses are on the positions of the
primary yaw stiffness in the matrix, which means that the wheelset yaw motion is
only constrained by the steering linkage in perfect steering vehicles. These two' |
effects imply that a stiff steering linkage can increase the critical speed of the perfect
steering vehicles. On the other hand, the last section demonstrated that the stiffness
of the steering linkages is restricted by low conicity instability (low speed and
dynamic}, and cancellation of the primary and secondary yaw stiffnesses in perfect
steering vehicles weakens their suspensions. All of these factors will affect the
behaviour of vehicle stability, and thus it is necessary to investigate these factors in
greater detail.

4.5.1 Conicity

When the conicity is low and the steering linkages are stiff, three kinds of instability
(low speed instability, dynamic instability and conventional instability) are very
obvious, as shown in Fig.4.4b&d, however, the results in Fig.4.8 show that low
speed instability occurs for any conicity if the steering linkages are too stiff. Further
investigation has been carried out to identify the modes of instability for various
conicities, and has found that the dynamic instability zone O2 disappears as the
stiffness of the steering linkages increases and that the unstable mode possesses the
features of both conventional instability and dynamic instability in low conicity when
the conicity is close to the minimum conicity, as seen in Fig.4.9 in which one of the
bogies loses stability at much lower speed than the other, but the tendency of the
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rea] parts of the two eigenvalues is similar. The tendency of the real parts seems to
be a feature of conventional instability while the unequal critical speeds between two
bogies are a feature of dynamic instability in low conicity.
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Figure 4.9 The eigenvalues of unstable modes of Model I
as function of speed when &k, =k, = 108 and . = 0.1

Another interesting result is illustrated in Fig.4.10 where there is an optimal zone for
the effective stiffnesses of Model I. The critical speed can be very high if the
effective stiffnesses are in this zone, but the critical speed is very sensitive to both
the effective stiffnesses in the zone; and as conicity increases, this zone becomes
bigger. The phenomenon is not, however, observed in Mode! 1L
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Figure 4.10 The critical speed contours as function of k,; & k.,
4.5.2 Effective Stiffnesses

It has been shown that only the effective stiffnesses in the steering linkages provide
the constraint for wheelset yaw motion. The critical speed contours as functions of
the effective stiffnesses k,; & k,, are illustrated in Fig.4.11 and can be seen that if
effective stiffnesses are too soft, the steering linkages are not strong enough to hold
the wheelsets and the critical speed is low, but low speed instability occurs if they
are too hard; and that the critical speed gets higher as the steering linkages are
stiffened in conventional stability, but further increment in the effective stiffnesses
does not improve conventional stability after k,, & k,, are about 108,
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static unstable r static unstable |
—— I P
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(a) Mode! I (b} Model I
Figure 4.11 The critical speed contours as function of k,; & k,,, A = 0.2
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The steering effect and the constraint for wheelset yaw motion are both enhanced by
hard effective stiffnesses. When the effective stiffnesses are very hard, the wheelsets
are firmly held by the steering linkages. If the force produced by longitudinal
creepage overcomes the steering effect, the wheelsets can be stable, but they are
unstable at low speed if it is not. Dynamic instability in low conicity does therefore
not happen with high effective stiffnesses, as is shown in Fig.4.12 (Model I} and in
Fig.4.13 (Model II), in each of which the instabilities of each perfect steering vehicle
are either unstable at low speed or conventionally unstable when k| = k,, = 2x108,
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Figure 4.12 The critical speed of Model I as function of conicity, stiff linkage
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Figure 4.13 The critical speed of Model IT as function of conicity, stiff linkage

In Model II, there is effective stiffness k., between the two wheelsets, and it has
been found that this effective stiffness has little influence on the critical speed, as
seen in Fig.4.14. Several advantages of Model II in stability over Model I can,

. however, be found from Fig4.10 and Fig.4.11. Firstly, the high speed area of
Model II is larger and, secondly, its critical speed is less sensitive to the effective
stiffnesses k,, & k,, and, finally, the area of low speed instability is smaller. All of
these benefits of Model 11 in stability are attributed to k., because it effectively
increases the yaw inertia for the wheelsets.
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Figure 4.14 The critical speed contours of Model II as function of &, & k,;

Further simulation has been carried out to identify whether instability could occur
with other motions, but has found that the frequency of unstable motion always
closes to the kinematic frequency of wheelset, which means that unstable mode is
mainly associated with the wheelset motions. The reason for this is that the
effective stiffnesses cannot be very hard because of the risk of low speed instability,
and thus the wheelset constraints cannot be very strong and the modes associated
with wheelset motion go to unstable first. This is another feature associated with
the stability of perfect steering vehicles.

4.5.3 Primary Lateral Stiffness

In Model I and Model 1I, the primary lateral stiffness constrains wheelset lateral
motion while the steering linkages provide the constraint for wheelset yaw motion.
If any of them is too soft, the critical speed of the vehicles is very low. When both
of the primary lateral stiffness and the effective stiffnesses are hard enough, the
stability of each perfect steering vehicle is mainly governed by the effective stiffness,
as shown in Fig.4.15. This indicates that the wheelset lateral motion is more easily
stabilised than the wheelset yaw motion. The optimal value for the primary stiffuess
with regard to stability is around 10 MN/m.

The results in Fig.4.16 demonstrate that the stability of Model II is more sensitive to
the primary lateral stiffness than that of Model I, especially in low conicity. It has
been found that very hard primary lateral stiffness can promote the static instability
of Model II when the effective stiffnesses are very high. It appears that the
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combination of high primary lateral stiffness and high effective stiffness &, between
the wheelsets increases minimum conicity.
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Figure 4.15 The critical speed contours as function of k,; & k,,, A =0.2
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Figure 4.16 The critical speed (m/s) as function of A & k- stiff linkages
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4.5.4 Some Considerations

In Model II, there are three effective stiffnesses in the steering linkage, only two of
which are independent, the third being governed by the first two. If the geometric
parameters of steering levers are fixed, the effective stiffnesses are decided by &,
k,and k. By letting k, =k,; = k,, Eq.(3-5) becomes:

k

ky = 'Zb" k, =

£, b=

A
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where,
A = (+L)Yk 1k, + 28

We have
iy k,=1154k, k,=k, and k.,=1.154k,,, when A=1;
i) k,=10.023k,, k,=0.155k, and k4= 10k,,, when A =0.155;

iii) k, = 100k, &, =0.056k,, and k= 100 k,,.when A = 0.056.

Hard effective stiffness 4,4 strengthens the connection between two wheelsets and

thus improves stability, but if it is too hard, two wheelsets will become one inertia
body, and system stability is reduced. From the results in Fig.4.17, the vehicle has

the best stability when A = 0.155.
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Figure 4.17 Critical speed contours as function of &, & k.
Model I1, k,; =k, =k, and A = 0.2
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When the effective stiffnesses k., & k,, are approximately 10® for both models, the
critical speed is the highest, however, the critical speed is very sensitive to the
effective stiffnesses k,; & k,,, and the minimum conicity becomes too high if the
steering linkages are so stiff. On the other hand, the critical speed is very low when
the effective stiffnesses k,; & &, are less than 106, and thus the optimal value for the
effective stiffnesses %, & k., should be around 107, but they can be less in Model 1I
since it possesses the effective stiffness k5. The optimal value for the primary
lateral stiffness is in the magnitude of 10MN/m.

4.5.5 Influence of the Secondary Suspension Parameters

Usually, secondary suspension is designed to improve the ride quality of vehicles
rather than their stability since the effects of secondary suspension on the stability
are limited. This principle also applies to Model I and Model I1 somewhat because
the instability of each perfect steering vehicle is associated with wheelset motions.
Although the results in Fig.4.18 seem to indicate that high values of the secondary
suspension parameter improve the stability, their influences on the stability are not
fundamental and the values resulting in higher critical speed are beyond the values
that would be applied in practical applications. Out of three parameters in Fig.4.18,
the secondary yaw damping has the most positive effect in increasing critical speed.
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Figure 4.18 The critical speed as function of secondary suspension parameters,
A=02,Ksl= kg, Csl = ¢y and Csy =c,,

sy?
Hard secondary suspension may promote instability in low conicity. For example,
the critical speed of Model I without yaw secondary damping is slightly higher than
that of Model 1 with yaw secondary damping, as seen in Fig.4.19. When secondary
yaw damping is added, the connection between the carbody and bogie frames
becomes more rigid, resulting in an increased steering effect. The unstable tendency
of the wheelsets is thus increased, and the vehicle has less critical speed in low
conicity. Actually, the bogies can be considered as pinned to the carbody when the
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secondary suspension is very stiff, which is more close to the system with three
degrees of freedom, and the analysis in the last section showed that the bogie sub-
system with three degrees of freedom. more easily occurs low speed instability in
low conicity, and thus low conicity instability gets worse as secondary suspension

gets stiffer.
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Figure 4.19 The eigenvalues of Model I (with or without secondary
yaw damping) as function of vehicle speed when A = 0.04

4.5.6 Influence of the Geometric Errors in the Steering Linkages

Since the geometric errors of steering levers will change the effective stiffnesses,
their effects on stability can be evaluated by studying the alteration of the effective
stiffnesses caused by these errors. The results in Table 3.6 and Table 3.7 show that
the effective stiffnesses of Model I are dramatically varied by the geometric errors in
the steering linkages whilst the alternation of the effective stiffnesses in Model II
caused by the geometric errors in the steering linkage is very small. Since hard
effective stiffnesses promote the potential of low speed instability, the particular
attention is required with regard to the accuracy of the steering linkages in practical
applications of Model L.
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Figure 4.20 The critical speed as function of conicity when the geometric
errors exist in Model I, stiff linkage
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Figure 4.21 The critical speed as function of conicity when the geometric
errors exist in Model 11, stiff linkage

The geometric errors not only alter the effective stiffnesses, but also change the
elements in the sub-compatibility matrices of Eq.(3-2a) and Eq.(3-5a), which bring
in the asymmetric factor in the elastic matrices of Eq.(3-2b) and Eq.(3-5b) and the
capacity for low speed instability is therefore increased. When the geometric errors
(boldly framed in Table 3.6 and Table 3.7) are used in the simulation, the critical
speed as a function of conicity is shown in Fig.4.20 and Fig.4.21. Comparing with
the results in Fig.4.4, the noticeable variation of the critical speed in Fig.4.20 and
Fig.4.21 is in zone Ol in which the critical speed in zone Ol rises when the
geometric errors result in the increase of the effective stiffnesses whilst it decreases
if the effective stiffnesses are reduced by geometric errors. This is consistent with
the above analysis.

4.6 Summary

Although low conicity instability of body-steered bogie vehicles has been noted and
studied by several researchers[12,15,19,28] since the 1980's, the contributions to
this subject within this chapter are as follows:

This thesis forms the first investigation using both bogie sub-systems with 3 D.O.F
(the bogie frame is assumed pinned to the carbody) and with 4 D.O.F (the bogie
frame is freely connected to the carbody) in studying low speed instability of perfect
steering vehicles. The results show that the bogie sub-system with four degrees of
freedom more closely resembles to the physical system than does the bogie sub-
system with three degrees of freedom. The conditions derived from the bogie sub-
system with four degrees of freedom are more accurate than those from the three
degrees of freedom system.
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The instability modes of body-steered bogie vehicles have been studied in more
detail. There are two major instability modes in body-steered bogie vehicles: low
conicity instability and conventional instability. The low conicity instability of body-
steered bogie vehicles can be divided into low speed instability and dynamic
instability. Low speed instability has been well documented[12,15,19,28], however,
dynamic instability in low conicity has not been well reported. Furthermore, a lot
of researchers have only noticed divergent mode of low speed instability in low
conicity. The theoretical and simulated results in this chapter indicate that low

speed instability in low conicity can be oscillatory and may be divergent.

Bogies can be considered as being pinned to the carbody if the secondary
suspension is very stiff. Since the minimum conicity derived from the bogie sub-
system with three degrees of freedom is higher than that from the four degrees of
freedom system, the difference between these two systems indicates that stiff
secondary suspension also promotes low conicity instability. This has not been
reported until now.

The effects of the parameters in the suspensions and the steering linkages on the
instabilities of perfect steering vehicles have also been investigated in more details.

Besides the above contributions, some findings on the stability of perfect steering
vehicles are summarised as follows:

1, The minimum conicity of low speed instability of perfect steering vehicles is
associated with the conditions for bogie vehicle capable of perfect steering. Low
speed instability is unavoidable in perfect steering vehicles once their conicity is very
low or their steering linkages are too stiff.

2, Dynamic instability in low conicity disappears when the steering linkages are very
stiff or very soft, however, low speed instability will occur in any conicity whenever
the steering linkages are too stiff. The zero yaw stiffnesses in the suspensions are
the reasons for this phenomenon because no forces balance the steering mechanism

produced by the steering linkages except longitudinal creepage force.
3, The instabilities of the perfect steering vehicles are always associated with the

wheelset motions. The reasons for this are that the stiffness of the steering linkages
is restricted by low speed instability and that the wheelset yaw motions of perfect
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steering vehicles are only constrained by their steering linkages. To guarantee the
vehicles as being stable at low speed in a reasonable range of conicity, the steering
linkages should not be so stiff such that the wheelset constraints become strong
enongh to promote other unstable motions. The instability, however, may appear in
the bogies or the carbody since all motions are coupled.

4, A conflict exists in the requirement for the stiffness of the steering linkages. To
cut down the potential of low speed instability, the steering linkages should be soft,
whilst stiff steering linkages can improve conventional stability.

5, When the inter wheelset connection exists, some of the effective stiffnesses that
promote low speed instability can be shifted to the inter wheelset effective stiffness.
The potential of low speed instability is therefore reduced and stability is improved.
This is the reason why Model II has better performance in stability than Model 1,
and this conclusion has general significance for other body-steered bogie vehicles.

6, The primary lateral stiffness does not affect the stability of perfect steering

vehicles much as long as it is not too soft nor too hard.

7, The increase of the stiffness and damping of secondary suspension can only
improve conventional stability, but, their influences are not too dramatic, especially
with regard to the potential range of applications.

8, The geometric errors in the steering linkages can dramatically change the

effective stiffnesses of Model I and affect stability. Their accuracy may become very
important in practical applications.
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Chapter 5

RIDE PERFORMANCE OF PERFECT
STEERING BOGIE VEHICLES

The comfort of a railway vehicle is one of the most important factors as far as its
passengers are concerned, and thus the ride performance is another important index
in evaluating the dynamic behaviour of railway vehicles. The ride performance is
one form of system response and is decided by two factors: system inputs and
system transmissibility. System transmissibility is decided by the system configura-
tion while systeni inputs are mainly determined by the environment. In this chapter,
only track irregularities (alignment and cross-level) are used as system inputs.
Strictly, track irregularities are not stationary random process, but are approximated
as being so because their variations are usually very slow as compared with vehicle
speed. On the other hand, different countries have different standards and
classifications for track irregularities, and in this chapter, the American Railroad
Standard is used. The PSD's of track irregularities (alignment and cross-level)
defined by this standard are shown in Fig.5.1, with their definitions as previously
given in Eq.(2-35) and Eq.(2-36).
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Figure 5.1 PSD's of track irregularities, v, = 200km/h

The transmissibility of a railWay vehicle mainly depends on its suspensions. A body-
steered bogie vehicle possesses linkages that connect the carbody with the wheelsets
such that track irregularities can be transferred into the carbody through these
linkages, and the ride quality of a body-steered bogie vehicle is thus potentially
adversely affected with regard to conventional bogie vehicles. For perfect steering
bogie vehicles, the constraints provided by the suspensions are weakened since there
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are neither primary nor secondary yaw stiffnesses, which may produce a positive
effect on vehicle ride quality. There are few investigations and explanations in this
field so far, and thus, in this chapter, the ride performance of perfect steering
vehicles will be studied and the influences of suspensions and steering linkages on .
the ride performance will be explored. Since only one kind of vehicle disturbance
(track random irregularities) has been used in the simulation, the results and analyses
in this chapter approximately reflect the effects of system transmissibility on ride
performance of perfect steering vehicles, and the comprehensive understanding of
the ride performance of perfect steering vehicles needs to be investigated further by
applying various disturbances.

5.1 Indices of Ride Performance

Carbody accelerations, primary strokes (relative lateral displacements between
wheelsets and bogie frames) and secondary strokes (relative lateral displacement
between carbody and bogie frames) are well known to evaluate ride performance of
railway bogie vehicles. The carbody accelerations calculated at five points on the
floor level, as illustrated in Fig.5.2, are the index of ride quality while the strokes are
the index of working spaces for suspensions.

The accelerations at these points are:

atpointA, a, = ¥, + Wy, + hbd,

atpointB, a, = §, + LW, + o,

atpoint C, a. = ¥, + ho, G-I
atpointD, a, = §, ~ LW, + ko,

atpoint E, a, = ¥, - Hf, + ho,

and so, the auto-correlation functions of the accelerations at those points are:

R, = Im[(5, + 1, + W) + w0, o+ k),
R = Im= [ + 40, +hd)0, + Wb + b)) a
R = im=(, + hd) G, + k), a (52
R, = im=fl = h¥, + k)5 - b + R,
R = m— ', - W, o+ k)G - W k),
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PSD's of the accelerations at these points are:

S, (0) = "34(3», +ls,, RS, +is, s, +hlsy, +hes, 1S, +h§s¢)
S, (©) = 4(syb+ls thys, +los,, + 25, oSy, + Sy, oSy, +H3S,,)
S (®) = 4(Sy,,+h0'gy¢ + hoSyy, + oSy, )
S, (@) = co‘(syb —lsy, +hys, —Is,, +Ds, —holsy, +hos, —Ihs,, +h§s¢h)
S, (@) = ols, —Ls, +hs, —hs, +0s, —hlosy, + sy, — LSy, +hozs¢b)
(5-3)
|
floor level
-
LT
o -
-
By
Vv
/

Figure 5.2 The five points at which accelerations are calculated

The secondary strokes are defined by:

Front Secondary Siroke = 'y, + Ly, - k¢, - ¥y
(relative lateral displacement between carbody and leading bogie frame)
Rear Secondary Stroke = 'y, — Ly, — ho, — »y

(relative lateral displacement between carbody and trailing bogie frame)

and their PSD's are:
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— — — — 2 — — —
Sessl®@) = 5, sy, —hsy =5, —hs, FLs. Fls, =S, ~hs, . —ls, .,
2
- hﬁs@."a - lohgsﬁﬂl‘a + hg S% + h3s¢b3’n. + h3h2s%¢n - S.‘r‘n)’» - lﬂs}’n‘l’n - has)?rr,% + S)’rf_

2
+ hzs)Fn‘bn, - hzsq’n,}’g - h1los¢’n,'v.a + h2h3s¢n,¢a + h')-s‘hn)’n + h2 S¢TL

Sess(®) = Sy, ~ oSy, ~ 1S s, = Sy _h‘lsmm —LyS,y, +l§sw +hhysy,, ths,., +lﬂhjs%¢m
— Sy, FloMaS gy, IS, TSy bS8 LS, AR S,
Fhs, o —S, TS, RS, o — s, + ]7125¢m
(5-4)

The primary strokes at the first and fourth wheelsets are:

Primary Stroke of First Wheelset =y, — ko, + ay, -y,

(relative lateral displacement between outboard wheelset and bogie frame in leading bogie)

Primary Stroke of Fourth Wheelset = yp, — hbgp — a¥, ~ ¥,

(relative lateral displacement between outboard wheelset and bogie frame in trailing bogie)

So, their PSD's are:
Ses(@) = 5, —hs, 0, +aS, =S ISy VRS, Al S,
+asyy, —ORSy 0 T azs‘m R MR MS, 0~ a‘_gywﬂun S
SPSI(CO) = Sin “hlsymtbm TSy v Svemte _hlstbmym +hlzs¢m + ah‘lsfbm\m +hls¢mm
~ 88y, TS azs\m TSy s Sywar T B, o t a8y wre T Svs
(5-5)

The Root Mean Square (rms) of x(t) can be found from:

ms = JE[¥'] = 1)j:sx(m)dm = ,/ jo"ia@(f)df (5-6)

Since human beings have different sensitivity to various band frequency
accelerations, the weighted rms is usnally used to evaluate the comfort of vehicles.
In this research, the filter suggested by ISO/DIS 2631-1 (1994) [106] is applied to
weight rms's of the accelerations at these chosen points. The weighted acceleration
is defined by[106]:

’I/z
ay = [%’,(Wfa,-)’] (5-7)
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where, @, is the rms acceleration in the i one-third octave band and,

W; is the weighting factor for the i one-third octave band as
given in Table 5.1.

