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Abstract

A fully coupled system in which a vehicle’s aerodynamic and handling responses can be

simulated has been designed and evaluated using a severe crosswind test. Simulations

of this type provide vehicle manufacturers with a useful alternative to on road tests,

which are usually performed at a late stage in the development process with a proto-

type vehicle. The proposed simulations could be performed much earlier and help to

identify and resolve any aerodynamic sensitivities and safety concerns before significant

resources are place in the design.

It was shown that for the simulation of an artificial, on-track crosswind event, the use

of the fully coupled system was unnecessary. A simplified, one-way coupled system, in

which there is no feedback from the vehicle’s dynamics to the aerodynamic simulation

was sufficient in order to capture the vehicle’s path deviation. The realistic properties of

the vehicle and accurately calibrated driver model prevented any large attitude changes

whilst immersed in the gust, from which variations to the aerodynamics could arise. It

was suggested that this system may be more suited to other vehicle geometries more

sensitive to yaw motions or applications where a high positional accuracy of the vehicle

is required.
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Chapter 1

Introduction
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1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Aerodynamic performance is an important attribute to consider during a vehicle’s de-

sign and testing processes. Of leading interest is a vehicle’s aerodynamic drag, as this

force has a direct impact on fuel consumption and journey range. Obtaining the value

of the force requires a replication of the flow environment through which the vehicle

travels, and is usually generated artificially using experimental wind tunnel facilities

and complementary computational fluid dynamics simulations. The onset flow is nor-

mally smooth, quasi-steady and aligned with the the vehicle’s forward direction. Such

conditions provide the best environment for acquisition of repeatable data, making it

possible to reliably resolve the effects of detailed shape changes through a vehicle’s

design phase, however these conditions are rarely met on the road. Velocity variations

can arise from numerous sources such as atmospheric winds, the wakes of other vehicles

and gaps in road side obstacles, all of which can significantly alter the drag acting on

the vehicle when compared to the value obtained in the ‘ideal’ conditions of a wind

tunnel.

In addition to drag, a realistic environment can also affect other important metrics of

vehicle performance, such as handling and stability. Surprisingly, given the importance
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of this performance metric in terms of vehicle quality, refinement and even safety, this

impact has received much less attention. A vehicle that is sensitive to typical wind

fluctuations under normal driving conditions will be unpleasant to drive and felt by

any passengers within the vehicle. Whereas under more extreme events such as high

speed gusts and prolonged crosswinds, it is vital that the vehicle is stable and does

not behave unexpectedly. In both cases, quasi-steady loads obtained under ideal wind

tunnel conditions will not pick up the frequencies and instantaneous peaks that are

associated with these events. This is becoming more important due to the trends

in low-drag, lighter vehicles with highly curved features and sloped fastback rear ends

that are more susceptible to large aerodynamic loads. The current methods of assessing

handling and stability issues due to unsteady aerodynamics, are on-road tests or vehicle

dynamics simulations using the simplification of quasi-steady aerodynamics loads of the

vehicle at yaw. The first of these methods requires a prototype vehicle, and hence occurs

at a late stage in the development process where shape modifications are usually an

expensive process. Whereas in simulation, there is little evidence to suggest that using

quasi-steady loads to assess an unsteady event is an acceptable simplification.

The purpose of this thesis is to present and document the results of a fully coupled

simulation method in which a vehicle’s unsteady aerodynamics and multi-body, 6 degree

of freedom motion including a typical driver’s response can be predicted simultaneously.

This will require an appropriate meshing technique such that geometry is free to move

within the computational fluid domain alongside a system in which aerodynamic loads

and vehicle positional data can be exchanged. The thesis will start by collating existing

knowledge and evaluating appropriate techniques. The simulation method will be used

to determine the response to an unsteady crosswind event whilst comparing to the

existing simplified quasi-steady method.

1.1 The Natural Wind

The natural wind is unsteady, continuously changing in speed and direction. In an

attempt to understand what appears to be random behaviour, wind engineers have

and continue to measure the natural wind’s velocity at locations all over the world. A
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INTRODUCTION

generic sample of instantaneous wind speed Uz(t) at height z is shown in Figure 1.1.

Figure 1.1: Wind speed data sample.

Databases usually do not contain complete samples of measured instantaneous speeds

as per Figure 1.1, but rather consist of mean values U z, calculated over a period of

time T using Equation 1.1, published by the Engineering Sciences Data Unit ESDU

82026 [1].

U z =
1

T

∫ T

0
Uz(t)dt, Uz(t) = U z + u′z(t). (1.1)

The period over which wind speeds are averaged is chosen to ensure a stable average,

typically one hour. Spectral analysis of annually measured wind speed data obtained by

Van der Hoven [2] confirms the suitability of this period length. Figure 1.2 shows how

this value falls within a spectral gap between two peak energy spectrum values associ-

ated with the passage of large, synoptic-scale pressure systems and the high frequency,

small scale fluctuations in the natural wind. Although the data used in Figure 1.2 refers

only to a single location at a height of 100 m, similar spectral gaps have been measured

at different locations and heights from as low as 30 m over North America [2, 3]. It

is proposed that the reason for this spectral gap is the lack of a physical process that
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supports wind fluctuations in the frequency range from approximately 10 minutes to 1

hour, inferring the suitably of this averaging period.

Figure 1.2: Spectrum of wind fluctuations at 100m taken from Cooper based on Van

der Hoven [4, 2]

.

1.1.1 The Natural Wind’s Velocity Profile

Measurements at different heights and locations are key in understanding the behaviour

of the natural wind. Close to the Earth’s surface, the wind is more strongly influenced

by local terrain features, where drag forces induced by obstacles on the ground, lead to a

reduction in wind speed. In contrast, moving far above the surface, the wind eventually

becomes unaffected by these shear forces, a state referred to as the gradient wind. As

a result, the atmosphere is commonly divided into three regions: the free atmosphere,

atmospheric boundary layer and surface boundary layer. The gradient wind defines

the start of free atmosphere, where wind speed is determined by pressure gradient,

Coriolis and inertial forces [5]. Under the free atmosphere is the atmospheric boundary

layer where the viscosity of the air has an influence on the wind speed. The height of

this layer has been quoted anywhere between 300 m up to 3000 m, depending on the

specific roughness of the terrain upstream and strength of the gradient wind [5, 6, 7].

The surface boundary layer is a low-level sub-layer of the atmospheric boundary layer

extending from the ground up to approximately 60 m, within which a constant shear
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INTRODUCTION

stress and lack of Coriolis forces are assumed. Again the height of this layer is dependent

on surface conditions.

As shown by Watkins [6], the profile of the atmospheric boundary layer can be approx-

imated using a logarithmic law, Equation 1.2, along with a numerical interpretation of

the local terrain roughness z0, for which typical values are shown in Table 1.1.

U z =
u∗
k

ln

(
z

z0

)
, u∗ =

√(
τ0
ρ

)
. (1.2)

Terrain zg (m) α k z0 (m)

Open Terrain 300 0.16 0.005 0.03

Woodland Suburbs 430 0.28 0.015 0.20

City Centre 560 0.40 0.050 1.00

Table 1.1: Characteristics of the natural wind for different terrain [7].

In Equation 1.2, U z is the average wind speed at height z, u∗ is friction velocity

calculated from the density of the air ρ and surface shear stress τ0 and k is the von

Karman constant. This expression was originally derived by Prandtl for turbulent

boundary layers on flat plates [8] and as shown by Flay [9], this expression only applies

to the entire boundary layer in flat, open, homogeneous terrain, conditions which are

rarely met in the real world. In areas of significant surface roughness, the accuracy of

the prediction from the ground up to the height of the roughness-producing obstacle

breaks down, due to the complexity of the flow in this region. Therefore it is common

to define a displacement plane, known as the zero-plane displacement, to which the

bottom of the boundary layer profile is shifted and all heights used in the calculations

are referred. Consequently this shift mathematically invalidates the logarithmic law

under the zero-plane as z takes a negative value. The height of this plane d, is usually

less than the height of the roughness-producing obstacle H, Holmes suggests 75% of

H, and is a function of the surface roughness z0 and its plan-area density λ [1, 10].

5



For 0.2 < λ < 0.8,

d = H − (4.3 z0 (1− λ)).
(1.3)

An alternative expression for the boundary layer profile is the power law

U z = Ug

(
z

zg

)α
, (1.4)

where Ug and zg are the gradient wind speed and height, and α is a best-fit constant

that takes into account surface roughness, typical values for which can be found in

Table 1.1 [6].

In practice, the values for the gradient wind and height required in the power law are

often hard to measure, so for convenience it is common for these values to be replaced

by values of U10 and zg =10 m, as this is a typical height of anemometer measurements

[6].

U z = U10

( z
10

)α
. (1.5)

Although the power law is mathematically valid for heights under the zero-plane dis-

placement, the accuracy of the expression for the velocity profile in this region is still

questionable, especially for heights under 10 m. This low-level region of the surface

boundary layer is of minimal importance to civil engineers and meteorologists and

hence, has received little attention. One exception is the work by Flay [9], where

measurements suggest that the power law is only suitable in this low-level region for

smooth, open terrain. For lack of a more suitable alternative, the power law is still

being used to model this region for all terrain conditions.

1.1.2 Average and Maximum Wind Speeds

With an appropriate averaging method established and a general understanding of the

influence of shear forces in the majority of the atmospheric boundary layer, analysis
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of the natural wind data can be performed. Figure 1.3 shows the results of a study

by Archer and Jacobson [11], used to assess the potential of renewable global wind

power. Wind speeds were recorded at an elevation of 10 m at over 8000 weather stations

worldwide and global averages for the year 2000 were calculated: 6.64 m/s over oceans

and 3.28 m/s over land. In their study, these measurements were used along with the

power law to approximate the average wind speeds at a height of 80 m, the typical hub

height of modern wind turbines, and placement of such were suggested.

Figure 1.3: Average global wind speed at a height of 10 m for the year 2000 [11].

In the UK wind speeds are typically larger than the global average, with an average

for 2001, measured by the Met Office [12] at 4.42 m/s and over the last 15 years the

average wind speed has raised to 4.53 m/s. Whilst long period averages give a good

indication of the typical wind speed in a particular geographical location, extreme

wind speeds are generally a deeper concern, due to the added risk that accompanies

them. Figure 1.4 shows the extreme hourly-mean and 3-second gust speeds for the UK,

with a chance of reaching the quoted value being a once in fifty year occurrence. All

values assume uniform open country terrain (z0 = 0.03) but do not account for local

topography changes such as speed up effects over hills and through valleys. The velocity

is referenced at a height of 10 m and is increased by 10% for every 100 m above sea level.

Much like the yearly averages, the hourly-mean values still veil the true extremes of the

gust, with the three second gust almost double the mean-hourly value over most parts

of the UK. The ratio of the instantaneous gust to the mean-hourly speed is know as the
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gust factor. Sachs [13] suggests that where no instantaneous gust records are available,

gust factors can be applied to the mean-hourly measurements for an approximation of

the maximum gust speed, and these are presented for a range of terrains in Table 1.2.

(a) Mean-hourly speed [14] (b) 3 second gust speed [15]

Figure 1.4: Maximum wind speeds at 10 m, once in 50 year occurrence.

Terrain Maximum Gust Factor

Open Terrain 1.59

Woodland Suburbs 1.91

City Centre 2.22

Table 1.2: Maximum gust factors for different terrain [13].

1.1.3 Turbulence in the Natural Wind

‘The variation of gusts in the natural wind is known as turbulence and emerge as a

result of exchanges in momentum due to the vertical movement of air; a secondary

effect of the retarding forces generated by the Earth’s surface and obstructions upon
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INTRODUCTION

it’ [13]. Turbulence can be quantified using two parameters: turbulence intensity and

length scale.

Turbulence intensity, is a measure of the magnitude of the fluctuating velocity com-

ponent, compared to the mean wind speed at the same height. Referring back to

Figure 1.1, the fluctuation to the mean at any given time, in the direction of the mean

wind, is given by the value u′z(t). By definition of the average wind speed, the average

of this fluctuation over the period T is zero, however the mean square, also known as

variance over this period has value and is calculated as follows,

σ2u =
1

T

∫ T

0
(u′z(t))

2dt. (1.6)

The longitudinal component of the turbulence intensity, denoted by Iu, is then cal-

culated by taking the square root of the variance, otherwise know as the standard

deviation, and dividing through by the mean wind speed. Components of velocity are

defined by u, v, w,

Iu =
σu

U z
. (1.7)

Similarly for the other components of turbulence intensity,

Iv =
σv

U z
, Iw =

σw

U z
. (1.8)

Both Harris and Davenport [16, 17] suggest that as the variance of turbulence is pro-

portional to the shear stress (assumed constant in the surface boundary layer) a mod-

ification to the power law can yield an expression for the longitudinal component of

turbulence intensity at any given height .

σu

U z
= 2.5k

1
2

(
U10

U z

)α
. (1.9)

In a similar fashion, Flay [9] showed that the logarithmic law can be used to express
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turbulence intensity,

σu

U z
=

1

ln
(
z
z0

) . (1.10)

It is generally agreed that up to a height of 20 m, the components of turbulent intensity

can be approximated relative to each other, as shown in Equation 1.11, although there

is slight variation on the specific values of this ratio within the literature [5, 10].

σu = σv = σw = 1 : 0.8 : 0.5. (1.11)

Studies that measure the behaviour of turbulence in the lowest level of the atmospheric

boundary layer are limited, making validation of these laws difficult. One exception is

the study performed by Flay [9], who obtained turbulence intensity measurements from

a stationary tower situated near Christchurch, New Zealand over a height range from

3.3 m to 20 m metres. The test site was situated in open grassland and terrain conditions

were maintained for the surrounding area (z0 = 0.03), ensuring an equilibrium boundary

layer at the measurement site. Measurements correlated well with theoretical data

obtained using Equations 1.9 and 1.10, and confirmed that larger longitudinal and

lateral intensities are found closer to the ground increasing from Iu = 16% and Iv = 12%

at 20 m to Iu = 19% and Iv = 15% at 3.3 m. Vertical intensities behaved slightly

differently, decreasing linearly towards the ground from Iw = 8.5% at 13 m to Iw = 7%

at 3.3 m. It is claimed by ESDU 83045 [18], that theoretical methods such as Equations

1.9 and 1.10, should hold true for any equilibrium boundary layer, even in areas of

substantial roughness (z0 > 0.1) and ESDU 85020 [19] provides theoretical data for

turbulence intensity with respect to height at a range of surface roughness values,

Figure 1.5. This measurements by Flay [9] agree well with this theoretical data for a

comparable roughness value. Intuitively, the theoretical data shows how added surface

roughness increases turbulence intensity, and the subplot of Figure 1.5 shows how an

increase in wind speed can reduce the turbulence intensity at low heights (≤ 10m),

whilst the opposite is true for heights greater than 60m.
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FIGURE 1  TURBULENCE INTENSITY FOR EQUILIBRIUM CONDITIONS
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Figure 1.5: Turbulence intensities for equilibrium conditions [19].

Turbulence is only partly defined by intensity as these values give no information on

the probability of a specific gust occurring. Statistical methods are used to define the

proportion of time that a wind velocity Uz spends in a specific range Uz+δUz, otherwise

know as the probability density fi(Uz) for each wind component i = u, v, w [19].

fi(Uz) =
1

σi
√

2π
exp

[
−1

2

(
Uz − Uz
σi

)2
]
. (1.12)

However, this function alone is still not sufficient to define the random nature of gusts,

as it only provides information about the magnitude of a specific wind velocity and

does not describe how slowly or quickly it varies in time. This is done by a function

called the spectral density or spectrum Si(n), where n is a specific gust frequency [19].

