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Abstract

In this thesis, we classify finite orbits of the action of the pure braid group
over a certain large open subset of the SLy(C) character variety of the Rie-
mann sphere with five boundary components, i.e. ¥5. This problem arises
in the context of classifying algebraic solutions of the Garnier system Go,
that is the two variable analogue of the famous sixth Painlevé equation PVI.
The structure of the analytic continuation of these solutions is described in
terms of the action of the pure braid group on the fundamental group of 5.
To deal with this problem, we introduce a system of co-adjoint coordinates
on a big open subset of the SLy(C) character variety of ¥5. Our classifica-
tion method is based on the definition of four restrictions of the action of
the pure braid group such that they act on some of the co-adjoint coordi-
nates of X5 as the pure braid group acts on the co-adjoint coordinates of the
character variety of the Riemann sphere with four boundary components,
i.e. Yy, for which the classification of all finite orbits is known. In order
to avoid redundant elements in our final list, a group of symmetries G of
the large open subset is introduced and the final classification is achieved

modulo the action of G. We present a final list of 54 finite orbits.
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Introduction

The topic of this thesis is the classification of finite orbits of a certain action
of the pure braid group on the SLy(C) character variety of X5, i.e. the

Riemann sphere with five boundary components:
Mg, := Hom(7m(25), SLy(C))/SLy(C).

After fixing a basis of oriented loops 71,...,71,v% for m(2Z5) such that
Yol =71+, as in Figure 1, an equivalence class of an homomorphism in
the character variety Mg, can be determined by the five matrices My, ..., My,
M, € SLy(C), that are images of 71, . .., V4, V0. These matrices must satisfy
the relation:

Moo My M MyMy = 1, (1)

up to global conjugation. Assuming M, diagonalizable, then by (1) and

global conjugation, M., can be brought to diagonal form:

MOO = 5 0@ € C.

vil



viil

Y1 Ya Y3 Ya
Figure 1: The basis of loops for m(35).

As a consequence the character variety Mg, is identified with the quotient

space M\QQ, defined as:

Mg, = {(M,..., M) € SLy(C)| Mo My MMM, = 1,

My, = diag(e™™) }/~,  (2)

where ~ is equivalence up to simultaneous conjugation of My, ..., M, by a

diagonal matrix in SLy(C). The action:
By x M\gz — M\gzv (3)

of the braid group Bs on an element in M\QQ is defined in terms of the

following generators:

o1 : (M17M2>M37M4) = <M27M2M1M51>M37M4)7
oy : (My, My, Mz, My) — (My, M3, M3 Mo My, M,), (4)

o3 ¢ (M, Mo, My, My) > (My, My, My, MyM3M; ™),
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so that My, is preserved and the generators o; satisfy the following braid

relations:
0103 = 0301, 010201 = 020102, 020302 = 030203.

In this thesis, we classify finite orbits of this action (actually of the action

of the pure braid group Py < By) on the space ./T/l\g2.

In Chapter 2, we show that this problem arises in the context of classi-

fying algebraic solutions of the 2 x 2 Schlesinger equations in four variables:

Al . . i 1
0, _ A4 iAi:_Z[AZ,AJ]Jﬂi,j:1,...,4. (5)

A 4l )
an U; — Uy &‘ul

i T Y

These equations are the isomonodromic deformations equations of the fol-

lowing Fuchsian system with five singularities w1, . .., u4, o € C:
dv A A A A
—=< L T L. )\I/,ZEC\{Ul,...,U4}, (6)
dz Z—U Z—Uy Z—U3 Z— Uy

where the residue matrices A;, for i = 1, ..., 4, are traceless and the residue

at infinity, i.e. A, defined by:

Ap = — (A1 + Ay + A3 + Ay),

is assumed to be diagonal:

Solutions A;(u), where u = (uy, ..., u4), of (5) locally are (up to Backlund



transformations) in one to one correspondence with points on M\QQ. The
analytic continuation of the solution A;(u) along a loop on the universal
cover of the configuration space of four points, i.e. C*\{diags}, corresponds
to another point on M\QQ that is given by the action (4) of the braid group
on (My,..., M), as introduced by Dubrovin-Mazzocco in [DMO0] for the
Schlesinger equations in three variables. Then, by the generalization due to
Cousin [Coul6] of the results of [DMO00] and Iwasaki in [Iwa03], algebraic

solutions of (5) must correspond to finite orbits of the action (4).

System (5) is equivalent to the Garnier system Gs:

al/]' _(}Kz . _12
Y Y

ou;  Opj” b= (7>
(9p' oK;
(’)uji = *a_uj’ 1,] = 1727

defined in Chapter 2, that is the two variables analogue of the famous
Sixth Painlevé equation, PVI: to be more precise, the Garnier system G, is
the reduction of the Schlesinger equations (5) to Darboux coordinates on
the symplectic leaves. Therefore finite orbits will correspond to algebraic
solutions of the Garnier system Gs, see [Coul6]. The simplest example of

algebraic solution of G is given by Tsuda in [Tsu06]:

~ ~ inaz' 900 .
iy Pi) = sy~ i~ | = 1727
<V ,0) ( Oop 2\/%‘) '

that is algebraic for 3 = 04 = 5 and it satisfies (7) after a suitable change
of variables (v;, pi,u;) — (¥, ps, U;). In our classification we are going to
exclude both cases either when the monodromy group (My, My, M3, My)
is reducible or there exists an index ¢+ = 1,...,4,00 such that M; = +1.
Indeed if the monodromy group is reducible the associated solution of Gy

can be reduced to classical solutions in terms of Lauricella hypergeometric
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functions as proved by Mazzocco in [Maz0la]. Moreover, in case M; = +1
for some index 7, again following [Maz01a], the solution of G, can be reduced
to a solution of PVI. This leads us to define the following big open subset
Uc M\gQ:

U={(M,..., My) e Mg,|(M,,..., My) irreducible,

M;#+1,Vi=1,...,4,}/ ~.

To explain our classification result, we identify the open subset & with an

affine algebraic variety:

Lemma 1. Let the functions p;,p;;,pijr be defined as:

pl :TrMZ; i:17...,4’
Dij = TI'MZM]7 Z,] = 1,,4, 7 > j, (8)
Dijk = TI‘MZ'Mij, i,j,k = 1,...,4, 1> ] > /{Z,

Do = Tr MyMzMyM;,

then for every choice of pq, ..., ps, P, the open subset U is a four dimen-

sional affine algebraic variety isomorphic to:

C[p21,p31, P32, P41, P42, P43, P321, P432, P431, p421]/l, (9)

where the ideal I is the ideal generated by the polynomials fi,..., fi5 de-
fined in (1.53)-(1.67).

Therefore, we think of p;,p;;,pijr as an overdetermined system of coordi-

nates on a big open subset U < M\QQ and we express the action (3) in terms

of p; yPij Pijk-
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Lemma 2. The transformations o; : M\gg — M\g2 act on the coordinates

PisPij-Pijk in the open subset U as follows:

01 :(P1, P2, D3, Pay Peos P21, P31, P32, Pal, Paz, P43, D321, Pas, Pas1, Paz1) =
(P2, D1, P3, P4, Poo, P21, P32, P1P3 — P31 — Pa1P32 + PaP3at, Paz,
D1P4 — P41 — P21P42 + D2P421, P43, P321, P1P43 — P431 — P21P432 + P2Poo,
P32, Paz1),

03 :(P1, P2, D3, Pa> Peos P21, P31, P32, Pal, Paz, P43, D321, Pas, Pas1, Paz1) =
(P1, P3, D2, P4, oo, P31, P1P2 — P21 — P31P32 + P3Ps21, P32, Pal, P43,
D2P4 — D42 — P32P43 + P3P432, P321, P432, P2P41 — P421 — P32P431 + P3Poos
Pa31),

03 :(P1, P2, D3, Pa> Deos P21, P31, P32, Pal, Paz, P43, D321, Pas, Pas1, Paz1)
(P1, P2, P4y P3, oo, P21, P41, Paz, P1P3 — P31 — Pa1Pa3 + Pabasi,
D2P3 — P32 — P4a2P43 + PaP432, P43, Pa21, P432, Pa31,

D213 — D321 — Pa21P43 + PaDeo), (10)

and they define an action of the braid group Bj.

Hence, our problem can be reformulated as: find all p;,p;;,pi;x in the big

open subset U such that:
e they satisfy the constraints given by I in Lemma 1,
e their orbit under the action of the pure braid group P; is finite.

Our approach is based on the observation that given p;,p;;,pi;r such that
they generate a finite orbit under the action of the pure braid group Py,
then for any subgroup H < P, the restriction of the action to H produces a

finite orbit as well. Such restriction only acts on some of the p;,p;;,pi;x and
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leaves others invariant. We select subgroups H < P, acting on the set (9)
so that the restricted action is isomorphic to the action of the pure braid
group P on the SLy(C) character variety of Y4, i.e. the Riemann sphere
with four boundary components, for which all finite orbits are classified in
Lisovyy and Tykhyy’s work [LT14].

Furthermore, we show that there exist four restrictions Hy, ..., Hy iso-
morphic to P3. Each one of these restrictions allows us to identify some
of the p;,pij.pijx with coordinates on the SLy(C) character variety of X,
as in Table 1: each line shows which p;,p;;,pi;r can be found by imposing
that the restriction gives a finite orbit of P;. We recall the list of all finite
orbits of the action of P53 on the SLy(C) character variety of 3, in Chapter 3.

‘ H N ‘pQ ‘pB ‘ P4 ‘poo ‘pm ‘P31 ‘psz ‘ Pa ‘p42 ‘p43 ‘p321 ‘ Pa32 ‘P431 ‘p421 ‘

H, o] o e . o | o .
Hy | o o | e . . . .

Hy | e | e . . o | o .
Hy | o] oo o | o | o .

Table 1: Action on p;,p;;,pijr defined in (10) of subgroups of P, isomorphic
to Pg.

In order to avoid redundant solutions to this classification problem, such
as for example equivalent solutions obtained by simple cyclic relabelling of
indices in (8), in Chapter 2, we introduce the symmetry group G of the big
open subset U and factorize our classification modulo the action of G. The
symmetry group G can be calculated using known results about Backlund
transformations of Schlesinger equations (5) and permutations and sign flips

on the monodromy matrices.
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In Chapter 4, we present a list of 54 finite orbits of action (10) obtained
up to the action of the group of symmetries G. Due to the identification of
each action of the restriction H; (determined by the rows in Table 1) with the
finite action of Pj over the SLy(C) character variety of ¥4, we can associate
to each restriction an algebraic solution of PVI (see [DM00, Iwa03, Coul6,

LT14]). Then in our list each orbit’s member has the following properties:

e no more than one restriction (determined by the rows of Table 1) is
associated to algebraic solutions of PVI obtained by the pull-back of
the hypergeometric equation, see Doran [Dor01] and Andreev-Kitaev

[AK02],

e no more than one restriction corresponds to the so-called Picard solu-

tions of PVI, see the work of Picard [Pic89] and Mazzocco [Maz01b].
Moreover, we do not allow any orbit’s member such that:

e one restriction is associated to algebraic solutions of PVI obtained by
the pull-back of the hypergeometric equation and another restriction

is associated to the so-called Picard solutions of PVI.

Accordingly, our solutions do not include the before mentioned solution
obtained by Tsuda in [Tsu06] as a fixed point of a certain birational sym-
metry of Gy, nor the solutions found by Diarra in [Dial3], who presents all
finite orbits that can be obtained using the method of pull-back introduced
in [Dor01] and [AKO02], nor the one found by Girand in [Girl6a, Girl6b],
who presents two-parameter families of algebraic solutions of Gy obtained
restricting a logarithmic flat connection defined on the complement of a
quintic curve on P? on generic lines of the projective plane, these solutions

have at least two restrictions obtained by pull-back of the hypergeometric
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equation.

From the monodromy data M;,..., My, it is possible to recover the
explicit formulation of the associated solution of Gy using the method de-
veloped by Lisovyy and Gavrylenko in [GL16] of Fredholm determinant
representation for isomonodromic tau functions of Fuchsian systems of the
form (6).

The shortest finite orbit classified has length 36, for this reason the as-
sociated algebraic solution of Gy has eventually 36 branches and we doubt

that the expression of this solution can have a nice and compact form.






Chapter 1

Action of the braid group B,

on ./\/lg2 and restrictions

In this Chapter we are going to describe in details the action:
P4 X Mg2 | — Mg2, (1]_)

of the pure braid group P, on Mg,, i.e. the SLy(C) character variety of
the Riemann sphere Y5 with five boundary components. In Theorem 3,
Lemma 4 and Proposition 5, we will show that there exists a system of co-
adjoint coordinates p;, pi;, pijr on a big open subset U of Mg,. Furthermore,
in Theorem 6, the big open subset U is identified with an affine algebraic

variety that is the zero locus of a particular family F of polynomials.

In Section 1.2, the action (1.1) on p;, p;j, pijk is presented explicitly in
Lemma 10. In Section 1.3, the problem is reformulated as the classification
of finite orbits of the P, action over the p;, p;;, pijr such that they are in the

zero locus of F.

Moreover, in Section 1.4, we discuss the methodology used to achieve

1



2 Chapter 1

this classification problem: indeed, if p;, p;j, pijr are known such that they
generates a finite P, orbit, then for any subgroup H < P, the action of H
over p;, Pij, Pijk Still generate a finite orbit. In Theorem 12, we identify four
subgroups Hi,..., H, acting as the pure braid group P3 over the SL,(C)
character variety of the Riemann sphere ¥, with four boundary components,
that we will denote Mpy: so that we can use the classification result

obtained by Lisovyy and Tykhyy in [LT14].

1.1 Co-adjoint coordinates on Mg,

We identify the character variety Mg, with the quotient space:
Mg, = {(My, My, My, My) | M; € SLy(C), M, MyMsMyMy =1}/ ~,

where ~ is equivalence under global diagonal conjugation. Without loss of
generality, the matrix M., can be brought to diagonal form:

My = , 0 €C, (1.2)

then, since the trace of My, is a given parameter, Mg, is an eight dimen-
sional affine algebraic variety: indeed each M; is an element of SLy(C), up
to global diagonal conjugation, and My, ..., M, satisfy the cyclic relation
My MyMsMsM; =1 and (1.2).

It is possible to endow the space of functions on Mg, with a system of
co-adjoint coordinates, this is a generalization of a result proved by Iwasaki

for the Sixth Painlevé equation [Iwa03]:

Theorem 3. Let (My,..., M,) € M\gQ and define the following complex
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quantities:

(p1,p2,p3,p4,poo,p21,p31,p327p41>P427p43,p3217p432>p431,p421) € C15> (1-3)

to be:
pz:TrMh izl,...,47
pij = Tr M; M, ,7=1,...,4, i > j,
pl‘jk:TI'MiMij7 i,j,kzl,...,4, i>j>k?,
Do = Paza1 = 1o MyMs MM, . (1.4)

Let g(z,y,2) := 22 + y* + 2% — zyz — 4, then in the open subset:

(0)
: MgZ N {(pjk 4)g(p]k7p€7pjk€> 7 0}7 (1‘5>
the matrices M, ..., M, can be parametrized as follows:
ijé—l’é)‘j_k ng,m,p]kz
PM,P! = "k N (1.6)
1 pjke Pz Pjke—PeAjy
P pkA]k Yk y]l)\Jk
PM, P~ "k : (1.7)
Ykl — yJMJk Dj P/J\Jk
ng;PZ,nge
_ PE=PjA Y yklkjk
1 T]k
PM,;P~ o , (1.8)
J1 =Ykl ik Pk— pj
9(Pjk,pe,Djke)
p1]k pz ]k y1l+y23kl>‘Jk
PM;P~! 1.9
! yzl+y2]kl)‘jk pljk p’L ]k ’ ( )
(Pjk,Pepjxe)
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alternatively on the open subset:
A 2
= Mg2 M {(pjk

the matrices M, ...,

—4)g(pj, pr, pjr) # 0},

M, can be parametrized as follows:

Djke—PeA;y, ykl*yjl)\jk
- 2
-1 Tik re
PM,P™ = o ik ,
Yei—YiiAje  Pike—Pedjy
g(pjk:pjypk) Tk
p]_pk)\jk) p]k)yp]7pk
1
PM, P~
Dpj pk)‘]k
_ Pr—PjA p]k pj pk)/\Jk
PM,P™"' =
Pk p]
Pijk— DiA Jk yzk yzj
— Tik
PM,; P! J
Yik—Yij A ngk pz ]k
P]k,P]’Pk)

and on the open subset:
2 —~
uy(k) = Mg, n {(p?k

the matrices My, ...,

—4)9(pjk, pi, Piji) # 0},

M, can be parametrized as follows:

Djke—PeA _ Yir ikl A
2
—1 Tik re
PM,P~" = . e
Yil H ikl Ay _ije—pekjk
9(Pjk-PiPijk) Tk
Py —pkkjk Yk~ Yii A
2
_ Tik T
PM,P 1 = - ik _ ,
Yik—Yij A Pi—PrAj
9(PjkDi\Pijk) Tik

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)
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PPN _yij—y;wfk
PM;P~" = yﬁ_y’iggk pk_;jf\;k , (1.18)
9(Pjk Pi,Pijk) Tik
Pijk—PiNj, 9Pk i Pijk)
PM,P~! = Tgl'k _pijkij;i)\;k ’ (1.19)
"
where P € GLy(C) and:
M = Pik ;r ik Ay = /\Lfk’ (1.20)
Tik 1= /P, — 4, (1.21)
Ykt = 2Pke + PjkPie — PiPjke — PkPes (1.22)
Yji = 2Dje + PjkPre — PkDjke — DjPes (1.23)
Yik = 2Di, + DijPjk — DjDijk — PiPk, (1.24)
Yij = 2pij + PikDjk — PkPijk — PiDjs (1.25)
Yil := 2P + PijkPjke — PikDijke — Pibes (1.26)
Yijkl := 2Pijke — PaDjk — PiPjke — PijkPe + DiDjkDe- (1.27)

Proof. Consider (M, ..., My) € M\gz. We are going to prove that there
exists a parametrization of M, ..., My in terms of the invariants p;, pij, pijk
in the open subset u}fj) = M\QQ N {(p?k — 4)9(pjk, es Djke) # 0}. For the

parametrizations on the open subsets Z/{]%) and L{ﬁ) a similar proof applies.

Under the generic hypothesis that there exist two indices j and k such
that p;, # £2, the product M;M;, has two distinct eigenvalues )\;—Fk, namely:
_ DPjk + Tk _ 1

+ —
/\jk = T 5 Ajk - )\4_ ’
ik

5 ik = A/D5 — 4, (1.28)

where the positive branch of the square root is chosen. Consequently, there
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exists a matrix P € GLy(C) such that the product matrix M;M; can be

brought into diagonal form:
Ajg := P(M; M) P! = diag{)\jk, Ajkts (1.29)
and we conjugate by P the matrices M, My, M;, M, as follows:

P(MkaanuMi)Pil = (Ua‘/awv T) (130>

Since, W = A, V!, we proceed with the parametrization of the matrices
U,V,T. First, we parametrize the diagonal elements of U, V,T. Indeed,
solving the equations TrU = p, and Tr A;;U = pji, we get the diagonal

elements of U:

Dike—DeA ),
un = =,
g (1.31)
Pjke—PeN],
U - JRE “ Nk
22 I—

Next, solving the equations TrV = p;, and Tr AV~ = p;, we obtain the

diagonal elements of V:

PPN
b = T
" (1.32)
v _ PiTPrAj
22 e

Finally, equations TrT" = p;, and Tr TWV = TrT'Aj;, = p;jx, determine the

diagonal elements of 7"

_ Dijk—PiAy,
tn = ——",
. (1.33)
t _ ijk ik
22 e

At this point, we calculate the off-diagonal elements of U, VT respec-
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tively. Consider the matrix U. Once calculated the diagonal elements of U,

since det U = 1, then the following identity holds:

ity — — IPa PesPint) (1.34)

and we suppose g(pjk, Pe; Pjre) # 0. This leads us to define the open subset

U ;,2) , as follows:

UJ(;?) = M\gz N {(P?k — 4)g(Pjk; D, Pjre) # 0}, (1.35)

Moreover, note that, since P is unique up to left multiplication by a diagonal
matrix D € GLy(C), we are allowed to fix ug; = 1. Then equation (1.34)
gives us the element wu;5. Next, consider the matrix V. The system of
equations Tr VU = pge and TrA;V'U = pj, gives us a parametrization
for the off-diagonal elements of V:

vz = _yik:‘?j)\;}c’ (1.36)

 Yik—Yig A

v _ - 77 Ir
21 9Dk -Dijk)’

where y;, and y;; are defined in (1.24) and (1.25) respectively. Finally we
calculate the off-diagonal elements of the matrix 7. Consider the system
of equations TrTU = p;y and Tt TWVU = Tr TAj,U = p;jke, then we have

the following parametrization for t15 and to;:

Yir+ijri Ay
_ = ;
o (1.37)
Vit Yk Ay,
9(PjkPesPjke)’

t1g =

to1

where y; and y; ;i are defined in (1.26) and (1.27) respectively. This con-
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cludes the proof. O

Theorem 3 shows that p, defined in (1.3), parametrizes the following
open subset of M\gQ:
Juy) ouy) vu (1.38)

>k
We now show that, when the monodromy group is not reducible, and none
of the monodromy matrices My, ..., M, is a multiple of the identity, it is
possible to parametrize the monodromy matrices in terms of p, defined in

(1.3) and (1.4), also outside of the open subset (1.38).

Lemma 4. Let (M, ..., M,y) € M\QQ and define the complex quantities (1.3)
as in (1.4). Assume that: none of the matrices M, ..., My, is a multiple of
the identity, the monodromy group is not reducible, and p;; # +2 for at

least one choice of 7 # k, j,k =1,...,4. Moreover, assume that

9(jk, e, Pike) = 9(Dj, Prs D) = 9(Pjks Dis Pijie) = 0, (1.39)

then there exists at least an index ¢ for which py, # Ao + ﬁ and a global
conjugation P € GLy(C) such that:

T (1.40)
k - 1 ’ .

0 =
A=A

PM;PT = | “ . (1.41)
05

L e 0
PM,P! = Nl (1.42)

Pk — ANeAk — )\Z/\k IV
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py 0 ;
R for py = Aide + o
Pik = Ak~ Xy N
PM;P~! =3
piz*)\i)‘ffrlkg
A
Pik—AeAk PYSY , for Dit # Aide + ﬁ)\é’
0 1
\ A
(1.43)

Where)\s+i=ps,Vs=1,...,4.

Proof. Proceeding as before, we bring the product matrix M;M;, into the
diagonal form (1.29). Condition (1.39) implies that the following equations

must be satisfied:

(M1)12(M1)21 = (M2)12(M2>21 = (M3)12(M3)21 = (M4)12(M4)21 = 0.

By global conjugation by a permutation matrix, we can assume that (Mj )12 #
0 and then by global diagonal conjugation we can put My, in the form (1.40).
Then, since M; = A;z M, " we immediately obtain (1.41).

