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I 

 

ABSTRACT 

 

Highly-trained athletes are accustomed to varied and high-volume based exercise stimuli and 

eliciting adaptation in individuals already possessing the necessary physiology to compete at 

the highest level is difficult. Therefore, identifying novel, potent and time efficient methods 

of achieving cumulative training stress is a continual quest for coaches and exercise 

scientists. This thesis examined the acute and chronic effects of manipulating exercise and 

recovery during brief ‘all-out’ sprint cycling on adaptive responses favouring enhanced 

endurance capacity. Chapter 3 highlighted that low-volume non-work matched ‘all-out’ sprint 

cycling, whether it be interval- (4 x 30 s bouts) or continuous–based (1 x 2 min bout) 

provides a similarly potent stimulus for the acute induction of cell signalling pathways and 

key growth factors associated with mitochondrial biogenesis and angiogenesis in trained 

individuals. In line with manipulating recovery and in attempting to identify a novel and 

potent exercise intervention capable of giving athletes more return on their training 

investment, Chapters 4-6 investigated the efficacy of combining sprint interval training with 

post-exercise blood flow restriction (BFR). Firstly, it was demonstrated that BFR potentiates 

HIF-1α mRNA expression in response to SIT, tentatively suggesting an enhanced stimulus 

for hypoxia- and/or metabolic-mediated cell signalling associated with mitochondrial 

biogenesis and angiogenesis over SIT alone. Secondly, four weeks of SIT combined with 

post-exercise BFR provides a greater training stimulus over SIT alone in trained individuals 

to enhance 2max (4.7 v 1.1 % change) and MAP (3.8 v 0.2 % change), but not 15-km TT 

performance. Finally, in response to four weeks of SIT combined with post-exercise BFR, an 

international female track sprint cyclist increased her CP and W’ by 7 and 2 % and 2max 

and absolute MAP by 3 and 4 %, respectively. Through a combination of an acute in vivo 

molecular experiment, a training study and an athlete case study, this thesis has introduced a 

potentially potent and novel training concept that appears capable of augmenting aerobic 

capacity. 

 

Key words: sprint interval training; angiogenesis; blood flow restriction; skeletal muscle; 

maximal oxygen consumption; cell signalling; trained individuals  
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 CHAPTER 1 - INTRODUCTION 

 

A primary objective of a full-time athlete’s training programme is to strike the balance 

between maximising the magnitude of event-specific performance adaptation whilst 

minimising injury risk and/or illness through over-training and inadequate recovery. 

Considering a single exercise stress and the consequent physiological adaptive response is 

therefore important when constructing the weekly training micro-cycle and the broader 

periodised macro-cycle. The acute adaptive response to a single exercise bout and the 

structural and functional remodelling that transpires after a period of training are highly 

specific and serve to better prepare the individual to cope with future overload-induced 

metabolic, mechanical, neurological and hormonal stress (Hoppeler 2016).  

Skeletal muscle is a malleable tissue, exhibiting unique properties enabling it to respond 

rapidly to a variety of stimuli. These include, but are not limited to, cold (Puigserver et al. 

1998; van den Berg et al. 2011) and hot exposure (Tamura et al. 2014), disuse (Bodine 2013), 

nutritional modulation (Hawley et al. 2011) and of course physical exercise. The resulting 

divergent adaptations in response to the latter are governed by a multitude of factors 

including the initial training status of the individual (e.g. untrained vs trained) and the nature 

of the contractile activity undertaken (Saltin et al. 1977; Coffey and Hawley 2007; Flueck 

2010; Coffey and Hawley 2016). In this regard, exercise intensity or load, duration and 

frequency (i.e. which together make up the training volume) are the primary factors that 

govern the peripheral remodelling and central adaptations that transpire over time. At one end 

of the exercise/training stimulus continuum sits resistance or ‘strength’ training as it is more 

commonly referred to. Strength training typically constitutes high load, low repetition 

demands on the working muscles and imposes concomitant increases in neurological and 
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mechanical stress (Folland and Williams 2007). Repeated exposure to this type of contractile 

activity promotes increases in muscle-fibre cross sectional area (CSA) and improved intra-

muscular co-ordination. Alongside favourable architectural modifications (e.g. changes to the 

pennation angle of the muscle), these serve to enhance muscle force output (Baar and Esser 

1999; Balagopal et al. 2001). In contrast, traditional endurance training, characterised by low 

load, high repetition continuous exercise, promotes central and peripheral adaptations that 

together enhance fatigue resistance during tasks relying primarily on aerobic metabolism for 

energy provision (Holloszy 1967; Holloszy and Booth 1976; Holloszy et al. 1977). Positioned 

somewhat centrally on this continuum are the physical activities that require high force 

outputs and that stress both aerobic and anaerobic energy producing pathways (for example 

the majority of high-intensity intermittent team and combat sports).   

It is generally considered that the above phenotypic adaptations are more difficult to elicit in 

well-trained athletes who, through a genetic predisposition and years of specified training, 

already possess the necessary physiology to compete at the highest level. Early research has 

highlighted the reduced plasticity of skeletal muscle in the trained state (Saltin et al. 1977; 

Hoppeler et al. 1985) and indeed a body of literature exists demonstrating that an increase in 

traditional endurance training volume alone is insufficient to improve aerobic performance or 

associated physiological determinants in well-trained and ‘physically active’ individuals 

(Daniels et al. 1978; Hickson and Rosenkoetter 1981; Denis et al. 1982; Costill et al. 1988; 

Lake and Cavanagh 1996; Westgarth-Taylor et al. 1997; Weston et al. 1997; Londeree 1997). 

This blunting of the adaptive scope in trained individuals is reflected at a molecular level, as 

demonstrated by an attenuation of acute skeletal muscle mitochondrial transcript expression 

after endurance training and the inverse relationship between transcript expression levels and 

mitochondrial volume (Schmutz et al. 2006; Flueck 2010). Furthermore, it has recently been 

demonstrated that a continual reduction in the magnitude of exercise-induced gene expression 
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of mitochondrial and angiogenic protein regulators occurs in the early recovery period 

following successive identical exercise bouts (Perry et al. 2010).   

The above poses the question: what interventions and exercise stimuli can be used to further 

augment the acute adaptive response to training and, if repeated over time, enhance 

performance in trained populations? Highly trained individuals are typically well accustomed 

to varied and volumous exercise stimuli. Therefore identifying novel and time efficient 

methods of achieving cumulative training stress is a continual quest for coaches and exercise 

scientists. However the challenges exercise physiologists face in trying to persuade highly 

trained athletes and their coaches to accommodate periods of experimental work in and 

around their own training programme, has meant that the majority of acute in vivo molecular 

investigations have been conducted on healthy recreationally active or sedentary male 

cohorts. Coupled with the often invasive nature of investigating the adaptive response to 

training, which involve collected blood and muscle samples are of paramount to 

understanding the associated mechanisms involved, it is unsurprising that highly-trained 

athletes are reluctant to participate in these types of investigations. The body of work herein 

is the product of a collaborative venture between Loughborough University and the English 

Institute of Sport in attempting to enable such investigations to take place and in doing so 

contribute in some capacity to bridging the gap between the academic and applied worlds of 

sports and exercise science.  

This thesis describes a series of experiments that examined, both at a molecular and whole 

body level, the acute and chronic effects of manipulating exercise and recovery during brief 

maximal sprint cycling on adaptive responses that favour enhanced endurance 

performance/capacity. The thesis comprises four experimental chapters that have been 

conducted on trained individuals. The first of these investigated the consequences of 

manipulating the ‘pattern’ of brief maximal sprint exercise (whether that be interval or 
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continuous in nature) on the acute intramuscular cell signalling responses that regulate 

endurance adaptations. Here, light is shed on the potential for high-intensity exercise, 

specifically ‘all-out’ sprint interval exercise, to promote capillary growth. Moreover, it has 

challenged the importance (or seemingly lack of) of the ‘pulsatile’ nature of intermittent 

exercise in initiating the acute adaptive response to this type of stimulus, instead providing 

further support for exercise intensity as being the key driver. In line with manipulating 

recovery and in attempting to identify a novel training intervention that could potentially give 

trained individuals more ‘bang for their buck’, the subsequent three experimental chapters 

investigated the use of a practical model of restricting blood flow and combining this with 

sprint interval training to enhance adaptation of an endurance phenotype. Through a 

combination of an acute in vivo molecular experiment, a training study and an athlete case 

study, this thesis introduces a potentially potent and certainly novel training concept that 

appears capable of augmenting aerobic capacity.   
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CHAPTER 2 - LITERATURE REVIEW 

 

This chapter provides a critical review of the literature considering the importance of 

incorporating training of an intense interval nature into the endurance athlete’s programme 

and then the current understanding of how peripheral adaptations to this type of training are 

regulated through highly orchestrated molecular events. Moreover, this review introduces the 

potential importance of training variety in the trained individual’s programme and how using 

a novel training method, utilising a practical method of blood flow restriction during intense 

interval exercise may provide an enhanced stimulus for greater activation of these molecular 

events and over time enhanced aerobic capabilities.           

 

2.1 Skeletal muscle adaptations favouring enhanced endurance 

performance        

Traditional endurance training is typically comprised of long duration, low to moderate 

intensity exercise that is continuous or ‘steady state’ in nature. If undertaken frequently at 

adequate intensities and for appropriate durations this training stimulus will drive central and 

peripheral adjustments that improve oxygen and substrate delivery and augment an 

individual’s capacity to resynthesize ATP at the working muscles (Holloszy and Booth 1976; 

Holloszy and Coyle 1984). Whilst maximal oxygen transport and uptake appear to be largely 

governed by central factors (i.e. cardiac output) (Andersen and Saltin 1985), peripheral 

factors (i.e. capillary and mitochondrial density) are also key physiological determinants 

underpinning endurance performance, including maximal oxygen uptake ( 2max), the 

anaerobic threshold and sustainable velocity/power during exercise (fractional utilisation of 

OV
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2max), as well as the economy of locomotion (mechanical efficiency) (Joyner and Coyle 

2008).  

At the periphery, endurance exercise enhances oxidative potential through increasing 

mitochondrial size and density (mitochondrial biogenesis) and the maximal activity of 

oxidative enzymes (Holloszy, 1967; Gollnick & King, 1969). The importance of 

mitochondrial biogenesis and increased mitochondrial enzyme activity for endurance 

performance is of no surprise given the mitochondrion are the site of cellular respiration and 

the fundamental rate limiting organelle in ATP synthesis (Hood, 2001).  Indeed, a strong 

correlation exists between 2max, power output (PO) and the mitochondrial density of the 

vastus lateralis muscle (Flueck 2010) and trained skeletal muscle can exhibit three- to four-

fold greater oxidative enzyme activity than untrained muscle (Henriksson 1992). In addition 

to the above, muscle fibre conversion from type IIb to type IIa (Fitzsimons et al. 1990), 

increased basal glycogen content (Saltin and Rowell 1980), alterations in substrate 

metabolism for energy provision at a given workload (Holloszy et al. 1977), elevated 

myoglobin content and increased capillarity (Andersen and Henriksson 1977; Svedenhag et 

al. 1984; Hudlicka et al. 1992) are key peripheral adaptations that play a significant role in 

enhanced endurance capability.  

August Krogh’s seminal work in the early 20th century (Krogh 1919) identified the 

importance of the microvasculature for oxygen delivery and that the capillary network 

surrounding the active muscle may contribute as a limiting factor to aerobic metabolism by 

virtue of limiting intramuscular oxygen diffusion path-lengths. It is now well accepted that a 

greater capillary density (CD) improves the diffusive exchange of oxygen and nutrients 

between the vascular space and the intracellular volume of the fibres (Prior et al. 2004). As 

such, well-trained endurance skeletal muscle has a greater capillary supply compared to 

OV
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untrained muscle to meet the increased oxygen demands of intensified work. This is 

evidenced by the superior capillary : fibre  ratios and total number of capillaries surrounding 

a muscle fibre in endurance trained populations (Brodal et al. 1977). In fact, endurance 

trained individuals exhibit a capillary-to-muscle fibre ratio of more than 200% that of muscle 

from untrained individuals (Ingjer 1979). These, coupled with the correlation between 

exercise capacity, 2max and capillarity of the vastus lateralis (Coyle et al. 1988; Vock et al. 

1996; Iaia et al. 2011), emphasize the importance of the capillary bed to aerobic performance. 

Moreover, the observations that just a few weeks (~ 4-5 weeks) of aerobic exercise can 

increase capillarity by 10-30% in healthy active individuals (Andersen and Henriksson 1977; 

Hoier et al. 2012; Hoier et al. 2013a; Hellsten et al. 2015) highlight the health implications of 

an enhanced vascular network. At this point it is worth briefly highlighting a methodological 

factor concerning assessment of capillary growth. The number of capillary profiles per cross-

sectional area of muscle fibres (capillaries/mm
2
) is used to determine CD. However, as the 

mean cross-sectional area of muscle fibres alters in response to changes in the physical 

demand and metabolic status of the tissue, this measure does not provide the most reliable 

indication of changes in capillarity. A method less sensitive to scaling issues and thus more 

reliable in tracking changes in capillarity is the calculation of capillary-to fibre ratio (C:F), a 

process that involves quantifying the number of muscle fibres and capillary profiles within a 

given area. As such, the above information requires consideration when interpreting 

correlations between capillarity and exercise performance and data related to capillary growth 

after training. For a more detailed discussion on methods surrounding quantification of 

capillary adaptation, the reader is referred to a recent review by Olfert and colleagues (2016).           

Regarding exercise performance, Coyle et al. (1988) have previously reported that over 92% 

of the variance in cycle time to exhaustion at 88% 2max in competitive cyclists could be 

explained by muscle capillarity. More recently, Iaia and colleagues (2011) have reported that 

OV
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in exhaustive cycling trials lasting ~30 s to 3 min, 50-80% of the estimated total variance in 

performance could be explained by differences in CD as measured by capillaries/mm
2
.  The 

aerobic system was contributing 40–80% of the total energy production in these trials and as 

such a higher number of capillaries would facilitate an enhanced oxygen transport (and thus 

uptake) of oxygen at the contracting muscles. A higher CD also likely facilitates greater 

removal of metabolic-end products, thereby reducing the fall in muscle pH and in turn 

sustaining exercise tolerance (Joyner and Coyle 2008). In this regard, the exercise intensity at 

which blood lactate accumulation occurs is correlated (r = 0.83) with the capillary : fibre ratio 

of the exercising muscle (Tesch et al. 1982), as is peak blood lactate concentration (r = 0.64) 

and its clearance rate (r = 0.69) following repeated maximal voluntary knee-extension 

exercise (Tesch and Wright 1983). Moreover, Iaia et al. (2011) observed an inverse 

relationship between CD and the net rate of plasma K
+
 accumulation (r

2
 = 0.68) and muscle 

pH (r
2
 = 0.80) during and after 3-min exhaustive exercise. Indeed, a greater capillary supply 

may accelerate the transfer of K
+
 from the muscle interstitium to the circulation, delaying the 

accumulation of K
+
 in muscle interstitium, and lowering the concentration of H

+
 outside of 

the muscle cells favouring release of protons from the muscle cell (McKenna et al. 2008). In 

support of the relationship between capillarity and exercise performance in humans,  maximal 

aerobic capacity also correlates strongly with skeletal muscle CD in rodents (Hudlicka et al. 

1992). In addition to its direct role in both aerobic and anaerobic performance, there is also 

evidence from rodent studies that increased capillarity precedes muscle fibre type conversion 

from IIb to IIa fibres in response to voluntary exercise (Waters et al. 2004) and the increase in 

mitochondrial enzyme activity after electrical stimulation (Skorjanc et al. 1998). These raise 

the question as to whether capillary growth is initiated first to support other skeletal muscle 

re-modelling such as fibre type transformation and mitochondrial biogenesis.  
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2.2 Importance of intense interval training for the endurance athlete   

In trained endurance athletes who already possess a highly developed aerobic capacity, an 

increase in traditional submaximal endurance training volume alone does not appear, at least 

in the short term, to further enhance endurance performance or associated physiological 

determinants such as 2max, the anaerobic threshold, and economy of motion (Daniels et al. 

1978; Denis et al. 1982; Costill et al. 1988; Lake and Cavanagh 1996; Westgarth-Taylor et al. 

1997; Weston et al. 1997; Londeree 1997). Conversely, when trained endurance cyclists 

supplement or replace their typical volume-based aerobic training with a relatively brief 

period (2-8 weeks) of high-intensity interval training (HIT), this provides a potent stimulus to 

elicit physiological adaptation and subsequent performance improvements (Table 1).   

Although its definition varies throughout the scientific community, HIT can be broadly 

characterised as repeated, intermittent bouts of short to moderate duration exercise performed 

at an intensity close to or greater than 2max, interspersed by brief periods of low-intensity 

work or inactivity that allows a partial, but often incomplete recovery (Daniels and Scardina 

1984; Laursen and Jenkins 2002; Gibala 2009). Similarly, Buchheit and Laursen (2013) have 

defined HIT as “repeated short (<45 s) to long (2–4 min) bouts of rather high- but not 

maximal-intensity exercise, or short (<10 s) or long (>20–30 s) ‘all-out’ sprints, interspersed 

with recovery periods”. In this sense HIT is infinitely variable in its prescription and subtle 

differences in the intensities and durations between protocols need careful consideration 

when interpreting the findings from acute and chronic exercise studies, as is highlighted 

throughout this chapter. 

Whilst an overwhelming amount of literature has been published over the past four decades 

demonstrating the effectiveness of HIT in promoting beneficial skeletal muscle re-modelling 

and exercise performance in untrained individuals, this is by no means a new concept in 

OV

OV
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athletic training and sports and exercise research. As far back as the early 1900s, ‘repetition 

training’ was being prescribed to athletes according to international running coach Peter 

Thompson in Athletics Weekly (Thompson, 2005) and investigations of intermittent exercise 

in humans were being conducted by AV Hill in the 1920s (Hill et al. 1924). Decades later, 

eminent Scandinavian physiologists performed ground-breaking research that paved the way 

for further research attempting to uncover the adaptive responses to interval exercise and the 

effects manipulating ratios of work to rest duration have on skeletal muscular and vascular 

physiology (Astrand et al. 1960; Christensen et al. 1960). The more recent investigations 

conducted over the past four decades have reinforced the long-standing thoughts and 

practices of coaches; HIT is a highly potent and effective stimulus that should be integrated 

into the endurance athlete’s long-term training plans.  
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Table 1 - Evidence demonstrating HIT improves endurance performance and associated physiological parameters in trained endurance athletes 

Study Subjects Experimental Design Intervention Results  Conclusion 

Lindsay et al. 

(1996) 

8 competitive 

male cyclists  

MAP and TT40 were 

determined before and after a 

4-wk HIT intervention  

Cyclists replaced ~15 % of their ~300-km per 

week training with HIT (total of 6 sessions), 

consisting of 6 to 8 x 5 min repetitions at 80% 
of MAP, with 60-s recovery between work 

bouts. 

HIT significantly improved TT40 (56.4 ± 3.6 

vs. 54.4 ± 3.2 min; P < 0.0001), and absolute 

(301 ± 42 vs. 326 ± 43 W; P < 0.0001) and 
relative (72.1 ± 5.6 vs. 75.0 ± 6.8 % of MAP; 

P < 0.05) MAP.  

A 4-wk program of HIT increased the MAP and 

fatigue resistance of competitive cyclists and 

improved their 40-km time trial performances. 

 

Westgarth-

Taylor et al. 

(1997) 

8 endurance-
trained male 

cyclists 

MAP and 40 km time-trial 
performance TT40 were 

determined before and after a 

6-wk HIT intervention 

Cyclists replaced ~15 % of their ~300-km per 
week endurance training with HIT (a total of 

12 sessions), consisting of 6- to 9-5 min 

repetitions at 80% of MAP, with 60-s recovery 
between work bouts. 

HIT increased MAP from 404 (40) to 424 
(53) W (P < 0.01) and improved TT40 

speeds from 42.0 (3.6) to 43.0 (4.2) km.h-1 

(P < 0.05).  

Faster TT40 performances were due to 
increases in both the absolute work rates from 

291 (43) to 327 (51) W (P < 0.05) and the 

relative work rates from 72.6 (5.3) % of pre-
HIT PPO to 78.1 (2.8) % of post-HIT MAP (P 

< 0.05). 

Weston et al. 

(1997) 

6 competitive 

male cyclists 

Skeletal muscle buffering 

capacity (beta m), PFK and CS 

activity and TT40 were 
determined before and after a 

4-wk HIT intervention 

Cyclists replaced a portion of habitual 

endurance training with HIT (a total of 6 

sessions), consisting of 6- to 8-5 min bouts at 
80% of MAP, with 60-s recovery between 

work bouts. 

beta m increased from 206.6 (17.9) to 240.4 

(34.1) mumol H+.g muscle dw-1.pH-1 after 

HIT (P < 0.05). PPO and TT40 significantly 
improved after HIT (P < 0.05). There was no 

change in PFK or CS activity after HIT.  

Skeletal muscle buffering capacity may be an 

important determinant of relatively short-

duration (< 60 min) endurance cycling activity 
and responds positively to just six sessions of 

HIT. 

Stepto et al. 

(1999) 

20 endurance 

trained male 

cyclists 

MAP, 25-kJ sprint cycle 

performance and TT40 were 

determined before and after a 
3-wk HIT intervention.  

 

Cyclists were assigned to complete one of five 

HIT interventions (a total of 6 sessions in each) 

in addition to their usual aerobic base training: 
12 x 30 s at 175% MAP, 12 x 60 s at 100% 

PPO, 12 x 2 min at 90% MAP, 8 x 4 min at 

85% MAP, or 4 x 8 min at 80% MAP.   

Intervals performed at 80 and 100% MAP 

did not appear to enhance performance. The 

cubic trend was strong and statistically 
significant (r = 0.70, P < 0.05) and predicted 

greatest enhancement when intervals 

performed at 85% (2.8%, 95% CI = 4.3-
1.3%) and at 175% MAP (2.4%, 95% CI = 

4.0-0.7%).  

HIT performed close to and above race pace 

enhanced 1-h endurance performance.  

Laursen et al. 

(2002) 

14 highly- 

trained male 

cyclists 

VO2peak, VT1, VT2 and MAP 

were determined before and 

after a 2-wk HIT intervention. 

Subjects were divided equally into a HIT 

group, who performed 4 HIT sessions (20 x 60 

s at MAP separated by 120 s of recovery) and a 
control group who maintained their regular 

training program. Both groups were reassessed 

on the same timeline. 

There was no change in VO2peak for either 

group. However, the HIT group showed a 

significantly greater increase in VT1 (+22% 
vs. -3%), VT2 (+15% vs. -1%), and MAP 

(+4.3 vs. -.4%) compared to controls (all P < 

0.05). 

HIT appears capable of improving VT1, VT2, 

and MAP, following only 4 sessions in already 

highly trained cyclists. 

Laursen et al. 

(2005) 

38 well-
trained male 

cyclists 

VO2peak, MAP, VT1 and VT2, 
TTE at MAP, TT40 and PV 

were determined before and 

after 2 and 4 weeks of 3 
different HIT interventions. 

Cyclists were assigned to complete 1 of 4 
training interventions: 8 x 60% TTE at MAP, 

1:2 work-recovery ratio; 8 x 60% TTE at MAP, 

recovery at 65% maximum heart rate; 12 x 30 s 
at 175% MAP, 4.5-minute recovery; control 

(no training).   

TT40, VO2peak, VT1 and VT2 significantly 
increased in all training interventions (p < 

0.05) except the control group. PV did not 

change in response to training. Changes in 
TT40 were modestly related to the changes 

in VO2peak, VT1 and VT2 (r = 0.41, 0.34, and 

0.42, respectively; all p < 0.05). 

Improvements in TT40 appear related to 
significant increases in VO2peak, VT1 and VT2. 

Peripheral adaptations rather than central 

adaptations appear likely responsible for the 
improved performance after HIT in well-trained 

endurance athletes. 

Abbreviations: PPO, peak sustained power output; PFK, phosphofructokinase; CS, citrate synthase; TT40, 40-km cycle time trial performance; VO2peak, peak oxygen uptake; VT1, ventilatory threshold 1; VT2, 

ventilatory threshold 2; PV, plasma volume; HIT, high intensity interval training; TTE, exercise time to exhaustion; MAP, maximal aerobic power; beta m, buffering capacity. 
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In addition to the studies conducted on trained cyclists (Table 1), Kohn and colleagues (2011) 

assessed the adaptive response of well-trained runners to 6 weeks of HIT running sessions 

twice per week, comprising 6 efforts at 94% of pre-determined peak treadmill speed (~2.7 

min each). In attempting to provide a mechanistic insight into the runners’ increase in peak 

treadmill speed after training, they reported a significant increase in lactate dehydrogenase 

(LDH) activity (notably in the type II muscle fibres), suggesting an up-regulation of 

intracellular lactate metabolism. In contrast, the authors reported no improvements in 2max 

and no differences in capillary supply or maximal activity of the mitochondrial enzymes 

citrate synthase (CS) and the rate limiting enzyme in beta oxidation, 3-hydroxyacetyl CoA 

dehydrogenase (3-HAD), after six weeks of HIT running. Taken together with the studies in 

Table 1, the above demonstrates that although performance improvements observed in trained 

individuals in response to a period of HIT may primarily result from an overriding central or 

peripheral physiological enhancement, it is more likely that several adaptations underpin 

these performance improvements. Moreover, the specific adaptations will no doubt reflect the 

duration, intensity and frequency of work prescribed. Importantly, through furthering our 

understanding of how subtle manipulations to work-rest periods can change the physiological 

adaptations that transpire, recent investigations have helped to optimise HIT prescription.  