5.2 Coupling between Steering Linkages And Suspensions
By expanding A,(®) in Eq.(2-50), it becomes:

A (@) = Hy(o)I- Hy(@H, ()] H, (@) - H, (o)
—H,, (0)[I- H, (0)H, (0)]"H, (0)H,, (®) (5-8a)

Since there is no direct conmection between the carbody and wheelsets in a
conventional bogie vehicle, we have H ,,(0)=H,,,(®}=0 and

A (@) = Hy(o)I- Hy (@)H,(0)]" 1, (o) (5-8b)

The transfer function H4(®) of body-steered bogie vehicles thus has two more terms
than that of conventional bogie vehicles, as seen in Eq.(2-49). These two terms
mean that a body-steered bogie vehicle has two extra channels that can transfer

track irregularities to the carbody, i.e. they can be transferred into the carbody
directly by the steering linkages H ,, (®) and by the coupling of the steering linkage

and secondary suspension, i.e. by H%((D)[I— I—&(CD)H%(&))]"I-&(G))I-I”,(Q)). System trans-

missibility is therefore potentially increased by the steering linkages in body-steered
bogie vehicles. On the other hand, H ,, (@} and H,,, (®) are also included in A, {®)

and A,(w) of Eq.(2-49), which means that the coupling of the suspensions is thus
complicated by the steering linkages in body-steered bogie vehicles.

5.2.1 An Example

Before discussing further the transmissibility and suspension couplings of the perfect
steering vehicles, a rather simple example is set up in Fig.5.3 to allow an
understanding of i)the system transmissibility and ii)the effect of three suspensions
on system transmissibility.
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Supposing that all elements in Fig.5.3 are linear, the transmissibility of this linear
system can be investigated by its transfer function. If the input remains unchanged,
the output of this linear system is mainly governed by its transfer function,

The dynamic equation of the system in Fig.5.3 is:

mx, + (h+k)x, — kx, = kx
m¥, + (k,+k)x, — kx = kx

1+

: 0
Figure 5.3 A system with two degrees of freedom and three suspensions

After applying the Laplace transform, it becomes:

5 (m,s” +k, +k)k, + k,k,
RO = ek v s+ k) -

X.(s) = kik, +(ms® +k +k,)k, X.(5)
: (s> +k, +k, Y omys* +ky +lg) = k2 °

The transfer function from x, to x, is:

Lk k +k, )k k.o’
Hy@) = +2 + (y A2)3 - ’”';"’ | (5-92)
Hy(0) = H,(0) + Hy(®) - Hy(®) (5-9b)

where,

A = (k +k,—m@* )k, +k,—m,0*) — kI
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The natural frequency w,, is defined as the frequency at which the transfer function

becomes infinite if there is no damping in the system; and the minimum value
frequency @, is defined as the frequency at which dH, (®)/dw= 0 if there is no

damping in the system. When A — 0, we have H,(®) — <o, and thus the natural
frequencies can be found by letting A =0, i.e.

(k, +k, —m,@2)(k, +k, —m,0%) - kX = 0
1 2 1 2 3 2 2

If k; = 0, the natural frequencies of Hy(w) are

1 m +m
2 . X2 1 2 ol
n12 2(&)01 + m, 0)02)
) Y (5-10)
oo (m+my) o 1 2,2
x -Z—I: 01+ 3 0)02 2(1)01(1)02
1
where,
k k
®,, >0, . g = —- ad @ = 2
m, m,
and minimum value frequencies of H{®) are:
1 m,+m
. =0 ad ) = (0@ + —2wl) (5-11)
! "y 2 1 m 2
1
So, the minimum values of H,(®) are
2 2
4wqwm

Hy(0,) = 1 and

H, (cumz)

4 2 2
@, + (my +my) @ [ my

(5-12)
When k; # 0, the natural frequencies of H,(w) are:

. i m+m
& = —(0 +o] +——20})
1,2 2 1 3 ml 2
%
1 2 2 2 My iy, 2 ("""1"""’2)2 4
+ 5[((’)01_“)03)(@01 —co03+ 2(1)02)-1- 5 0)02
1 1
(5-13)
- . k
where, @, >&, and ©f =-*.
2 1 3 f72)
2

Since
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m, +m m,+m
2wl ) > (0; +——>w})
2 1 m 2

1

(@5, +wy, +

and
ML, — 1 (m, +m,)? |
(@5, =@, ) +——=205 (0 - 0g )+-———2—wg, | <
1 3 m 2 1 3 m2 2
1 1
2
m, —m m, +m ‘
< [(mg +—2—120? @ +(—J—2—2—)-—(03 ] |
1 2 1 2
m, m;
we have: |
w, > 0, and 0, < @, ‘

Three effects on the natural frequencies are produced as a result of &, # 0: ‘

i) the first natural frequency gets bigger, i.e. 63,,1 >0,

ii} the second natural frequency get smaller, i.e. c"t)n2 <®, and thus,

iii) the difference between the two natural frequencies is reduced, i.e. ‘
(®,, -0, )<(0, -0,)

The minimum value frequencies of H,(w) are: ‘

@, =0 \
< O, + D0, L2
W, = |7 @ + —=a |+
2 o 1 2z
0 t |
(5-14) |
0 +o’ 2 —m] %
2 3 2 2 2 ! 3 2
2 W F ®o, 2 02 ‘
(DO3 1 0)03

It is easy to show that H,(0) = 1. The second minimum value frequency of H,(®) ‘
when k, # 0 can be either larger or smaller than that in Eq.(5-11) when &, = 0. Itis

- difficult to compare theoretically the second minimum value of H,(w) directly from |
the result in Eq.(5-14). Suppose ('sz')mz > ®,,,then we have:

2.2 2 .2 2 2
4@, @, +Wo B, /2 +(my —m )0y O, {2m,

Hy(®,,)

2 .2 2 2 2 2 2.4 2-
M5 @y — (g — W Ny +2(m, —my )y I~ (m, +m, )"0, ! m;

(5-15)

I5
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Comparing Eq.(5-15) with Eq.(5-12), it can be found that:

The numerator of Eq.(5-15) > The numerator of Eq.(5-12) and,
The denominator of Eq.(5-15) < The denominator of Eq(5-12)

So, we get|H, (@, )| (when k; #0) > |5, (0,,)| (when &, = 0).

For frequencies are in (I)nl <0 < 0, the amplitude of H,(®) when k; # 0 is
larger than that when k; = 0. On the other hand, the values of H,, in low
frequencies will be much lower than H,, and H,, while the values of H, are
governed by H,; in high frequency becanse the numerator of H,, increases in

proportion to ®?. Actually,

Hy; > Hy + Hy

when
2

mO
@ 2 oy + ey + myg, [ my
03

Transfer Function

L doad A1 10

0.01 T

Circle Frequency (lrs)

Figure 5.4 The transfer function H,(®), (0§I= S and (1)32 =1

In general, damping exists in a physical 'system, and thus transfer function H,() in a
physical system cannot become infinite when frequency equals to the natural
frequencies. Basing on the analysis above, the diagram in Fig.5.4 illustrates how the
influence of the increment of k; on the transfer function H,(®) in the frequency

domain when a damper is applied to the connection between m, and m,. Four
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effects can be observed in Fig.5.4 when k, # 0: i) the first natural frequency
increases and its variation is bigger than that of the second natural frequency; i) the
transfer function in the first natural frequency and between the two natural
frequencies increases; iti) the transfer function reduces at very low frequencies and
iv) the effects are strengthened as &, becomes stiff. The overall results show that
the transmissibility increases as the stiffness &, becomes from zero to non-zero and
harder, especially between two natural frequencies.

To evaluate ride quality, another two factors need to be considered, these being the
distribution of system disturbances over the frequency range and the sensitivity of
human beings to vibrations over the frequency range. For railway vehicles, the
former is governed by track while the latter is a universal standard. In Fig.5.1, the
amplitudes of the disturbances are high at the low frequencies and reduce as the
frequency increases. Since H,(0) = 1 and H,(®) increases as ® becomes larger until
it reaches the first natural frequency, the first natural frequency should be as low as
possible so as to decrease system responses. On the other hand, human beings are
most sensitive to the acceleration in the lateral direction between 0.315Hz and
4.0Hz since the weighting factors in this frequency band are bigger than 0.5, as seen
in Table 5.1. Any natural frequency should thus be designed outside this frequency
band if it is possible, i.e. the first natural frequency should be lower than 0.315Hz
and the second natural frequency should be higher than 4.0Hz.

In order to reduce the transfer function H,(®), therefore, several methods can be
used. Increasing system damping to depress the responses over all frequencies wiil
have the desired effect and increasing the difference between the two natural
frequencies as to reduce the transmissibility between the two natural frequencies will
also work and finally, minimising the first natural frequency will also help.

5.2.2 Complication Associated with Perfect Steering Vehicles

A body-steered bogie vehicle can be approximately considered as a system with
three suspensions and two masses if the masses of the wheelsets are ignored, in
which the carbody and the bogies can be considered as m, and m, respectively
whilst the primary suspension, secondary suspension and steering linkage act as k;,
k, and %, respectively, by referring to Fig.5.3. It seems that the steering linkages in
body-steered bogie vehicles will deteriorate the ride quality of body-steered bogie
vehicles. There are, however, neither primary nor secondary yaw stiffnesses in
perfect steering vehicles, only the steering linkages providing the constraints for the
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inertia bodies in their yaw motions, and thus the increment in the effective stiffnesses
can strengthen these constraints, which may benefit ride performance, and therefore,
the functions of the effective stiffnesses in the steering linkages on the ride
performance are more complex.

Three approaches shown in the previous section can improve ride quality. Firstly,
increasing the difference between the first two natural frequencies will filter out
more of the disturbances between the natural frequencies. The other techniques
involve softening the secondary suspension to decrease the responses of low
frequencies, and applying more damping to minimise the responses over al
frequencies. Soft suspension, however, will require more working space and thus
has its limitation in any practical application, whilst the effective stiffnesses arc
restricted by low conicity instability in perfect steering vehicles, which may reduce
the difference between first two natural frequencies, giving the potential for
increasing transmissibility between the two natural frequencies. All of these factors

will be therefore investigated in the next section.

5.3 Results of Simulation

In this section, the vehicle speed v, is 200km/h and the conicity A is 0.1, and the
suspension parameters and steering linkage parameters of Set 2 (stiff steering
linkage) in Table 3.4 (Model I) and Table 3.5 (Model II} are used, and the
secondary yaw damping (106 N-s-m) is applied to Model L

'5.3.1 Ride Quality

The PSD's of the accelerations at the five points defined in Fig.5.2 are very small
when frequency f > 10.0Hz, and thus only PSD's at points A and C in the band of
0.1Hz £ f <10.0Hz are displayed in Fig.5.5. The weighted rms's of the
accelerations at the five points from 0.1Hz to 100.0Hz are:

point A pointB | pointC point D point B
Model 1 8.85mg 7.58mg 5.97mg 9.02mg 10.47mg
Model II 10.19mg 9.07mg 6.57mg 7.01mg 7.77mg

The maximum rms of the acceleration of Model I is at the tail end (point E) while it
‘ is at the front end (point A) for Model II.
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Figure 5.5 PSD's of Model I and Model I

The responses of Model I at low frequencies (f < 0.5Hz) are the highest, as shown
in Fig.5.5a, while the highest responses of Model II are around 1.0Hz, as shown in
Fig.5.5b. Since the amplitude of the transfer function is equal to or greater than 1
from the zero frequency to the first natural frequency, it is not difficult to
understand the reasons why the system responses are very high at low frequencies
when the track irregularities in Fig.5.1 are used. The results also imply that the first
natural frequency is less than 1.0Hz for Model I and is around 1.0Hz for Model II.
In the calculation, h, = O is used such that the accelerations at the points A, C and E

are:
a, = ¥ + Wy, aczj;b.aEzj}b_m}b

The acceleration of point C is, in fact, the lateral acceleration at the carbody weight
centre. The difference between a, and ap is the sign of fy,, and in Fig.5.5a, the

phase of ag is very close to the phase of a.. In Fig.5.5b, the phase difference
between a, and a. is nearly 180°, which indicates that the phase difference between
the yaw acceleration and lateral acceleration of the carbodies is approximately 180°,

The stiffness ratio between Model I and Model I are listed as follows;

Model I Model 1T
Primary lateral stiffness 1 : 3
Secondary lateral stiffness 1 : 3
Effective stiffness k(= k,, = k,,) 3.5 : 1
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If the vehicles are considered as the system of Fig.5.3, the primary suspenston is &,
the secondary suspension is &, and the steering linkage is k5. Thus,

0, (of Model I} < w,, (of Model IT)
@y, (of Model I) < @y, (of Model IT)
0y, (of Model I) > wy, (of Model 11).

From Eq.(5-13), the first natural frequency of Model I is lower than that of Model
11, and thus the responses of Model I in low frequencies is higher than those of
Model II while the responses of Model II around the first natural frequency are
highef than those of Model I, as shown in Fig.5.5.

In Table 5.1, the weighting factors are less than 0.5 when f < 0.315Hz and f >
4,0Hz, therefore, the reduction in the system responses between 0.315-4.0Hz can
result in the most significant benefit with regard to vehicle ride quality. To simplify
the analysis, the frequency range of interest is divided into three bands: 0.1-0.315

Hz, 0.315-4.0 Hz, and 4.0-10.0Hz. Since rms = J‘:I/Vr (f)df , the proportions of

unweighted rms's in each band are defined by:

2 2 24
(rmso‘l—O.MSHz ) + (rms 0.315-4.0Hz ) 4 ( TS 4 0-10.0 ) = 1 (5-16a)
IMSq 410,01, IS 110,082 I8 110. 042 _

[ + 9 + 93] = 1 (5-16b)

or

where, 9, is the proportion for the 0.1-0.315Hz band, 8, for the 0.315-4.0Hz band
and &, for the 4.0-10.0Hz band.

The mean ratio of unweighted rms at each frequency band is defined by:

O = By + O + K3 @ = (B + Dy + N3
¢ (Oyp + Yy + 8,003, (5-17)

1l

where subscripts A, B and C represent the points A, B and C.

The results in Fig.5.6 show that the rms's of the accelerations of Model I are almost
equally distributed in the 0.1-0.315Hz and 0.315-4.0Hz bands while they are mainly
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concentrated on the 0.315-4.0Hz band for Model II, which indicates that the first
natural frequency of Model I is lower than that of Model II.
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Figure 5.6 The proportions and mean ratios of unweighted rms’s of accelerations

If the proportion of the weighted rms in each band is defined as:

weighted

Z rms weighted

the mean ratios of the weighted rms'’s at points A, C and E over the frequency bands
are illustrated in Fig.5.7, and the average reductions of rms's by weighting factors
over the three points are listed as follows:

0.1-0.315Hz 0.315-4.0Hz 4.0-10.0Hz
Model 1 70.8% 18.21% 66.67%
Model II 66.09% 8.5% 66.09%

It can be seen that almost two thirds of the unweighted acceleration rms's are
depressed by the weighting factors on both 0.1-0.315Hz and 4.0-10.0Hz. If the
unweighted rms is a constant, the ride quality can be improved by moving the
PSD's of the accelerations from the 0.315-4.0Hz band into either the 0.1-0.315Hz
or 4-10.0Hz bands. Referring to Fig.5.4, it is implied that the first natural frequency
should be reduced and the second natural frequency increased. From Eq.(5-10), this
can be achieved by adding up the difference between ®,; and @,,, which means

either increasing the inertia difference between the two masses (carbody and bogie)

12§



or enlarging the stiffness difference between the two suspensions (primary and

secondary).

0.315-
4Hz
73%

5.3.2 Strokes

PSD's of the strokes are displayed in Fig.5.8 (primary strokes) and in Fig.5.9
(secondary strokes). For the strokes, it is only considered the unweighted rms's and
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16%

Figure 5.7 The mean ratio of weighted rms of acceleration

primary stroke at

primary stroke at

secondary

secondary stroke

the first wheelset | the first wheelset stroke at the at the trailing
leading bogie bogie
Model 1 2.43mm 2.04mm 16.68mm 26.67mm
Model II 0.85mm 0.81mm 2.0mm 4.87mm

Since the suspensions of Model I are softer than Model II, the strokes of Model I

are certainly larger than those of Model IL.

The proportions of the stroke rms's defined by Eq.(5-16) are shown in Fig.5.10

{primary strokes) and Fig.5.11 (secondary strokes) respectively.

magnitudes of the PSD's of the track irregularities in Fig.5.1 with low frequencies

are much higher than those associated with high frequencies, the deformations of
suspensions occur mainly at low frequencies. Since viscous damping does not affect
system responses in low frequency effectively, the best way to reduce the working
space of suspensions is to increase the stiffnesses of suspensions, which contradicts

to the requirement for better ride quality.
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Figure 5.8 PSD's of primary strokes

Figure 5.9 PSD's of secondary strokes

.00
2 oo
I
E 1E-05
£
1E-06
g
g 1E-07
a E
N 1E-DBy
* 1
T w09
s 3
x 1E-10s
a E
1E-11]
0.1 ] 10
FREQUENCY ¢Hz )
(a) Model I
0.1«
¥ ooy
E .01
¥ 0.000!
v 05
[0]
5 3E-06
g 07
08
E IE-03
g xw
a
% JE-12
16-13
0.1 L 10
FREQUENCY (Hz>
(a) Model I
100%
1 1'st Wheelset
75% B 4th Wheelset
50%
25%
0% — +
0.1-0.315Hz 0.315-4Hz 4-10Hz
{a) Model I
100% -
O Leading
75% 1 Bogie
E3 Trail Bogle
50% 1
25% 1
0% + +
0.1-6.315Hz 0.315-4Hz. 4-10Hz
(a) Model I

0.001

~

PRIMARY STROKE CmMmsHz

1E-11 ]
Y]

0.1
LRIF
0.001]
0.000: §
05,
106§

o

1€-08

¥E-09
E~1D

E-U
12

-3
o

SECONDARY STROKE <{mmm.-Hz)

0.0001

1E-C6

1E-07

IE-08

1£-09

€05

1E-10 4

T
FREQUENCY (Hz)

(b) Model I

Leading Bogie

Trail Bogie

i
FREQUENCY (Hz)

(b) Model I

100% 7
5% 0O 1'st wheelset
° 4th Wheaelset
50%
25% t
0% 2 wazasen: I m_'
0.1-0.315Hz 0.315-4Hz 4-10Hz
(b) Model II

100%

75% 1

50% 1

25% 1

0%

-

Figure 5.10 The proportion of primary stroke rms

OLeading
Bogie
E Trail Bogle

0.1-0.315Hz

0.315-4Hz

4-1QMz

(b) Model 11

Figure 5.11 The proportion of secondary stroke rms

123



Chapter 5 Ride Performance of Perfect Steering Bogie Vehicle

5.3.3 Influences of the Parameters in Suspensions and Steering Linkages

It has been pointed out in Eq.(5-8) that track irregularities can be transferred to the

carbody through three channels in body-steered bogie vehicles: the primary and

secondary suspensions, the steering linkage, and the steering linkage and secondary

suspensions. The effective stiffnesses in perfect steering vehicles only provide the ‘

stiffnesses for the inertia components in their yaw motions, but the lateral stiffnesses |

and dampings in the suspensions provide the constraints for both lateral and yaw

motions of the rigid bodies. For example, the primary lateral stiffness not only

provides the stiffness for the lateral motion of the wheelsets and bogie frames, but

also provides the stiffness for the yaw motion of the bogie frames. These channels

are thus not independent such that the alteration of the parameters in suspensions or ‘

steering linkages may reduce the transmissibility of one channel but increase the |
transmissibility of others. The influence of the parameters on the ride quality can be

very complex.

To explore this subject in more details, each parameter in the suspensions and
steering linkages is investigated independently. For the ride quality, two situations ‘

points in two frequency bands (0.1-0.315Hz and 0.315-4.0Hz), and the alterations
(%) of the nunweighted rms's at the points A, C and E over 0.1-100.0Hz, when the
parameter in suspensions and steering linkages changes (in %). For the strokes, it is

are considered: the alteration (%) of the maximum unweighted rms among the five

only worthwhile discussing the rms's on the band between 0.1Hz to 0.315 Hz since
‘ the proportions of the stroke rms's in this band are over 70% total of the whole _
frequency band. ‘

\ Lateral Stiffnesges

The primary lateral stiffness connects the bogie frames and wheelsets, which not
only provides the stiffness for the wheelsets and bogie frames in their lateral motion,
but it also provides the stiffness for the bogie frames in yaw motion, and the |
secondary lateral stiffness has a similar effect to the primary lateral stiffness,
providing the constraints to the carbody and bogie frames in their lateral motions
and constraining the carbody in its yaw motion, whilst the steering linkages in
Model I and Model II only constrain the yaw motions of rigid bodies. Model I and
Model II can be therefore approximately considered as a system with three
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suspensions associated with yaw motion, and two suspensions associated with
lateral motion.

With regard to lateral motion, the primary lateral stiffness can be considered as
being k, and the secondary lateral stiffness as £, in the system in Fig.5.3, and thus
the natural frequencies rise and the transfer function shifts towards the right in the
frequency domain as the lateral stiffnesses increase. Referring to Fig.5.4, the
transmissibility will be intensified over the whole frequency range, (especially
between the two natural frequencies) when the lateral stiffnesses rise. The
responses in the lateral motions will thus be enhanced whenever the lateral
stiffnesses become harder, as is shown by observing the rms's at point C in
Fig.5.12a-b and in Fig.5.13a-b.