Now, since the monodromy group must be irreducible, one of the two
remaining matrices, call it M,, must have non zero 21 entry. Then since

Tr(M,My) = py., we obtain (My)ey = pye — AeAx — T{\k # 0, and therefore:

Ae 0
M, = )

1
Pk — Ak VDY

Now, if the last matrix is also lower triangular, by imposing Tr M; M, =
pik, we obtain the first formula in (1.43), and it is immediate to check
that py = N + ﬁ\[ Otherwise, if M; is upper triangular, by imposing
Tr M; M, = p;;, we obtain the second formula (1.43), and it is immediate to
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check that p; # A\ A + %\[ O

Proposition 5. Let (M, ..., My) € M\QQ and define the complex quantities
(1.3) asin (1.4). Assume that: none of the matrices My, ..., M, is a multiple
of the identity, the monodromy group is not reducible, and pj; = 2¢j;, for
all j,k = 1,...,4, where ¢;;, = +1. Then, if at least one matrix M; is
diagonalizable, there exists a choice of the ordering of the indices ¢, 7, k,{ €
{1,2,3,4} and a global conjugation P € GLy(C) such that the following

parametrization holds true:

1 >\l 0 1
PMZP = L s )‘z #* il, /\z + )\— = Di, (144)
A_»L' (2
Cope—2eph (prAi—eri (A2 41))3
PMP~" = AL (712 (1.45)
1 i (PrNi—2€k:) ’ '
A2—1
_pj_225ji)\i
PM;P" = At (1.46)

(A2 —1) 2k —Pik; Xi) + (P Xi—2€r:) (P Ni —2€5i)
(PrAi—eri(AZ+1))?

 A2(pri—2erd) (pjAi—2€50) F A (A2 =1) (Piy —2€p; M)

(A7-1)?
Ai(pjNi—2¢;i) ’
A2—1
_m
PM,P~' = Al (1.47)

(A2 =1)(2ep1—piriAi) +(PeAi —2€xs) (PeAi —2€14)
(PrAi—€ri(A241))2
A2 (P di—2eki) (PeXi—2€1) +Xi (A7 = 1) (Digt —2¢ek1\i)
(A7-1)2

i (peXi—2¢€3)
A2—1

If none of the monodromy matrices is diagonalizable, then there exists a
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choice of the ordering of the indices i, 7, k, ¢ € {1,2,3,4} and a global con-
jugation P € GLy(C) such that the following parametrization holds true:

. € 1 . € 0
PM,P" = . PM;P' = , (1.48)
0 €; 465]' €5
Dijk—2€i€j —2€1€;+2€;€ €L €jk—€5€k
PMkP—l _ de;j; 2¢;5
2(€z‘k o €i€k> 25ik€j+25jk€i+84€ij€k_25i€j5k_pijk
€55
(1.49)
pijl726i16j726j162‘+267;6j6g €j1—€5€¢
_ de. - 2.
PMP™" = e 248y - (150)
o €i1€j+2€51€;+8€; €0 —2€;€j€0—Djj;
2(ey — €i€q) oo

Proof. First, let us assume that at least one matrix M; is diagonal and work

in the basis in which M; assumes the form (1.44) with \; # £1.

Let j # 1, then we have a set of linear equations in the diagonal elements
of Mji
Tr (M;M;) = 2¢j;, TrM; =p;, €;=*1

?

that it is solved by

(Mj)1 = _J)\Z—_]1’ (M) = , (1.51)

(3

for j=1,...,4, 5 #1i.

Since the monodromy group is not reducible, there is at least one matrix
My, k # i such that in the chosen basis, (M})21 # 0, then we use the freedom
of global diagonal conjugation to set (Mj)s = 1. Since det(My) = 1 we
obtain the formula (1.45). Observe that:

(prAi — eri( A2 +1))?

oo 7Y
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otherwise p, = €;p; and by using Tr M; M, = 2¢;; we would find \; = +1.
We now deal with the other two matrices. We only need to find the
off-diagonal elements of these matrices. To this aim we use the following

equations for s = j, ¢:

Tr(MsMk:) = 2€sk7 Tr(MszMs) = Diks,

which, combined with (1.51) lead to (1.46) and (1.45). This concludes the
proof of the first case.

To prove the second case, assume none of the matrices My, ..., M, are
diagonalizable, then eigen(M;) = {e;, ¢}, Vi = 1,...,4, where ¢, = +1. Let
us choose a global conjugation such that one of the matrices M; is in upper
triangular form as in (1.48).

Now, since the monodromy group is not reducible, there exists at least
one j such that (M;)a; # 0. From Tr M;M; = 2¢;; we have 2¢;¢; + (M;)a =
2¢;5, so that (M;)2; # 0 implies ¢;¢; = —e¢;;. We perform a conjugation by a
unipotent upper triangular matrix to impose (1/;)12 = 0, so that the second
equation in (1.48).

For all other matrices we use Tr M;M, = 2¢;; and Tr M; M, = 2¢js,
s =k, { to find:

(Mo =20 = i) (Mo = 2,
From Tr M, = 2¢, and Tr(M;M; M) = p;;s we find the final formula (1.49)
for s = k and (1.50) for s = ¢ respectively. O

In the following Theorem we show that Mg, can be identified with an

affine algebraic variety that is the zero locus of a family F of 15 polynomials
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in the ring:
Clp1, P2, D3, Pa, P21, P31, P32, Pa1, Da2, Da3, D321, P32, Dast, Pa21 |- (1.52)

Theorem 6. Consider m := (My,..., M) € M\gz.

(i) The co-adjoint coordinates of m defined in (1.3) and (1.4) belong to
the zero locus of the following 15 polynomials in the ring (1.52):

f1(p) :=psaps1pa1 + p§2 + p?ﬂ + P§1—
(p1p321 + Daps)ps2 — (P2ps21 + P1P3)Ps1—

(psps21 + P1p2)pa1 + D3 + D3 + DT + Paor + P3papipsar — 4,
(1.53)

f2(p) :=paoparpar + p?m + pzzu + P§1_
— (p1pa21 + papa)paz — (PoPao1 + P1Pa)Pa1—

(papaz1 + P1p2)pa1 + Pi + D3 + DT + Pl + PapapiPass — 4,
(1.54)

f5(p) :=pasparps1 + p4213 + pil + P§1—
(P1Pa31 + D3pa)pas — (P3pas1 + P1Pa)Par—

(Papas1 + p1ps)ps1 + pi + p% + p% + p42131 + papspipas1 — 4,
(1.55)

f1(p) :=paspaaps2 + p4213 + p?u + ng—

— (papase + P3pa)pas — (P3Pas2 + PaPa)Paz—
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(papaz2 + p2p3)paz + i + D3 + D3 + Pisa + DaP3Papaze — 4,
(1.56)

f5(p) := — 2ps + p1P2p3Pa + P1Pas2 + PaPas1 + P3Paz1 + Pa2iPa+t
D21P43 + P32D41 — P1P2P43 — P1P4P32 — P2P3P41 — P3P4aP21—

P42P31, (1.57)

f6(P) :=papsps — D32P4 — P21P3Pa1 + D321Pa1 — P3Paz + P1DP3Paz1—

D31P421 — P2P43 + D21Pa31 + 2Paz2 — P1Poo, (1.58)

f7(p) := — D1Pa + 2pa1 + Do1Paz — P2Pa21 + P31Pa3 + D21P32Paz—

P2D321P43 — P3P431 — P21P3P432 + P321P432 + P2P3Pw — P32P0,

(1.59)
fs(p) := — p1paps + P21Ds + DaPs1 + D132 — 2P321 + DoPa1Paz—
P421P43 — P2P4P431 + P42P431 — P41P432 + PaPoo, (1.60)
fo(p) := — p1p2 + 2pa1 + Pa1Ps2 — P3Ps21 + Pa1Paz — PaPasi+
P32P41P43 — P32P4P431 — P3P41P432 + P4a31P432 + P3PaPop—
D43Poos (1.61)

f10(p) := — p1p2pa + Parpa + p2par + P1paz — 2pao1 + P1P3ePaz—

P321P43 — P32P431 — P1P3P432 + P31P432 + P3P, (1.62)
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f11(p) :=p1p3ps — Ps1Pa — P21D32Pa + DaPs21Pa — P3Pa1 — Ds21Paz+

D32P421 — P1P43 + 2Pa31 + P21Pa32 — P2Poo, (1'63)
f12(p) := — papa + P21par + 2pa2 — P1Pa21 + P32Pas — P321Paz1 — P3Pasa+
P31Pw, (1.64)

f13(p) :=p1p3 — 2p31 — P21Ds2 + PaP321 — Pa1Pas + PaPag1 + Pas1Paza—

P42Poo; (1.65)

f14(p) :=paps — pa1P31 — 232 + P1Ps21 — P21Pa1Pa3 — PazPas+

P1P421P43 + P21P4aP431 — P421P431 + PaPaz2 — P1PaPo + Pa1Poos

(1.66)
f15(p) := — p3pa + P31Pa1 + Pa1PsaPa1 — P2P321Pa1 + PaaPaz—
DP1P32P421 + P321P421 + 2Pa3 — P1Paz1 — P2aPasz2 + P1P2Po—
P21Poo- (167)

(ii) For every given generic py, ps, p3, P4, Do, the affine algebraic variety:

M92 = C[(pzl,pgl,pgg,p41,p42,p43,p321,p432,p431,p421)]/[, (1-68)

where [ =< fi,..., fi5 >, is four dimensional.
Proof. We proceed proving point by point the statement of the Theorem.

(i) We give a detailed proof for the polynomial (1.57), while all the others

polynomials are calculated in a similar way and hence we omit their
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proof. Before proceeding, it is useful to remind the so-called skein

relation:
TrAB+TrA™'B =Tr ATr B, VA, B € SLy(C), (1.69)

and the following well-known properties of matrices in SLy(C):

TrA™t =Tr A, YA e SLy(C), (1.70)
Tr AB = Tr BA, VA, B € SLy(C), (1.71)
Tr ABC = TrCAB = Tr BCA, VA, B,C € SLy(C). (1.72)

We can now start the proof of (1.57). Firstly rewrite (1) as:
MyMsM; = (M MyM M) (1.73)
Then apply the trace operator:
Tr MyMsM, = Tr My My My M, (1.74)
and expand the right hand side of (1.74) using rules (1.69) and (1.72):

Tr MMy My M, = Tr M My M, Tr M, — Tr MyMsMyMo M, =
Tr My Tr My, — Tr My M,y Tr MyMsMs + Tr MyMs My MMyt =
Tr My Tr Mo, — Tr Mo My Tr MyMs My + Tr ,7\44./\42’1 Tr MgMngl—
T My My MMy Myt = Tr My Tr M, — Tr My My Tr MyMs Mo+
(Tr My Tr My — Tr MyMo,)(Tr MsM, Tr My — Tr My M,y M, )—

Tr My My My Tr MoM; " + Tr My My My My Mt =
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Tr My Tr Mo, — Tr Mo My Tr My Mz Mo+

(Tr My Tr My — Tr My Ms)(Tr My My Tr M, — Tr My My My )—

(Tr My Tr MsMs — Tr MyMsMs)(Tr My Tr My — Tr My My )+

Tr M3 My My Tr MyMsy — Tr My Mz My MyMy =

Tr My Tr Mo, — Tr Mo My Tr My Mz Mo+

(Tt My Tr My — T My My)(Tr My My Tr M, — Tr My My My )—

(Tr My Tr MsMs — Tr MyMsMs)(Tr My Tr My — Tr My My )+

Tr M3 My My Tr MyMy — Tr My Tr MyMo M3 My + Tr My M3 M, .
(1.75)

The traces Tr MngMQ, Tr M4M2M3 and Tr M4M2M3M17 satisfy the

following relations:

Tr M3 M, My = Tr M3 Tr MyM; + Tr My Tr Ma M, + Tr My Tr M M,y—
Tr M3 Tr My Tr My — Tr M3 My M, (1.76)
Tr MyMyMs = Tr My Tr MMy + Tr Ms Tr MyMsy + Tr My Tr MyMs—
Tr My Tr My Tr My — Tr MyMs M, (1.77)
Tr MyMyMs M, = Tr MyMyM,; Tr My — Tr MMy "M M =

Tr MyMyMy Tr M5 — Tr J\[e,]%{1 Tr MyM; + Tr MgMglelel =
Tr MyMy M,y Tr My — (Tr M3 Tr My — Tr M3 My) Tr My M+

Tr M2 TI"M4M3M1 - TI"M4M3M2M1. (178)

Substitute back in (1.75) the equations (1.76)-(1.78) and apply the

definitions given in (1.4), in order to get the following relation:

P2(—P1P2p3pa + P21P3pa + P1P32Pa — P321Pa + PaPsPar — Pa2Par+
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D31P42 — D3Pa21 + P1P2Pas — P21Pa3 — PaPast — P1Pas2 + 2P) = 0.
(1.79)

Since p € /ng is arbitrary, then (1.79) must be true indipendently
from the value of py, then f5(p) = 0.

(ii) For given pi, ps, p3, P4, P, We used Macaulay2 [GS], a software for
algebraic geometry, in order to compute the dimension of the algebraic

variety:

Mg, = Cl(pa1, P31, P32, Da1, Pa2, Pas, P321, Pas2, Pas1, Paz1) /1. (1.80)

The result is that (1.80) has dimension four.

This concludes the proof. O

Corollary 7. The quantities (poi, . . ., P43, P321, - - - , Pa21) give a set of over-

determined coordinates on the open subset U < M\QQ, where:

U={(M,...,My)e M\g2|<M1, ..., My) irreducible, (1.81)

M; #+1,Vi=1,...,4,}/ ~,

Proof. Thanks to Theorem 3, Lemma 4 and Proposition 5 the quantities
Di, Dij, Pijk parameterize the monodromy matrices up to global conjugation.
Thanks to Theorem 6 for every fixed choice of py, pa, p3, P4, P Only 4 among
the quantities p;;, pijr for 7,5,k =1,...,4,1 > j > k, are independent. This
concludes the proof. O]
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1.2 Braid group action on Mg,

The braid group B, n € N, was firstly introduced by Artin in [Art25]. B,
is defined as the infinite group that can be generated by n — 1 elementary
braids o;, for i = 1,...,n — 1, and each o; is a collection of n-strands such

that the i-th strand pass over the (i + 1)-th strand.
Definition 8. The so-called Artin’s presentation of B, is given by:

B, = <017 ey Ono1 | 00044105 = 044100441, 1 <i<n—2,

005 = 0504, i —j| > 1). (1.82)

There exists a natural surjective group homomorphism between B,, and
the symmetric group S,, . The kernel of this homomorphism is denoted P,
and is called the pure braid group. A complete set of generators for P, is

given by formulae:

S -1 2 -
Bij = 000y 05105051+ 04 50, 1, 1 <j<is<m, (1.83)

and relations:

(6@'7 if j <s<r<i,
ors<r<j<si,
BreBiiBrs = 4 B3 BB, s<j=r<i, (1.84)
Br3 B Bii By By J=s<r<z,

| B3 B35 BriBsiBiiB Bry BBy 8 < <1 <.

We show now that formulae given in (4) express the action of the braid
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group B, over ./(/l\ggz
Lemma 9. Formulae (4) define an action of the braid group B, over ./T/l\g2.

Proof. Firstly, we prove that the o; for i = 1,2,3, see (4), define an action
over .M\QQ, ie. az-(./\//YgQ) = .//\/\lgz. In order to do this, it is sufficient to
prove that the cyclic relation (1) is preserved by the action. If we consider
(M!,...,M}) = oy(M,, ..., M,), then, for every i = 1,2,3, the M, satisfy

the cyclic relation and consequently the action is well defined.

Next we prove that the o; are generators of the braid group Bs. Suppose
m = (My,...,My) € M\QQ, it is straightforward calculation to check that

the o; satisfy the so-called “braid relations”:

o103(m) = o301(m),
010201(m) = oy0109(m), (1.85)

0'20'302(7’11) = 03020'3(771).

Then the o; generate the full braid group Bj. O

The action of o; in (4) can be expressed in terms of co-adjoint coordinates

(1.4) onU M\gz. This is given by:

01 :(P1, P2, P3; Pay Peos P21, P31, P32, Pa1s Paz, P43, D321, P32, Pas1, Paz1) —
(P2, P1, P3, P4, Poo, P21, P32, P1P3 — P31 — Pa1P32 + PaP3at, Daz,
D1Pa — Pa1 — P21P42 + P2P421, P43, P321, P1P43 — P431 — P21P432 + P2Pwo,
P32, Paz1),

02 :(P1, P2, P3; Pay Poos P21, P31, P32, Pa1s Paz, Pa3, D321, P32, Pas1, Paz1) =

(p17p3)p27p47p007p317p1p2 — P21 — P31P32 + P3P321, P32, P4a1, P43,
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D2P4 — Pa2 — P32P43 + D3P432, P321, P432, P2P41 — P4a21 — P32P431 + P3Poos
Pa31),

03 :(p1, P2, D3, Pa, Poo, P21, P31, P32, P41, P42, D43, D321, Pa32, Past, Pa1) —
(D1, P2, P> P3, Poos P21, Pa1, Paz, P1P3 — P31 — Pa1Pa3 + PaPasi,
D2P3 — P32 — P42P43 + DaP432, P43, P421, P432, P431,

D213 — D321 — Pa21P43 + PaDeo), (1.86)

With the following Lemma we prove that the braids, defined in (1.86), still
define the action of B, over the co-adjoint coordinates defined in the open

subset U < M\g2:

Lemma 10. Formulae (1.86) define the action of the braid group B, over
the open subset U < M\gz.

Proof. As in the previous proof, we begin proving that action (1.86) is well
defined, namely consider the ideal I =< F >= {f1,..., fi5}, where f; for
i =1,...,15 are given in (1.53)-(1.67), then [ is invariant under the B,

action, i.e. for every i = 1,2, 3:

Consider pe U M\gz, o; and f; € F. We proceed computing f;(o;(p)) for

t=1,...,4and 5 =1,...,15. For o1, we obtain:

filo1(p)) = f1(p),
fa(o1(p)) = f2(p),
fs(o1(p)) = fa(p),
fa(o1(p)) = f3(p) + (P21paz — P2paz) f6(p) + (P21Pa31 — Papes) f11 (p)+
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(P2p321 - p21p32)f 13 (P) )
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falo7 () = f3(p),

fs(o7(p) = f5(p) — prfo (D),

folor ' () = f11(p) — par fo(p),

[0 (p) = = fra(p),

fs(ar'(p) = fs(p) + prfra(p),

folor1(p)) = fo(p) — pas fs(p) — par fra(p) + P31 fra(D),
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fro(ar (p)) = fro(p) — prfrz(p),

fulor (p) = —fs(p),

fra(a7 (p) = f2(p) — parfra(p),

fia(o1' (p)) = —fua(p),

fra(o7(p)) = —parfra(p) + frs(p),
(01 (p)

=
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w
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w
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&
=
~
BN
S
_|_

fa(o2(p)) = fa(p),

fs(o2(p)) = f1(p) + p3fs5(p)
fo(o2(p)) = fo(p) — p2fs5(p)
fr(02(p)) = f3(p) — p3fs(p)
fs(02(p)) = —ps2fa(p) — fo(p),
folo2(p)) = —psafs(p) — f2(p),
fio(o2(p)) = fo(p) + pafs(p),
fii(oa(p)) = f5(p),

fi2(02(p)) = —pa2fs(p) + fur(p),
fiz(oa(p)) = fa(p),

fia(o2(p)) = fro(p) + ps1fa(p) + pasfs(p) — pas1 f5(p)
fis(o2(p)) = —fs(p)-
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While, for the inverse o, ', we obtain:

fi(oy'(p) = filp),
f2(051 (D)) = f3(p) + (P32paz1 — Papes) f11(p) + (Papsar — Paips2) f13(p)+

(P32p42 - p2p432)f 15(]9)7

f3(o3 () = f2(p),

faloy ' (p) = falp),

fs(o31(p)) = f5(p) — p2fur(p),
fo(oz () = fo(p) + p2fis(p),
(o3 () = fr(p) + pa.fua(p),
fs(o3(p)) = fs(p) + p2frs(p),
foloz ' (p)) = fia(p),

fioloz () = fu(p),

fu(o3'(p) = —fro(p) — ps2fir(p),
fia(03' (p)) = = fi5(p),
fis(a5'(p)) = — fo(p) — Psafrs(p),
fra(o3'(p)) = fra(p) + paz f11(p) — p1 f13(p) + Pas fi5(p),
fis(03 1 (0)) = fr2(p) — pa2fis(p)-

Finally for oj:

filos(p)) = fa(p),
fa(o3(p)) = f1(p) + (PaPoo — Pa21Pa3) f7(p) + (Papasi — Paspar) [rs(p)+

(p4p432 - p42p43)f 14 (P) )

f3(<73(]7)) = f3(p)7
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fiolos™(p)) = fs(p) + Pz fro(p),

fu(oz'(p)) = fulp) + pafa(p),

fra(a3'(p)) = = fra(p) — pasfra(p),

fis(az'(p)) = fa(p),

fua(o5(p)) = fra(p),

fis(o3"(9)) = f15(p) — pa1fr(p) + P32 fro(p) — paz fia(p).

Then we conclude that the action (1.86) is well defined over the co-adjoint
coordinates defined in U.