σ2i =

∫ ∞
0

Si(n)dn i = u, v, w. (1.13)

As already shown, Figure 1.2 shows the spectrum of wind fluctuations from measured

data. Although no details on the equations used in the calculation of spectral density

were provided by Van der Hoven [2], it is reasonable to a assume that the value was
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calculated using the model developed by von Karman [19], in which the spectral density

takes on the non-dimensional form n·Su(n)
σ2
i

.

n · Su(n)

σ2u
=

4nu

(1 + 70.8n2u)5/6
nu =

n xLu

U z
, (1.14)

n · Si(n)

σ2i
=

4ni(1 + 755.2n2i )

(1 + 283.2n2i )
11/6

ni =
n xLi

U z
, i = v, w. (1.15)

In Equation 1.15, xLi is known as the turbulent length scale of the ith velocity com-

ponent in the x direction (the direction of the wind). It is a measure of the physical

size of the eddies constituting the turbulence and is dependent on height and surface

roughness. ESDU 85020 [19] shows how the value of the longitudinal length scale in-

creases with height, Figure 1.6. This trend was also confirmed by the measurements of

Flay [9] up to a height of 20m.
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FIGURE  3a  INTEGRAL LENGTH SCALE OF TURBULENCE FOR EQUILIBRIUM CONDITIONS.  VALUES FOR V10r = 20 m/s and f = 1 × 10–4 rad/s

z (m)

2 4 6 8 2 4 6 8 2 4 6 8100 101 102 103

xLu
′

(m)

2

4

6

8

2

4

6

8

101

102

103

0.0001
0.0003

0.001
0.003

0.01

0.03

0.1

0.3

0.71.0

z0 (m)

0.0001

0.0003

0.001

0.003

0.01

0.03

0.1

0.3

0.7 1.0

z0 (m)

1

For         > 0.1,            = A                where A is given by Equation (6.3)nz
Vz

nSuu
σu

2

xLun
  Vz–   

-2/3

xLuN

xLu

= value for V10r = 20 m/s and

    f  = 1*10-4 rad/s

=  xLuN * kL

    xLu
N from Fig. 3a

      kL  from Fig. 3b for V10r ≠ 20 m/s

      and  f ≠ 1*10
-4 rad/s

This page A
m

endm
ent G

Figure 1.6: Integral length scales for equilibrium conditions [19].

In his attempts to derive a mathematical model of the atmospheric boundary layer,

Flay [9] states that when considering the boundary layer as a whole, length scales can
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be approximated using the following relations,

xLu = 20
√
z,

xLv = xLw = 0.4z,
(1.16)

and when considering the surface layer alone the following modifications are suggested,

xLu = 4.2z0.73,

xLu = 2 xLv = 2 xLw.
(1.17)

Although these relations provide a useful approximation of the turbulent length scale

components, they should be used with caution as they are primarily based on a single,

smooth, uniform terrain condition under which Flay [9] obtained his results.

It is clear that there is a good understanding of the natural wind’s behaviour and several

theoretical laws can be used to predict its defining parameters. Measurements of the

wind speed at a height of 10m are most common, and these laws can be adapted for use

with such measurements to gain a reasonable understanding of the wind’s profile and

fluctuations throughout the majority of the atmospheric boundary layer. The main

difficultly is predicting the wind’s behaviour in close proximity to the Earth’s surface.

Variations in terrain roughness and its plan area density result in a highly complex

flow and a lack of measurements have restricted the advancement of knowledge of the

wind’s behaviour within this region.

1.2 The Flow Seen By a Road Vehicle

Throughout a journey on the road, a vehicle will be subjected to a range of yaw angles

since the flow seen by the vehicle is the combination of the wind velocity vector and

the inverse of the vehicle’s velocity vector, both of which are time dependent. This

is shown in Figure 1.7 as angle β and is calculated along with the value of resultant

velocity UR using the Equations 1.18 and 1.19.

UR
2 = Uveh

2 + Uw
2 + 2UvehUw cos Φ. (1.18)

β = tan−1
(

Uw sin Φ

Uveh + Uw cos Φ

)
. (1.19)
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Figure 1.7: Yaw angle of resultant flow velocity.

1.2.1 A Sheared Velocity Profile

Shear in the natural wind results in a velocity profile and thus flow yaw angle profile

which varies over the height of the vehicle, as shown in Figure 1.8. As already discussed,

an approximation of this wind profile over typical vehicle heights can be provided by

the power law, Equation 1.5.

Figure 1.8: The effect of shear on the flow seen by a vehicle [20].

A typical on-road scenario is described as follows: a truck of standard height 4 m is

travelling at 25 m/s. A prolonged gust or crosswind acts perpendicular to the direction

of travel, the speed of which at a height of 10 m is measured at the global average of

14
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4.5 m/s. Using the power law (Equation 1.5) and assuming an α value of 0.16 (indicative

of smooth, open terrain) the wind speed at the top of the cabin can be calculated at

approximately 3.9 m/s. Furthermore, the wind speed at typical bumper height of 0.5 m

can be found to be approximately 2.8 m/s. Whilst this difference may seem small,

Equation 1.19 can be used to show how the flow yaw angle seen by the truck varies

from 8.9◦ at the top of the cabin to 4.4◦ at bumper height and 0◦ at the ground, and

stronger wind speeds will increase this yaw angle difference. As increases in flow yaw

angle can be associated with larger aerodynamic drag forces and stability issues, this

effect can be of particular interest to vehicle aerodynamicists. However the effect is

typically ignored and a constant wind speed and yaw angle is assumed to act over the

height of the vehicle.

1.2.2 Wind Speed and Flow Yaw Angle Probability

Figure 1.9 shows the probability distribution of this assumed constant flow yaw angle,

taken from on-road measurements by Lawson et al. [21]. Although the distribution is

centred around zero degrees, there is still good probability of the flow yaw angle falling

in ±10◦. Their results also imply that the most probable wind speed encountered by

vehicle in the UK is < 5 m/s and this agrees well with annual averages over the last

fifteen years [12].

Measurements during more gusty periods have been recorded Wojciak [22] in Germany.

Wind speeds from 6 m/s to 14 m/s were taken in an attempt to classify gusts into profiles

and determine their probability. Figure 1.10 shows an extract from their wind samples,

with a gust event identified by a disturbance in u and v velocities as well as turbulence

intensity and length scale. Maximum intensity and length scale values for the gusts

were calculated at 7% and 80 m respectively. By applying a low pass filter to the

complete dataset, the gusts were classified into three categories, where it was found

that the single peak gust was the most likely profile to occur with a probability of 63%.

Furthermore, it was found that 75% of all gusts feature a zero-crossing in yaw angle. It

has been found by Theissen [23] that the switch between windward and leeward sides

on the vehicle leads to increases in unsteady phenomena.
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The tubing system transfer function was determined by 
simultaneously recording the changing pressure in a 
small, sealed chamber using two independent pressure 
transducers.  One transducer measured the pressure 
directly from the sealed chamber (called the reference 
transducer) whilst the other was located at the end of the 
combined pressure tapping and tubing configuration to 
be calibrated. The sealed chamber was also connected 
to a further chamber that is formed between a 
loudspeaker cone and a rigid plastic plate. The 
loudspeaker and plate interface is airtight.  A swept sine 
wave is fed to the loudspeaker, which in turn, causes 
pressure fluctuations in the small chamber.  The transfer 
function is then calculated as follows: 

2)(
)(*)(

)(
)()(  Function Transfer

fA
fAfB

fA
fBfTF !!!          

where A(f) is the Fourier transform of the pressure 
recorded by the reference transducer at frequency f and 
B(f) is the Fourier transform of the transducer connected 
to the tapping and tubing arrangement under test. 

Transfer function correction was applied to surface and 
3-hole probe measurements made on the road in order 
to accurately determine the time varying flow onto the 
car and the vehicle’s aerodynamic response. 
 
Figure 6 illustrates the measured transfer function 
amplitude for a surface disc and associated tubing and 
shows that this is attenuation-dominated. Transfer 
function correction was performed up to a frequency of 
50 Hz, which corresponds to an attenuation factor of 
about 0.3 for the surface pressure tappings and 0.2 for 
the 3-hole probe. This is a conservative limit which 
avoids the degradation of signal-to-noise ratio which can 
be caused by amplification of electrical noise at higher 
frequencies. 
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Figure 6: Transfer function measured for a disc probe 

and associated tubing 
 

Data Acquisition 

Measurements were recorded using a Measurement 
Computing PCM-DAS16D/12 PCMCIA data acquisition 
card running on a laptop computer operated from within 
the vehicle or from the wind tunnel control room.  A 
block diagram showing the equipment set up is shown in 
figure 7.  

 
Figure 7: Data system schematic diagram [11] 

Data was collected in sets of 2048 data points at 800Hz, 
giving an integration time of approximately 2.6s. 

 
RESULTS 

On-Road Wind Environment 
 
Figure 8 illustrates the continuous probability distribution 
of yaw angle, as measured by the 3-hole probe during 
the course of the tests presented here. This illustrates 
that the average yaw angle is nearly zero and shows 
that that the instantaneous yaw angle is essentially 
contained between ±10º. 
 

 
Figure 8: On-Road measured yaw angle probability 

density distribution. 
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Figure 1.9: On-road probability of flow yaw angle [21].

Experimental investigation of on-road flow conditions during crosswind gusts

observed throughout all measurements (compare Figure 2.4). Hence, a description of w
is omitted in many parts of the subsequent crosswind gust analysis.
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Figure 2.4: Measurement section with a gust event marked by a dashed rectangle.

2.3.2 Gust profile

At first, the profiles of the gust peaks in u and v are investigated as they are of great
interest for numerical and experimental modeling. Applying a low pass filter (6 Hz) or
a moving average filter (length 0.1625 s) they can be classified into the categories single
peak, double peak, i.e. two consecutive peaks with opposite directions, and trapeze shaped
peak. Gust examples for each category are outlined in Figure 2.5.

The probability of occurrence of the three gust profiles is shown in Table 2.1. According
to the results, the majority of the gusts captured are single peak gusts, the trapezoidal
gusts count for almost every third gust and the number of double-peak gusts is almost
negligible. So, modeling crosswind gusts as single peak gusts is most realistic, which has
been intuitively assumed in many previous studies.
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(a) Wind speed sample with gust event.

2.3 Results and discussion

Table 2.1: Probability of occurrence of gust profiles.
Single Peak Double Peak Trapeze Peak

63% 9% 28%

According to the gust profiles presented in Figure 2.5(a), a sinusoidal change of yaw, which
was for instance assumed by Demuth et al. [32], Theissen [107] or Schröck et al. [96], is
fairly realistic in order to approximate single peak gusts. Trapeze gusts, as implemented
for example by Favre et al. [38,39] or Tsubokura et al. [116], are less common, but realistic,
as well.

(a) Single Peak (b) Double Peak (c) Trapeze Peak

Figure 2.5: Examples for different categories of gust profiles.

According to Theissen [107], the absence of a zero-crossing in a yaw angle change and,
thus, the absence of a change of windward and leeward side significantly reduces unsteady
phenomena. This is associated with a discontinuity in the integral loads versus yaw angle
curve at β = 0◦. Therefore, it is essential to know, how many gusts exhibit a change
of sign in their yaw angle transient. According to the results, three gusts out of four
statistically exhibit a zero crossing in their v evolution, see Table 2.2. As a consequence,
reduced unsteady phenomena due to the absence of a yaw angle change are seldom on-
road. In other words, a change of windward and leeward side must be taken into account
when optimizing the crosswind sensitivity of a vehicle.

Table 2.2: Probability of occurrence of zero crossing of v.
Zero crossing No zero crossing

72% 28%

2.3.3 Gust amplitude

The gust amplitude, as indicated with the letter “A” in Figure 2.5, is a decisive gust
parameter, since it determines the general flow characteristics at the vehicle rear. As
shown by Theissen [107], the rear surface pressure distribution is dominated by the wake
flow for smaller yaw angles, whereas it is dominated by the oncoming flow for higher yaw
angles. As a consequence, the appearance of unsteady phenomena strongly depends on
the yaw angle amplitude of the oncoming flow.
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(b) Single peak, P = 63%
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angles. As a consequence, the appearance of unsteady phenomena strongly depends on
the yaw angle amplitude of the oncoming flow.

39

(c) Double peak, P = 9%

2.3 Results and discussion

Table 2.1: Probability of occurrence of gust profiles.
Single Peak Double Peak Trapeze Peak

63% 9% 28%

According to the gust profiles presented in Figure 2.5(a), a sinusoidal change of yaw, which
was for instance assumed by Demuth et al. [32], Theissen [107] or Schröck et al. [96], is
fairly realistic in order to approximate single peak gusts. Trapeze gusts, as implemented
for example by Favre et al. [38,39] or Tsubokura et al. [116], are less common, but realistic,
as well.

(a) Single Peak (b) Double Peak (c) Trapeze Peak

Figure 2.5: Examples for different categories of gust profiles.

According to Theissen [107], the absence of a zero-crossing in a yaw angle change and,
thus, the absence of a change of windward and leeward side significantly reduces unsteady
phenomena. This is associated with a discontinuity in the integral loads versus yaw angle
curve at β = 0◦. Therefore, it is essential to know, how many gusts exhibit a change
of sign in their yaw angle transient. According to the results, three gusts out of four
statistically exhibit a zero crossing in their v evolution, see Table 2.2. As a consequence,
reduced unsteady phenomena due to the absence of a yaw angle change are seldom on-
road. In other words, a change of windward and leeward side must be taken into account
when optimizing the crosswind sensitivity of a vehicle.

Table 2.2: Probability of occurrence of zero crossing of v.
Zero crossing No zero crossing

72% 28%

2.3.3 Gust amplitude

The gust amplitude, as indicated with the letter “A” in Figure 2.5, is a decisive gust
parameter, since it determines the general flow characteristics at the vehicle rear. As
shown by Theissen [107], the rear surface pressure distribution is dominated by the wake
flow for smaller yaw angles, whereas it is dominated by the oncoming flow for higher yaw
angles. As a consequence, the appearance of unsteady phenomena strongly depends on
the yaw angle amplitude of the oncoming flow.
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(d) Trapeze peak, P = 28%

Figure 1.10: Wind speed sample and gust classification with probabilities P by Wojciak

[22].
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1.2.3 Turbulence Seen By a Moving Vehicle

The turbulence parameter values calculated Wojciak [22] are only relevant for gusty and

similar road conditions. Studies which measure the behaviour of turbulence at vehicle

heights and in more typical conditions are limited. In the study by Flay [9], turbulence

intensity measurements were obtained from 20m down to 3m which although useful, is

a height range above that of the majority of road vehicles. In addition, measurements

were obtained from stationary apparatus, whereas on the road, the speed of the vehicle

will invoke a different range of intensities. This was shown by Watkins and Saunders

[24] in their attempt to derive a model capable of predicting the flow seen by a moving

vehicle based on stationary measurements. Using the stationary data obtained by Flay

[9] at a height of 3.3 m, intensities were predicted for a range of wind speed and yaw

angles at a vehicle speed of 30 m/s, Figure 1.11.