With regard to yaw motion, the steering linkages in each perfect steering vehicle
perform as a double suspension system alone because they not enly provide the yaw
constraint between wheelsets and bogie frames, but also the constraint between
carbody and bogie frames, and thus the steering linkages contribute two stiffnesses
k,(between wheelsets and bogie frames) and &,(between carbody and bogie frames)
for yaw motion. Their effects on ride performance will be analysed later. Since the
primary lateral stiffness only provides yaw constraint for the bogie frames while the
secondary lateral stiffness only provides yaw constraint for the carbody, their
function for yaw motion more closes to k; in Fig.5.3. In yaw motion, therefore, the
first natural frequency becomes larger and the second natural frequency becomes
smaller when the primary lateral stiffness gets harder while the natural frequencies
increase as the secondary lateral stiffness becomes harder, and thus the
transmissibility in yaw motion is amplified by the increment in the lateral stiffnesses.
Since the phase difference between the yaw motion and lateral motion of the
carbody is approximately 180°, the rms’s at the point A (the front end) may be
reduced as the primary lateral stiffness gets harder, however, if the primary lateral
stiffness is very hard, the rms's at point A also becomes larger. Since the first
natural frequency is raised as the lateral stiffnesses are hardened, the transmissibility
on low frequencies may be reduced, as seen in Fig.5.12d and Fig.5.13c-d.

Since the lateral stiffnesses of Model IT are higher than those of Model I, for the
same percentage increment in lateral stiffnesses, the increment in the values of
lateral stiffnesses of Model 11 is larger than that in Model 1, and thus the increases of
the natural frequencies of Model 11 are higher than those of Model I for the same
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percentage increment in the lateral stiffnesses. This is the reason why Model II
seems more sensitive to jateral stiffness than Model 1.

The strokes are more complicated to analyse than the ride quality since the strokes
are relative movements, Usually, the relative movement of two inertia bodies
decreases as the elasticity between them rises. There are however three groups of
inertia (carbody, bogie frames and wheelsets) and three suspensions in each perfect
steering vehicle, and therefore the relative motions not only depend on local
elasticity, but are also affected by the whole elasticity.

The primary strokes

If the secondary suspension is hard enough and can hold the carbody and bogie
frames, the increment in the primary lateral stiffness will strengthen the constraint
between the bogie frames and wheelsets. The relative motion between the
wheelsets and the bogie frames is reduced as the primary lateral stiffness rises. I
the secondary suspension is soft, the increment in the primary lateral stiffness will
result in a larger lateral shift of both the wheelsets and bogie frames, which may
amplify the primary strokes. The results in Fig.5.12 show that the former case
occurs in Model II (Fig.5.12f) and the latter in Model I (Fig.5.12¢).

If the secondary lateral stiffness increases, the connections between the bogie frames
and the carbody are strengthened and the bogie frames are held more firmly by the
carbody. The relative movements (primary strokes) between the wheelsets and
bogie frames are thus increased as the secondary lateral stiffness is hardened.

The secondary strokes

If the secondary suspensions (Model II) are hard enough to hold the carbody and
bogie frames, an increment in the primary lateral stiffness strengthens the constraints
between the bogie frames and wheelsets. All mass components are held more
firmly, and thus the secondary strokes can be reduced as the primary lateral stiffness
increases, as shown in Fig.5.12h. If the secondary suspension (Model I) is soft, the
increment in the primary lateral stiffness will relatively reduce the connection
between the carbody and bogie frames and will lead to the higher secondary strokes,
as shown in Fig.5.12g. An increment in the secondary lateral stiffness always cut
down the secondary strokes, as shown in Fig.5.13g-h because it directly strengthens
the connect between the carbody and the bogie frames.
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In practical applications, the working space of the primary suspension is very
restricted. To reduce the working spaces of primary suspension, the simulation
results in Fig.5.12 & Fig.5.13 and the above analysis demonstrate that not only the
primary suspension should be hardened, but also the secondary suspension should
be stiffened.

Effective Stiffnesses

It has been described that Model 1 and Model II can be approximated as a system
with three suspensions in yaw motion. It seems that the reduction in effective
stiffnesses can improve ride performance, however, the results of Fig.5.15 and
Fig.5.16 show opposite effects. To explain the results, reconsider the model in
Fig.5.3. If the yaw stiffness between the wheelset and bogie frame is considered as
k,, the yaw stiffness between the bogie frame and carbody as k,, and the yaw
stiffness provided by the effective stiffnesses as k3, it can be seen that the function of
effective stiffnesses in each perfect steering vehicle is not the same as %, in Fig.5.3.
In Fig.5.3, k, and k, are independent of k,, however, the effective stiffnesses in
Mode I and Model II affect the all yaw constraints of the wheelsets, bogie frames
and carbody, and thus the steering linkages of each perfect steering vehicle work
more like a double suspension system.

The yaw stiffnesses provided by the effective stiffnesses to the wheelset, bogie
frame and carbody are:

wheelset bogie frame carbody
For Model I 30.15 MN-m 61.52 MN-m 2.46 MN-m
For Model I 32.57 MN-m 113.75 MN-m (.69 MN-m

and the yaw stiffness provided by the lateral stiffnesses to the wheelset, bogie frame
and carbody are:

Koy Koy
wheelset bogie frame carbody
For Model I 0 15.63 MN-m 15.31 MN-m
For Model {1 ¢ 46.88 MN-m 45.95 MN-m

It can be seen that the yaw stiffness provided by the effective stiffnesses plays a
major part in the yaw constraints for the wheelsets and bogie frames, whilst the
effective stiffnesses only contribute a small portion of the yaw stiffness for the
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carbodies. The increment in the effective stiffnesses can strengthen the yaw
constraints (k, in Fig.5.3) between the wheelsets and bogie frames, but has little
influence on the yaw constraints (k, in Fig.5.3) between the bogie frames and
carbodies. The first natural frequency will change a little while the second natural
frequency will obviously increase, and thus the system transmissibility between the
first two natural frequencies is reduced, as the effective stiffnesses increase. In
Model 11, k,; >> k., = k., (about 100:1), the ride performance of Model II is more
sensitive to k,, than k(= k,,).

The analysis above shows that the steering linkages act more like a double
suspension system: hard primary stiffness and soft secondary stiffness, and therefore
the increment in the effective stiffnesses can bring out a positive effect on the ride
performance. The increment in steering linkage stiffness can however deteriorate
the ride performance, as shown in Appendix A, which implies that the effect of the
effective stiffnesses on the ride performance depends on the steering linkage

configurations.

It has been demonstrated in Chapter 4 that the critical speed of the perfect steering
vehicles increases as the effective stiffnesses rise, with the condition that they are
not hard enough to promote static instability. The ride quality may also benefit from
the stability improvement as the effective stiffnesses become harder.

The strokes always benefit from the increment of effective stiffnesses because both
the connections between the wheelsets and bogie frames and between the bogie
frames and carbody in yaw motion are strengthened by the gain in the effective
stiffnesses.

Dampings

The secondary lateral damping mainly compresses the responses in the lateral
motion of the carbody, as shown in Fig.5.17. The ride quality will be improved as
lateral secondary damping increases, as seen in Fig.5.17a-b. The acceleration rms's
may rise at the front end (point A), as seen in Fig.5.17a, when the lateral secondary
damping increases because of the phase difference between the lateral motion and
yaw motion of the carbody. Both ride quality and strokes in Model II are improved
when the secondary lateral damping increases, but the secondary stroke is more
sensitive to the secondary lateral damping than the primary stroke because the
damping can reduce the movements of both the carbody and bogie frames. The
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results in Fig.5.17 also indicate that the secondary lateral damping in Model II must
be high enough in order to obtain reasonable ride performance.

Secondary yaw damping, which has been applied to Model I in order to study its
effect on ride performance, can damp yaw motion, but has little effect on lateral
motion, as seen in Fig.5.18a (point C). Iis increment will lead to reducing the
acceleration at one end of the vehicle but raising it at the other end due to the phase
difference between the yaw motion and lateral motion of the carbody, as shown in
Fig.5.18a-b.

Since the relative motions (secondary stroke) at the pivots between the carbody and
bogie frames depend on the relative lateral motions between the carbody and bogie
frames and the yaw motion of the carbody, and since the secondary yaw damping
only reduces the lateral movement at the pivots caused the carbody yaw motion, the
relative motions (secondary strokes) may be increased when the secondary yaw
damping is applied, as seen in Fig.5.17d. This can also be applied to explain the
reason why the primary strokes rise as the secondary yaw damping increases.

The alteration in the responses caused by damping mainly distributes around the
carbody natural frequencies. The carbody natural frequency in lateral motion is
about 1.0Hz for Model 1I andr about 0.57Hz for Model I, and thus the changes in
the carbody's responses caused by the secondary lateral damping are mainly between
0.315-4.0Hz, as seen in Fig.5.17 The natural frequency of the carbody in yaw
motion is about 0.24Hz for Model I, and therefore the changes in the carbody's
responses caused by the secondary yaw damping are mainly on 0.1-0.315Hz, as
shown in Fig.5.18
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5.3.4 Geometric Errors

Geometric error in the steering linkages will change the effective stiffnesses and thus
affect the ride performance. The influence of effective stiffnesses on ride
performance has already been discussed in the previous sections and so a repeat of
the analysis is unnecessary.

5.4 Summary

There are three channels which transfer track disturbances to the carbody in body-
steered bogie vehicles: the coupling between the primary and secondary
suspensions, the steering linkages and the coupling between the secondary
suspension and steering linkages. Since the three channels are not independent,
coupling among the suspensions is complicated when steering linkages are applied.
The complexity of the suspension coupling is, however, simplified in perfect steering
vehicles because there is neither the primary yaw stiffness nor the secondary yaw
stiffness in their suspensions. In lateral motions, Model I and Model II can be
considered as double suspension systems, while they work as three suspension
systems with regard to yaw motion.

Since the transmissibility around the first natural frequency is high, the low first
natural frequency is always preferred. The large difference between the first and
second natural frequencies is also useful with regard to cutting down the system
transmissibility. This is a basic principle for vehicle suspension designs with regard
to ride performance.

The rms's of the body accelerations mainly comes from two low frequency bands
(0.1-0.315Hz & 0.315-4.0Hz). More rms's of the carbody accelerations will shift
from the 0.1-0.315Hz band to the 0.315-4.0Hz band as system elasticity increases.
Since the human beings are more sensitive to vibration in the 0.315-4.0Hz range, the
main task in improving ride quality is to reduce the responses in this band. The
proper approach in reducing carbody responses is therefore to let the first natural
frequency be less than 0.315Hz and the secondary natural frequency be greater than
4.0Hz.
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The effective stiffnesses unequally contribute to the yaw constraints for the
wheelsets, the bogie frames and the carbodies in Model 1 and Model II. They
dominate the yaw constraints of wheelsets and bogie frames while their contribution
to the yaw constraint of carbodies only occupies a small proportion. The gain in the
effective stiffnesses can much strengthen the yaw constraint between the wheelsets
and bogie frames, but only increase the yaw stiffnesses between the carbody and
bogie frames a little, and thus the steering linkages of Model I and Model II work as
a double suspension system with stiff primary suspension and soft secondary
suspensions. The increment in the steeing linkages can therefore not only improve
the ride quality, but also reduce the strokes.

In Chapter 4, it was demonstrated that the conventional stability of Model I and
Model II is improved upon by hard effective stiffnesses, and thus stiff steering
linkages in Model I and Model II not only improve ride performance, but also
conventional stability. The coincidence of the effects of the effective stiffnesses on
the ride performance and conventional stability of Model I and Model It means that
the configurations such as Model I and Model II can decouple the conflict between
conventional stability and ride performance.

The effects of the effective stiffnesses in Model I and Model II on ride performance
can also be applied to other body-steered bogie vehicles if their steering linkages
have similar configuration to those of Model I or Model II. For the different
configurations, steering linkages of body-steered bogie vehicles may, however,
produce the negative effects on ride performance, as seen in Appendix A. This
implies that the effects of steering linkages on ride performance depend on their
configurations.

An increment in lateral stiffnesses deteriorates ride quality, and the influence of the
lateral stiffnesses on the strokes depends on the secondary suspension. If a
secondary suspension is hard, the increment in the lateral stiffnesses can cut down
the strokes, whereas conversely, a soft secondary suspension may lead to an
increase in strokes when the lateral stiffnesses increases. This means that in order to
minimise the strokes, not only is a stiff primary suspension required, but also a stiff
secondary suspension.

Secondary lateral damping is necessary for the ride quality of perfect steering

vehicles, while secondary yaw damping is not necessary although it has a positive
effect on ride quality.
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The phase difference between the lateral and yaw motion of the carbody is about
180°. This phase difference can be used to improve the ride quality in some cases.

Since the stroke rms's mainly (over 70%) come from the low frequency band (0.1-
0.315Hz), and the viscous dampings are inactive in low frequencies, the only
approach in cutting down the strokes is to increase system stiffness, especially to
increase the primary lateral stiffness to reduce the primary stroke because wheelset
constraint in lateral motion mainly depends on the primary lateral stiffness, however
this will bring out a negative effect on ride quality. A conflict between the ride

Chapter 5 Ride Performance of Perfect Steering Bogie Vehicle

quality and strokes therefore exists.

Table 5.1 Weighted Factor W, [106]

Hz) W, (dB) FH2) | W (dB) 7 (Hz) W, (dB)
0.100 0.0624 1.250 1.0100 20.00 0.1270
0.125 0.0987 1.600 0.9710 25.00 0.1000
0.160 0.1550 2.000 0.8910 25.00 0.0796
0.200 0.2420 2.500 0.7730 31.50 0.0630
0.250 0.3680 3.150 0.6400 40.00 0.0496
0.315 0.5330 4.000 0.5140 50,00 0.0387
0.400 0.7100 5.000 0.4080 63.00 0.0295
0.500 0.8540 6.300 0.3230 80.00 0.0213
0.630 0.9440 8.000 0.2550 100.0 0.0141
0.800 (1.9910 10.00 0.2020

1.000 1.0100 12.50 0.160
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Chapter 6

SUMMARY OF THE DYNAMIC BEHAVIOUR OF
PERFECT STEERING BOGIE VEHICLES

In the last three chapters, the dynamic characteristics of perfect steering vehicles on
curving, stability and ride performance has been investigated, On the basis of the
results and analyses in the previous chapters, this chapter will summarise the main
features of dynamic performance of perfect steering vehicles.

It has been shown that the displacement vector {g} of the rigid bodies in a railway
vehicle has two components {g } and {4 }, i.e.

fq} = (g} + (g

where, {g} is the displacement vector of the local coordinates of rigid bodies
related to a uniform reference and,

{g} is the displacement vector of rigid bodies related to their local

coordinates.

The origin of the local coordinate system of a rigid body is usually defined as the
nominal position of its weight centre on the track central line, and thus the elements
of {g } are determined only by curvatures, wheelset base 2a and distance 2/, for a
fore-and-aft symmetric bogie vehicle. The uniform reference is usually defined on
the nominal position of carbody weight centre in the radial direction of carbody such
that all local coordinate systems are equal to each other except in x-direction in
straight track, and thus we have {g} = 0 and {g} = {§} in straight track since the
differences between rigid bodies in x-direction can be ignored if the vehicle speed is
constant, while on a curve, the track central line changes its direction, and a

displacement between a local coordinate and the uniform reference exists so that
A{g}#0.

If {Aqg} represents the relative displacement vector between the elements of {7},
the elements of the elastic force vector Fg = E{Ag} (where E is the elastic matrix of
the system) become larger as the corresponding elements of {Aq} increase, which
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results in increasing the elements of {g}. The increments in the elements of {§ }
mean that the distances between the track central line and the weight centres of rigid
bodies, such as attack angles and lateral displacements of wheelsets, are increased.
The main task in reducing {g} and improving vehicle curving is therefore to
minimise the elastic forces Fg caused by {Ag}. If {8q} represents the relative
displacement vector between the elements of {4}, it can usually be reduced as {Ag}
decreases since the reduction in {Ag} can reduce {g}. The advantages resulting
from the reduction in elastic deformation {8} will lead to the wheelsets taking up
more radial alignment. The direct benefits of the advantages are twofold: firstly, the
contact forces between wheels and rails are reduced, which will reduce the wear
between wheels and rails and decrease the track deformation, such that the cost of
track and wheelset maintenance is reduced; and secondly, the potential of derailment
can also be reduced, which improves safety.

On a uniform curve, relative displacements {Ag} are constants and only the relative
yaws {Ay} in {Ag} cause the elastic forces Fy for most of the configurations of
railway vehicles, and thus only bending stiffnesses in vehicles contribute to the
elastic forces, i.e. Fg = E{Ay}. The relative yaw angles {Awy} on a same uniform
curve are identical to any fore-and-aft symmetric railway bogie vehicles if the
wheelset base 2a and the pivot distance 2/, are equal, and thus the only way to
reduce Ky, is to optimise the elastic matrix E so that the elastic forces E{Ay} can be

minimised.

Since the relationships among the elements of {Ay} are only decided by vehicle
geometry on unpiform curves, it is possible to set up relationships among the
stiffnesses caused by the steering linkages in body-steered bogie vehicles, which can
make the stiffnesses in the steering linkages not contribute any bending stiffness,
such that E{Ay} = 0 if there are no other bending stiffnesses in the vehicle. The
vehicle will be capable of perfect steering on steady state for any uniform curve with
zero cant deficiency, and therefore, the key factor for a bogie vehicle to possess thé:
capability of perfect steering is to find those relationships that let E{Ay} = 0.

Since the elastic matrix E is only determined by vehicle configuration and is
independent of curve curvatures, the conditions for railway bogie vehicles being
capable of perfect steering should be independent of curve geometry, in other
words, perfect steering only depends on the configurations of railway bogie

vehicles.
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On the other hand, the realisation of perfect steering depends on whether the
wheelsets of perfect steering vehicles can roll on their pure rolling lines on uniform
curves, which turns out to be whether the distance between the pure rolling line and
track central line is within the limitation of flange contact. If the distance is within
this limitation, perfect steering can be achieved, otherwise, it cannot. Since track
gauge usually has little alteration, £q.(2-13) indicates that the distance between the
pure rolling line and track central line is decided by wheel profile and curve
curvature. In practice, it is unlikely to change the curvatures for existing railway
lines, and thus the most effective method keeping the distance between the pure
rolling line and track central line within the limitation of flange contact is to increase
the equivalent conicities of wheelsets.

The lateral forces caused by cant deficiency will push the wheelsets away from their
pure rolling lines, and displacements {§ } will thus be produced. Since E{Ag} =0
still exists in perfect steering vehicles, the associated displacement { g } will be much
smaller than that in conventional bogie vehicles when cant deficiency exists, The
capability of tolerating cant deficiency is therefore much improved in perfect
steering vehicles.

When perfect steering vehicles negotiate a transition, the relative displacement {Ag}
is not constant and thus the elastic force E{Aq} # 0 exists. The analysis in section
3.5 has shown that {Aq} of perfect steering vehicles is associated with the
geometric parameters of the steering linkages and is much smaller than {Ag} of
conventional bogie vehicles on the transition curve, and the elastic forces produced
by {Ag} in perfect steering vehicles are thus much less than those in conventional
bogie vehicles such that the displacement {§} of perfect steering vehicles on
transition curves is greatly reduced. The ability of the vehicles to align to transition
curves is therefore much improved, but the full understanding of the behaviour of
perfect steering vehicles on transitions relays on dynamic models.

There are two instabilities in perfect steering vehicles: low conicity instability
(comprising of low speed and dynamic instabilities) and conventional instability. In
actual fact, conventional instability is one mode of dynamic instability, and the
differences between dynamic instability in low conicity and conventional instability
are the former only occurs on one bogie while the latter occurs on both bogies, and
that the critical speed increases in the former and decreases in the latter as the
conicity rises. Dynamic instability in low conicity disappears when the steering
linkages are very stiff. Low speed instability of body-steered bogie vehicles has
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been considered as divergent instability for long time. The theoretical analysis and
the simulation results in Chapter 4 indicate, however, that low speed instability can
be either divergent or oscillatory. - Although the divergent instability has been
noticed since the early 1980's[12,15,19], dynamic instability in low conicity has not
been studied until now,

Since perfect steering vehicles allow their rigid bodies to take radial positions on
curves, they are more flexible than conventional bogie vehicles, which directly
affects vehicle stability. In the elastic sub-matrix E; of the bogie sub-system, the
effective stiffnesses of the steering linkages in Model I and Model II are on the same
positions as the yaw stiffnesses of the suspensions in conventional bogie vehicles,
and the steering linkages thus provide the yaw stiffnesses for the rigid bodies.
Indeed, the yaw constraints for the wheelsets are only provided by the steering
linkages in perfect steering vehicles, and therefore it is expected to apply stiff
steering linkages in constraining wheelset movements and stabilising the systems.
The stiffness of the steering linkages is however restricted by low conicity
instability, especially by low speed instability.