In order to prove that o; for i = 1,2, 3, defined in (1.86), are generators of
the braid group By, the “braid relations” (1.85) must be satisfied. Consider
pel ce M\gg, as defined in (1.3), then relation:

0103(p) = 0301(p),

holds true, and the following relations:

010201(p) = 090102(p),

020302(29) = 030'203(]9),

follow from the fact that polynomials (1.63),(1.64),(1.65) and (1.66) are zero
for every pe U. O]

In order to be consistent, we give explicitly the action of the pure braid
group Py, namely we are going to define the generators of the subgroup

Py ¢ B,. By formulae (1.83), the group P, has generators:

Ba1 :O-%a
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Bs1 = 05 010,

B2 = 05,

B = 030y 070303, (1.87)
Biz = 030503,

543 = 032,~

In the last part of this Section, we state a Lemma that is a necessary

condition for variables:

(p21, P31, P32, P41, P42, p43),

in order to generate a finite orbit under the action of the group P;:

Lemma 11. Suppose pe U < M\QQ is such that it generates a finite P,’s

orbit, then only two possibilities arise:

(i) Or p satisfies:

Dij = 2COS7T7"Z‘J‘, Tij € Q, 0< Tij < ]_, l,j = 1,2,3,4, 1> j (188)

(ii) Or there exists a pure braid f;;, for some choice of indices i, j, k, ¢ =

1,2,3,4 such that §;;(p) = p. Then p;; is a complex parameter satis-

fying:
 pij(pipe + Dipije) — 2(pepi + Djpije) ]
pi; —
_ pij(Dipe + Dipije) — 2(pep; + Dibije) 1.90
lj — 2 4 ) ( . )
i
i (Dj iDijk) — 2(Drpi Dij
P Pij (P + Pibije) — 2(pepi + pip Jk)’ (1.91)

p?j —4
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Dij (pzpk + p]pl]k) - 2(pkp] + pzpzjk)
p;—4

Dkj = (1.92)

Proof. We are going to prove the statement for the generator 51, then in a
similar way the statement can be proven for all other five generators (1.87).
The braid (5 fixes quantities pq, pa, P3, P, P321 and pyo; and the resulting

action on (pa1, P31, P32, Pai, Paz, Pag) 18

P21,

= p1P3 — 2p31 — P21P32 + P2apP32i,

) =
)
Ba1(ps2) = paps — 2p32 + p1Psa1 — P21 (P1P3 — P31 — PaiPsa + Papaan),
) = P1Pa — 2Pa1 — P21Paz + PaPaz,
) = PaPa — 2Pz + P1Pa21 — Pa1(P1Pa — Pa1 — Pa1Paz + PaPani),
)

Ba1(paz) = pas-

Next we show that the pure braid (1 acts as linear transformation on
variables (ps1, P32, pa1,Paz). The cubic relations fi(p) = 0 and fa(p) = 0
are invariant during the action of f5;, moreover they are two conics in the

variables (ps1, ps2) and (pa1, pa2) respectively:

p§1 + p§2 + p21(P31ps2) — (Psp2 + P1P321)Ps2 — (P3p1 + Papsor )Ps1—

((pap1 + paps21)par — (P} + D3 + P2 + Ploy + Prpapapsar) +4) = 0,
(1.93)

pil + piz + P21 (Pa1paz) — (a2 + P1Pa21)Paz — (PaP1 + DaPa21)Pa1—

((pap1 + papasi)par — (p% + pg + pi + p?m + p1popapan) +4) = 0.
(1.94)

If po1 = £2 then r91 = 0 or r; = 1 and the statement follows. Then,
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hereafter, we suppose po; # £2:

(i) The linear action of B2; on (ps1, P32, P41, Paz) describes simultaneously

a rotation R of (ps1, ps2) and (pa1, ps2) on the conics (1.93) and (1.94)

respectively. Suppose angle of the rotation R is 6 such that py; =

2 cos @ and if @ is a rational multiple of 7 then:

JneNs.t. R" = Id.

(1.95)

As a consequence the action of B9 produces a finite orbit in (ps1, ps2)

and (p41, ps2) if and only if go; = 2 cos @ where 6 is a rational multiple

of 7.

(ii) Suppose p to be a fixed point of the braid (a1, i.e. B21(p) = p, then:

_ po1(p1ps + Pap321) — 2(p3p2 + P1P3a1)

D32

p%l —4
_ pa1(paps + p1psa1) — 2(psp1 + Papso1)
p31 - P)
P — 4
P21 (D1Da + P2pas1) — 2(pap2 + P1Pa1)
Paz2 = 5
P — 4
P21 (papa + P1Pag1) — 2(pap1 + pPapas)
Py = 5
P — 4

Then po; plays the role of a complex parameter.

This concludes the proof.

Y

)

)

(1.96)
(1.97)
(1.98)

(1.99)
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1.3 The problem in terms of co-adjoint co-
ordinates

The aim of this thesis is to classify all finite orbits:

Op,(p) = {B(p)|B € P4},

where pe U ./(/l\g2 is the following 15-tuple of complex quantities:

p= (p1,p2,P3,P4,Poo,p21,P31,p32,p41,p42,p43,p321,p432,p431,p421) € C157

defined in (1.4), and P, is the pure braid group defined in (1.87).
Our classification of finite orbits will be presented modulo symmetries

®, where ® is an invertible map such that:
D . Mg2 I ./\/lg27

and given an element p € U M\QQ and its orbit Op,(p), the following is

true:

[Or,(2(p))] = |Or,(p)].

1.4 Restrictions

Our approach is based on the observation that given p;,p;;,pijr, defined in
(1.4), on the big open subset U < M\gQ, defined in (1.38) such that they
generate a finite orbit under the action of the pure braid group P, then
for any subgroup H < P, the action of H over p;,p;;,pijr produces again a

finite orbit. Such restriction H only acts on some of the p;,p;;,pijr and it
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leaves others invariant. We select subgroups H < P, acting on p;,p;;,piji in
the big open subset U < M\gQ, such that the restricted action is isomorphic
to the action of the pure braid group P on the SLy(C) character variety of
the Riemann sphere with four boundary components, i.e. Mpy;: indeed in

this case all finite orbits of the action of P; over the quotient space:

Mpyr = {(N1, Na, N3) € SLy(C)| Noo NsNo Ny = 1,

N, = diag(ei”ew), 0p,€C}/~,
(1.100)

where ~ is the usual equivalence relation up to global diagonal conjugation,
are classified in Lisovyy and Tykhyy’s work [LT14]. This will be discussed
in details in Chapter 3.

There exist four well defined restrictions Hy, ..., H4 isomorphic to P3
and each of these restrictions allows us to identify some of the p;,p;;,p;jr With
coordinates on Mpy ;. The four subgroups H; are defined in the following

Theorem:

Theorem 12. There exist four subgroups H; < P, with ¢ = 1,...,4, such
that they are generated by:

o I =< [332, fu3, Paz >,
o Hy =< By, P31, Ba1 >,
o Hy =< (351, Bz, Bu1 >,

o Hy =< (321, P32, P31 >,

where generators ;j, with j,k = 1,...,4 and j > k, are defined in (1.87).
The subgroups H; satisty:
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(i) H; is isomorphic to the pure braid group P; fori =1,...,4.

(i) Consider (My, My, M3, M,) € Mg, as an ordered 4-tuple of matrices,
then each H;, for : = 1,...,4, acts as pure braid group P3 on ﬂpw

leaving matrix M; out of action, where Ny, Ny, N3 are given by:

>

Hy: Ny =M, Ny=M;, Ny= M,
Hy: Ny =M, Ny=M;s, N3= M,

Hs : Ny = M, N2=M2> N?, = My,

4 ( |
82 8 8 8

Hy: Kﬁ =M1, NQZMz, st =M37

Proof. We prove explicitly the statements (i) and (ii) for the subgroup:

Hy =< B39, Bug, Baz > Py,

then for the other subgroups a similar proof applies.

(i) We are going to show that generators of H; satisfy the presentation
of the pure braid group Ps given in formulae (1.83)-(1.84), for n = 3.

In other words generators (330, 842, f43 must satisfy:

B2Busfs = Bio Basbas,
BsaB12B33 = Bz Bug BazBasbas.

(1.105)

Relations (1.105) are true and they can be checked by direct compu-

tations. This implies the isomorphism between H; and P;.

(ii) We prove that n = (]\Afl, ]%, ]/\\73) is in ./(/l\pw. Suppose m = (M, M,
Ms, My) € M\QZ and consider the identities (1.101): by definition of
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M\gz, matrices N for i = 1,2,3,00 are in SLy(C), moreover, (1.101)

transforms the cyclic relation satisfied by m:
My MyMsMsMy = 1 < MM MyM3zMy =1,
to the following cyclic relation:
NoNsNoNy = 1,

This implies 1 € ./T/l\ pvi- Now we show that the subgroup H; acts as
pure braid group P3 on M py1 leaving matrix M; out of action. Since
the generators of H; are defined in terms of generators o, and o3 of
the full braid group By, see definition (1.87), then, it is enough to
prove that o9 and o3, by (1.101), act as generators of the full braid
group Bs. Consider (1.101), then the following relations hold:

oa(m) = (My, Mz, M3Mo M, My) ~ (ﬁz,f%ﬁlﬁgl,ﬁ?}) = U§PW)(7¢L),
Og(m) = (Ml,MQ,M4,M4M3M4_1) >~ (Z/\}l,]/\}g,]/\\%j\\fgﬁgl) = O'éPVI)(ﬁ).
(1.106)

Furthermore, the generators oy and o3 satisfy the “braid relations”
(1.82), and then they generate the braid group Bs. Moreover in (1.106)

the matrix M; remains out of the action as expected.

This completes the proof. n

To avoid extra complications due to the freedom of global conjugation
in (1.101),(1.102),(1.103),(1.104), we consider the action of the subgroups

H; for i = 1,...,4 in terms of co-adjoint coordinates. In order to do this,
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we define:

q:= (q1, 32, 3, Qo> G21, @31, G32) € C7,

7= (@, @2, B3, Qoo G21, @31, G32) € C,

q := (q1, G2, @35 Goos G21, 431, G32) € C

q:= (q1,G2, @35 Goos G21, @31, G32) € C (1.107)

where ¢q; = Tt N; for i = 1,2,3,00, qji, = Tr]vj]vk for j >k, j,k =1,2,3,
etc. As it will be reminded in Chapter 3, the ¢, ¢, ¢, ¢ are respectively co-
adjoint coordinates on the SLy(C) character variety of the Riemann sphere

with four boundary components. Then identifications (1.101)-(1.104) imply:

G =12, 2= D3, =01, Qo = P32, @21 = P32, @31 = Paz, {32 = Pa3,
(1.108)
Q1 = P1, @2 = P3; Q3 = P4, Qoo = Pa31, 21 = P31, @31 = P41, (32 = Pa3,
(1.109)
qQ1 = p1, G2 = P2, §3 = Pa, G = Pa21, G21 = P21, §31 = Pa1, 32 = P,
(1.110)
qQ1 = p1, G2 = P2, G3 = P3, G = P321, G21 = Pa1, §31 = P31, 32 = P32,
(1.111)
where p;,p;j.piji are defined in (1.4). We summarize identities (1.108)-
(1.111) in Table 1.1.

In terms of analytic continuation, this means that we are extending our
solution on the Riemann sphere with five boundary components in such
a way that this continuation doesn’t go around one of the singularities

{0,1,u1,us,00}. Moreover, the suborbit of a finite orbit Op,, generated
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‘ H N ‘pQ ‘p3 ‘ P4 ‘pw ‘pm ‘psl ‘p32 ‘ Pa ‘P42 ‘p43 ‘p321 ‘ Pa32 ‘P431 ‘p421 ‘

H,y Q|| 3 P21 331 | @32 oo

Hy | @ @ | G g21 31 32 o

Hs | ¢ | ¢ 3 g1 @1 | @32 oo
Hy | @1 | 2 | @3 Q21 | @31 | G32 Jo

Table 1.1: Matching using traces: elements on the same column must be
equal.

fixing a conjugacy class of a monodromy matrix M; must be a finite suborbit
describing the analytic continuation of an algebraic solution of PVI: this

provides the basis of our method.

Furthermore, by relations (1.101)-(1.104) and (1.108)-(1.111), the fol-

lowing four projections:

—~~

% 77,7 Mg, — Mpyr, (1.112)

can be defined in such a way that, if we know a 4-tuple m of monodromy
matrices in /T/l\gg, then we can project it to four 3-tuples n,n,n,n € /pr

as follows:

(1.113)

Equivalently, we can define each projection in terms of co-adjoint coordi-
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nates p;,pij,pijr on U < M\QZ and co-adjoint coordinates ¢, ¢, g, ¢ on ./(/l\pwz

TP D1, D2, D3, P321; P21, P31, P32

Il
)

TP D2, P3, P4, P432; P32, P42, P43

(1.114)

(p) == ( ) =
(p) = ( )
7(p) := (P1, P2, Pas Paz1, Po1, Pars Paz) =
(p) == ( )

m(p D1, D3, D4, D431, P31, P41, P43) = ¢

In second instance, given four triples 7n,n,n,n € M pyr or the associated
co-adjoint coordinates ¢,q,q,q, we can lift them to the respective 4-tuple of
matrices m € /\/lg2 or to co-adjoint coordinates p. In general we can not do

ANV — ~ .

following relations:

G =q = q,
@ =01 = G,
43 = G2 = G,
03 = (3 = G,
X b = (1.115)
d31 = @21,
@32 = G2,
@31 = @31,
331 = (32,
\632 = (32,

derived from (1.108)-(1.111). We give here only the relations between co-
adjoint coordinates @, ¢, q, ¢, so that we can forget about the global conju-

gation.
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Definition 13. We call matching on four points the procedure of applying
the identities (1.115) to four points q, ¢, q, J in Mpy;.

Note that in Table 1.1 the column relative to p, is empty, then po, is
not determined by the matching procedure but it can be recovered using

relation (1.62). Indeed, by (1.108)-(1.111), we can rewrite (1.62) as follows:

1 ... R - _ o~ A - o
P = 5(91612613613 + q190 + 429w + 43900 + Gooq3 + G21932 + §32431
— 1¢2032 — Q133032 — 233431 — G3G3021 — @31G31) (1.116)

where the r.h.s of equations (1.116) depends only on the known coordinates
of é\v (\]/7 q, 2.7

Clearly, before to proceed describing in depth the matching procedure,
we need to define the space of all possible ¢, ¢, g, g, therefore in Chapter 3

we will review the main results about PVI.






Chapter 2

Garnier system G> and

symmetry group G

In this Chapter we recall some known facts about the Garnier system G,
and we use its birational canonical transformations to define the group G
of symmetries acting on the character variety of the Riemann sphere with

five boundary components Mg, .

2.1 Garnier systems G,

The Garnier system G, is a completely integrable Hamiltonian system [Gar12,

Gar26, Oka81] in n variables uy, ..., u, € C with u; # u; when i # j:

ov; OK: - -
6_u]7; = apjlv 1,7 :1,...,’”,
(2.1)
ap‘ oK; ..
a_uji =—ayj,z,j=1,...,n.

39
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The Hamiltonians K; are defined as:

o Aw) | ¢ T () 2 A O — G K
Ki= T (u;) [Z (ve — us) N () {pk 2 Vg — U, Pr vi(vp — 1) }] ’

k=1 m=1
(2.2)
where 04, ...,60,.9,0, are constant parameters and:
Au) =T y (v — ), T(u) = T2 (u — ), (2.3)

1 n+2 2
_ 2
h= (m; O — 1) — (A + 1)} . (2.4)
Without loss of generality we fix u,.1 = 0 and u, .o = 1.

When n = 1, there is only one complex variable u = u; and the Hamil-

tonian K = K reads:

1 2
K = o [v(v—1)(v —u)p® = {ba(v = 1)(v — )

+O0sv(v —u) + (6 — Dv(v — 1)} p + k], (2.5)

where £ = I [(61 4 62 + 03— 1)> — (0 + 1)?]. The system G; becomes a
system of two first order equations or equivalently a scalar second order

ODE that is the famous Painlevé Sixth equation PVI:

1/1 1 1 9 1 1 1
2\v v—1 v-—u u u—1 v—u

viv—1)(v —u) u u—1 u(u—1)
— ) .
* u?(u — 1)2 a+ﬁy2 +7(V—1)2 * (v—u)?|’ (2:6)
with parameters:
(O — 1)? 02 03 1— 62
— [ — = -_— 5 = . .
a=-—o— f=—75, 1=7, 5 (2.7)
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Hence, the Garnier systems G, can be thought as a multivariable gener-
alization of the PVI equation. In this thesis we focus on the first such

generalization: Gs.

2.2 Fuchsian system and its monodromy data

As mentioned in the Introduction, the Garnier system §G,, describes isomon-
odromic deformations of the following Fuchsian system of linear differen-
tial equations for a 2 x 2 matrix valued function W(z) defined over C (see

[Garl2, Gar26, Oka81, Iwa91]):

dv

= AR, (2.8)

where A(z) is the following matrix function:

n+2
A
A(z) = Y. —, A;esh(C).

o1 7T W

The singularity at oo is also Fuchsian so that the residue at oo is defined by:

n+2

AW:—ZAT
=1

Without loss of generality, fori = 1,...,n+2, 00, we can choose the matrices
A; traceless and set the eigenvalues of A; to be J—”Tei with 6; € C. In addition,
by a proper gauge transformation, it is possible to assume the matrix Ao

to be diagonal:

Ap = , 0. € C*. (2.9)
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In order to define the monodromy data of system (2.8), according to the
classical results of Wasow [Was65] and Sibuya [Sib90], we choose to fix
a fundamental matrix solution W,, of (2.8) near co. The behaviour of a
fundamental solution of (2.8), near the regular singular points, is described

in the following Theorem, see [Dub96]:

Theorem 14. Suppose that oo € C is a simple pole of (2.8), and the residue
matrix A, of the coefficient A(z) near oo is in diagonal form (2.9), then

system (2.8) has a fundamental solution ¥, such that:

U, (2) - (1 Lo <1)> ce s Re o o, (2.10)

z

where J, = A, and:

(Ro)iz # 0if 0 €N, (Rp)11 = (Re)22 = (Ro)21 = 0,
(Ro)21 # 0if — 0, €N, (Rp)11 = (Rw)22 = (Ro)12 = 0.

A branch of the logarithm in the function ¥,, must be chosen.

Near a singular point u;, system (2.8) has a local fundamental solution

W, such that:
Ui(2) =G (L +0(z—w)) (2 —w)" (2 — )", 2 — uy, (2.11)

where G is an invertible matrix and J; = G} L A,G; is the Jordan normal

form of the residue matrix A; of A(z) near u;, moreover:

(Ri)12#0if 60, € N, (R;)11 = (Ri)a2 = (Ri)21 = 0,
(Ri)o1 # 0if —60; €N, (Ri)11 = (Ri)22 = (R;)12 = 0.
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A branch of the logarithm in the function ¥; must be chosen.

We now look at what happens when we continue ¥, analytically along

paths in C. A useful notion is:

Definition 15. Two paths v, and v, are homotopic if there exists a contin-
uous deformation of one path to the other, namely there exists a continuous

function:

T:10,1] x [0,1] = C\{uy,. .., Unya),

such that T(0,t) = v (¢t) and T'(1,t) = y2(t) for all ¢t € [0, 1], and T'(s,0) =
71(0) = 72(0) and T'(s,1) = 71 (1) = 72(1) for all s € [0, 1].

This is an equivalence relation that permits to identify curves that can
be transformed one into the other in a continuous way on ¥,,3, i.e. the
Riemann sphere with n + 3 boundary components. The following Theorem
ensures that if we extend analytically our solution along two homotopic

paths with the same end points, then we obtain the same extension:

Theorem 16. Suppose W(u) be a solution of (2.8) defined in an open set
U e C\{uy,...,ups2}. Consider a,b e U and two homotopic paths v, and 7,
with the same endpoints, then ¥ can be analytically continued along each
path. Let v[¥] denote the analytic continuation of ¥ along the path v, then
11 [¥](b) = 72[V](b) and this is again a solution of (2.8).

Thanks to this Theorem, in order to fully characterize the analytic con-
tinuation of the fundamental solution ¥, we fix a basis in the fundamental
group:

T (C\{Uh s 7un+2}v OO) )

and we study the analytic continuation of W, along elements of the basis.

We perform branch cuts on the Riemann sphere along the n + 2 segments
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Y1 Yoz

Figure 2.1: The basis of generators for m; (C\{uy, ..., up42},0).

[u;, 0] and fix a basis of generators for the fundamental group, see Figure
2.1. The segments have all the same direction and they are ordered accord-
ing to the order of the points uq,...,u, 2. A generator can be thought like
a path ~; starting and ending at oo, that goes around the singularity u; in

the clockwise direction, leaving the other singular points lying outside.

The product of these n + 2 loops is equivalent to the loop that encircle

the pole at infinity but taken in the counter-clockwise direction:

Mo Yotz = Voo - (2.12)

Fix a fundamental solution ¥ of (2.8). By Theorem 16 and the relation
between fundamental solutions, the analytic continuation ~;[W] gives rise
to a unique 2 x 2 invertible matrix M;, called monodromy matrix, such
that:

Yi[P] = WM. (2.13)

It is natural to associate to each analytic continuation of W, along a gener-
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ator of the fundamental group an element of GL(C):

Vi = M, (2.14)

this map is a group anti-homomorphism and, moreover, it is a representation

of the fundamental group:

Definition 17. The image of 1 (C\{u1, ..., Un42}, Usy) under the map (2.14)
is a subgroup of GL3(C) that is called monodromy group.

From relation (2.12) we get the following cyclic property for the gener-

ators of the monodromy group:

MyMyos... M; = 1. (2.15)

Remark 18. A change of the base point, and the consequent change of
basis, leads to a conjugation of the representation by an invertible constant

matrix.

Definition 19. We call monodromy data the set:

MD := {Mla"'7Mn+2aRl>"'7Rn+2}7 (216)

where matrices R; are defined in Theorem 14.

If we take the fundamental solution W, defined locally near oo, and
another one ¥;, defined in a neighbourhood of w;, then the former can
be analytically continued along the path «; until a neighbourhood of u; is
reached. Again the two fundamental solutions are related by right multipli-

cation by a constant invertible 2 x 2 matrix Cj:

v, = U,C;, (2.17)
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called connection matriz. The connection matrix links the local monodromy
at u; with the global monodromy, in the basis defined by the fundamental

matrix V., as follows:

M; = C:te*™iefi 0. (2.18)

2.3 Isomonodromic deformations

We now deform our system by keeping fixed the monodromy data (2.16).

Consider the initial linear system:

dv0 R AY
—— = — ks (2.19)
O )
dz =y
fix, as above, a basis 71, ..., V,42 for the fundamental group:

m (C\{u1, ..., ups2},0),

and a fundamental matrix solution W.,, near co. Isomonodromic deforma-

tions are described by the following Theorem, which proof can be found in

[Mal91] and [Sib90]:

Theorem 20. There exists an open neighbourhood U < C™*2 of the point
u’ = (u,...,ud_,) such that, for any u = (uy,...,un2) € U, there exists

a unique (n + 2)-tuple:
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of analytic matrix valued functions such that:

Aj’) =AY i=1,...,n+2, (2.20)

J

and with respect to the same basis of loops 71, ..., V12, the monodromy

data (2.16) of the Fuchsian system:

d n+2 Ak(u)
— VU = Y 2.21
dz kZ::l z—up ( )

coincides with the given My, ..., M, s and Ry, ..., R, 2. Furthermore, the
monodromy group (M, ..., M, o) is supposed to be irreducible and M; #
+1, for i = 1,...,n + 2,00. The matrices A;(u) are the solutions of the
Cauchy problem with the initial data Ag for the following Schlesinger equa-

tions:

e i T U

% ) % .
6uj U; — Uy auz U; j

The solution WY of (2.19), in the form (2.10), can be uniquely continued,
for z # u; 1 = 1,...,n 4+ 2, to an analytic function ¥ (z,u) with u € U
with Wo, (2, u") = W9 . This continuation is the local solution of the Cauchy
problem with the initial data U9 for the following system that is compatible
to the system (2.21):

0 A;(u)

U —
ou; Z— Uy

. (2.23)

The functions A;(u) and WUy (z,u) can be continued analytically to global

meromorphic functions on the universal coverings of:

C"**\{diags} := {(u1, ..., uns2) € C"*?|u; # ujfori # j}, (2.24)
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and:

{(z,ul,...,un+2)eC"+3]ui # ujfori # jandz # u;, i = 1,...,n~|—2},
(2.25)

respectively.