 

2.3 Low-volume sprint interval training (SIT): Adaptations and 

performance benefits 

Brief ‘all-out’ (i.e. non-paced maximal effort) sprint interval training (SIT) has become a 

well-researched form of low-volume HIT over recent decades given its ability to promote 

rapid (i.e. 2-6 weeks) physiological remodelling comparable to that observed after an 

identical period of high-volume traditional endurance training (Gibala et al. 2006; 

OV
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Burgomaster et al. 2008; Rakobowchuk et al. 2008; Gibala et al. 2012; Cocks et al. 2013; 

Scribbans et al. 2014). In the majority of studies examining SIT, the protocols have typically 

comprised 4-6 x 30 s cycle sprints interspersed by 4-5 min of passive recovery (i.e. a total of 

15-20 min session duration and 2-3 min total exercise time). Three to four sessions per week 

of this training can increase muscle buffering capacity, capillarity, and muscle oxidative 

potential (as evidenced by increases in the maximal activity of mitochondrial enzymes CS, 

pyruvate dehydrogenase (PDH) complex and cytochrome ϲ oxidase (COX) subunits II and 

IV) to a similar extent to 40-120 min of moderate intensity (~ 65% 2peak) continuous 

exercise (Burgomaster et al. 2006; Gibala et al. 2006; Burgomaster et al. 2008; Cocks et al. 

2013). Moreover, just 6 sessions of SIT cycling can increase resting muscle glycogen content 

and  reduce muscle glycogen utilisation during work-matched exercise (Burgomaster et al. 

2006), which has implications for athletic performance over a range of durations/distances. In 

support of these data in humans, similar increases in both COX and CS maximal activity have 

also been observed in rats subjected to six weeks of low-volume intense interval running or 

prolonged moderate intensity continuous running (Dudley et al. 1982) and after just 8 days of 

intense interval swimming or low-intensity continuous swimming (Terada et al. 2001).  

In accordance with the above re-modelling, as little as 2-6 weeks of SIT has been 

demonstrated to increase 2max in recreationally active or non-trained, sedentary individuals 

(Burgomaster et al. 2008; Whyte et al. 2010; Cocks et al. 2013). A recent study published by 

MacPherson and colleagues (2011) compared the effects of six weeks of run SIT (4-6 × 30-s 

‘all-out’ sprints interspersed by 4 min recovery) and 30-60 min continuous running at 65 %  

2max on performance and cardiac output in healthy active men and women. Performance, 

as quantified by 2000 m run time trial performance and 2max, increased similarly between 

groups, however cardiac output only increased following traditional endurance training, 

OV

OV

OV

OV
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suggesting the improvements in aerobic performance observed following low-volume SIT in 

that study were likely the result of primarily enhanced peripheral and not central factors 

(Macpherson et al. 2011). Nevertheless, in line with the aforementioned central and 

peripheral adaptations, SIT has consistently shown to significantly improve exercise 

performance in healthy untrained individuals as further evidenced by 7-10% and 100% 

improvements in time to complete a given work load and cycle time to exhaustion at a fixed 

workload (i.e. exercise capacity), respectively (Burgomaster et al. 2005; Burgomaster et al. 

2006; Gibala et al. 2006). 

It is a common finding that HIT performed below 2max improves 2max in well trained 

individuals (Tabata et al. 1996; Helgerud et al. 2007; Gunnarsson et al. 2012). However, 

studies evaluating the effect of Wingate–based SIT or HIT involving exercise intensities at or 

above  90% of 2max or peak power output (PPO) have reported unchanged or smaller 

improvements in 2max in trained individuals (Stepto et al. 1999; Hawley and Stepto 2001; 

Stepto et al. 2001; Laursen et al. 2002a; Laursen et al. 2002b; Millet et al. 2014) and in some 

cases untrained cohorts (Burgomaster et al. 2005). This suggests that shorter maximal efforts 

may not be optimal or in some cases insufficient to enhance this physiological parameter in 

this population when compared to longer, less intense interval-based protocols. A recently 

published meta-analysis by Bacon and colleagues (2013) comprising 40 distinct training 

groups appears to support this in the untrained population. These authors concluded that 

interval training alone or combined with continuous training can increase 2max in untrained 

individuals by up to 0.6 L.min
-1

 and by up to 0.9 L.min
-1

 in response to protocols that feature 

longer (i.e. 3-5 min) exercise periods (Bacon et al. 2013). In addition to differences in 

exercise protocol, when interpreting physiological and performance changes in response to 

OV OV

OV

OV

OV
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HIT and SIT it is important to consider the varied lengths of the training periods (i.e. 2-8 

weeks) as these can also influence the post-training outcomes.  

A number of studies on untrained people have shown increased glycolytic and oxidative 

enzyme activity after training comprising of short brief ‘all-out’ exercise bouts (5–30 s) 

interspersed with longer rest periods (45 s–20 min) (Costill et al. 1979; Roberts et al. 1982; 

Parra et al. 2000; Rodas et al. 2000; Burgomaster et al. 2005). In contrast, studies enrolling 

well-trained subjects have not been able to show changes in oxidative enzyme expression 

(notably CS and HAD) or enzymes related to anaerobic energy production when training 

volume is reduced (Iaia et al. 2008; Bangsbo et al. 2009; Christensen et al. 2015). In the most 

recent of these studies, Christensen and colleagues (2015) subjected 8 trained cyclists to a 7 

week period of SIT (30 s cycle sprints with 4 min rest intervals) with 50% reduced training 

volume. After the intervention, the maximal activity of CS, HAD and PFK, as well as 

capillary to fibre ratio was unaltered. This could be the result of a relatively large reduction in 

training volume and perhaps in trained individuals a certain amount of volume is required to 

supplement training of a low-volume, ‘all-out’ nature. Nevertheless, despite unaltered levels 

of enzymes related to aerobic and anaerobic energy production in the above study, other 

studies (Iaia et al. 2008; Bangsbo et al. 2009) have observed enhanced short-term 

performance in trained populations. These results suggest there may be other important 

mechanisms, such as actions of the Na
+
-K

+
 pump, that support improved performance.  

In summary, HIT and SIT play a seemingly important role in the endurance athlete’s training 

programme and appear necessary to drive numerous peripheral adaptations that enhance an 

individual’s anaerobic and aerobic capabilities. Clearly, these stimuli need to be well-planned 

into any training programme but especially that of the highly-trained athlete. The disparity in 

certain adaptive responses (e.g. levels of increase in oxidative enzymes) in untrained versus 
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trained individuals after similar interval protocols appears to indicate that as an individual 

becomes trained, a significant amount of low- to moderate-intensity training alongside 

intense interval work is required to maintain specific structural adaptations and perhaps 

enable the athlete to tolerate progressive training overload and intensification. Indeed, strong 

evidence exists that an ~80:20 ratio of low-intensity training to HIT yields impressive long-

term results over time among endurance athletes training daily (Seiler and Tønnessen 2009). 

Moreover, the aforementioned data remind us that differences in the intensity, volume and 

frequency of the exercise stimulus, as well as the initial fitness level of the individual require 

great consideration when examining the physiological responses observed across studies. 

Manipulations of these factors alter the relative demands on metabolic pathways at a cellular 

level as well as oxygen delivery at a systemic level, and subsequently long term adaptation at 

a whole body level.    
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2.4 The molecular basis of peripheral skeletal muscle adaptations to 

intense exercise   

The underlying factors that regulate skeletal muscle re-modelling and consequent 

improvements in exercise performance after HIT, SIT and traditional, continuous-based 

endurance training protocols are becoming better understood. However, it is perhaps less well 

understood what makes HIT/SIT such as potent stimulus for enhancing maximal aerobic 

capacity and associated physiological adaptations akin to that observed following far greater 

total work. In addition to differences in total work done, exercise duration and intensity, 

clearly the interval or ‘pulsatile’ nature of HIT and SIT is a distinguishing factor between 

protocols. Nevertheless, the comparable responses between these drastically different 

protocols are perhaps unsurprising given the significant initial reliance on anaerobic 

metabolism (Table 2; Jones et al. 1985; Cheetham et al. 1986; Nevill et al. 1989; Greenhaff et 

al. 1994; Bogdanis et al. 1995; Bogdanis et al. 1996; Parolin et al. 1999) and subsequently 

aerobic metabolism to resynthesize ATP during repeated intermittent high-intensity exercise 

(Bangsbo et al. 2001).  
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Table 2 - Estimated total anaerobic contribution and ATP production during a 30 s ‘all-out’ effort in 

cycling and running 

Reference Exercise 

modality 

Duration (s) ATP produced 

(mmol/kg dry wt) 

% contribution 

    PCr Glycolysis 

Bogdanis et al. (1995) Cycle 0-30 255 24 70 

Boobis et al. (1983) Cycle 0-6 63 47 53 

  0-30 189 30 64 

Cheetham et al. (1986) Run 0-30 184  32 63 

Jones et al. (1985) Cycle 0-10 168 42 58 

  0-30 291 21 79 

Nevill et al. (1989)  Run 0-30 186 33 67 

 

This increase in aerobic metabolism at the expense of anaerobic contribution is indeed 

reflected in the reduction of peak and average power outputs, as well as reduced rates of 

glycogenolysis during repeated, successive ‘all-out’ (i.e. non-paced) 30 s sprints (Bogdanis et 

al. 1996; Parolin et al. 1999). Moreover, the potency of SIT is no doubt a reflection of its 

potential to recruit and stress all muscle fibre types, and in particular type II fibres at the very 

onset of exercise. In support of this statement, Greenhaff and colleagues have demonstrated 

that whilst ATP utilisation is similar between type I and II fibres in response to a 30 s ‘all-

out’ treadmill sprint in healthy individuals, phosphocreatine and glycogen degradation is 

markedly greater in the type II fibres (Greenhaff et al. 1994).   
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As an oxidative phenotype is promoted in response to SIT, it would seem highly likely that 

similar adaptations in response to other forms of HIT and traditional endurance protocols are 

at least partly mediated via similar cell signalling pathways. Whilst evidence supporting this 

is presented below, it should be appreciated that the activation of a signalling pathway is a 

complex process that occurs in response to diverse stimuli and challenges to homeostasis 

such as hypoxic, shear and mechanical stress, ATP turnover, changes in calcium flux and 

substrate availability to name but a few. As Egan and Zierath (2013) state “cell signalling 

pathways will demonstrate some degree of dependence, crosstalk, interference, and 

redundancy in their regulation, making the exact contribution of each signalling pathway to 

measured changes in gene expression difficult to isolate”. 

At a muscle cellular level, homeostatic perturbations at the onset of exercise activate several 

key protein kinases (i.e. sensors) involved in signal transduction. Two notable kinases are the 

5’-AMP-activated protein kinase (AMPK) and the p38 mitogen-activated protein kinase 

(p38MAPK). When phosphorylated, and thus activated, they converge upon the cell nucleus 

and directly activate downstream putative targets, in particular peroxisome proliferator-

activated receptor gamma co-activator 1α (PGC-1α), which has been repeatedly cited as the 

‘master regulator’ of mitochondrial biogenesis (Hood 2001; Jäger et al. 2007) and has more 

recently been identified as a key player in capillary growth (Arany et al. 2008; Chinsomboon 

et al. 2009; Geng et al. 2010).            

AMPK is an energy-sensing, heterotrimeric enzyme formed from three protein subunits, the 

catalytic α subunit and the regulatory β and γ subunits. It plays an important role during 

contraction-induced metabolic disturbances, serving primarily to restore cellular energy 

status. AMPK is activated in response to an increased AMP:ATP ratio and low muscle 

glycogen availability, such as during previously discussed intense intermittent exercise or 
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continuous running events of greater than 200m when aerobic metabolism supersedes 

anaerobic metabolism for ATP resynthesis (Hardie 2011). There is a wealth of evidence from 

cell and in vivo rodent studies that strongly implicates the involvement of AMPK in 

regulating  mitochondrial biogenesis, exerting its effects by directly phosphorylating PGC-1α 

(Zong et al. 2002; Jäger et al. 2007; Irrcher et al. 2008). Zong et al. (2002) observed that in 

genetically bred mice expressing an inactive dominant-negative (DN) AMPK, neither PGC-

1α, mitochondrial DNA, nor mitochondrial density were affected following injection of β-

guanidinoproprionic acid used to mimic a state of chronic phosphocreatine depletion in 

skeletal muscle. Conversely, identical treatment to wild-type mice expressing normally-

functioning AMPK was associated with increased protein levels of PGC-1α (Zong et al. 

2002). Additional animal research has shown that chronic pharmacological activation of 

AMPK using 5-aminoimidazole-4-carboxamide riboside (AICAR) results in increases in the 

mitochondrial enzymes CS and malate dehydrogenase (Winder et al. 2000), as well as 

increases in PGC-1α mRNA and total protein content in skeletal muscle (Irrcher et al. 2008).  

AMPK has also received considerable attention over that past decade in human studies 

combining exercise with muscle biopsy sampling and analysis techniques. These have 

observed increased phosphorylation of AMPK following various intense cycling and running 

protocols (Yeo et al. 2010; Little et al. 2011; Bartlett et al. 2012). Employing a ‘real-world’ 

model of exercise in the form of  90 min endurance cycling, Little and colleagues observed a 

5 fold increase in acetyl CoA carboxylase (ACC) phosphorylation, a recognized marker of 

AMPK activation  (Little et al. 2010a). The same research group later reported ~100% 

increase in cytosolic ACC phosphorylation immediately post-exercise in healthy men 

subjected to 4 × 30s Wingate tests interspersed by 4 min of recovery, as well as an increased 

PGC-1α protein content at 3 h post-exercise (Little et al. 2011). Of importance is that 

exercise-induced activation of AMPK occurs in an intensity-dependant manner as 
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demonstrated by a 2.8-fold increase in AMPK phosphorylation in response to cycling at 80% 

of 2peak compared to no increase in response to cycling at 40% 2peak (Egan et al. 2010). 

p38MAPK has emerged as an important signalling protein implicated in regulating  

contraction-induced PGC-1-α and adaptations of an oxidative phenotype, with increases in 

the phosphorylation status of human and rodent skeletal muscle p38MAPK occurring in 

response to exercise-induced mechanical stress (Chan et al. 2004; Akimoto et al. 2005; 

Wright et al. 2007; Little et al. 2010a; Little et al. 2011; Bartlett et al. 2012). Wright and 

colleagues (2007) raised cytosolic calcium levels in rat skeletal muscle with caffeine to 

activate CaMK (to mimic contractile activity) and observed increases in phosphorylation of 

p38MAPK and activation of its downstream target, activating transcription factor-2 (ATF2). 

These authors also observed attenuated expression of PGC-1α and consequent mitochondrial 

biogenesis by deactivating the CaMK-p38MAPK signalling pathway through inhibition of 

CaMK and p38 MAPK by the protein kinase inhibitors KN93 and SB202190, respectively 

(Wright et al. 2007). Moreover, in wild-type sedentary mice subjected to a single bout of 

voluntary running, a transient increase in PGC-1α mRNA expression in skeletal muscle 

occurred simultaneously to increased activation of the p38MAPK pathway (Akimoto et al. 

2005).  

In general, p38MAPK has received less attention over recent years in comparison to AMPK, 

however data from randomised control trials in humans suggests this protein kinase also 

plays an important role in initiating the signalling events resulting in adaptations of an 

endurance phenotype.  Little et al. (2010) subjected healthy males to an acute bout of 90 min 

endurance cycling at 65% 2peak. They reported a several fold increase in p38MAPK 

phosphorylation and a 50% increase in nuclear PGC-1α protein expression immediately post-

exercise (Little et al. 2010a). The aforementioned findings provide evidence implicating the 

OV OV
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activation of the p38MAPK pathway as an integral component of the intracellular signalling 

network initiating skeletal muscle adaptations to endurance exercise and in particular 

mitochondrial biogenesis through its regulatory control of PGC-1α gene expression. A more 

recent study conducted by this research group, observed increased p38MAPK activation 

immediately after 4 bouts of all-out 30 s maximal intensity cycling interspersed with 4 min of 

recovery, as well as increased nuclear PGC-1α protein expression 3 h after exercise (Little et 

al. 2011). Cochran et al. (2010) reported a 4-fold increase in p38MAPK immediately after 5 x 

4 min bouts of cycling at ~90-95% of heart rate reserve. Additionally, they reported an ~8-

fold increase in PGC-1α mRNA at 3 h after exercise, providing further implication for the 

role of p38MAPK being partly responsible for activating mitochondrial biogenesis through a 

PGC-1α mediated signalling cascade. In support of these data, similar increases in p38MAPK 

and PGC-1α mRNA have been also observed in humans immediately and 3 h after interval 

and continuous running protocols, respectively (Bartlett et al. 2012).  

PGC-1α co-activates and increases the expression of several transcription factors involved in 

the regulation of nuclear genes, most notably nuclear respiratory factor -1 (NRF-1) and -2 

(NRF-2), which subsequently encode mitochondrial proteins (Handschin and Spiegelman 

2006). Knockout of the PGC-1α protein in genetically bred mice has been shown to result in 

decreased mitochondrial gene expression, such as ATP synthase and decreased function of 

mitochondrial respiratory chain proteins, for example succinate dehydrogenase (SDH) 

(Handschin et al. 2007). Although PGC-1α activates NRF-1 and -2 for transactivation of 

genes involved in the respiratory chain such as CS and SDH, PGC-1α is also indirectly 

involved in regulating the expression of mitochondrial DNA (mtDNA) transcription through 

exercise-induced NRF-1 co-activation of mitochondrial transcription factor A (Tfam) 

(Handschin and Spiegelman 2006; Aquilano et al. 2010; Safdar et al. 2011). There is 

evidence that an attenuation of PCG-1α transcriptional activity translates to impaired physical 
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performance in vitro, as mice deficient in PGC-1α protein display reduced exercise capacity 

and fatigue resistance (Leone et al. 2005). Moreover, mice that over-express the PGC-1α 

protein exhibit enhanced peak oxygen uptake (~20%) and improvements in physical 

performance during voluntary and forced exercise (Calvo et al. 2008).  

In humans, Gibala and colleagues (2009) reported a 2-fold increase in PGC-1α mRNA 3 h 

after an acute bout of the SIT protocol repeatedly studied in their laboratory (i.e. 4 x 30 s ‘all-

out’ sprints). Despite these increases in post-exercise PGC-1α mRNA, there was no change in 

whole-muscle PGC-1α protein content after 3 h of recovery. However in a later study 

conducted by Little et al. (2011), an increase in nuclear PGC-1α protein abundance at 3 h 

post this exercise protocol was observed and coincided with an increased (76-83%) mRNA 

expression of mitochondrial enzymes including CS, COX II and COX IV. This data, along 

with the previous observations of the absence of an increase in total PGC-1a protein content 

from whole muscle homogenates at 3 h post-SIT (Gibala et al. 2009), suggests that 

translocation of PGC-1α from the cytosol to the nucleus might be an important molecular 

mechanism responsible for activation of this transcriptional co-activator in the early recovery 

phase following intense exercise in human skeletal muscle. Perry et al. (2010) obtained 

muscle biopsies from healthy active males in a time-course manner over seven successive 

identical HIT sessions that resulted in a 12% increase in 2peak over a 2 week period. 

Specifically, they sampled muscle tissue 4 h and 24 h after every second training session to 

examine the temporal response of PGC-1α mRNA and protein content to training. The 

authors observed a progressive increase in PGC-1α total protein content over the seven 

successive HIT sessions. Moreover, they observed 4- to 10-fold increases in PGC-1α mRNA 

at 4 h post exercise, which preceded the increase in protein content observed at 24 h. These 

date suggest that the training-induced increases in PGC-1α protein content may result from 

the cumulative effects of transient bursts of increased PGC-1α mRNA expression after 

OV
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successive bouts of training (Figure 3). This temporal and cumulative pattern, which is 

supported by previous data (Pilegaard et al. 2000; Pilegaard et al. 2003), is indeed specific to 

a given gene and exercise challenge (Atherton et al. 2005; Wilkinson et al. 2008) and is 

thought to represent the kinematic basis of phenotypic skeletal muscle adaptation to divergent 

exercise training stimuli (Egan and Zierath 2013; Camera et al. 2016)   

There is growing evidence that PGC-1α is only activated in response to exercise if the 

intensity of work is sufficient (Egan et al. 2010; Nordsborg et al. 2010; Oliveira et al. 2014). 

This intensity-dependant regulation akin to AMPK was neatly illustrated by Egan and co-

workers who subjected healthy sedentary males to two bouts of energy expenditure matched 

cycling at ~40% (~70 min) and ~80% (~36 min) of 2peak. At 3 h post-exercise, PGC-1α 

mRNA abundance had increased 3.8 fold after the low intensity bout and 10.2 fold after the 

high intensity bout suggesting that exercise intensity regulates PGC-1α mRNA abundance in 

human skeletal muscle (Egan et al. 2010). In support of this, Nordsborg and colleagues 

(2010) provide data suggesting that the relative intensity of exercise appears important in 

activating PGC-1α.  In their study, trained and untrained subjects performed exhaustive 

intermittent cycling exercise at 85% 2peak (4 x 4 min bouts interspersed by 3 min). 

Importantly, they also had the same trained cohort perform the protocol at 70% 2peak (i.e. 

the same absolute workload of the untrained subjects). A similar increase in PGC-1 mRNA 

expression was observed between the trained and untrained individuals at the higher relative 

intensity. However, when comparing the magnitude of increase in PGC-1a mRNA between 

70 and 85% 2peak in the trained muscle, this was markedly higher in response to the higher 

relative workload (Nordsborg et al. 2010).  

Whilst much of the research to date on skeletal muscle adaptation to HIT and low-volume 

SIT has centred on mitochondrial biogenesis and the potency of these to augment the activity 
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of mitochondrial enzymes, far less is known of its effects on remodelling the 

microvasculature at the periphery. Of the sparse research available, there are still questions 

over whether intense interval training supports capillary growth. Jensen and colleagues 

observed an increased in capillary : fibre ratio in healthy active men following ~ 4 weeks of 

intermittent one-legged knee extensor exercise at 150 and 90 % of leg 2peak (Jensen et al. 

2004a). Moreover, Cocks and colleagues have suggested that a period of exposure to the 

‘classic’ SIT protocol is equally effective as prolonged endurance training in enhancing 

capillary growth in untrained sedentary men (Cocks et al. 2013). In contrast, high-intensity 

intermittent cycling (24 x 1 min bouts above 2peak) has been demonstrated to present a 

weaker stimulus for capillary growth in young healthy subjects (with a mean 2peak of 42 

ml·kg
-1

·min
-1

) in comparison to moderate intensity continuous cycling (Hoier et al. 2013a). 

Insights into the effects of SIT and other intense exercise protocols on capillary growth in 

trained individuals is remarkably sparse given the previously highlighted importance of the 

capillary network to performance (Coyle et al. 1988; Iaia et al. 2011). Whilst research in this 

area is clearly lacking, of the limited data available it appears supplementing a sub-elite 

soccer players’ training regime with additional speed endurance work does not provide a 

sufficient stimulus to promote capillary expansion (Gunnarsson et al. 2012) and various HIT 

running protocols are seemingly less effective in improving capillary growth in comparison 

to longer duration, less intense running protocols (Nybo et al. 2010; Kohn et al. 2011; 

Gliemann et al. 2014). A recent study by Gliemann and colleagues, recruited a cohort of 160 

recreational runners who were subsequently assigned into either a 10-20-30 training group 

(replacing 2 of 3 weekly training sessions with 10-20-30 training for 8 weeks) or a group that 

continued their regular training. The 10-20-30 training consisted of 1-min intervals comprised 

of 30, 20, and 10 s at ∼30%, ∼60%, and ∼90–100% of maximal running speed, respectively, 

a HIT protocol that was previously developed with recreationally active runners (Iaia et al. 
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2008; Bangsbo et al. 2009). They examined the effect of this training concept on 5-km run 

performance, 2max and capillary growth. Whilst the 10-20-30 training increased run 

performance and 2max, it did not influence capillary growth and actually resulted in a 

reduced total protein expression of the primary capillary growth factor, vascular endothelial 

growth factor (VEGF) by 22%. Conversely, no changes at all were observed in the group that 

continued to engage in their regular training. Their results suggest that whilst the 10-20-30 

intervention was more effective than the regular training in improving endurance 

performance and 2max, it did not provide a sufficient stimulus for enhanced structural re-

modelling of skeletal muscle (Gliemann et al. 2014). The aforementioned reports not only 

suggest that HIT might be sub-optimal for capillary growth, but perhaps could even have a 

blunting effect on microvascular re-modelling. Thus, until additional evidence is made 

available, special care and attention needs to be paid to the distribution of HIT and 

continuous moderate intensity training depending on the individuals long term goals.     

Angiogenesis is the formation of capillaries from existing blood vessels and is fundamental to 

tissue repair following injury and skeletal muscle adaptation after exercise (Olfert et al. 

2016).  For exercise-induced angiogenesis to occur, a sufficient intensity and duration of 

isometric or isotonic contractile activity is required (Egginton 2009). This re-modelling of the 

microvasculature is believed to occur through two primary mechanisms: sprouting and 

intussusception angiogenesis. Sprouting angiogenesis has been understood for far longer than 

intussusception angiogenesis and refers to the process by which activated endothelial cells 

sprout out from existing capillaries to form new tree like branches. In intussusception (or 

splitting) angiogenesis, activated endothelial cells extend and initiate longitudinal divide on 

the luminal side of the capillary, resulting in the formation of two tubes through which the 

blood can pass. Like mitochondrial biogenesis, the regulation of angiogenesis is controlled 

via complex processes involving multiple intramuscular signalling pathways (Figure 1). 