The resultant velocity, UR, and the yaw angle, ψ, are given by: 
 
UR

2 = UV
2 + UW

2 + 2UVUW cosφ                (2.6) 
ψ    = tan-1(( UW sinφ ) / ( UV + UW cosφ ))              (2.7) 
 
 
The turbulence experienced by a moving vehicle has been investigated by Watkins 
[2.11], who derived the turbulence intensity in the resultant velocity frame. The 
longitudinal turbulence intensity, JU, along the direction of the resultant velocity is; 
 
JU = (UW /UR) Iθ ,                      (2.8) 
 
where,        
Iθ

2 = IU
2 cos2θ + IV

2 sin2θ, 
θ   = φ - ψ, 
and IU, IV are the longitudinal and lateral turbulence intensities of the natural wind. 
The lateral and vertical intensities in the resultant velocity frame are, respectively:  
 
JV  = (UW /UR) Iθ+90, and                         (2.9) 
JW = (UW /UR) Iw.                     (2.10) 
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Figure 2.7: Longitudinal Turbulence Intensity Experienced by a Moving Vehicle 
 
 

The longitudinal turbulence intensity has been plotted as a function of yaw angle for 
different wind velocities over a range of relative wind angles in Figure 2.7. The car 
speed is 30m/s and all wind directions relative to the direction of travel are 
represented. For zero yaw angle there can be two values of turbulence intensity for 

Figure 1.11: Predicted longitudinal turbulence intensity experienced by a moving ve-

hicle [24, 25].

For each wind speed at zero yaw angle, there are two values for turbulence intensity

due to head and tailwind arrangements, with a higher intensity for the tailwind due

to the lower resultant velocity. It was shown by Watkins and Saunders [24] through

comparisons to measured moving data that the prediction method developed could be

used reliably in smooth, open terrain, however in the presence of roadside obstructions,
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these predictions were inaccurate and moving data was required.

On road measurements such as those obtained by Watkins and Saunders [24] are gen-

erally recorded using a test rig of pressure tappings mounted to the front of the vehicle.

Wordley and Saunders [26] used similar apparatus to measure the wind environment

along roads in Australia at a height of 0.5 metres. The test locations were carefully

chosen to ensure a variety of terrain conditions: open terrain, tree lined roads, city

buildings and freeway traffic. In general, their results agree with the observations of

Flay [9], with added surface roughness leading to higher turbulence intensities as shown

in Figure 1.12a. The freeway driving conditions generated the largest intensity values

due to the wakes of upstream vehicles, with a maximum longitudinal value of 16%

and an average of 9%. Average values for road side obstacles and open terrain were

measured at 4.4% and 4.2% respectively. The exception to this trend is the city terrain

with an average intensity value of 2.4%. Although the low value is counter-intuitive

based on the high surface roughness value this terrain invokes, it occurs due to the

sheltering effect of the buildings on the ambient wind. This is a clear indication of the

inadequacy of the surface roughness parameter, for describing the wind conditions at

heights relevant to road vehicles.

The most surprising result was a high correlation and consistency in the ratio between

multiple vehicles in convoy, while the lower values (<6%) 
were measured in the wake of a single car. These wakes 
had the effect of greatly reducing the estimated length 
scales, with average values less than half those 
measured in smooth terrain. 

SUMMARY OF ALL ON-ROAD TEST RESULTS 

Graphs plotting both autocorrelation and Von Karman 
derived length scales versus turbulence intensity for all 
the on-road data are provided in Figs 20a and 20b.  

          

 

Fig. 20a and 20b: Autocorrelation derived turbulent 
length scales (top) versus Von Karman spectrum derived 
turbulent length scales (bottom), all on-road data. 

The annotated graphs illustrate the general trends 
observed in the relationship between length scale and 
intensity for the 4 different terrain/conditions surveyed. 
Smooth terrain environments tended to produce the 
widest range of length scales and relatively low values of 
turbulence. The city canyon results are similar to the 
smooth terrain results, with both smaller intensities and 
slightly smaller length scales on average. The road side 
obstacle data exhibited higher turbulence intensities than 
the smooth terrain but at smaller average length scales. 
Finally, the freeway traffic results gave both the highest 
intensities and lowest average length scales. 

Interestingly, parts of the data from all four of the 
terrain/condition sets overlapped in the low intensity 
(<5%) and small length scale (<5m) region of the plot. 

VARIATION OF TURBULENCE INTENSITY WITH 
WIND SPEED MEASURED AT THE PROBE 

Mention has been made of the effect of reduced mean 
wind speeds on turbulence intensities. To illustrate this 
point the turbulence intensities have been graphed 
against total wind speed for all data (Fig. 21). 

 

Fig. 21: Turbulence intensities versus total wind speed 
measured by the probe, all on-road data (27.8 m/s road 
speed) 

This graph shows the expected general trend of reducing 
turbulence intensity with increasing total flow speed, of 
which u is the major component and used to normalize 
the fluctuating velocity components (all tests were 
conducted at a road speed of 27.8 m/s, or 100 km/h). 
Higher values of total wind speed represent data taken 
into a head wind, while low values of total wind speed 
represent either strong tail winds or the influence of 
vehicle wakes which cause a velocity deficit to be seen 
by the probe. These effects cause an increase in 
measured turbulence intensity to above 12%.  

VARIATION OF LENGTH SCALE WITH WIND SPEED 
MEASURED AT THE PROBE 

Figs 22a and 22b below plot length scales versus total 
wind speed measured at the probe head. These results 
show that the longest length scales are encountered 
when the wind speed measured at the probe is very 
close to the vehicle speed which is indicative of a very 
low wind (and consequently turbulence) environment. 
Higher probe measured wind speeds represent head 
wind conditions and as expected the length scales are 
reduced, as the turbulent waveforms are arriving at the 
probe head more rapidly.  The reverse does not seem to 
occur for the lower range of probe measured wind 
speeds, with no evidence of expanded length scales. 
This is, in part, due to the fact that some of this data is 
for wake affected traffic flows where the wind speed at 
the probe is reduced and the length scale broken down. 
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(a) Intensity versus von Karman Length

Scale

What cannot be easily explained are the results taken in 
smooth terrain and extreme tail winds (>10m/s) where 
the length scales are reduced rather than expanded as 
one might expect.     

          

 

Fig. 22a and 22b: Autocorrelation derived turbulent 
length scales (top) and Von Karman spectrum derived 
turbulent length scales (bottom) versus total wind speed 
at probe, all on-road data. 

ANISOTROPIC RATIO OF ON-ROAD TURBULENCE 
AT 0.5M HEIGHT 

The three components of turbulence intensity (Iu, Iv, Iw) 
are plotted against total turbulence intensity in Fig. 23 
below, using all the on-road data.  

 

Fig. 23: Component turbulence intensities versus total 
turbulence intensities, all on-road data. 

This graph shows that the ratio of the three turbulent 
components are highly correlated and consistent, 
allowing them to be related via the following average 
ratio: 

I u     :     I v    :   I w 

  1.00   :   1.01   :   0.61 

   …(3) 

It should be remembered that this ratio is only valid for a 
height above ground of 0.5m. The high degree of 
correlation in these result is surprising considering that 
the complete data set comprises data from a variety of 
terrain conditions and even traffic-wake generated flows.  

DISCUSSION 

With respect to the two different methods used to 
estimate turbulent length scales it was found that: 

- In general the autocorrelation method predicted 
length scales around twice the magnitude of Von 
Karman Spectral fitting method. This difference 
is attributed to the fact that the Von Karman 
spectrums were manually fitted, primarily to the 
inertial sub-range frequencies whilst the 
autocorrelation method focuses more on the 
frequency at which the peak energy occurs.  

- The autocorrelation method yielded length 
scales with a large amount of variation, and at 
times, results which were obviously spurious. In 
these cases, the autocorrelation function came 
close to, but failed to cross the time axis at the 
expected point, instead making the crossing 
much later, leading to an overestimation of the 
area under the curve and consequently the 
length scale. It may be possible to reduce the 
incidence of this error by permanently lifting the 
crossing criterion to an autocorrelation value of 
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(b) Component versus total intensity for all

terrain conditions

Figure 1.12: Turbulence intensities at a height of 0.5m, taken from a moving car Uveh =

100km/h [26].
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the turbulence intensity components, despite the range of terrain and traffic conditions

tested, Figure 1.12b. The specific values of the ratio are quoted in Equation 1.20,

and differ to those theoretically determined, most noticeably in the lateral component,

Equation 1.11. This is consistent with the results of Watkins and Saunders [24], which

displayed lateral components up to 30% larger than the predicted values. In a follow-up

study using the same test sites and modified measurement apparatus [27], this ratio

was still found to apply over the height range of 0.25m to 1m.

Iu = Iv = Iw = 1 : 1.01 : 0.61. (1.20)

A similar study by McAuliffe et al. [28] measured the turbulence experienced by a

moving vehicle in Eastern Canada over the height range of heavy duty trucks, 0.5m

to 4m, and in a wide range of terrain, traffic and wind conditions. The values of

intensity components appear to follow the updated, experimentally determined ratio,

but more generally, their results agree with the wider trend of increases in intensity

with roughness, with measured values typically < 8% in heavy traffic compared to 9%

measured by Wordley and Saunders, [27]. Their measurements also suggest that within

the range tested, traffic density and in particular the wakes of heavy duty vehicles have

a much stronger effect on turbulence intensity than either wind speed or terrain type.

With this in mind a modification or redefinition of the surface roughness parameter

to incorporate this effect may help in providing more accurate predictions of intensity

values seen by a moving vehicle.

Values of turbulent length scale across all studies and terrain conditions are found to be

less than 6m on average. Unlike the relationship between the measured intensities, the

lateral length scale is smaller than the longitudinal, in some cases by as much as 50%.

Vertical scales are substantially lower, typically less than 0.5m, most likely due to the

close proximity of the ground. Over the range of typical vehicle heights 0− 4m, length

scales are seen to decrease towards the ground, with traffic density being a crucial

determining factor. Saunders and Mansour [29] showed that upstream vehicles reduced

the longitudinal length scale component to below 1 m, although this seems to be an

extreme case with the average from the majority of traffic studies below 3m.
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In obtaining a generalisation of on-road turbulence and comparing flows of varying

intensities and length scales, the wind energy spectrum is considered a more appropriate

metric [27, 28]. Figure 1.13 shows the way in which the frequency distribution of on-

road wind energy changes with turbulence intensity and length scale, taken from the

measurements of Wordley and Saunders [27].

 

 

Fig. 44: Example dimensional power spectra. Turbulence 
intensities 1%, 2%, 4%, 8%, 16%. Length scales 0.5, 1.0 and 
2.0 m. 

These comparisons show that: 

y The range of turbulent energy found in the 
Monash tunnel is much narrower than that 
experienced on road. 

y The shorter turbulent length scales present in 
the wind tunnel results in these spectra rolling 
off at frequencies near 10 Hz. The on road 
spectra generally begin rolling off at lower 
frequencies between 1 and 10 Hz due to their 
longer length scales. 

y The low turbulence (<2%) smooth terrain results 
(Fig. 46) compared closest with the wind tunnel 
spectra. Throughout the inertial sub-range, the 
wind tunnel u and v spectra were on the high 
side of the ranges found on-road, while at lower 
frequencies there was more content in the on-
road spectra. The energy in w was slightly 
higher across the entire wind tunnel spectrum 
compared to that measured in these conditions 
on road. 

y The high turbulence (>2%) smooth terrain 
results (Fig. 47) compared poorly with the wind 
tunnel spectra, as there was no overlap in the 
two ranges. This is a result of both the increased 
intensity (which shifts the range up) and also the 
longer length scales found on road (which 
reduces the roll off frequency). 

 

 

Fig. 45: Dimensional, wind component power spectra (range of 
values shaded), Monash University Full Scale Wind Tunnel.  
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Figure 1.13: Variation of power spectra with turbulence intensity and length scale [27].

Initial observations reveal that high spectrum values are associated with lower frequen-

cies, with a roll off to lower energy content as the frequency increases beyond 1Hz.

High values of intensity result in the greatest spectral values and for frequencies below

5Hz, large length scales also lead to large spectral values. Above this frequency, larger

length scales are found to reduce the energy content. Using this wind spectrum metric,

Wordley and Saunders [27] measured the turbulence properties of the Monash full scale

wind tunnel and compared these value to the range of on-road spectra. It was shown

that the wind tunnel was unable to replicate the on-road turbulence low frequency en-

ergy content, most noticeably in reproducing highway traffic conditions and road-side

obstacle terrains. As a result, wind tunnel target length scale and intensity values were

suggested to shift the spectral range and provide a reasonable compromise in simulating

a typical on-road environment, as shown in Figure 1.14.

From the limited on-road measurements of wind speed at vehicle heights, the complexity

of the wind’s behaviour has been shown. Turbulence intensity measurements have

been shown to lie within a range from 1% for city terrain up to 16% for heavy traffic
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conditions with longitudinal and lateral components of similar magnitude. Turbulent

length scale values were found to vary drastically depending on the terrain and traffic

conditions but were on average, found to be less than 6m. These ranges can be combined

in a single wind energy spectrum metric, to provide an indication of how the wind

energy content varies with frequency. The resulting band of energy spectra can be used

to assess the methods of simulating these real-world conditions.

Figure 1.14: Comparison of component on-road power spectra (grey), to Monash wind

tunnel (black) and suggested wind tunnel target (dashed) [27].

1.3 Simulating Typical On-Road Conditions

Simulating the flow around a vehicle is crucial for vehicle aerodynamicists who would

otherwise rely solely on on-road tests. Simulation of the flow, either experimental or

computational, offers control over the flow’s properties, providing a level of repeatability

necessary to monitor the effect of shape modifications and aerodynamic devices on a
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vehicle’s design. In addition, simulation offers a vast array of flow field and force

measurements, properties that are often limited or not possible to record during on

road tests.

1.3.1 Experimental Simulation

The flow produced by the majority of wind tunnels is deemed smooth due to its low

turbulence properties, with typical values of intensity < 0.5%. These flow conditions

fulfil the repeatability requirement whilst also widening the potential applications of the

facility, although as already shown, they are not a correct replication of the conditions

found on the road. To be able to use wind tunnels to simulate a typical on-road

environment, turbulence has to be added to the flow through turbulence generation

systems (TGS). These systems generally fall into one of three categories: passive, active

drag based or active lift based devices [30].

Passive devices are defined as static objects place upstream to generate controllable

disturbances. Purpose built turbulence grids are an example of this, where turbulence

properties can be varied through the design and placement of such a device, as shown in

Figure 1.15a. The disturbance scales generated by these devices are generally an order

of magnitude smaller than the vehicle and thus only represent the high frequency end

of the on-road wind spectra. One example of such a device is the NRC Road Turbu-

lence System designed by McAuliffe et al. [31, 32] and calibrated using their measured

on-road data discussed previously [28]. The spectra of their generated turbulence was

shown to match to on-road values during moderate traffic conditions only at high fre-

quencies, with an under prediction of the highest energy content at low frequencies.

Although high frequencies are associated with low energy content, it was shown by

Howell et al. [33] and Newnham [34] that the introduction of such small scale turbu-

lence at post-critical Reynolds numbers increases the turbulence inside the vehicle’s

boundary layer, consequently delaying flow separation and increasing skin friction and

base suction. This led to increases in the drag coefficient with freestream turbulence

intensity, suggesting that the drag of a vehicle on the road will be greater than the

value obtained in the smooth flow of the wind tunnel.
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which would be expected to a ffec t the length scales and intensity. The turbu lence 

intensiti es are only slightly lower than would be expected by comparison against the 

plot of grid generated turbulence in Vickery ' s study [36], but if it was dec ided to repeat 

thi s experiment in a different fu ll scale wind tunne l, it would therefore be necessa ry to 

take account of thi s when designing grids to produce similar turbulence leve ls. 