We recall here the main result about the solvability of the inverse mon-
odromy problem in dimension two, the following result was proven by

Dekkers in [Dek79] and by Bolibruch in [Bol97]:

Theorem 21. Given matrices M, ..., M, o € SLy(C) satisfying (2.15),
with:
emew 0
MOO = 3 900 € C7

0 e—i7r030

and matrices Ry, ..., R,;2 € SLy(C), then in a neighbourhood U of u® =
(uf,...,ud, ,) € C""\{diags}, there exists (uy,...,uns2) € U and a Fuch-

sian system:

d n+2 Ak (u)
Sy v
dz 1; ’

Z — U
with My,..., M, o and Ry,..., R,12 as monodromy data and uq, ..., U, o

as poles.

Now, we show how to reduce the Schlesinger equations to the Garnier
system G,. Since Schlesinger equations are invariant under simultaneous
diagonal conjugation of matrices A; for i = 1,...,n+ 2, we introduce 2n co-
ordinates on the space of solutions of the Schlesinger equations with respect

to the equivalence relation:

A; ~ DA, D,
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where D is a 2 x 2 diagonal matrix.

Let a;;(z,u) denote the ij-element of A(z,u), then a;2(2, u) has the form:

n+2 i
a1
a(zu) = Y| —2 (2.26)
— Z — Uy

and its denominator is a polynomial of degree n in the variable z. Define

vy, ...,V, to be the roots of this polynomial, i.e.:

apz(vg,u) =0, k=1,...,n,

and n quantities py:

n+2 ail + 6;
= 2 k=1,...,n. 2.27
Pi Z Vi — U; ’ ’ ’ ( )
=1
In this way we introduce 2n coordinates (v, ..., vy, p1,. .., ps) On the space

of the solutions of the above Schlesinger equations, as stated in the following

Theorem, due to Iwasaki et al. [Iwa91]:

Theorem 22. If the n + 2 tuple (A;(u), ..., Anto(u)) of 2 x 2 matrix is a

solution for the Schlesinger system:

iAi C[AGAL O 4= [Ai, 4] (2.28)

6uj U; — Uy ’ 6U1 U; — Uy '

J#i

then the functions (v (), ..., v, (u), p1(w), ..., po(uw)) withu = (uq, ..., Upio),
where v, (u) are the roots of (2.26) and the py(u) are defined in (2.27), deter-
mine Aj, ..., A, uniquely up to global diagonal conjugation and the py(u)

satisfy the Garnier system G,,.

As a consequence of Theorem 22, we can regard G, as the system that
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governs the isomonodromic deformations of the Fuchsian system (2.8), this

is why in the following we will refer directly to G,.

2.4 Braid group B, and analytic continua-
tion

We now show that the structure of analytic continuation of a solution of
G, is given by the action of the braid group B, s (see Definition 8) over
the monodromy matrices (M, ..., M,.2), as it was firstly introduced in

Dubrovin-Mazzocco in [DMO00] for n = 1.

Consider a point v® = (u?,...,ud.,) € C"**\{diags} and a solution

(r1(u), ..., vn(u), pr(u),. .., pa(u)) of G, in a neighbourhood of u°. We per-
form n+ 2 cuts on C"*?\{diags}, and we choose a basis of loops 71, . . ., Yni2
for 71 (C""?\{diags},u’), as in Figure 2.1. In this way, a branch of our so-
lution is fixed and, by Theorem 22, to this branch we can associate n + 2
monodromy matrices M, ..., M,,o. Suppose now to continue analytically

the solution of G,, along a loop:
B e m(C"**\{diags}, u°),

then a new branch is reached with new associated monodromy matrices
M, ..., M, ,. This action of the fundamental group 7 (C"*?\{diags}, u®)
over the monodromy matrices extends naturally to the action of the pure

braid group P2, see (1.83) and (1.84). Indeed, it is well known hat:

m(C™*2\{diags}, u”) = Pysa.



Garnier system G, and symmetry group G 51

‘r‘ n,+1=V n+2

Figure 2.2: The new basis of loops obtained with the action of generator
0; € Bg.

In order to simplify the following computations, the action of the pure braid

group P, is extended to the action of the full braid group B, yo:
T (C™\{diags}/Snsz,u”) = Basa,
where S, ;5 is the symmetric group over n + 2 elements.

Consider the i-th generator o; of B, 2, then o; acts changing position of
the poles u; and u;, 1. We show the new basis of loops 7,;, fork=1,...,n+2,
of 1 (C"*\{diags}/Sps2,u’) in Figure 2.2.

Since deformations are supposed to be isomonodromic, the new mon-
odromy matrices M ,;, in the new basis of loops, are a reordering of the old

ones:

M; = Migy, Myyy = My, My = My, k#i,i+ 1.

The new basis of loops 7,; and the old basis of loops 74 for k =1,...,n+ 2,
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are related as follows:

V=Y Virl =% VsV Ve = k#E 4T+
Since the basis of loops must be fixed once for ever, we need to express
the new monodromy matrices in the old basis of loops. This leads to the

following expression for the i-th generator of B, »:

oit (My, ..., My, Miyr, ... Myyo) — (M, ..., Mgy, M i MM Myo).
(2.29)
Note that the action of o; over the monodromy matrices preserves their

conjugacy class and the relation MM, o ... My = 1.

Once we fix a branch of a solution of G,,, at the same time we fix the
monodromy matrices and the matrices Ry, ..., R, 2. The matrices R; re-
main invariant under the action of the braid group. Therefore describing
the braid action on the monodromy data (2.16) is equivalent to describe the

same action on the character variety or equivalently on:

Mg, = {(My, ..., Mys2) | My € SLy(C), MuMyys... My =1}/ ~,
(2.30)

where ~ is equivalence under global diagonal conjugation.

In order to describe all branches of a solution of the Garnier system G,,
we continue this solution analytically along every loop of 71 (C"™\{diags}, u°).

This is done in terms of action of the pure braid group over M\gn:

Pn+2 X Mgn Mgn
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Define the set:
Or,.o(m) = {8(m)|B € Poya}., (2.31)

being the orbit of an element m e M\gn under the action of the pure braid
group P o
In this thesis we are interested in the classification of algebraic solutions

of the system G,,:

Definition 23. A G,’s solution (v4(u),...,vu(u),p1(u), ..., pn(u)) where

u = (uy,...,u,) is algebraic if every components v; solves an equation:
-Pi(uh <oy Unp, Vi) = 07

and respectively every component p; solves equation:

Pi(uy, ... uy, p;) =0,

where P, and P; are polynomials in Clui, ..., un,v;] and Cluy, ..., un, pi

respectively.

Since an algebraic solution has only a finite number of branches, the
monodromy associated to this solution under the action of P, necessarily
generate a finite orbit. We formalize this fact in the following Theorem due

to Cousin [Coul6:

Theorem 24. If a solution of G, is algebraic, then the orbit under the
P, .5 action over the monodromy matrices associated to this solution, up to

conjugation by a diagonal matrix, is finite.

This means that the problem of classification of algebraic solutions of
G, can be seen as the problem of classification of finite orbit of the P,

action over Mg, .
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2.5 Symmetry group G

In this Section, we study the symmetries acting on the co-adjoint coordi-
nates p;,p;;,pijr defined on the big open subset U < M\g2. The definition of

a symmetry for U c M\g2 is the following:

Definition 25. A symmetry for U < M\g2 is an invertible map & : M\QQ —
M\gQ such that given an element p € U < M\gQ and its orbit Op,(p), the

following is true:

|Op,(®(p))] =[Ok, (D) (2.32)

By the above Definition, if p e U M\g2 generates a finite Pj-orbit of
length N, then ®(p) generates a finite Pj-orbit of the same length. This

leads to define the following equivalence relation between orbits:

Definition 26. The elements p and p' € U < M\g2 are said to generate

equivalent orbits if there exists a symmetry ® such that p’ = ®(p).

First, we introduce the group G of symmetries obtained by birational
transformations of the Garnier system G,. Subsequently, in order to obtain
the group of symmetries G, we extend the group G with simpler transfor-

mations that arise on the space of monodromy matrices.

2.5.1 Birational transformations of G,

The birational transformations of the Garnier systems (2.1) were firstly
introduced by Kimura et al. [Iwa91], and subsequently studied by Tsuda

[Tsu03] and Suzuki [Suz05]. A birational transformation for the Garnier
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system G, is a map of the form:

St (vi, pryun, va, pa, ua, b,y 04, 00) (’717517171,172752,%,51,---,547500),

(2.33)
where S acts birationally on (4, p1, uy, Ve, p2, us) and by linear affine trans-
formation on the five parameters (61, ...,04,0y).

Since these transformations are birational, they send algebraic solutions
to algebraic solutions, preserving the number of branches. In particular, this
implies that the action of these transformations on finite orbits of the action
of the pure braid group P, over M\QQ are mapped to finite orbits and their
length is preserved. If two orbits are related by such transformation, we say
that they are equivalent. In order to characterize the group of symmetries

acting on U < M\gQ, we define the group:
G = (Pi3, Pys, Paa, Proo), (2.34)

of birational transformations of the Garnier system G,, and thanks to the
work of Dubrovin-Mazzocco [DMO07], we are able to explicitly write the
action of the generators of G over the monodromy matrices My, My, Ms,
M, and consequently over the co-adjoint coordinates p;,p;;,pijk-

We list now all known birational transformations acting on the Garnier
system G, and compute their effect on the co-adjoint coordinates p;,p;;.pijx
defined on the big open subset U < M\gQ. Firstly we look at the birational
transformations s; for ¢ = 1,...,4,00, that act as change of sign on the

parameters 0; for i = 1,... 4, co:
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S1 .

So .

S3 .

vi, 1 =1,2,
= p1 — %7
(2.35)
= Uiy, = 1727
*017
0, i =2,3,4, 0,
Vi, L= ]-a2)
_ 02
=pP2 — )
2 (2.36)
= U, T = 172a
_927
:eiu 1= 173747007
vi, 1 =1,2,
pi — %; =12,
w, i=1,2, (2.37)
_637
0, i—1.24, 0,



Garnier system G, and symmetry group G o7

b o=, =12,
pi = pi— u1+9;2—1’ =12
S1:R % =y, =12, (2.38)
0s = 04,
0, =0, i=1,23, 0,

S0t AW =g, i=1,2, (2.39)

Lemma 27. Transformations sy, ..., s4, S, act as the identity on p € M\gQ.

Proof. Since all transformations (2.39) act as the identity on v; for i = 1,2
and on the independent variables u; for ¢ = 1,2, then the monodromy
remains unchanged and each transformation s; acts on p e U < M\g2 as the

identity. O]

We consider now transformations acting on both dependent and inde-
pendent variables permuting the positions of the poles. There are four

birational generators F;;:
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P132

P342

~

—(uy — Vpy, i =1,2,

T (2.40)

ug (2.41)

(2.42)
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5, =L i—12
vi—u1
ﬁi = _)011/12 - %Via 1= 1727
ﬂl = 0,
© = U1,
P (2.43)
/172 = uziu1’
51 = 000 - 17
0, =0, i#1, 0.

\

We restate Theorem 8.1.2 in [Kim90], where a description of the group

generated by P;; is given:

Theorem 28. The group G generated by:

~

G =< P13, P23, P34,P100 >, (244)

is a group of symmetries for the Garnier system G, and it is isomorphic to

the symmetric group with 5 elements, i.e. Ss.

In order to write down the action of the group G in terms of co-adjoint
coordinates (1.3) defined on the big open subset U < M\QQ, we need to
understand how transformations F;; act on the monodromy matrices. We
calculate this action on a 4-tuple (M, ..., My) of monodromy matrices fol-
lowing Theorem 1.2 in the work of Dubrovin-Mazzocco [DM07] and after-

wards the action in terms of co-adjoint coordinates :

Lemma 29. If (M, My, M3, My) € ./\//\lg2 is the monodromy associated to a

solution (v1, p1, U1, Va, p2, u2) of Go, then transformations Pj3,Ps3, P34 act on
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the monodromy matrices as follows:

Pis : (My, My, Mg, My) — (M My MMy My, My, My My My, My),
Pys i (M, My, My, My) — ((My* MsMyMy) ™ My My My My M,
(Mo M)~ My Mo My, My, My),
Py - (My, My, Mg, My) — (M, MM, M, (M., MM, ™, M,,
(M3M2M1M2_1)_1M4(M3M2M1M2_1>7 M3)>

(2.45)
while transformation P, acts on the monodromy matrices as:
Pio o (M, My, M3, My) —(—C1 M,Ct, O MyCh, O My,
CrMLCY), (2.46)

where (] is the connection matrix defined in Section 2.2.

Proof. The proof is a consequence of Theorem 1.2 in the work of Dubrovin-

Mazzocco [DMO7]. O

Finally the action of the group G in terms of co-adjoint coordinates (1.3)

defined on the big open subset U < M\g2:

Corollary 30. The group G = (Py3, Pa3, P34, P1py actson pe U < ./(/l\g2 as

follows:

Pi3(p) =0907 05 (), (2.47)

Py3(p) =0907 ‘05 "oy Logoy oy (p), (2.48)

Pyy(p) =030207 03 '3 0207 L0y 030207 (p), (2.49)
(p)

Pioo(p) =(=Poo, P2, P3, Pas —P1, —P1Pa3 + Pag1 + P21Daz2 — D2Poo,



Garnier system G, and symmetry group G 61

— P21P4 + D421 + P321P43 — P3Poos P32, —P321, P42, P43,
— P1P4 + P41 + P321P432 — P32Po0; P432, —P215

— P1D3 + D31 + Pa1Ps2 — Dabs21), (2.50)

where o; are defined in (1.86).

Proof. Formulae (2.47)-(2.50) can be proven by straightforward computa-
tion applying, respectively, to formulae (2.45)-(2.46) the definition of co-

adjoint coordinates and the skein relation. O]

2.5.2 Symmetries of the monodromy matrices

In this Section, we introduce a set of transformations on the space of mon-

odromy matrices:

(i) Transformations that change signs to matrices M;, for i = 1,...,4,
the so-called Schlesinger transformations introduced by Jimbo-Miwa

in [JM81]:

(M17 M27 M37 M47 MOO) = (€1M17 €2M2, €3M37 €4M47
61626364(M4M3M2M1>_1), (251)
where ¢, = 1 fori =1,...,4.

(ii) Permutations of the matrices M; for i =1,...,4:

(Mb M2; Ms, M47 Moo) — (M&%y Mg_(;)v Mg_(gl))v Mg_(i)v

—1 —1 a7—1 a7-1y\-1
(M£(4)’M§(3)M§(2)Mg(1)) ), (2.52)

where £ is in a subgroup H < 54, of the symmetric group over 4
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elements. In (2.52), we consider the inversion to be able to refer to

the work of Lisovyy and Tykhyy [LT14].

Given (My,...,M,) € ./(/l\gm we call sign flips the transformations that
change sign of the matrices M;. They are defined as:

Sign( : (M17 M27 M37 M47 MOO) = (€1M17 62M27 63M37 64*]\447

€1,€2,€3,€4)

61626364(M4M3M2M1)71> (253)

where ¢, = +1 for ¢ = 1,...,4. The following four sign flips generate all

the others:

signy 1= sign_y 111+ (My, Ma, M3, My, My,) — (=M, My, M3, My, — M),
(2.54)

Sign2 = Sign(l,—l,l,l) : (M17 M27 M3a M47 MOO) — (Mla _M27 M37 M47 _MOO)7
(2.55)

Sign3 = Sign(l,l,fl,l) : (M17 M27 M3a M47 MOO) — (Mla M27 _M37 M47 _MOO)7
(2.56)

sign4 = Sign(1,1,1,71) : (Ml, MQ, Mg, M4, Moo) = (Ml, Mg, Mg, —M4, _Moo)7
(2.57)

Sign flips are invertible maps ® that lead to equivalent orbits:

Proposition 31. Given a sign flip sign € {(sign,,...,sign,y and a braid
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o € By, then there exists sign’ € (sign,, ... ,sign,) and ¢’ € By s.t.
osign = sign'o’. (2.58)

Proof. Suppose m = (M, My, M3, My) € /T/l\g27 we prove that given a gen-
erator o; for i = 1,2, 3 of the full braid group By, then:

osign; = sign; o, (2.59)

for some choice of the indices 7,7 = 1,2,3 and 7,5’ = 1,2, 3,4. We prove it

for oy and sign;. Indeed:
oisign, (m) = (My, — Mo M, Myt M3, My) = signyo; (m). (2.60)
In a similar way we can prove the following equations:

o18ign, = sign, oy,
018ign; = sign,oy,
o1sign, = sign,oy,
098ign,; = sign, o9,
0951gn, = sign,os,
o9sign, = sign, oy, (2.61)
0981gn, = sign,oa,
o3sign; = sign,os,
038ign, = sign,os,
0381gn; = sign,os,

0381gn, = Sign;0s.
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This concludes the proof. O

The following result gives the action of sign flips in terms of co-adjoint

coordinates and can be proved by straightforward computations:

Corollary 32. The action of the generators of the group of sign flips in
terms of co-adjoint coordinates (1.3), on the big open subset U < M\QQ, is

as follows:

Signl (p) = ( — P1, P2, P3, P4, —Poo; —P21, —P31, P32, —P41, P42, P43, —P321, P432,
— P31, —Pa21), (2.62)

sign, (p) = (pla —P2,P3; P4, —Poo, —P21, P31, —P32, P41, —P42, P43, —P321, —P432,

P31, —p421), (2-63)
signg (p) = (pl,pQ, —DP3, P4, —DPoo, P21, —P31, —P32, P41, P42, —P43, —P321, —P432,
— Pas1, Pa21), (2.64)

sign4(p) = (pla P2,P3, —P4, —Poo, P21, P31, P32, —P41, —P42, —P43,P321, —P432, —

— Pa31, Paz).- (2.65)

At this point we introduce permutations on a 4-tuple of monodromy matri-

ces (My,...,My) e /\//\lg2. These permutations are generated by:

(12)(34) : (Mlﬂ M27 M37 M47 MOO) — (M2_17 M1_17 M4_1a M?)_ly M2M1M4M3)7
(2.66)

(1234) : (M, My, My, My, M.o) — (M, My, My, My, (M MyM, M) ™).
(2.67)
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As in the case of sign flips also (2.66)-(2.67) can be considered as invertible
maps ® that lead to equivalent orbits (see Definitions 37 and 26):

Proposition 33. Given a permutation £ € {((12)(34), (1234)) and a braid
o € By, then there exists £’ € ((12)(34), (1234)) and ¢’ € B, such that:

o =¢&'o. (2.68)

Proof. Suppose m = (M, My, M3, My) € M\QQ, we prove that given a gen-
erator o; for i = 1,2, 3 of the full braid group By, then:

§o; = Uz‘/f/,

for some choice of the indices 7,7" = 1,2,3 and £, £ € ((12)(34), (1234)). We

prove in details that the statement is true for the composition of (1234) and

0.
(1234)0y(m) = (1234) (Mo, My My My, M3, My) =
= (M47 M27 M2M1M2_17 M3)7

and:

02(1234)(m) = O'Q(M4, Ml, MQ, Mg) =

- (M4, MQ, MngMgl, M3)7

then 09(1234) = (1234)0;. In a similar way we can prove the following
equations:

01(12)(34) = (12)(34)0; !, (2.69)
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12)(34)(1234) 0903,

12)(34)03 !,

72(12)(34) = ( (2.70)
) = ( (2.71)
01(1234) = (1234)(1234)0, ‘o, (2.72)
) = ( (2.73)
) = ( (2.74)

o3(12)(34
02(1234) = (1234)07,

03(1234) = (1234)0,

This concludes the proof. n

The following result gives the action of the permutations in terms of

co-adjoint coordinates and can be proved by straightforward computations:

Corollary 34. The action of the generators (12)(34) and (1234) in terms

of co-adjoint coordinates, on the big open subset U < M\gQ, is

(12)(34)(29) = (p2>p1>294,p3,poo,p217p42>p41,p32,p31,p43,p421,p4317p4327p321),
(2.75)

(1234)(29) = (p4,pl,pg,pg,pw,p41,p42,p21,p43,pgl,pgg,mm,pggl,p432,p431).

(2.76)
We resume the results of this Section in the following Theorem:
Theorem 35. The group:
G = <P13, P23, P34, Ploo; Sigl’ll, e ,sign4, (12)(34), (1234)> (277)

is a group of symmetries for U < M\g2.

Proof. For the subgroup of transformations (Pi3, Py3, P34, Pio ), the state-

ment follows by construction. For the subgroup of transformations (sign;, . . .,

signy, (12)(34), (1234)), the statement follows by Propositions 31 and 33.
O
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Input set of the matching

procedure

We briefly recall the main idea underlying our methodology. In order to

classify all finite orbits of the action:
P4 X Mg2 — Mg2, (3].)

in Theorem 12, we introduced four restrictions Hy, ..., Hy to subgroups of
P, that are isomorphic to the braid group P3;. These four restrictions are
summarized in Table 1.1. In particular each row of Table 1.1 represents
a subset ¢, q, ¢, q of co-adjoint coordinates p;, p;j, pi;x that must generate a
finite orbit under the “restricted action” of P3 over the SLy(C) character

variety of the Riemann sphere with four boundary components, i.e. Mpy.

In Section 3.1, we will remind that the “restricted action” describes the
structure of the analytic continuation of algebraic solutions of PVI, the
Sixth Painlevé equation, and hence, that each algebraic solution of PVI is

associated to a finite orbit of the “restricted action”.

67
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In this Chapter we want to produce a list of all possible ¢,q,¢,q, as
defined in (1.107), such that their orbit, under the action of Hq,..., Hy
respectively, is finite. In other words we want to define the “input set” for
the matching procedure introduced in Section 1.4. It is then fundamental,
for our purpouses, to know the classification of all algebraic solutions of
PVI. Many authors approached this problem with different methods, see
[AK02, Boa06, Boa05, Dub96, DM00, Hit95, Hit03, Kit05, LT14]. In the
following the major ideas are inspired from the work of Dubrovin-Mazzocco
[DMOO] and its natural generalisazion due to Lisovyy and Tykhyy [LT14].

The classification result of Lisovyy and Tykhyy produced a list of 5+ 45
distinct finite orbits of the action of P; over the character variety Mpy .
Lisovyy and Tykhyy’s classification is folded up to the action of the group
Gpyy of symmetries acting on M py ;. The action of the group Gpy; will be
described in Section 3.2 and we will show that also if Gpy; is isomorphic to
the affine Weyl group of type F (an infinite group), the action of Gpy over
the co-adjoint coordinates of an element in Mpy; is finite, see Lemmata
38, 44, 45 and 50.