OV

OV

OV



27 

 

These are tightly regulated by many putative pro- (including eNOS, MMPs, HIFs and VEGF) 

and anti-angiogenic factors (including Ang1, Ang2 and Tie2), that destabilise the existing 

capillary and stabilise the newly formed capillary, respectively (Egginton 2009).  

 

 

Figure 1 - A simplified schematic of the physiological signals and associated factors evidently 

important in exercise-induced differential capillary growth. 

 

Vascular endothelial growth factor (VEGF) is strongly associated with the angiogenic 

response to increases in mechanical stretch (Brown and Hudlicka 2003), shear stress (Zou et 

al. 1998) and hypoxia (Shweiki et al. 1992). VEGF plays an important role in promoting 
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endothelial cell production and migration through its receptor VEGF-R2, expressed 

predominantly by vascular endothelial cells (Brown and Hudlicka 2003). Whilst it should be 

appreciated that numerous growth factors are involved in the angiogenic process, it is widely 

accepted that VEGF activation of VEGF-R2 elicits the complete angiogenic response 

(Conway et al. 2001).  

In support of the general acceptance that VEGF plays an essential role in angiogenesis, a high 

association has been reported between VEGF-R2 protein expression and contractile activity–

induced capillary proliferation (Milkiewicz et al. 2003). Moreover, lifelong deletion of VEGF 

in mice muscle has shown to reduce capillarity by 65% with no compensatory angiogenic 

pathways available to restore capillarity (Wagner et al. 2006). Moreover, in these mice, run 

time to exhaustion was only 20% of what these mice could typically achieve with normal 

VEGF protein content (Wagner et al. 2006). A single bout of endurance exercise is sufficient 

to induce VEGF mRNA expression in humans (Gustafsson et al. 1999; Ameln et al. 2005; 

Hoier et al. 2012) and rats (Breen et al. 1996), peaking between 2 and 3 h after exercise 

before returning to baseline thereafter. It could therefore be expected that VEGF protein 

levels are increased after a period of training (due to cumulative transient-increases in VEGF 

mRNA) although this has not always held true with some studies reporting increased VEGF 

protein content after a period of regular endurance training (Gustafsson et al. 2001; 

Gustafsson et al. 2002) and others not (Hoier et al. 2012).  

As mentioned above, the exercise-induced up- and down-regulation of the aforementioned 

angiogenic factors is under the influence of changes in shear stress, mechanical stretch, and 

hypoxia, and their co-ordinated activity is likely to determine when capillary growth is 

‘turned on and off’. Whilst it is still not fully understood which of these stimuli are 

responsible for intussusception and sprouting angiogenesis and which process dominates in 
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exercise-induced angiogenesis, it has been proposed that intussusception angiogenesis 

provides a more efficient process to increase the capillary supply as it requires less 

endothelial cell proliferation (Djonov et al. 2003). 

 

Shear stress 

Shear stress is widely considered a primary driver of exercise-induced capillary growth and 

refers to the frictional drag experienced by endothelial cells as blood flows along its surface 

or the frictional force of blood applied to the luminal side of the blood vessel (Prior et al. 

2004). In rodents, acute administration of prazosin on the microcirculation increases blood 

flow, can result in a 4-fold increase in shear stress and can increase skeletal muscle C:F by 

30% (Dawson and Hudlická 1989).   

Nitric oxide (NO) is upregulated in response to shear stress and is believed to play an 

important role in mediating the effects of VEGF and stimulating endothelial cell proliferation 

(Williams et al. 2006b; Williams et al. 2006a). While NO may stimulate dilation and activate 

VEGF (Tsurumi et al. 1997), activation of VEGF-R2 stimulates NO production (Morbidelli 

et al. 1996), suggesting that there is likely some important reciprocity between these 

angiogenic factors. In addition to an increase in VEGF, high shear stress induced by prazosin 

upregulates endothelial NO synthase (eNOS) mRNA and protein expression (Baum et al. 

2004), further demonstrating this reciprocity. Moreover, aerobic training has been shown to 

up-regulate eNOS mRNA in rats (Lloyd et al. 2003) and given that angiogenesis is blunted in 

the skeletal muscle of eNOS-KO mice after prazosin administration (Baum et al. 2004), these 

observations provide further evidence for eNOS and in turn NO as vital players in shear 

stress-mediated angiogenesis induced by exercise and/or pharmacological intervention.  
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In humans, studies investigating the effects of shear stress on angiogenesis are lacking and a 

direct role for NO in angiogenesis is yet to be determined. However, eNOS protein content is 

increased in human skeletal muscle following 4 weeks of 60 min cycling at ~ 60%  2max , 3 

times per week (Hoier et al. 2012) and 6 weeks of SIT in sedentary individuals (Cocks et al. 

2013). Moreover, 90 min of one-legged passive movement exercise (which resulted in a 2.8-

fold increase in blood flow and thus increased shear stress and little accompanying O2 

uptake) has been demonstrated to enhance eNOS mRNA and interstitial VEGF protein 

concentration (Hellsten et al. 2008). More recently these authors observed upregulated eNOS 

and increased capillary growth after 4 weeks of passive leg movement training for 90 min 4 

times per week (Høier et al. 2010).    

Recent data also supports an important role for p38MAPK in angiogenesis and in particular 

shear-stress induced angiogenesis (Pogozelski et al. 2009; Gee et al. 2010). In rodent muscle, 

pharmaceutical inhibition of p38MAPK prevents shear-stress induced VEGF production and 

increases in C:F ratio (Gee et al. 2010) and transgenic deletion of p38MAPK blocks 

endurance-exercise induced PGC-1α mRNA expression and subsequent VEGF mRNA 

expression (Pogozelski et al. 2009). It is therefore possible that the aforementioned role of 

p38MAPK in mitochondrial biogenesis could be extended to supporting angiogenesis.   

 

Mechanical stretch/overload  

Whilst VEGF appears to be vital for all forms of exercise-induced angiogenesis, sprouting 

angiogenesis in particular relies on proteolysis of the basement membrane, which is made 

possible by several families of enzymes, most notably the matrix metalloproteinases (MMPs) 

which are activated in response to mechanical stretch/overload. This particular stimulus refers 

to the physical stretch of the vasculature caused by the deformation of cells during 
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contractions (Prior et al. 2004). MMPs modulate cell-matrix interactions, and with regards to 

angiogenesis, initiate degradation of the basement membrane, allowing activated EC 

proliferation and migration so that new branch-like sprouts can form from existing capillaries 

(Haas et al. 2000; Egginton 2009).  A rodent study conducted by Haas and colleagues (2000) 

demonstrated the importance of MMPs for capillary growth. It was found that by inhibiting 

the MMPs in rat skeletal muscle, the expansion of the capillary network induced by chronic 

muscle stimulation was eliminated. Further evidence from rodent studies highlight the 

importance of increased MMP activity (notably MMP-2 and MMP–9) in regulating exercise-

induced angiogenesis, with data supporting roles for ischaemia (Muhs et al. 2004) and 

muscle-overload/stretching (Rivilis et al. 2002) in increasing the expression of these proteins. 

In humans, a single bout of aerobic exercise increases MMP-9 mRNA and activates MMP-9 

protein (Rullman et al. 2007; Rullman et al. 2009). In their later study, Rullman et al. (2009) 

subjected 10 healthy men to 5 weeks of 45 min constant load one-legged cycling with and 

without restricted blood flow, thereby imparting a similar mechanical stress on both legs, yet 

greater ischaemia and associated metabolic stress (see Esbjörnsson et al. 1993) on the 

restricted limb. In contrast to MMP-9, MMP-2 mRNA did not increase after a single bout of 

exercise. Moreover, restricting blood flow had no additional effect on the mRNA expression 

or activity of either MMPs over that induced by the non-restricted leg, suggesting that 

metabolic stress did not play a major mediating role in exercise-induced increases in MMP 

activation in their investigation (Rullman et al. 2009). There appears a dose-dependent 

relationship between exercise intensity, duration and expression of MMPs. In this regard, 

Carmeli et al. (2005) observed that 2 weeks of treadmill running at low intensity (18 min at ~ 

50% 2max) did not alter the expression of MMP-2 in rat skeletal muscle, whilst high 

intensity exercise (32 min at ~ 70% 2max) increased both mRNA and protein levels of 

MMP-2 in skeletal muscles containing a high percentage of type II fibres. Nevertheless, it 
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appears the MMPs play an important role in sprouting angiogenesis and exercise of a 

sufficient duration and/or intensity is required for their upregulation.  

  

Hypoxia 

Hypoxia is believed to be one of the most potent stimuli to promote angiogenesis, primarily 

through up-regulating VEGF (Prior et al. 2004). Lowering the partial pressure of oxygen in 

culture stimulates endothelial cell proliferation, migration and tube formation (Shweiki et al. 

1992). Conversely, returning the partial pressure of oxygen to higher values reduces VEGF 

expression and suppresses endothelial cell activation (Shweiki et al. 1992). It is becoming 

increasingly evident that increased oxygen consumption and/or lowered tissue oxygen tension 

mediate their effects on angiogenesis through the heterodimeric transcription factor, hypoxia 

inducible factor-1, and in particular it’s α subunit (HIF-1α) (Gustafsson et al. 1999; Ameln et 

al. 2005; Lundby et al. 2006; Semenza 2006; Lindholm and Rundqvist 2015). Ameln and 

colleagues (2005) observed an increase in HIF-1α protein content and more prevalent 

staining of nuclear HIF-1α immediately after 45min of one-legged knee extensor exercise in 

healthy male subjects. Moreover, they observed an increase in VEGF mRNA after exercise, 

reaching a peak expression at 2 h into recovery, a time-course which appears necessary for 

exercise-induced transcriptional activation (Pilegaard et al. 2000) and yet further evidence of 

transcriptional activation of VEGF through HIF-1α. An interesting finding taken from the 

study by Ameln et al. (2005) was that they observed an increased skeletal muscle HIF-1α 

protein content immediately after exercise. This could suggest that even during submaximal 

exercise where blood flow is adequate, the PO2 of the capillary network in the active muscle 

may be low enough to promote a hypoxic-induced adaptive response.  

Various endurance and resistance based exercise protocols have been demonstrated to 

increase HIF-1α mRNA (Lundby et al. 2006; Drummond et al. 2008; Larkin et al. 2012) 
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whilst others have not (Gustafsson et al. 1999; Ameln et al. 2005). Lundby et al. (2006) 

examined the time-course of HIF-1α mRNA expression in response to a 3 h two-legged knee 

extensor protocol, whereby one leg had been trained for four weeks (5 days/week) and the 

other untrained. In the untrained leg, the exercise bout induced a 10-fold increase in HIF-1α 

mRNA 6 h into recovery, demonstrating for the first time that exercise in normoxic 

conditions could elevate HIF-1α mRNA and in doing so provided further insight into the 

likely importance of this transcription factor in regulating exercise-induced adaptive 

responses. Prior to this, one study had investigated the effects of acute endurance exercise (45 

min one-legged kicking protocol) on HIF-1α mRNA content 30 min post-exercise and 

observed no increase (Gustafsson et al. 1999). Moreover, in the study by Ameln and co-

workers (2005) no increase was observed in HIF-1α mRNA expression at immediately post 

or at 30 min, 2 or 6 h after the 45min one-legged knee extensor exercise. Clearly, differences 

in exercise protocols and biopsy sampling time-points need to be considered when 

interpreting these results. With regards to the time course response post-exercise, HIF-1α 

mRNA was unchanged immediately at termination of exercise and also at 2 h into recovery in 

the study by Lundby and colleagues, suggesting the mRNA expression of this protein occurs 

later into recovery from exercise, possibly to replenish lost stores and over time increase 

basal HIF-1α protein content. Indeed, a recent rodent study conducted by Abe and colleagues 

observed increased basal levels of HIF-1α following training of a high intensity nature (Abe 

et al. 2015). Nevertheless,  the aforementioned in vitro and in vivo studies suggests VEGF 

induction by the exercise-induced increases in HIF-1α likely plays a role in promoting 

endurance adaptations and in particular, capillary growth. The above observations also raise 

the question as to what is the stimulus associated with the exercise-induced HIF gene 

responses.  
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Involvement of PGC-1α and upstream kinases in angiogenesis  

In addition to its previously discussed master regulatory role in mitochondrial biogenesis, 

evidence from transgenic mice studies suggests PGC-1α plays an important functional role in 

the angiogenic response to exercise, likely through coactivation of estrogen-related receptor-α 

(ERRα) (Arany et al. 2008; Leick et al. 2009; Chinsomboon et al. 2009; Geng et al. 2010; 

Tadaishi et al. 2011).   Firstly, Arany and colleagues (2008) demonstrated that muscle-

specific deletion of the PGC-1α gene impaired angiogenesis in response to hypoxia. 

Subsequently, Leick et al. (2009) subjected mice with whole body knockout of PGC-1α and 

wild-type controls to 5 weeks of exercise training, observing lower skeletal muscle VEGF 

protein content and C : F ratio by ~ 60-80 and 20%, respectively, in the transgenic mice 

compared to the wild-type controls. Moreover , whilst basal VEGF expression was similar 

between the knock-out and wild type mice, acute exercise and AICAR treatment (used to 

pharmacologically activate AMPK), as well as 4 weeks of chronic AICAR injection (without 

exercise) increased VEGF expression by ~ 15% in the wild-type mice only (Leick et al. 

2009). In another study published that year, Chinsomboon et al. (2009) demonstrated that in 

response to exercise, mice lacking PGC-1α exhibit blunted acute VEGF expression and failed 

to increase their skeletal muscle capillary density compared to wild-type controls. The 

importance of PGC-1α for capillary growth was soon further supported by Geng and co-

workers who observed a significant attenuation of exercise-induced capillary growth and 

COX subunit IV protein expression in PGC-1α knock-out mice compared to wild-type 

controls. Most recently, Tadaishi et al. (2011) reported increased VEGF and eNOS protein 

expression in skeletal muscle of mice bread to overexpress PGC-1α protein. Furthermore, 

these authors observed an increase in C : F ratio,  2peak (20%), and exercise capacity (35%, 

expressed by maximum treadmill speed) in these mice compared to wild-type controls 

(Tadaishi et al. 2011).   
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Figure 2 - Schematic representation of the common cell signalling pathways that likely regulate 

skeletal muscle angiogenesis and mitochondrial biogenesis in response to exercise. Skeletal muscle 

remodelling in response to HIT, SIT, moderate-intensity continuous training and subsequent 

activation of the above cell-signalling cascades is not limited to angiogenesis and mitochondrial 

biogenesis. Increases in fat oxidative capacity, glucose transporters, resting muscle glycogen content 

and type I muscle fibres are also mediated by common cell-signalling cascades in response to the 

above exercise stimuli.       

 

The body of research presented thus far provides strong evidence that under conditions of 

increased cellular energy stress and mechanical stretch, activation of AMPK, p38MAPK and 

their downstream target PGC-1α likely play an important role in mediating mitochondrial 

biogenesis and angiogenesis in response to SIT, HIT and traditional endurance training, 



36 

 

possibly through a common intramuscular signalling cascade (Figure 2). However, what is 

also evident is that the vast majority of research in humans, either performance or 

mechanistic based, has been conducted on healthy recreationally active individuals. Indeed, 

the efficacy of SIT in particular has yet to be established in well-trained athletes. 

Furthermore, whilst the angiogenic response to traditional endurance exercise in humans is 

relatively well established, somewhat surprisingly, there remains a sparsity of research 

investigating whether SIT also provides an angiogenic potential in non-sedentary, athletic 

populations and whether this training stimulus is capable of augmenting the expression of 

angiogenic growth factors in these populations. Given the aforementioned importance of 

exercise intensity on upregulating molecular markers implicated in both mitochondrial 

biogenesis and angiogenesis, it is plausible that this type of training presents angiogenic 

potential and this warrants further investigation.  

 

2.5 The adaptive scope of trained muscle: the need to adopt novel training 

methods 

Sport and exercise research involving molecular techniques and analysis is in its relative 

infancy. Seiler and Tønnessen (2009) have stated that ‘about 85% of all publications 

involving gene expression and exercise are less than 10 years old’ and therefore we do not 

currently have the capabilities to inform athlete training from molecular snapshots in the 

field. Light can be shed, however, on the potency of an exercise stimulus to induce adaptation 

through examining the acute signalling response to exercise. As alluded to in Chapter 1, the 

challenges scientists face in trying to persuade highly trained athletes and their coaches to 

participate in investigations of an invasive nature and manipulate their training accordingly, 

has meant that the majority of the above human investigations into the effects of diverse 
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training stimuli on acute cellular responses and whole body metabolism have been conducted 

on healthy, recreationally active male cohorts and sedentary populations. Well-trained 

individuals are typically accustomed to varied and volumous exercise stimuli and thus it is 

generally considered more difficult to enhance adaptations in these populations, a notion that 

is repeatedly reflected at a molecular level. The attenuated adaptive scope of muscle as it 

becomes more highly trained is nicely demonstrated by a blunting of the acute response of 

mitochondrial transcript expression in recruited muscle after 6 weeks of endurance exercise 

training (Schmutz et al. 2006). Furthermore, in the study by Perry and colleagues on 

untrained active males, although the authors observed a progressive increase in PGC-1α total 

protein content over the seven successive identical HIT sessions, the magnitude of increase 

for PGC-1α mRNA expression decreased with every subsequent training session (Perry et al. 

2010). Similarly,  the 9-fold increase in AMPK activity in untrained muscle from rest after 

120 min of cycling (~66 % 2max) is almost completely blunted after only 10 identical 

training sessions (McConell et al. 2005). This attenuated response is illustrated in Figure 3. 

Not only do these observations highlight the plasticity of skeletal muscle, it demonstrates the 

necessity for a progressively intensified and/or varied training programme to prevent 

stagnation of cell-signalling responses that drive adaptation. Indeed, as the athletes training 

history increases this likely becomes even more important.  
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Figure 3 – Schematic representation of the transient and blunted exercise-induced increases in protein 

kinase activity, mRNA expression and total protein content of important key regulators of structural 

and functional adaptation to training. This temporal pattern is specific to a given gene and exercise 

challenge. The red arrows highlight the reduced acute cell signalling response to successive exercise 

bouts and thus the importance of progressively intensified and/or varied and novel training stimuli to 

drive continual adaptation (adapted from Perry et al. 2010). 

 

The correlation between the reduced rate of exercise-induced mitochondrial remodelling in 

endurance trained muscle and associated transcript expression suggests that structural 

constraints limit myocellular adaptive scope (Flueck 2010). Indeed, there exists an inverse 

relationship between mitochondrial content and the expression response of mitochondrial and 

angiogenic transcripts to exercise (Schmutz et al. 2006), such that muscle with the highest 

mitochondrial densities show reduced regulation of functionally implicated gene transcripts 

during recovery from exercise. This reduced plasticity of trained muscle beyond a specific 

morphology and architecture (Saltin et al. 1977; Hoppeler et al. 1985) suggests that either 1) 
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adaptations in highly trained individuals primarily serves to maintain their level of aerobic 

performance or 2) that the individual’s training has been insufficient to promote further 

adaptation, perhaps lacking the required exercise intensity, duration and/or training 

frequency. Training should in theory combine an appropriate mix of these variables as well as 

adequate variety/novelty of exercise stimuli to prevent stagnation of the acute training 

stimulus and with this in mind, identifying novel methods of further enhancing the adaptive 

response to training is a continual quest for coaches and exercise scientists.  

 

2.6 Manipulating exercise and recovery to enhance adaptations in trained 

individuals 

As discussed earlier in this chapter, it is common for athletes to undertake HIT and although 

less documented and certainly less researched, it is also not unusual for athletes involved in 

sprint and endurance sports to undertake training sessions consisting of ‘all out’ interval and 

continuous efforts, especially during the competition preparation period (i.e. ‘taper period’) 

prior to a major competition/event (Mujika 2010). Observations from the author who at the 

time of completing this thesis provided physiological support to full-time Olympic track 

cyclists, has confirmed that at various times in the training macrocycle, performing low-

volume, ‘all-out’ sprint interval and continuous cycling form integral sessions within the 

cyclists’ weekly training programmes. However, since the training status of the muscle is 

considered an important factor in determining the contraction-induced adaptive response to 

exercise (Coffey and Hawley 2007), the acute and chronic adaptive responses that typically 

transpire following this low-volume, ‘all out’ sprint interval training in sedentary or 

recreationally trained individuals, may not manifest to the highly-trained athlete and thus 

warrants further investigation. A greater understanding of the physiological responses to this 
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exercise stimulus in highly-trained athletic populations may help our mechanistic 

understanding of why it proves such a potent training method for improving health and 

performance parameters in the untrained. To date only one study has investigated the effect 

of an acute bout of SIT on PGC-1α and other genetic markers of mitochondrial biogenesis in 

highly trained athletes. Psilander et al. (2010) observed a 6-fold increase in PGC-1α in 

national level cyclists subjected to 7 × 30-s ‘all out’ efforts of sprint cycling and 3 × 20-min 

efforts at ~87% 2peak. However, as the downstream target of PGC-1α, Tfam, increased 

only following the ‘all-out’ sprint cycling, it was concluded that in their highly-trained study 

cohort this specific type of training may prove a more potent stimulus to induce 

mitochondrial adaptation than the less intense, yet greater volume cycling (Psilander et al. 

2010). Interestingly, the 6-fold increase in PGC-1 α  is a similar magnitude of change 

observed in response to the ‘classic’ SIT protocol in healthy, recreationally active muscle 

(Gibala et al. 2009). This highlights that brief ‘all-out’ interval cycling also provides a potent 

stimulus for mitochondrial biogenesis in highly-trained muscle. Indeed, it should be 

recognised that the similar magnitude of fold-change between cohorts could simply be due to 

the fact the trained cyclists performed 3 additional efforts (i.e.7 efforts in total) to those in the 

studies on untrained individuals. Additionally, there is arguably a greater chance of sampling 

highly active tissue in trained individuals who are not only typically leaner but also more 

likely to recruit a larger muscle mass during a given effort.   

Clearly there is scope for further investigation into SIT in clinical populations and more so 

trained cohorts. Firstly, it has not yet been assessed whether this type of training increases the 

expression of angiogenic factors in trained muscle. Moreover, it remains unclear whether the 

intermittent nature of this training strategy (and the characteristic alternating hard–easy 

pattern) is a fundamental aspect related to the potency of SIT to induce comparable cell-

signalling responses to traditional endurance training, despite the large difference in total 
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work done. In addition to differences in total work done, exercise duration and intensity, the 

‘pulsatile’ nature of SIT and HIT is clearly a distinguishing factor between these and 

traditional endurance exercise.  

Given the aforementioned importance of metabolic, hypoxic and shear stress related signals 

in upregulating transcription and growth factors governing exercise-induced cellular 

adaptations such as angiogenesis, a plausible method of enhancing the acute and chronic 

adaptive response to training would be to combine exercise with blood flow restriction 

(BFR). Using inflatable blood pressure cuffs has become a practical and popular method of 

restricting blood flow in and around exercise, specifically in combination with low load 

resistance training to augment muscle hypertrophy and strength (Fujita et al. 2007; Patterson 

and Ferguson 2010; Loenneke et al. 2012; Wilson et al. 2013; Lowery et al. 2014; Scott et al. 

2015). Moreover, 8 weeks of this type of training increases resting muscle glycogen content 

(Burgomaster et al. 2003) and there is indirect evidence of increased muscle capillarity after 6 

weeks of plantar flexion exercise combined with BFR in healthy males (Hunt et al. 2013).  

One-legged endurance cycling performed with even moderate blood flow restriction (~ 20 %) 

in healthy individuals has been shown to promote greater improvements in exercise capacity 

(assessed via time to exhaustion protocols) and 2max, as well as peripheral metabolic and 

structural changes (i.e. increases in glycogen content, capillary density, type I muscle fibres 

and the maximal activity of CS) compared to exercising legs with a normal blood supply to 

the active muscles (Kaijser et al. 1990; Eiken et al. 1991; Sundberg et al. 1993; Esbjörnsson 

et al. 1993; Nygren et al. 2000). In these series of investigations, blood flow was restricted to 

the lower legs during exercise by placing the individual’s legs inside a large pressure 

chamber, a method first described by Eiken and Bjurstedt (1987). The chamber is 

subsequently increased to 50mmHg, which when exercising at the workloads prescribed, 

OV



42 

 

elicits a ~ 20% decrease in leg blood flow (Sundberg and Kaijser 1992). Using these 

methods, Esbjornsson et al. (1993) subjected 8 healthy men (who were accustomed to 

physical training) to a 4 week period of 45 min load-matched BFR and non-BFR one legged 

cycling 4 times per week. Although in this study both the ischaemic and control trained legs 

improved their one-legged exercise capacity (as measured by a time to exhaustion test), the 

leg that undertook ischaemic training improved by 4% greater than that of the control leg. 

Moreover, when exercise capacity was evaluated under ischaemic conditions, the ischaemic 

trained leg had a further 13% improvement over that reported in the non-BFR trained leg. In 

alignment with their performance data, a greater increase in resting glycogen content and C : 

F ratio, as well as a tendency for increased CS and PFK activity was observed after training 

in the ischaemic leg. Prolonged exercise of this nature has likely been made possible due to 

the relatively small reduction in leg blood flow (20%) elicited by the pressure chamber. The 

research that has examined the effects of combining BFR with resistance exercise have 

traditionally had participants perform bilateral or unilateral knee extension activity with 

blood pressure cuffs placed on the upper limbs and inflated to pressures that elicit reductions 

in arterial blood flow by 40-60%. Given the difference in exercise duration and 

method/extent of reduced blood flow, employing BFR with blood pressure cuffs in 

combination with exercise may present distinct findings.  