, , 
Figure 6 MIRA tunnel grid viewed from behind the model position (hotwire shown on turntable 

centre) 

A correla tion was conducted between the tunnel pitot and the model position wi th and 

wi thout the turbulence grids. A small correction (approx. +0.14tn!s static offset and 

-.22% scali ng adjustment for the 3.4% grid , and +0.16m/s stati c offset and -.1 7% 

sca ling adjustment for the 4.3% grid) was applied to the windspeed for all the 

turbulence grid results to allow fo r the blockage effect of the grid on the tunnel pitot. 

2.3 Accuracy and repeatability 

For all tests at model scale, all 6 forces and moments were recorded on the balance, and 

their coe fficients calculated. The wind speed and Reynolds number va lues were 

corrected for blockage using a sim ple area rati o continuity fo rmu la: 

U """.,,,.,, = U m,,,,,,,,.,, * 1 00 k Equation 2 - oc age 
where blockage = (model fro ntal area / tunnel wo rking section area) • 100 

32 

(a) Turbulence grid in MIRA wind tunnel [34].

This explains why, in order to improve the simulation in 
the wind tunnel, to become as close as possible to the 
real conditions that a vehicle finds on the road, 
Pininfarina has started in 1998 an important research 
program. It has the aim of defining and building suitable 
means for generating, in the full-scale wind tunnel, an 
airflow having a controlled level of turbulence intensity, 
similar to the one existing on the road. 

 
 
TURBULENCE GENERATED BY THE ROAD TRAFFIC 
 
Information on the characteristics of the turbulent flow 
generated by the presence of other vehicles running on 
the road is extensively reported by Saunders and 
Mansour in [19]. 

The research program includes three different steps that 
are summarized in the following chapters. 

In this work, 3 different cars were tested on the road, on 
2 different test tracks, with the leading car respectively at 
4, 5, 10, 15 m ahead of the trailing car. The main results, 
measured by a Cobra probe [34] installed on the bumper 
of the trailing car, 0.73 m ahead of the bumper and at h= 
0.5 m over the ground, are the following ones: 

• Definition of the turbulent flow that has to be 
reproduced in the wind tunnel. 

• Design and construction of suitable means to 
generate this flow. 

• Incident turbulence intensity on the trailing car  =  • Set up of advanced measuring techniques, to be 
used for investigating turbulent, time-dependent 
flows. 

5- 20%   
(5% at 15 m distance, up to 20% at 4 m distance) 

• Turbulence in-homogeneity   
     Iu:Iv:Iw  = 1.00: 0.55  : 0.60 CONSIDERATIONS ON THE FLOW CONDITIONS 

EXISTING ON THE ROAD • Average Turbulence Length Scale (TLS)  = 1 m              
(range 0.5 - 1.5 m)  

Some light wind was present during these tests. Its 
turbulence increases the overall turbulence level. 

According to a number of previously published works [6-
33], in particular the recent works of Saunders, Watkins 
and others [12,19], a vehicle running on the road 
encounters a fluid (air) that is very seldom perfectly still.  

The same tests were repeated in the Monash wind 
tunnel (turb. level ~ 3%) and in the Lockheed wind 
tunnel (turb. level <1%), with the leading car being 4 m 
upstream the trailing car. Main results were the following 
ones: 

There is usually some turbulence caused by two main 
different sources. 
• The atmospheric wind:  for most of the driving time 

there is some light atmospheric wind (V< 10 m/s) and 
its corresponding turbulence. 

• Incident turbulence intensity on the trailing car:      
about 15%  at 4 m distance 

• Turbulence in-homogeneity                • The road traffic, i.e. the turbulence generated by 
other vehicles running on the road,       Iu:Iv:Iw  = 1.00  : 0.65  : 0.65 

Furthermore, each one of these sources can have 
different characteristics: 

• Average TLS  = 0.2 m              (range  0.2 ÷ 0.3 m) 
More details are reported in [19]. These results are 
important, as data of this type are difficult to be found in 
the literature. As reported in the paper, this data may 
suffer some inaccuracy due to the difficulties that are 
specific of road testing and to the limitation of the 
instrumentation used to measure the turbulence.  

The atmospheric wind can be  
•  Typical of a flat environment, or 
•  Modified by roadside obstacles  
The turbulence generated by the traffic may depend on: 
• The size and the shape of the other vehicles on the 

road. In particular, different shapes mean different 
wakes, different vortices and different turbulence 
intensities. 

Pininfarina made some similar measurements in the 
wind tunnel. As shown in fig. 3, a first car, a Fiat Tipo 
was placed in the nozzle, while a second car, a Peugeot 
406 Coupe was placed in the test section.  • The distances of the upstream vehicles, and their 

alignment with the following vehicles  
• The vehicle’s crossing on the opposite lanes. 

Fig.3: Test of a 406 C in the presence of an upstream
car, in the nozzle, at 1-car-length distance. 

More in general, a turbulent flow generated by the 
combination of the previous mentioned sources seems 
to be the most likely possibility. That means the 
existence of an infinite number of possible flow 
conditions. 
However, if one wants to improve the simulation of the 
flow in the wind tunnel, to become closer to the flow 
condition on the road, it is necessary: 
• To understand more fully the key-characteristics of 

the flow conditions existing on the road  
• To decide which ones are statistically more 

important, and are therefore worth being simulated in 
the wind tunnel. 
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(b) Upstream vehicle arrangement used by Co-

gotti [35].

Figure 1.15: Examples of passive TGS.

Placement of a second vehicle upstream can also be used as a passive device, an ar-

rangement shown in Figure 1.15b. Saunders and Mansour [29] and Cogotti [35] showed

how this arrangement can be used to provide a reasonable replication of the turbulence

properties at a buffeting distance of one vehicle length, although there were some dis-

crepancies in the results due to the fluctuations in the natural wind during on-road

testing that were not replicated in the wind tunnel.

In summary, passive devices appear to work well in adding turbulence to smooth flow,

however the conditions that they can simulate are very limited. It is clear that an

alternative method is required in order to simulate the complete on-road wind energy

spectra.

Active devices have been shown to generate much larger length scales and capable

of simulating the low frequency, high energy content of on-road wind. Examples of

active drag based devices are the oscillating grids used by Kobayashi and Hatanaka

[36] and upstream deployable blades as shown in Figure 1.16, at the Pininfarina wind

tunnel facility [35, 37]. For the latter, Carlino et al. [38] showed that controlling the

relative phasing of the opening and closing of the blades provides a dynamic yawing

of the flow in the frequency range of 0− 1Hz, thus making it possible to investigate a

meaningful range of the on-road energy spectra. As an addendum Carlino et al. [38]

also demonstrated the ability of this TGS in generating the turbulent length scales

found when following in the wake of an upstream vehicle and even programmed the
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blades to simulate the flow behaviour during a real-time overtaking manoeuvre.

Active lift based devices such as a collection of vertical oscillating airfoils upstream

of the test section, as shown in Figure 1.17, have been employed by Bearman and

Mullarkey [39], Passmore et al. [40], Schröck et al. [41], Mankowski et al. [30] and

Blumrich et al. [42]. These devices offer the greatest control over the turbulence

behaviour with intensity determined by the amplitude of the aerofoil oscillation, and

length scale by its frequency, although for the majority of devices, disturbances can only

be introduced laterally. However, the design by Mankowski et al. [30] allows for three

component disturbance with longitudinal and vertical velocity variations introduced

through a set of shutters in the throat of the main collector and a horizontal aerofoil

located at the top of the inlet respectively.

In conclusion, the turbulent flow to be reproduced in the 
wind tunnel, in order to be ‘realistic’, e.g. similar to a flow 
that a car can often find on the road, in the presence of 
roadside obstacles, has to present turbulence intensities 
within the ranges shown above. 

 

Fig.17: The 5 Vortex Generators in the nozzle

 
THE TURBULENCE GENERATION SYSTEM 
 
The Turbulence Generation System was designed with 
two main targets in mind: 
• To be able to generate a controlled turbulent flow, 

having characteristics of turbulence similar to those 
that a road vehicle finds on the road, in the presence 
of atmospheric wind, and roadside obstacles. 

• To be easy-to-use, e.g. fast to be put into operation 
and easy to be removed when not necessary. 

Regarding the1st target, following the analysis of the 
wind data and the performances to achieve, it was 
decided to design and build a system made of 5 ‘ Vortex 
Generators’  (VG) having the shape shown in fig.17 
Each one of these VGs is made of two vertical ‘wings’ or 
‘flaps’ hinged to a vertical mast. Each pair of flaps can 
swing around the vertical axis. An electronic controller 
controls the swinging frequency. It can be tuned in order 
to obtain a turbulence having the desired frequency 
spectrum. 
Regarding the 2nd target, it was achieved by installing 
each VG on a lifter. When not in use the VGs are parked 
under the floor of the nozzle. When necessary, the 5 
VGs can be lifted in the nozzle in a few minutes. In this 
way, it is possible to alternate conventional 
measurements in the base wind tunnel (low turbulence 
flow) and measurements (aerodynamic and 
aeroacoustic) in the presence of turbulent flow.  
A first indication of the characteristics of the turbulent  
flow that can be produced by this system, e.g. the 
expected performance of the TGS, is given in the 
following diagrams. These results are based on the tests 
made during the development of the TGS, using a first 
set of VG prototypes. The final TGS is in the 
commissioning phase at the time of preparation of this 
paper, the relevant results will be presented later.  
 
Velocity profile and envelope of possible test conditions. 
 
The diagram in fig.18 shows the envelope of the 
possible test conditions as a function of V car and Yaw 
angle β. It is known that, for a given Vcar and a given 
yaw angle β, the resultant velocity Vres, depends on 
Vwind and on the angle of the Φ between the wind and 
the car (fig.10). 
The envelope in fig.18 is computed in the following way. 
• For a given setup of the TGS , the velocity profile of 

the wind in the test section is measured. Fig.19 
shows an example of a velocity profile of this type. 

• The measured velocities correspond (fig.19) to the 
resultant velocities Vres of the Vcar and the Vwind at 

a given wind angle φ that can be arbitrarily chosen 
from 0° to +-180°. 

• By choosing for instance a value for φ and a value for 
Vcar, it is possible to compute, for each measured 
Vres, the corresponding values of Vwind and yaw 
angle β. 

• The Vwind computed in this way can be  interpolated 
using the power law  V/Vh0 = (h/h0)^α 
      where for instance  h0 is set at    h0= 0.5 m 
      and α is determined by a best fitting process 
Fig. 20 shows that values of α in the range of 0.15 – 
0.20 gave a reasonably good fitting of the 
atmospheric wind velocity profiles computed from the 
resultant velocities measured in the test section.  

• By repeating the same process for a number of 
different combinations of Vcar, β or V car Vwind, the 
envelope of fig. 18 can be built for  (in this case)  α  = 
0.20  or for any other  value of α.  

 
Turbulence Intensity 
 
Each point of Vres in fig.19  has a Turbulence Intensity 
having well defined characteristics: 

o An overall value I 
o Components Iu, Iv, Iw 
o A Spectral content   

Typical values measured for various setups of the VGs,  

  

Fig.18: Envelope of the possible test conditions as a 
function of car velocity and yaw angle. 
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Fig. 11: New Basement for the TGS Fig. 13: The final TGS in operation since January  
2003 
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Figure 1.16: Active drag based turbulence generation system at Pininfarina [35, 37].

that the transient forces were smaller than would be predicted
by a quasi-steady analysis. Surprisingly, their values of
admittance at the longest wavelengths were the furthest from
their steady state results.

Schrock et al [56] achieved wavelengths from approximately
one vehicle length upward and similarly found aerodynamic
admittance values generally below unity but including values
up to 1.2 at wavelengths of around 5 vehicle lengths
(corresponding to transient forces larger than would be
predicted by a quasi-steady analysis). For wavelengths above
about 12 vehicle lengths the vehicle response was
approximately quasi-steady.

Figure 12. FKFS lift-based turbulence generation system
(from Schröck et al [56])

Passmore et al [60] tested at wavelengths between about 4
and 40 vehicle lengths and reported that transient side force
was lower than would be predicted by a quasi-steady analysis
but that transient yawing moment was higher by up to 30%.
They report non-quasi-steady effects for gust wavelengths up
to and beyond 35 car lengths (K down to 0.18).

Figure 13 illustrates the scales reported by several researchers
using active turbulence generation systems of both lift and
drag types. Some of their key observations are also included.

Figure 13. Scales and effects from active turbulence
generation systems ([15], [54], [55], [60], [56]) - scaled to

full size, 30 m/s

DISCUSSION AND CONCLUSIONS
The on-road wind environment includes a very wide range of
conditions. On-road turbulence may stem from vehicle
velocity changes, natural wind turbulence and traversing
through a steady spatial wind distribution produced by road
side-obstacles. For road vehicles this last term is of greatest
significance.

This work seeks to characterize the environment and consider
the effects on vehicles by considering the scales
(wavelengths) of the turbulence relative to the length of the
vehicle and by placing different works together on the
spectrum for clear comparison. Some care is needed in the
use of mean turbulence length scales as these hide the
spectral breadth and because their calculation can be sensitive
to the details of the method used.

The on-road spectral energy begins to roll off at a few Hz,
corresponding to wavelengths of a few vehicle lengths.
Scales of 2-20 vehicle lengths are generally seen as the most
critical for four reasons:
1.  There is a significant amount of on-road spectral energy at
these scales.
2.  These frequencies are high enough that the vehicle
response will not be accurately represented by a quasi-steady
analysis. Assessment of the vehicle response therefore
requires some form of transient simulation.
3.  Fluctuations at these scales generate significant unsteady
forces on the vehicle (the aerodynamic admittance is
relatively high, often exceeding unity).
4.  The frequencies associated with these scales bracket the
suspension natural frequency and are important to vehicle
dynamics and handling.

Over the most important range of scales, different works
show admittance both above and below unity, ranging from
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(a) Oscillating upstream aerofoils used by

Schröck et al. [41].

2. TURBULENCE GENERATION SYSTEM 
DESIGN AND IMPLEMENTATION
The turbulence generation system was to be installed in the 
Durham University 2m Wind Tunnel. This is ¾ open jet, open 
return (Eiffel) wind tunnel with a nozzle area of 2m2. The tunnel 
operates either with a wide-belt moving ground with the model 
supported from overhead, or in fixed ground with turntable and 
balance below the test section floor. Further details of the 
facility are available in [27], [28].

2.1 Aerodynamic Design
Following the analysis of the introduction, the turbulence 
generation system was designed to achieve yaw angles up to 
6-8°, equating to a lateral turbulence intensity of 8-10%. The 
frequency range was to extend up to 10 Hz.

2.1.1 Aerofoil
It was desired to be able to completely control the turbulence 
impacting on the vehicle and so a lift-based design was 
adopted, based principally on vertical airfoils at the upstream 
end of the test section. This lift-based approach essentially 
avoids the mix of higher unsteady frequencies generated by 
bluff shapes. Contrasting with previous designs, it was 
considered desirable to avoid wakes from the devices impinging 
on the model in order to avoid any risk of specific interactions 
between an aerofoil wake and a sensitive region on a detailed 
model. Connected with this, it was considered important to 
minimize the transition time between conventional tunnel 
operation and operation in TGS mode and so being able to keep 
the airfoils permanently installed was preferable. It would be 
unacceptable to have aerofoil wakes impinging on the model in 
routine, steady-state, operation of the wind tunnel. Ultimately it 
was possible to use a pair of airfoils at the periphery of the jet, 
with the airfoils effectively providing a continuation of the walls of 
the wind tunnel contraction. Aerofoil sizing and the required 
angle range was selected with the aid of CFD simulations using 
Exa PowerFLOW, with the aerofoil unsteady motion modeled 
using rotating mesh zones. The final design incorporates an 
aerofoil chord of 600 mm and an angle range of ±15°. Figure 6 
illustrates the PowerFLOW simulation domain including the 
measurement volume around the model installation location. 
These simulations were also used to predict aerodynamic loads 
on the airfoils under static and dynamic operation conditions, to 
aid in the mechanical design of the system.