In Section 3.3, we give explicitly the Lisovyy and Tykhyy’s list of 5+ 45
orbits. In this list there exists 5 infinite sublists of finite orbits (correspond-
ing to families of parametric solutions of PVI) and one finite sublist of 45
finite orbits, see Table 3.4. It is precisely the latter finite sublist that will be
crucial to our method in order to succeed. Since the action of Gpy; over the
45 finite orbits is finite, in Section 3.3.1 we define an “expansion algorithm”
that given the “folded list” of 45 orbits, it produces the “unfolded” list of

all “equivalent” finite orbits under the action of Gpy;.
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3.1 PVI: Braid group and analytic continu-

ation

The Sixth Painlevé equation is the isomonodromic deformations equation

for the Fuchsian system:

aw <A0 Ay A,
==+ +

dz > U, ze C\{0,u, 1}, (3.2)

z z—1 z—u

where the singular points 0, u, 1,00 are simple poles. The matrices A is

defined as:

0, 0O
Aoozz—AO—Al—Au:1 OO . 0, eC*
2\ o0 -0,

and the eigenvalues of A; are %9" with #; € C for © = 0,1, u. The 0; are the
parameters appearing in the PVI equation (2.6). A solution ¥(z) of (3.2) is
a multivalued analytic function on the Riemann sphere with four punctures:
C\{0,u, 1}. Consider loops vo,74,71 and 74 such that they encircle 0, u, 1, o0,
then we denote the associated monodromy matrices as Ny, Ny, N3 and N,

with N; in SLy(C) and such that:
Tr N; = 2cosnb;, i =1,2,3,00. (3.3)

The SLy(C) character variety of the Riemann sphere with four boundary

components is identified with the two dimensional quotient space:

M\PVI = M\gl = {(N1, No, N3) | N; € SLy(C), NyyN3NoNy =1}/ ~,
(3.4)
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where ~ is simultaneous conjugation of a triple by diagonal matrix.

Every element in M pyr can be identified with a 7-tuple of complex

values:

q:= (ChaCIQ,C]3,€Io07QQ1,Q31,(I32) € C7, (3.5)

where:

qi = TrNia 1= 172737007

qij = Tr NyNy, 4,5 =1,2,3, i > . (3.6)

Moreover, the quantities in (3.5) satisfy the Jimbo-Fricke cubic [Jim82,
Boa05]:

32431921 + q§2 + Q§1 + q%l — W1Q32 — WaQ31 — wW3qa1 +wy —4 =0, (3.7)

where:

w1 = q19xn + 4342,
Wo 1= (2qxn + 4341,
W3 = (3qxn + 9241,

wii=q3 + G + 41 + @ + 382010 (3.8)

It was proven by Iwasaki [Iwa03| that, if q1, g2, ¢3, g are treated as param-
eters, then (g21,¢s1,¢32) is a system of coordinates on a big open subset

Sc M\PVI-

By (2.29), explicit formulae for the action of the full braid group Bs on
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the monodromy matrices N; for i = 1,...4 are:

PV (N1, Ny, N3) — (N, Ny "Ny Ny, N3),

(
o™+ (N1, Ny, N3) — (N1, N3, Ny ' NyNs). (3.9)

Moreover action (3.9) can be restated in terms of co-adjoint coordinates

(3.6):

(PVI)
01 : (C]bQ27Q3>Qoo,Q21,Q31>C]32) — (Q2,Q1’Q3>C]oo,Q21,Q32,W2 — 431 — 61326121),
(PVI) |
09 : (Ch,6127%,%0,6]2176]3172732) — (Q1aCI37QQ7QOOaQS17W3 — ({21 — Q31€I32,C]32)-
(3.10)

By (1.83), we can define the generators of the pure braid group Pj as follows:
Py=< "0, 00 0 " >, (3.11)

where:

PVI PVI

GV = (oY,

PVI PVI)\— PVI PVI

AN U R A B S

PVI PVI

Bt = (a2, (3.12)

Note that sub-indices ij in the generator Bl-(f VD) determine the g¢i; that is

actually fixed during the action of the generator.

Before proceeding, we reformulate action (3.12) in a slightly different
way. Given ¢ satisfying the cubic relation (3.7), we can define (¢,w) as
follows:

(@Q) 1= (qa1, @31, @32, W1, Wa, W3, Wa), (3.13)
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where w; for i = 1,...4 are defined in (3.8). Hence, action (3.12) on ¢ is

equivalent to the following action on (g,w):

(PVI) ._

21 (Qa w) = (a1, W2 — q31 — G21q32, W1 — @32 — @21 (W2 — @31 — G21G32), W),
ﬂ:gfw) (Q> &) = (W3 —g21 — Q31(W1 — 421431 — Q32), g31,W1 — g21431 — Q32,£)a
6§§W) (Q, Q) = (w3 — ¢21 — 431432, W2 — (431 — Q32(w3 — (21 — QSIQSQ)a Q327&)-

(3.14)

This permits us to identify an orbit with a couple (¢, w).

The following Lemma, that can be found in [DMO0O], describes, in a
geometric manner, the action of the pure braid group (3.11) and a necessary

condition for this action in order to be finite:

Lemma 36. Suppose ¢ € M py1 generates a finite Ps-orbit, then only two

possibilities arise:
(i) Or g satisfies:

qij = 2COS7TT'Z‘]‘, Tij € Q, 0< Tij < 17 Z,] = 1,2,37 7> j (315)

(ii) Or there exists a pure braid @(JP VI), for some choice of indices i, j =

1,2,3,7 > j, such that Bi(fw)(q) = ¢. Then g¢;; is a complex parameter
satisfying:
(2w; — wigy;) (2w; — w;gi;)

Qi = s Q= ——— L,k =1,23, k>1i>j.
(4-4q3) (4—q)
(3.16)

Proof. Without loss of generality, we prove the Lemma for i = 2 and j = 1.

The proof in the other cases can be obtained in a similar way.
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Consider the generator 65113‘/[) defined in (3.14), it fixes the coordinate
@21 and it acts as a linear transformation on the variables (g3, ¢32). The

cubic relation (3.7) is a conic in (g1, ¢32):

Q§1 + Q32,2 + ¢21(g31932) — wigs2 — w2qs1 — (w3go1 —wy +4) = 0, (3.17)

that is invariant under the action of ﬁéfw).

If g1 = £2, then r9; = 0 or r9; = 1 and the statement follows. Hereafter

suppose o1 # *2:

(i) The linear action of 55113‘”) on (g1, gs2) describe a rotation R of (gs1, ¢32)
on the conic (3.17). If 6 is the angle of the rotation R, then ¢o; =

2 cos . Moreover if 0 is a rational multiple of 7, then:
dneNst. R"=1d.

The action of Bgfw) produce a finite orbit on (gs1,¢s2) if and only if

g21 = 2 cos where @ is a rational multiple of .

(ii) Suppose ¢ is a fixed point of the braid Bgfw), ie. ﬁéfw) (q) = q, then:

(2002 - leQl)
431 = —F 5~

(4—qg3)
(2601 - W2Q21)
Q32 = —F 5
(4 —q3)
and g1 is a complex parameter.
This concludes the proof. O

As a consequence of the previous Lemma, the classification of all finite

orbits of the Ps-action on M py reduces to the classification of triples of
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rational angles 7r;; or fixed points. This classification has been achieved by
Lisovyy and Tykhyy in [LT14] modulo action of the symmetry group Gpy;

that we will describe in the next section.

3.2 PVI: symmetry group Gpy;

In this Section, we introduce the group of symmetries Gpy; acting on the

affine algebraic variety M pvi. An element of Gpy is defined as follows:

Definition 37. A symmetry is an invertible map ® : M\PV[ — M\PV[ such

that given an element ¢ and its orbit Op,(q), the following is true:

|Or,(2(q))| = [Or; (). (3.18)

As a consequence, if ¢ generates a finite orbit of length N, then ®(q)
generates a finite orbit of the same length. We say that the orbits generated
by ¢ and ®(q) are equivalent. As for the Garnier system Gs, we firstly study
the group of Backlund transformations for PVI, the Sixth Painlevé equation,
and subsequently we extend this group with more simpler transformations
acting on the space of monodromy matrices, in order to obtain the group

of symmetries Gpyy.

3.2.1 Okamoto transformations of PVI

In this Section we study symmetries of M pys that are derived from the
so called group of Backlund transformations for PVI. Even if this group
is isomorphic to the extended affine Weyl group of type Fj, see Okamoto
[Oka86], that is an infinite group, we show that the action of the extended

affine group Fj is finite when we express it in terms of co-adjoint coordinates
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Bécklund transformations are birational maps sending a solution v(u)
of PVI with a fixed set of parameters (1, 6, 05, 0,,) to a new solution /(')
of PVI with a new set of parameters (0~1, QNQ, 9~3, 500) Moreover, since these
maps are birational, they send algebraic solutions to algebraic solutions,
preserving the number of branches. In particular, these transformations act
also on the affine algebraic variety .K/l\gw sending finite orbits to finite orbits
and preserving their length. Two orbits related by such transformations are

said to be equivalent.

Okamoto [Oka86] showed that the group of birational canonical trans-
formations of the Hamiltonian system associated to the PVI equation, can
be identified by an isomorphism with the extended affine Weyl group of
type Fj. Usually when the context involves the Sixth Painlevé equation,

Backlund transformations are referred as Okamoto transformations.

Generators for Backlund transformations for PVI are listed in Table 3.1.
The first five transformations si, s9, S3, S, Ss generate a group isomorphic
to the affine Weyl group of type Dy, while transformations rq, r9, r3 generate
the Klein four-group K, and permutations Py3, P»3 generate the symmetric
group S3. Enlarging the set of generators of affine group D, by the genera-
tors of K, and S5 the extended affine Weyl group of type F} is obtained.

We now describe the action of the extended affine Weyl group of type
F, on the quotient space M py1 endowed with the co-adjoint coordinates
q introduced in Section 3.1. If the action of the pure braid group P; over
(¢, w), defined in (3.13) is finite, then the action of the extended affine Weyl

group of type Fj over (g,w) is finite too.

Among all transformations in Table 3.1, we need to be particularly care-

ful on how we treat transformation sg, since the parameter ¢ can be modified
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L 6 | 6 [ 6 | 6o || v | p |
$1 -6, 0, 05 O v p— %1 U
S 0, —6y 05 O v p— ffu U
S3 01 92 —93 000 v P ue_jl u
Seo 0, 0 05 —0 v p U
Ss || 01 —0 | Oo—0d | O3—0 | 0 —0 1/+§ p U
ro || 6, —1] 6 0, |6 +1| =lovte) u
ro | 6 [6o—1] 6 [6+1 | = | EDEDet) Ty,
T 0 O |0, —1] 0+ 1 || M | Sl
P13 93 62 91 900 1—v —p 1—u
Py3 th 05 0> O 5 up %

Table 3.1: Okamoto bi-rational transformations for Painlevé VI, where:
§ = t02405+0
5 :

by other generators in Table 3.1. Indeed consider a transformation ® in the

extended affine group Fj then:
O :(01,...,00) — (D(61),...,9(0,)) = (6,...,60)

then s; = sg where:
_ 0+ 0, +05+0,

6/
2

We want to develop a strategy in order to deal in an easy way with s;.
The following Lemma appears in the works of Terajima [Ter03] and Inaba,

Iwasaki and Sato [IIS04], in particular we propose it here as in [IIS04]:

Lemma 38. The quantities (¢,w), defined in (3.13), are invariants under

the action of the transformations s; for ¢+ = 1,...,00,4.

As direct consequence of Lemma 38, the affine group D, (in particular
transformation ss) acts trivially on (¢,w). Now we study the action of the

remaining generators in Table 3.1 on (g, w):
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Theorem 39. The generators of Backlund transformations listed in Table

3.1 act on (3.13) as follows:

QZ17q317Q327w17w27w37w4)7 1= 17273700757

¥2)
g
~

S

&
S~—
—

—{q21, —(431, 432, W1, —W2, —W3, w4)7

—{21, 431, —(¢32, —W1, W2, —W3, W4),

<
[\

—~ —~ —~
=
€

~ ~ ~

— —~ —~

421, —q431, —q32, —W1, —Wa, W3, w4)7 (3-19)

Pas q, W) = (W2 — g31 — G21G32; @1, @32, W1, W3, Wa, Wa) -

Proof. The proof for transformations si, s9, 3,55, and ss is a direct con-
sequence of Lemma 38. We proceed with the proof for transformations
ri1,79,73 and Pi3, Po3. In particular we prove in details the statement for
r1 and Pj3, then for the remaining transformations the proof proceeds in a

similar way.

Suppose v(u) is a solution to the PVI equation (2.6). Transformation

leaves the independent variable u unchanged but not the dependent variable:

By Theorems 2.2 - 2.2’ - 2.2” in [DMO00], in the sectors ¥, 31, 3o, of neigh-

bourhoods of the singular points 0, 1 and oo respectively, is as follows:

-

aout=% + ..., for u — 0,u € X,

v(u) ~ {1 —ay(1—u)"ot + ..., foru—1ueX, (3.20)

AU’ + ..., for u — oo, u € X,
\
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The asymptotic behaviour (3.20) can be used in order to determine the ac-
tion of r; over the quantities ¢;;. Indeed the g;; are related to the exponents

of the leading terms in the asymptotic behaviour (3.20) by the identities:

go1 = 2cosmoy, 0 < o9 < 1, (3.21)
g32 = 2cosmoy, 0 <oy < 1, (3.22)
g31 = 2¢cos oy, 0 < 0y < 1. (3.23)

We compute now the asymptotic expansion for :

r

%u"o—k..., for u — 0,u € X,
u
v(u) = ——~< — v 24
(u) v(u) \ o () 0=oD +..., foru—1,uey, (3.24)
tul_"“—l—..., for u —> o0, u € Xy,

\

By uniqueness of the asymptotic behaviour and the fact that the indepen-
dent variable u is invariant under r;, we can compare the exponents of the
leading terms in (3.20) and (3.24), obtaining 6y = 1 — 0y, 1 = o7 and

Op =1— 0.

Finally, using equations (3.21)-(3.22), we obtain a change of sign in go
and ¢31. Moreover the action of 1 on quantities w; for i = 1,2, 3,4, defined
in (3.8), can be directly calculated by the action of 7y on the 6; as listed in
Table 3.1 and relations ¢; = 2 cos(w#;) for i = 1,2, 3, c0.

Consider now transformation Pj3. It acts not only on v(u) but also on

v(u) — v(u) =1 —rv(u),

ur—u=1—u.
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The action of this transformation can no longer be calculated using the
asymptotic behaviours of v(u) near the singular points, indeed the asymp-
totics of v(u) are defined locally in proper sectors ¥; for i = 0,1, 00 but the
transformation P;3 is acting globally by the change of the temporal variable
u. Following the approach of Guzzetti in [Guz08], consider the Fuchsian

system associated to v(u):

AV A A A
—l L+ =2 4 3]\1/, (3.25)

=

Z — U Z — U3 Z — Uus

with u; = 0,us = w,u3 = 1 and the Fuchsian system associated to o(a)

obtained applying transformation Pi3:

. (3.26)

po + =
Z — Ul Z — U3 Z — Uus

The two systems are related by a diagonal gauge transformation and the
exchange of points u; = 0 and u3 = 1. This exchange generates a new basis
of loops 71,72,73 in the fundamental group of the Riemann sphere with
4 boundary components. Since monodromy preserving deformations are
considered, the basis 71,72,73 can be written in terms of the original basis
1,72, 3. As a consequence, setting (Ni, Ny, N3) and (Ny, No, Ns) to be
respectively the monodromy matrices associated to a fundamental solution

of (3.25) and (3.26), then they satisfy:

Ny = Ns, (3.27)
N, = N3N, N; L, (3.28)

N3 = NysNo Ny Ny N; L (3.29)
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and:
g1 = Tr Ny = Tr Ny = gs,
q~2 =Tr NQ =Tr N3N2N3_1 = (2,
Gs = Tr N3 = Tr NsNo Ny N; Nyt = g,
Goo = Tr N3N2N1 = Tr N3N N1 = qo,
go1 = Tr Nle = Tr N3N; = g3,
Gz = Tr N3Ny = Tr NsNo Ny Nyt = wy — g1 — go1s2,
Gzo = Tr N3Ny = Tr ]\]3]\72]\71]\73_1 = ¢21.
and the action of P,3 is obtained. O

Corollary 40. The group:
<81,82,83,SOO785,7“1,?”2,T3,P13,P23>, (330>

is a group of symmetries for M PVI-
Proof. The statement follows by construction. n

We want now to show that given (¢, w) such that its orbit is finite un-
der the action of P3, then the set of all possible (¢,w) obtained by acting
on all points in the orbit with the group of transformations generated by
{r1,re,r3, P13, Pa3) is finite too. Before we need few Lemmata, the first one

is about the finiteness of group {(rq,rs,73):

Lemma 41. Transformations r; for ¢+ = 1, 2, 3 generate the Klein four group

Ky.

Proof. We prove that (ri,ry,73) ~ K4. If a,b,c are the generators of the
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group K4, then it has presentation:
a? =0 =c=abc=1 (3.31)

Consider a = 11,b = 19,¢ = 73 then (3.31) is satisfied and the isomorphism

follows. L

By Lemma 41, since K} is finite, its action on a finite set produces again

a finite set. Now we show that P35 and P,3 act as braids:

Lemma 42. Transformations P;3 and P»3 are such that:

PVI PVI PVI
Pis(g,w) = ot Dot Vo™ (g w),

Pos(q,w) = ag”‘”) 71(g, w) . (3.32)

Proof. Given the definition (3.10) of the generators UZ(PW) for i = 1,2 of the
full braid group Bz and the action of Pj3,Ps3 given in (3.19), then identities
(3.32) follow. O

Finally, given (¢,w) generating a finite orbit under the action of the
braid group, the next Lemma ensures that (¢, w) has finite orbit also under
the action of the group {ry,r9,73, P13, Ps3). However, before we proceed
with the next Lemma, we need some consideration about the classification

of Lisovyy and Tykhyy [LT14]:

Remark 43. Note that in [LT14], if an orbit is finite under the action of
the pure braid group Ps, then it is finite under the action of the full braid
group Bs. Indeed in [LT14] all orbits are classified under the action of the
three generators z,y, z (we keep for the moment the same notations as in

[LT14]) of the pure braid group Pj (see their definition in (7) of [LT14]).
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If we consider the transformations (12), (123) (defined in Section 2.2 of

[LT14]) and their compositions, we obtain the following identities:

r = (12)5,(123)?, (3.33)
y = (12)4., (3.34)
z = (123)(12)(123) 8, (3.35)

We can now state the Lemma:

Lemma 44. If (¢, w) generates a finite orbit under the action of full braid
group B3 and N is the length of the orbit, then (¢,w) generates a finite

orbit under the action of the group:
Gg‘)/l = <7"1, 2,73, P13a P23>a (336)

and the orbit has at most 4N elements.

Proof. In order to prove the statement, we firstly prove the following rela-

tions:

Pi3ry = r3P3,
Pi3ry = ry P,
Pi3rs = r Pi3,
Pasry = 11 P, (3.37)
Pagry = 13 a3,

Pysrs = 13 P3.

Thanks to (3.37), we are allowed to split the action of the whole group

{ry,re,r3, P13, Pa3), into the two separate actions of groups (Pi3, Py3) and
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{ri,m9,73). Since < Py3, Ps3 > Bs, then:
|O<P13,P23>(Q> Q)’ = Na N e N. (338)
Moreover, by Lemma 41:

‘O<T1,7‘2,7‘3>(g7 Q)’ = 47 (339)

and relations (3.37), if we act on each element in O¢p,, p,)(q,w) with <

ri,T9,73 > We obtain:

|O<7’177’2J’3,P13,P23>(g7 Q)‘ < 4N. (3.40)

This completes the proof. O

By Lemmata 38 and 44 the action of extended affine group F} in terms of
(¢, w) reduces to the action of group {ri, 72,73, P13, P3) and if [Op, (¢, w)| <
o then also the orbit generated acting on (g, w) with (r1, 72,73, P13, Pa3) will
be finite.

We focus in the next part on how we can calculate the action of affine
group D, generated by s; for i = 1,...,d over (q1,G2,G3,qx). As said at
the beginning of the Section, in general transformations of affine group D,
don’t act trivially on (3.5) because of the particular nature of ss. Anyhow,
suppose we know (g,w), then (qi,q2, 3, go) must be a solution of (3.8) for
the given w. Moreover, due to invariance of (¢, w) under the action of trans-
formations s; for i = 1,...,4, we expect that solutions (g1, g2, g3, o) could
be also related by the lift of some transformations in the affine D, group
in Table 3.1, to co-adjoint coordinates ¢q. This observation is formalized in

Proposition 10 in the work of Lisovyy and Tykhyy [LT14] where transfor-
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mations of the affine group D, linking solutions (g1, g2, g3, ¢o) of (3.8) are
explicitly given by the authors. Following Lemma recalls Proposition 10 in

[LT14]:

Lemma 45. Suppose wy, ws, ws,wy are given and consider system (3.8) in
the variables q1, g2, q3, ¢, then this system could have at most 24 solutions
and any two solutions are related by transformations on the 6; for 1 =

1,...,00 of the affine group D4. The 24 transformations are:

id,
2
(51525350055)°,
555152555350,
555153565250,
2
51525385055) (S6515285538),

( (
(515253505055 )2 (5551535552500 ),
(5551525553500)(S55153565250),
( (

2
515895350056) (S651525553S00) (8551535652500 ),

(51525350055)° 56,

5§515255535054 5

5§515385525054,
(515253505055 )2 (5551525553500 )55,
(51525350055 )2 (5551535552500 )85,
(5551525553500)(S55153565250)Ss,
(51525350055 )2 (5551525553500 ) (5551535552500 )55

(3.41)
(3.42)
(3.43)
(3.44)
(3.45)
(3.46)
(3.47)
(3.48)
Ss (3.49)
(3.50)
(3.51)
(3.52)
(3.53)
(3.54)
(3.55)
(3.56)
(3.57)

5551,
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(51525350055)2 8551, (3.58)
5551525553550 5551 (3.59)
55515355528505551, (3.60)
(51525350055 )2 (5551525553500 ) 5551, (3.61)
(51525350055 )° (5551535552500 )5551, (3.62)
(5551525553500 ) (S551535652800) 5651, (3.63)
(51525350055 )2 (5551525553500 ) (5551535552500 )5551. (3.64)

3.2.2 Symmetries of monodromy matrices

In the following we remind the reader about other trivial symmetries on the

space of monodromy matrices:

(i) Independent sign changes ¢; = +1 of the matrices N; for i = 1,2,3
, due to Schlessinger transformations on the Fuchsian system (3.2)

studied by Jimbo and Miwa in [JM81]:

(N1, N2, N3, Ny) —> (€1N1,€2N2,€3N3,€1€2€3(N3N2N1)71)-

(ii) Permutations of the matrices N; for ¢ = 1,2, 3:

1 a—1 Ar—1 —1 Ar—1 Ar—1 -1
(N1, No, Ny, Noo) = (Nery, Negays Negayr (Ve Ve Ney) ™),

where ¢ is any permutation in S5, the symmetric group over 3 ele-

ments.
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Given n = (N1, Ny, N3) € M\PV[, we call the transformations that change

sign of the matrices N; sign flips and they are defined as:
Sign(€1,€2,63) : <N17N27 N37Noo) — (€1N1, €2Ny, €3N3, €1€2€3Noo>7

where ¢, = +1 and we included the action on the monodromy matrix N

as well. The following three sign flips generate all the others:
Signl = sign(_Ll’l) : (Nl, NQ, N3, Noo) — (—Nl, N27 Ng, —NOC), (365)

SigHQ = sign(L_l’l) : (Nl, NQ, N3, Noo) — (Nl, _N27 Ng, —NOC), (366)
sign3 = sign(LL_l) . (N17 Ng, Ng, Noo) — (Nl, N27 —Ng, _Noc)a (367)

and they satisfy:

sign = sign; = sign; = 1,
sign,sign, = sign,sign,,
sign,signs = sign,sign,,

sign,sign, = signgsign,, (3.68)

as a consequence, the group of sign flips is finite and it is isomorphic to the
group Cy x Cy x Cy, where (s is the cyclic group of order 2.
We need following Lemma in order to prove that sign flips are symmetries

of M\PV[:

Lemma 46. Given sign € {sign,,sign,,signy) and a braid ¢ € Bs, then

there exists sign’ € (sign,, sign,, signy) and ¢’ € Bz such that:

osign = sign’o’.
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Proof. Given n = (N1, Ny, N3) € M\PV] we prove the result on the genera-

tors o; for ¢ = 1,2 of the full braid group Bjs, i.e. we show that:

o;sign; = sign; oy,

for some choice of the indices 4,7 = 1,2 and j,j’ = 1,2,3. Suppose we

consider oy and sign,, then:

Jlsignl(n) = Ul(—Nl,NQ,Ng) = (NQ, —NQNlNQ_I,N3) =

= signy(Ny, NoN Ny b, N3) = signyo(n).