Low conicity instability is an inherent property of perfect steering vehicles.
Although the application of high conicity can improve low conicity instability and
result in applying hard effective stiffnesses, perfect steering vehicles are going to be
unstable at low speed even in high conicity if the steering linkages are very stiff.
This is not only been proved from the results of simulation, but allso by theoretical
analyses. There are also two physical facts that explain these conclusions. Firstly,
the effective stiffnesses between the inboard and outboard wheelsets of perfect
steering vehicles are different such that perfect steering vehicles are effectively
equivalent to asymmetric railway bogie vehicles. Wickens[25] has studied the
instability modes of asymmetric two-axle vehicle and found that the asymmetric
elasticity between wheelsets results in reducing the damping and inertia associated
with instability in the steering mode, and thus static and dynamic instabilities occur if
conicity is very low, and also that the appearance of instability depends on the
direction of the moving vehicle. Secondly, steering linkages in body-steered bogie
vehicles tend to force the wheelsets into having a yaw motion, but the only moment
that can resist the wheelsets against the yaw motion caused by the steering
mechanism is produced by longitudinal creepage. When the steering linkages are
hard enough to force the wheelsets into having a yaw angle, the longitudinal
creepage forces cannot restore the wheelsets back to their equilibrium positions, and
static instability occurs. The longitudinal creepage forces become smaller as
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conicity reduces and the tendency for the wheelsets to take up a yaw motion is
enhanced by increasing the effective stiffnesses, and therefore, static instability is
more obvious with low conicity and stiff steering linkage. The first reason
explaining why static instability in body-steered bogie vehicles has not been
considered before, whereas the second has been noted by several researchers
[12,15,19] in the early 80's.

Stiff steering linkages can go towards preventing conventional instability of perfect
steering vehicles while soft steering linkages can reduce the potential of low speed
instability. An obvious conflict exists here between stiff and soft steering linkages in
perfect steering vehicles, and optimising effective stiffnesses will thus become a
major challenge in developing perfect steering vehicles.

The unequal distribution of effective stiffnesses between the wheelsets, bogie frames
and carbody in Model I and Model II partly decouples the conflict between ride
~ performance and stability. The effective stiffnesses dominate the constraints of yaw
* motions of the wheelsets and bogie frames, but only contribute a smali proportion to
the constraint of carbody yaw motion. An increment in effective stiffnesses can
much strengthen the connection between the bogie frames and wheelsets, but will
have little influence on the connection between the carbody and bogie frames. The
steering linkage works as a double suspension system: stiff primary and soft
secondary suspensions, and stiff steering linkages can therefore not only improve
conventional stability, but also ride performance of Model I and Model II. This
feature of steering linkages is also valid for other classes of body-steered bogie
vehicle so long as their steering linkages possess similar configurations to those of
Model I or Model II. The influence of the steering linkages on ride performance
however relies on their configurations, and hard steering linkages can also
deteriorate ride performance, as shown in Appendix A.

The geometric errors in steering linkages not only change effective stiffnesses, but
also affect the compatibility matrix. The influence of the geometric errors on
stability and ride performance can be roughly considered the same as those effects
associated with effective stiffnesses, however, the effect of geometric errors on
vehicle curving is different. As demonstrated in Section 3.1.2, the sufficient
condition for a raiiway vehicie capable of perfect steering involves a condition that
the geometric parameters of the steering linkages must satisfy, but the errors in
these parameters mean that the sufficient condition cannot be satisfied, and thus the
effective stiffnesses will contribute some bending stiffnesses when the geometric
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errors exist. Since the effective stiffnesses are designed as hard as possible in
obtaining better conventional stability and ride performance, the effect of the errors
in the steering linkages ou vehicle curving can be very obvious, even more serious
than that effect associated with cant deficiency. The geometric parameters of the
steering linkages should therefore be controlled very carefully and precisely in
perfect steering vehicles.

In order to avoid low speed instability and to keep the distance between the pure
rolling line and track central line within the limitation of flange contact, it is
expected that high conicity will be applied to perfect steering vehicles, but low
conicity gives better conventional stability and ride quality. In perfect steering
vehicles then, conicity should be optimised to satisfy the requirements of both
arguments, which is fundamentally different with conventional bogie vehicle design
in which low conicity is always required. The results of simulation demonstrate that
conicity in perfect steering vehicles should higher than that of conventional bogie
vehicles.

Given that the limitation of flange contact as being Smm, the major performance
index of Model I and Model I are listed in Table 6.1 and Table 6.2. If vehicle
speed is 150km/h and conicity is 0.3, the maximum weighted rms's over the five
points (the definitions of these points have been shown in Fig.5.2) are 12.57mg for
Model I and 13.97mg for Model II respectively, and the minimum curve radius on
which perfect steering vehicles can negotiate without flange contact is 216m.

For modern railways, passenger vehicles have three major applications: light
railways and underground railways, new high speed railways and existing railways.
The curves of light railway and underground railway have to be designed very sharp
since they are clearly restricted by geographic objects such as buildings and streets.
Flange contact specifically needs to be considered if perfect steering vehicles are
applied in these lines. It is necessary to monitor conicity of perfect steering vehicles
stringently if they are to be applied to new high speed lines since both low and high
conicities can cause instability (either low conicity instability or conventional
instability). Since perfect steering vehicles well decouple the conflict between
conventional stability and curving, they can be widely applied to existing railways.
The application of perfect steering vehicles on existing railways can not only
increase vehicle speed, but also improve the safety against derailment and reduce
maintenance costs of both wheelset and track,
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In Model II, two of the three effective stiffnesses are independent. The effective
stiffness between the wheelsets strengthens the constraints of wheelsets, and thus
other two effective stiffnesses can be reduced. The reduction in these two effective
stiffnesses results in two benefits: firstly, the tendency of the vehicle to become
unstable at low speed is reduced and secondly, the stiffness between the wheelsets
and body is cut down so that ride quality can be improved. The performance of
Model II in stability and ride quality is therefore better than Model .

Since there is neither primary non secondary yaw stiffnesses in the suspensions of
perfect steering vehicles, any means that stfengthen the yaw constraints of rigid
bodies can stabilise the whole system. The conventional stability of perfect steering
vehicles can thus be much improved upon by applying secondary yaw damping.
Although the application of secondary lateral stiffness and damping to perfect
steering vehicles is necessary for ride quality, they have little influence on stability
around their practical application ranges.

Table 6.1 Major Performance Index of Model I

A 0.05 0.1 0.15 0.2 0.25 03
v(km/h) 287 312 269 229 200 182
max (rms)" 3.86 6.92 9.26 11.10 11.72 12.57

Table 6.2 Major Performance Index of Model IT

A 0.05 ol 0.15 0.2 0.25 03
v(km/h) 341 352 302 258 226 204
max (rms)* 2.76 5.25 755 971 | 1181 | 1397

* Weighted rms's at those five points as shown in Fig.5.2 when v, = 150km/h
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Chapter 7

THE IMPROVEMENT OF
PERFECT STEERING BOGIE VEHICLE DYNAMICS
BY A RECONFIGURABLE MECHANISM

The best advantage of perfect steering vehicles over conventional bogie vehicles is
that they well decouple the conflict between curving and conventional stability,
whilst their worst disadvantage is low conicity instability. On the other hand, low
conicity instability does not occur in conventional bogie vehicles, but the conflict
between curving and stability remains a major problem. The design of a railway
bogie vehicle that possesses the advantages of both perfect steering vehicles and
conventional bogie vehicles would be extremely useful, and a question thus arises: is
there some mechanism or device that can achieve this purpose? This chapter will
present the mechanism in question and will investigate the dynamic improvement
when the mechanism is applied to Model I and Model IL

7.1 Reconfigurable Mechanism
7.1.1 Concept of the Reconfigurable Mechanism

In many physical systems, there are some conflicts associated with their
performance in various working environments, and the conflicts cannot be solved
casily if systems only work in one configuration even it is well optimised. The
conflicts can, however, be decoupled and the overall performance can be much
improved upon if the system configurations of can be changed according to their
working environments. The reconfigurable mechanism is thus defined as a
mechanism or device that can change the system configuration, and it can be

electronic, mechanical, hydraulic, pneumatic or a combination of these.

If the suspension systems of a railway vehicle have several configurations and each
of the configurations can be passive and/or active and be suitable to one or more of
its working environments, the task of the reconfigurable mechanism is to change the
system configuration as the working environments vary, i.e. the reconfigurable

mechanism is initiated when the working environment varies, but after the system
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has been switched from one configuration to another by the reconfigurable
mechanism, the system works under a new configuration and the reconfigurable
mechanism no longer affects the system. The reconfigurable mechanism, in simple
terms, acts as a switch., The fundamental difference between the reconfigurable
mechanism and other controlled suspension systems is that it switches the
suspensions from one configuration to another depending on the working
environments, rather than monitoring or controlling any individual component of the
suspensions. Two features of the reconfigurable mechanism are noted from this
difference:

i) it only works for a short time and,
iiy it does not supply or modulate the flow of energy in the system.

These two features result in two benefits:

i) the reconfigurable mechanism only affects the transient characteristics of
system responses and,

i) the power needed by the reconfigurable mechanism is merely to drive the
switching mechanism and can be very small.

Applications of the reconfigurable mechanism in vehicle suspensions also possibly
add some other advantages such as reliability, robustness, simplicity and ease of
maintenance.

7.1.2 Reconfigurable Mechanism in Perfect Steering Vehicles

Usually, the lateral movement of a wheelset is larger on curves than on straight lines
and increases as the curvature increases whilst the equivalent conicities will increase
when the lateral movement of wheelset increases, and thus the equivalent conicitiqs
will rise as curves become sharper, and at least, the wheel profile can be designed to
achieve the purpose. If the steering linkages are not too stiff, low speed instability
occurs only when the equivalent conicity of perfect steering vehicles is low, and low
speed instability therefore disappears if perfect steering vehicles only run on curves,
especially on sharp curves. This implies that the fundamental conflict between
stability (low conicity and conventional) and curving of a railway bogie vehicle can
be well decoupled if a conventional bogie vehicle can be turned into a perfect

steering configuration on sharp curves.
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In each perfect steering vehicle, the steering linkages provide the constraints for yaw
motions of vehicle'’s rigid bodies, especially with regard to wheelset yaw motion,
while in conventional bogie vehicles, the yaw stiffnesses that contribute to bending
stiffnesses constrain the yaw motions of the rigid bedies. If the reconfigurable
mechanism can turn the effective stiffnesses in the steering linkages of perfect
steering vehicles into the yaw stiffnesses in the suspensions, the perfect steering
vehicles will become conventional bogie vehicles and vice versa.
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Figure 7.1 The concept of the reconfigurable mechanism in Model II

The diagram in Fig.7.1 shows the concept that turns the effective stiffnesses in the
steering linkages of Model II into the yaw stiffnesses in the suspensions. In Fig.7.1,
point A represents the joint between the bogie frame and the lever of the steering
linkage. If point B is another joint between the bogie frame and the lever, the lever
cannot turn related to the bogie frame, and the bogie frame and lever become ong
rigid body. Springs k,,, and k,; become the primary longitudinal stiffness that forms
the primary yaw stiffness while spring k, becomes the secondary longitudinal
stiffness that forms the secondary yaw stiffness, and thus the stiffnesses in the
steering linkages are changed into the yaw stiffnesses in the suspensions so that the
perfect steering vehicle (Model II) becomes a conventional bogie vehicle. When
joint B is disconnected, the vehicle becomes a perfect steering vehicle again. If joint
B can be disconnected on sharp curves and connected in other situations, the vehicle
will be a perfect steering bogie vehicle on sharp curves and a conventional bogie

vehicle on other circumstances, and the reconfigurable mechanism is therefore
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realised. Obviously, there are many ways in which joint B can switch between being
connected and unconnected. An analogous mechanism can also be applied to
Model 1.

It can be seen here that the reconfigurable mechanism itself does not affect the
dynamics of the vehicle after the reconfiguration process has been completed.
Indeed, the reconfigurable mechanism may only work on entering (to disconnect the
joint B) and exiting (to connect the joint B) curves, or in other words, the
reconfigurable mechanism may only work on transitions.

When the vehicles enter a curve, the reconfigurable mechanism should switch the
vehicle from conventional configuration to perfect steering configuration, and joint
B should be disconnected. The turning angles () of the levers of the steering
linkages in Model I and Model II related to the bogie frame are zero when joint B is
connected. Joint B should therefore produce enough force to hold the levers before
it is disconnected when the vehicle enters a curve. If the distance d between joints
A and B is 0.5m, the forces F, that should be applied on joint B are shown in
Fig.7.2 when the vehicles move on the cubic parabola transition as defined by
Fig.2.3.

m 30
~ ~
z 2
o o
: ¥
z 7
& L. 701 & 200
L) n
z
g 8¢ 1
w L
o (L]
. Z g
Py 5 E
u 1 4
T U 10
i
& il
(=3 [v4
ul [}
i L
0 0

50 75 0 5 50 75 100 175
CURVE LENGTH (m) CURVE LENGTH (m)

(a) Model I (b) Model I

Figure 7.2 The forces F . in order to hold joint B when Model I and Model I
enter the cubic parabola transition, stiff linkages

When the vehicles are on a curve (or a sharp curve), the vehicle configurations
should be perfect steering form, and thus joint B is disconnected and the levers in
the steering linkages can turn freely related to the bogic frame, i.e. y; # 0. When
the vehicles exit the curve, the reconfigurable mechanism should turn the vehicles
from perfect steering configurations into conventional configurations, and thus joint
B should be connected. Since y; # 0, the task of the reconfigurable mechanism is
1)to restore the steering levers back to their neutral positions (W, = 0), and then ii)to
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connect joint B, i.e. when the vehicles exit from curves. The working process of the
reconfigurable mechanism can be divided into two steps: firstly restoring the levers
and secondly, holding them. The turning angles (W) of the levers are shown in
Fig.7.3 when the vehicles exit the same cubic parabola transition. If d = 0.5m, the
forces F that the reconfigurable mechanism should provide in restoring the levers
back to their neutral positions along the transifion are displayed in Fig.7 4.
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Figure 7.3 The turning angles (y, )of the levers on the transition when
Model I and Model II exit the cubic parabola transition, stiff linkages
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Figure 7.4 The forces F in order to connect joint B when Model I
and Model II exit the cubic parabola trapsition, stiff linkages

When perfect steering vehicles are on a uniform curve (R = 200m) with cant
deficiency, the turning angles () of the steering levers are illustrated in Fig.7.5 for
steady state. If joint B is disconnected, the levers of the steering linkages will rotate
around joint A, and the displacements of joint B is listed in Table 7.1 when Model I
and Model IT are on curves. The shift of point B in Model I is much smaller than
that in Model I, which implies that the reconfigurable mechanism is more easily
achieved in Mode] II than in Model L.
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Figure 7.5 The angles of the levers versus conicity on a uniform curve, stiff linkages

Table 7.1 Possible linear shifts of point B

cant deficiency Modet 1 Model IT
max Jy| < max [y <
$pg=-0.11 0.04 0.007
R = 200 meters
6q=0.053 0.04 0.007
bg=—0.11 0.04 0.007
R =500 meters 3
¢4 =0.053 0.04 0.007
Cubic Parabola 0.025 0.005
Z max |y] < 0.065 0.012
500 mm x % max |y 132.5 mm +6 mm

7.1.3 Two Devices

There are many possibilities with regard to the design of joint B. The configurations
of two devices are outlined in Fig.7.6 and Fig.7.7. In Fig.7.6, a cored pin is
mounted on the bogie frame and controlled by a force F. The clearance between the
lever and the pin when the pin is on 0-0 position allows the lever to turn freely
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around the joint A within the clearance between the lever and the pin. The
clearance between the lever and pin is governed by the cored angle o and the pin
stroke, and if the clearance is bigger than the maximum dispiacemenf of joint B in
any circumstance, the vehicle has the perfect steering configuration. When the pin
moves forward, the clearance decreases and finally disappears and the pin contacts
the lever, If the force F driving the pin is increased further and pushes the pin into
1-1 position, the lever will be in its neutral position. The first step in restoring the
lever back to its neutral position has now been completed. If there is enough force
to hold the pin in 1-1 position, the second step is realised and the perfect steering
vehicle is changed into a conventional bogie vehicle. When the pin is driven back to

0-0 position, the vehicle is turned back into the perfect steering configuration. The

reconfigurable mechanism is thus achieved. The clearance between the pin and the
Jever should be wide enough for the lever to turn. The required stroke of the pin
may be large than that achievable in practical applications if the displacement of the
lever at joint B is too large. The device in Fig.7.7, however, can be used in the

cases where the displacement of the lever at joint B is large.

coned pin V

1-1 position

0-0 position

bogie frame

lever

Figure 7.6 The cored pin system

In essence, there are two systems in Fig.7.7, one of which acts to restore the levers
back to their neutral positions and the other is to hold them in place, the former
being a gear system and the Jatter a pin device. When the power of gear C is
switched off and pin D with the square head is removed, joint B in Fig.7.1 is
disconnected and the lever can freely turn around joint A, and the vehicle
configuration is that of perfect steering. When the vehicle demands conventional
configuration, the power of gear C is first switched on to drive the lever back to its
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neutral position through gears B and A. After the lever returns fo its neutral
position, pin D is pushed into shaft E and preventing it from turning so that the lever
can not turn. The reconfigurable mechanism is therefore achieved once more.
Since the primary purpose of this chapter is to develop merely the concept of the
reconfigurable mechanism, only the cored pin-system in Fig.7.6 will be discussed
further due to its simplicity.

shaft E

T gear B
gear A / /) ; pinD

/|

power
lever

bogie frame

VAV ANAvd

gear C
Figure 7.7 The gear system

The force diagram of the pin is schematically shown in Fig.7.8 when the pin is
pushed into the lever in the system in Fig 7.6, where T is the force acting on the
lever, F is the friction force and N; the normal force. Since there are two contact
surfaces, two normal forces and two friction forces will act on the pin. It can be
derived that the force needed to push the pin into the lever is:

(1+p)(coso+sin o) T

F, = uT + .
COS O — [Lsin ¢

(7-1a)

where, [ is the coefficient of friction.

When the pin is pulled out of the lever, the friction forces will change direction, and
thus the force needed to pull the pin out of the lever is: |

LLCOSOL —sin O

F. = ur -
COSCC+ LS O

out

T (7-1b)

The above equations show that F; and F_ are functions of the cored angle o and
the coefficient of friction U. Values of F,, and F,, for several pairs of ¢, and 1 are
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listed in Table 7.2 and Table 7.3 respectively. The tabulated results indicate that a
small value o and low friction can reduce F,,. The static friction coefficient
lubricated by grease is about 0.11 {107], and if o = 5°, we have I, = 30%T and

Fop = 14%T.
fo s
J/ En
T ,
VS B -2 Fo  (Fou

Figure 7.8 The force diagram of the pin

Table 7.2 F,, (= T%)

F, u 0.05 0.1 0.15 0.2 0.25 0.3
o
5° 19.50 30.80 42.67 55.11 68.13 81.73
10° 28,98 40.94 53.54 66.81 80.75 95.38
15° 38.84 51.59 65.08 79.33 87.54 110.29
Table 7.3 F,, (= T%)
F,, pl 005 0.1 0.15 0.2 0.25 0.3
o
5° 214 12.11 22.05 31.94 41.80 51.62
16° -0.75 4.25 14.18 24.03 33.81 43.52
15¢ -13.78 -3.40 6.30 16.18 25.94 35.59
Since F,, is the force required to pull the pin out of the lever, the pin cannot leave

the lever if F,, is greater than or equal to zero. This means that the pin is self
locked in the lever if F,

out
the lever, we have F,, = 0. When the pin contacts to the lever, we have F; % 0, but

is positive. If there is not any contact between the pin and

suppose that F, is not large enough to push the pin completely into the final
position, with this condition, the lever does not return to its neutral position. If the
pin is self locked, it cannot be pushed back by T only, and thus the lever cannot turn
in one direction. When the lever tends to turn in another direction, T will decrease
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and thus the pin is pushed a little further by F,,. The process will continue until the
pin is pushed fully into the final position. This implies that F;, should not necessarily
be very large in practical applications. In order to shorten the reconfigurable
process, however, joint B should be connected as quickly as possible, and thus F,
should be large enough.

If the diameter of the actuator that drives the pin is 10cm, the area of one end of the
piston is 78.5cm2. The air pressure of the railway vehicle brake system is
approximately 3bar, and thus the maximum output of the actuator is 2300N,
moreover, the output of a real actuator will be even smaller than this[108]. Suppose
that the pin of the system in Fig.7.6 should be pushed in or pulled out on the
transition 25m away from the straight line, the forces that the actuator should
provide are about 30kN, as seen in Fig.7.2 and Fig.7.4. It seems that the pneumatic
actuator output is not sufficient enough to drive the pin in or out, if so, other
systems can be applied to increase actuator output. If there is a hydraulic system on
the bogie[109], the pneurnatic system can be replaced by it, and the actuator output
can be increased significantly as the pressure in hydraulic systems is much higher
than that of pneumatic systems. If a hydraulic system is not available in a bogie, an

intensifier can be used to raise the pressure of the pneumatic system.