Figure 6. PowerFLOW Simulation Domain showing candidate design 
with airfoils for yaw angle control.

2.1.2 Shuttered TGS Outlets
The yawing of the whole wind tunnel jet really requires correct 
handling at the downstream end of the test section. The 
Durham tunnel has a relatively long non-dimensional test 
section length (∼4 jet hydraulic diameters) which makes the 
lateral jet deflection at the end of the test section particularly 
significant. Hence additional, controllable, outlets were 
incorporated to control collector width and effective location. 
The locations of these outlets are labeled in Figure 6. Each of 
these outlets is closed by a set of 4 shutters. These are 
controlled individually to open/close in a cascade as the jet is 
deflected. The shutters open to a set angle which is designed 
to capture and turn the yawed flow. The additional TGS outlets 
lead to their own diffusers that ultimately feed into the main 
wind tunnel fans, with the flows mixing after being diffused to 
low velocity in order to minimize mixing losses. When the 
tunnel is operated in conventional (non-TGS) mode, the 
shutters at the test section outlet are all closed and the 
downstream end of the associated TGS diffusers is also closed 
using an actuated door between the ducts. This allows an 
uncompromised wind tunnel diffuser geometry during 
conventional operation.

2.1.3 Shuttered TGS Inlets
As the jet deflects, the distance between the shear layer edge 
and the model would be reduced; this is an issue in particular 
at the rear corners of the model. While the model would remain 
inside the jet under the full range of yaw angles the proximity to 
the jet edge would be a concern. Also, the deflected jet would 
not fill the width of the collector. Therefore additional, 
shuttered, inlets were incorporated at the upstream end of the 
test section, as labeled in Figure 6. The 5 shutters on the 
appropriate side open in a cascade as yaw increases, with the 
shutters set to open to an appropriate angle. Figure 7 
schematically illustrates the flows from the main nozzle and 
additional inlet to the main collector and additional outlet. Note 
that this figure illustrates a steady state viewpoint. In dynamic 
operation there is an increasing phase difference between the 
flow at the upstream and downstream ends of the test section 
and the shutter operation is programmed accordingly. At the 
highest frequencies of operation two complete cycles are 
present within the length of the test section.

Figure 7. Schematic illustration of the use of shuttered inlet at outlet at 
extreme yaw (not to scale).
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(b) Upstream vanes used by Mankowski et

al. [30].

Figure 1.17: Active lift based turbulence generation systems.
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It is clear that there are a range of wind tunnel devices capable of replicating typical

on-road turbulence levels however as already discussed, in addition to turbulence, the

flow seen by a vehicle contains shear and simulating this property in a wind tunnel

facility has proven difficult. The velocity profile seen by a vehicle is determined by

upstream terrain over a distance much larger than the upstream length of wind tunnel

facilities and thus to correctly simulate shear effects, this profile has to be imposed

on the flow. A device which is capable of generating a realistic velocity profile, whilst

including the unsteady turbulent behaviour has yet to be designed.

1.3.2 Computational Simulation

In more recent years, simulations using computational fluid dynamics (CFD) have

become more feasible. This type of simulation removes many of the restrictions imposed

by physical testing with turbulence and shear parameters such as intensity, length scale

and velocity profile simply given as inlet boundary conditions, as shown in Figure 1.18.

Figure 10. Aerodynamic drag coefficient, CD, as a function of yaw angle and 
turbulence intensity. These curves were determined using two simulations 
using dynamic yaw varying at a rate of 1 degree per second. The first 
simulation was performed with no upstream turbulence, and the second 
simulation was performed with 7% turbulence intensity measured at the 
vehicle.

Figure 11. Local yaw angle with 7% TI at zero (top), three (middle), and six 
(bottom) degrees of yaw

Conclusions
The turbulent wind environment that a vehicle travels through adds to 
the vehicle's speed to create a resultant yaw angle. This impacts the 
power used to maintain a speed as drag coefficient typically increases 
across even a small range of yaw angles. An electric vehicle 
drivetrain allows for measurement of instantaneous power 
consumption, which was compared to yaw and turbulence levels 
measured by a three hole pitot probe. A general trend towards 
increasing power with increasing yaw angle was evident, although 
the level of scatter in the data precluded prediction of drag coefficient 
to a level of precision available through either wind tunnel testing or 
CFD simulation. However, further analysis of the data showed a trend 
between the level of turbulence intensity (calculated through the 
measured standard deviation values) and drag. Increased turbulence 
had the effect of decreasing the vehicle's yaw sensitivity to drag, but 
raised the overall level of drag. In the range of typical yaw angles 
seen by a vehicle travelling at highway speed, increased turbulence 
levels serve to increase the power required to maintain a speed. CFD 
simulation methodology to replicate the real world environment was 
explored with positive results. The transient nature of the chosen 
LBM code allows for quick evaluation of the yaw response of the 
vehicle through dynamic yaw. Additionally, turbulent fluctuation at 
any desired level can be added to determine the vehicle's 
aerodynamic response to on-road conditions. Further testing is 
planned to explore more precise methods of evaluating both the wind 
environment and its impact on vehicle performance in broader 
conditions for both yaw angle and turbulence intensity. The ultimate 
goal is a better understanding of the real world in which vehicles 
operate and a reliable method of predicting how design changes 
impact vehicle energy consumption in it.
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(a) 0 degrees yaw

Figure 10. Aerodynamic drag coefficient, CD, as a function of yaw angle and 
turbulence intensity. These curves were determined using two simulations 
using dynamic yaw varying at a rate of 1 degree per second. The first 
simulation was performed with no upstream turbulence, and the second 
simulation was performed with 7% turbulence intensity measured at the 
vehicle.

Figure 11. Local yaw angle with 7% TI at zero (top), three (middle), and six 
(bottom) degrees of yaw

Conclusions
The turbulent wind environment that a vehicle travels through adds to 
the vehicle's speed to create a resultant yaw angle. This impacts the 
power used to maintain a speed as drag coefficient typically increases 
across even a small range of yaw angles. An electric vehicle 
drivetrain allows for measurement of instantaneous power 
consumption, which was compared to yaw and turbulence levels 
measured by a three hole pitot probe. A general trend towards 
increasing power with increasing yaw angle was evident, although 
the level of scatter in the data precluded prediction of drag coefficient 
to a level of precision available through either wind tunnel testing or 
CFD simulation. However, further analysis of the data showed a trend 
between the level of turbulence intensity (calculated through the 
measured standard deviation values) and drag. Increased turbulence 
had the effect of decreasing the vehicle's yaw sensitivity to drag, but 
raised the overall level of drag. In the range of typical yaw angles 
seen by a vehicle travelling at highway speed, increased turbulence 
levels serve to increase the power required to maintain a speed. CFD 
simulation methodology to replicate the real world environment was 
explored with positive results. The transient nature of the chosen 
LBM code allows for quick evaluation of the yaw response of the 
vehicle through dynamic yaw. Additionally, turbulent fluctuation at 
any desired level can be added to determine the vehicle's 
aerodynamic response to on-road conditions. Further testing is 
planned to explore more precise methods of evaluating both the wind 
environment and its impact on vehicle performance in broader 
conditions for both yaw angle and turbulence intensity. The ultimate 
goal is a better understanding of the real world in which vehicles 
operate and a reliable method of predicting how design changes 
impact vehicle energy consumption in it.
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(b) 6 degrees yaw

Figure 1.18: Example of inlet turbulence (7%) by D’Hooge et al. [43].

Many studies have reproduced realistic on road turbulence levels using CFD through

defined, time-varying velocity functions at the inlet, such as Gaylard et al. [44, 45]

and D’Hooge et al. [43, 46] with the emphasis on understanding the effect of realistic

turbulence levels on the flow around a vehicle when compared to the smooth flow

found in wind tunnels. Both studies show how increased turbulence intensity, up to

7%, increases overall drag and this is in agreement with the experiments of Howell et al.

[33] and Newnham [34]. Plots of drag coefficient distribution, Figure 1.19, show how

the wheels, backlight and bootdeck regions have the largest contribution to this drag
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increase. Both studies agree that upstream turbulence increases the turbulent mixing

within the separated flow structures, consequently reducing their size and pressure.

This is most noticeable in the wakes of the front and rear wheels, as shown in Figure

1.20, which also shows how this effect is maintained at a typical on-road flow yaw angle

of 6 degrees.

(a) Gaylard et al. [45]

means the flow has more time to adjust to the yaw variation 
and the hysteresis is reduced. This phenomenon is further 
quantified in the increased R2 values for the six second yaw 
period case.

Figure 13. Side force coefficient versus yaw angle for dynamic yaw 
cases.

If the upstream turbulence runs are plotted via the same 
method, the picture is more complex because the upstream 
turbulence is different for every point in space. The yaw angle 
measured with the probe far away from the vehicle is always 
different than the actual yaw angle in the vicinity of the vehicle. 
Nevertheless, this plot gives a good idea of the overall yaw 
angle range created by the upstream turbulence. These plots 
are shown in Figures 14 and 15.

Figure 14. Drag coefficient versus yaw angle for upstream turbulence 
cases.

From this plot it is evident that the upstream turbulence exerts 
transient yaw angle fluctuations of around ±3 degrees. The 
overall level of drag is higher with upstream turbulence, but 
about the same for side force.

Figures 16 and 17 are force development deltas for drag and 
side force coefficients, respectively. The baseline case is with 
no added turbulence and zero degrees of yaw. The yaw cases 
show a decrease in drag at the nose, since the nose profile is 
less blunt at yaw, but this difference vanishes by the middle of 

the car. All three variants show higher drag at the rear wheels. 
For the baseline case, the front wheel wakes provide very good 
protection to the rear wheels, which leads to slower flow 
impinging on the rear wheels and thus less drag. When 
upstream turbulence, a yaw angle, or both are added, the front 
wheel wakes no longer protect the rear wheels. These cases 
have higher drag as well as a larger rear wheel wake as 
illustrated in the underbody static pressure surfaces looking 
rearward in Figure 18 and isosurfaces in Figure 19.

Figure 15. Side force coefficient versus yaw angle for upstream 
turbulence cases.

Figure 16. Longitudinal drag development for upstream turbulence 
cases.

Figure 17. Longitudinal side force development for upstream 
turbulence cases.
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(b) D’Hooge et al. [46]

Figure 1.19: Drag coefficient delta distribution, upstream turbulence (7%) minus no

turbulence.
Figure 18. Static pressure contours showing drag increase on rear 
wheels for yaw and upstream turbulence cases.

Figure 19. Isosurfaces of total pressure for yaw and upstream 
turbulence cases.

At the rear of the vehicle, the baseline at zero degrees of yaw 
has a very good base pressure distribution, which is conducive 
to low drag, as well as high pressure on top of the trunk, which 
reduces rear lift. At yaw, the flow accelerates over the 
downwind rear corner, lowering the pressure on the top right 
corner. This increases drag as well as rear lift. Each of these 
effects is shown in Figure 20.

Figure 20. Base region and decklid static pressure contours for yaw 
and upstream turbulence cases.

Wake analysis shows that upstream turbulence produces a 
smearing of the coherent vortex structures found on the 
baseline, particularly the roof and rear quarter panel shear layers 
(Figure 21). These have a well-defined shape for the baseline 
but are more diffused for the upstream turbulence cases.

These images above also show the powerful trailing vortex 
generated when the flow is at six degrees of yaw relative to the 
vehicle. To better visualize the trailing vortices, Figure 22 
shows the wake structures with streamlines seeded in the near 
base region and colored by X vorticity.

Figure 21. Wake visualization via total pressure isosurface for yaw and 
upstream turbulence cases.

Figure 22. Streamlines colored by X vorticity for yaw and upstream 
turbulence cases.

In these images, X vorticity = 1 (red) shows the strong vortices 
that spin with an axis aligned with the positive X axis (or 
counter-clockwise). X vorticity = −1 (blue) shows the strong 
vortices that spin with an axis aligned with the negative X axis 
(or clockwise). The images illustrate that upstream turbulence 
indeed disrupts the coherent and highly energetic trailing 
vortices present on the baseline at zero degrees of yaw. The 
upstream turbulence effect differences are less noticeable for 
the yawed cases. At yaw, the flow is already highly disrupted, 
so upstream turbulence effects are not as great as for the 
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Figure 1.20: Isosurfaces of total pressure for yaw and upstream turbulence from

D’Hooge et al. [46].

In addition to the impact on drag, high turbulence intensities are associated with cabin

noise. Oettle et al. [47, 48, 49], Lawson et al. [21, 50] and Lindener et al. [51] have
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published comprehensive results quantifying the effects of on-road turbulent flow on

window surface pressures and cabin noise, with measurements taken from on road and

wind tunnel tests. Most recently, Kounenis et al. [52] built on this work and showed

how the introduction of turbulence representative of a moderate traffic environment

produced a sound pressure level (SPL) modulation of up to 5dB at various locations

on the driver side glass and 1-2dB at the driver’s position in the cabin. Currently the

effect of on-road conditions on aeroacoustics is a deep concern for aerodynamicists, as

the noise heard in the cabin is often perceived as an indication of the vehicle’s quality.

It is clear that there are a range of methods in simulating typical on-road conditions.

Experimentally, only the most advanced facilities, with active turbulence generation

systems are able to simulate conditions which cover the range of spectral energy en-

countered on the road, whilst the majority of passive systems can only generate the

highest frequencies and lowest energy content. In addition, including realistic shear ef-

fects within a wind tunnel appear to be problematic. Computational simulations offer

a way around this through dynamic boundary conditions. Using both approaches, it

has been shown that typical on-road conditions can lead to increases in vehicle drag

and cabin noise. These effects fall under ‘quality and refinement’ and contribute to

the perceived quality of the vehicle and customer satisfaction, hence for automotive

OEMs, accurately simulating a typical on-road environment is an important stage in a

vehicle’s aerodynamic optimisation.

1.4 Simulating Extreme On-Road Conditions

So far this review has only considered simulating typical on-road turbulence levels;

conditions which impact on a vehicle’s perceived quality. During the development of a

vehicle, it is also important to consider extreme wind conditions such as the 3-second

gust speeds shown in Figure 1.4. Such conditions can influence the vehicle’s handling

and stability, thus requiring a response from the driver. In mild cases, the vehicle

response may be small enough to be classed as a quality and refinement issue, but more

extreme conditions could present a safety risk. Simulating these conditions rather than

testing on-road is highly desired, as it allows control over the test environment and
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removes some of the risks placed on test drivers.

It is generally assumed that a driver will be able to provide an adequate response to

prevent a significant deviation as any lateral or yaw accelerations are sensed, however

this is not always the case. Along with the driver’s ability, the frequency of the gust

plays a large part in actual response of the vehicle. As shown by Wagner and Wiede-

mann [53], within a frequency range of 0.5 Hz to 2 Hz, the driver’s response can amplify

the vehicle’s response. This occurs as the vehicle reactions due to the crosswind and

due to the driver’s steering input approach an in-phase state at around a frequency

of 1.4 Hz. For frequencies <0.5 Hz the driver has a positive influence on the vehicle’s

response, whereas at higher frequencies >2 Hz, the driver has little to no influence as

the gust has passed before it is felt.

1.4.1 Experimental Simulation

In order to assess the vehicle’s response to such an event, a desired flow disturbance

has to be generated, either naturally or artificially. On road vehicle testing in extreme

gusts is uncommon, due the rarity and risks of such events and hence the controlled

environment of crosswind generators beside test tracks such as Figure 1.21 are a more

appealing alternative.