Combining intense interval exercise with this practical method of BFR could present a 

potentially intensified training stimulus (beyond that of interval exercise alone) to augment 

the above homeostatic perturbations and subsequently activate associated cellular regulatory 

pathways. Whilst this could plausibly have implications for athletic performance, the efficacy 

of this novel approach remains to be studied. BFR alters the shear stress response during 

(Hudlicka and Brown 2009) and post-exercise (Gundermann et al. 2012). Moreover, 

increased shear stress elicited by reactive hyperaemia following cuff deflation (Gundermann 
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et al. 2012) could provide an increased stimulus for shear mediated angiogenesis in response 

to SIT and BFR. Alternatively, BFR exercise may stimulate angiogenesis through signals of 

reduced oxygen tension and higher metabolic stress (Kawada 2005; Tanimoto et al. 2005; 

Semenza et al. 2006; Semenza 2006). Utilising the aforementioned pressurised chamber, 

previous studies have investigated the regulation of exercise-induced angiogenesis in 

response to BFR and non-BFR single-leg knee extension exercise (45 min at ~24% one leg 

peak load) (Norrbom et al. 2004; Gustafsson et al. 2007), demonstrating greater expression of 

the mitochondrial and pro-angiogenic factors, PGC-1α and VEGF-R2, during recovery from 

ischaemic exercise. More recently, Larkin and colleagues demonstrated that combining BFR 

with low-load resistance exercise using blood pressure cuffs results in greater exercise-

induced increases in VEGF, VEGF-R2 and HIF-1α at 4 h into recovery (Larkin et al. 2012).   

Whilst the above demonstrates that combining low-load resistance exercise with BFR using 

blood pressure cuffs is a practical and thus popular approach for enhancing favourable 

adaptations in skeletal muscle for clinical and athletic populations, it also highlights scope to 

investigate the efficacy of combining SIT with BFR. Indeed, this concept presents a 

potentially potent and novel training strategy to further augment the aforementioned acute 

and chronic adaptive responses to intense interval training, with clear implications for 

athletes.   
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2.7 Summary  

This literature review has highlighted the importance of intense interval training and clear 

scope for further research into optimising the prescription of this exercise stimulus in trained 

individuals. In particular, it has highlighted the paucity of studies on the acute and chronic 

effects of SIT in trained individuals and a lack of knowledge on the angiogenic potential of 

SIT. This is in stark contrast to the well understood effects of SIT on mitochondrial 

adaptations and somewhat surprising given the importance of the capillary network to 

physical performance. This review has also identified the need to assess the importance of the 

‘pulsatile nature’ of intense interval-based exercise and whether it is fundamental to the 

adaptive response to this type of training. Finally, the review has highlighted the attenuated 

adaptive response in trained individuals already highly accustomed to intense and volumous 

training regimes, leading to the need for identifying novel methods to enhance the adaptive 

response to training in these cohorts. The above gaps in the literature have been examined 

through the following experimental chapters:  

Chapter 3: 

This investigation examined the importance of the ‘interval’ effects of acute low-volume, 

exercise-duration matched interval and continuous ‘all-out’ cycling on mitochondrial and 

angiogenic cell signalling in trained individuals. It was hypothesised that given total work 

done and the pattern of exercise (i.e. whether interval or continuous in nature) appear to have 

little effect on acute cell signalling responses, brief ‘all-out’ interval and continuous cycling 

would induce similar increases in cell signalling cascades linked to mitochondrial biogenesis 

and angiogenesis in trained skeletal muscle. 
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Chapter 4: 

The aim of this investigation was to assess the adaptive potency of combining ‘all-out’ sprint 

interval cycling combined with a practical method of post-exercise BFR on acute 

mitochondrial and angiogenic cell signalling in trained individuals, compared to sprint 

interval cycling alone. It was hypothesized that combining sprint interval cycling with post-

exercise BFR would present an amplified training stress and thus would induce greater 

expression of all measured genes and proteins that regulate mitochondrial biogenesis and 

angiogenesis.   

Chapter 5: 

In this investigation we attempted to ascertain whether the combination of sprint interval 

training with post-exercise BFR enhances maximal aerobic physiology and performance in 

trained individuals to a greater magnitude than sprint interval training alone. It was 

hypothesized that BFR combined with sprint interval training would result in a greater 

increase in 2max and 15 km time-trial (TT) performance than sprint interval training alone. 

Chapter 6: 

The final experimental chapter comprises an athlete case study. Our aim was to incorporate 

the BFR protocol used in the previous two experimental chapters into the training of a 

national level sprint cyclist to enhance her aerobic physiology and performance. It was 

hypothesised that despite a reduction in overall training volume and frequency, a 4 week 

block of BFR sprint interval training would increase the cyclist’s aerobic capacity and 

performance.          

  

OV
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CHAPTER 3 - THE EFFECTS OF EXERCISE DURATION-

MATCHED INTERVAL AND CONTINUOUS ‘ALL-OUT’ 

SPRINT CYCLING ON ACUTE ACTIVATION OF 

MITOCHONDRIAL AND ANGIOGENIC CELL SIGNALLING 

IN TRAINED INDIVIDUALS 

 

 

3.1 Introduction 

 

The classic SIT protocol, comprising 4-6 x 30 s ‘all-out’ efforts interspersed by 4 min of 

recovery, has repeatedly proven as effective as traditional, high-volume endurance training 

(e.g. > 40 min continuous moderate intensity training) in increasing muscle oxidative 

potential, buffering capacity, resting muscle glycogen content and muscle capillarity (Gibala 

et al. 2006; Burgomaster et al. 2008; Cocks et al. 2013). However, these studies have, to date, 

only been conducted on untrained, recreationally active cohorts whereby this time-efficient 

training model presents health benefits for sedentary and clinical populations. Indeed, such 

training interventions present a potentially potent stimulus for enhancing athletic 

performance, if incorporated correctly into the athletes training programme. Endurance 

athletes are typically accustomed to high-volume training methods and thus novel, work- and 

time- efficient exercise stimuli to further enhance training adaptation are desirable for certain 

times in the macro and micro training cycles. 

The underlying factors responsible for the comparable skeletal muscle re-modelling and 

exercise performance after SIT and high-volume endurance training remain unclear (Baar et 

al. 2002; Pilegaard et al. 2003; Gibala et al. 2009; Lee-Young et al. 2009). In addition to 

differences in the initial fitness levels of the aforementioned study cohorts and differences in 



47 

 

total work done, exercise duration and intensity, the interval nature of SIT is a distinguishing 

factor between the training protocols prescribed. Recent studies (Bartlett et al. 2012; Cochran 

et al. 2014) have examined the effects of this ‘pulsatile’ exercise pattern on the acute 

activation of cell signalling cascades that, if repeatedly stressed over time, regulate endurance 

based skeletal muscle adaptations and in particular mitochondrial biogenesis (Perry et al. 

2010). 

In this regard, homeostatic perturbations within skeletal muscle (e.g. increased AMP/ATP 

ratios and reductions in muscle glycogen) phosphorylate and activate protein kinases such as 

the adenosine monophosphate-activated protein kinase (AMPK). Upon activation, AMPK 

converges on the cell nucleus and is implicated in the regulation of peroxisome proliferator-

activated γ receptor co-activator (PGC-1α) (Jäger et al. 2007; Cantó and Auwerx 2010). Via 

interactions with downstream transcription factors and nuclear receptors, PGC-1α is 

considered to play a “master” regulatory role in exercise-induced mitochondrial biogenesis 

(Puigserver and Spiegelman 2003) and angiogenesis through an interaction with vascular 

endothelial growth factor (VEGF) (Leick et al. 2009; Chinsomboon et al. 2009; Geng et al. 

2010). Indeed, similar increases in AMPK phosphorylation and PGC-1α mRNA expression 

have been observed after work/duration matched (~50 min) interval and continuous high-

intensity running in recreationally active men (Bartlett et al. 2012). More recently, a study by 

Cochran and colleagues (Cochran et al. 2014) observed similar increases in acetyl-CoA 

carboxylase (ACC)  phosphorylation (a surrogate marker of AMPK activation) and PGC-1α 

mRNA expression in response to work-matched SIT and maximal continuous (~ 4 min) 

cycling. However, whilst acute SIT has previously been shown to increase upstream genetic 

markers of mitochondrial biogenesis in both recreationally active individuals (Gibala et al. 

2009) and ‘elite level’ cyclists (Psilander et al. 2010), its effects on regulators of exercise-
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induced angiogenesis (e.g. VEGF, HIF-1α, eNOS, MMP-9) have not been reported in 

untrained or trained muscle. 

Since work done and the pattern of exercise (i.e. interval vs. continuous) have previously 

been demonstrated to have little effect on acute cell signalling responses, it was hypothesised 

that despite differing in total work done, brief ‘all-out’ cycling, be it repeated intervals or a 

continuous single effort, would induce similar increases in cell signalling cascades linked to 

mitochondrial biogenesis and angiogenesis in trained skeletal muscle. 

 

3.2 Methods 

 

Participants 

Eight healthy males (mean ± SD: age, 30 ± 5 yr; stature, 180 ± 9 cm; body mass, 79 ± 11 kg; 

PPO, 16 ± 2 W.kg; 2peak, 4.5 ± 0.5 L.min
-1

; 57 ± 7 ml.kg
-1

.min
-1

; MAP, 347 ± 27 W) 

volunteered to take part in the investigation. All were involved in cycling activities three to 

six times per week and on at least one occasion per week also performed resistance training 

consisting of lower body bilateral compound exercises (e.g. squats, Olympic lifting). 

Although all participants had previous experience of undertaking high-intensity training, 

none were engaging in this type of training during the study period. Participants completed a 

medical questionnaire and biopsy screening document prior to participation to mitigate for 

maximal exercise and biopsy contraindications. Participants had no history of neuromuscular, 

haematological or musculoskeletal abnormalities and were not using pharmacological 

treatments during the study period. The participants were fully informed of the purposes, 

risks and discomforts associated with the investigation before providing written consent. The 

investigation conformed to current local guidelines and the Declaration of Helsinki and was 

OV
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approved by the Ethics Approval (Human Participants) Sub-Committee of the Loughborough 

University Ethical Advisory Committee. 

Experimental design 

In a fully randomized, repeated measures cross-over design, participants performed ‘all-out’ 

interval (INT) or continuous (CON) cycling protocols, which were separated by 14-21 days. 

Muscle biopsies were obtained before, immediately and 3 h post-exercise. Participants 

recorded all food consumed and physical activity performed during the 24 h prior to their first 

experimental trial and were instructed to replicate these dietary and activity patterns prior to 

their second experimental trial as well as refrain from ingesting alcohol and caffeine 

containing substances during the 48 h preceding each trial. Participants were instructed to 

arrive at the laboratory by identical means of travel for both experimental trials. All arrived 

by car and made a short walk to the ground floor laboratory in which all testing took place 

(i.e. very minimal work was performed in getting to the laboratory). All cycle protocols were 

performed on an SRM ergometer (Schroberer Rad McBtechink, Weldorf, Germany) 

calibrated according to the manufacturer guidelines.     

Preliminary testing 

Two weeks prior to the first experimental trial, participants reported to the laboratory on three 

occasions, separated by at least 3 days to complete preliminary measurements and protocol 

familiarisation. During the first visit optimal pedal cadence for peak power output (PPO) was 

determined by performing maximal sprints (< 12 s) at multiple fixed cadences. The optimal 

pedal cadence, defined as the zenith of the cadence-peak power relationship, was 

subsequently used as the fixed (isokinetic) cadence for the subsequent experimental trials. A 

maximal incremental cycle test was also performed during this visit to establish 2peak and 

maximal aerobic power (MAP). Following a 5 min warm-up at 120 W, at a freely chosen but 

OV
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constant pedal cadence, work rate was increased by 20 W every 60 s until volitional 

exhaustion (8-10 min). Pulmonary gas exchange was measured breath by breath throughout 

exercise (Oxycon Pro, Carefusion, UK) and 2peak determined as the highest 30 s recording 

of 2 during the test. MAP was defined as the highest average 60 s power recorded during 

the test.  On the two subsequent visits participants performed familiarisation trials during 

which they performed the INT and CON protocols. The cycle ergometer saddle and 

handlebar configuration was consistent for each participant during all exercise testing. 

Experimental protocols 

Participants attended the laboratory in the morning (~0800 h) of each experimental trial 

following an overnight fast. On arrival, participants rested in a supine position for 20 min 

whilst the muscle biopsy sites were prepared. After a resting muscle biopsy was taken, 

participants performed a standardised warm-up, consisting of cycling at 120 W for 5 min, 

immediately after which they performed either the INT or CON cycling trials. The INT 

protocol consisted of 4 × 30 s ‘all-out’ efforts at the predetermined fixed (isokinetic) pedal 

cadence. Each bout was interspersed by 4 minute of recovery during which participants 

remained seated on the cycle ergometer and were permitted to cycle at a cadence of ~60 

revs.min
-1

 against a resistance of < 20 W. This resulted in total session duration of 14 min, 

excluding the 5 min warm-up. The CON protocol consisted of a single 2 min bout of 

continuous ‘all-out’ cycling at the same isokinetic pedal cadence. To ensure each protocol 

was performed in an ‘all-out’ manner, participants were verbally instructed and encouraged 

before commencing and during each protocol to attain PPO within the first few seconds of 

each exercise bout and apply maximal force through the pedals until the end of each exercise 

bout. Immediately after both protocols, participants quickly dismounted the ergometer and 

were helped onto an adjacent plinth where the immediate post-exercise muscle biopsy was 

taken within 1 min of the cessation of each protocol. During this time a finger-prick capillary 

OV
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blood sample was obtained and then every consecutive minute and immediately analysed for 

lactate concentration (Biosen HBAC1 Analyser, EKF Diagnostics, UK) until a peak lactate 

concentration was determined (within 10-15 minutes). Participants then rested before a final 

muscle biopsy was taken 3 h post-exercise. Biopsies for a given trial were obtained from the 

same leg through separate incisions ~ 3cm apart. In the subsequent experimental trial, 

biopsies were obtained from the alternate leg in a randomised, cross-over fashion to avoid 

any potential order bias. The consumption of food was prohibited at all times during each 

experimental trial. Water was consumed freely but the volume and pattern ingested was noted 

during the first trial and replicated for the subsequent trial. Laboratory conditions remained 

constant for both experimental trials (19-21°C, 40-50% humidity). Power output during 

preliminary testing and both experimental protocols were sampled at 0.5 Hz and analyzed 

using SRM software (v6.40.05, Schoberer Rad Messtechnik, Germany) which was calibrated 

before each trial by recording the zero offset without any force/load on the cranks. Peak 

power output (PPO) was defined as the highest single power output value recorded during 

each sprint. Mean power output (MPO) was defined as the average value of all measures of 

power output throughout each sprint.  
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Figure 4 - Participant performing the INT protocol (protocol can be seen displayed on the monitor in 

the background). The plinth adjacent to the SRM ergometer in the background is where particpants 

lay to have muscle biopsies taken. 

 

Muscle biopsy sampling and analysis 

Muscle biopsies were obtained from the medial portion of the vastus lateralis muscle under 

local anaesthesia (1% lidocaine) using the micro-biopsy technique (Acecut 11G Biopsy 

Needle, TSK). Muscle samples at each time point were obtained through separate incisions 

with two needle insertions and thus two samples (each ~ 25 mg) being taken from each 

incision. Muscle samples were immediately frozen in liquid nitrogen and stored at -80°C until 

analyses.    
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Figure 5 - Muscle tissue being sampled using the micro-biopsy technique. 

 

Western blot analysis 

Approximately 20 mg of frozen muscle was ground to powder under liquid nitrogen using a 

laboratory grade pestle and mortar before being homogenised in 120 µl of ice cold lysis 

buffer (25 mM Tris/HCl [pH 7.4], 50 mM NaF, 100 mM NaCl, 5 mM EGTA, 1 mM EDTA, 

10 mM Na-Pyrophosphatase, 1 mM Na3VO4, 0.27 M sucrose, 1% Triton X-100, 0.1% 2-

mercaptoethanol) supplemented with a Pierce
TM

 Protease Inhibitor Tablet (Thermo Scientific, 

UK). Homogenates were centrifuged at 13,500g for 10 min at 4˚C and the supernatant 

collected. Protein content of the supernatant was determined using a Pierce
TM

 660 Protein 

Assay (Thermo Scientific, UK). Each sample was solubilized for 5 min at 100˚C with an 

equal volume of sample buffer containing 1 M Tris-HCl (pH 6.8), 8% glycerol, 10% sodium 

dodecyl sulphate, 0.4% 2-β-mercaptoethanol and 0.05% bromophenol blue.  For each blot a 

negative control was loaded along with 25 µg of each sample and then separated (~100 V for 

~2 h) in Tris-glycine running buffer using self-cast 4% stacking and 10% separating 

polyacrylamide gels. Gels were transferred wet onto nitrocellulose membranes for 2 h at 35 
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mA in a 1 × transfer buffer (0.3% Tris base, 1.4% glycine, 20% methanol). Membranes were 

then blocked for 1 h at room temperature in Tris-buffered saline (TBST: 0.19 M Tris [pH 

7.6], 1.3 M NaCl, 0.1% Tween-20) with 5% non-fat blocking grade milk. Membranes were 

washed for 3 x 5 min in TBST before being incubated overnight at 4˚C with anti-

phospho
Thr172

 (cat no. 2531) and anti-total AMPK
 
(cat no. 2532) antibody (both from Cell 

Signalling, UK), at a concentration of 1:1000 in 1 X TBST. The following morning, 

membranes were washed for a further 3 x 5 min in TBST and subsequently incubated with 

anti-species horseradish peroxidise-conjugated secondary antibody (Bio-Rad, UK) for 1 h at 

room temperature. After a further 3 x 5 min washes in TBST, membranes were saturated in 

chemiluminescence (SuperSignal, Thermo Fisher Scientific, Rockford, IL, USA) for 5 min 

prior to exposure. Membranes were visualised using image analysis (ChemiDoc
TM 

XRS+, 

Bio-Rad, Herts, UK), and band densities determined (Quality One 1-D analysis software v 

4.6.8, Bio-Rad, Herts, UK). Samples from each participant for both exercise protocols were 

run on the same gel and all gels were run in duplicate to verify responses. All raw 

densitometry data were used for statistical analysis purposes so as to compare the within-

subject responses to both the SIT and CON protocols. However, because it is technically 

incorrect to compare densitometry data between gels and thus subjects, for graphical 

purposes each subject’s pre-exercise values of phosphorylation relative to total for each 

participant in both trials was normalised to 1 with post-exercise and 3 h post-exercise values 

subsequently expressed as fold-change relative to pre-exercise values (hence there are no 

error bars for this time-point). This approach has been used previously by a number of other 

researchers (Clark et al. 2004; Perry et al. 2010; Bartlett et al. 2012).  
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Real-time RT-PCR 

One-step quantitative RT-PCR was used to determine skeletal muscle mRNA levels 

of genes of interest. Primer sequences (Table 3) were designed by Sigma-Aldrich 

(Sigma-Aldrich Co. Ltd., Haverhill, UK) ideally with 40-60% GC content and 

spanning exon-exon boundaries. Primer specificity was determined by performing 

BLAST and melt curve analysis at the end of each PCR run. Total RNA was 

isolated from muscle tissue using TRIzol® according to the manufacturer’s 

instructions (Life Technologies/Invitrogen, USA). Briefly, once the tissue (~25mg) 

was homogenised in TRIzol®, chloroform (1:5 v/v) was added followed by RNA 

precipitation using isopropanol. The resultant RNA pellet was washed in 75% 

absolute ethanol and air dried prior to re-suspension in 50µL of 1mM sodium 

citrate.  RNA concentration (232 ± 73 ng/μl) and purity (260/280: 1.9 ± 0.1) was 

confirmed using spectrophotometry (Nanodrop) before being stored at -80
 ◦

C for 

future use.  20 µl PCR reactions were made up as follows in a 96 well plate; 70 ng 

of RNA in 9.5 µl of nuclease free water, 0.2 µl of Quantifast Reverse Transcriptase 

mix (Qiagen, Crawley, UK), 0.15 µl of both forward and reverse primers at 100 µM 

concentrations, and 10 µl of SYBR green mix (Qiagen). All reactions were 

performed in triplicate. Once PCR plates were prepared, they were transferred to the 

mx3005p qPCR cycler (Stratagene MX3005P, Agilent Technologies, Berkshire, 

UK), which was programmed to perform the following steps; 50°C for 10 min 

(reverse transcription), followed by a 5 min hold at 95°C, and then 40 cycles at 

95°C for 10 s and 60°C for 30 s.  Fluorescence was detected at the end of each 

cycle, and expression levels were determined using the 2
-∆∆Ct 

method using RNA 

polymerase II (RPII) as the reference gene. Stability of this reference gene in 

response to both protocols is demonstrated in Figure 6. The mRNA expression was 
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calculated according to Livak and Schmittgen (2001). Post-exercise values are 

reported as a fold-change relative to pre-exercise values for each individual 

participant as described previously (Pilegaard et al. 2000; Norrbom et al. 2004; 

Lundby et al. 2006; Psilander et al. 2010).  

 

Table 3 - Primers used for real-time RT-PCR analyses 

 

VEGF, vascular endothelial growth factor; PGC-1α, peroxisome proliferator-activated receptor γ coactivator- 

1α; eNOS, endothelial nitric oxide synthase; MMP-9, membrane metalloproteinase-9; HIF-1α, hypoxic 

inducible factor-1α; RPII, RNA polymerase II 

Target Gene Primer sequence No. in Gene bank 

 

 

 

 

  

VEGF 

 

Forward 

Reverse 

CTGCTCTACCTCCACCAT 

ATGAACTTCACCACTTCGT 

NM_001171630 

 

    

PGC-1α 

 

Forward 

Reverse 

CCTCTTCAAGATCCTGCTA 

ACTCTCGCTTCTCATACTC 

NM_013261 

 

    

eNOS 

 

Forward 

Reverse 

CAAGTTGGAATCTCGTGAA 

TGTGAAGGCTGTAGGTTAT 

NM_001160111 

 

    

MMP-9 

 

Forward 

Reverse 

GGCACCTCTATGGTCCTC 

AGTAGTGGCCGTAGAAGG 

NM_004994 

 

    

HIF-1α 

 

Forward 

Reverse 

TCACCTGAGCCTAATAGTC 

AATCTGTGTCCTGAGTAGAA 

NM_181054 

 

    

RPII 

 

Forward 

Reverse 

GAGTCAACGGATTTGGTC 

GGTGGAATCATATTGGAACAT 

 

NM_000938.1 
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Figure 6 - Ct values for RPII housekeeping gene across conditions and time points. 

 

Statistical analysis 

Protein phosphorylation and mRNA data were analysed using a two-way ANOVA. Where 

significant main effects were observed, Bonferroni corrected post-hoc t-tests were used to 

locate differences. Student’s t-test for paired samples was also used to compare differences in 

physiological and performance variables between time points and protocols. All data are 

presented as mean ± SE. Significance was accepted at P < 0.05.  
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3.3 Results 

 

Physiological and performance variables 

The optimal cadence for PPO was 118 ± 5 revs.min
-1

. There was no difference (P = 0.93) in 

PPO attained during INT and CON (1217 ± 257 vs. 1215 ± 201 W, respectively). However, 

there was a greater MPO (Figure 7) during INT compared to CON (593 ± 61 vs. 386 ± 23 W, 

P = 0.01) resulting in 53% greater total work done in the INT compared to CON (71.2 ± 7.3 

vs. 46.3 ± 2.7 kJ, P = 0.01). Peak blood lactate concentration was higher (P = 0.04) following 

INT compared to CON (19.2 ± 1.0
 
vs. 17.4 ± 2.1 mmol.L

-1
, respectively). 

 

Figure 7 - MPO achieved for each of the 4 x 30 s ‘all-out’ sprints during INT (A) compared to the 

MPO achieved in each consecutive 30 s period of the continuous 2 min ‘all-out’ effort in CON (B). 
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AMPK activation 

Phosphorylation of AMPK
Thr172

 increased (P = 0.011) 1.6- and 1.3-fold immediately 

following INT and CON, respectively, before returning to baseline at 3 h post-exercise 

(Figure 8). The magnitude of phosphorylation immediately post-exercise was not different 

between protocols (P = 0.347).   

 

Figure 8 - Phosphorylation of AMPKThr172 expressed relative to total AMPK immediately before 

(PRE), after (POST) and 3 h after (3 h POST) the INT and CON protocols. Representative Western 

blots above figure. p-, phosphorylated; t- total. Each participant’s PRE values have been normalised to 

1 and thus the POST and 3 h POST values are expressed as fold change relative to PRE values. 