In a similar way we can prove all the following equations:

This conclude the proof.

o1sign, = sign, o1,
o18igny = signsoy,
098ign; = sign, g,
09S1gN,y = SIgN309,

0951gN; = SigN,03.

(3.69)

(3.70)

]

In Table 3.2 we summarize the action of the sign flips in terms of the

co-adjoint coordinates ¢ and the quantities w;, as defined in (3.8).

‘ a1 ‘ a2 ‘ a3 ‘ doo ‘ q21 ‘ 431 ‘ 432 ‘ W1 ‘ W2 ‘ w3 ‘ Wy
signy | —q1 | 42 93 | —doo | —Q21 | —G31 | 432 Wi | —Wa | —W3 | Wy
signy | 1 —q2 | 43 | —4wo | —q21 | 431 —(Q32 | —W1 | W2 | —W3 | Wy
signg | ¢ 92 | =43 | —qoo | 421 —qg31 | —Qq32 | —W1 | —W2 | W3 | Wy

Table 3.2: Action of the sign flips in terms of the co-adjoint coordinates q.
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Corollary 47. The group {sign,, sign,, sign, ) is a group of symmetries for

M\PVI-
Proof. The statement is a consequence of Lemma 46 and Table 3.2. O

At this point we introduce the permutations on the elements of a triple
of monodromy matrices in M py. The symmetric group on three elements
Ss = {id, (12), (13),(23), (123), (132)} is generated by (123) and (12), i.e.
Sy = {(12), (123)). We describe the action of the S3 on n defining its two
generators (123) and (12) as:

(123> : (N17N27N37NOO) — (N37N17N27 (N2N1N3)71)7 (37]‘>

(12) : (N1, Noy N3, Noo) > (Ng ', N NS (N3N Np) ™). (3.72)

The action on the monodromy matrices of the entire group Sj is:
(12) : (N1, N2, N3, Nyo) — (N3 ' Ny NG (NS INTING DT, (3.73)

(13) : (N1, No, N3, Noo) = (N3 ', Ny N (NN TN DY, (3.74)
(23) : (N1, Na, N3, No) — (N74 Ngt Nyt (NS INTINTD Y, (3.75)
(123) : (N1, No, N3, No) = (N3, Ny, N, (No Ny N3) ™), (3.76)

(132) . (Nl,NQ,Ng,Nw) —> (NQ,Ng,Nl, (NlNgNQ)_l). (377)

As in the case of sign flips, we need following Lemma in order to prove that

permutations are symmetries of M py:
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Lemma 48. Given £ € S3 and o € B3, then there exists £’ € S; and ¢’ € By
such that:
o€ =¢0o.

Proof. Given n = (N, No, N3) € M\PV[ we prove the result on the genera-

tors JZ(PVI) for + = 1,2, 3 of the full braid group Bs, i.e. we show that:

otV = oPV0¢! (3.78)

i it

for some choice of the indices 7,7 = 1,2,3 and &, ¢’ € ((12), (123)).
We prove (3.78) for (12) and aépw):

02(12)(N17 N27 N3a Nw) =
= oo(Ny ', Ny NG (NS N ING ) ) =

= (Ny ', Nyt NI NN, (NG NN DT,
The triple of monodromy matrices is in GL(2)*/GL(2) then:

(N5 Nyt Ny I N, (N NN, ) ) =
= N3(Ny ' Nyt Ny ENTENG, (N NN T NG =

= (NaNg Nyt Nyt NP (NN, TN ),
Now, if we consider (23) = (123)(12) and aépw), then:

(123)(12)0a(N1, Na, N3, Nyo) =
— (123)(12)(Ny, N5, NsNo N3t N =
= (123)(N; ', N7 Y Ng Ny NG (Na Ny N ) TN NG ) =

= (NsNy 'Ng 5 Ny U N (NN NG 7.



90 Chapter 3
and (3.78) follows.
The following relations can be proven in a similar way:
09(12) = (123)(12)09,
01(123) = (132)0; !,
01(12) = (12)0; 7,
09(123) = (123)07,
0y 1 (12) = (12)(123)0;
0y (123) = (123)07 !,
071(123) = 0y,
o 1(12) = (12)0,
This completes the proof. O

The action of permutations (Py3, Ps3) is given, in terms of ¢ and w;, in

Table 3.3.
‘(11‘Q2‘Q3‘C]oo‘%1‘(131‘%2‘0&11‘%‘0@13‘%
(12) 92 | 91 | 93 | oo | 21 | 432 | 431 | W2 | W1 | W3 | Wy
(123) g3 | 41 | 92 | 9o | 931 | 432 | G21 | W3 | W1 | W2 | W4

Table 3.3: Action of the permutations in terms of the co-adjoint coordinates

q.

Corollary 49. The group ((12), (123)) is a group of symmetries for Mopyr.

Proof. The statement is a consequence of Lemma 48 and Table 3.3. O

Next Lemma ensures us that sign flips (3.65)-(3.67) and permutations

(3.71)-(3.72) generate a group and that this is a finite group:
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Lemma 50. The group:
Gg‘)/l =< signy, sign,, signs, (123), (12) >, (3.79)

is a finite group of 48 elements.

Proof. In order to prove that the group Gg‘), ; has 48 elements, we proceed

proving the following relations between the generators:

12)sign,, (3.80)

As a consequence, by relations (3.80) and direct computation, the statement

follows. O

3.3 PVI: Classification of finite orbits

In this Section we resume the classification result, about all algebraic solu-
tions of PVI, achieved by Lisovyy and Tykhyy in [LT14]. In particular, for
each family of algebraic solutions, we describe the associated finite orbits of
the action of P3 over the Riemann sphere with four boundary components.

Each orbit will be presented as a couple (¢,w), defined in (3.13), and
the action of Pj is explicitly given in (3.14).

Four families of algebraic solutions of PVI can be distinguished:
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e Okamoto solutions.

e three Kitaev-Hitchin solutions.
e Cayley-Picard solutions.

e 45 exceptional solutions.

The list of all finite orbits associate to these families of solutions is:
Okamoto solutions. Each orbit (orbits I in [LT14]) associated to this

family of solutions consists of one point (g, w):
{(a,b,c,w)}, (3.81)

where a,b,c € C are free parameters and wy, ws, w3, wy satisfy:

wy = 2¢ + ab,
wy = 2b + ac,
w3 = 2a + bc,
wy = 4+ 2abc + a® + b* + . (3.82)

Definition 51. O is the set of all the equivalent orbits that satisfy (3.81)
and (3.82).

Hitchin-Kitaev solutions. In this case we distinguish three sub-

families of finite orbits:
o K-Type II;
o K-Type III;

o K-Type IV.
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Orbits of K-Type II (orbits II in [LT14]) consist of two points:

{(0,0,a,w),(0,0,b,w)}, (3.83)

where a,b € C, a # b is free parameter and wy, wo, w3, w4 satisfy:

(JJ1:(I+b,
WQZCU3:O,

wg =4 + ab. (3.84)

Definition 52. Ky is the set of all the equivalent orbits that satisfy (3.83)
and (3.84).

Orbits of K-Type III (orbits IIT in [LT14]) consist of three points:

{(0,0,1,w), (a,0,1,w), (0,a,1,w)}, (3.85)

where a € C, a # 0 is free parameter and wy, ws, w3, wy satisfy:

wy = 5. (3.86)

Definition 53. Ky is the set of all the equivalent orbits that satisfy (3.85)
and (3.86).

Finally, orbits of K-Type IV (orbits IV in [LT14]) consist of four points:

{(1,1,1,w),(a,1,1,w),(1,a,1,w), (1,1,a,w)}, (3.87)
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where a € C, a # 1 is free parameter and wy, wo, w3, wy satisfy:

W1 =Wy =W3 =a+ 2,

wi = 3(a +2). (3.88)

Definition 54. Kjy is the set of all the equivalent orbits that satisfy (3.87)
and (3.88).

Cayley-Picard solutions. The orbits associated to this family of so-

lutions can be generated from the points:

(—2cosm(a +b),2cosma,2cosmh,w), a,be Q, (3.89)

and w1, wq, w3, wy satisfy:

W1 = Wy = W3 = Wy = 0. (390)

For this particular family the length of orbits varies with the choice of

parameters a and b.

Definition 55. CP is the set of all the equivalent orbits that satisfy (3.89)
and (3.90).

Orbits associated to the 45 exceptional solutions. We summarize
the 45 representative of the associated orbits in Table 3.4 ( that is exactly
Table 5 in [LT14]). The first column identifies the orbit while the second one
indicates how many points there are in the orbit. The 4-tuple in the central
column gives the values of the parameters (3.8) and in the last column the

values n;; are such that:

qij = 2COS7Tnij7 Za] = 172a37 1> ] (391)
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[ size [

(w3, w2, w1,4 — ws)

(n21,m31,n32)

1] 5 0,1,1,0) 2/3,1/3,1/3)
SRE (3,2,2,-3) (1/3,1/3,1/3)
31 6 1,0,0,2) (1/2,1/3,1/3)
11 (V2.0.0.1) (1/4,1/3,3/4)
5 6 (3,2v/2,24/2, —4) (1/2,1/4,1/4)
6 | 6 (1—%,%,%*/5,—2+\/5> (4/5,1/3,1/3)
7| 6 (1+ 5,258,355 5 V5) (2/5,1/3,1/3)
s | 7 1,1,1,0) 1/2,1/2,1/2)
9 | 8 (2,0,0,0) (0,1/3,2/3)

0] 8 (1,v2,72,0) (1/2,1/2,1/2)
1| s (3+2\/3, 1,1, —‘/5;1) (1/3,1/2,1/2)
2] 8 (3*2\/5, 1,1, */52*1) (1/3,1/2,1/2)
13] 9 (2 V5,2 — /5,2 — /5, @) (4/5,3/5,3/5)
4] 9 (2+\/5,2+\/5,2+\/5,J“/;ﬁ> (2/5,1/5,1/5)
15 | 10 1,0,0,1) (1/3,1/3,2/3)
16 | 10 (3-v5,3-+5,3- 5 1) (3/5,3/5,3/5)
17| 10 (3+\/5,3+\/5,3+\/5,—@) (1/5,1/5,1/5)
18| 10 —*/52—1,—\/52—1,—*/52—1,0) (1/2,1/2,1/2)
19 | 10 (@ VoL Vg;l,o) (1/2,1/2,1/2)
20 | 12 (0,0,0,3) (2/3,1/4, 1/4)
21 | 12 (1,0,0,2) (0, 1/4, 3/4)

22 12 (27\/57 \/77 _2) (1/572/572/5)
23 | 12 Y5 AL L _\5) (2/5,2/5,2/5)
24 | 12 e ) (4/5,4/5,4/5)
25 | 12 (\/52“, \/52*1,1,0) (1/2,1/2,1/2)
2 | 15 (350,355,555 V5 1) (1/2,3/5,3/5)
27 | 15 (38,258 346 51 (1/2,1/5,1/5)
28 | 15 =Y5,1- 5,1 - V5, 28 (3/5,4/5,4/5)
2 | 15 (5+2\/5, 1+ 5,1+ 5, —@) (1/5,2/5,2/5)
30 | 16 (0,0,0,2) (2/3,2/3,2/3)
31 | 18 2,2,2, 1) (0,1/5,3/5)

32 | 18 | (1 —2cos2n/7,1 —2cos2n/7,1 —2cos2nw/7,4cos2n/7) | (6/7,5/7,5/7)
33 | 18 | (1 —2cosdn/7,1 —2cosdn/7,1 —2cosdn/T,4cosdn/7) | (2/7,3/7,3/7)
34 | 18 | (1 —2cos6n/7,1 —2cosb7/7,1 —2cosb6nw/7,4cos67/7) | (4/7,1/7,1/7)
35 | 20 (355,001 +5) (0,1/3,2/3)

36 | 20 <3+2*/5,0,0, 1— \/5> (0,1/3,2/3)

37 | 20 1, -5l o5l /541 (2/3,3/5,3/5)
38 | 20 1, 54 @*1,—\/5;1) (2/3,1/5,1/5)
30 [ 24 TLLD) 1/5,1/2,1/2)
40 | 30 (—@ 0,0, 3=/ (2/3,2/3,2/3)
41 | 30 (@ 0,0, %) (2/3,2/3,2/3)
12 | 36 1,0,0,2) (0,1/5,4/5)

43 | 40 (0, 0,0, %) (2/5,2/5,2/5)
44 | 40 0,0,0, 245 (4/5,4/5,4/5)
5| 72 (0,0,0,3) (1/2,1/5,2/5)

Table 3.4: 45 Exceptional solutions.
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We define the following set:

Definition 56. E, 5 is the set of all the equivalent orbits obtained from

Table 3.4.

It is important to note that, depending on the family of algebraic solu-
tions of PVI, there is a different number of associated finite orbits. Let us

resume this fact:
e The set O of orbits associated to Okamoto solutions is an infinite set.

e The sets Ky, Ky, Ky of orbits associated to Hitchin-Kitaev solutions

are infinite sets.

e The set CP of orbits associated to Cayley-Picard solutions is an infi-

nite set.

e The set E45 of orbits associated to the 45 exceptional solutions in

Table 3.4 is a finite set.

Since the sets O,K, K, Kiv and CP are infinite, for the moment we focus

on the set Ey5.

3.3.1 Expansion algorithm for Table 3.4

In the last part of this Section we explain how, given an element (¢, w) in
Table 3.4, we can generate the set Ey5 of all equivalent orbits under the
groups of symmetries studied in the Section 3.2.

The group Gpy; of Okamoto transformations of the Sixth Painlevé equa-
tion acts as Ky x S3 on w = (wy,...,ws) [LT14]. Extending this action to
q = (qo1,431,932), we obtain Theorem 39. Moreover, we observe that Py

and Pz are elements of the braid group Bs, and since we act only on points
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that have finite orbits under the action of the braid group (see Remark 43),
the action of the whole group Fj produces a finite set of values. All these
values will be in the form (¢,w), in order to extract qi, g2, g3 and g, we use
the fact that we can consider the relations (3.8) as a system of equations in

q1,q2, g3 and ¢, and that each ¢; has the form:
¢ = 2cosmt;, 1=1,2,3,00.

One particular solution of equations (3.8) is listed in [LT14] in terms of 6,
0y, 03, Oy for each point in the Table (3.4). We can then compute all other
solutions q1, ¢z, g3 and ¢, by using Lemma 41.

Consider (g,w) in the Lisovyy and Tykhyy’s sublist summarized in Table

3.4, then the following expansion Algorithm generates all equivalent orbits:

Algorithm 1.

For every line of Table 3.4, consider (¢, w) and a solution (q1, g2, g3, ¢eo)

of system (3.8):

1. Apply to (q1, 42,43, 9o, @21, G31, G32, w) all 48 transformations of the

group Gﬁf)v ;- Save the results in a set E.
FOI' every element (Qi7 qg7 Qéa qg)oa QQD qz’,la q:/327 g,) € EO:

2. Generate the orbit of (¢}, ¢, 45, 4o, Gb1s G517, T59, w') under the action of

the group Bs. Save the result in a set Fj.
For every element (g7, g3, 45, 4%, 421, ¢31, 452, w") € B

3. Apply to (q1, ¢4, 45, d%, Gors G515 Gaos w") all the 24 transformations listed

in Lemma 45 and save the result in the set Es.
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nooo oo e " /" " .
For every element (Q1 y 425,93 9oy 9915 9315 432, W ) € EQ-

4. Generate the Ps-orbit of (¢}, q5,q%, a2, 451, G4, @4y, w") and save the

result in the set Egs.

Once the Algorithm ends, due to Lemmata 38, 44, 45, 50, the set Eys

will contain only a finite number of equivalent orbits.

Remark 57. Consider (q1, q2, 3, 4o, g21, 431, G32), then in Algorithm 1, the
order we apply the transformations of groups Gg‘)/ ; and Gg‘)/ ;, defined re-
spectively in (3.36) and (3.79), is not relevant. Indeed, the following rela-

tions hold true:

Pygsign, = signs Pi3,
Py3sign, = sign, Ps,
Py3sign, = sign, Py3,
Py3sign, = sign, Psg,
Pygsign, = signs Pos,
Possigng = sign, Pog,
Pi3(123) = (123)° Py,
Py3(123) = /3§,§VI)P13,

P3(12) = (123)(12) Pi3Po3 P,

Py3(12) = (12) Pyg Py3 Pi3,

risign, = sign,7ry,

risigny = sign;signari,

risigng = sign,sign,r, (3.92)
roSign, = sign,signsra,

roSign, = SigNyTa,
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rosigng = sign,sign;ra,
r3sign; = sign,signars,
T3Signy = SigN;SigN,rs,
r3signg = Signars,

ra,

In the next Chapter we will describe Algorithms that implement the
matching procedure over co-adjoint coordinates ¢, q, ¢, q over Mpyy, that
eventually leads to the classification of p;, pi;, pijr in the open subset U <
M\gz, that possibly will generate a finite orbit under the action of the pure

braid group P;.
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Matching

In this Chapter, we explain how to implement our methodology. We are
classifying finite orbits of action (1.1) in the following way: if pe U < M\QQ,
then there exist four restrictions Hy, ..., Hy, see Theorem 12, such that each
restriction acts on p as the pure braid group P3 over M\PV[, i.e. the SLy(C)
character variety of the Riemann sphere with four boundary components.
In particular each subgroup acts respectively on projections ¢, ¢, q, q, as
summarized in Table 1.1.

If p generates a finite orbit under the action (1.1), then the orbits of
4,4, q,q under the restricted action of the respective H; must be finite too.
In the previous Chapter, we described the list of all such ¢, ¢, g, ¢: the list
is infinite (this is an issue in order to develop our method), but it contains
a finite sublist, called Ey5 (see Definition 56), that will be crucial in the
classification presented in this thesis.

In Section 4.1, we propose a procedure that, given three projection
points, produces points p that satisfy the necessary conditions to gener-
ate a finite orbit under the action of three of the restrictions Hy,..., Hy:

we call these points candidate points.

101
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In Sections 4.2 and 4.3, we introduce algorithms that produce the set C

of candidate points p such that:
(C1) Three over four projections are in the set Fys.

(C2) Two over four projections are in the set O and one of the remaining

projections is in the set Eys.

(C3) Two over four projections are in the set E45 and one of the remaining

two projections is in the set O.

Moreover, all of these algorithms exploit the fact that E45 is finite and
therefore, they generate a set C that will be finite too.

Afterwards, since the set C will contain only a finite number of elements,
we extract from C a list of points such that they produce finite orbits under
the action of the pure braid group P,. Finally we present a list of 54 finite
orbits up to the action of the group G, i.e. the group of symmetries of G,

discussed in Chapter 2. The list of finite orbits is presented in Table 4.2.

4.1 Outline of the procedure

In order to better describe the set C, we introduce the following Definition:

Definition 58. A point p such that its four projections ¢, ¢, ¢, g, defined in
(1.114), generate finite orbits under the action of P is said to be a candidate

point.

In this Section, we propose a procedure to construct all candidate points
p in the big open subset U < M\gg. Note that, to generate a candidate point
p, it is not necessary to know all four projections ¢, ¢, g, q. Indeed, looking

at Table 1.1, if we know only three projections over four, then only one
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H N ‘pQ ‘p3 ‘ P4 ‘pw ‘pm ‘psl ‘p32 ‘ Pa ‘P42 ‘p43 ‘p321 ‘ Pa32 ‘P431 ‘p421 ‘

H, O | G| as ) @31 | G52 0o
Hy || @ G | 3 g21 431 q32 oo
Hs | ¢ | G2 s go1 da1 | a2 oo

Table 4.1: Matching with three points: elements on the same column must
be equal.

pijr Will be missing, but we can calculate it choosing appropriately one of

the four relations fi, ..., f1, defined in (1.53)-(1.56). This leads to state a

matching procedure on three points. For example, we can define the following

matching procedure for the three points ¢, ¢, ¢:

Procedure 1.

1.

2.

Consider (q,q,q) € FO x FO x FO.

Check if g, ¢, q satisfy relations given by the columns of Table 4.1, then
go to the next Step, otherwise go to Step 1.

Calculate the two roots pgiz)l, for i = 1,2, of the equation (1.53) in

which we express p1,p2,p3,P21,P31,P32 in terms of co-adjoint coordinates

4.4,

D3o1 + D321 (10132 — 1G> — Q1G21 — Q1or) +
0+ 0 — Q@G + By + G — Q@G + Toy — G101+

(21G21G21 + 6?51 —4=0. (4.1)

For each i =1, 2:
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4. For each root pggl, determine the value of pg? using equation (1.116)
written in terms of co-adjoint coordinates ¢, ¢, ¢ and p:()é)l, using iden-

tities (1.108),(1.109),(1.110) and (1.111) as follows:

pgo) = §(Q1Q1CJ2Q3 — 219293 — 1421493 + pz(az)l% — 1924931 + @21931—

1331 + @ — G01G32 + 2132 + G100 + G100)- (4.2)

5. Use identities (1.108),(1.109),(1.110) and (1.111) in order to determine

the other components of p®.

6. If p¥ satisfies equations (1.58)-(1.67) then go to the next Step, oth-

erwise go to Step 1.

7. Save p' in the set 5, and go to Step 1.

The procedure ends when all possible choices of three points ¢, q,q €
M\ pyv1 are exhausted.