(a) Crosswind generator at Applus IDIADA,

Barcelona [54] (b) MIRA crosswind generator [55]

Figure 1.21: Examples of crosswind generators.

One of the earliest examples of this type of testing was performed by Klein and Hogue

[56], using the full-scale facility designed by Klein and Jex [57]. A crosswind velocity
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of 15.7 m/s (35 mph) and vehicle speed of 22.4 m/s (50 mph) generating a flow yaw angle

of 35° was applied to a collection of five vehicles, with and without a driver’s input.

Similarly, Howell [55] exposed a small Sports Utility Vehicle (SUV) to a severe at

a slightly lower yaw angle. A trifurcated tail pipe attached to the exhaust of a jet

engine generated a wind speed of 14.5 m/s, which when combined with a vehicle speed

of 27.8 m/s (100 km/h), produced a flow yaw angle of approximately 28°. The length

of the gust was measured at ten car lengths, which when combined with the vehicle

speed, corresponds to a disturbance frequency of 0.7 Hz. Although this value falls

within the frequency range where Wagner and Wiedemann [53] showed that a driver

can exaggerate the vehicle response, the tests by Howell [55] were open-loop, with no

driver response. For a two second period after entering the crosswind, the steering

wheel was held fixed. Gyroscopic rate transducers and accelerometers were fitted to

measure the chassis moment rates and lateral acceleration respectively, while course

deviation was measured with a dye trail. After two seconds, the lateral deviation from

a collection of runs fell within a range of 2 m to 3 m.

In an attempt to standardise such facilities and testing procedures, an International

Standard ISO 12021:2010 [58] was derived. This standard prescribes a crosswind veloc-

ity of 20 m/s and vehicle speed of 27.8 m/s (100 km/h), thus a flow yaw angle of approx-

imately 36° is generated. The minimum length of the gust is required to be at least

15 m and preferably more than 25 m, whilst the ambient wind speed cannot exceed

3 m/s. Following on from the test procedure of Howell [55], the test is open loop with a

fixed steering wheel position. This testing procedure eliminates any variability in the

driver’s response and determines the response as a function of the vehicle’s properties.

Required measurements are wind speed over the length and height of the wind zone

and also lateral deviation, yaw velocity and lateral acceleration of the vehicle. The

downside to this testing procedure is the limited flow field measurements that can be

obtained, which makes it difficult to identify the aerodynamic structures responsible for

the vehicle’s dynamic behaviour. In addition, such tests cannot be performed until the

late stages of prototype development, at which point, significant financial investment

has been placed into the design and any changes are costly.

For these reasons, full scale and model scale wind tunnel tests earlier in the design
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phase are an appealing alternative. In assessing a vehicle’s crosswind sensitivity using

such facilities, it is common practice to simplify the event and obtain the quasi-steady

aerodynamic force and moment values at a range of static flow yaw angles. From the

resulting database, stationary gradients of aerodynamic coefficients can be extracted. In

general, a vehicle is deemed less sensitive to crosswinds, if the yawing moment gradient

is small. This method was used by Stoll et al. [59] to assess the crosswind sensitivity of

estateback and notchback geometries, in which the latter was more sensitive to gusts.

Whilst this may at first appear counterintuitive, it can be traced back to a reduction

in side area, reducing the rear side force and increasing the yawing moment. The

advantage of this method is the convenience of testing, as the majority of wind tunnels

can accommodate yawed models, however as the tests are quasi-steady, any unsteady

effects of the gust passing over the vehicle are ignored and hence an alternative method

is highly desired.

A real world crosswind introduces a time dependent yaw angle profile to the vehicle.

Wind tunnel turntables are also capable of subjecting a vehicle to a time dependent yaw

angle change, however the rotational speed of most turntables is slow in comparison to

the rate of yaw angle change in a real world environment. Even if a turntable was able

to rotate at the desired speed, Watkins et al. [60] showed how the additional angular

velocity of the vehicle as it rotates, results in an inaccurate streamline curvature along

the vehicle’s length. During a simulation of a vehicle leaving a open region of crosswind,

the resultant flow vectors would imply that the rear of the vehicle leaves the gust first.

Hence, simulation using this turntable technique is not correct for gust penetration and

exiting.

One of the earliest methods of correctly capturing this behaviour involved traversing

a vehicle across the width of the working section on a purpose built track, originally

designed by Beauvais [61] and used later by Macklin et al. [20]. This approach, shown

in Figure 1.22, generally requires small scale, simple shaped models to avoid Reynolds

number effects and requires a range of model scales to change the gust length. For

these reasons, this method has received little attention.

Ryan and Dominy [62] introduced an alternative approach in which the model is kept
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TRANSIENT NATURE OF WIND GUST EFFECTS 2221 

WIND TUNNEL 
TEST SECTION 

Fig. 3 - Model track installation 

SHOCK CORD 

Fig. 4 - Front view of model carriage and track 

a calibration established the nominal carriage speed for each 
position. A retainer hook is provided at the far end of the 
track to catch the carriage and prevent the decelerating 
shock cords from sending it back through the tunnel. 

MODEL SUPPORT AND BALANCE SYSTEM - The model 
support structure consists of an aluminum tubing tripod welded 
to an aluminum base plate, as shown in Fig. 4. The plate 
in turn is mounted through vibration isolators on the carriage. 

Atop the aluminum tripod is mounted the internal strain 
gage balance, designed to measure aerodynamic side force, 
Y, and yawing moment, N, on the model. The model is 
attached to the balance through pin joints so no moment is 
transferred. The balance then reads the sum of the front 
and rear reactions as the side force and their difference as 
yawing moment. 

Power to and signals from the strain gages are conducted 
through a long, flexible cable which trails behind the car-
riage in a long loop. Fig. 4 shows a cover board along the 
edge of the track which prevents fouling of the cable in the 
carriage mechanism. 

MODEL - The model used was a 1/10-scale 1962 Ford 
Galaxie. To minimize errors caused by inertial forces on 
the model, the construction had to be as light as possible. 
This was achieved by model airplane techniques, with the 
framework of 1/16 and 1/8in. square balsa wood sticks cov-
ered with 1/32in. balsa sheet. The construction is shown 
in Fig. 5, and the finished weight including paint was 0.375 
lb. Weight of the complete carriage, model support, and 
balance was 41b. 

MODEL SPEED MEASURING SYSTEM - The carriage 
speed was measured by a digital electronic timer triggered 
by passage of the carriage over position switches. Three 
switches were used, one at each side of the test section and 
one in the center, to enable timing of the carriage over the 
first half, second half, or the full width of the test section. 
The timing signal was also fed into the recorder on the model 
force record. 

CALIBRATION PROCEDURE 

WIND TUNNEL CALIBRATION - Since no previous ex-
perience had been obtained with operation of the tunnel 
with the two openings in the wall on either side of the test 
section, it was decided to calibrate the airstream at the 
station where the openings were located. To keep the dis-
turbance of the airflow to a minimum, the track was cov-
ered by a section of hood on both sides of the test section, 
which gave the effects of a "tunnel" through which the model 
emerged just before entering the wind tunnel and into which 
it disappeared when leaving the wind tunnel. This arrange-
ment is shown in Fig. 3. 

Calibration consisted of two parts: a qualitative flow 
investigation by means of tufts near the wall in the neighbor-
hood of the openings and near the track, and a careful meas-
urement of the velocity profile across the tunnel station at 
the level of the model passage. 

The qualitative tuft study showed that there was smooth 
flow at the leading edge of the holes while some degree of 
unsteadiness existed just downstream of them. This unstead-
iness was restricted to small distances both downstream and 
into the tunnel. 

Tufts mounted on the inside walls of the hoods over the 
track were completely quiescent, even the ones which were 
affixed as close as l i n . from the tunnel. The tufts on the 
hood walls at the trailing edge of the entrance to the tunnel 
proper showed some random slow oscillation at the higher 
airspeeds. 

Probing of the airspace in the opening itself, that is in 
the plane of the wind tunnel wall, showed no appreciable 
expansion or retraction of the wind tunnel jet. 

The horizontal velocity profile was measured at two sta-
tions in the test section, one was in the plane of the leading 
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Figure 1.22: Wind tunnel track traversing system used by Beauvais [61].

stationary in a conventional wind tunnel, whilst a crosswind jet scans along the model,

as shown in Figure 1.23. This is achieved with a secondary tunnel placed at a 30◦

angle to the axis of the main working section. The model is gradually exposed to

the secondary flow through a moving belt with variable aperture or in an updated

configuration, an actuated shutter mechanism [63, 64]. More recently, Volpe et al.

[65, 66] used this experimental approach coupled with particle image velocimetry (PIV)

apparatus to identify the flow structures present during a crosswind event. Although

this method removes the gust length restrictions imposed by the track method, it is

accompanied by unwanted undershoots and overshoots in the generated flow yaw angle

due to mixing effects between the main and auxiliary flows on opening and closing of

the shutters.
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Each of the two alternative approaches have their
strengths and weaknesses but both share a common
problem of long timescales that are required to obtain
results. Whilst force measurements can usually be made
quickly any study involving multiple measurements such
as surface static pressures or wake studies require large
numbers of test runs and it is this that is the time con-
suming element. In the case of the moving model tech-
nique the model must be returned to the start of its track
for each run and for the moving gust method it has been
necessary to rewind the belt that moves the gust aper-
ture. As an example, the completion of a typical single
plane wake traverse may be expected to take weeks or
even months to complete using either approach.
To move from basic force measurements to the more
expansive flowfield measurements that are required to
identify the flow mechanisms that are associated with
transient gust response it is clear that considerable
improvements are required for both methods.

RECENT DEVELOPMENTS : THE REPEATING GUST –
One of the greatest strengths of the fixed model, moving
gust approach is the ease in which conventional instru-
mentation can be applied for surface pressure and wake
studies. It is therefore well suited to measurements in
both the near and far flowfields. 
Previous publications have described the creation of the
gust using a translating, high speed belt and aperture
arrangement [e.g. 3,4]. The arrangement simulates a
vehicle passing through a cross wind jet that lies perpen-
dicular to the axis of the vehicle. As the vehicle passes
through the jet it experiences a relative flow angle which
depends upon the forward velocity of the vehicle and the
velocity of the perpendicular jet. Data from steady state,
yawed flow measurements suggest that for typical vehicle
shapes a relative yaw angle of approximately 30° pro-
vides the greatest side forces and yawing moments and
this condition therefore presents potentially the most seri-
ous condition for cross wind stability considerations. In
the absence of comparable data from transient tests the
Durham transient facility [5] has therefore been designed
to operate primarily with a 30° relative gust yaw angle. 

NEW EXPERIMENTAL CONFIGURATION

To reduce the down time imposed by the need to rewind
the cross wind belt between successive tests the entire
belt system has been replaced by a set of a sequentially
opening shutters which are shown in figure 1. To improve
the clarity of this diagram the roof of the wind tunnel has
been omitted.

Figure 1.  Wind Tunnel Configuration

For the creation of the cross wind pulse two rows of dis-
crete shutters are mounted one above the other in the
exit plane of the cross wind generator. The top row exits
into the working section to provide the cross wind tran-
sient whilst the lower row, which is positioned below the
level of the ground plane, provides a matched set of
dummy shutters. Each top shutter is directly connected to
its pair in the bottom row such that when one shutter
opens the other closes. This maintains an almost con-
stant flow exit area for the cross-wind fans which helps to
maintain a uniform cross jet velocity in space and time.
The connected shutter pairs are individually actuated and
adjacent shutters open and close sequentially in a ‘Mexi-
can Wave’ fashion to create a gust that moves along the
working section at a rate that matches the axial air speed
of the main jet. By controlling the rate at which the shut-
ters are opened and the dwell time it is possible to inde-
pendently control the speed at which the gust moves
along the vehicle and the length of the gust. The former,
when matched to the axial velocity of the main jet, allows
tests to be made over a range of vehicle speeds whilst
the latter allows the vehicle to pass through a variety of
different gust lengths. The technique also allows ‘nega-
tive gust’ effects to be studied such as those that occur
when a cross wind is removed and re-introduced when
passing beneath a bridge in the presence of a cross
wind. 
Figure 2 shows a schematic interpretation of the system.
The inlet boundary represents the main jet and provides
the axial flow velocity, ux, in the working section. The left
hand side ( relative to the vehicle ) and downstream
boundaries are open to the atmosphere. The right hand
side boundary is of the most interest.  The experimental
apparatus subjects a model to a transient cross wind

Main (axial)
wind tunnel
exit plane

Cross-wind
tunnel

Working
section

ground plane

Shutters acting
on working

section

'Dummy' shutters
below working section
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(a) Dominy and Ryan shutter mechanism [63,

64]

the exit of the gust. The difference with other data can derive from
the huge lateral area of the vehicle.

The most used approach, when simulating wind gust effects by
CFD, is to use a grid either static or moving at a constant speed,
with the introduction of a side air flow, by using time-dependent
boundary conditions. This principle is somehow similar to the one
of Dominy's moving side jet test bench. Favre and Efraimsson
(2011) studied the reliability of this technique for crosswind
scenarios, for estimating the unsteady drag variation. In particular,
it decreases until 40% when entering the gust and becomes 90%
higher than in the longitudinal steady simulation when exiting. No
side force overshoot was seen. In the simulation of Tsubokura et al.
(2010), a realistic vehicle shape was used. Their results confirm the
conclusions of Beauvais. They also found that vertical force, roll
and yaw moment need longer time to establish. Krajnovic et al.
(2012) simulated the passage of a train exposed to a 451 yaw angle
gust, obtaining a good agreement with experimental data and a
30% yaw moment overshoot.

1.2. The objective of this work

This state of the art indicates that there are nowadays many
data about the temporal evolution of aerodynamic forces applying
on road vehicles in crosswind gust situations, even if some
discordance exists between authors. However, the unsteady devel-
opment of flow structures in such situations has been hardly
explored yet. In this paper, the evolution of the aerodynamic
tensor components that mainly affect vehicle dynamic lateral
stability, the side force and the yaw moment, will be analysed in
connection with the unsteady flow field. The velocity field will be
characterized with particle image velocimetry (PIV) techniques,

including stereoscopic and time resolved PIV. As far we know,
there is no previous work in which this experimental instrumen-
tation has been used for ground vehicle unsteady crosswind study.
We remark that our final goal is not to faithfully reproduce a
model scaled wind gust, the interest is rather to understand the
aerodynamic response of a given vehicle shape to a sudden wind
direction change.

The chosen experimental approach is the moving side jet
facility proposed by Dominy (1991), since it avoids any noise
source induced by a moving vehicle. Moreover, PIV measurements
can be more conveniently performed on a static model. These are
the reasons why the ISAE started developing a similar facility in
2007, getting inspiration by the evolution proposed by Dominy and
Ryan (1999). The detailed description of the test bench is found in
Section 2, its performances and the main characteristics of the
resulting unsteady flow field are reported in Section 3. Section 4
introduces at first the results of the unsteady aerodynamic forces
and then of the flow field evolution. Finally, an analysis focusing on
their mutual correlation is presented.

2. Experimental set-up

2.1. Experimental test bench characteristics

The test bench developed by the ISAE consists in a double wind
tunnel, whose communication is controlled by a system of
electrically driven shutters, located in 20 channels inside the
auxiliary wind tunnel, Fig. 2. The goal of the shutter system is to
create a side moving jet, mimicking a moving wind gust.

Fig. 2. The “rafale latérale” test bench: functioning diagram, (a), CAD drawing (b), projected side view of a channel of the shutter system, (c), opening/closing shutter
sequence, (d).