Values are means ± SE (n=8). *Significant difference from Pre and 3 h Post (P < 0.05). 
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mRNA expression  

There was an increase in mRNA expression of PGC-1α (5.5- vs. 7.0-fold, P <0.01) and 

VEGF (4.3- vs. 3.5-fold, P = 0.02) from pre to 3 h post-exercise in CON and INT, 

respectively, the magnitude of which were not different between trials (Figure 9). HIF-1α 

mRNA expression increased (1.5- vs. 2-fold, P = 0.04), and there was a trend for MMP-9 

mRNA expression (1.4 vs. 1.3-fold, P = 0.06) to increase from pre to 3 h post-exercise in 

CON and INT, respectively, the magnitude of which were not different between trials (Figure 

10). There was no change in eNOS mRNA expression (P = 0.6) in either CON or INT 

(Figure 10). 
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Figure 9 - PGC-1α (A) and VEGF (B) mRNA expression immediately before (open bars) and at 3 h 

after (closed bars) the INT and CON protocols normalised to RPII mRNA content and expressed 

relative to PRE. Values are means ± SE (n=8). *Significant difference from PRE (P < 0.05). 
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Figure 10 - MMP-9 (A), HIF-1α (B) and eNOS (C) mRNA expression immediately before (open 

bars) and at 3 h after (closed bars) the INT and CON protocols normalised to RPII mRNA content and 

expressed relative to PRE. Values are means ± SE (n=8). *Significant difference from PRE (P < 

0.05).  
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3.4 Discussion 

 

This study has demonstrated that low-volume interval and continuous ‘all-out’ sprint cycling, 

both totalling 2 min in duration but differing in total work done, induce comparable AMPK 

phosphorylation and increases in PGC-1α, VEGF and HIF-1α mRNA expression in trained 

individuals.  

The similar increases in AMPK phosphorylation observed immediately after both protocols 

in the present study, are consistent with those previously reported in trained (Yeo et al. 2010; 

Little et al. 2010b) and untrained (Gibala et al. 2009; Little et al. 2011) human muscle after 

various cycling protocols. The capability of INT and CON to induce comparable acute cell 

signalling responses (despite 53% more work being performed in INT) and similar 

magnitudes of increase to that observed after traditional high-volume endurance training 

appears related to the ‘all-out’ nature of the exercise. This possibly reflects the rapid and 

significant depletion of ATP and muscle glycogen content that occurs in all fibre types and in 

particular type II muscle fibres during ‘all-out’ sprint exercise (Greenhaff et al. 1994; 

Bogdanis et al. 1996; Hargreaves et al. 1998; Karatzaferi et al. 2001). Indeed, in human 

skeletal muscle the highly glycolytic type IIX fibres display the greatest basal and exercise-

induced increases in AMPK phosphorylation (Lee-Young et al. 2009) and the high rates of 

glycogenolysis observed during this type of exercise (Hargreaves et al. 1998) is likely to play 

a role given the importance of muscle glycogen in regulating AMPK activity (Wojtaszewski 

et al. 2003; Yeo et al. 2008; Philp et al. 2012).    

In accordance with the role of upstream AMPK activation in regulating PGC-1α (Jäger et al. 

2007), the similar magnitudes of fold changes in PGC-1α mRNA observed at 3 h after INT 

and CON are consistent with magnitudes and time courses previously reported in response to 

cycling and running in trained (Little et al. 2010b; Psilander et al. 2010) and untrained 
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(Gibala et al. 2009; Egan et al. 2010; Bartlett et al. 2012) individuals. Whilst our data 

supports previous observations (Gibala et al. 2009), we also provide novel data that a single 2 

min continuous ‘all-out’ effort provides an equal stimulus for PGC-1α expression. As with 

AMPK, PGC-1α mRNA abundance is increased in an intensity-dependent manner in the 

hours after exercise, (Egan et al. 2010; Nordsborg et al. 2010; Tobina et al. 2011). Increases 

in PGC-1α protein content however typically occur in the days following exercise (Baar et al. 

2002), probably as a result of cumulative transient increases in mRNA transcripts encoding 

new protein after successive training bouts (Perry et al. 2010). Further research is required to 

determine whether both protocols used here would result in comparable PGC-1α protein 

increases after an identical number of successive training sessions in both trained and 

untrained individuals.  

PGC-1α is implicated in a signalling cascade that results in the induction of VEGF 

(Chinsomboon et al. 2009; Geng et al. 2010), the most important angiogenic growth factor, 

integral to both longitudinal splitting and sprouting angiogenesis (Olfert et al. 2010; Egginton 

2011). It is possible that PGC-1α played a role in increasing the VEGF mRNA expression 

observed after both ‘all-out’ exercise protocols given the regulation of PGC-1α by post-

translational modifications (i.e. phosphorylation and deacetylation) (Puigserver et al. 2001; 

Jäger et al. 2007). The similar magnitudes of VEGF mRNA increase that we report here are 

consistent with those observed in the early hours of recovery after acute exercise of varied 

intensities and durations (Gustafsson et al. 1999; Jensen et al. 2004b; Hoier et al. 2012; Hoier 

et al. 2013b), and to our knowledge are the first reported in response to both interval and 

continuous ‘all-out’ cycling. Although clearly important, it remains to be fully established 

whether VEGF mRNA is increased during recovery from exercise primarily to replenish 

secreted VEGF protein or is in fact vital to trigger VEGF secretion.   
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Distinct angiogenic phenotypes occur as a result of exposure to different stimuli which is 

affected by the mode and intensity of exercise (Egginton 2011). HIF-1α is a key regulator of 

the tissue to hypoxia and thus metabolic stress (Semenza et al. 2006; Semenza 2006), during 

which it is stabilized and functions in regulating angiogenesis through targeted activation of 

VEGF in human skeletal muscle (Lee et al. 2004; Ameln et al. 2005). Acute exercise results 

in an increase in skeletal muscle HIF-1α mRNA expression provided that the exercise 

intensity is sufficient or the tissue is exposed to a hypoxic stimulus (Vogt et al. 2001; Zoll et 

al. 2006). Thus, the comparable increases in HIF-1α mRNA expression observed in the early 

recovery after exercise in the present study may tentatively suggest INT and CON provide a 

similar stimulus for hypoxia-mediated angiogenesis. Neither of the protocols used here 

increased eNOS mRNA which has been implicated in high-shear stress mediated 

angiogenesis (Egginton 2009). However, there was a trend (P = 0.06) in the present study for 

comparable increases in MMP-9 mRNA after INT and CON. MMP-9 is activated in response 

to muscle overload or mechanical stretch during contractions and plays a role in initiating 

proteolysis of the endothelial cell (EC) basement membrane, thus facilitating EC migration 

and the formation of new capillaries (Egginton 2009). Increased MMP-9 mRNA expression 

has previously been observed 2 hours into recovery from moderate intensity endurance 

exercise in healthy human skeletal muscle (Rullman et al. 2007; Rullman et al. 2009) and 

such transcriptional activation appears important in the regulation of MMP-9 activity (Van 

den Steen et al. 2002).  

The present study is not without limitations. Notably, assessments of exercise-induced 

changes in muscle glycogen content and skeletal muscle protein expression of mitochondrial 

and angiogenic factors were not made. Moreover, measures of interstitial angiogenic protein 

content were not assessed in the present study. Indeed, although previous studies have 

demonstrated that the acute angiogenic response can help to inform the magnitude of 
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capillary growth with training (Hellsten et al. 2008; Høier et al. 2010; Hoier et al. 2012), 

temporal factors relating to the timing and number of biopsies, as well as the training status 

of the examined muscle, need to be considered when predicting chronic adaptations based on 

transient molecular responses to acute exercise. Intermittent high-intensity exercise has been 

previously shown to induce greater elevations of angiogenic growth factors than moderate 

intensity continuous exercise, however the latter has been demonstrated to result in greater 

acute elevations in interstitial levels of VEGF (Hoier et al. 2013a). Moreover, whilst 

increased capillarity has been observed after 4 weeks of high-intensity intermittent knee 

extensor exercise in young healthy individuals (Jensen et al. 2004a), others have provided 

data suggesting high-intensity intermittent training provides a weak stimulus for capillary 

growth in a similar population (Hoier et al. 2013a). Although it is plausible from our acute 

data that trained skeletal muscle exposed to repeated bouts of INT and CON over time would 

promote comparable increases in mitochondrial biogenesis and capillarity further work is 

required to directly assess these changes. Finally, future work should also consider whether 

this 2 min all-out effort repeated over a period of time has the capacity to improve overall 

fitness. Cochran and colleagues (2014) have recently demonstrated in untrained individuals, 

that whilst ‘all-out’ SIT and work-matched continuous cycling (~ 4 min) induce similar acute 

cell signalling responses, when performed regularly over 6 weeks, the continuous protocol 

did not augment the maximal activity or protein content of mitochondrial markers as has been 

observed after a similar exposure to SIT in earlier work by this group (Gibala et al. 2006; 

Burgomaster et al. 2008). That said, in their relatively untrained cohort, the continuous 

protocol (which should be noted was not ‘all-out’ in nature as evidenced by the significantly 

lower mean peak power output attained in this trial in comparison to SIT) was sufficient to 

increase 2peak (Cochran et al. 2014).   OV
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In conclusion, low-volume ‘all-out’ sprint interval and continuous cycling, matched for total 

exercise duration but not work done, provides an equally potent stimulus to activate cell 

signalling pathways associated with exercise-induced mitochondrial biogenesis and 

angiogenesis in trained skeletal muscle. These findings add to existing data demonstrating 

that in addition to the amount of total work done, the interval/continuous nature of a training 

session appears to have little effect on the observed cell signalling response. Whilst these data 

have implications for exercise prescription and implicate exercise intensity as the key driver 

in regulating adaptation to low-volume exercise, training studies employing similar ‘all-out’ 

exercise protocols are warranted to investigate their effects on structural re-modelling, whole 

body metabolism and exercise performance. 
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 CHAPTER 4 - THE EFFECTS OF SIT AND SIT COMBINED 

WITH POST-EXERCISE BFR ON ACUTE MITOCHONDRIAL 

AND ANGIOGENIC CELL-SIGNALLING IN TRAINED 

INDIVIDUALS 

 

4.1 Introduction 

 

The previous chapter demonstrated that manipulating the pattern of low-volume ‘all-out’ 

exercise (i.e. whether that be interval or continuous in nature) does not impact on the acute 

activation of cell signalling pathways associated with exercise-induced mitochondrial 

biogenesis and angiogenesis in trained skeletal muscle. A potential strategy to exacerbate the 

cell-signalling responses to SIT and over repeated training sessions present an intensified 

stimulus for re-modelling of skeletal muscle would be to combine SIT with post-exercise 

BFR using blood pressure cuffs. The efficacy of this concept has not been explored yet by 

exercise scientists as a viable novel, and thus potent, training stimulus. As discussed in 

Chapter 2, the signals for capillary growth differ depending on the exercise modality and the 

angiogenic response is graded according to the stimulus intensity (Egginton et al. 1998). 

Indeed SIT with the addition of post-exercise BFR during the recovery periods between bouts  

may provide an augmented stimulus for angiogenesis through signalling associated with 

reduced oxygen tension and higher metabolic stress (Gustafsson et al. 2007). For example, 

the decrease in muscle oxygen levels during low-load resistance exercise combined with BFR 

(Kawada 2005) has been demonstrated to increase HIF-1α mRNA, VEGF, and VEGF-R2 

mRNA, whilst the same exercise non-restricted has not (Larkin et al. 2012). Moreover, 

exercise induced VEGF mRNA expression appears to be graded by metabolic stress 

(Gustafsson et al. 1999; Takano et al. 2005) and BFR has been previously demonstrated to 
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enhance the metabolic perturbations during low intensity exercise (Sundberg 1994; Takano et 

al. 2005; Reeves et al. 2006; Suga et al. 2009; Krustrup et al. 2009). It is plausible that cell-

signalling cascades upregulated in response to metabolic stress to regulate mitochondrial 

biogenesis (i.e. the AMPK/p38MAPK-PGC-1α pathway) are also involved in the angiogenic 

response to BFR and non-BFR exercise. In addition to its hypoxic and metabolic effects on 

the skeletal muscle, BFR alters the shear stress response during (Hudlicka and Brown 2009) 

and post-exercise (Gundermann et al. 2012). These stimuli play a predominate role in up-

regulating eNOS and MMP-9 expression, which are likely key factors involved in 

longitudinal splitting and sprouting angiogenesis (Haas et al. 2000; Brown and Hudlicka 

2003; Prior et al. 2004; Williams et al. 2006a; Williams et al. 2006c). It is plausible that 

increased shear stress induced by addition of BFR during exercise, and in particular the likely 

increased reactive hyperaemia upon cuff deflation, would provide a greater stimulus 

compared with SIT alone to upregulate the above genes and drive shear stress-induced 

angiogenesis. Establishing this angiogenic response to acute exercise can inform the 

morphology and extent of capillary growth with repeated training (Høier et al. 2010; Hoier et 

al. 2012).  

The purpose of this investigation was therefore to assess the potency of combining SIT with a 

practical method of post-exercise BFR in trained individuals on acute intramuscular cell 

signalling that regulates remodelling favouring enhanced aerobic capacity, in particular 

angiogenesis and mitochondrial biogenesis. It was hypothesized that combining SIT with 

post-exercise BFR would present an amplified training stress compared to SIT alone, as 

examined by an increased expression of recognised markers of mitochondrial biogenesis and 

ischemic, metabolic, shear and mechanical stress induced angiogenesis, notably PGC-1α, 

VEGF, VEGF-R2, HIF-1α, eNOS and MMP-9 mRNA.   
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4.2 Methods 

 

Participants 

Eight trained participants (age, 32 ± 7 years; height, 180 ± 10 cm; body mass, 75.3 ± 9.1 kg; 

2max, 4.3 ± 0.4 L.min
-1

, 58.2 ± 3.9 ml.kg
-1

.min
-1

) took part in this study. All experimental 

procedures were approved by the Loughborough University Ethics Advisory Committee and 

conformed in all respects with the Declaration of Helsinki. Participants were fully informed 

of the risks and discomforts associated with all experimental trials before providing written, 

informed consent. All completed a medical questionnaire and biopsy screening document 

prior to participation to mitigate for maximal exercise and biopsy contraindications. 

Participants did not have a history of neuromuscular, haematological or musculoskeletal 

abnormalities and were not using pharmacological treatments during the study period.  

 

Experimental design 

Using a repeated measures cross-over design, participants performed an acute bout of sprint 

interval training with (BFR) or without (CON) post-exercise blood flow restriction. Muscle 

biopsies were obtained before, immediately post- exercise and 3 h post-exercise.  

 

Experimental protocols 

 

Preliminary testing 

Participants reported to the laboratory on three separate occasions prior to their first 

experimental trial. On their first visit they performed an incremental test to exhaustion as 

outlined in the previous chapter to establish their 2max. They also performed a series of 

randomised maximal sprints (<12 s) on a SRM cycle ergometer at multiple fixed cadences 

OV

OV
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(90, 100, 110, 120, 130 rpm) which was achieved by placing the ergometer into ‘isokinetic 

mode’. These were performed to determine each participant’s optimal cadence for peak 

power output (PPO) which was subsequently used as the fixed cadence at which each 

participant performed their experimental trials. On two subsequent visits, participants were 

familiarised with the experimental protocols.  

Experimental trials 

Participants attended the laboratory in the morning (~ 0800 h) of each experimental trial 

following an overnight fast. On arrival, participants rested supine for 20 min whilst muscle 

biopsy sites were prepared, before a resting biopsy sample was obtained. Participants then 

performed a standardised warm-up, consisting of cycling at 120 W for 5 minutes. 

Immediately after the warm-up, they performed 4 × 30 s ‘all out’ sprints at the previously 

determined fixed pedal cadence, each sprint separated by 4.5 minutes of recovery. In CON 

participants remained seated and stationary on the ergometer between each sprint. In BFR 

participants immediately dismounted the ergometer after each sprint and lay supine on a 

couch, upon which they were subjected to lower limb BFR, within 15 s of each sprint. This 

was achieved by rapidly applying a pneumatic pressure cuff (Hokanson SC12L) as high up as 

possible on the proximal portion of each thigh, inflated (E20 Rapid Cuff Inflator and AG101 

Cuff Inflator Air Source, Hokanson, WA) to a pressure of ~ 130 mmHg for 2 min. After 2 

min the cuff was rapidly deflated and the participants remained in a supine position for a 

further 2 min. The participants subsequently re-mounted the ergometer in time for the 

subsequent sprint which began precisely 4.5 min after the previous sprint ended. The cuff 

pressure of 130 mmHg was used following months of preliminary work that demonstrated 

this was the highest cuff pressure that could be tolerated in combination with the current 

sprint training protocol in similar participant cohorts to that used in this investigation and 

those that follow. Trials had been performed with higher pressures, however often this 
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resulted in the cuffs needing to be removed prematurely due to participants experiencing high 

levels of pain and at times vomiting occurred. Nevertheless, an identical size cuff and cuff 

location inflated to a similar cuff pressure (~ 130 mmHg) to that used throughout this thesis 

has been demonstrated in our lab to restrict blood flow through the male popliteal artery by 

approx. 70% in the resting state (Hunt et al. 2016). At the cessation of each protocol, 

participants dismounted the ergometer, and were helped onto an adjacent couch where a 

muscle biopsy was taken within 1 min (Figure 11). Participants then rested passively before 

having a final muscle biopsy 3 h post-exercise. Muscle biopsies were obtained at these time 

points as mRNA expression for the genes of interest measured have previously been shown to 

peak 1-6 h post intense exercise (Hoier et al. 2012; Bartlett et al. 2012; Hoier et al. 2013a; 

Hoier et al. 2013b) and post-exercise phosphorylation of p38MAPK
Thr180/Tyr182

 has previously 

been demonstrated to peak and return to baseline within this time-course (Gibala et al. 2009; 

Bartlett et al. 2012). 

Participants recorded all food consumed and physical activity during the 24 h prior to their 

first experimental trial and were instructed to replicate these dietary and activity patterns 

prior to their second experimental trial, which were separated by 14-21 days. Whilst all the 

participants had previous experience of undertaking high-intensity training, none of the 

participants were currently engaging in high-intensity training outside of that performed 

during the study. They were also instructed to refrain from ingesting alcohol and caffeine 

during the 48 h preceding each trial. Whilst the consumption of food was prohibited at all 

times during each experimental trial, water was consumed ad libitum. Laboratory conditions 

remained constant (19-21°C, 40-50% humidity) for both experimental trials. 
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Figure 11 - Participant undergoing BFR between sprints. 

 

Muscle sampling and analysis 

Muscle biopsies were obtained from the medial portion of the vastus lateralis muscle under 

local anaesthesia (1% lidocaine) using the micro-biopsy technique (Acecut 11G Biopsy 

Needle, TSK, Japan). All muscle samples were obtained through separate incisions >2 cm 

apart with two samples (~ 30 mg each) taken from each incision at each time point. Muscle 

samples were immediately frozen in liquid nitrogen and stored at -80°C until analyses. 

 

Western Blotting 

Approximately 20 mg of frozen muscle was ground to powder under liquid nitrogen using a 

laboratory grade pestle and mortar before being homogenised in 120 µl of ice cold lysis 

buffer (25 mM Tris/HCl [pH 7.4], 50 mM NaF, 100 mM NaCl, 5 mM EGTA, 1 mM EDTA, 

10 mM Na-Pyrophosphatase, 1 mM Na3VO4, 0.27 M sucrose, 1% Triton X-100, 0.1% 2-

mercaptoethanol) supplemented with a Pierce
TM

 Protease Inhibitor Tablet (Thermo Scientific, 
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UK). Homogenates were centrifuged at 13,500g for 10 min at 4˚C and the supernatant 

collected. Protein content of the supernatant was determined using a Pierce
TM

 660 Protein 

Assay (Thermo Scientific, UK). Each sample was solubilized for 5 min at 100˚C with an 

equal volume of sample buffer containing 1 M Tris-HCl (pH 6.8), 8% glycerol, 10% sodium 

dodecyl sulphate, 0.4% 2-β-mercaptoethanol and 0.05% bromophenol blue.  For each blot a 

negative control was loaded along with 10 µg of each sample and then separated (~2 h at 

~100 V) in Tris-glycine running buffer using self-cast 4% stacking and 10% separating 

polyacrylamide gels. Gels were transferred wet onto nitrocellulose membranes for 2 h at 35 

mA in a 1 × transfer buffer (0.3% Tris base, 1.4% glycine, 20% methanol). Membranes were 

then blocked for 1 h at room temperature in Tris-buffered saline (TBST: 0.19 M Tris [pH 

7.6], 1.3 M NaCl, 0.1% Tween-20) with 5% non-fat blocking grade milk. Membranes were 

washed for 3 x 5 min in TBST before being incubated overnight at 4˚C with anti-

phospho
Thr180/Tyr182

 and anti-total p38MAPK antibody (Cell Signalling, UK), at a 

concentration of 1:1000 in 1 X TBST. The following morning, membranes were washed for a 

further 3 x 5 min in TBST and subsequently incubated with anti-species horseradish 

peroxidise-conjugated secondary antibody (Bio-Rad, UK) for 1 h at room temperature. After 

a further 3 x 5 min washes in TBST, membranes were saturated in chemiluminescence 

(SuperSignal, Thermo Fisher Scientific, Rockford, IL, USA) for 5 min prior to exposure. 

Membranes were visualised using image analysis (ChemiDoc
TM 

XRS+, Bio-Rad, Herts, UK), 

and band densities determined (Quality One 1-D analysis software v 4.6.8, Bio-Rad, Herts, 

UK). Samples from each participant for both exercise protocols were run on the same gel and 

all gels were run in duplicate to verify responses.  Pre-exercise values of phosphorylation 

relative to total for each participant were normalised to 1 with post-exercise and 3 h post-

exercise values subsequently expressed as fold-change relative to pre-exercise values.  
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Figure 12 - Participant having muscle biopsy taken during BFR trial. Pressure cuff can be seen on the 

opposite leg, deflated but in the correct position, and the SRM ergometer used for testing in the 

foreground.  

 

Real-time RT-PCR 

One-step quantitative RT-PCR was used to determine skeletal muscle mRNA levels of genes 

of interest. Primer sequences were designed by Sigma-Aldrich (Sigma-Aldrich Co. Ltd., 

Haverhill, UK) ideally with 40-60% GC content and spanning exon-exon boundaries. Primer 

specificity was determined by performing BLAST and melt curve analysis at the end of each 

PCR run. Total RNA was isolated from muscle biopsies (~ 30 mg) using a pestle and mortar 

and TRIzol
®
 reagent (Life Technologies/Invitrogen, USA), according to the manufacturer’s 

protocol. Sample RNA concentration (232 ± 73 ng/μl) and purity (260/280: 1.9 ± 0.1) was 

confirmed using spectrophotometry (Nanodrop) before being stored at -80
 ◦
C for future use.  

20 µl PCR reactions were made up as follows in a 96 well plate; 70 ng of RNA in 9.5 µl of 

nuclease free water, 0.2 µl of Quantifast Reverse Transcriptase mix (Qiagen, Crawley, UK), 
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0.15 µl of both forward and reverse primers at 100 µM concentrations, and 10 µl of SYBR 

green mix (Qiagen). All reactions were performed in triplicate. Once PCR plates were 

prepared, they were transferred to the mx3005p qPCR cycler (Stratagene MX3005P, Agilent 

Technologies, Berkshire, UK), which was programmed to perform the following steps; 50 °C 

for 10 minutes (reverse transcription), followed by a 5 minute hold at 95°C, and then 40 

cycles at 95°C for 10 seconds and 60°C for 30 s.  Fluorescence was detected at the end of 

each cycle, and expression levels were determined using the 2
-∆∆Ct 

method using RNA 

polymerase II (RPII) as the reference gene. Post-exercise values are reported as a fold-change 

relative to pre-exercise values. 

 

Statistics 

Protein phosphorylation and mRNA data were analysed using a two-way repeated measures 

ANOVA. Where significant main effects were observed, Bonferroni corrected post-hoc t-

tests were used to locate differences. Data are presented as mean ± SD unless stated 

otherwise. Significance was accepted at P < 0.05. 
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4.3 Results 

 

The optimal cadence for PPO was 122 ± 13 revs.min
-1

. There was no difference (t-test P = 

0.91) in PPO achieved during BFR and CON (1147 ± 171 W vs 1149 ± 179 W, respectively). 

Total work done was similar (t-test P = 0.11) between protocols (BFR; 67.1 ± 9.8 vs. CON; 

68.3 ± 10.4 kJ). 

 

p38MAPK activation 

Phosphorylation of p38MAPK
Thr180/Tyr182

 increased (main effect for time; P = 0.02) 3.2- and 

4.1-fold immediately following CON and BFR, respectively, before returning to baseline at 3 

h post-exercise (Figure 13). The magnitude of phosphorylation immediately post-exercise 

was not different between protocols (interaction; P = 0.52).  

 

mRNA expression  

mRNA expression data is presented in Figure 14. PGC-1α, VEGF, and VEGFR-2 increased 

(main effects for time; all P = 0.01) at 3 h in both CON and BFR. There was, however, no 

difference in the magnitude of fold-change for either of these genes between protocols. HIF-

1α mRNA expression increased (interaction; P = 0.04) at 3 h only after BFR. There was no 

change in eNOS (interaction; P = 0.25), MMP-9 (interaction; P = 0.71) or Ang2 (interaction; 

P = 0.52) mRNA expression in response to either protocol (Figure 14).
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Figure 13 - Phosphorylation of p38MAPK
Thr182/Tyr182 

expressed relative to total p38MAPK 

immediately before (Pre), after (Post) and 3 h after (3h) the CON and BFR protocols. Each subject’s 

Pre values have been normalised to 1 (hence no error bars are shown for this time-point) such that 

POST and 3 h values are subsequently expressed as fold-change relative to PRE values. Values are 

means ± SE (n=8). *denotes significant difference from Pre (P < 0.05).    
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Figure 14 - A) PGC-1α, B) VEGF, C) VEGFR-2, D) HIF-1α , E) MMP-9, F) eNOS, and G) Ang-2 mRNA expression immediately before (Pre), after (Post) and 3 h after (3h) the CON (open 

bars)  and BFR (closed bars) protocols. Gene expression is normalised to RPII mRNA expressed relative to Pre. Values are means ± SE (n=8). * denotes significant difference from Pre (P < 

0.05). 
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4.4 Discussion 

 

This study has demonstrated that post-exercise BFR potentiates HIF-1α mRNA expression in 

response to ‘all-out’ interval-based cycling in trained individuals, tentatively suggesting an 

enhanced hypoxia-targeted angiogenic stimulus in response to BFR combined with SIT. 