The relative yaw angles between the carbody and bogies on curves are bigger than
those when on straight lines, and these relative yaw angles can thus be used to
examine whether the vehicle is on a curve or not. The technology of measuring the
relative motion between the carbody and bogies developed by GEC ALSTHOM
[110] can be used for this purpose.

The discussion above shows that it is possible to achieve the reconfigurable
mechanism in Model I and Model II without adding any extra source of energy,
which will greatly reduce the cost and complexity of manufacture and maintenance,

and increase reliability and robustness.

When reconfigurable mechanism takes place in Model I and Model II, the vehicles
basically work in two configurations: perfect steering and conventional, The
vehicles take up the perfect steering configuration when they negotiate sharp curves,
whilst on other track environments they become conventional bogie vehicles. When
the vehicles are in one of their configurations, their dynamic behaviour will only
depend on this configuration alone. However, when the reconfigurable mechanism
-takes place, the vehicle's dynamic behaviour depends on both configurations, and
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the system is said to be in its transient state. The transient state will finally subside
to the steady state when the vehicle takes on one of the configurations.

The behaviour in the transient state is useful in understanding what happens when
the reconfigurable mechanism is working, and is especially important to reveal
whether vehicle performance in this state is acceptable or not. After the transient
period has passed, the system's behaviour will be finally governed by one of the
configurations alone, and thus the most important aspect of the vehicle's dynamic
characteristics is the behaviour in steady state. In the chapter, therefore, only steady
state dynamic characteristics are considered. Another reason why the performance
in transient states is not studied here is that it depends heavily on the vehicle detail
and the physics of the reconfigurable mechanism. The results will not have general
significance at this stage as both the vehicles and the mechanism may have many

different forms in practical applications.

7.2 The Relationship Between Effective Stiffnesses and Yaw Stiffnesses

When joint B is connected, Model 1 and Model II take on the conventional
configurations, and the yaw stiffnesses in the conventional configurations are
defined by:

Primary yaw stiffness: k.. = bk, k., = bk

e o wo

Secondary yaw stiffness:  k,, = bk,

where, the meanings of k,'s and b can be found in Fig.7.1, Fig.3.2 and Fig.3.3. If the
stiffness k,; is equal to the stiffness k,, (e k,; = k, = k,), we have
kwa = kpw = kmu =b2kw and the conventional configurations of Model I and Model
II are fore-and-aft symmetric such that the elastic matrix E of the conventional
configurations is a symmetric matrix. The elastic matrices E's of Model I and Model
II themselves are, however, asymmetric even if the condition (k,; = k., = k,) is
satisfied as seen in Eq.(3-1)--Eq.(3-5). This is the major difference in the structure
of the elastic matrices E's with regard to conventional and perfect steering
configurations., Moreover, there is another difference between the perfect steering
form of Model II and its conventional configuration, which is that the perfect
steering configuration of Model II has the inter wheelset stiffness k., while this

stiffness disappears in its conventional form.
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From Eq.(3-2) and Eq.(3-4), the relationships between the yaw stiffnesses of the
conventional configurations and the effective stiffnesses of the perfect steering

configurations can be found as:

For Model 1
k k. 1b* k k /b
kel = > Py ey > ; k,_.z o P‘I-f'2 Sy > (7_2a)
Pk, + Lk, G+ k,, + Lk,
For Model 11
P - Ky Koy 107
! (L, + )k, + & + Dk,
kL k /bt
keZ = 2 o 2 2 (7..33)
G+ LYk, + (5 + Dk,
P - ky, !5
” L +5LYk, + (5 + D)k,

Eq.(7-2) and Eq.(7-3) indicate that it is impossible to make the elastic matrix E

symmetric for both perfect steering vehicle models if their conventional configura-
tions are fore-and-aft symmetric. Applying the yaw stiffness ratio o = &, /k,, to the

formulas, Eq.(7-2) becomes:

k k oy dd (7-2b)
@ T T TPy Py
since J, =1, +1[,, and Eq.(7-3) becomes:
k, [b*

kel = kez = 2 - 2 2

(L+LY + () + Lo (7-3b)

ok, /b’

ke3 =

L+ + &+ D

If k,, = k, two independent stiffnesses k,, and k., in the perfect steering

configuration become one in Model I, but for the conventional configuration of
Model I, there are still two independent parameters (k,,, and kg, or k,, and o), and

therefore, for the same value of effective stiffnesses, one perfect steering
configuration of Model I may have many combinations in its cenventional
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configuration. This implies that the conventional configuration of Model I can have
more choices with regard to system elasticity. For Model 1I, there are still two
independent stiffnesses (k,; & k,4) even though k., = k,,.

Usually, &, > &

«» 50 we have o0 > 1, and if the geometric parameters of the steering

levers are constant, the effective stiffnesses are the functions of the primary yaw
stiffness kw and the yaw stiffness ratio ¢ If the units of the stiffnesses are ignored,

the effective stiffnesses are proportional to the primary stiffness, i.e. k, = Bk,

where the values of [3 are listed in Table 7.4 as a function of the ratio «.

Table 7.4 The stiffness ratio coefficient B =k, /&,

B o 1 10 20 40 60 80 100 150
k

k, for Model 1.10 0.93 0.80 0.62 0.50 0.43 0.37 0.28

ke for Model 11 1.08 0.80 0.62 0.43 033 0.26 022 0.16

k.3 for Model 11 1.08 7.95 1223 | 17.02 | 1948 § 21.00 | 22.04 | 23.58

7.3 Optimisation of Stiffnesses when the Reconfigurable Mechanism is
Applied

The results in the last sub-section show that the effective stiffnesses in Model I and
Model II are directly related to the yaw stiffnesses of their conventional
configurations. Since the effects of effective stiffnesses on the vehicle dynamics of
the perfect steering configurations are not completely coincident with the effects of
the yaw stiffnesses on the vehicle dypamics, a comprehensive investigation has been
carried out to optimise each stiffness suitable for both perfect steering configuration
and conventional configuration. J

In Eq.(7-2b) and Eq.(7-3b), the effective stiffnesses in the perfect steering

configurations and the secondary yaw stiffness in the conventional configuration are
determined by the ratio o (= k,/k;,) and the primary yaw stiffness k,,. The results

in Fig.7.9 give the critical speed of the conventional bogie vehicle versus the ratio &
(= kyyfks,) and the primary yaw stiffness k. The vehicle stability is improved when

o is low, and the optimal value of the primary yaw stiffness is 20~30MN-m,
however, the critical speeds are acceptable when the value of the primary yaw
stiffness varies from [OMN-m to [0OMN-m. Acceptable ride quality is achieved
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with hard primary yaw stiffness, as seen in Fig.7.10, however, an optimised o (= &,
Ik,,) can improve ride quality. From Fig.7.10, the optimal value of the yaw stiffness
ratio o, (= kp ksw) is around 50.

70+

k
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10 H——m—'f 1o T
i0 a8 50 70 80

Figure 7.9 The critical speed versus o and k,,, (MN-m) when
k,, = 40MN/m and A =10.2, the conventional bogie vehicle
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Figure 7.10 The maximum weighted rms’s (mg) of accelerations versus of &, when
kpy = 40MN/m, A = 0.1 and v, = 200km/h, the conventional bogie vehicle

The critical speeds versus k. (primary lateral stiffness) and o are shown in Fig.7.1}
and the maximum weighted rms's of the accelerations over 0.1-100.0Hz at the five
points defined in Fig.5.2 are displayed in Fig.7.12 when kw = S0MN-m. The critical
speeds in Fig.7.11 are acceptable when k,, = 5~50MN/m although the optimal value
of the primary lateral stiffness k,, for stability is around 20MN/m. The ride quality
does however become unacceptable when k, = 15-35MN/m, and it severely
deteriorates when the primary lateral stiffness k,, is between 20MN/m and 30MN/m.
The PSD's at points A, C and E (defined in Fig.5.2) are illustrated in Fig.7.13
respectively when k,, = 10MN/m, k,, = 25MN/m and k,, = 40MN/m. It can be

* Ty
observed that the responses at the first natural frequency are very high, especially
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the lateral acceleration (point C) when kpy = 25MN/m. This implies that the
resonance effect is much higher when k,, = 25MN/m. Referring to the results in
Chapter 5, the optimal value for the primary lateral stiffness k,, is approximately
10MN/m.

When the combining effect of the secondary lateral stiffness &, and the ratio ¢ on
ride quality are considered, one finds that high o can improve ride quality when the
secondary lateral stiffness k, is very soft, whilst low ¢ can benefit ride quality when

ks, becomes harder, as seen in Fig.7.14.

50

hy [

20 r
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20 40 60 o 80 100

Figure 7.11 The critical speed versus o and &, (MN/m) when
ky, =SOMN-m and A = 0.2, the conventional bogie vehicle
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(a) three dimensional diagram of rms's (b) the contours of rms's

Figure 7.12 The maximum weighted rms's (mg) versus ¢ and k (MN/m) when
ko, = SOMN-m, A = 0.1 and v, = 200km/h, the conventional bogie vehicle
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Figure 7.13 The PSD's of the accelerations, when k,,, = S0OMN-m, A = 0.1 and v, =
200km/h, points A, C and E are defined in Fig.5.2, the conventional bogie vehicle
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Figure 7.14 The maximum weighted rms's (mg) versus and k, when k,, = 10MN/m,
kmIJ = 50MN-m, A = 0.1 and v, = 200kmyvh, the conventional bogie vehicle

A brief summary on the effects of the stiffnesses on vehicle dynamics can now be

given on the basis of the above results. When the perfect steering vehicles are
converted into the conventional configurations, the primary yaw stiffness k,,, should

be equal to or greater than SOMN-m, the primary lateral stiffness k,, should be

around [OMN/m and the yaw stiffness ratio o ought to be greater than 10. Vehicle
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stability can be improved by further optimising the stiffnesses, but is acceptable for
the ranges being studied, i.e.

IOMN-m £ £, < 100MN-m, 5MN/m <k, <50MN/mand o > 10.
The values of the stiffnesses are therefore governed by the ride quality of the
conventtonal configurations.

If kp, = SOMN-m and 20 < o < 150, the values of the effective stiffness k, (= & =
k) are:

for Model I, k, = 1.3785x107 (ot =150) and k, = 3.976 x107 (o =20)

for Model II, k, =0.786x107 (o =150) and k, = 3.0825x107 (o =20)

Referring to Chapter 4 and Chapter 5, high effective stiffnesses can increase the
critical speeds of Model I and Model I in conventional instability and improve their

ride quality with the condition that low speed instability does not occur. An
increment in &, or a reduction in o will raise the effective stiffnesses (&, and k),

and therefore, if ride quality of the perfect steering vehicles is acceptable for a single

value of the effective stiffness, the ride quality of the conventional configurations
can be improved by applying hard k,,, and high o (soft &,). This implies that the

conventional configurations of the perfect steering vehicles potentially give some
advantages in ride quality. ’

When &, is SOMN-m and & ( the distance between the longitudinal central line of

vehicle and the steering linkage) is 0.9m, k,, is 61.73MN/m, which is a very hard
spring, and if k,, is 60MN-m, &, will be 74.07MN/m. It might not be a good

practice if k,, is required to be increased further. &,, can be cut down by increasing

the distance b.

7.4 Improvement in Dynamic Behaviour

If k,, = k, = k,, many combinations of £, and o can form one value of &,. This

advantage can be used to improve the dynamic behaviour of the conventional
configuration of Model I and Model II. The values of the effective stiffness &, (= &,

= k) are 3.37553x107 for Model I and 0.94563x107 for Model II respectively.
Some of combinations of k,, and o for the values are listed in Table 7.5 (Model I)

and Table 7.6 (Model II). The results in the last section show that &, should be

around 50MN-m or over in order to achieve acceptable ride quality for the
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conventional configurations, and thus the yaw stiffness ratio o should be around 30

or over for Model I and must be greater than 100 for Model I1.

Table 7.5 Model I (k,, = k., = 3.37553x107)

o 20 30 40 50 60 70 80
k%10 (MN-m) 4245 | 4860 | 5475 | 6.090 | 6705 | 7321 | 7.935
Table 7.6 Model II (k,, = k, = 0.94563x107)
o 90 | 100 { 110 | 120 | 130 | 140 | 150 | 200
k10 (MN-) | 3047 | 4291 | 4.636 | 4981 | 5325 | 5670 | 6.015 | 7.738
k,3x10° 0.851 | 0.946 | 1.040 | 1.135 | 1.229 | 1.324 | 1.419 | 1.891
. (T 1T
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Figure 7.15 The critical speeds (versus conicity) of the perfect steering
and conventional configuration of Model I

When the perfect steering vehicles are converted into conventional bogie vehicles,

the most important improvement in their dynamics is the removal of low speed

instability, as seen in Fig.7.15 {(Model I) and Fig.7.16 (Model II).

Usually, the

equivalent conicities are smaller when the vehicles are on straight lines than those

when they are on curves (at least this can be achieved by the wheel profile design).
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The potential of low speed instability is much lower when the perfect steering
vehicles are on curves than when on straight lines, and therefore, the possibility of
low speed instability for each perfect steering vehicle is much reduced or even
eliminated when they are equipped with the reconfigurable mechanism. Since the
critical speeds of the conventional configurations of Model I and Model II in high
conicity are higher than the perfect steering forms of Model I and Model II, the
vehicle speed can be increased by applying the reconfigurable mechanism. The yaw
stiffness ratio ¢ does not affect the stability of Model I if the relation in Eq.(7-2b) is
used, as seen in Fig.7.15, while the ratio o slightly affects the critical speeds of
Model 11, if the relation in Eq.(7-3b) is applied, as seen in Fig.7.16. The results in
the last section indicate that the influence of the yaw stiffness ratio o on the stability
of the conventional bogie vehicle is not very significant, which is also supported by
the results shown in Fig.7.15 and Fig.7.16.

When the perfect steering vehicles are turned into the conventional bogie vehicles,
the channels to transfer the track irregularities to the body are reduced from three to
one, and thus the ride quality of the conventional configurations of Model I and
Model II is potentially better than that of Model I and Model II themselves. The
most evident improvement of ride quality is that the depression of the responses
around the first natural frequency when the perfect steering vehicles change their
configuration, as s.hown in Fig.7.17 (Model 1) and Fig.7.18 (Model II). The
reductions of rms's at points A, C and E (defined in Fig.5.2) are illustrated in
Fig.7.19 when the perfect steering vehicles are in the conventional configurations.
Since the reduction at point C is almost the same as that at points A & E, the
decrease in rms's mainly comes from the lateral motion of the carbody, as is
especially noticeable with Model 11, which can be directly observed in Fig.7.17 and
Fig.7.18.
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Figure 7.16 The critical speeds (versus conicity) of the perfect steering
and conventional configuration of Model Il

A further investigation is launched to study the effects of the yaw stiffness ratio o
on ride quality. The maximum weighted rms's of the accelerations at the five points
(defined in Fig.5.2) in question are displayed in Fig.7.20 (Model I) and Fig.7.21
(Model IT). The maximum weighted rms's of all configuration are very sensitive to
conicity, and the maximum weighted rms's related to conventional configuration are
reduced by increasing o. This effect is most significant in Model I, and
consequently, another advantage of the conventional configuration of Model 1 over

the perfect steering form of Model I is that ride quality can be improved by raising
k,, and o without changing the effective stiffnesses.

When v, = 200km/h and A > 0.15, the maximum weighted rms's of either Model II
or its conventional configuration are too high to be tolerated even if o = 200, as
seen in Fig.7.21. The causes for this are that the primary and secondary lateral
stiffnesses are higher in Model II than in Model I. If the secondary lateral stiffness
of Model II is equal to that of Model I, i.e. k, = 10KN/m, the maximum weighted
rms's of either Model 1I or its conventional configuration can be much reduced, as
shown in Fig.7.22. It is found, however, that this reduction in kSy does not affect the
critical speed for both configurations. The decrease in the primary lateral stiffness
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can also cut down the maximum weighted rms's, but will reduce the critical speed.
The results in these figures also indicate that a large yaw stiffness ratio o can
improve ride quality, this implies that a hard k,, always benefits ride quality in all

configurations.

When the vehicle speed is reduced to 150km/h, the ride quality is at an acceptable
level (the maximum weighted rms < 12mg) for most of the cases considered.
Usually, high equivalent conicities often occur when the vehicles negotiate very
sharp curves[103]. Vehicle speeds in these circumstances are usually lower than
those when in other circumstances, which implies that if the perfect steering
configurations of Model 1 and Model II only work on sharp curves and their
conventional configurations work on other circumstances, the ride quality of each
perfect steering vehicle with the reconfigurable mechanism can be controlled to a

reasonable level even if their normal speed is high.
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Figure 7.19 The reductions of rms's (mg) at points A, C and E for the conventional
configurations of Model I and Model II, v, = 200km/h and A = 0.1
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Figure 7.21 The maximum weighted rms's (mg) of the accelerations at the five
points (defined in Fig.5.2) of Model I and its the conventional configuration
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Figure 7.22 The maximum weighted rms's (mg) of the accelerations at the five
points (defined in Fig.5.2)of Mode! II and its conventional configuration
when kg, = I0KN/m
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7.5 Summary

The conflict between stability and curving in the lateral plane is fundamental with
regard to conventional bogie vehicles. In actual fact, this conflict results in the
knowledge of how to select yaw stiffnesses, especially with regard to the selection
of the primary yaw stiffness. A hard primary yaw stiffness raises the critical speed,
and increases the bending stiffness that causes a difficulty when vehicles negotiate
curves. A perfect steering vehicle can steer itself well on sharp curves if there is
sufficient flange clearance, however, a fundamental conflict exists in its stability
itself, i.e. stiff steering linkages can improve the conventional stability of perfect
steering vehicles, but cause low conicity instability. With the reconfigurable
mechanism, a railway bogie vehicle can work in conventional configuration on
straight lines and take on the perfect steering configuration on curves. This vehicle
avoids low conicity instability on straight lines and negotiates curves well, and
therefore, a perfect steering bogie vehicle with the reconfigurable mechanism
decouple these fundamental conflicts well.

The reconfigurable mechanism only works when the wvehicle changes its
configuration. When the reconfigurable mechanism works, there is a transient state
whereby the dynamic responses of the system change temporarily. The period of *
the transient state is governed by the reconfigurable mechanism as the time taken to
change the configuration depends on the mechanism itself. After the transient
period, the vehicle is in only one of the configurations and the reconfigurable
mechanism is an independent system, and the mechanism itself does not, therefore,
influence the dynamic behaviour of the vehicles in steady state. In other words, the
dynamics of the vehicles in steady state is only decided by the vehicle
configurations, which highlights the advantage in the simplicity over controlled
suspensions. Comparing with controlled suspensions such as active and semi-active
systems, the reconfigurable mechanism can be a more simple, less energy consuming
and more robust system. Another benefit is that the system can avoid complicated
feedback control philosophy. In actuval fact, the reconfigurable mechanism for the
perfect steering vehicles mainly depends on the turning angles of the levers in the
steering linkages, and if the angles are smali, the device can be very simple indeed as
illustrated in Fig.7.6.

When the perfect steering vehicles are equipped with the reconfigurable mechanism,

the dynamic behaviour is divided into two phases: the stability and ride quality of
conventional configurations on straight lines and the stability and ride quality of
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perfect steering configurations on curves. The critical speeds and maximum rms at
those five points (defined in Fig.5.2) of Model I and Model Il and of their
conventional configurations are listed in Table 7.7 (Model I) and Table 7.8 (Model
11) respectively when the parameters of Set 2 (stiff steering linkages) in Table 3.4
and in Table 3.5 are used. The critical speeds of the conventional configurations of
Model I and Model II at high conicities are higher than those of Model I and Model
IT themselves, and ride quality of the conventional configuration of Model I are
better than that of Model I itself whilst the ride quality of Model II and its

conventional configuration are very close.

Since the equivalent conicity on curves is higher than that on straight lines, the
effective stiffnesses of the perfect steering vehicles can be increased when the
reconfigurable mechanism is applied. The results in Chapters 4 & 5 demonstrate
that stiff steering linkages not only raise the critical speed, but also improve ride
quality for the perfect steering vehicles. This effect can be more significant if the
perfect steering configurations are only in effect when the vehicles are on sharp
curves. The perfect steering vehicles with the reconfigurable mechanism are very
useful implementations for railways with high speed in straight tracks and low speed
on sharp curves.

Another advantage of the conventional configurations over the perfect steering

vehicles is that any single value of the effective stiffnesses (k,, = k,,) can be formed
from many combinations of the primary yaw stiffness £, and the yaw stiffness ratio

o.. This gives the conventional configurations more choices in optimising their yaw
stiffnesses and improving their dynamic behaviour, and this is very significant in
Model L.