R. Volpe et al. / J. Wind Eng. Ind. Aerodyn. 128 (2014) 114–125116

(b) Volpe et al. shutter mechanism [66]

Figure 1.23: Wind tunnel facilities with additional crosswind jet.

Simulating the impact of gusts on a vehicle’s response is a straightforward process when

using track testing and crosswind generators as it places the real vehicle in the presence

of the gust and allows it to respond. However, in a wind tunnel environment, behaviours

of the vehicle such as lateral deviation and yaw angle change are not simulated as the

vehicle is fixed in the working section. Therefore, when using these facilities, the effect

of the vehicle’s response on the aerodynamic is ignored. In order to obtain a prediction

of the vehicle’s dynamic response, the aerodynamic loadings are given to a vehicle

handling model after the tests have taken place, in a one-way coupled manner. This

input can be obtained from a set of quasi-steady simulations of a vehicle at a range

of yaw angles interpolated over the crosswind profile, or from a transient history of

aerodynamic loads from a single test, however there is still an underlining flaw in this

one way coupled approach. The positional change of the vehicle during the event is

not accounted for in the aerodynamics. For example, it can be predicted that in the

presence of a crosswind a vehicle will yaw, with the front of the vehicle moving with

the direction of the gust. As shown by Figure 1.7, for a gust which initially acts

perpendicularly to the path, the additional yaw angle of the vehicle will reduce the

resultant flow yaw angle. For large vehicle yaw angles, the reductions in the resultant

flow yaw angle may be large enough to significantly alter the flow structures around

the vehicle and impact the aerodynamic loads and consequently, the vehicle’s response.

This fully coupled system describes the real world interaction that takes place on the
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road.

The methods of assessing vehicle response resulting from aerodynamic inputs are sum-

marised as follows, where static refers to the one-way coupled methods and dynamic

the fully coupled:

• Quasi-Steady Static Coupling - A database of steady state simulations at a range

of yaw angles, with interpolated aerodynamic forces and moments over the gust

length used as handling model inputs.

• Unsteady Static Coupling - A transient history of aerodynamic forces and mo-

ments over a static model used as handling model inputs.

• Unsteady Dynamic Coupling - A system where aerodynamic forces/moments and

positional data are being exchanged simultaneously.

1.4.2 Computational Simulation

An alternative to physical testing is CFD simulation. As already discussed, this simu-

lation method removes many of the restrictions imposed by physical testing, through

dynamic boundary conditions capable of replicating the unsteady environment. In a

similar fashion to experimental tests, it is possible to assess the vehicle’s response to

an extreme gust using the one-way coupled methods previously mentioned, but im-

portantly, it is possible to simulate the fully coupled approach due dynamic meshing

methods that allow for large motions of geometries during a simulation. Over the

last ten years, research in this area has been lead by Tsubokura, Nakashima et al.

[67, 68, 69, 70, 71, 72] with emphasis on heavy duty trucks, which due to their large

lateral area and extreme weight variations make them highly susceptible to crosswinds.

In one of their first studies, Tsubokura et al. [67] assessed the computational methods

that are capable of implementing the three coupled approaches using simplified two

dimensional simulations. Quasi-steady static coupling to a simplified two-equation, two

degree of freedom handling model was performed using a step input, formed from the

aerodynamic side force and yaw moment at a steady-state flow yaw angle. The vehicle
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response was then compared to that obtained using the unsteady dynamic method.

This fully-coupled method included the motion of the vehicle in the CFD simulation

via the overset grid or Chimera method [73], a dynamic grid method which uses a

sub-grid around the vehicle and moves through the main grid and crosswind region,

as shown in Figure 1.24. Hence by running the aerodynamic and handling simulations

simultaneously, the vehicle’s position could be updated continuously, giving the most

accurate replication of the on-road event. The results of the quasi-steady approach

showed a large time delay in lateral displacement and vehicle yaw angle responses

when compared to the fully-coupled approach, suggesting that the gust penetration

behaviour is not accurately captured using this approach. Later, this was confirmed

by Nakashima et al. [68] who showed that the quasi-steady aerodynamic response was

unable to capture an unsteady overshoot and undershoot of the aerodynamic yawing

moment, formed as a the vehicle is gradually exposed to the gust along its length, when

entering and exiting (>30° flow yaw angle).

In the present study LES is applied to the modelling of 
the unsteady flow acting on vehicles. In a previous 
investigation, the authors have developed an 
unstructured Finite Volume CFD code, “FrontFlow/red”, 
especially designed for LES and optimized for execution 
on the Earth Simulator using High Performance 
Computing (HPC) techniques. Vector and parallel 
efficiencies as high as 95% and 99% respectively were 
achieved in simulations conducted on 800 parallel 
processors [8]. 

In the present study, an innovative numerical technique 
is presented, which is capable of reproducing conditions 
of gusts in cross-flow, where the transient wind direction 
with respect to vehicle can be varied between 0 and 30 
degrees (or more if wished).  

NUMERICAL METHOD 

GOVERNING EQUATIONS – In Large Eddy Simulation 
the equations of motion (continuity and momentum) are 
spatially filtered. These read, in tensor notation: 

,                                                                        (1) 

,       (2) 

in which over-bar denotes the spatially filtered quantity;  
, , and  are the -th velocity component, the kinetic 

viscosity, and fluid density, respectively. The strain rate 
tensor and the filtered pressure in eq. (2) are: 

        ,                                          (3) 

   .                                      (4) 

The effect of subgrid-scale (SGS) turbulence on the grid-
scale turbulence motion is represented by the SGS eddy 
viscosity, which is modeled following Smagorinsky [9]: 

   ,                                        (5) 

where  is the volume of the generic numerical element, 
and the model coefficient  is given as 0.15,  which is 
typically used in simulations of flow around a rectangular 
cylinder. The eddy viscosity is damped in the vicinity of 
solid using a  Van-Driest-like  function: 

        ,                                                  (6) 

Where   is the distance from the wall in wall 
coordinates. 

DISCRETIZATION – The governing equations are 
discretized in space by a vertex-centered unstructured 
finite volume method. Second-order central  differences  
are applied for the spatial derivative, blended with a first-
order upwind scheme for the convective term in the 
Navier-Stokes to avoid the excessive numerical 
oscillation appearing at coarse tetrahedral elements. It 
should be noted here that use of first-order upwind 
should be avoided, whenever possible, in LES due to 
the excessive amount of numerical dissipation 
introduced. On the other hand the dissipation properties 
of upwind schemes may be desirable to a certain extent 
for engineering applications of LES on unstructured 
meshes such as those adopted here. As a compromise, 
the contribution of the upwind discretisation to the 
convective fluxes is set to be as low as 5%.  

In LES, first-order explicit Euler scheme should not be 
used for the time marching method, because of its 
absolute instability. On the other hand, fully implicit 
schemes often used for conventional engineering LES 
hopefully should be avoided because longer time 
increment permitted by the fully implicit scheme happens 
to damp higher wave-number turbulence. Thus, the 
second-order Adams-Bashforth scheme is adopted for 
time discretisation in this study. The SMAC (Simplified 
Marker and Cell) method is employed to maintain 
coupling between the pressure and the velocity. 

SOFTWARE – The computational code adopted in the 
present study was originally developed in the context of 
the "Frontier Simulation Software for Industrial Science" 
project [10]. The project started in 2002 as an IT 
research program, the sponsored by Ministry of 
Education, Culture, Sport, Science and Technology, and 
was successfully concluded in 2005. The code was 
intensively optimized by the authors for LES applications 
under the subsequent IT project “Revolutionary 
Simulation Software (RSS21)” [11], and parallel and 
vector efficiency as high as 96% and 99% respectively 
were achieved in simulations performed on 
100PNs/800CPUs. This allowed completion of LES 
calculations of flow around a formula car with complex 
geometry (LOLA B03/51 used 2006 Japanese 
championship Formula Nippon) in about 120 hours [5]. 
 

 
 

Fig.1 Analysis model for the crosswind models 
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Figure 1.24: Overset model used for unsteady-dynamic coupling by Tsubokura et al.

[67].

However, there are certain conditions, as shown by Hucho and Emmelmann [74] and

Nakashima et al. [68], where long, shallow gust gradients in relation to the vehicle

length and small flow yaw angles ≤10°, may bring about a quasi-steady behaviour of

the yaw moment, hence justifying the use of this coupling method.

The overset grid method employed in the fully coupled, unsteady dynamic approach

used by Tsubokura et al. [67] has the disadvantage of requiring a long fluid domain,

equal to the simulated distance of the vehicle motion, and thus is computationally
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expensive. Tsubokura et al. [67] suggested two alternative methods: a turntable model

and convective crosswind model as shown in Figure 1.25. In the turntable model,

a yawing motion of the vehicle is used to reproduce the transient flow yaw angle.

However, as already shown by Watkins et al. [60], this method fails to capture the

correct penetration and exiting behaviour and thus is not correct for this application.

On the other hand, in the convective crosswind model, a band of crossflow is convected

downstream with the main flow and passes over a fixed vehicle and this is the most

common method of computationally simulating a crosswind event. Favre [75] used

this method to investigate the effect of substantial crosswind (20◦ flow yaw angle)

over simple geometries while Hemida and Krajnovic [76] investigated the effect of a

realistic gust profile on a double-deck bus using the approach. This method includes

the effects of the vehicle entering and exiting the crosswind, however since the vehicle

is fixed in the domain it falls under a one-way coupled approach. A comparison of the

turntable and convective crosswind model responses is shown in Figure 1.26, where the

target response is obtained with the fully-coupled, overset method. As anticipated, the

convective crosswind responses follow the target response more accurately, most likely

due to the improvements in flow prediction when the vehicle is at the edges of the gust.

(a) Turntable model
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                    Fig. 3 Crosswind models              

                    Fig. 4 Displacement of y and yaw-angle predicted  
                                                                                             by each crosswind model (vehicle subjected by the 

                                                              crosswind in the shaded period) 

To demonstrate the necessity of full coupling between 
the fluid and vehicle motion, we have also conducted the 
vehicle dynamics simulation without flow simulation by 
imposing a step functions in place of the fluid forces. 
This technique is conventionally used to estimate the 
crosswind effect on vehicle dynamics. According to this 
method,  and  are assumed to be zero until the 
vehicle reaches the crosswind region at T=10, and then 
set to 0.36 and -4.03 when is 0.2, or 5.0 and -5.3 
when is 1.0, respectively. These values are 
maintained until the vehicle leaves the cross wind region, 
then set to zero again. The assumed values for the 
forces are estimated from the previous reference CFD. 

In figure 2 the displacement of the vehicle in the y-
direction and the yawing angle are shown in both 
configurations. A large discrepancy can be observed 
between the results obtained using full coupling and 
those obtained using simple step functions for   and 

. This clearly indicates that the force acting on the 
vehicle during the sudden cross flow event is more 
complex than a step function and CFD is indispensable 
to obtain its correct description. 

CROSSWIND MODELS – The method presented in the 
previous section has the disadvantage of requiring a 
large computational domain for the flow around the 
vehicle to develop from the initial condition. Thus, 
assuming the results as target, we propose two 
alternative crosswind models to reduce the 
computational resources. 

The vehicle motion is fixed in the x direction in the 
reference grid, and a uniform flow with velocity U is 
imposed at the inlet, considering the relative fluid 
velocity with respect to the vehicle. On the other hand, 
the displacement of the vehicle in the y direction and the 
yaw angle induced by the unsteady aerodynamic forces 
is directly traced by the overset grid. In other words, the 
methods correspond to the conventional wind tunnel 
measurements, and so-called static-dynamic tests in the 
experimental sense [4]. 

Turntable model – In the turntable model  (see Fig. 3a), 
the transient yaw angle between the vehicle and the 
main stream is reproduced, during the unsteady 
crosswind event, by rotating the vehicle along its yawing 
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(b) Convective crosswind model

Figure 1.25: Crosswind models of Tsubokura et al. [67].
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method,  and  are assumed to be zero until the 
vehicle reaches the crosswind region at T=10, and then 
set to 0.36 and -4.03 when is 0.2, or 5.0 and -5.3 
when is 1.0, respectively. These values are 
maintained until the vehicle leaves the cross wind region, 
then set to zero again. The assumed values for the 
forces are estimated from the previous reference CFD. 

In figure 2 the displacement of the vehicle in the y-
direction and the yawing angle are shown in both 
configurations. A large discrepancy can be observed 
between the results obtained using full coupling and 
those obtained using simple step functions for   and 

. This clearly indicates that the force acting on the 
vehicle during the sudden cross flow event is more 
complex than a step function and CFD is indispensable 
to obtain its correct description. 

CROSSWIND MODELS – The method presented in the 
previous section has the disadvantage of requiring a 
large computational domain for the flow around the 
vehicle to develop from the initial condition. Thus, 
assuming the results as target, we propose two 
alternative crosswind models to reduce the 
computational resources. 

The vehicle motion is fixed in the x direction in the 
reference grid, and a uniform flow with velocity U is 
imposed at the inlet, considering the relative fluid 
velocity with respect to the vehicle. On the other hand, 
the displacement of the vehicle in the y direction and the 
yaw angle induced by the unsteady aerodynamic forces 
is directly traced by the overset grid. In other words, the 
methods correspond to the conventional wind tunnel 
measurements, and so-called static-dynamic tests in the 
experimental sense [4]. 

Turntable model – In the turntable model  (see Fig. 3a), 
the transient yaw angle between the vehicle and the 
main stream is reproduced, during the unsteady 
crosswind event, by rotating the vehicle along its yawing 
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(a) Lateral displacement
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To demonstrate the necessity of full coupling between 
the fluid and vehicle motion, we have also conducted the 
vehicle dynamics simulation without flow simulation by 
imposing a step functions in place of the fluid forces. 
This technique is conventionally used to estimate the 
crosswind effect on vehicle dynamics. According to this 
method,  and  are assumed to be zero until the 
vehicle reaches the crosswind region at T=10, and then 
set to 0.36 and -4.03 when is 0.2, or 5.0 and -5.3 
when is 1.0, respectively. These values are 
maintained until the vehicle leaves the cross wind region, 
then set to zero again. The assumed values for the 
forces are estimated from the previous reference CFD. 

In figure 2 the displacement of the vehicle in the y-
direction and the yawing angle are shown in both 
configurations. A large discrepancy can be observed 
between the results obtained using full coupling and 
those obtained using simple step functions for   and 

. This clearly indicates that the force acting on the 
vehicle during the sudden cross flow event is more 
complex than a step function and CFD is indispensable 
to obtain its correct description. 

CROSSWIND MODELS – The method presented in the 
previous section has the disadvantage of requiring a 
large computational domain for the flow around the 
vehicle to develop from the initial condition. Thus, 
assuming the results as target, we propose two 
alternative crosswind models to reduce the 
computational resources. 

The vehicle motion is fixed in the x direction in the 
reference grid, and a uniform flow with velocity U is 
imposed at the inlet, considering the relative fluid 
velocity with respect to the vehicle. On the other hand, 
the displacement of the vehicle in the y direction and the 
yaw angle induced by the unsteady aerodynamic forces 
is directly traced by the overset grid. In other words, the 
methods correspond to the conventional wind tunnel 
measurements, and so-called static-dynamic tests in the 
experimental sense [4]. 

Turntable model – In the turntable model  (see Fig. 3a), 
the transient yaw angle between the vehicle and the 
main stream is reproduced, during the unsteady 
crosswind event, by rotating the vehicle along its yawing 
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(b) Yaw angle

Figure 1.26: Comparison of the predicted response of simplified crosswind models [67].