PGC-1α, VEGF and VEGFR-2 mRNA expression increased after both BFR and CON, and 

although seemingly to a greater extent for all these in response to BFR, the magnitude of 

increase was not statistically different between conditions. Nevertheless, the increased 

expression of  these genes suggests that SIT indeed holds an angiogenic potential in trained 

individuals, as has been demonstrated previously in sedentary individuals (Cocks et al. 2013), 

based on the findings here and in the previous chapter.    

HIF-1α is a key regulator of muscle tissue in response to a reduction in oxygen tension and 

thus metabolic stress (Semenza et al. 2006; Semenza 2006), during which it is stabilized and 

functions in regulating angiogenesis (Lee et al. 2004) via increased protein accumulation and 

translocation into the nucleus for targeted VEGF activation (Ameln et al. 2005). Acute 

exercise results in an increase in skeletal muscle HIF-1α mRNA expression provided that the 

exercise intensity is sufficient and/or the tissue is exposed to an hypoxic stimulus (Vogt et al. 

2001; Lundby et al. 2006; Zoll et al. 2006; Larkin et al. 2012). Larkin et al. (2012) have 

observed increased VEGF, VEGF-R2 and HIF-1α mRNA expression at 4 h into recovery 

when low-load resistance exercise was combined with BFR (Larkin et al. 2012). In contrast, 

other resistance exercise studies employing BFR have observed similar increases in HIF-1α 

expression, regardless of whether BFR was employed or not (Gustafsson et al. 1999; Ameln 

et al. 2005; Drummond et al. 2008; Fry et al. 2010) which could suggest regulation by HIF-

1α is not mandatory for the augmented VEGF expression in response to this stimulus. The 

greater HIF-1α mRNA expression after BFR and not CON in our investigation, however, 
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possibly reflects a greater metabolic stress and magnified/prolonged decreases in 

intramuscular oxygen levels during the periods of restriction in BFR. Furthermore, the HIF-

1α data presented here suggests BFR possibly provides an intensified stimulus for hypoxic- 

and metabolic-mediated angiogenesis and an increased stress to anaerobic metabolism  

(Kawada 2005; Tanimoto et al. 2005; Larkin et al. 2012). With specific reference to the latter, 

Mason and colleagues have reported blunted exercise-induced increases in the expression and 

activity of glycolytic enzymes in HIF-1α KO mice (Mason et al. 2004). The observations of 

greater basal HIF-1α mRNA and protein levels in more glycolytic muscle compared with 

more oxidative muscle (Pisani and Dechesne 2005) and the observation fibre shifts from a 

slow to a fast, glycolytic profile, in HIF-1α overexpressed rats (Lunde et al. 2011) further 

supports its role in anaerobic energy turnover.    

There is compelling evidence that VEGF is also regulated independently of HIF-1α through 

PGC-1α and downstream co-activation of ERR-α (Arany et al. 2008; Chinsomboon et al. 

2009; Geng et al. 2010). The signals operating upstream of PGC-1α are continually being 

researched in the field however, likely involve activation of the regulatory protein kinases 

AMPK and p38MAPK (Olesen et al. 2010) given their role in exercise-induced 

mitochondrial biogenesis. Although p38MAPK phosphorylation increased after both 

protocols, there was no difference in the magnitude between trials. Perhaps this was the result 

of both protocols inducing a similar degree of mechanical- and shear-stress. Unfortunately, 

AMPK phosphorylation was undetectable by western blotting after numerous troubleshooting 

attempts.  

BFR resulted in a narrowly, but non-significantly, greater increase in PGC-1α mRNA 

expression compared to CON. It is plausible that greater transient increases in PGC-1α 

mRNA transcript following each BFR exercise bout over time would accumulate to augment 
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basal levels of PGC-1α above CON, which in turn can enhance angiogenesis and exercise 

capacity (Tadaishi et al. 2011). Indeed, future research utilising a study design similar to that 

employed by Perry and colleagues (2010), whereby successive training sessions are followed 

by muscle biopsy sampling, is needed to shed light on this.       

Similar to PGC-1α, BFR resulted in a non-significant, although slightly augmented VEGF 

and VEGF-R2 mRNA expression compared to CON. Activation of VEGF occurs principally 

through binding to its primary EC expressed receptor VEGFR-2. VEGF is an important index 

of angiogenic potential and is repeatedly increased in response to acute endurance exercise 

and HIT, and as we have now shown for the first time in this thesis, SIT. The similar 

magnitude of increase in VEGF mRNA expression (5- to 7-fold) at 3 h post exercise after 

both conditions is similar to that reported after longer duration (~ 45 min) BFR protocols 

(Gustafsson et al. 1999; Ameln et al. 2005; Gustafsson et al. 2007) and those reported in the 

previous chapter. VEGF protein concentration is likely to increase as a consequence of the 

enhanced VEGF transcription. Although previous studies have failed to capture this 

acute/transient translational response after BFR exercise (Gustafsson et al. 2007; Larkin et al. 

2012) basal VEGF protein levels are found to increase with BFR training alongside indices of 

enhanced capillarity (Gustafsson et al. 2007).  

MMP-9 mRNA expression was unchanged following BFR and CON, possibly reflecting 

limited development of muscular tension/stretch during SIT, with or without BFR. Indeed, 

this is further supported by the lack of increase in MMP-9 observed in the previous chapter 

after both exercise conditions.  The finding that MMP-9 mRNA expression was unchanged 

following both protocols is likely a consequence of the protocols short duration (~5-8 min) 

and resultant minimal dynamic stretch of the tissue. Moreover, the fact neither protocol 

elicited a change in MMP-9 mRNA perhaps supports the previously suggested negligible role 
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of metabolic stress in exercise induced MMP-9 activity (Rullman et al. 2009). The absent 

increase in MMP-9 expression may prevent proteolysis of the capillary basement membrane 

which facilitates endothelial cell migration, thought to be an essential component for the 

progression of sprouting angiogenesis (Haas et al. 2000; Williams et al. 2006c; Egginton 

2011).  

Although the failure to up-regulate MMP-9 in response to BFR and CON may hinder the 

progression of sprouting angiogenesis in response to this exercise stimuli, capillary growth by 

longitudinal splitting is a process requiring reduced matrix remodelling that can occur 

independent of MMP involvement. The pro-angiogenic actions of shear stress and activation 

of eNOS stimulates endothelial cell proliferation and is essential for angiogenesis by 

longitudinal splitting (Williams et al. 2006a). Although Figure 12(F) depicts eNOS mRNA 

was elevated after BFR exercise, there was no statistical increase in eNOS mRNA expression 

in response to either protocol. This may reflect the modest shear stress, circumferential strain 

(stretch) (Price and Skalak 1994) and/or mechanical compression of the vasculature (Chen et 

al. 2002) as a result of raised capillary pressure (venous occlusion), associated with short 

duration SIT, that was unable to be compensated for with the addition of BFR as might have 

been expected (either whilst the cuffs were inflated or after rapid deflation). Indeed, enhanced 

eNOS expression following BFR might have been expected a consequence of the shear 

stimulus elicited by reactive hyperaemia following cuff deflation (Gundermann et al. 2012). 

Whilst our data suggests a lack of activation of the NO pathway, there are limitations of 

conducting only gene analysis as post-translational modifications of the eNOS protein 

underline the dynamic regulation of enzymatic activity and in turn angiogenesis (Sessa 2004; 

Michel and Vanhoutte 2010). Moreover, it is possible that the peak exercise-induced 

expression of this protein was missed with the chosen biopsy sampling time points.   
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This study is of course not without limitations. Primarily, this study largely centres on 

predicting the potency of exercise protocols and possible adaptations that would likely 

transpire over repeated exposure from acute gene expression data as mentioned in the 

previous chapter. Indeed, studies have demonstrated that VEGF, VEGFR-2 expression are 

associated with a significant capillarisation after 4 weeks of moderate intensity endurance 

training (Hellsten et al. 2008; Høier et al. 2010; Hoier et al. 2012), however the same remains 

to be determined for SIT and SIT combined with BFR. Additionally, the current study did not 

involve the quantification of actual percentage of blood flow restriction induced by the cuff 

pressure of 130 mmHg. This chosen occlusion pressure, was the highest cuff pressure that 

could be tolerated in combination with SIT and work in our laboratory has demonstrated this 

cuff pressure around the mid-thigh restricts resting blood flow to the popliteal artery by ~70% 

(Hunt et al. 2016).  

In summary, the greater HIF-1α mRNA expression after SIT combined with BFR possibly 

reflects a magnified and prolonged metabolic and/or hypoxic exposure of the muscle tissue 

during the periods of restriction in BFR. This tentatively suggests BFR provides an 

intensified stimulus for activation of hypoxia- and/or metabolic-mediated adaptations such as 

mitochondrial biogenesis and angiogenesis (Kawada 2005; Tanimoto et al. 2005; Larkin et al. 

2012). Clearly further work is required to support this hypothesis, including immunoblot and 

immunohistochemical analysis of VEGF regulation via HIF-1α protein stabilization and 

nuclear translocation, as well as direct changes in skeletal muscle capillary:fibre ratio after a 

period of prolonged and repeated exposure to both exercise interventions.    
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CHAPTER 5 - CHRONIC EFFECTS OF SIT COMBINED 

WITH POST-EXERCISE BFR ON ENDURANCE 

PERFORMANCE AND ASSOCIATED AEROBIC 

PHYSIOLOGY 

 

 

5.1 Introduction  

 

Despite observed benefits of SIT in promoting improvements in exercise capacity and 

associated physiological parameters, there is always increasing scope to identify and adopt 

novel, low volume training methods that result in greater adaptive responses, especially in 

trained individuals. In Chapter 4 it was demonstrated that post-exercise BFR potentiates HIF-

1α mRNA expression in response to ‘all-out’ interval-based cycling in trained individuals, 

possibly indicating an enhanced hypoxic and/or metabolic stimulus in response to SIT 

combined with BFR. These findings coupled with the previous observations that endurance 

exercise performed with BFR promotes greater improvements in exercise capacity, 2max 

and peripheral metabolic and structural changes compared to exercising with a normal blood 

supply (Kaijser et al. 1990; Eiken et al. 1991; Sundberg et al. 1993; Esbjörnsson et al. 1993; 

Nygren et al. 2000), suggests that aerobic capacity might also be enhanced in response to SIT 

combined with BFR.  

Therefore, the aim of this investigation was to assess the potency of combining SIT with 

post-exercise BFR in enhancing maximal aerobic physiology and performance in trained 

participants who already possess enhanced physiological performance capabilities. Given the 

acute signalling data reported in the previous investigation, it was hypothesised that BFR 
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combined with SIT would provide a greater training stimulus than SIT alone and thus would 

result in greater increases in VO2max and 15km TT performance compared to SIT alone.  

 

5.2 Methods 

 

Participants 

Twenty participants who were cycling 120 ± 66 km per week took part in this study. There 

was no significant difference in pre-training age, height, body mass and all other baseline 

outcome measures between the two intervention groups, respectively (Table 4). All 

experimental procedures were approved by the Loughborough University Ethics Advisory 

Committee and conformed in all respects with the Declaration of Helsinki. Participants were 

fully informed of the risks and discomforts associated with all experimental trials before 

providing written, informed consent. All participants completed a medical questionnaire prior 

to participation to mitigate for maximal exercise contraindications and having blood flow 

restricted. Participants did not have a history of neuromuscular, haematological or 

musculoskeletal abnormalities and were not using pharmacological treatments during the 

study period.  

Experimental design 

Using a between groups design, participants performed four weeks of sprint interval training 

either combined with post-exercise blood flow restriction (BFR) or sprint interval training 

alone (CON). Physiological and performance assessments were made before and after 

training.  
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Table 4 - Participant characteristics at baseline prior to training 

 CON (n = 10) BFR (n = 10) P value 

Age (yrs) 27 ± 7 26 ± 5 0.639 

Height (cm) 181 ± 9 178 ± 8 0.555 

Body mass (kg) 75.5 ± 8.4 74.1 ± 7.4 0.589 

2max  (L.min
-1

) 4.6 ± 0.3 4.5 ± 0.4 0.305 

2max   (mL.kg
-1

.min
-1

) 61.8 ± 4.7 61.2 ± 4.0 0.643 

MAP (W) 373 ± 31 377 ± 37 0.721 

MAP (W.kg
-1

) 5.0 ± 0.4 5.1 ± 0.3 0.489 

Values are mean ± SD. 2max, maximal oxygen uptake; MAP, maximum aerobic power; CON, control group; 

BFR, blood flow restriction group  

 

Experimental protocols 

 

Preliminary testing 

Participants were initially familiarized to the testing and training procedures during 

preliminary visits, before being randomly assigned to either the control (CON) or blood flow 

restricted (BFR) training intervention. Pre-training outcome measures were assessed on two 

occasions separated by at least 2 days. Post-training outcome measures were assessed in the 

same order, each separated by 2 days within 1 week. Laboratory conditions during pre- and 

post-training measurements remained constant (19-21°C, 40-50% humidity) and all 

measurements were conducted at the same time of day for each participant. Ergometer saddle 

and handle bar dimensions recorded for each participant during preliminary testing were 

standardised for all post-training measures. Participants recorded dietary intake and physical 

activity performed during the 24 h prior to each of their pre-training tests and replicated these 

dietary and activity patterns for the 24h prior to all post-training tests. Participants were 
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instructed to refrain from strenuous exercise 24h prior to all testing visits and from ingesting 

alcohol and caffeine during the 48 h preceding testing.  

Pre and post training assessments  

All pre and post training measures were conducted on an SRM cycle ergometer, calibrated 

according to the manufacturer guidelines (Schroberer Rad McBtechink, Weldorf, Germany). 

Participants performed an incremental test to exhaustion to establish maximal oxygen uptake 

( 2max) and maximal aerobic power (MAP). Participants began cycling, at a freely chosen, 

constant pedal cadence for 5 min at 120 W, after which power increased 20 W every 60 s. 

Pulmonary gas exchange was measured breath by breath throughout exercise (Oxycon Pro, 

Carefusion, UK). 2max and MAP were defined as the highest 2 and power output 

achieved for a 30 and 60s period during the test, respectively. The cycling time trial (15km-

TT) involved completing 15km as quickly as possible. Except for total distance covered, no 

visual or verbal technical or motivational feedback was given (Figure 15). To better resemble 

a time trial on the road, the ergometer was placed into ‘hyperbolic mode’ enabling the 

participants to manually select their own gear, pedal cadence and thus power output 

throughout. Power output was recorded (2 Hz sample rate) and averaged throughout the 

entire duration of the 15km-TT performance trials. Participants consumed water ad libitum 

during their familiarisation trial with the volume and timings of consumption recorded and 

replicated during subsequent trials. Prior to commencing training, participants completed a 

total of three 15km-TT efforts each separated by a week, to establish familiarity. 

Reproducibility for the 15km-TT (i.e. the coefficient of variance which expresses the typical 

error as a percentage (Hopkins 2000) when performed at the same time of day and having 

consumed an identical diet for the 24 h preceding each trial was determined between the 2
nd

 

and 3
rd

 TT efforts and was 4.9 %. The 3
rd

 TT effort was reported as the pre-training outcome 

measure. 
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Figure 15 - Participants performing the 15km-TT. Note monitor on the wall only displaying distance 

covered. 

 

Exercise training 

Participants completed a four-week supervised sprint interval training programme (2 sessions 

per week). Each training session consisted of repeated 30 s maximal sprint cycling bouts 

performed on a mechanically braked cycle ergometer (SE-780 50, Monark, Stockholm, 

Sweden) against a manually applied resistance equivalent to 0.075 kg/kg body mass. The 

training was progressive whereby all participants performed a total of 4, 5, 6 and 7 maximal 

30 s cycling bouts in weeks 1, 2, 3 and 4, respectively, with each bout separated by a 4.5 min 

recovery period. In CON participants remained seated and stationary on the ergometer and 

refrained from pedalling during recovery between each sprint. At times participants would 

get out of the saddle and stretch their legs and pedal backwards but this was minimised. In the 

BFR condition participants immediately dismounted the ergometer after each sprint and lay 

supine on a couch, upon which they were subjected to lower limb BFR, within 15s of each 
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sprint, in the exact manner described in the previous chapter. The cuff pressure of ~ 130 

mmHg was kept constant through the four-week training period. Participants were instructed 

to continue normal dietary practices throughout the training period and were instructed to 

complete daily training diaries to ensure that non-prescribed training remained constant 

throughout the entire study. Thus the only manipulation to the training structure in both 

experimental groups was the increased number of intervals performed each week. Whilst all 

the participants had previous experience of undertaking high-intensity training, none of the 

participants were currently engaging in high-intensity training outside of that performed 

during the study and were instructed to replicate all other non-prescribed weekly training to 

ensure the SIT or SIT and BFR were the only training change experienced. Pre-training 

measurements of peak power output (PPO) and mean power output (MPO) were obtained 

from the first training session after a standardised warm-up. Post-training PPO and MPO 

were taken from the best of two maximal sprints performed separately during the week of 

post-training outcome measurements. 

 

Statistics 

 

Outcome measures and training data were analysed using independent t-tests. Subsequent 

analysis was performed with two-factor repeated measures analysis of variance (ANOVA) 

with one within factor (time: pre versus post) and one between factor (group: CON versus 

BFR). 
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5.3 Results 

 

Participants completed 100% of the assigned training sessions without any complications. 

Training data is presented in Figures 16 and 17. The average power output produced over the 

8 training sessions was greater (t-test P < 0.01) in CON (642 ± 10W) compared to BFR (618 

± 11W). Consequently, the average total work done throughout each training session was 

greater (t-test P < 0.01) in CON (106 ± 22 kJ) compared to BFR (102 ± 21 kJ).  

 

Figure 16 - Average power output produced across all sprints in each training session for all 

participants in the CON (solid line) and BFR (broken line) condition. Error bars are SD. 
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Physiological and performance variables measured before and after CON and BFR are 

presented in Table 6. Absolute and relative 2max (Table 6) increased after BFR but were 

unchanged after CON (interaction; both P = 0.01). There was a trend for absolute and relative 

MAP (Table 6) to increase after BFR, with no changes after CON, however these did not 

reach statistical significance (interaction; P = 0.11 and P = 0.09, respectively). Absolute and 

relative sprint PPO increased (main effect for time; both P = 0.02) but there were no 

difference between training groups. There were no changes in absolute or relative sprint MPO 

after CON and BFR. 15km-TT performance time (Table 6) and average power output during 

the TT were unchanged after CON and BFR.  

 

Figure 17 - Average power output produced across the first 4 sprints in each training session for all 

participants in the CON (solid line) and BFR (broken line) condition. Error bars are SD. 
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Table 5 - Physiological and performance variables before and after CON and BFR training interventions 

CON              BFR  ANOVA 

PRE POST % change PRE POST % change ( interaction P value) 

       

Body mass (kg) 75.5 ± 8.4 75.7 ± 7.9 0.3 74.1 ± 7.4 74.0 ± 7.6 0.3 0.55 

2max  (l.min
-1

) 
4.6 ± 0.3 4.6 ± 0.4 0.7 4.5 ± 0.4 4.7 ± 0.4 * 4.5 0.01 

2max (ml.min
-1

.kg
-1

) 
61.8 ± 4.7 61.1 ± 4.9 1.1 61.2 ± 4.0 64.1 ± 4.1 * 4.7 0.01 

MAP (W) 373 ± 31 374 ± 37 0.2 377 ± 37 392 ± 38  3.8 0.11 

MAP (W.kg
-1

) 5.0 ± 0.4 5.0 ± 0.4 0.2 5.1 ± 0.3 5.3 ± 0.5 4.4 0.09 

PPO (W) 1065 ± 214 1137 ± 259 6.8 938 ± 168 998 ± 203 6.4 0.80 

PPO (W.kg
-1

) 14.0 ± 1.9 15.0 ± 2.9 7.0 12.6 ± 1.5 13.5 ± 2.3 7.1 0.95 

MPO (W) 709 ± 99 711 ± 102 0.2 676 ± 97 696 ± 102 2.9 0.19 

MPO (W.kg
-1

) 9.4 ± 0.8 9.4 ± 0.9 0.3 9.1 ± 0.7 9.4 ± 0.9 3.3 0.14 

15 km-TT (s) 1363 ± 50 1361 ± 59 0.1 1347 ± 81 1339 ± 76 0.6 0.66 

Ave TT power (W) 280 ± 26 288 ± 29 2.8 282 ± 39 285 ± 37 1.1 0.53 

Values are mean ± SD. 2max, maximal oxygen uptake; MAP, maximal aerobic power; PPO, peak power output during 30 s sprint; MPO, mean power output during 30 s 

sprint; TT, time trial. * P < 0.05, compared to PRE (Bonferroni corrected post-hoc t-test). All data are n = 10, except for Ave TT power which is n = 7 in each group.

OV
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Figure 18 - Individual relative maximal oxygen uptake values for all participants before and after the 

4-wk CON and BFR training interventions 

 

Figure 19 - Individual absolute maximal oxygen uptake values for all participants before and after the 

4-wk CON and BFR training interventions 
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Figure 20 - Individual absolute maximal aerobic power (MAP) for all participants before and after the 

4-wk CON and BFR training interventions 

 

Figure 21 - Individual 15km-TT performance values for all participants before and after the 4-wk 

CON and BFR training interventions 
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5.4 Discussion 

 

This study has demonstrated the potency of combining blood flow restriction with sprint 

interval training (SIT) in increasing 2max in trained individuals. The mechanisms 

responsible for this adaptive response are unclear however the previous chapter presents 

preliminary findings suggesting BFR possibly presents an intensified hypoxic and/or 

metabolic stimulus over SIT alone for enhanced skeletal muscle remodelling, such as 

increased mitochondrial biogenesis and capillary density.  

In the present study, 2max increased by ~4.5% in response to SIT with BFR, compared with 

0.7% in CON. Out of the 10 participants in BFR, only one individual did not demonstrate an 

enhancement in relative maximal oxygen uptake. Moreover, whilst it did not reach statistical 

significance, the percentage increase in maximal aerobic power was evidently greater for the 

BFR group. These improvements are in spite of a lower overall work done in the BFR group 

compared to CON. The potency of combining BFR in enhancing oxygen uptake and the 

adaptive response to other forms of exercise has previously been demonstrated. For example, 

one-legged cycle training whereby blood flow was restricted during exercise by 

approximately 15-20% through the use of a pressure chamber (Sundberg and Kaijser 1992) 

has previously been demonstrated to promote a greater increase in one-legged 2peak over 

that performed with normal blood supply (Sundberg et al. 1993). Of course, the use of such 

pressure chambers is limited by accessibility and ease of use, whereas the use of blood 

pressure cuffs placed on the proximal portion of the legs and a rapid inflation system seems 

effective in providing a fixed pressure for a set duration. The feasibility of combining BFR 

with whole body exercise, specifically SIT has also been demonstrated. This is of particular 

relevance to well-trained cyclists where there is a requirement to maintain an appropriate load 
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or training intensity as part of a structured training programme. In pilot work, combining SIT 

and BFR concurrently proved impractical and even at moderate cuff pressures (100 mmHg) 

this combination was not tolerable. Either way, this type of training represents a novel way to 

enhance the adaptive responses in well trained individuals. 

There was no improvement in 2max with SIT alone in our group of trained individuals 

(CON). The effects of SIT on 2max in less well-trained individuals is inconsistent, with 

some studies demonstrating increases in response to training (Burgomaster et al. 2006; 

Burgomaster et al. 2008; Cocks et al. 2013) and others not (Burgomaster et al. 2005). Indeed, 

previous investigations into the effects of HIT (that involve longer duration intervals at sub-

maximal intensities rather than ‘all out’ maximal sprints) have demonstrated positive 

adaptive responses in indices of aerobic performance (e.g. 2max, lactate threshold) in well-

trained cyclists with pre-training 2max values of ~ 65 mL.min
-1

.kg
-1

 (Laursen and Jenkins 

2002; Laursen et al. 2005).  As highlighted in Chapter 1, differences in the 2max response, 

and indeed many adaptations after training, between the aforementioned studies could be 

attributable to a number of factors such as differences in the duration, intensity and frequency 

of the interval training stimulus, as well as the total training volume prescribed.  

The main determinants of 2max are complex. Although it is generally accepted that the 

vascular bed is not a limiting factor for oxygen transport during one legged knee-extensor 

exercise (Andersen and Saltin 1985) where approximately 2-3 kg of muscle mass is recruited, 

performing cycling exercise in which a larger muscle mass (i.e. 5-6kg) is recruited stresses 

both central and peripheral limitations in oxygen delivery and uptake (Poole and Richardson 

1997). As well as the important role the capillary network has on increasing oxygen delivery 

and reducing diffusion gradients, it also facilitates greater removal of metabolic end products 

which sustains exercise tolerance (Joyner and Coyle 2008). Moreover, an increased capillary 
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density specific to type II muscle fibres will improve performance and recovery from 

maximal and ‘all out’ exercise (Tesch and Wright 1983) during which these fibres are 

preferentially recruited (Greenhaff et al. 1994).  