The reconfigurable mechanism can also be applied to other classes of body-steered
bogie vehicles in improving their dynamic behaviour if their steering linkages have
similar configurations as Model I or Model II. Furthermore, the reconfigurable
mechanism also has a general application in other physical systems.
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Table 7.7 Major performance index of Model I and its conventional configuration

Conicity A 0.05 0.1 0.15 0.2 0.25 0.3
Model I 287 312 269 229 200 182
vo(km/h)
Conventional >360 >360 330 276 236 212
Model I, vg= 150(km/h) 3.86 6.92 9.26 11.10 1172 12.57
rms,__(mg)
Conventional, vy= 200(km/h) 4.36 1.26 9.72 11.81 13.60 15.15

the yaw stiffness ratio o = 30

Table 7.8 Major performance index of Model II and its conventional configuration

. Conicity A 0.05 0.1 0.15 0.2 025 0.3
Maodel I 341 352 302 258 226 204
vg(km/h)
Conventional 334 323 312 208 287 276
Model II, v,= 150(km/h} 2.76 5.25 7.55 9.71 11.81 13.97
rms_  (mg)
Conventional, v,= 200(km/h) 422 7.59 10.59 13.39 16.02 18.49
the yaw stiffness ratio o0 = 140
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CONCLUSIONS AND FUTURE DEVELOPMENTS

Three configurations of railway bogie vehicles with the capability of perfect steering
have been proposed, and their negotiating ability, stability and ride performance
have been investigated. To overcome the disadvantages of perfect steering vehicles,
a reconfigurable mechanism has been conceived, and the improvement in the
dynamics of perfect steering vehicles with the reconfigurable mechanism has been
studied. The dynamic performance of perfect steering vehicles has been summarised
in Chapter 6, and the advantages of the reconfigurable mechanism with regard to
improving the dynamics have been given in Section 7.5. This chapter will
summarise the achievements of the research project, point out possible applications
of the research results, and suggest possible future developments

8.1 Contributions and Findings

Chapter 1 indicated that the dynamic behaviour of perfect steering vehicles has not
been studied well although the feasibility of bogie vehicles being capable of perfect
steering has been proved. The results and analyses in this research project have
great significance which will lead to the application of perfect steering vehicles.
This section summarises the contributions and new findings of the research. Since
perfect steering vehicles are one class of body-steered bogie vehicles, some of the

results can in general be applied to other classes of body-steered bogie vehicle.

Contributions:

1. Three configurations of perfect steering vehicles have been proposed. The

conditions for them to possess perfect steering have been postulated.

2. The effects of the perfect steering vehicles' elasticity on their curve negotiating
ability (uniform curves with or without cant deficiency and transition) have been
systematically investigated.

3. The effects of geometric errors in the steering linkages on the dynarmic behaviour
of perfect steering vehicles have been studied.
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4. Two bogie sub-systems, one possessing three, and another four degrees of
freedom, have been used to theoretically analyse the low conicity instability of
perfect steering vehicles. It has been found that the bogie sub-system with four
degrees of freedom more closely resembles the physical features of the bogie, and
the results derived from this sub-system therefore match the simulation results more
closely than those obtained from the bogie sub-system with three degrees of

freedom.

5. The effect of each parameter in the suspensions and the steering linkages on the
stability of perfect steering vehicles has been studied comprehensively. The results
have very general significance with regard to the applications of body-steered bogie

vehicles.

6. The effect of steering linkage on the transmissibility of body-steered bogie
vehicles has been demonstrated theoretically. The influence of each parameter in
the suspensions and the steering linkages on the ride performance of perfect steering

vehicles has been investigated.

7. The reconfigurable mechanism for vehicle suspensions has been conceived, and
the feasibility of applying the mechanism in perfect steering vehicles has been
illustrated. The improvement in dynamics of the perfect steering vehicles with the
reconfigurable mechanism has been studied. |

Findings:
Negotiating Ability of Perfect Steering Vehicles

1. There is no bending stiffness in the suspensions of perfect steering vehicles. The
sufficient condition for a bogie vehicle being capable of perfect steering is that the
stiffness in the linkages does not make any contribution to the bending stiffness.
This condition is independent of curvature and only depends on the configurations

of bogie vehicles.

2. When perfect steering is realised, the wheelsets of the vehicles act as
unconstrained wheelsets and roll on their pure rolling lines. This suggests that the
yaw constraint of wheelset should be as flexible as possible in order to achieve

better alignment on curves. This concept contradicts the traditional concept that a
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steering mechanism should be applied to the wheelsets to assist in curve negotiation.
This finding has general significance for other body-steered bogie vehicles, i.e. their
steering linkages should be designed to minimise the bending stiffness of wheelset.

3. If the distance between the pure roliing lines of wheelsets and the track central
line is larger than the restriction of flange contact, flange contact will occur before
the wheelsets reach their pure rolling lines. Perfect steering cannot be achieved if
flange contact occurs, and therefore, another condition for perfect steering is that
flange clearance must be large enough to let the wheelsets roll on their pure rolling
lines. Since the pure rolling line of wheelset is determined by the equivaient conicity
of the wheelset and the curvature of curves, it is very difficuit to realise perfect
steering if curves are very sharp.

4. The capability of perfect steering vehicles with regard to negotiating curves is
very sensitive to geometric errors in the steering linkages. The vehicles no fonger
possess the property of perfect steering if there are any geometric errors in their
steering linkages. The geometrical accuracy of the steering linkages is therefore
especially important in the applications of perfect steering vehicles.

5. Comparing with conventional bogie vehicles, perfect steering vehicles have much
better alignment ability with regard to cant deficiency and curvature variation on

transitions.
Stability of Perfect Steering Vehicles

1. There are three modes of instability with regard to the perfect steering vehicles:
low speed instability, dynamic instability in low conicity and conventional instability.
The instability modes of the perfect steering vehicles mainly depend on wheelset
conicity. If the conicity is low, low speed instability (divergent or oscillatory)
occurs and the vehicle critical speeds are very low. The critical speeds of perfect
steering vehicles will increase as the conicity rises in dynamic instability in low
conicity while the critical speed will decrease as the conicity becomes higher in
conventional instability. When the steering linkages become very stiff, only low
speed instability and conventional instability occur and dynamic instability in low
conicity disappears. Although conventional instability is one kind of dynamic
instability, the difference between dynamic instability in low conicity and
conventional instability is that the former only occurs in one of the bogies whilst the
latter occurs in both.
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2. Since the condition for low speed instability is linked with the sufficient condition
for the bogie vehicle being capable of perfect steering, low speed instability is
unavoidable in perfect steering vehicles whenever their conicity is low or when the
steering linkages are very stiff. This has been proved through both theoretical
analysis and simulation. This is the first report regarding low speed instability in
high conicity.

3. With regard to the stiffness of the steering linkages, there is a conflict between
low speed instability and conventional instability. Soft steering linkages can prevent
low speed instability whereas stiff steering linkages can improve conventional
stability. It has also been found that the frequencies of the unstable motions in
perfect steering vehicles are always associated with the kinematic frequencies of

wheelset.
Ride Performance of Perfect Steering Vehicles

1. There are three channels capable of transferring track disturbances to the carbody
of body-steered bogie vehicles: the coupling of primary/secondary suspensions
(which only exist in conventional bogie vehicles), the steering linkages, and the
coupling of the steering linkages/secondary suspension. These three channels are
not, however, independent, such that the suspension coupling is complicated by the
steering linkages in body-steered bogie vehicles. The transmissibility of body-
steered bogie vehicles is potentially increased due to the steering linkages. Zero
bending stiffnesses in the suspensions of perfect steering vehicles, however,
simplifies the system coupling and reduces transmissibility. This effect will benefit

ride performance of perfect steering vehicles.

2. The effects of the stiffness in the steering linkages of perfect steering vehicles on
vehicle ride performance depend on the configurations of the steering linkages. If
the steering linkages have similar configurations to those of Model I or Model IJ,
the effective stiffnesses in the steering linkages unequally distribute in the
connection between the wheelsets and bogie frames, and in the connection between
the bogie frames and carbody. The increment in the effective stiffnesses of the
steering linkages can strengthen the connection between the wheelsets and bogie
frames, but makes little contribution to the strength of the connection between the
bogie frames and carbody. The steering linkages effectively work as a double

suspension system with a hard primary suspension and a soft secondary suspension,
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and thus stiff steering linkages can improve the ride performance of perfect steering
vehicles. The effects of steering linkages on ride performance, however, depend on
their configurations, and stiff steering linkages can also deteriorate ride

performance.

Overall Dynamic Performance of Perfect Steering Vehicles

The sufficient condition of perfect steering is independent of steering linkage
stiffness whilst stiff steering linkages can raise the critical speed in conventional
instability. Perfect steering vehicles, therefore, partly decouple the fundamental
conflicts between curving and stability. Furthermore, if the configurations of the
steering linkages are similar to those of Model I or Model I, stiff steering linkages
also improve the ride performance of perfect steering vehicles Stiff steering
linkages can thus also partly decouple the basic conflict between stability and ride

performance.

The Reconfigurable Mechanism

1. The reconfigurable mechanism is much simpler than controlled suspension
systems because it does not control any of the components in the Suspensions, and
more generally, it does not control any of system state variables. Indeed, the
reconfigurable mechanism can be considered as an independent system. It only
affects the transient dynamics of the vehicles, and when the vehicles are in one of
the configurations alone, their dynamics is only governed by this single
configuration (which can be passive, active, semi-active or a combination of them).
The simplicity of the reconfigurable mechanism can offer other advantages over
controlled suspension systems such as cost, reliability, robustness and maintenance.

2. When the perfect steering vehicles are equipped with the reconfigurable
mechanism, they can work in two configurations. They are perfect steering vehicles
when on curves (or on sharp curves) but become conventional bogie vehicles when
in other circumstances. The perfect steering vehicles with reconfigurable
mechanism thus possess the advantages of both perfect steering vehicles and

conventional bogie vehicles.

3. The vehicles with the reconfigurable mechanism can be controiled such that their
perfect steering configurations only work under high equivalent conicity. This can
not only eliminate low conicity instability, but also increase the stiffness of the
steering linkages, which can improve conventional stability and ride performance.

The stiffness in the steering linkages is turned into yaw stiffnesses in suspensions
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when in the conventional configurations. It has been shown that stiff steering
linkage in the perfect steering configuration can be changed into hard primary yaw
stiffness and soft secondary yaw stiffness in the suspensions in conventional
configuration. This can improve the ride quality of the conventional configurations
without much deterioration in stability. The basic conflicts between curving,
stability and ride performance are thus well solved in perfect steering vehicles with

the reconfigurable mechanism.

8.2 Commercial Application Remarks

Perfect Steering Vehicles

Perfect steering vehicles presented in this thesis can be applied whenever the conflict
between stability and curving becomes the major problem. They are especially
useful for existing railway lines with sharp curves in raising train speed without
causing problems during curve negotiation.

The stiffness in the steering linkages is limited by low conicity instability, which will
produce negative effects on stability and ride performance. Other approaches need
to be applied if perfect steering vehicles are used in a new high speed railway..

The realisation of perfect steering is dictated by the need for sufficient flange
clearance to let the wheelsets move on their pure rolling lines, It is difficult to avoid
flange contact for perfect steering vehicles when curvature is too large; for example
in light railways or in underground railways.

Perfect Steering Vehicles with The Reconfisurable Mechanism

The applicaﬁons of perfect steering vehicles are increased when they are equipped
with the reconfigurable mechanism. It is possible to apply perfect steering vehicles
with reconfigurable mechanism in new high speed railways. The reconfigurable

mechanism cannot, however, alleviate flange contact when curves are very sharp.

Reconfigurable Mechanism

The concept of the reconfigurable mechanism has general significance and can be
used in many physical systems. The reconfigurable mechanism of perfect steering

vehicles can also be applied to other body-steered bogie vehicles.
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8.3 Future Development Remarks

In order to develop perfect steering bogie vehicles into products, and apply the
reconfigurable mechanism in body-steered bogie wvehicles, further research is
required and is given below.

1) More configurations of perfect steering bogie vehicles should be set up and their
dynamic behaviour investigated. The purpose of research in this area has objectives:
firstly to further explore the physical features of perfect steering bogie vehicles,
secondly, to reveal the mechanisms behind these features, and finally, to optimise

the configurations of perfect steering bogie vehicles with regard to their dynamics.

2) To understand the dynamics of perfect steering bogie vehicles in details, and to
expose more physical features, it is necessary to simulate the dynamic responses of
perfect steering vehicles in the time domain. In this computer model, the following
aspects are of concern:

- influences of non-linear factors, especially flange contact,

- dynamic responses on special sections such as on switches, transitions and reverse
curves,

- transient responses occurring when the reconfigurable mechanism is used.

3) The development of the reconfigurable mechanism can be divided in two fields.
Firstly, the feasibility of the reconfigurable mechanism working correctly in each
configuration of perfect steering bogie vehicles should be investigated, and
secondly, the physical features of the reconfigurable mechanism with special regard
to transient state should be studied. Some of the research in this area can be
undertaken through computer simulation, but a physical system will lead to better
results.
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Appendix A

The Dynamic Behaviour of A Body-Steered Bogie Vehicle with the
Capability of Perfect Steering in the Lateral Plane

W. LI

SUMMARY

The configuration of a body-steered bogie vehicle without primary nor secondary yaw stiffnesses
has been proposed. Its outboard wheelsets are directly connected to the carbody and there is a
linkage between its inboard and outboard wheelsets. The conditions for the vehicle to possess
the capability of perfect steering has been set up, which only depend on the geometric parameters
of the steering linkage. There is no any bending stiffness in the vehicle if the steering linkage
satisfies these conditions. The stability, curving and ride performance of this vehicle in the
lateral plane have been investigated. Two instabilities, namely steering instability (low speed
and dynamic) and conventional instability, have been identified, and steering instability has
been theoretically analysed, The results show that this vehicle can partly decouple the conflict
between the stability and curving.

1. INTRODUCTION

Generally, the suspensions of a railway vehicle should provide strong enough
constraints to the wheelsets in ordér to prevent them from being unstable. On the other
hand, the wheelsets ought to be as free as possible so that they can take more radial
alignment on curves. The former results in hard suspensions while the latter requires
soft suspensions. This fundamental trade-off between stability in the lateral plane and
steering ability on curves in railway bogie vehicles has been well studied[2-3]. Itis well
known that this basic conflict between stability and curving cannot be solved very well
in conventional bogie vehicles.

To moderate the conflict between stability and curving, several configurations of body-
steered bogie vehicles have been proposed [3-11] and some have been applied in
practice. A body-steered bogie vehicle has a linkage between its carbody and wheelsets,
and the presence of force on the axles is a function of the relative displacements
between the carbody and wheelsets such that the relative displacements between the
carbody and wheelsets can assist the wheelsets to take more radial alignment on curves.

* Department of Mechanical Engineering, Loughborough University of Technology
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Wickens[1] has proved that it is possible to design a bogie vehicle with the capability of
perfect steering which has non-zero critical speed if it has at least three wheelsets. He
defined the concept of perfect steering as zero creep between wheelsets and rails when
the vehicle moves steadily on a uniform curve with zero cant deficiency, and then the
wheelsets act as unconstrained wheelsets when perfect steering is achieved.

If the primary and secondary yaw stiffnesses are removed from a conventional bogie
vehicle with four wheelsets, the vehicle's bending stiffnesses disappear and the
wheelsets can negotiate a uniform curve with zero cant deficiency by taking their radial
positions. In this case, there is no creep between wheelset and track, and perfect
steering is therefore realised. Wickens[1] has proved, however, that the critical speed
of this vehicle is zero and another two independent stiffnesses for each bogie at least are
required to stabilise the vehicle, and these two stiffnesses should not contribute any
bending stiffness to the vehicles if perfect steering is required.

This paper demonstrates a body-steered bogie vehicle that does not possess the primary
nor secondary yaw stiffnesses, and another two independent stiffnesses are added to
each bogie by the steering linkage between its carbody and wheelsets and between its
outboard and inboard wheelsets. The condition for the vehicle to possess perfect
steering will be derived, and its steering capability, stability and ride performance in the
tateral plane are also going to be investigated.

NOTATION

ag half gauge (0.72m) a; geometric parameters of vehicle in the
horizontal plane

a half wheelset base (1.25m}) a compatibility matrix

A disturbance gain matrix ¢  viscous damping coefficient

C viscous damping matrix E elastic matrix

f; i cregpage coefficient h; geometric parameters of vehicle in the

‘ vertical plane

Fy elastic force caused by curvature G creepage stiffiess matrix

kij stiffness & length between vehicle body weight
centre and bogie pivot (8.75m)

M inertia matrix N creepage damping matrix

q general coordinate vector Q force vector

) wheel radius (0.45m) R curve radius

v vehicle forward speed x longitudinal coordinate or displacement
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y track irregularity vector y lateral coordinate or displacement
z vertical coordinate or displacement ¢ roll angle
dy curve cant deficiency A wheelset conicity
- wheelset equivalent conicity Ay necessary conicity to avoid flange
contact
y yaw angle
Subscript
b body p primary
s secondary T bogie
w wheelset y lateral freedom
y yaw freedom b roll freedom

2. THE CONFIGURATION AND ITS CURVING MECHANISM
2.1 Motion Equations

If a railway bogie vehicle is considered as a system of rigid bodies possessing n degrees
of freedom connected by m massless elastic elements and m massless viscous dampers,
the dynamic equation of the vehicle can be defined as:

MG + (G+C)q + (N+E)q = Q (1)

Where, G and N come from the creepage and can be easily found based on the dynamic
equation of an unconstrained wheelset[12]; E and C are called the elastic matrix and
the viscous damping matrix respectively; Q is the force vector and q is the general
coordinate vector (displacement vector).

For a fore-and-aft symmetric bogie vehicle with four wheelset, the vehicle can be
simplified as a system with seventeen degrees of freedom in the lateral plane: two for
each wheelset (lateral shift y,, and yaw angle ), three for each bogie frame (lateral
shift y, vaw angle y and roll angle ¢1) and three for its carbody (lateral shift y,, yaw
angle y and roll angle ¢,,), and thus the general coordinate vector q is:

A = {Yo1 Va1 Ye2 Y2 Yws Va3 Yws Waa | Yo V7L 970
Yrr ¥R ¢TR | Y6 Wb ) (2)

Applying the compatibility matrix method suggested by Wickens[1], the elastic matrix
E and the viscous damping matrix € of the system are given by:
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E = al[k]a C = a¥[c]a 3)

where, a is called the m X n compatibility. matrix and is governed by vehicle
configuration, and [k] {or [c] )is an m X m diagonal matrix of stiffness (damping})
corresponding to the strains (strain rate) represented by the i'th row of a.

For steady state, Eq.(1) is simplified as:

(N + E)q = Fgp + Fp + Fg, (G)]

where, chp is the creepage force vector caused by curvature , Fy is the system elastic
force vector caused by curvature and F_, is the force caused by cant deficiency. It can

be proved that F., is defined by:
Foeep = (0 -2a3 ;1 /R 0 —2a3 £, /R O ~245f, /R O —245f, /R |
00 00 O0O0!0 0 0} (5)
and Fgis given by:
i
Fo = - ) & {a,)" {aaHg) 6)

=1
and F,, is:

Fcant = {qu)d 0 WW¢d 0 qu)d 0 WT¢d 0 l WT¢d 0 0

Wrbg 0 01 Wioy O 0} (N
Since % = % %:— =vy -Z—i =v,q°, for kinematic state (v, — 0), Eq.(1) becomes:
Gqg + (N+E)q = F_,,+ Fmep + Fg (8)

If the track irregularities are taken into account in a straight fine, Eq.(1) becomes:
Mi + (G+0)q + (N+E)q = Ay 9)

The definition of the disturbance coefficient matrix A and the disturbance vector y can
be found in reference [17] if the cross-level and alignment track irregularities are only
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considered as the system disturbances. The parameters for Class 6 Track in American
Railroad Standard [18] are used to define the track irregularities in the simulation.

2.2 Configuration

A body-steered bogie vehicle model without the primary and secondary yaw stiffnesses,
as shown in Fig.1, is set up in the research. Two independent stiffnesses are added in
the system by a spring with stiffness k; between the outboard wheelsets and carbody
and by a spring with stiffness k,, between the inboard and cutboard wheelsets. For this
configuration, any of the relative displacements (lateral, yaw and roll) between its
carbody and outboard wheelsets will cause the deformation of the spring k4. This
deformation can force the ountboard wheelset to have a yaw angle, and thus any of these
relative displacements is one of the steering inputs.

N
_\‘_ a2 l“{e;y % ?kTCT
7 k @ k k
~ v k\?“"‘u\ s
RSN 175 R e SN
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|
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Figure 1. The Configuration of A Body-Steered Bogie Vehicle

If the diagonal elements of [k] are arranged as:

i) = (hy koy oy oy Koy kg dyy Koy Ly Ry &y kg

by ky Ky gy (10)
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the compatibility matrix a is listed in Table A and the elastic force F in Table B,

Since the sufficient condition for a railway vehicle being capable of perfect steering is
Fg = 0, the geometric parameter &, of the linkage between the carbody and outboard
wheelsets must satisfy:

a = al/{a+l) (11)

and the geometric parameters &, and a, of the linkage between the outboard and
inboard wheelsets should have the relationship:

a, = aq (12)

and thus @) = 1.09375m and a5 = a, = 1.25m can be obtained if @ = 1.25m and lo =

8.75m, and @, = 1.0938m are used in the simulation. Eq.(11) and Eq.(12} indicate that
the condition for a railway bogie vehicle being capable of perfect steering is
independent of the parameters associated with curves and is only governed by the
geometric parameters of the vehicle.