Note that, since FO is not a finite set, this procedure may never end.
However, we will adapt it in different cases in such a way to avoid this
problem. For the sake of clarity, let us for the moment suppose that FQO is
finite.

In order to obtain the big set C of all candidate points, other three

procedures similar to Procedure 1 must be developed. We summarize these

three matching procedures on three points as follows:
(P1.1) Matching procedure with input triple (g, ¢, §): output set C.
(P1.2) Matching procedure with input triple (g, ¢, g): output set C.

(P1.3) Matching procedure with input triple (g, g, g): output set C.
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(P1.4) Matching procedure with input triple (g, ¢, ): output set C.

In order to construct the set C, the union of all the above four sets C , C , C .C

must be taken:

c=CuCuCuC. (4.3)

As we are going to show in the next Lemma, it is enough to know only one

of the sets C~, CA, Cv, C to generate the whole set C:

Lemma 59. Consider m € /T/l\g2 and the permutation (1234), introduced

in Section 2.5:
(1234)(]\/[17 MQ? M37 M47 MOO) = (M47 M17 M27 M3> (M3M2M1M4>71)7

that acts on the co-adjoint coordinates of m, in the big open subset U <

M Gy, as follows:

(1234)(29) = (p47p17p27p37p007p417p427le)p437p317p327p4217p3217p4317p432)'

If C. ,CA ,Cv .C are the sets of candidate points p obtained running respectively

procedures (P1.1),(P1.2),(P1.3),(P1.4), then:

(1234)(C) = C, (4.4)
(1234)(C) = C, (4.5)
(1234)(C) = C, (4.6)
(1234)(C) = C (4.7)

Proof. We proceed proving the statement of the Theorem for (4.4), then in
a similar way the statement can be proved for (4.5)-(4.7).

Consider n,n,n,n € ﬂpw and m € M\QQ. Apply to 1, n, n, n the match-
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ing procedure stated in (ii) in Theorem 12. If we don’t consider the projec-

tion ¢, the matching for procedure (P1.1) is given by the following relations:

]% = Mo, ]v2 = Ms, ]\73 = My, Z/\\[oo = (M4M3M2)717
Ny = My, Ny =M, N3 =My, Ny = (MyM;3M,)™,

Ny = My, Ny = My, Ny = My, Ny = (M{MM;)~"
Consider m’ = (1234)(m), then the above matching procedure becomes:

]/\7{ = M, ﬁé = Mo, ]’\}?/) = M, Néo = (M3M2M1)_1’

Ni = My, Ny = My, Ny = Ms, N, = (MsMyMy)™,

~

N{ = My, Né = M, Né = Ms, Ny, = (MM M,)~",
where ', 0,1 € M pvri. After the relabelling:
N!'=N!, N'=N!, Nl=N!, i=1,2,3,0, (4.8)

we obtain the relaxed matching procedure for algorithm (P1.2) that pro-
duces the set C. []

In the following, when proposing a matching on three points, we will
generate the set CN’, then we will construct the big set C of all candidate
points, applying Lemma 59.

Now, we need to determine which points in C lead to a finite orbit of
the Ps-action. As mentioned above, for the moment we suppose the set FO
to be finite (this is not true but we will see how to adapt our procedures),
consequently the set C will be finite and we can develop a way to check if

p € C may or may not generate a finite orbit, based on the following Lemma:
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Lemma 60. Assume C finite and let p € C a candidate point, then its orbit

is finite if and only if B(p) € C for every braid g € F.

Proof. Suppose B(p) € C for every 5 € Py, then the orbit is finite since C is
finite too. Vice versa, suppose p has a finite Pj-orbit, then for every 3, 5(p)

must have a finite orbit. Hence, 5(p) must be an element of C. ]

We briefly give an explanation on how we are going to operatively use
this Lemma. Indeed, in the set C, to select the finite orbits is equivalent to

find the subset Cy < C such that:

Co={peC|B(p) eC, pe P} (4.9)

As mentioned before, the group Pj is an infinite group and, accordingly to
this fact, we can not implement an algorithm able to deal with every pure

braid g in P,. Nevertheless, P, is finitely generated:

Py =< B, B31, P32, Ba1, Baz, Baz >, (4.10)

where generators f3;; are defined in (1.87). Now, we explain how we can
check which element p € C generates a finite Pj-orbit. Since every braid
f € Py can be thought as an ordered combination of generators f;; (and

their inverses too), we can introduce the so-called braid word, namely:

B = Bi’j’---ﬁijy (411)
(S

n

where n indicates the length of the word. Consider p € U < M\QZ and a
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braid § € Py such that 3(p) ¢ C. Moreover, consider the following notation:

p(O) -

P = 85,

b,

(4.12)
p(n) = B(p) = ﬁi,j,(p("*l)) = Bijr .. .Bij(p(o)).
M

n

Since we supposed p™ ¢ C, we need to delete p™ from the set C and also
the element p,_; and so on, till when p{®) = p is deleted from C.

We will then find, in the set Cy, all the points p having finite P,-orbit
and we further factorize by the group of symmetries G introduced in Section
2.5.

In the next Sections we are going to adapt these procedures to different

cases to account for the fact that FQO is actually an infinite set.

4.2 Matching with three of the PVI 45 ex-
ceptional algebraic solutions

In this Section, we give an algorithm that produces the finite set Cg,; « 5,5 x 45
of all candidate points p such that three over four projections ¢, ¢, q, g, de-
fined in (1.114), are in the set Ey5, i.e. the set of all equivalent orbits
generated from Table 3.4.

We adapt Procedure 1 in such a way it can process the following triples:
(4,4, 7) € Eus x Eg5 x Eys. (4.13)

The set Ey5 is generated from Table 3.4, using the expansion Algorithm 1
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and it is finite. After generating E,5, the following algorithm produces the

set of candidate points Cg,. xE s xEys

Algorithm 2.

1. Consider (q, ¢, q) € Fys x Eg5 x Eys.

2. Check if q, 4, q satisfy relations given by the columns of Table 4.1, then
go to the next Step, otherwise go to Step 1.

3. Determine the values pgl, for i = 1,2, using equation (4.1).
For each i =1, 2:
4. Calculate the values of p) using equation (1.116).

5. Use identities (1.111),(1.108),(1.110) and (1.109) in order to determine

the other components of p®.

6. If p¥) satisfies equations (1.58)-(1.67) then go to the next Step, oth-

erwise go to Step 1.
7. Save p' in the set C~E45xE45xE45, and go to Step 1.

Since Ey45 is a finite set, the set 5E4st4st45 will be finite too. Finally

the big set Cg,, xg,;xE,; can be generated by Lemma 59 as follows:
CE45><E45 xBas = CE45><E45><E45 U<1234)Z(CE45 xEus ><E45)' (4'14>
i=1

The set Cg,,xp,;xE,; contains all candidate points p € U < M\QQ such
that three projections (1.114) are in the set E,5, whereas the remaining

projection could be in any other sets: O,K;;, K, Ky, CP and Eys, see
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Definitions (51) - (56) respectively. There are 3,355,200 candidate points

in the set Cp,; xBy5 xEys -

4.3 Matching with Okamoto solutions

By Definition 51, the set O is the set of all orbits related to the infinite family
of algebraic solutions of Okamoto type for the PVI equation. The set O is
itself an infinite set: it will be crucial to adapt the matching procedure in
such a way that the number of required steps is still finite.

We briefly recall which points p are not relevant in our classification:
we are going to exclude both cases when the monodromy group is reducible
or there exists an index ¢ = 1,...,4, 00 such that M; = +1. Indeed, if the
monodromy group is reducible the associated solution of G, can be reduced
to classical solutions in terms of Lauricella hypergeometric functions, as
proved by Mazzocco in the [Maz0lal, while if M; = +1 for some index i,
then, again following [Maz01a], the solution of Gy can be reduced to solution

of PVI. We formalize this fact in the following Definition:

Definition 61. A point p is not relevant if the associated monodromy group

is reducible or there exists an index ¢ = 1,...,4, 0 such that M; = +1.
The first result of this Section is:

Theorem 62. If a point p < M\gz defined in (1.4) is such that any three of
its four projections ¢, ¢, q, q, defined in (1.114), are in the set O of all orbits

related to the family of Okamoto solutions then the point p is not relevant.

Theorem 63. Suppose m = (M, My, M3, M) € M\g2 with co-adjoint co-
ordinates p, defined in (1.4), in the big open subset U < M\g2, defined in
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(1.38). Then, M., = +1 if and only if p satisfies:

Pa = tD321, Poo = T2, pa1 = tP3a, Paz = F(P321D2 + P3sP1 — P31 — Da1Ps2),

P43 = ED21, Paze = XP1, Pazt = EP2, Paz1 = EPps. (4.15)

Consequently, all points p satisfying hyphotesis of Theorems 62-63 will
be irrelevant to our classification (and then excluded from it), as they are
dealt with in [Maz01a].

Before proving Theorem 62, we will enunciate some more results allow-
ing us to further restrict our input of Okamoto points into the matching
procedure. All proofs are postponed to Section 4.5. To this aim we need

the following two definitions:

Definition 64. The set Opp is the set of all the ¢ € O such that the
associated triple of monodromy matrices n € ./(/l\ py; admits one matrix

equals to +1.

Definition 65. The set Ogrgp is the set of all the ¢ € O such that if
we consider the associated triple of monodromy matrices n € M\ pyvr then
the monodromy group {Ny, Ny, N3) is reducible, i.e. it admits a common

subspace of dimension one.

Definitions 64 and 65 are given in terms of monodromy matrices: in the
following, we will work both with triples n = (N1, No, N3) € M\PV] and with
4-tuples of matrices m = (M, My, M3, M,) € M\gz and the associated co-
adjoint coordinates ¢ and p, introduced in Sections 3.1 and 1.2 respectively.

We are ready to state the results in the following five Lemmata:

Lemma 66. If a point p € M\QQ, defined in (1.4), is such that one of its
four projections ¢, q, q, g, defined in (1.114), is in the set Ojp and another

one projection is in the set Orgp then such point p is not relevant.
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Lemma 67. Let ¢ be the co-adjoint coordinates on M\PV[. If g is in the

set Orgp, then ¢ satisfies:

(qu] - EiEjSiSj), 1> j7 Z7.] = 1a2737

N[ =

qi; =
’ (4.16)

Qo = %L(Chqws — €1€2515203 — €1€35153(2 — €2€35253(1)
where s, = 4/4 — ¢} and ¢, = £1 for k = 1,2,3.

Lemma 68. Suppose p € U < M\g2, defined in (1.4), and ¢ being co-
adjoint coordinates on M pyv1 of one over four projections ¢, ¢, q, ¢, defined

in (1.114). If ¢ is in the set Oyp, then ¢ satisfies:

qij = iQka
’ (4.17)

o = E2.
where ¢, 5,k =1,2,3 with ¢ > 5 and k # ¢,k # j.

Lemma 69. Suppose pe U M\QQ, defined in (1.4), is such that any two
of its four projections @, ¢, q, ¢, defined in (1.114), are in the set Ogrgp and ¢
being co-adjoint coordinates on M pyr of one of the remaining projections,
then there exists a couple of indices (i, 5),(¢’, /) with one index in (7, j) equal

to one index in (7', j') such that:

2 2 2 . . . .
Qz+qz+q_QZQZq_4:07 t>7, Zaj:172a37
! 7oy (4.18)

qu’j/ + q?, + qu., — Qirjqir Q0 — 4 = 0, i > j/, @'/’j/ — 172,3.

Lemma 70. If a point pe U < M\QQ, defined in (1.4), is such that two of
its three projections ¢, ¢, q, defined in (1.114), are in the set Ojp, then, if

e = £1, the following cases hold:
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(i) If q,q € Omp, then g must satisfy:

(4.19)

Y
[\
I
™)
[
]|
—
2
w
R
I
™)
™¢
el
w
—

and p is such that:

P1 =01, P2 =€qs1, P3 =€ Eq1, Pa =3, D1 = €G3, P31 = Q21, P32 = € {3,

D41 = (31, Pa2 = € (1, P43 = € € q31, Pag2 = € 2, Pa31 = (oo, Pa21 = € 2.

(4.20)
(ii) If ¢, q € Orp, then ¢ must satisfy:
Go = €€ q1, Gz =€ € a1, (4.21)

and p is such that:

P1 =1, P2 =€€q1,D3 = € Ga1, Pa = G3,P21 = Go1, P31 = € G3, P32 = € 3,

Pa1 = (31, Pa2 = € €431, P43 = € 1, Paz2 = € 2, Pa31 = € 2, Pa21 = (oo-

(4.22)

(iii) If ¢, q € Orp, then ¢ must satisfy:

(4.23)

)

I
¢
ol
)
)
[N}

I
¢
M|
)
e

and p is such that:

P1=€qs, Po=Q1, D3 =€€EQ1, Pa =03, D1 = € q3, P31 = € G3, P32 = 31,

A~

Da1 = € q1, Pa2 = (31, P43 = € € 31, Pa32 = (oo, P31 = € 2, Pyo1 = € 2.

(4.24)
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Lemmata 67,68,70 lead to the development of additional matching al-
gorithms in order to complete our classification for the cases when these
points are included.

Suppose that two over three projections are in the set Orgp and one
projection is in the set FEy5. By Lemma 69 the projection in E 5 must satisfy
conditions (4.18), for an appropriate choice of indices (i,j) and (¢',5"). It
turned out that actually there are no elements in E45 satisfying (4.18).
As a consequence of this fact, there are no points p € U < M\QQ with
two projections in the set Ogrgp and at least one of the remaining two
projections in the set Ey5, so the case in which one projection is in E45 and
two projections are in O is classified by the set Cg,, 0,5 x0,, Of all candidate
and two of the remaining projections are in the set Opp.

To construct this set we proceed as follows: firstly we construct the set
C~E45ononID, where one over the three projections ¢, ¢, q is in the set Eys
and two of the remaining projections are in the set Opp, then, applying
Lemma 59 we generate the whole set Cg,; x 0y x0yp -

The set Cg 45 x0m xOrp, 15 the union of the following three sets of candidate

points p:

(A3.1) 5E45X01DX01D: candidate points p with ¢, ¢ € Omp, q € Eys.
(A3.2) 5E45X01DX01D: candidate points p with ¢, q € Omp, ¢ € Eys.
(A3.3) EVE%ononIDI candidate points p with ¢, € O, § € Eys.

We state the algorithm that generates the subset (A3.1), then in a similar
way algorithms for subsets (A3.2) and (A3.3) can be derived:

Algorithm 3.
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1.

2.

8.

Consider g € Eys.

Check if ¢ satisfies:

2 = €€ q1,
(4.25)

q32 = € € (31,

then go to the next Step, otherwise go to Step 1.

. Determine the components of p involved in identities (4.20).

. Determine the values p:()é)l, for i = 1,2, using equation (4.1).

For each 7 = 1,2:

. Calculate the values of pg}) using equation (1.116).

. Use identities given by the columns of Table 4.1 in order to determine

the other components of p®.

If p{) satisfies equations (1.58)-(1.67) then go to the next Step, oth-

erwise Step 1.

Save p in the set C~E45ononID, and go to Step 1.

When Algorithm 3 and the algorithms for subsets (A3.2) and (A3.3)

end, the following set is obtained:

~ ~

CE45 xOpxOp — CE45 xOpxOrp VY CE45 xOpxOrp VY CE45 xO1p xO1p

then, by Lemma 59, we generate the set Cg,;x0,,x0yp Of all candidate points

ANV — ~ .

of the remaining projections are in the set Op:

3
CE45><01D><OID = CE45><01D><OID U(1234)Z<CE45XOIDXOID)7 (426>

i=1
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where permutation (1234) is defined in (2.67). There are 6,337 candidate
points in the set Cg,; %0 x 0 -

The following algorithm generates the set Cg,; xg,; xOrpp Of all candidate

ANV — ~ .

and two of the remaining projections are in the set Fys.

In order to obtain Cg,;xE,sx0Orn, We construct the set C~E45><E45><ORED7
where one over three projections ¢, ¢, ¢ is in Orgp and the remaining two are
in Ey5, afterwards, by Lemma 59, we can construct the big set Cg,; x5 xOrgp -

Note that the set CNM5X EusxOppp 15 the union of three subsets of candidate

points p:

(A4.1) C:E45xE45XORED: candidate points p with ¢, ¢ € Eys, ¢ € Orgp.
(A4.2) 5E45XE45XORED: candidate points p with ¢, q € Ess, ¢ € Orgp.
(A4.3) EE%XMSXQRED: candidate points p with ¢, ¢ € Eys, ¢ € Orgp.

We describe in detail the algorithm that generates the subset (A4.1), then

in a similar way algorithms for subsets (A4.2) and (A4.3) can be derived:

Algorithm 4.

1. Consider ¢, ¢ € Ey5 x Eys.

2. Check if @, ¢ satisfy relations given by the columns of the first two
rows of Table 4.1 then go to the next Step, otherwise go to Step 1.

3. Calculate p3; and p43; using Table 4.1 and conditions (4.16):

1
P31 = g1 = —(Q1QQ - 61623152) = 5(]?1292 - 61628182), (4-27)

[l NCR

P431 = oo = z_l(ppop‘l — €1€251592P4 — €1€45154P2 — 62645284191) =
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1
= Z(Q1Q2C]3 — €1€25152(¢3 — €1€35153G2 — 626352836]1)- (4-28)

4. Determine the values pgl, for i = 1,2, using equation (4.1).
For each i =1, 2:
5. Calculate the values of p using equation (1.116).

6. Use identities given by the columns of Table 4.1 in order to determine

the other components of p(®.

7. If p@ satisfies equations (1.58)-(1.67) then go to the next Step, oth-

erwise Step 1.
8. Save p( in the set C~E45><E45><ORED7 and go to Step 1.

When Algorithm 4 and the algorithms for subsets (A4.2) and (A4.3)

end, the following set is obtained:

~ A~

CE45 xE45xORED — CE45 xE45xOrgp Y CE45 xE45xOrgp Y CE45 xE45xORED

then, by Lemma 59, we generate the set Cg,; x5, x0pgp Of all candidate points
p with one over four projections in the set Orgp and two over three of the

remaining projections are in the set Eys:

3
CE45><E45><ORED = CE45 xE45 x ORED U(1234)Z(CE45 xEy5 XORED)’ (4'29>

i=1
where permutation (1234) is defined in (2.67). There are 342, 368 candidate
points in the set Cg,;xFys xOrpp -

Last algorithm generates the set Cg,, xg,;x0,, Of all candidate points p

such that one projection is in the set Orp and two of the remaining three pro-
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jections are in the set E45. Considerations similar to the previous case apply.
Indeed in order to obtain Cg,, xg,;x0,,, We construct the set C~E45Xg45xom
where one over three projections ¢, ¢, ¢ is in O;p and the remaining two are
in Ey5. Thereafter, by Lemma 59, we construct the whole set Cg,, x5,;x0;p, -

The set C~E45><E45><OID is the union of three subsets of candidate points p:
(A5.1) C~E45xE45onDI candidate points p with ¢, ¢ € Ess, ¢ € Op.
(A5.2) 5E45xE45x01D1 candidate points p with ¢, g € Eys, ¢ € Op.

(A5.3) 5E45xE45XoID: candidate points p with ¢, ¢ € Ess, ¢ € Om.

We describe in detail algorithm that generates subset (A5.1) and in a similar

way algorithms for subsets (A5.2) and (A5.3) can be derived:

Algorithm 5.

1. Consider ¢, € Eg5 x Eys.

2. Check if @, ¢ satisfy relations relations given by the columns of the
first two rows of Table 4.1 then go to the next Step, otherwise go to
Step 1.

3. Calculate ps; and py3; using Table 4.1 and conditions (4.16):

P31 = @21 = Tq3 = Epy, (4.30)

Paz1 = oo = £2. (4.31)

4. Determine the values pgl, for i = 1,2, using equation (4.1).

For each i = 1, 2:
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5. Calculate the values of p&? using equation (1.116).

6. Use identities given by the columns of Table 4.1 in order to determine

the other components of p®.

7. If p satisfies equations (1.58)-(1.67) then go to the next Step, oth-

erwise go to Step 1.
8. Save p@ in the set Cg,;xE.x0m, and go to Step 1.

When Algorithm 5 and algorithms for subsets (A5.2) and (A5.3) end,

we obtain:

CE45 xE45xOp — CE45 xE45xO1p VY CE45 xE45xO0rp Y CE45 xE45x01p>

then, by Lemma 59, we generate the set Cg,; «g,;x0,, Of all candidate points
p with one over four projections in the set Oip and two over three of the

remaining projections are in the set Eys:
CE45 xEg5xOmp — CE45><E45><OID U(1234)Z(CE45 ><E45><01D) (432)

i=1

where permutation (1234) is defined in (2.67). There are 245, 760 candidate

points in the set Cg,;xE45x0p -

4.4 List of finite orbits

Consider pe U M\gz and its four projections ¢, ¢, q, q. We recall that, in

this thesis, we construct candidate points pe U < M\g2 such that:

(C1) Three projections are in the set Egs.
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(C2) Two projections are in the set O and one is in the set Ey;.

(C3) Two projections are in the set Ey5 and one is in the set O.

By Theorem 62, the case (C4) is not relevant in our classification, since
Mazzocco dealt with it in [Maz0la]. Moreover, we exclude the following

cases:

e By Theorem 63, we exclude candidate points such that p satisfies

conditions (4.15).

e By Lemma 66, we exclude candidate points such that they have one
projection in Orp, see Definition (64), and one projection in Oggp, see

Definition (65).

We obtained Algorithms such that they generate the following candidate

points:

(C1) Algorithm 2 produces the set of candidate points Cg,, «E,s xEys-
(C2)  Algorithm 3 produces the set of candidate points Cg,, x0pxOp -
(C3.1) Algorithm 4 produces the set of candidate points Cr,, xEssxOnpp -

(C3.2) Algorithm 5 produces the set of candidate points Cg,,xg,;x0pp -

The finite set C of all candidate points p classified in this thesis is:

C= CE45 xEq5xEq5 Y CE45 xOrp xOrep Y C’E45 xE45xOrp VY CE45 xO1p xO1p > (433)

and it contains 3,460, 685 candidate points.
Among these points, we need to delete all points in the big open subset
U, defined in (1.38), that satisfy relations (4.15) in Theorem 63, since they

are not relevant.
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Algorithm 6.

1. Consider p € C.
2. If p satisfies relations (4.15) go to next Step, otherwise save p in C’.

3. If p satisfies at least one of the following conditions:

(i) (p31 - 4)9(292172?3717321)9(172,p1,p21)9(p21,p4,p421) # 0.
(ii) (P§1 - 4)9(]9317]74727431)9(193,p1,p31)9(p31,p2,p321) # 0.

(iii) (p§2 - 4)9(19327274,}7432)9(193,p2ap32)9(p327p17p321) # 0.

then the point p is in the open set U, defined in (1.38) and it is not

relevant, otherwise save p in C’.

This step permits us to eliminate 173,545 and the resulting set C’' has
3,287,140 elements.