OV
2max clearly holds importance to exercise capacity, as does the 2 and power/velocity at 

lactate threshold which is also directly influenced by muscle capillary density (Joyner & 

Coyle, 2008). These measurements, however, are not necessarily direct assessments of 

performance per se. We chose to assess exercise performance with a 15km self-paced time 

trial (TT). Despite the improvements in 2max with BFR, there was no improvement in 15 

km TT performance after BFR or SIT alone. Whilst this is perhaps surprising given HIT has 

previously been demonstrated to improve 40 km TT performance in well trained athletes 

(Laursen et al. 2005), the TT distance needs to be considered when considering performance 

improvements. For example, performance during self-paced exercise is predominantly 

limited by central or peripheral factors with a greater degree of peripheral fatigue evident 

after shorter high-intensity (approximately 6 min) TTs and increased contribution of central 

fatigue after longer lower-intensity TTs (>30 min) (Thomas et al. 2015). It is plausible that 

the 15 km TT performed in this study lacked sensitivity to at least partly reflect the increases 

in 2max. In contrast, Craig et al. (1993) examined the relationship between select 

physiological parameters and 4 km individual pursuit (IP) performance (i.e. ~ 5.6 min) in a 

group of male high-performance track endurance cyclists and observed a strong relationship 

between IP performance and 2max (r = -0.79), and power output at lactate threshold (r = -

0.86). It is therefore important that future studies continue to include TT tests of performance, 

both longer and shorter than the duration employed in this study, to better inform the 

application of training interventions to athletic populations. In addition, participants perhaps 

required greater familiarisation to the TT prior to commencing training in order to increase 
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the reliability of this performance test. The CV between familiarisation sessions in the current 

study was 4.7 %. Indeed, this is contrast to a study by Palmer et al. (1996) who reported a CV 

of 1.1 % between three 20-km time trials performed by high-trained individuals who also had 

feedback of distance covered throughout.        

In the present study there appeared to be a trend towards significant increases in MAP and 

MPO (Table 6) after BFR. It is possible that with greater participant numbers the change in 

these parameters after training would have reached statistical significance and in this regard 

the present studied may have been ‘under powered’. However, increases in the region of 

2.9% to 4.4% in these parameters after BFR compared to more marginal changes of 0.2% to 

0.3% after CON are more meaningful for athletes, coaches and applied sports scientists rather 

than achieving a traditional statistical significance. When deciding on whether to adopt such 

an intervention, it should be noted that 9 of the 10 participants enhanced their relative 2max 

after BFR whilst only 4 individuals observed improvements after CON.  

In conclusion, we have demonstrated the potency of combining BFR with SIT in increasing 

2max in trained individuals. Moreover, SIT alone did not induce any observable adaptation. 

Although the potential mechanisms are not fully understood, it is possible BFR provides an 

intensified stimulus for hypoxia- and or metabolic- mediated adaptations such as 

angiogenesis and mitochondrial biogenesis. In particular, the inclusion of muscle protein 

analysis and immuno-histochemical techniques to evaluate direct changes in capillary:fibre 

ratio are necessary in future work to support this hypothesis and draw firmer conclusions that 

such a training stimulus manifests in the above skeletal muscle remodelling.  
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CHAPTER 6 - ELITE ATHLETE CASE STUDY: THE 

APPLICATION OF SIT COMBINED WITH BFR AS A NOVEL 

APPROACH TO ENHANCE PHYSIOLOGICAL AND 

PERFORMANCE CAPABILITIES  

 

6.1 Introduction 

 

In the previous two chapters the use of BFR combined with SIT has been introduced as a 

potentially novel and practical training method to upregulate the signals involved in 

endurance based adaptations and enhance important associated physiological parameters in 

trained individuals. These results would no doubt be of interest to a range of athletic events, 

in particular linear energetic events such as rowing, running and cycling, where the athlete’s 

underlying physiology (rather than technique and decision making such as in team based 

sports) is strongly associated with the outcome of performance. Although further research is 

required to confirm the performance benefits of this exercise model and gain a greater 

understanding of the mechanisms of the adaptive responses, there is an equally important 

requirement to explore whether such a novel training modality transfers to high performance 

athletes. A full-scale intervention with elite athletes would be the optimum circumstance to 

explore the effectiveness of such an intervention, however, preparation for the 2016 Olympic 

games eliminated this as a potential option. However, the opportunity presented itself to 

intervene with a full-time nationally funded track cyclist who was transitioning away from 

competing in the sprint events but was considered to hold potential in middle-distance track 

events. The question posed by the national cycling federation was whether this athlete could 

enhance her aerobic abilities while maintaining her anaerobic qualities in a compressed time-
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scale? This led to the opportunity to explore a novel intervention regimen involving SIT and 

BFR.  

The principal track cycling events currently competed at World Championship and/or 

Olympic level include the team sprint, the 500 and 1000 m time trials (TT), the match sprint 

(including a flying 200 m qualification TT) and Keirin, the individual (3-4 km) and team (4 

km) pursuits and the Omnium, whereby a rider competes in 6 events over 2 days ranging 

from a flying lap TT to a 25-40 km points race.  Clearly, the predominant physiological 

determinants that underpin successful performances in these events (and individual rider 

performances within the team events) will vary depending on the duration of the event and 

the race tactics/strategy, which together ultimately governs the intensity at which the race is 

ridden. For example, whilst large absolute and relative maximal power outputs and anaerobic 

capabilities are critical success factors for the shorter sprint events. Moreover, the primary 

physiological determinant of a winning performance in the individual and team pursuit and 

the 25-40 km ‘bunch’ races is a high aerobic capacity, enabling sustained high average power 

outputs. For example, it has been suggested that the relative contributions of aerobic and 

anaerobic metabolism to 4 km individual pursuit are approximately 80 and 20 %, respectively 

(Neumann, 1992). Moreover, Craig and colleagues (1993) have examined the relationship 

between select physiological parameters and 4 km individual pursuit (IP) performance in a 

group of male high-performance track endurance cyclists. The highest correlations between 4 

km IP performance and physiological parameters were the athlete’s 2max (r = -0.79) and 

power output at lactate threshold (r = -0.86) (Craig et al. 1993).  

After demonstrating, in the previous chapters, the potency for SIT combined with post-

exercise BFR to enhance 2max and likely MAP and MPO above SIT alone, the present 

chapter describes a case study detailing the integration of this training method into an 
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international track cyclists training programme. The aim was to explore the effectiveness of 

the SIT and BFR intervention in enhancing the athlete’s aerobic capabilities, while 

maintaining the anaerobic capabilities, given the importance of both to the track cycling 

events and in particular, individual and team pursuit. 

 

6.2 Methods 

 

The Athlete 

A female international track sprint cyclist, subjected to UCI and UKAD out-of-competition 

and in-competition testing, was the focus of this intervention (age, 20 yrs; height, 170 cm; 

body mass, 60.4 kg). She had previously competed in the team sprint at the Senior European 

Track Cycling Championships and medalled at the U23 European Track Cycling 

Championships. Furthermore, she has previously held the title of track cycling Great Britain 

National 500 m Time Trial Champion. The athlete’s national governing body and coaches 

provided us with full access to the athlete’s training programmes/history and data, and we 

were given full control over training prescription and monitoring/assessment over the entire 

period of the intervention.         

Pre-intervention training structure 

During a 46-day period, which ended 3 weeks before the start of the intervention, the athlete 

completed 43 training sessions in total (on average 0.9 sessions per day). These comprised of 

14 resistance training sessions (comprising lower body bilateral and unilateral weight lifting), 

16 road rides (≥ 90 min) and 13 track sessions (involving 6-12 x ≤ 30 s maximal sprints per 

session).   
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The training intervention 

The athlete completed 8 supervised sprint interval sessions over a four-week period (on 

average 2 sessions per week). As described in Chapters 4 and 5, each training session 

consisted of repeated 30 s maximal sprint cycling bouts performed on a road bicycle fixed 

into a turbo trainer (UK Sport Innovation). All sprints across the 4 weeks were performed on 

a set fixed gear and power was measured at the back wheel hub using a commercially 

available power meter, calibrated according to the manufactures guidelines (PowerTap, 

Madison, WI). The training was progressive whereby the athlete performed a total of 4, 5, 6 

and 7 maximal 30 s cycling bouts in weeks 1, 2, 3 and 4, respectively, with each bout 

separated by a 4.5 min recovery period. After each sprint, the athlete immediately dismounted 

the ergometer and lay supine on an adjacent physio plinth (Figure 22). Within 15 s of each 

sprint the athlete was then subjected to lower limb BFR, in the exact manner described in the 

previous two chapters. The cuff pressure of ~ 130 mmHg was kept constant throughout the 

entire training period. The athlete was instructed to continue normal dietary practices 

throughout the training period and to complete daily training diaries to ensure that non-

prescribed training remained constant throughout the entire study. Thus the only 

manipulation to the training structure in both experimental groups was the increased number 

of intervals performed each week. All BFR training sessions as well as pre- and post-training 

assessments were conducted in a British Association for Sport and Exercise Sciences 

(BASES) accredited laboratory. Laboratory conditions remained relatively constant for all 

BFR training sessions and all pre- and post-intervention assessments (19-21°C, 40-50% 

humidity). In addition to the 8 BFR training sessions, the athlete on one occasion per week 

also performed a resistance training session and on two days per week performed a 90 min 

low-intensity road ride (Table 7). These were kept constant so that the only training which 

adapted each week was the BFR training.     
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Table 6 – The weekly training structure during the intervention period. 

 Mon Tue Wed Thu Fri Sat Sun 

AM Rest Rest Road Ride Rest Gym Road Ride Rest 

PM SIT+BFR Rest Rest SIT+BFR Rest Rest Rest 

 

 

Figure 22 - Athlete undergoing BFR in between sprints. Device used to restrict blood flow can be 

seen in the background and the athlete’s bike fitted to the turbo trainer in foreground. 

 

Pre- and post-intervention assessments  

Body composition  

Body composition was assessed using DEXA (dual energy X-ray absorptiometry) alongside 

anthropometry skinfold measurements. DEXA and anthropometry measurements were 

conducted at the same time of day (~ 9am) in the fasted state. DEXA scans where conducted 

according to the manufactures guidelines by a qualified technician at Liverpool John Moores 

University. Anthropometry skinfold measurements were performed by an International 
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Standard for Anthropometric Assessment (ISAK) accredited practitioner. Thigh 

circumference was measured horizontal to the long axis of the femur at the mid- point 

between the inguinal fold and the anterior aspect of the patella. The horizontal 

(circumferential) line was marked and extended to intercept with the vertical mid-line of the 

anterior and posterior surface of the thigh. The sum of 8 skinfold sites (triceps, subscapular, 

biceps, iliac crest, supraspinale, abdominal, front thigh, medial calf) were measured using a 

newly calibrated Harpenden Skinfold Caliper (Baty International, UK). 

 

Figure 23 - Athlete undergoing DEXA scan. 

 

On-track assessment of maximal anaerobic capabilities  

Four and ten days after the last BFR training session the athlete attended the National Cycling 

Centre (Manchester, UK) to perform 3 stationary starts.  After performing a standardised 

warm-up (on cycling rollers) undertaken before every track training session and competition), 

the athlete performed 3 x ~ 10 s ‘all-out’ efforts from a stationary position, each effort 

separated by 10 min recovery. These efforts were performed to assess the change in the 

athlete’s PPO from pre- to post-intervention. All pre and post intervention track efforts were 
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started from an identical position on the track and on the same track sprint bicycle fitted with 

an identical fixed gear. The bicycle was instrumented with SRM cranks to provide power 

measurement, which were initially calibrated before the first effort and then re-calibrated 

after each subsequent effort according to the manufacturer guidelines (Schroberer Rad 

McBtechink, Weldorf, Germany). Power output was recorded at a sample rate of 2 Hz. Body 

mass was collected at every track session to provide an accurate calculation of relative power 

output (W.kg
-1

). All track training sessions were performed at a similar time of day (approx. 

2-3pm) and under similar environmental conditions (approx. 21-24°C). 

Maximal Aerobic physiology assessment  

The athlete performed an incremental test to exhaustion to establish maximal oxygen uptake (

2max) and maximal aerobic power (MAP) ~ 7 days either side of the first and last BFR 

training session to assess changes in their maximal aerobic physiology. Following a 5 min 

warm-up at 120 W, at a freely chosen but constant pedal cadence, work rate was increased by 

20 W.min
-1

 until volitional exhaustion (8-10 min). Pulmonary gas exchange was measured 

breath by breath throughout exercise (Oxycon Pro, Carefusion, UK) and 2peak determined 

as the highest 30 s recording of 2 during the test. MAP was defined as the highest average 

60 s power recorded during the test. 

Assessments of critical power and W’ 

Critical power (CP) and the curvature constant of the power-duration relationship (W’) were 

assessed pre- and post-intervention via a series of fixed-duration, self-paced maximal time 

trials (TT) in accordance with the methods described by Simpson and Kordi (2016). Prior to 

the training intervention, a number of familiarisation TTs were performed to ensure the 

athlete was accustomed to the task. The athlete completed three 3-min, two 12-min and one 

6-min maximal TTs. All TTs were completed on the athletes own road bicycle fitted to a UK 
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Sport Innovation turbo trainer with a power meter at the rear wheel in identical configuration 

to that used during the interval training sessions detailed above.  

The athlete was instructed to achieve the highest power output they could for a fixed, known 

duration of either 3-, 6- or 12-min. The athlete had visual feedback of power output, pedal 

cadence, heart rate (HR) and elapsed time. All TTs were supervised by the principle 

investigator, who provided strong verbal encouragement throughout each TT.  

Power, cadence and HR data were extracted from the wireless data acquisition device 

(Garmin Edge 500, Garmin UK, Southampton) for analysis in desktop software (Golden 

Cheetah, goldencheeth.org). Critical power was determined using two linear models; (i) work 

vs. time and (ii) power vs. time
-1

 which both conform to equation 1. 

   P = (W/t) + CP      [1] 

Where P is the power achievable and t is the fixed duration of a given TT. The linear model 

providing the best fit (highest R
2
) and least standard error of the estimate (SEE) for both CP 

and W was use for the parameter estimates. 

 

6.3 Results 

 

A total of 552 KJ of work was performed across the 8 BFR training sessions. The athlete’s 

changes in body composition across the intervention period are presented in Table 8. Body 

mass recorded during the pre- and post-intervention track sessions were 61.1 and 60.4 kg, 

respectively. There was a 1 and 2 % increase in the athlete’s absolute (1041 vs 1049 W) and 

relative (17.0 vs. 17.4 W.kg
-1

) PPO after the intervention. The athlete’s changes in maximal 
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anaerobic and aerobic physiology and performance in response to the intervention are 

presented below in the tables and figures.  

Pre-intervention CP was 195 ± 4 W (SEE). Post-intervention CP was 209 ± 6 W. W was 

18.36 ± 1.73 and 18.72 ± 2.30 kJ pre- and post-intervention respectively. This represents a 

7% increase in CP and a 2% increase in W.   

 

 

 

Figure 24 - Peak power output achieved during each BFR training sessions. 
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Figure 25 - Average power output achieved for the first 4 sprints of each BFR training session.  

 

Table 7 - Body composition changes measured by anthropometric assessment and DEXA from before 

to after the training intervention.  

 Pre Post % change 

Body mass (kg) 60.4 60.4 0 

Sum of 8 site skinfolds (mm) 78.5 74.5 -4 

Mid-thigh R-leg girth (cm) 52.2 51.1 -2 

Mid-thigh L-leg girth (cm) 52.3 51.8 -1 

Total body fat (%) 13.9 14.9 7 

Total body fat mass (g) 8633 8250 -7 

Total body lean mass (g) 46772 46325 -1 
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Table 8 - Aerobic physiology and performance changes from before to after the training intervention. 

 Pre Post % change 

VO2max (L.min
-1

) 3.1 3.2 3 

VO2max (ml.kg
-1

.min
-1

) 51.3 53.0 3 

MAP (W) 305 317 4 

MAP (W.kg
-1

) 5.0 5.2 4 

Max HR (bpm
-1

) 189 193 2 

3 min max PO (W) 286 305 7 

6 min max PO (W) 250 265 6 

12 min max PO (W) 214 234 9 
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6.4 Discussion 

 

This case study assessed the application of SIT combined with BFR in a full-time athlete’s 

training over a four week period as a potential novel, low-volume strategy to enhance aerobic 

physiology and performance capabilities. Following four weeks of dedicated SIT combined 

with post-exercise BFR (2 sessions per week), the athlete significantly improved their aerobic 

performance and associated physiological parameters, which came at no expense to their 

maximal anaerobic physiology. Indeed, the methods and results presented here have 

implications for a number of sports, notably linear energetic sports such as track cycling, in 

which well-developed aerobic and anaerobic capacities are critical to success.  

The observed 3 and 4 % increases in the athlete’s absolute and relative 2max and MAP, 

respectively, are slightly lower, but nevertheless consistent with those reported in the BFR 

group in the previous chapter. Although Sjogaard and colleagues (1985) have reported 

relative changes in 2max of as much as 22% in a Danish international track cyclist across a 

whole training year, the magnitude of change for this parameter reported here and in the 

previous chapter could be of greater interest to coaches and athletes given the brief 4-week 

period of training and the low total work performed. Chapter 2 highlighted that shorter 

maximal efforts might not be optimal for enhancing 2max in well trained individuals (this is 

also supported by the data in the previous chapter) when compared to longer, less intense 

interval-based protocols performed below 2max (Tabata et al. 1996; Stepto et al. 1999; 

Hawley and Stepto 2001; Laursen et al. 2002a; Laursen et al. 2002b; Helgerud et al. 2007; 

Gunnarsson et al. 2012; Millet et al. 2014). The meta-analysis conducted by Bacon and 

colleagues concluded interval training alone or combined with continuous training can 

increase 2max  in untrained individuals by up to 0.6 L.min
-1

 and by up to 0.9 L.min
-1

 in 
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response to protocols that feature longer intervals (Bacon et al. 2013). However, we have 

shown here and in the previous chapter that when combined with post-exercise BFR, SIT 

provides a potent stimulus for aerobic adaptations in trained individuals. Indeed, differences 

in training status could account for the more modest increases in absolute 2max observed 

here compared to those reported above. Additionally, it must be noted that in the majority of 

the studies included in the review by Bacon and colleagues, participants undertook intense 

interval training on 3 occasions per week compared to a frequency of 2 sessions per week 

here and in the previous chapter.   

In the previous chapter, despite the observed changes in 2max and MAP in response to 

BFR, no improvements in 15 km TT performance were observed, irrespective of whether 

BFR was incorporated into the interval training. This led to the conclusion that the 15 km TT 

likely lacked sensitivity to reflect an increased 2max.  As such, in this case study the athlete 

performed pre- and post-intervention efforts of different durations (3, 6, 12 min), whereby the 

athlete aimed to achieve the highest MPO possible for each duration. Whilst these efforts 

taken as individual performance tests would appear to better reflect changes in 2max (Craig 

et al. 1993), they were also used to model the athletes changes in critical power and W’ across 

the intervention period. The 7 and 2 % increase in CP and W, respectively, combined with 

the athletes changes in PPO relate to a calculated 3.0% increase in average PO achievable 

over a 30 s period (i.e. similar time taken to complete 500 m TT by international female track 

cyclists) and a 5.5% increase in power output achievable over a 3.5 min period (3 km IP). Of 

interest and importance is that the athlete’s CP increased at no expense to the W’. It is not 

uncommon to observe an increase in CP at the expense of W’ and vice versa after a period of 

training (Jenkins and Quigley 1992; Vanhatalo et al. 2008). As such, the data presented in 

this chapter suggests the training regime prescribed here could have application in specific 
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scenarios where athletes’ competing in sports or tasks highly reliant on anaerobic capabilities, 

seek rapid gains in aerobic physiology and performance (e.g. a track cyclist transitioning 

from sprint to endurance disciplines and visa-versa).   

Absolute and relative PPO (i.e. power to body mass ratio) are key performance determinants 

in track sprint cycling. The latter is particularly important to the track cycling TT events (e.g. 

500 m TT through to the 4 km team pursuit) as this dictates an athlete’s ability to accelerate 

off the start line. Here the athlete’s standing start absolute and relative PPO assessed on the 

track were maintained throughout the intervention period despite a reduction in gym 

frequency from ~3–1 session per week and the complete removal of track based training 

sessions. It is plausible that PPO would have decreased across the intervention period with 

this change in training focus and in particular the reduced strength stimulus. Moreover, the 

data from the pre and post intervention DEXA scans would suggest that the athlete reduced 

and increased their whole body lean and fat mass, respectively, which would indeed more 

likely support a reduction in maximal PO capabilities, given the role of muscle cross 

sectional area for strength and power (Folland and Williams 2007). In contrast, and in support 

of the data obtained from the track assessments, there was also a positive linear trend in PPO 

achieved during the BFR training sessions over the four weeks.  

A positive linear trend for 30 s MPO was also observed across the training period. This is an 

interesting observation as one might expect that the accumulation of fatigue across the four 

weeks would result in a negative trend in this training variable. This could possibly reflect the 

weekly SIT sessions being separated by 72 hrs and perhaps an appropriate balance of training 

and recovery being struck over the four weeks in this scenario. Also of interest is that in 

Chapter 5, two sessions per week of SIT without BFR did not result in any changes in 

physiology or performance. Indeed, the few studies that have reported increases in 2max OV
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have done so in recreationally active or non-trained, sedentary individuals and have typically 

prescribed 3 SIT sessions per week (Burgomaster et al. 2008; Whyte et al. 2010; Cocks et al. 

2013). Indeed, training frequency is also a critical variable alongside intensity and duration 

that is manipulated by the coach and athlete to optimise the specific training response. It is 

possible that whilst the duration and intensity of the intervals in the SIT group itself were 

insufficient to induce adaptation in that cohort, the frequency of SIT training may also have 

been insufficient. In this regard, Billat et al. (1999) have explored the impact of increasing 

training frequency in a group of middle distance runners who initially trained 6 sessions per 

week of continuous training only. They found that manipulating the training week to 

comprise four continuous training sessions, 1 x HIT session, and one lactate threshold (LT) 

session resulted in improved running economy and speed at 2max (albeit with no 

enhancement of 2max). Interestingly, further intensification of the training week to 2 

continuous training sessions, 3 x HIT sessions and one LT session did not result in any 

additional adaptation (Billat et al. 1999), indicating that approx. 2 sessions of interval-based 

exercise a week appears an appropriate frequency for this type of training. Nevertheless, of 

interest to coaches, athletes and scientists is that the athlete performed significantly less work 

as a result of fewer and less frequent training sessions during the intervention period 

compared to previous training blocks. Nevertheless, the athlete achieved substantial 

improvements in endurance capabilities whilst seemingly maintaining their maximal 

anaerobic physiology. Indeed, the impact of training frequency on adaptation and 

performance, in particular relating to HIT/SIT, is an area of ‘training science’ that requires 

further research attention given the paucity of data on this training variable in well trained 

athletes. 

Perhaps its application could be extended to intermittent team sports athletes as both high 

aerobic and anaerobic energy provision are necessary to meet the physical demands of these 
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sports. Clearly the absence of a control condition significantly reduces the scientific rigour of 

this study and does not allow comparisons between BFR and non-restricted SIT to be made. 

Unfortunately, retrospective examination of the athlete’s adaptive potential to past interval-

based training interventions undertaken has been made difficult due to a lack of relevant test 

data. De-conditioning the athlete to pre-intervention baseline values and then re-intervening 

with SIT alone would have enabled comparisons to be drawn between the magnitudes of 

adaptive response to SIT or SIT combined with post-exercise BFR. This, however, was also 

not possible due to time constraints. This was the athlete’s first experience of undertaking 

BFR exercise and below is a post-intervention self-written reflection of her experiences as 

she underwent the change in training structure and was exposed to a new type of training 

intervention:  

“The interval training with blood flow restriction was probably the most physically and 

mentally tough training I have ever done, but at the same time both satisfying and seemingly 

effective. However, I felt that as the training progressed beyond the first week I began to 

better cope with the discomfort after each interval.  The most mentally challenging aspect of 

the training was the ‘all-out’ nature of the efforts and in particular the last couple of efforts 

in each session where the recovery between efforts seemed almost non-existent. The burning 

sensation during BFR towards the last few sessions of the training block was just about 

tolerable. The 2 minutes of occlusion immediately after the 30 second sprint was a strange 

experience. After the first interval, the occlusion would be mildly uncomfortable but I could 

have continued for longer than 2 minutes. As we progressed through the intervals the 

occlusion became more painful, and in the later weeks where I was doing 5 or more intervals, 

the pain level was on the limit of what I could cope with for the last few efforts.”  

“The fatigue in the early hours of recovery after the BFR sessions was far more pronounced 

to what I’ve experienced from any other training session.  I’d find that I often needed to nap 
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in the immediate hours that followed, which I wouldn’t usually after other types of sessions. 

In the days that followed, I wouldn’t experience the same type of painful DOMS that I would 

from a gym or track session, instead just a general tiredness. Although incredibly tough, 

overall the training was enjoyable and highly satisfying. I also definitely felt myself coping 

better with the intervals and blood flow restriction over the short period of time that we were 

doing them, so would be interested to see the effect of it over a longer period of time”. 

In conclusion, the findings from this study have implications for athletes and coaches seeking 

training novelty or variety and/or those with the goal of achieving a potent time- and work-

efficient training stimulus. Specifically, it has presented application for the use of SIT 

combined with post-exercise BFR in future training programmes for cyclists and other linear 

energetic athletes (e.g. rowers, runners, triathletes) to induce relatively rapid adaptation 

favouring endurance performance. It is important to consider that whilst HIT/SIT, for the 

most part, is often associated with rapid adaptations (2-12 weeks), the adaptive response or 

rate of adaptation to this training is typically quick to plateau (Seiler and Tønnessen 2009). 