2.3 Steering Ability

In steady state, the wheelset attack angles are zero and perfect steering is achieved
when the steering linkage satisfies the condition Eq.(11) & Eq.(12) and when cant
deficiency is zero, and then the wheelsets act as unconstrained wheelsets and move on
their pure rolling lines. The distance between the pure rolling line of unconstrained
wheelset and track central line can be derived from the motion equations of an
unconstrained wheelset on steady state and is given by:

ayhy
= -0 13
y R (13)

€

This distance becomes shorter when there is an inboard cant deficiency, and becomes
longer when there is an outboard cant deficiency.

If this distance is equai to or greater than the flange clearance, flange contact cccurs,
which causes two major problems: firstly, it forces the wheelsets to leave their pure
rolling lines and results in creep so that perfect steering cannot be achieved, and
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secondly, it increases the wear between rails and wheels and increases the tendency of
derailment. A reduction in the potential of flange contact is therefore highly desirable.

From Eq.(13), the equivalent conicity A, must be equal to or greater than 0.324 to avoid
flange contact if the flange clearance is Smm and the curve radius R = 200m. The
wheelset lateral displacements of the body-steered bogie vehicle in steady state are
illustrated in Fig.2 when the curve radius R = 200m. The minimum equivalent conicity
in avoiding flange contact is defined as the necessary conicity A,. In Fig.2a, the cant
deficiency is equal to zero, and the necessary conicity A, is equal to the value
theoretically predicted by Eq.(13) if taking the caleulation accuracy into account. An
inboard cant deficiency causes wheelsets to have a positive lateral shift so that the
abgolute lateral displacements of wheelsets reduce while an outboard cant deficiency
forces wheelsets to have a negative lateral displacement so that the absolute lateral

displacements increase. The necessary 0

conicity A, therefore reduces when there
is an inboard cant deficiency while it
increases when there is an outboard
deficiency, as illustrated in Fig.2c&d.
Comparing with the necessary conicity

A, when ¢4 = 0, and the alteration in the
necessary conicity A is slight when ¢4

# 0, which indicates that the vehicle has
a very good ability in accommodating
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2 g
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Figure 2. The wheelset lateral displacements versus conicity,
steady state, No.1--4, wheelset seguence, R = 200m.
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linkage does not satisfy the conditions Eq.{11) and Eq.(12), and will produce bending
stiffness and thus cause attack angles and creep. For example, when a; = 1m, the
lateral shifts and resultant creepages of the wheelsets are displayed in Fig.3. The
results show that its necessary conicity A, is not greatly affected by the geometric error
in the steering linkage although this error causes creep between the wheelsets and

tracks.
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Figure 3. The lateral displacements and resultant creepages versus conicity
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On transitions, the curvature at each point is not a constant, the curvature difference

When there is an error in the geometric parameters of the steering linkage, the steering
along transitions will cause the elastic force Fi even if the steering linkage satisfies the ‘
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conditions Eq.(11) & Eq.(12). A cubic parabola is used as the transition connected to a
uniform curve with R = 305m. The wheelset lateral displacements of the vehicle
capable of perfect steering are shown in Fig4 when A, = 0.1 and A = 0.3 and the cant
deficiency is neglected. For R = 305m, the distance between the pure rolling line of
unconstrained wheelset and the track central line is 10.6mm when A, = 0.1 and is
3.54mm when A, = 0.3. The wheelset lateral displacements in Fig.4 are smaller than
those values along the transition and finally converge to those values on the uniform
curve. One can see from the results that the bogie vehicle capable of perfect steering
have a great advantage in reducing the potential of flange contact. The reason for this
is that the steering linkage is designed to reduce the forces produced by elastic
deformation due to curvature and this function of the steering linkage is still effective
even on transitions. For example, the elastic moment M, acting on the outboard
wheelset of the leading bogie due to variation of curvature on transition can be found
as: '

M\ywl =a;k (3 Wyr, — B Wout ) + a32k“ VW~ Vout = Yina)

where, Yy is the relative yaw between the carbody and the leading bogie due to
curvature; V.., is the relative yaw between the carbody and the outboard wheelset due
to curvature; and W, ., is the relative yaw between the carbody and the inboard wheelset

due to curvature. Usually, the second term a@rky (2W,y —Wpui = Whwy) Of the

equation above is much smaller than the first term and can be ignored. For a
conventional bogie vehicle, the elastic moment My acting on the outboard wheelset

of the leading bogie due to variation of curvature on transition is:

Mtrw] = kpb(\pbn*WUwI)

where, ky, is the bending stiffness between wheelsets. Since there are:
Ay > dy and Wy < Wi

we have
IWbTL - thl‘ > |aoWbTL - az‘l’bwal

The elastic moment M, of this body-steered bogie vehicle due to variation of
curvature on transition is smaller than that of a conventional bogie vehicle, and thus the
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displacements of this body-steered bogie vehicle due to variation of curvature on
transition are reduced.

3. INSTABILITY
3.1 Instability Modes

The critical speeds of the vehicle capable of perfect steering are demonstrated in Fig.5
as a function of wheelset conicity. There are three modes of instability in Fig.5: the
critical speed is very low and the instability is defined as low speed instability when the
wheelset conicity is very low; and then the critical speed goes up as the conicity rises
and the instability here is called dynamic instability in low conicity; and finally the
critical speed reduces as the conicity becomes higher and the instability here is called
conventional instability. Both low speed instability and dynamic instability in Iow
conicity are defined as steering instability, and conventional instability can be observed
in conventional bogie vehicles.
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Figure 5. The critical speed versus A of the vehicle capable of perfect steering

The eigenvalues of instability modes are illustrated in Fig.6. Since the frequencies of
these instability modes are close to the kinematic frequency of unconstrained wheelset

2nf = v, JX% " }, the unstable mode mainly associates with the wheelset motions.
0’0

In steering instability, as shown in Fig.6a, only one real part of these eigenvalues
becomes larger and finally becomes positive while another becomes smaller as the
vehicle speed rises. This indicates that only one of the motions with this frequency is

10
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unstable in steering instability, which implies that steering instabiiity only appears in
one of the bogies. In conventional instability, as illustrated in Fig.6b&c, both real parts
of the eigenvalues become positive as- vehicle speed rises, which means that
conventional instability occurs in both bogies. The fundamental difference between
steering instability and conventional instability is thus that steering instability only
occurs in one of the vehicle bogies while conventional instability occurs in both.
Although both bogies are unstable in conventional instability, one of the bogies
becomes unstable at a lower speed than the other, and this tendency becomes more
obvious when there is no secondary yaw damping, as shown in Fig.6b. The unequal
stability performance between the bogies of this vehicle comes from the asymmetric
elasticity between the outboard and inboard wheelsets, which was studied by
Wickens[19].
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Figure 6, The eigenvalues of unstable modes (versus speed) of
the vehicle capable of perfect steering
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3.2 Theoretical Prediction of Steering Instability

A relatively simple physical explanation can be given for the steering unstable
behaviour of body-steered bogie vehicles. The steering linkage will produce a steering
angle in wheelsets, and there is not enough longitudinal creepage between wheel and
rail in low conicity to restore the wheelsets back to the balance position, and the vehicle
is therefore unstable. Bell and Hedrick[2] first theoretically proved the existence of
steering instability when they investigated the kinematic stability of the bogie sub-
system of a body-steered bogie vehicle. Smith, Anderson and Fortin[8][13] later gave
the physical explanation of steering instability when they studied the bogie sub-system
of another configuration of body-steered bogie vehicles. Recently, Wickens{14] used
more a general bogie sub-system to identify this problem.

In their models, the wheelsets, bogie frame and carbody are connected by the steering
linkages, and the bogie motions, especially yaw motion, interfere with the steering
mechanism. Since vehicle speed is very low in low speed instability, the carbody can be
considered as an inertia reference, and therefore a bogte sub-system is a suitable model
aliowing the analysis of steering instability in these body-steered bogie vehicles. In the
configuration of Fig.1, the outboard wheelsets are directly connected with the carbody,
and the bogie frame motions do not interfere with the steering mechanism. Moreover,
another major difference between the configuration in Fig.1 and the body-sieered bogie
vehicles studied by other researchers is that all relative displacements between the
carbody and the outboard wheelsets are the steering inputs in the former while only the
relative yaw angles are the steering input in the latter ones. A bogie sub-system is
therefore not an ideal model with which to study steering instability of this body-steered
bogie vehicle.

For the configuration in Fig.1, the steering mechanism is produced by the relative
motions between the carbody and outboard wheelsets. The steering mechanism mainly
affects the motions of the outboard wheelsets if the carbody is considered as an inertia
body when the vehicle speed is very low. Only the outboard wheelset is thus used as the
model to investigate steering instability for the configuration in Fig.1, and other mass
components of the vehicle are considered as inertia references. Under these
assumptions, the dynamic equations of the outboard wheelset become:

my+ f” 3+ (yy +ig +kiy )y = (2 +arky + a3y )y =0 (14)
2 2af, A

o+ an‘l"i-(aj +a3k”)\|.l'+( f” —ayky —azk; )y =0
() 0
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So, the characteristic equation of the system is:
4 3 2 =
st + P35+ pst + ps + pp = 0 (15)
where,

s=d/dt pa=ml py =2(ma’ fy + )
Py = (mKvE +IKE +4a fi, f) I V]
p =2 1K 20 K3) vy

2afi b .
po =K K3 + f“ (2fs + K3 )= Ko (2fon +Ky)
0
Ky =kyy +ky+hy K, =k, + asky,
Ky =alk, +atky (16)

Applying Routh's stability criterion, the necessary condition for the system to be stable
is:

20>0  p>0  p>0 py>0 if pa >0 amn
So, from pg > 0, the following relationship can be set up:

A>[Ky(2f0n + Ky~ K K31y [2af11(2 52 +K3)] (18)
are true and therefore,

For conventional bogie vehicles, K, = kp , Ky =0and Ky = kp\l’

the necessary condition Eq.(18) is satisfied if the conicity A > 0 exists.

For this body-steered bogie vehicle, Eq.(18) becomes:

g [kokyy (@) — a3 )% +2 fi (ayky + askyy) — K (aihy +azk)ln

A ‘
2af,; (2 fo +ayky tazhky;)

(19}

The right hand side of Eq.(19) can be positive in some cases, which means that the
vehicle can be unstable even for A > 0 if some conditions are satisfied, and also the
instability is divergent since Eq.(19) is derived from p, > 0. The same analysis can be
applied to the outboard wheelset of the trailing bogie. It has been found that the right
hand side of Eq.(19) for the outboard wheelset in the trailing bogie is negative, which

13
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indicates that steering instability only appears in one of the bogies and depends on the
vehicle's moving direction.

The first term of the numerator in the right side of Eq.(19) is governed by the stiffness
of the steering linkage and the condition of perfect steering, and steering instability is
thus promoted by a stiff steering linkage, whilst the sum of the last two terms depends
on the lateral creepage f,, and the primary lateral stiffness &, which seems that the
increment in the primary lateral stiffness and the reduction in lateral creepage can
reduce the potential of steering instability. The effects of these parameters on steering
instability will be further discussed at later points.

3.3 Influences of the suspensions and steering linkage parameters on the instabilities

Steering instability

The results in Fig.7 show that the effective factors that influence steering instability are
the stiffness k,, the damping c;, the stiffness &, the primary lateral stiffness k. and
the secondary yaw damping Copr The steering force produced in the steering linkage

rises as k; and ¢, increase, and thus the steering instability becomes more serious as the
steering linkage becomes stiff, as illustrated in Fig.7a&b. Furthermore, steering
instability even appears in high conicity when the values of k; and ¢y become very
high.

When kq; increases, the connection between the outboard wheelset and inboard
wheelset is strengthened, and thus the steering mechanism needs to produce more force
to steer the outboard wheelset. In other words, the steering effect from the steering
linkage is reduced by the stiff connection between the outboard wheelset and inboard
wheelset, and steering instability is therefore improved by employing hard &, as
shown in Fig.7c.

The influence of the primary stiffness & y On steering instability is more complex than
that of the steering linkage, as displayeciJ in Fig.7d. Steering instability is improved as
Koy increases if k,, is not very hard, whilst steering instability is promoted by the
increment in kpy if kpy is hard. These facts can be explained as the following: the
steering mechanism in the configuration of Fig.1 not only affects the outhoard wheelset
yaw motion, but also its lateral motion, such that a hard primary lateral stiffness
strengthens the connection between the bogie frame and outboard wheelset, and that the
steering linkage needs to produce more force to steer the outboard wheelset, and thus
the tendency of steering instability is reduced as the primary lateral stiffness becomes
harder; but, when kpy is hard enough, the bogie frame and wheelsets tend to become

14
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one mass, and steering instability can be promoted by further increasing the primary

lateral stiffness kpy.
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Figure 7 The critical speed contours of the bogie vehicle capable of perfect steering

Low speed instability mode in steering instability is not greatly affected by secondary
yaw damping because viscous damping is not active in low frequencies, but the critical
speed in both dynamic mode of steering instability and conventional instability can be
much increased by applying secondary yaw damping, as is illustrated in Fig.7c. Since
there is neither primary nor secondary yaw stiffness, the yaw constraints of the inertia
bodies are not strong enough to restrict
them. The yaw damping can strengthen
the yaw constraints and thus improve
stability, Simulation has shown that the
vehicle speed can also be increased if the
primary yaw damping is applied instead
of secondary yaw damping.
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The constraints of the inertia
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however, this effect may be limited such that any further increments may not improve
the stability any further, as shown in Fig.7c&e, because the system tends to become a
single mass body as the springs and dampings increase in magnitude.

Since a bogie vehicle is a multi-body system, the motions of inertia bodies are coupled,
and an increase in one parameter may decrease the effects of other parameters, and thus
may promote other unstable modes. For example, the appearance of the unstable modes
in Fig.8, in which the secondary lateral damping ¢, is high, is different from those in
Fig.6c.

Steering instability prevents the application of hard primary lateral stiffness kpy and
stiff steering linkage k,, which weakens the constraints of the wheelset motions, and
the critical speed of the body-steered bogie vehicle thus reduces and is very sensitive to
conicity in conventional stability, as shown in Fig.6b. There is a conflict between
conventional instability and steering instability: to reduce the potential of steering
instability, kpy and k; should be soft while hard kpy and k are expected to improve
conventional stability of the vehicle. One also finds that the instability of the body-
steered bogie vehicle always appears on the motions lnked with the kinematic
frequency of wheelset no matter if in steering instability or in conventional instability.

Other parameters such as primary roll stiffness and damping, secondary laterat stiffness
and secondary roll stiffness and damping do not have much effect on stability of the
vehicle. :

4. RIDE PERFORMANCES

The system dynamic equation Eq.(1) can be written as Eq.(20} in the frequency domain
if only track irregularities are considered as the system disturbances;

P(o)q(0) = Qa) | 0)

where,
a(®) = {q,, (0) g (@) gy (@)" , Q)= (F(®)Y(w): 0 i 0}7
and

P (o) P(0) Py(w)
P(w)=|Py(®) Ps(o) Pg(ow)
P;(0) Plo) PB{o)
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So, Eq.(20) can be divided into three group equations as:

q,,(0) + P ()P, (0)q (@) + P (0)Py(0)g, (0) = P (@)F(0) Y(0)
P (@)P,(0)q,, () + q(0) + P} (0)Ps()q, (0) = 0
Py ()P (0)q,, (@) + Py (@)Py(@)gr (@) + q, (@) =0 (21-a)

Be letting H, (®) = P,-_1 (@)P;(®), Eq.(21-2) becomes:

qy(®) + Hy, (0)qr(0) + Hy, (0)q,, (@0} = Hy, (0)Y()
H,, (®)q,, (@) + qr(®) + Hy (0)q, (@) =0 (21-b)
H, (w)q,, (®) + Hy (0)qr(®) +q,(0)=0

The power spectral densities (PSD) of the carbody responses are:
S (0) = H(w)S, (@)(H" ()" (22)

where,
H(w) = A, (0)A7 (0)H,, () (23)
and
Ay (@) = [T~ Hy, (0)Hy ()] [Hy, (0)H,, (@) — Hy, ()]
Az (@) == Hy (0)A, (@) - H, () (24)
Ay(@)=1+Hr (0}A(0) + Hy, (0)A, (0}

The PSDV's of the accelerations at five points on the carbody, and the primary and
secondary strokes are calculated. These five points are at both carbody ends, two pivots
and carbody centre on the carbody floor level in the longitudinal central line. The
acceleration PSI)'s at the front end and weight centre of the carbody, and the PSD's of
the strokes are illustrated in Fig.9. For the acceleration PSD's in Fig.9a, the highest
responses are between 1.0-2.0Hz, while the highest values of the stroke PSD's, as
shown in Fig.9b, are at low frequencies. The rms's of accelerations and the rms's of the
strokes have been integrated at three frequency bands (0.1-0.315Hz, 0.315-4.0Hz and
4.0-10.0Hz}. The percentages of the rms's at each band over all frequencies (0.1~
10.0Hz) are demonstrated in Fig.10. The results show that the acceleration rms's and
the primary stroke rms's at the band of 0.315-4.0Hz are much higher than those at
other two frequency bands whilst the secondary stroke rms's at the band of 0.1-0.315Hz
is much higher than those at other two frequency bands.
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The filters suggested by ISO/DIS[20] are used to weight the acceleration rms's, and
according to this standard, the weighting factors between 0.315Hz and 4.0Hz are larger
than 0.5. Combining this with the results in Fig.10a, it can be understocd that the
major effort in improving the ride quality of the body-steered bogie vehicle is to reduce
the responses in the frequency band of 0.315-4.0Hz.

A railway bogie vehicle with two suspension systems can be roughly considered as a
system with two parallel filters: the primary suspension system acts as a high pass filter
and the secondary suspension acts as a low pass
filter. The central frequencies of the filters can
be approximately considered as the first two
natural frequencies of the vehicle. Usually, the
combination of a low central frequency for the
low pass filter and a high central frequency for
the high pass filter promotes the isolating effect
of the filters, which means that the primary
suspension should be stiff and the secondary
suspensions should be soft. In this body-steered
bogie vehicle, the primary lateral stiffness is the
main stiffness in the primary suspension, and
thus the primary lateral stiffness of this vehicle
should be hard in improving its ride quality, as
shown in Fig.ll, but hard primary lateral Figpre 11, The maximum weighted
stiffness may promote steering instability, rms's (mg) of acceleration
which brings out one of the conflicts between  gyer 9.315-4.0Hz, v, = 100km/h
the stability and ride quality. In the other hand,

when the primary lateral stiffness is very hard, the wheelsets and bogie frame tend to
become a single mass body such that the ride quality may also be deteriorated.

The ride performance of railway vehicles is governed by two factors: the vehicle
disturbances and the system transmissibility. In this section, the system disturbances do
not change, and thus the results and analysis can be used to evaluate the transmissibility
of the vehicle. In actual fact, the system transmissibility is dictated by the transfer
function H{®) that is decided by Eq.(24), and thus it is worth of discussing the transfer
function here. The component A,(®@) of the transfer function H{w) in Eq.(24) can be
expressed as:
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Ay ()= H%(m)[l - H%(W)H% (‘50)]_l H%(m) - H%(m) -

(25)
~ Hy (@)1~ Hy (@)l ()] Hy, (0)H,y (@)~

The first term of Ay(®) is governed by the primary and secondary suspensions, the
second term only depends on the steering linkage, and the last term depends on the
secondary suspension and steering linkage. Since there is no direct connection between
the carbody and wheelsets in a conventional bogie vehicle, H,,, (0)=H,, (0)=0

can be easily found, and so only the last term exists in 4,(®) for a conventional vehicle.
For this body steered bogie vehicle, the outboard wheelsets are connected to the carbody
such that H_,, (0)#0 and H,,, (0)#0 are true. The track irregularities can

therefore be transferred into the carbody through other two channels--directly through
the steering linkage and through the coupling between the linkage and secondary
suspension, and the transmissibility of the body-steered vehicle is therefore potentially
increased. The stiff linkage (k;) between the wheelsets and carbody enhances the effect
and thus deteriorates ride quality, as shown in Fig.12a, whilst the increment in &y, will
strengthen the constraint between the wheelsets, which effectively increases the
wheelset inertia, and improves ride quality, but this effect is not very effective such that
ride quality can be improved but only slightly as k;, gets harder, as seen in Fig.12b.
Since the channels to transfer track irregularities into the carbody are not independent,
the system coupling is complicated by the steering linkage and it is more difficuit to
identify the influence of a single parameter on the transmissibility of this vehicle.

gy
(a) k7 (MN) (b) k1 (MN)
Figure 12, The maximum weighted rms's of acceleration over 0.315-4Hz, vy = 100km/h
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5. CONCLUSION

The configuration of a simple body-steered bogie vehicle capable of perfect steering has
been set up to explore the dynamic behaviour of this class of railway bogie vehicle. The
conditions for this vehicle capable of perfect steering are independent of curve
parameters and only governed by the geometric parameters of the steering linkage.
When the steering linkage satisfies these conditions, all bending stiffnesses in this
vehicle are eliminated, which not only greatly reduces the wheelset lateral
displacements and attack angles even if cant deficiency exists, but also greatly reduces
the effect of curvature variation on vehicle alignment in transition. These effects much
improve the capability of accommodating cant deficiency and the ability in negotiating
transitions, which significantly increase the safety with repard to derailment as well as
the cost of maintenance for both wheelset and track. This vehicle therefore greatly
decouples the conflict between the stability in lateral plane and curving of railway bogie
vehicles. The simplicity of the steering linkage in this vehicie will also boost its
advantages in practical applications.