Remark 71. During the execution of the previous algorithm we discard

also the following point p:

p=1(2,2,2,2,2222222,2,2,2,2),

since the monodromy associated is reducible, as proved in [DMOO].

Next, as consequence of Lemma 60, we apply the following Algorithm

in order to eliminate all points that don’t produce finite orbits:

Algorithm 7.

1. Consider p e C'.
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2. Apply to it all the generators (1.87) of Py:
Baa(p) = p, ..., Bsalp) = p©. (4.34)

3. If there exists an ¢ = 1,...,6 such that p® ¢ C’ then delete p from

the set C’ and go to Step 1, otherwise save p in Cy and go to Step 1.

This algorithm ends when in the set C’ there are no more elements to
delete, and it produces a set Cy with 1,095, 712 elements that generate finite
orbits under the Pj-action. Finally, we can factorize the set Cy modulo the

action of the pure braid group Pj:
Cl = CO / P 4-

as follows:

Algorithm 8.

For every p € Cy:
1. Save p € C;.
2. Since p has a finite Py-orbit by construction. Calculate |Op, (p)].
3. Delete |Op,(p)| from Cy.

Since the set Cy is finite, the algorithm ends. This algorithm produces
the set Cq, that contains 17,946 finite orbits of the P,-action.

At this point, our aim is to factorize the set C; by the action of the group
of symmetries G, introduced in Section 2.5, where G is an infinite and non

commutative group. This obviously poses a problem. However, thanks to
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the fact that G acts as a finite group on (p1,p2, Ps, P4, Po) and preserves
the length of a Pj-orbit, we are able to set up an algorithm to achieve the

factorization we are looking for.

First of all, we factorize by the action of the finite subgroup:

{signy,...,signy, (12)(34), (1234)) < G, (4.35)

to obtain the set C;. The set Cj is finite and it contains 122 points. We
do this factorization first as it reduces dramatically from 4,275 to 122 the
number of orbits to be processed afterwards. Next, we subdivide the set
C5 into subsets that contain orbits of the same length and have the same
(p1, P2, P3, P4, Ps) modulo change of signs or permutations. Indeed, thanks
to the fact that the action of G preserves the length of an orbit and that
the (p1, pa, P3, P4, Poo) Temain invariant during this action, only points within
the same subset can be related by a transformation in G.

Then, in each subset, for all the elements in the subset, we apply a
transformation in the subgroup (4.35) extended with the generator Py, in
such a way that every element p in the subset will have the same ordered
(p1,D2, P3, P4, D). We do this step by hand, actually explicitly calculating
the needed transformation.

In each of the subsets, where every element has the same ordered (p1, p2,ps,
P1,Dw), We look for symmetries in G relating the elements. In particular, we

relate elements in the same subset with transformations in the subgroup:

<P13, P23, P34> (= G (436)

Since elements in the same subset are orbits with the same length and same

(p1, D2, P3, P4, P ), the action of the group of transformations (4.36) reduces
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to the action of the pure braid group Py, that in this case is finite by
construction. In the following, we state the factorization algorithm. Firstly,

we factorize with respect to the finite group (4.35):

Algorithm 9.

1. Consider p € C;.
2. Remove from C; the set Op,(p) and save p in the set Cj.

3. Apply to p all transformations in {sign,, ..., sign,) and save the result

in the set Ag.
For every p' € Ay:

4. Apply to p all transformations in ((12)(34), (1234)) and save the result
in the set A;.

For every p” € A;:

5. If p” isin Cy, then Op,(p) and Op,(p”) are equivalent. Remove Op, (p”)
from C;. If p” is not in Cy, apply again the current Step to the next
p” in A;.

6. If all possible choices of p” in A; are exhausted go to Step 1.

This algorithm ends when all choices of points p in the finite set C; are
exhausted. The set Cj, created in Step 2, will contain 122 points.

Now, we are going to further factorize the set Cj, as anticipated above,
firstly subdividing C} in subset which elements are orbits with same length
and with the same (p1,p2, ps, P4, Ps) modulo change of signs or permuta-

tions.
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Algorithm 10.

1. Consider p € C}, with |Op,(p)| = N, N € N.
2. Save p in a set Ay.
3. Remove p from Cj.
For every p’ € Cj:
4. If p’ is such that:

* |Op,(p) = N.

o (p1,D2,D3,P1,0) and (p}, ph, P, Dy, pl,) differ by change of signs

or permutations.

Save p' in Ay and remove p’ from Cj, otherwise apply again this Step

to another p’ € CJ.

Since the set C) is finite, this algorithm ends when there are no more
elements in C. This algorithm generates a finite list of 54 subsets Ay,
where N is such that for every p € Ay we have |Op,(p)| = N.

Next, in each subset Ay, we apply transformations generated by the
subgroup (4.35) extended with the generator P, in such a way that every
element in the same subset will have the same ordered (p1,p2, p3, P1, Peo)-
Afterwards, we quotient each subset with the action of the subgroup of
transformations < Pi3, Ps3, P34, >, that inside each subset acts as the pure

braid group P;.
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Algorithm 11.

For every subset Ay:
1. Consider p € Ay and save it in the set C,.
2. Remove p from Ay.

3. Act with the subgroup:

{(signy,...,signy, (12)(34), (1234), P,y < G,

to each element in the set Ay, producing a new set Ay in such a way

that every element p’ in A\, will have:

(pllvp,%pgi?pibp:)o> = (p17p27p37p47poo)-

For every p’ € Aly:

4. Generate the orbit of p’ under the action of the subgroup { P3, Ps3, Ps4).
If p is in this orbit, then Op,(p) and Op,(p') are equivalent. Apply
again this Step to another p’ € Ay, otherwise save p’ in Cy and apply

again this Step to another p’ € A).
5. When all choices of p’ € A); are exhausted, go to Step 1.

Since the number of subsets Ay is 54, and each subset has a finite
number of elements, this algorithm ends when there are no more subsets
Apn to process. Finally, Algorithm 11 generates a set Cy, that contains

54 elements and hence the classification of all finite orbits with points p



Matching 127

satisfying conditions (C1), (C2), (C3.1), (C3.2). We summarize the content
of the set Cq, in Table 4.2.

Remark 72. During the factorization algorithm, we apply the generators
of G with a specific order. As a consequence, we are factorizing only with
respect to a subgroup of the group of symmetries G. However, the set Co
contains the factorization we were looking for. Indeed, we recall that: under
the action of the group P, the parameters p;, for i = 1,...,4, 00, remain
constant (see the definition of the generators of P, given in (1.87)), more-
over, the group G acts finitely on the parameters p;, for2 =1,...,4, 00 and
G preserves the length of a finite Py-orbit. We checked that every two orbits
in the set Cy, satisfy:

e If they have same length and parameters (p1, p2, P3, P4, Peo) and (pf,
Db, D5, Dhy, Dhy) respectively, then there does not exist a transformation

® e G such that ¢(p;) = p.

e If two orbits have same parameters p;, for ¢« = 1,...,4, 00, then the

two orbits have different lengths.
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Table 4.2: The 54 finite orbits.

# | sz P P2 P3 Pa Po P21 P31 P32 Pa Pa2 Pa3
1] 36 0 0 -1 0 V2 -2 -1 -2 0 0 1
2| 36 0 0 0 1 1 0 2 0 -1 -1 1
3 | 40 -1 1 V2 1 -2 -1 -2 0 1 1 V2
—14v5 | —1+45 1+/5 —1+5 1+/5 1-—/5 1-/5 1-/5
4 |40 + + s + + o 0 1 S S 0
5 40 71+2\/3 71+2\/5 1+2\/5 1—2\/5 1—2\/3 —IE\/E 1+z\/5 71+2\/5 1 1 1
6 | 45 —14v6 | 1445 | =146 1-5 1+5 1-/5 1-v6 | _1+v5 -1 —1+v56 | —1+v5
2 2 2 2 2 2 2 2 2
7 45 1+2ﬁ 1+2\/§ 1+2¢5 1+2\/§ 71?/5 1+2\/§ 1 1+2\/3 1 2 1
8 | 48 V2 0 0 0 V2 V2 -1 V2 0 0 1
9 | 72 0 0 -1 0 0 V2 -2 1 -1 0 0
1072 || —v2 0 0 -1 -2 0 -1 -1 V2 -2 0
R A e e B A e e -1 | 55 4 0
1+/5 14+4/5 14+/5 —14+/5 1+/5 1—/5 14+4/5
12| 81 +T +2 -1 B +2 er +2 2 B +2 -1 -1 1
13| 96 0 0 0 0 -2 0 -2 -1 V2 -1 0
14v5 | 146 | 136 145 V5 || 15 145 | 1145
14| 96 B +2 B +2 +2 B +2 B +2 +2 B +2 B +2 2 1 -1
15 | 96 1-6 1-+5 1-+6 1-5 1-+5 1-v6 | 14456 | 1-46 15 15 1-6
2 2 2 2 2 2 2 2 2 2 2
16 | 96 0 0 1 0 -1 2 0 0 -2 V2 -1
1+/5 1+/5 —14+5 1+/5 145 1+/5 —14+5
17 | 105 || -1 1 = -1 . = + + -1
18]105( 1 e I I R A ) Y -] 0 0
19 | 108 1+2\/5 1 _ 1+z\/3 _ 1+2\/5 1+2ﬁ 1+2\/T 1—2\/5 _ 1+2\/5 —9 0 9
20 | 108 || =48 | 1V5 | SlG [ A T = R R S EEV ) e 0
21 | 120 1 0 -1 0 -1 0 -1 V2 -2 -1 0
—1+4/5 1-v5 1—/5 —14+5 1-/5 1—/5 1+/5
22 | 144 + 1 - - -1 + -1 - -1 > L5
23| 144 || -8 | 151y | 15 1 g [ 155 ] 146 1 -2 -1 0
24 | 144 0 1 0 0 V2 0 2 0 1 -2 -1
25192 | 2 2 -2 | =2 e R
26 | 192 0 0 0 0 0 -2 -2 -2 -1 -2 -1
27 | 200 0 0 172\/?, 1+2ﬁ 172\6 —1+/5 1 1 szﬁ 172\5 71;\5
1+/5 —14V5 14+4/5 1-/5 14+4/5 14+4/5 14+4/5
28 | 200 + 0 0 £ + . 0 + 1 + -1
145 1-/5 14+4/5 1445 14+4/5
29205 | -1 1 1 +5 5 0 -1 5| L ++/5 0
30216 | -1 0 0 0 0 0 V2 1 -2 0 1
31 | 220 1 1 —1+v5 1 —1+v5 1 14V | —14V5 1-v5 0 145
2 2 2 2 2 2
1+/5 1+4/5 1+/5 —14+5 1+/5 1+/5 —1+5 | =145
32220 | - +2 -1 -1 B +z 1 +z erf +z +2 J; er
33240 | 1 15 | 1 | 16 0 1 0 | 25| 15| g | SIS
34| 240 | 155 0 0 1y5 || =1t 1 -1 -2 | 556 0 0
35240 1 -1 | -l | 1448 0 -1 | 15 0 | 8| 15l 145
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# | sz P P2 ps3 P4 Po P21 P31 P32 Pa P42 Pa3
36 | 240 0 | 5 |51 g | s g 0 -1 | 5 0
37| 300 | 25 1 1 1 1 1 0 1 1 L4+/5 1
38| 300 1| s 1 -1 -1 | 55 0 0 1-5
39 | 360 0 |25 o -1 || s -1 -1 1 1 0
40 360 | 55 ] o0 0 |50 15 | 146 | 9 1 0 0
41| 360 1 0 | -5 o || -mA ) g 0 0 0 Ly | —14vb
42 | 432 1 -1 1 1 -1 ~1 0 O 1
43 | 480 0 0 0 | 25| 25 ) 15 g 1 0 1 -1
44 | 480 0 0 L5 0 L5 0 1 0 | 25| L) 145
45580 | =550 0 0 0 Lt/ 0 s | 0 -2 | -1
46 | 600 0 -1 0 N 0 s | | B g -1
47| 600 | 1551 0 0 1 R T = T )
48 | 900 0 0 0 -1 || 5 Liof | oty | 1o | 14 | g
49 | 900 0 0 0 -1 || =50 1| 28 | 15 | 145 | —14
50 | 1200 || 0 0 | 58 0 0 S 1 -1 -1 1
51001200 | 0 | =5 ¢ 0 0 15 1|25 0 1
521440 | 1 0 0 0 -1 0 0 2 -1 | -f ) 1
532160 | 0 0 0 -1 0 sLiVB | ZleE | g 0 1 1
543072 0 0 0 0 el 1 |- s

4.5 Proofs

66-70

of Theorems 62-63 and Lemmata

In this Section, we give proofs of Theorems 62-63 and Lemmata 66-69.

Firstly, we proceed with the proof of Theorems 62-63:

Proof of Theorem 62. In order to prove the statement, we distinguish three

cases:

(i) Firstly, we prove that given p with three projections over four in the

set Orp, then p is not relevant. In particular, it is enough to consider

m e M\gQ and the following three projections defined in (1.113):

NP
I

(M, My, M3) € Opp,

(M27 M37 M4) € OID7
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ﬁ = (M17 M27M4) € OID?

and all other cases follows since they differ from this case only by a
permutation of the matrices M;, see Lemma 59. If any of M; = +1,

then we conclude. If not, we are left with the following case:

~

Ny = MzMyM; = ¢ 1, (4.37)
Ny = MyMsM, =€ 1, (4.38)
N, = MyMoM, =€ 1, (4.39)

where € = £1. Then by equations (4.37) and (4.38):
MMM, = € eEMyMsM, < M, = € eM,, (4.40)
and by equations (4.37) and (4.39):
MyMyM; = & EMy MM, < M = € €M, (4.41)
then Mz = € éM;. As a consequence, equation (4.39) becomes:
MyMyM; =1 < €eM MM, =1 < My, =¢€EM; %, (4.42)

and finally:
m = (M, € EM; 2 € EM,,E €M), (4.43)

which is reducible. Therefore p is not relevant.

(ii) Suppose p is such that three projections over four are in the set Orgp,

then p has associated reducible monodromy group. Given m € M\gQ, it
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(i)

is enough to consider the following three projections defined in (1.113):

n = (M, My, M3) € Ogrgp,
n = (My, M3, M) € Oggp,

n = (My, My, M) € Ogrgp,

and all other cases follows since they differ from this case only by a
permutation of the matrices M;, see Lemma 59. Then:

— M, My, M3 have ¥ as common eigenvector.

— My, M3, M, have ¥ as common eigenvector.

— My, My, M, have © as common eigenvector.
All the matrices M; for ¢ = 1,...,4 are 2 x 2 matrices, as a conse-
quence each matrix M; can have at most two distinct eigenvectors:

the matrix M, that appear in all the three projections, has v,v and ¥

as eigenvectors then one of the following identities must hold:

(4.44)

514
I
<)
o
=
SN
[
X«
o
=
<)
[
X

We can freely chose any of identities (4.44), so that M, ..., M, have

a common eigenvector, making the monodromy group reducible.

When there are three projections in O, not all of the same type,we

apply Lemma 66. This concludes the proof.

Proof of Theorem 63. Suppose m = (M, My, M3, My) € M\gQ with:

My, = (MyMsMyM) ™ = +1, (4.45)
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Then, applying the trace operator and the skein relation to (4.45), we obtain
relations (4.15). This concludes the first part of the proof.

Suppose m = (M, My, M3, My) € M\QQ, with co-adjoint coordinates p in
the big open subset U < .//\/\lg2. By the definition of the big open subset U,
and since p satisfies relations (4.15), then it is straightforward computation
to check that the matrix M, = +1 in the charts L{;,i), for i = 0,1, 2, defined

in the statement of Theorem 3. This concludes the proof.

Next we give the proofs of Lemmata 66-70:

Proof of Lemma 66. Consider m € .//\/\lg2 and the following two distinct

generic projections:

(Mi,Mj,Mk)GOID, Z>]>k’, i,j,k’z 1,...,4, (446)

(M,;/, Mj/, Mk/) € ORED; V> j, > k/, i,,j/,]{?l =1,... ,4. (447)
If either M;, M;, My is equal to +1, then we conclude, otherwise suppose:
(M;M; M)~ = +1. (4.48)

Moreover, suppose the monodromy group associated to the triple (M;, M,
M) is reducible, then matrices My, M, M}, have a common eigenvector
v. There always exist two indices in (4.46) and in (4.47) that are equal,
without loss of generality, suppose ¢ # i/, j = j' and k = K/, then equation

(4.48) can be written as:

M; = +(M; M)t
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The last equation implies that M; has v as eigenvector, then the monodromy

group < M;, My, M;, M}, > is reducible. This concludes the proof. O]

Proof of Lemma 67. Suppose g are the co-adjoint coordinates on M pyr of
the triple n = (Nj, Ny, N3). Since the monodromy group < Ny, Ny, N3 >
is reducible, we can suppose the three matrices N, No, N3 to be upper
triangular. Then Ny, N, N3 have the eigenvalues on the diagonal and since

eigenv(N;) = exp (m0;), where ¢, = +1, the following formulae hold:

TI'(NZN]) = 2COS(7T(€I'9¢ + Gjej)), ’L,j = 1, 2,3, 1> j, (449)

TI'(NgNQNl) = 2COS(7T(€191 + €305 + 6393)). (450)

Applying trigonometric identities and being ¢ the co-adjoint coordinates of

n in Mpyr, we get:

1 . L
Qij = 5(%% —€i€jsisy), 1,5 =1,2,3, i > j, (4.51)
1
oo = Z(QNJZQS — €1€2515203 — €1€35153G2 — €2€35253(1), (4.52)
where s, := 4/4 — ¢? for | = 1,2,3. This concludes the proof. O

Proof of Lemma 68. Suppose q are the co-adjoint coordinates on M pyr of
the projection of p that is supposed to be in the set O;p. Moreover, suppose
the triple n = (N7, Na, N3) is associated to ¢. If any of the V; is equal to +1,
by the matching procedure, we end up with a point p that is not relevant,

therefore, we avoid this case, otherwise, assume N,, = N3 NoN; = +1, then:
Ny = £(NsNy)™', Ny = +£(N1N3)™t, Ny = +(NoNp) ™2 (4.53)

Being ¢ the co-adjoint coordinates of n on M pvr1, by straightforward com-
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putation, we get:

g1 = i(]37
g1 = @2,
\ (4.54)
g2 = *qi,
k‘]oo = +2.
This concludes the proof. n

Proof of Lemma 69. We prove the statement if p has projections ¢, ¢, ¢ such
that two projections are in the set Orgp. There are three distinct cases: we
are going to prove in detail the case when ¢, ¢ € Orgp then remaining cases
can be proven in a similar way.

Given m, the two projections n,n € Orgp are such that:
n = (My, M3, My), n = (My, My, My). (4.55)

Since monodromy groups < My, M3, My > and < My, My, My > are re-
ducible, then M, M, are diagonal and M;,M3 can be supposed, without
loss of generality, upper and lower triangular respectively, and each matrix
will have its own eigenvalues on the diagonal. Recall that eigenv(My) =

exp (exmy) where ¢, = +1. Therefore, by Lemma 67, the following relations

hold:

TI'(MZM]) = 2COS(7T(€¢92‘ + €j9j>>7 1> j, Z,j = 2, 3,4, (456)

TI'(MZ‘/MJ'/) = 2COS(7T<€Z'/9¢/ + 6j/6j/)), i/ > j/, i/,j/ = 1, 3,4 (457)

Consider the remaining projection n = (My, M3, M) € M\pVI, with associ-
ated co-adjoint coordinates ¢, then since relations (4.56)-(4.57) hold respec-

tively for i = 4,7 = 1 and i’ = 4,j’ = 3, using the trigonometric identities
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and matching (1.115), we get:

1

qa1 = 5(674671 — €4€15451), (4.58)
_ 1, _ _
Qa3 = 5(([46]3 — €4€35453), (4.59)

where 55 1= 4/4 — g} for k = 1,3,4. Then equations (4.58)-(4.59) can be

written as:
Th+ @+ @ — g —4 =0,
Tis + G + @3 — Qs — 4 = 0,
and this concludes the proof. O

Proof of Lemma 70. We prove the statement for the case (i), then all the
other cases can be proved in a similar way. Suppose ¢, ¢ € Oip, then the
only relevant case for our classification (see the beginning of the previous

Section) is the following case:
(MyMsMy)™ ' =€ 1, (MyMyM,) ™ = €1, (4.60)

where € = +1. Therefore relations relations (4.19) and (4.20) follow from
Lemma 68 and the matching (1.108),(1.109),(1.110).This concludes the proof.
O
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Outlook

In this thesis a list of 54 finite orbits of the action (10) of the pure braid
group P, on the SLy(C) character variety of the Riemann sphere with five
boundary components is presented in Table 4.2. The list is folded up to
the action of the group of symmetries G introduced in Chapter 2. Due to
the identification of each action of the restriction H; (determined by the
rows in Table 1.1) with the finite action of P; over the SLy(C) character
variety of X4, we can associate to each restriction an algebraic solution of
PVI (see [DMO00, Iwa03, Coul6, LT14]). Then in the list of 54 finite orbits

each orbit’s member has the following properties:

e 1o more than one restriction (determined by the rows of Table 1) is
associated to algebraic solutions of PVI obtained by the pull-back of
the hypergeometric equation, see Doran [Dor01] and Andreev-Kitaev

[AK02],

e 1no more than one restriction corresponds to the so-called Picard solu-

tions of PVI, see the work of Picard [Pic89] and Mazzocco [Maz01b].

Moreover, we do not allow any orbit’s member such that:

137
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e one restriction is associated to algebraic solutions of PVI obtained by
the pull-back of the hypergeometric equation and another restriction

is associated to the so-called Picard solutions of PVI.

Many open questions remain. If we consider the parametrization result
given in Theorem (3), Lemma (4) and Proposition (5), we could reconstruct,
up to global conjugation, the monodromy matrices associated to a candidate
point, using the matching procedure (given in Section 4.1) only on two
points q.

This means that we could extend the classification result given in this
thesis to finite orbits whose members can have up to two projections, de-
fined in (1.114), of Picard or Hitching-Kitaev type. This computation is
theoretically possible but it is extremely technical and would require many
technical Lemmata in order to cover all sub-cases that we decided not to
include them in this thesis.

Another direction of research is to use our method to classify all finite
orbits of the action of the pure braid group P, on the SLy(C) character
variety of the Riemann sphere with n + 1 boundary components for n > 4,
or in other words all algebraic solutions of the Garnier system G, 5. We
expect that the matching procedure can be adapted in order to work in this
case too. For generic n > 4, the number of restrictions to the action of
the pure braid group P; over M py; will be (g), consequently many more
necessary conditions to be satisfied are introduced in order to produce a
candidate point.

In our case, for n = 4, we relay on a finite extended list E45 of 86, 768
points ¢ producing only 54 finite orbits. Since the extended list E45 remains
the same, and the number of necessary conditions increases with n, we

expect that the resulting classification list will contain less and less finite
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orbits.
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