Indeed, in applying these ideas, athletes and coaches should consider the need to be 

considerate to strike the optimal balance between maintaining athlete health and daily 

training tolerance and maximising training/competition performance. In this regard, the 

indications would suggest that the interventions outlined in this thesis could offer a potent 

stimulus for development, perhaps prescribed as brief training blocks in the context of the 

athlete’s training macrocycle to provide novel training stress. 
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CHAPTER 7 – GENERAL DISCUSSION 

 

7.1 Summary  

This thesis reports a series of studies that examined, both at the whole body and cellular level, 

the acute and chronic effects of manipulating exercise and recovery during brief ‘all-out’ 

cycling on aerobic physiology and performance in trained individuals. In doing so, the 

primary aim was to identify novel methods of training that could potentially provide athletes, 

in particular those competing in sports or tasks highly reliant on aerobic metabolism, with a 

greater adaptive response for their training effort. The main findings of the thesis were as 

follows: 

1. Low-volume ‘all-out’ sprint interval (SIT; 4 x 30 s bouts) and continuous cycling (CON; 1 

x 2 min bout), thereby matched for total exercise duration, but not work done (71.2 vs. 46.4 

kJ, respectively), likely provide an equally potent stimulus to acutely activate cell signalling 

pathways and gene expression of factors associated with exercise-induced mitochondrial 

biogenesis and angiogenesis. 

2. Post-exercise BFR potentiates HIF-1α mRNA expression in response to SIT, tentatively 

suggesting an enhanced metabolic and hypoxia-targeted angiogenic stimulus over SIT alone. 

Moreover, the increased expression of PGC-1α, VEGF and VEGFR-2 mRNA after both BFR 

and non-restricted SIT in trained individuals further supports the angiogenic potential of brief 

‘all-out’ exercise, as has been previously demonstrated in untrained individuals. 

3. Four weeks of SIT combined with post-exercise BFR likely provides a greater training 

stimulus over SIT alone in trained individuals. 2max (4.7 v 1.1 % change) and MAP (3.8 v OV
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0.2 % change) were increased to a greater extent with BFR compared to CON, respectively. 

However, this did not translate to improving 15 km TT performance.    

4. In response to four weeks of SIT combined with post-exercise BFR, an elite female track 

sprint cyclist increased CP and W’ by 7 and 2 %, respectively. She also increased her relative 

2max and absolute MAP by 3 and 4 %, respectively. Moreover, these results occurred with 

little change to the athlete’s on-track maximal sprint capacity, as demonstrated by a 1 and 2 

% increase in absolute and relative PPO and a positive linear trend in PPO over the 

successive BFR training sessions. 

7.2 Interval and continuous based ‘all-out’ cycling  

The primary aim of the study reported in Chapter 3 was to assess to potency of interval and 

continuous ‘all-out’ sprint cycling in order to upregulate acute cell-signalling pathways and 

molecular markers related to mitochondrial biogenesis and angiogenesis in trained 

individuals. This chapter employed a repeated measures design to compare the regularly 

studied ‘classic’ 4 x 30 s ‘all-out’ cycling bouts (abbreviated INT in Chapter 3) to a 

continuous 120 s maximal effort cycling sprint protocol, whereby the recovery periods 

between efforts were essentially removed (CON). Thus the protocols were matched only in 

terms of total exercise duration (not session duration). Despite this difference in structure and 

the 53% greater total work done in INT compared to CON, both protocols induced a similar 

increase in gene expression related to mitochondrial biogenesis and angiogenesis. This was 

the first study to compare the expression of mitochondrial and angiogenic markers in 

response to acute ‘all-out’ interval and continuous cycling and thus demonstrates that the 

characteristic ‘pulsatile’ pattern of SIT might not be as important to the magnitude of 

adaptive response to ‘all-out’ exercise as previously considered. Moreover, it was the first 

study to report increased mRNA expression of primary angiogenic growth factors (notably 
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VEGF and VEGF-R2) in response to an acute bout of the classic ‘SIT’ protocol as well as the 

‘all-out’ continuous cycling effort in trained individuals, thereby offering insight into the 

angiogenic potential of maximal exercise. Finally, it is apparent that the 120 s continuous 

effort is the least amount of exercise in terms of both duration and work done that has been 

demonstrated, thus far, to increase PGC-1α and VEGF mRNA expression.    

The findings reported in Chapter 3 supports previous studies demonstrating similar cell-

signalling responses after work-matched HIT and continuous running and cycling (Wang et 

al. 2009; Bartlett et al. 2012), and non-work matched HIT based cycling (Psilander et al. 

2010). Taken together, these findings offer further insight into the role of exercise intensity in 

mediating skeletal muscle re-modelling and raise questions over the importance of the 

characteristic ‘pulsatile’ nature of SIT and HIT. Indeed, it has been previously suggested that 

this on-off pattern of interval training could play a part in the potency of this low-volume 

alternative to traditional endurance training (Cochran et al. 2014). For example, in response 

to moderate-intensity exercise, Combes et al. (2015) observed greater AMPK 

phosphorylation when a 30 min exercise session was undertaken at 70% 2max  as 1 min 

‘on’ 1min ‘off’ than a continuous effort. Whilst the acute molecular snapshots from Chapter 3 

suggest during ‘all-out’ exercise, the pattern of exercise is perhaps less important, the 

aforementioned study by Combes and colleagues appears to suggest that during submaximal 

exercise, interval-based exercise provides a favourable stimulus for adaptation. Of course this 

requires evidencing with a long term training study. Similarly, whether the protocols 

performed in Chapter 3 result in comparable capillary growth and mitochondrial biogenesis 

over repeated sessions, as could plausibly be hypothesised based on the observed acute 

molecular snapshots, also requires elucidation.  

OV
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Only one study to date has attempted to investigate the chronic effects of ‘all-out’ interval 

versus ’all-out’ continuous exercise on aerobic adaptation. Gibala’s research group have 

recently demonstrated that the ‘classic’ SIT protocol and an ‘all-out’ work-matched 

continuous ~ 4 min cycling protocol (CONT), result in similar acute cell-signalling 

associated with mitochondrial biogenesis but contrasting chronic effects on mitochondrial 

adaptation after 6 weeks of training (Cochran et al. 2014). Their study actually comprised two 

investigations. The first investigation utilised a repeated measures design comparing acute 

mitochondrial cell-signalling after SIT and CONT. The second was a short term training 

study where participants undertook 6 weeks of CONT, with pre- and post-training changes in 

maximal activity and protein content of mitochondrial markers, as well as 2peak and TT 

performance being compared to previously published studies where SIT was undertaken 

(Gibala et al. 2006; Burgomaster et al. 2008). Despite CONT and SIT inducing similar acute 

increases in AMPK, p38MAPK and PGC-1α in the first investigation, 6 weeks of CONT did 

not increase the maximal activity of CS and total protein content of numerous mitochondrial 

markers. Nevertheless, CONT did improve 2max and TT performance, albeit in untrained 

individuals (Cochran et al. 2014). Alongside the difficulties in comparing outcomes between 

separate studies, the PPO achieved in CONT was 38% lower than during SIT in their acute 

investigation, suggesting an element of pacing, and so it could be argued as to whether 

CONT was ‘all-out’ in nature. In contract, the matched PPO achieved between protocols in 

Chapter 3 clearly demonstrates that these were non-paced and this is likely of importance to 

the potency of SIT and perhaps CONT.    

As exercise intensity increases, so does ADP and the ratio of AMP:ATP (Howlett et al. 1998; 

van Loon et al. 2001), resulting in the intensity-dependant activation of AMPK (Egan et al. 

2010; Gowans et al. 2013; Kristensen et al. 2015).Whilst exercise intensity seems to be the 

major regulator of AMPK activity, it is also upregulated in situations of reduced muscle 
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glycogen content (Steinberg et al. 2006; McBride et al. 2009; Yeo et al. 2010). In the study 

by Cochran et al. (2014), similar muscle glycogen content was reported in the vastus lateralis 

after both SIT and CONT and this conceivably could have been a similar case after both 

protocols in Chapter 3. Unfortunately glycogen content was not measured before, during or 

after either protocol. These, alongside measurements of CaMK and p38MAPK (which 

despite significant trouble shooting we were unsuccessful in obtaining satisfactory blots for 

p38MAPK) would no doubt have added further insight here, especially in light of the 

differences in work done between protocols. In addition to glycogen content, the rate of 

glycogenolysis could also be important in the upregulation of AMPK and could explain the 

similar magnitudes of increased phosphorylation between ‘all-out’ protocols. Parolin et al. 

(1999) demonstrated that AMP concentrations were greatest after the first of three 30 s ‘all-

out’ cycle sprints (i.e. Wingate Tests), and glycogenolysis was drastically blunted during the 

third bout relative to the first bout. Moreover, Gibala et al. (2009) measured AMPK 

phosphorylation after the first and fourth sprint during SIT. AMPK phosphorylation was 

increased after the forth sprint but not the first. In light of the above, it’s plausible that 60-90 

s continuous ‘all-out’ effort would have been sufficient to induce similar increases in AMPK 

and PGC-1α to SIT. Indeed, future research is warranted to better understand the minimal 

effective dose of exercise to upregulate the above signalling pathways.  

 

7.3  SIT combined with post-exercise BFR  

The primary aim of Chapter 4 was to assess the potency of combining BFR with SIT by 

measuring the acute post-exercise cell-signalling response and gene expression of 

mitochondrial and angiogenic factors and comparing this to the response following SIT 

alone. It was hypothesised that the repeated blood flow restriction and re-perfusion would 
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promote intensified hypoxic, metabolic and shear stress stimuli, each of these being key 

physiological stimuli for angiogenesis (Egginton 2011). The findings tentatively indicated 

that a greater hypoxic and/or metabolic stimulus might be induced during BFR combined 

with SIT given the significant increase in HIF-1α mRNA expression during recovery after 

this protocol. This is the first study to demonstrate that BFR potentiates the mRNA 

expression of HIF-1α to SIT. HIF-1α mRNA levels have previously been demonstrated to 

transiently increase in human skeletal muscle in response to acute exercise provided it is of a 

sufficient intensity and duration, or is combined with BFR (Gustafsson et al. 1999; Lundby et 

al. 2006; Larkin et al. 2012) and is therefore likely to be an important transcription factor 

involved in the adaptive response to training. Given that HIF-1α mRNA increased at a time 

course similar to VEGF mRNA after BFR (Chapter 4), it is possible that regulation by HIF-

1α could account for the augmented VEGF mRNA expression in response to BFR and SIT. 

However, without performing immunoblot and immunohistochemical analysis of HIF-1α 

protein in skeletal muscle, upregulation of VEGF via HIF-1α cannot be confirmed and factors 

other than HIF-1α could regulate the exercise-induced responses of VEGF. Another possible 

role for an acute post-exercise increase in HIFs could be to activate the transcription of target 

genes, including EPO, HK-II, PFK and LDH. The expression of several of these is increased 

with acute exercise and training (Koval et al. 1998; Pilegaard et al. 2000). Indeed, 

measurement of these in all of the studies throughout the thesis could have perhaps provided 

indirect information about HIF1α involvement.    

In addition to hypoxia, it is possible that shear stress is elevated to a greater extent during the 

post-occlusion periods in the BFR condition. The premise of multiple brief BFR exposures 

immediately after each exercise bout was a strategy aimed at augmenting the brief shear 

stress response to SIT through enhancing the reactive hyperaemia with repeated cuff 

deflations (Gundermann et al. 2012). It was therefore hypothesised that combining SIT with 
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post-exercise BFR would present an intensified shear stress stimulus and thus greater 

upregulation of post-exercise eNOS mRNA compared to SIT alone. This however was not 

the case and the greater mean increase in eNOS mRNA at 3 h after BFR (Figure 14F) was 

driven by one individual’s robust 4-fold increase at this time point.  Therefore, future studies 

should investigate the effects of differing cuff exposure durations and manipulation of cuff 

pressure and its subsequent effects on mRNA and protein expression, as well as structural 

and functional adaptation over time. 

Perhaps the most interesting finding from the work conducted in this thesis was the disparity 

in 2max changes between experimental groups in Chapter 5. Whilst 2 sessions per week of 

SIT over a four week period resulted in no change in 2max in trained individuals, the same 

SIT protocol combined with 2 min of post-exercise BFR applied immediately after each 

exercise bout resulted in a substantial (4.7 %) increase in 2max over the same time period in 

trained individuals. A meta-analyses comparing the effects of HIT or SIT to moderate-

intensity continuous training on 2max reported a greater response to intense interval training 

regardless of whether workload is matched or not (Bacon et al. 2013). With specific reference 

to low-volume SIT, this is highlighted by the similar magnitude of increase in 2max 

compared to moderate intensity continuous training despite the drastically different volume in 

work performed (Weston et al. 2014; Gist et al. 2014). The studies that comprise these meta-

analyses, however, have almost entirely been conducted on ‘non-athletic’ populations and 

have prescribed HIT/SIT three times per week (typically one day apart, i.e. Mon, Wed, Fri). 

Taken together, it would therefore appear 2 sessions per week of ‘all-out’ sprint interval 

exercise is insufficient training volume and/or frequency to elicit improvements in 2max in 

trained individuals over a four week period. However, when combined with post-exercise 

BFR, this appears to provide an amplified stimulus for rapid aerobic adaptations and 
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performance gains. In line with the favourable effects of BFR on 2max and albeit not 

statistically significant, there was a trend (P =0.09 interaction) in Chapter 5 for greater 

increases in relative MAP after 4 weeks of SIT combined with BFR, compared to SIT alone 

(4.4 v 0.2 % change, respectively). Of course, to coaches and athletes these percent changes 

bear greater weighting than a P value in deciding on the effectiveness of a training 

intervention and should be considered, particularly if innovative strategies are required.  

Despite this enhanced 2max after SIT combined with post-exercise BFR, there was no 

improvement in 15-km TT performance; possibly suggesting that this duration of 

performance test (~ 22.5 min) lacked the sensitivity to reflect the observed changes in aerobic 

physiology. The case study conducted on the full-time elite track sprint cyclist (Chapter 6), 

however, provides an insight into the performance changes that may have occurred had 

Chapter 5 included more sensitive assessments of aerobic (i.e. CP) and anaerobic (i.e. W’) 

physiology. Indeed, the athlete increased their CP and W’ by 7 and 2 %, respectively. 

Modelling CP and W’ required the athlete to achieve the highest MPO possible for durations 

of 3, 6 and 12 min (i.e. a duration/power relationship, rather than a traditional assessment of 

power/duration). Irrespective of CP and W’ analysis, these efforts used independently (in 

particular the 6 min effort) would likely have also provided better tests of pre- and post-

intervention performance in Chapter 5, given the previously highlighted strong association 

between IP performance (i.e. ~ 5.6 min) and relative 2max (Craig et al. 1993).  

Of interest is that in Chapter 6 the increases in aerobic capacity after SIT with BFR came at 

no expense to the athlete’s W’ or PPO. As alluded to in Chapter 6, it is not uncommon to 

observe an increase in CP at the expense of W’ and vice versa after a period of training 

(Jenkins and Quigley 1992; Vanhatalo et al. 2008). Although similar changes in 2max and 

MAP were observed after SIT and BFR in Chapters 5 and 6, it remains to be investigated 
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whether those in the BFR condition in Chapter 5 would have experienced similar increases in 

CP and W’. Nevertheless, the data reported in these two experimental chapters suggests this 

training regime could have application for endurance athletes or in specific scenarios where 

athletes’ competing in sports highly reliant on anaerobic capabilities, seek rapid gains in 

aerobic physiology and performance such as an athlete who is transitioning from a sprint to 

an endurance disciplines. Furthermore, these findings could have implications for the athlete 

seeking a novel training stimulus to fast track their return from an injury/illness setback.        

 

7.4 Limitations  

There are a number of limitations to the studies within this thesis, many of which have been 

alluded to in the respective experimental chapters and above. The most significant limitations 

to the thesis are that direct assessments of capillary density were not made before and after 

the training interventions and that the angiogenic response was measured only at the level of 

mRNA. Indeed, numerous studies have shown that VEGF mRNA levels are increased in 

human and rodent skeletal muscle after various exercise protocols, whether blood flow is 

restricted or intact (Jensen et al. 2004a; Leick et al. 2009; Hoier et al. 2012; Larkin et al. 

2012; Hoier et al. 2013b). Whilst exercise-induced VEGF mRNA increases are clearly 

important, it remains to be elucidated whether this is a necessity for the secretion of VEGF or 

whether it serves to replenish VEGF protein stores during recovery after exercise (Hoier et al. 

2013b). Hoier et al. (2013a) reported that while intermittent high-intensity cycling exercise 

induced greater mRNA elevations of angiogenic factors (including VEGF) compared to 

moderate-intensity continuous cycling, the latter protocol resulted in greater acute elevations 

in muscle interstitial levels of VEGF. Moreover, muscle interstitial fluid obtained during the 

moderate-intensity protocol induced greater proliferative effects on endothelial cells in vitro 
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than fluid obtained during intermittent high-intensity protocol. Indeed, measuring the release 

of VEGF would provide valuable insight into the angiogenic potential of the protocols 

employed in the studies reported throughout this thesis. In general, a more detailed 

measurement of pro- and anti-angiogenic factors would have provided valuable information 

to help determine the modulation and morphology of capillary growth with BFR exercise 

training. Moreover, given that the induction of VEGF by PGC-1α in the context of ischemia 

and exercise can occur independent of HIF-1α (Arany et al. 2008), more robust HIF-1α data 

would have been warranted.   

Another potential limitation to the experiments reported in Chapters 3, 4 and 5 is the timings 

of post-exercise biopsy sampling and the absence of measurements of protein expression 

reflective of mitochondrial biogenesis and angiogenesis in the hours and days that followed 

each protocol. It is plausible that trained individuals have the same upregulation of mRNA 

after training, but smaller changes in mitochondrial and angiogenic protein expression and 

function compared to less fit individuals and this warrants further investigation. Moreover, it 

would have been interesting to determine whether cumulative transient greater increases in 

mRNA transcript (following each BFR exercise bout) can encode new protein to augment 

basal levels of PGC-1α, as this can enhance angiogenesis and exercise capacity (Tadaishi et 

al. 2011). Nevertheless, given it has previously been demonstrated that increases in mRNA 

expression for the vast majority of the genes measured through this thesis peak between 1-6 h 

after intense exercise (Pilegaard et al. 2003; Nordsborg et al. 2010; Hoier et al. 2012; Bartlett 

et al. 2012; Hoier et al. 2013a; Hoier et al. 2013b), suggests that the timing of post-exercise 

biopsies (i.e. 3 h into recovery) were appropriate. 

Regarding research design, clearly the absence of a control condition in the elite athlete case 

study (Chapter 6) significantly reduces the scientific rigour of this case study, preventing 



127 

 

direct comparisons to be made on the effectiveness of BFR compared to non-restricted SIT. 

Furthermore, a limitation to Chapters 4, 5 and 6 is that the level of BFR was set at an 

identical pressure for all participants irrespective of thigh circumference. Whilst there is no 

doubt that the cuff pressures administered throughout this thesis resulted in BFR, the  

efficacy of BFR exercise is achieved by balancing the level of blood flow restriction, with an 

appropriate level of muscle activation and fatigue (contractile/metabolic impairment), so as to 

ensure an appropriate stimulus (Yasuda et al. 2008; Fahs et al. 2012). Indeed, maximum 

voluntary contraction decreases in proportion to the level of BFR and the level of restriction 

will influence hemodynamic signals, oxygen and nutrient delivery, and the accumulation, 

clearance and re-synthesis rate of metabolites during exercise (Sahlin et al. 1979; Takarada et 

al. 2000; Karabulut et al. 2011). These in turn will have implications on the specific 

adaptations that transpire to a given BFR training protocol. For example, increases in muscle 

mass maybe proportional to the level of metabolic stress under ischemic conditions (Takada 

et al. 2012) and capillary growth appears proportional to metabolic activity (Adair and 

Montani 2010). Ensuring an equal and appropriate level of BFR between participants is 

therefore important to achieve consistent gains from exercise training and thus future studies 

employing BFR using inflatable blood pressure cuffs should administer individualised 

pressures.  

 

7.5 Practical implications and future directions  

As with all research in any field, the investigations undertaken within a doctoral thesis should 

generate far more questions than they were created to answer and this thesis has indeed paved 

the way for future research to answer questions we were unable to. Given the novelty of the 

protocols and interventions employed here, there is clearly scope for future research to be 
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conducted as a result of the studies herein which should not be limited to athletic populations. 

Firstly, there is a need to further investigate the importance of the intermittent nature of 

SIT/HIT on the many beneficial structural and functional adaptations and performance 

enhancements observed in response to this type of training (MacInnis and Gibala 2016). In 

order to assess this, a series of randomised controlled trials in the form of training studies 

employing between-groups research designs are required. One reason to investigate this 

further is that the less complicated and time-consuming an exercise protocol, and indeed the 

less work needed to reap beneficial rewards, the more interest a training protocol will surely 

receive. Indeed, from a health perspective ‘a lack of time’ is repeatedly cited as the primary 

barrier preventing the public from achieving physical activity participation guidelines (Stutts 

2002; Kimm et al. 2006).  

Secondly, this thesis has demonstrated that the ‘classic’ SIT model and just 2 min of 

continuous ‘all-out’ exercise holds angiogenic potential. Indeed, it remains to be elucidated 

whether, if repeated over time, this brief exercise stimulus is capable of increasing the 

microvasculature as has been observed after SIT in sedentary males (Cocks et al. 2013). In 

light of two previous studies reporting that an increase in exercise intensity and reduction in 

training volume provides a weak stimulus for capillary growth (Hoier et al. 2013a; Gliemann 

et al. 2014), Gliemann (2016) has suggested there may be a ‘Janus-faced’ role of exercise 

intensity in peripheral adaptation, such that high-intensity exercise is required for increases in 

mitochondrial respiration and content (for support of this see review by Hughes et al. (2017),  

and high-volume continuous exercise for capillary adaptation. Support for this can be gleaned 

from observations in rodent models. Rodents who are permitted to exercise at their discretion 

run between 5-10 km/day, rarely exceeding 25% of maximal effort and experience capillary 

growth within days. Conversely, rodents who are forced to exercise do so for less than half 

the duration and at double the intensity when compared to voluntary exercise and yet take 
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weeks if not months to experience capillary expansion (Olfert et al. 2016). The mechanisms 

at play that underpin these findings remain to be fully explored, however one possible 

explanation could be that the shear stress experienced during brief ‘all-out’ exercise is 

relatively short-lived (albeit high). Given that shear stress-induced angiogenesis results from 

the duration and magnitude of shear stress exposure, this would presumably provide a 

plausible explanation for why higher volume exercise appears superior to higher intensity, 

lower volume stimuli for promoting capillary growth. Additionally, it is possible that a 

greater release of anti-angiogenic factors (such as TSP-1 and TIMP-1) following higher-

intensity exercise (as has been reported previously by Hoier et al. (2013a)) triggers a halt on 

expansion of the capillary network. Thus, future studies investigating the impact of HIT and 

SIT on angiogenesis should explore the role of anti-angiogenic factors. Taken together, the 

above clearly stresses the need for additional randomised control trials employing both 

between-groups and repeated measures research designs and combining sophisticated muscle 

analysis techniques to assess whether ‘all-out’ exercise can increase the C:F ratio in the 

working muscles.  

The research conducted in this thesis has merely scratched the surface into the potential 

concept of combining SIT with BFR to promote improvement in athletic performance. There 

is now a requirement for continued work in this area to further examine central and peripheral 

adaptive responses to this concept and further our understanding of the time course of 

adaptation and intensity of this stimulus. In this regard, future research should focus on 

further optimising the exercise and BFR exposure by manipulating cuff pressures, timing and 

amount of BFR exposure to ultimately ascertain the optimal blend of exercise and BFR to 

elicit the greatest training response. Whilst the beneficial impacts of HIT, SIT and BFR on 

physiology and performance transpire relatively rapidly (i.e. after only a few days in some 

instances), adaptations to these type of training also appear relatively short-lived and in some 
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instances, rates of adaptation are quick to plateau (Jensen et al. 2004a). Indeed, a challenge 

for sports and exercise scientists is the transfer and application of results from short-term 

training interventions, such as those included in this thesis, to long-term physiological 

development and training periodisation. In light of this, longer-term (> 4 weeks) 

investigations into the effects of repeated exercise combined with BFR are warranted to 

assess rate of adaptation and stagnation to this type of exposure.  

In summary, the outcomes reported in this thesis present practical applications for the full-

time athlete seeking greater return on their training investment and the recreational athlete 

aiming to achieve a personal best in their local village TT. The findings hold potential health 

implications for the sedentary individual who states the previously mentioned ‘lack of time’ 

as the primary barrier preventing them from achieving physical activity participation 

guidelines. Indeed, if manipulated appropriately, these protocols may also present important 

health benefits for those with metabolic and vascular related disorders, such as those 

suffering from insulin resistance and essential hypertension. This requires evidencing and 

thus the research designs, methods and protocols employed in this thesis should in the future 

be tested across the aforementioned participant cohorts; 1) so that the efficacy of BFR and 

non-BFR ‘all-out’ interval and continuous exercise can be examined in these populations and 

2) to further our understanding of the potential mechanisms of action involved. The latter 

reason is of particular importance as it is this that will ensure these protocols and 

interventions are optimised further for both athletic and clinical application. Nevertheless, 

Chapters 4, 5 and 6 have introduced and provided preliminary evidence for a new training 

concept, which in years to come could be utilised by athletes and coaches in a similar manner 

to, or in conjunction with, other training strategies (e.g. hypoxic training, low-carbohydrate 

training, heat-stress exposure) targeted at giving athletes more ‘bang for their buck’. 
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