‘When perfect steering is achieved, the wheelsets take their radial positions and act as
unconstrained wheelsets. This means that wheelset constraints should be as flexible as
possible to let the vehicle accommodate curve geometry. The fundamental purpose of
steering linkages in body-steered bogie vehicles is to produce forces that can balance
the forces produced by the bending stiffnesses in the suspensions when the vehicles are
on curves. If the bending stiffnesses are equal to zero, the steering linkage should not
contribute any bending stiffness. This concept has a very general significance for
railway body-steered bogie vehicles.

On the other hand, the wheelsets will move on the pure rolling line when perfect
steering is realised. The wheelset lateral displacements are restricted by flange
clearance. Since the pure rolling line is mainly dictated by wheelset conicity and
curvature, perfect steering is hardly achieved on very sharp curves.

The steering linkage in the body-steered bogie vehicle causes steering instability, which
can be either static mode or dynamic mode, and this is the major drawback for the
body-steered bogie vehicle and should be aware in practical application.

The connection between the wheelsets and carbody adds wp the channels to transfer
track irregularities into the carbody, and the transmissibility is potentially increased,
which gives a negative effect on the ride performance of the vehicle. The ride
performance of this vehicle can, however, be improved by applying other technology
such as active or semi-active systems[21].
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Table B Elastic force vector F ¢ caused by curve geometry
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Appendix B

Active and Semi-Active Systems for Optimisation of Bogie Vehicle
Primary and Secondary Suspensions in the Lateral Plane

W. LI*

SUMMARY

The application of an actuator in the secondary suspension of a body-steered bogie vehicle
without any yaw stiffness in both the primary and the secondary suspension has been
studied. The improvements in ride quality are investigated when the actuator works in the
active and the semi-active states. Without reducing stability, for American track standard
class & track, the body acceleration s is reduced by 33% when the actuator is in the active
state; for a bump track input, a reduction of 11% is possible when the acuator is in a semi-
active state, compared with passive suspensions.

1. INTRODUCTION

In conventional bogie vehicles, primary suspensions are used to satisfy the
requirements of stability and sieering, while secondary suspensions are used w
improve the ride performance. The perfect steering law, demonstrated by Wickens
[1], shows that all yaw stiffness in both suspensions must be zero in order to
achieve curve negotiation without creep. In other words, yaw stiffness in both
suspensions should be as small as possible to provide good steering. It is very
unlikely that this can be achieved by conventicnal bogie vehicles.

It seems that body steered bogie vehicles provide a pgood -approach w this
problem. Many configurations of steering bogies have been cited by Wickens [1).
Generally, body steered bogie vehicles have a linkage betweeq) the vehicle body and
the wheelsets. This linkage will lead the wheelsets to take a‘radial position when
the wheeisets follow a curve. This linkage may also provide the possibility to baild
bogie vehicle with neither primary nor secondary yaw stiffness.

In fact, this linkage can be considered o be the third suspension in the vehicle.
Therefore, the coupling among suspensions in the vehicle will be complicated by
this linkage. '

* Department of Mechanical Engineering, Loughborough Univessity of Technology.,
Loughborough, Leicestershire, LEITL 3TU, UK.
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2 MODEL AND DYNAMICS

2.1 Passive System .

A steering bogie vehicle model in the lateral plane, shown in Fig.1, has been set up
for this rescarch, This vehicle has two bogies each with two wheelsets. There are
two degrees of freedom for each wheelset -- lateral displacement and yaw angle,
three degrees of freedom for each bogie -- lateral displacement, yaw angle and roll
angle, and three degrees of freedom for vehicle body -- lateral displacement, yaw
angle and roll angle. There is a total of seventeen degrees of freedom system.

The vehicle body directly connects with the first wheelset and with the fourth
wheelset separately by spring k+ (parallel with damper dy or without damper ds).
The wheelsets in the same bogie are connected by spring kjy. With this
configuration, each mode of vehicle body -- lateral displacement, yaw angle and
roll angle -- has an effect on steering in a curve. On the other hand, the wheelset
movement will be directly transferred to the body through the linkage and the ride
quality will be degraded. There is |
no yaw stiffness in the primary i ;
and  secondary  suspensions. D)
Katker's linear creepage law is z é;ff

-

used o define the creepage

between wheelsets and rails, -~ -+ HWY- — 3
2

2
|- — -
3?'

The assumptions to set up the
dynamics equations of the model
are:

-
rd

‘__.4\>.

-- a perfect cone profile for the
tread of wheel, Fig.1 Configuration of Vehicle
-- wheelset neither leaving the rail
ROr two point contact,
-- 19 elastic deformation of the track,
-- creepages are small enough 10 maintain its linearity,
-- 0o elastic deformation of any parts of vehicle except the springs,
-~ all springs and dampers are linear, and
-- the vehicles is symmetrical in lateral plane.
For the purpose of illustration, American track standard {7] is used to define
track irregularities. The power spectrum densilics (PSD) of track irregularitics are
defined as:
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if only track irregularitics are considered as the system disturbances.
The elastic matrix E and damping matrix C can be formed by using the
assembled matrix technique{1].

E a'(k]a ;
C = a"[c]a (1

where, [ k ] is stiffness coefficient matrix, and
[ ¢ j is damping coefficient matrix.

2.4 Active System and Semi-Active System Configuration

Actuator is fixed between the car — }
body and bogic in the lateral / Ak
direction shown in Fig2 The Y ! 5
output of the actuator will produce 8

I

a3 lateral force and a roll moment in  __|_ Haald- - — - AA 4? .
the bogie frame and a lateral force,
yaw morent. and roll moment in
the vehicle body.

The output of actuator is defined 2
by

J

3 S

<
—

Fig.2 Actuator arrangement
for leading bogie: } .
U, = Aj, + A, + Ao, + Ay, + AV, +

; (12)
+ A, + Ay, + Av, + A¥,
for railing bogie: .
Ur = By, - By, + B¢, + 8y, - By, + a3)

+ BGé)b + By, - By, + By,

The range of possibilities implicit in these contro! laws have not becn fully
evaluated. A; and B; are artificially chosen as discussed below and are restricted by

the system stability. Usually, A, = B

; I

The body acceleration rms (root-mean-square) is used to evaluate the model ride
quality. The accelerations of three points on the body floor level along the central
line arc measured. They are on the body front end {point A), on the body rear end
{point B) and on the body geometric centre (point C).  The accelerations at those
points are calculated by
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responsible for the high body yaw acceleration. The most cffective approach to
improve the ride quality is to reduce the body yaw acceleration.

3.2 Active System

-

To investigace the possibility to improve the ride quality of body steered vehicles by
applied the control unit, the actuator is first considered as in the active state. The
improvements in ride quality against some feedback coefficients in Eq.12 and
Eq.13 are shown in Fig.5 -- Fig.8 when the actuator is in the active state with a
band pass filier 1Hz--10Hz. The body acceleration feedbacks have the most
significant influences on the ride quality, especially the body yaw acceleration
feedback. But, the further increases in the body acceleration feedback will reduce
the sysiem critical speed.

19
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A

Fig.9 Critical speed (km/h) Fig. 10 PSD of accelerations
A min=0.035 and v 5= 110.8km/, v = 100km/h

Better results would be achieved if different band pass filter were used for
different modes in this research, But, suspension coupling and variation of conicity
will affect unstable modes in 2 bogie vehicle. Consequently, it is very difficult to
apply this idea 10 a bogie vehicle. However, it might be helpful to use a different
band pass filter for the feedback of body velocities. This arca is going w be
investigated in near future. '

3.3 Semi-active System

The output of the actuator will not only depend on Eq.12 and Eq.13 but also
Eq.1 when the control unit is in a semi-active state. The system works like a
combination of two systems. When the actuators need encrgy supply, they are
switched off and the model becomes a passive system, When the actuator do not
need power supply, they are switched on and the system is in the active state. So,
the system becomes a parametrically adjustable system. It is difficult to analyse the
ride quality in the frequency domain. '

ﬁ ‘T]-#- A B o Ch
i — ;;'. 0 & S ;
- el 54 I : ]
g A ~‘n.h_ & — '
-10 1 8 e
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Fig.11 change in rms, v = 100km/h Fig.12 change in rms.v = 100km/h
and conicity = 0.5, and conicity = .5,
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Appendix C

IE MODELLING OF RAILWAY PASSENGER VEHICLES IN THE LATERAL PLANE
Li

partment of Mechanical Engineering, Loughborough University of Technology, Loughborough, LE1 1 3TU,
K.

A computer program is set up to investigate the railway vehicle stability, ride quality and curve
gotiation in the lateral plane. The parameters in the vehicle suspensions can be studied individually. This
ogram allow the user to apply active and semi-active systems on the vehicle suspensions. The process and
me techniques used to model the railway vehicle are demonstrated in this paper.

TRODUCTION

Railway vehicles usually consist of wheelsets, bogie frames and car body which are connected by
spensions. The suspension between wheelsets and bogie frames is called the primary suspension and the
spension between bogie frames and car body is called the secondary suspension. The elements in these two
spensions can be passive, active, semi-active or combinations of them. The physical system of railway
hicles is nonlinear. The nonlinearity comes from two sources, one of which is the nonlinear suspension
ements such as Coulomb friction, air springs, dead end of dampers and bumps, and another is the contact
rces of wheel/rail. The contact forces between wheel and rait are called creepage forces and are well known

nonlinear [1]. Track irregularities are well understood as random processes, which are the main sources of
sturbances in railway vehicle systems. Therefore, the railway vehicle is a nonlinear system with random
puts. The modelling of this system can be very complex. However, the system can be simplified according
rvesearch interest, The system can considered as a licear multi-body system, when the following assumptions
e made in this simulation:

-- all suspension elements are linear except semi-active actuators,

-- Kalker's linear theory [1] is used to find creepage forces,

-- uniform conicity is for wheel profile and there is no flange contact,

-- all springs and dampers are massless.

The dynamic equations of railway vehicles can decoupled into two groups"i‘if the vehicles are
ngitudinally symmetric. One of them is in the fateral plane and another is in the longitudinal plane. The
herent "snazke movement” of wheelset [2] raises the unstable problemt in the lateral plane. In order to keep
heelsets on straight track, strong constraint on the wheelsets is required. But, to let the wheelsets follow a
urve, the constraint should be released as much as possible. Usually, the former requires hard suspensions
nd the latter requires soft suspensions. The trade-off between vehicle tangent stability and curve negotiation

fundmental in railway vehicles. Moreover, vehicle ride quality is a requirement for the vehicle suspension.
enerally, the ride quality is benefited from soft suspensions. But, the static deformations of suspension
prings and the rattle spaces need to be considered. Therefore, the vehicle stability, ride quality and curve
egotiation in the lateral plane are investigated in the research.

Two approaches are considered here to solve those problems above. One of them is to innovate new
onfigurations to decouple or at least to reduce the tradeoff of stability/curving. Another is to apply active
nd/or semi-active systems to improve the ride quality. A computer simulation model has been set 10
nvestigate the effects of vehicle configurations on the inherent tradeoff of stability/curve negotiation of railway
chicle. The configurations of vehicles and the parameters in suspension can be easily changed so that the
rogram is suitable for many class vehicles. The program also allows the user to add the active or semi-active
ctuators in the secondacy suspension.  The results are expected to lead to fanovate some new ideas for new
rengration railway vehicles. It should be pointed out that the rescarch is to explore the applications of new
echiiques and the results are theoratical at this stage. Although a few of multibody dynamics program
buckugcs are available now, non of them can satify the research purpose here. Of course, their cost is another
Cuson,

|
DYNAMIC BEHAVIOUR OF RAILWAY VEIUCLES

o a linear malt-body system, the equatians of motion can be expressed as:




The damping yiclled by the creepage between rail and wheel is proportional to 1/V;, ( Vp is the vehicle
rward specd m/s). The investigation of railway vehicle stability is to find the maximum vehicle speed (it is
Hed the vehicle critical speed) without violating Eq.7.

ide Quality

The response power specteal density S, (@) of a lincar system is

S, (® = H)S,(o}H () ®)

here, H(®) is the system transfer function and H' () is its conjugate. S, () is the power spectrum

ensity of the system disturbance. If the track irregularities are only the system disturbances, Eq.8 cannot be
pplied here directly. Having applied Laplace transform to Eq.1, it can be arranged as:

P ()X, (®) + P(o)X.(0) + P(0)X,(w) F(w)Y(w)
P ()X (®0) + P(@X (0) + PoX, (@) = 0 )
P,(m)X, (m) + P(w)X (o) + P (0)X,(m) 0

Bubscript w, T and b are represented as wheelset, bogie and car body respectively.  So the system response
hower spectral density PSD related to track irregularities are

I

S, (@) H, ()8, (o) (H; (@))"
Si(@) = H,()S,(0)H(w)' (10)
Sp(®) = H(0)S,(0)(H(w)’

Where, H, (), H,(®) and H,(®}can be derived from Eq‘.9.

Two kinds of track irregularities affect the ride quality of railway vehicles in the lateral plane. They are
cross-level irregularity and alignment irregularity. They are close to Gaussian process and not correlated [4].
There are different standards to define them. Class 6 of track in American track standard [4] is used here.
Supposed that all wheelsets in the vehicle pass through the same point on track in different time, the cross--
PSD between wheelset is

Swij(@) = Syii(@)e )

where t, is a time delay which is a function of the vehicle geometry and the vehicle speed Vj. The'
relationship between single sided spectrum and double sided spectrum is {5):

W(f) = 4nS(w), W = 2nj; (12)

Three indices are used to evaluate the vehicie ride quality. They are PSD of the primary strokes, the
secondary strokes and the accelerations. The accelerations are calculated at five points on the floor level of
the car body . The weighted RMS of the accelerations at those points are calculated. The filter recommended
by ISO-2631 [6] is used as the weighting function.

Curve Negotiation
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t
re, A is a constant and X = L)Vodt .

ULATION

A computer program, shown in Figure 1,
ussed in the last section. The program

is made to simulate the vehicle's dynamic behaviour as
has four parts, vehicle model and track specification, stability

ysis, ride quality analysis and steady state curving analysis.

main program

Vehicle and Track Specification

 Stability

i

Vehicle Behaviour Analysijl

Ride Quality ‘| Steady State Curvring

L Je

Critical Speed PSD & RMS Displacements & Creepag

Figure 1. Program block diagram

the vehicle model and track specification part, the following system parameters should be defined:

-- degrees of freedom in the system,
-- geometric parameters of vehicle,

Stabifity Analysis

L

Parameter Choice

L

Speed Range

=t

1
Calculate Matrix M, C, E

L

b

Calculate Matrix G, N

S

Calculate Eigenvalues no

Critical Speed / Parameter Eigenvalues

{a} block diagram
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Figure 3, Ride quality analysis block diagram Figure 4, Wheelset yaw Angles
and results,V, = 100kmv/h, conicity = 0.1

In the stability analysis subroutine shown in Figure 2, each stiffness and each damping in the
suspensions as well as wheelset conicity is considered as an independent parameter. Therefore, their effects on
the vehicle stability can be investigated individually. This subroutine can calculate the eigenvalues of the
whole vehicle and the vehicle critical speed against each parameter in the vehicle's suspensions. The vehicle's
natural frequencies against the vehicle forward speed V,, are used to identify the unstable modes. The results in
Figure 2 (b) and (¢) are the examples.

The ride quality analysis subroutine is divided into two sections. When the actuators work in a semi-
active state, the simulation is carried out in time domain and the system responses are the time series. Without
carrying out frequency analysis, the RMS of the system accelerations are directly calculated from their time
series. In this case, 1S0-2631 filter is not used and RMS is unweighted . When the elements in the system are
only passive or the actuators work in active state, the analysis is carried out in the frequency domain. The
program can output PSD of the accelerations, primary strokes and secondary strokes, their unweighted RMS
and the weighted RMS of accelerations based on 1S0-2631 filter. The programming block diagram and the
resulls are shown in Figure 3,

The programming of steady state curving analysis is rather simpler than the stability analysis and ride
quality analysis. When the vehicle model and track specifications are decided, the equations in Eq.15 are
linear and can be solved easily. The outputs of this subroutine are the displacements {absolute and relative) in
all degrees of freedom of the vehicle mass elements and the creepages between wheelsets and rail. In the
subroutine, each stiffness in the system can be changed individually, Some of results are shown in Figure 4.

Validation

The computer modelling of a physical system is vsually dwudcd into two steps. First, a mathematical
model is set up from the physical system by simplifying some condmons Then 2 computer program is made to
simulate the mathematical model, Therefore, there are two quesllone relating to the validation of computing
simulation.  [s the mathematical model correct and does the computer program correctly simulate the
mathematical model?  The answer to the first question is decided by the cesearch purpose and the
understanding of the physicad system. The second question is the computing program itself.

The validation of this modelling is supported by the following facts:
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Appendix D

Computer Program Instruction

Name: RVDSP
Stand for
Railway
Vehicle
Dynamics
Simulation
Program
Supporting facility: NAG Library

Language: FORTRAN 77

System: UNIX

Part I, Data Files
A, Preparation Data Files
Before carrying out any simulation by RVDSP, the following data files should be

produced. RVDSP has set the options to build up those data files. The meaning of
each data on those files is defined in RVDSP.

ASMT.DAT non-zero elements of co'mpatibility matrix a
COS.DAT contact parameters

CVS.DAT curve definition

CVDP.DAT yaw angles caused by the curvature of a uniform

curve and related to the carbody

CVLD.DAT forces F, and F

creep

on steady state



DMS.DAT
GES.DAT
MAS.DAT
PXIN.DAT
RDPS.DAT
STS.DAT

B, Intermediate Data Files

DMAT.DAT
DPMX.DAT
MMAT.DAT
SCMX.DAT
SMAT.DAT
SDFM.DAT
EDFM.DAT
PSIN.DAT

C, Results
Stability:

*EAGEN.DAT
STALIT.DAT

Ride Performance:

RIDE.DAT
RIDES.DAT

Steady State:

dampings

geometric parameters
mass & inertia

transitidn definition

track irregularity definition

stiffnesses

non-zero elements of damping matrix D

dampings correspondent to compatibility matrix a
non-zero elements of inertia matrix M

stiffnesses correspondent to compatibility matrix a
non-zero elements of stiffness matrix K

F;; on steady state

F;; + F on transition

yaw angles and radius of local coordinates related

to reference on transition

eigenvalues

critical speeds and frequency of unstable mode

PSD and rms of accelerations

PSD of strokes



SDST.DAT

SDLY1.DAT

SDLY2.DAT

Kinematic State:

SHL.DAT
SHR.DAT
SHY.DAT
DYLY1.DAT

DYLY2.DAT

displacements on steady state

turning angles of steering level of Model I on
steady state

turning angles of steering level of Model II on
steady state

lateral displacements on transition
roll angles on transition
yaw angles on transition

turning angles of steering level of Model I on
transition

turning angles of steering level of Model II on
transition

Part II, Structure of Program

RVDSP

<

- --- preparation

---- eigenvalue
---- stability (stabs)
---- critical speed

---- ride performance (ridps)

~--- steady state (sters)

| ---- kinematic state (dycv)



Part III, Running Commands and Process

A, Start

For initiate the program, Type rvdsp and then press ENTER
The following sentences is appearing on screen:

" Welcome To Use RVDSP”

" Have you made the data files ready

Type YE for yes or NO forno "

If you type "YE' or 'ye', you are going to carry out simulation.
If you type 'NO' or 'no’, you are going to prepare the data files.

The instruction to prepare the data files are well described in the program. Just
follow the instructions on screen.

Suppose you answer is 'yes', you will read the following words on screen:
" Input the degrees of freedom of this system"
Type: 17

* Input the number of the springs "

Type: 18 ---r-~-meerar— for conventional bogie vehicle
y) for Model I and Model in Appendix D
K[| S —— for Model IT
" Type of bogie:
1 -~--vm--e-—---- conventional bogie vehicle
p S — Model in Appendix D
O —— Model I
P Model I1 "

Type: one of these numbers




-

" Options:
End of the program 0
Stability l
Ride Performance 2
Steady State 3
Kinematic State 4
Dynamic State 5 (going to be developed)
Time Response 6 (going to be developed)
Prepare Compatibility Matrix -----------7 "

Type: one of these numbers |
B, Simulation
The simulation start after you choose one of the options. The results will be store

to the data files listed above. The program will return to the options after the
simulation completes and another option but not the same one can be selected.