A fully-coupled, unsteady dynamic approach that does not use the computationally

heavy overset method was applied a few years later by Tsubokura and Nakashima [69]

and Nakashima et al. [72]. The method uses grid-deformation based on the Arbi-

trary Lagrangian-Eulerian (ALE) formulation combined with a moving reference frame

approach to include yaw rotation and lateral translation respectively. Thus these sim-

ulations are classed as having only two degrees of freedom. The effect of an extreme

crosswind (45° flow yaw angle) on a heavy-duty truck is shown in Figure 1.27 and Fig-

ure 1.28 shows the magnitudes of the response and how they compare to those obtained

with the quasi-steady static approach. Consistent with their previous two dimensional

simulations, the quasi-steady static approach is unable to capture the response of the

unsteady dynamic approach, most noticeably in the vehicle yaw angle. Figure 1.28 also

gives an indication of a driver’s steering input, as they attempt to recover from the

course deviation. The quasi-steady approach clearly over predicts the peak steer angle

values and this is responsible for a large over prediction in vehicle yaw angle after the

gust has passed.

Despite their substantial work in this area, Tsubokura, Nakashima et al. fail to make

comparisons between all three coupling methods, hence the necessity of the more com-

putationally expensive unsteady dynamic coupling method cannot be verified. An un-

steady static coupling may be sufficient to capture the response to a crosswind event,

as this method includes the unsteady aerodynamic effects that the vehicle experiences
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analysis. For reference, the results of the conventional analysis are
also plotted. In the coupled analysis, the yaw of the vehicle begins
to increase when it reaches the crosswind region around t = 1 s,
and the vehicle begins to deviate from the original path. The lateral
displacement continues to increase after the vehicle exits the
crosswind region until t = 5 s, while the yaw angle has a value of
around 4! until t = 4 s. The yaw angle drastically decreases because
of the steering action of the driver.

A significant difference in the yaw angle between the quasi-
steady analysis and the coupled simulation is identified. The differ-
ence in the initial response to the crosswind around t = 1 s is par-
ticularly remarkable. This difference is caused by the different
behavior of Mw,z shown in Fig. 8; the transient aerodynamics that
appears as the positive peak of Mw,z leads to the positive yaw angle
in the initial response. In contrast, the other typical transient aero-
dynamics represented by a negative peak of Mw,z when the vehicle
exits the crosswind, leads to a gradual gradient of the yaw angle
around t = 3 s.

With regard to the lateral displacement, the maximum differ-
ence is observed to be 0.83 m at T = 3.2 s. As for the maximum dis-
placements around t = 5.8 s, the quasi-steady analysis predicted a
deviation 0.53-m larger than that in the coupled analysis. These
differences in the yaw motion and lateral deviation indicate the ef-
fects of unsteady aerodynamics on vehicle motion, which are sig-
nificant for a precise estimation of the trajectory of a vehicle
subjected to a gusty crosswind.

In terms of the evaluations of the vehicle’s running stability or
drivability, the differences in the two analyses are also significant.
The yaw rate dW/dt is one of the most famous index parameter for
the evaluation of the stability and the drivability of a road vehicle
in the field of automobile engineering. The amplitude of the steer-
ing wheel angles A is reported as a parameter strongly related to
the driver’s perception of the running stability in crosswinds
[17]. The behaviors of these two variables are shown in Fig. 12.
The yaw rates exhibit completely different behaviors between
the two analyses when the vehicle is subjected to the crosswind.

Fig. 9. Snapshots of pressure coefficient Cp (top) and spanwise velocity u2 (bottom) distributions at half height of vehicle.

Fig. 10. Snapshots of pressure coefficient Cp distribution on lateral surface of truck. (Top: leeward side. Bottom: windward side.).
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Figure 1.27: Snapshots of pressure coefficient and lateral velocity using the unsteady-

dynamic approach [72].

analysis. For reference, the results of the conventional analysis are
also plotted. In the coupled analysis, the yaw of the vehicle begins
to increase when it reaches the crosswind region around t = 1 s,
and the vehicle begins to deviate from the original path. The lateral
displacement continues to increase after the vehicle exits the
crosswind region until t = 5 s, while the yaw angle has a value of
around 4! until t = 4 s. The yaw angle drastically decreases because
of the steering action of the driver.

A significant difference in the yaw angle between the quasi-
steady analysis and the coupled simulation is identified. The differ-
ence in the initial response to the crosswind around t = 1 s is par-
ticularly remarkable. This difference is caused by the different
behavior of Mw,z shown in Fig. 8; the transient aerodynamics that
appears as the positive peak of Mw,z leads to the positive yaw angle
in the initial response. In contrast, the other typical transient aero-
dynamics represented by a negative peak of Mw,z when the vehicle
exits the crosswind, leads to a gradual gradient of the yaw angle
around t = 3 s.

With regard to the lateral displacement, the maximum differ-
ence is observed to be 0.83 m at T = 3.2 s. As for the maximum dis-
placements around t = 5.8 s, the quasi-steady analysis predicted a
deviation 0.53-m larger than that in the coupled analysis. These
differences in the yaw motion and lateral deviation indicate the ef-
fects of unsteady aerodynamics on vehicle motion, which are sig-
nificant for a precise estimation of the trajectory of a vehicle
subjected to a gusty crosswind.

In terms of the evaluations of the vehicle’s running stability or
drivability, the differences in the two analyses are also significant.
The yaw rate dW/dt is one of the most famous index parameter for
the evaluation of the stability and the drivability of a road vehicle
in the field of automobile engineering. The amplitude of the steer-
ing wheel angles A is reported as a parameter strongly related to
the driver’s perception of the running stability in crosswinds
[17]. The behaviors of these two variables are shown in Fig. 12.
The yaw rates exhibit completely different behaviors between
the two analyses when the vehicle is subjected to the crosswind.

Fig. 9. Snapshots of pressure coefficient Cp (top) and spanwise velocity u2 (bottom) distributions at half height of vehicle.

Fig. 10. Snapshots of pressure coefficient Cp distribution on lateral surface of truck. (Top: leeward side. Bottom: windward side.).
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(a) Lateral displacement

The maximum difference of the steering wheel angles is observed
to be 35! at t = 2.2 s and 4.0 s. Its positive extremum in the coupled
analysis is 2.5 times smaller than that in the quasi-steady analysis.
These differences indicate the importance of the effects of unstea-
dy aerodynamics on the evaluation of the stability and drivability
of a vehicle subjected to a gusty crosswind.

4. Conclusions

In the present study, we developed an unsteady aerodynamic
simulator of a road vehicle by accomplishing the fully coupled
analysis of vehicle motion and the transient flow around the vehi-
cle. In order to consider the vehicle’s motion in the unsteady fluid
dynamics analysis, the ALE method for the rotational motions and
the non-inertial reference frame method for the translational mo-
tions were introduced together. To realize the coupled analysis of a
full-scale vehicle with a complicated geometry, it was necessary to
conduct an LES analysis for a long period of time using large-scale
computational grids. Therefore, the LES code was optimized for a
massively parallel processor; the modified code achieved the linear
acceleration of the computational speed of up to 1000 cores.

The developed unsteady aerodynamics simulator of a road vehi-
cle was applied to the case when a heavy-duty truck was subjected
to a sudden crosswind. The obtained results were compared with
the results of a conventional quasi-steady analysis. We identified
certain differences in the vehicle path and the yaw angle between

the quasi-steady and the fully coupled analyses. The differences in
the variables related to a driver’s feeling were also significant.
These results clearly indicated the importance of estimating the
unsteady aerodynamic forces in a vehicle motion analysis.
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(b) Yaw rate

analysis. For reference, the results of the conventional analysis are
also plotted. In the coupled analysis, the yaw of the vehicle begins
to increase when it reaches the crosswind region around t = 1 s,
and the vehicle begins to deviate from the original path. The lateral
displacement continues to increase after the vehicle exits the
crosswind region until t = 5 s, while the yaw angle has a value of
around 4! until t = 4 s. The yaw angle drastically decreases because
of the steering action of the driver.

A significant difference in the yaw angle between the quasi-
steady analysis and the coupled simulation is identified. The differ-
ence in the initial response to the crosswind around t = 1 s is par-
ticularly remarkable. This difference is caused by the different
behavior of Mw,z shown in Fig. 8; the transient aerodynamics that
appears as the positive peak of Mw,z leads to the positive yaw angle
in the initial response. In contrast, the other typical transient aero-
dynamics represented by a negative peak of Mw,z when the vehicle
exits the crosswind, leads to a gradual gradient of the yaw angle
around t = 3 s.

With regard to the lateral displacement, the maximum differ-
ence is observed to be 0.83 m at T = 3.2 s. As for the maximum dis-
placements around t = 5.8 s, the quasi-steady analysis predicted a
deviation 0.53-m larger than that in the coupled analysis. These
differences in the yaw motion and lateral deviation indicate the ef-
fects of unsteady aerodynamics on vehicle motion, which are sig-
nificant for a precise estimation of the trajectory of a vehicle
subjected to a gusty crosswind.

In terms of the evaluations of the vehicle’s running stability or
drivability, the differences in the two analyses are also significant.
The yaw rate dW/dt is one of the most famous index parameter for
the evaluation of the stability and the drivability of a road vehicle
in the field of automobile engineering. The amplitude of the steer-
ing wheel angles A is reported as a parameter strongly related to
the driver’s perception of the running stability in crosswinds
[17]. The behaviors of these two variables are shown in Fig. 12.
The yaw rates exhibit completely different behaviors between
the two analyses when the vehicle is subjected to the crosswind.

Fig. 9. Snapshots of pressure coefficient Cp (top) and spanwise velocity u2 (bottom) distributions at half height of vehicle.

Fig. 10. Snapshots of pressure coefficient Cp distribution on lateral surface of truck. (Top: leeward side. Bottom: windward side.).

Fully coupled

Quasi-steady

Crosswind velocity

0.0

0.5

1.0

L
at

er
al

 d
is

pl
ac

em
en

t Y
 [m

]

Sc
al

ed
 c

ro
ss

w
in

d 
ve

l. 
[-

]

-8

-4

0

4

8

0.0

0.5

1.0

Sc
al

ed
 c

ro
ss

w
in

d 
ve

l. 
[-

]

(a) Lateral displacement

(b) Yaw angle

-5

0

5

10

0 2 4 6 8 10

0 2 4 6 8 10

Y
aw

 a
ng

le
 Ψ

 [ 
 ]

Time t [s]

Time t [s]

Fig. 11. Time series of lateral course deviations (top) and yaw angles (bottom).

8 T. Nakashima et al. / Computers & Fluids 80 (2013) 1–9

(c) Yaw angle

The maximum difference of the steering wheel angles is observed
to be 35! at t = 2.2 s and 4.0 s. Its positive extremum in the coupled
analysis is 2.5 times smaller than that in the quasi-steady analysis.
These differences indicate the importance of the effects of unstea-
dy aerodynamics on the evaluation of the stability and drivability
of a vehicle subjected to a gusty crosswind.

4. Conclusions

In the present study, we developed an unsteady aerodynamic
simulator of a road vehicle by accomplishing the fully coupled
analysis of vehicle motion and the transient flow around the vehi-
cle. In order to consider the vehicle’s motion in the unsteady fluid
dynamics analysis, the ALE method for the rotational motions and
the non-inertial reference frame method for the translational mo-
tions were introduced together. To realize the coupled analysis of a
full-scale vehicle with a complicated geometry, it was necessary to
conduct an LES analysis for a long period of time using large-scale
computational grids. Therefore, the LES code was optimized for a
massively parallel processor; the modified code achieved the linear
acceleration of the computational speed of up to 1000 cores.

The developed unsteady aerodynamics simulator of a road vehi-
cle was applied to the case when a heavy-duty truck was subjected
to a sudden crosswind. The obtained results were compared with
the results of a conventional quasi-steady analysis. We identified
certain differences in the vehicle path and the yaw angle between

the quasi-steady and the fully coupled analyses. The differences in
the variables related to a driver’s feeling were also significant.
These results clearly indicated the importance of estimating the
unsteady aerodynamic forces in a vehicle motion analysis.
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(d) Steering wheel angle

Figure 1.28: The predicted response of a heavy-duty truck to an extreme crosswind

using the fully coupled 2DOF approach [72].
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at the edges of the gust. In addition there is evidence in the force and moment histories

of Nakashima et al. [70] to suggest that the aerodynamic rolling moment and lift force

have a sizeable impact on the vehicle’s response. Thus a fully coupled 6DOF simula-

tion that includes rotation and translation about all three axes may yield a different

outcome.

1.5 Summary

It has been shown that the environment through which a vehicle travels is unsteady.

Shear and turbulence in the natural wind result in a time and position dependent

velocity distribution over the vehicle, the effects of which cannot always be investigated

using a wind tunnel. Disturbances to the smooth flow generated by such a facility can

be introduced, but only the most sophisticated can reproduce the full range of energy

spectra values typically experienced on the road. For this reason, the effect of turbulence

on road vehicle aerodynamics has received much more attention than the effect of shear

and the influence of the two combined appears to be unknown.

In addition to typical wind conditions, the understanding of a vehicle’s behaviour during

extreme crosswind events is important from a safety perspective and testing of such

events is limited to test-track crosswind generators and prototype vehicles. Simulating

the correct behaviour in a wind tunnel is fundamentally flawed as the vehicle remains

fixed in position and is unable to dynamically respond to the gust. This implies that

the vehicle remains on a constant trajectory through the gust and does not deviate.

Changes to a vehicle’s position and orientation whilst immersed in the highly yawed

flow will produce variations to the aerodynamic loads, which in turn can influence the

dynamics in a closed loop cycle. However, it is common for this effect to be ignored,

and a vehicle’s response is predicted in a one-way coupled manner using quasi-steady

loads or unsteady loads produced by scanning a lateral velocity along the vehicle using

a secondary tunnel.

Computational simulation removes many of the restrictions imposed by physical ex-

periment, with time dependent inlet boundary conditions and dynamic grid methods
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INTRODUCTION

that allow geometries to move within a fluid domain. Such simulations, referred to as

fully-coupled, unsteady dynamic, have been performed previously, but considering mo-

tion in only two degrees of freedom (lateral translation and yaw rotation) whilst there

are several dynamic grid approaches that can be applied to model this motion. With

the continual improvement in computational performance, the impact of such methods

on accuracy and run times is constantly evolving. Finally, the need for such complex

simulations is yet to be determined. Previous work suggests that a one-way coupled

approach tends to over predict the values of deviation, but this research has focused

heavily on large trucks, rather than typical family sized passenger vehicles. Due to the

substantial reduction in lateral area, the variation in vehicle response may be minimal

and thus a one-way coupled approach may be sufficient.

39



1.6 Objectives

The aim of this work is to design, implement and evaluate a fully-coupled, six degree of

freedom system, of a vehicle’s aerodynamics and dynamics. In particular, this system

will be applied to the simulation of a severe crosswind.

In order to achieve this, there are several objectives that need to be fulfilled.

• Determine a suitable numerical methodology and turbulence model for accurate

prediction of the flow around a road vehicle geometry. This is crucial as the

aerodynamics and resulting loadings on the vehicle can have a large impact on

handling properties.

• Evaluate and determine the most suitable methods of including moving geometry

within a CFD simulation. This will allow any dynamic vehicle motions such as

ride height, roll angle and global position changes to be included in the aerody-

namics simulation.

• Design the coupling mechanism, in particular the method of communication be-

tween the CFD code and the handling model.

• Investigate the importance of shear and turbulence in the natural wind on a

vehicle’s aerodynamics. This will help to determine if such conditions will have

significant impact on vehicle handling and need to be included in the fully-coupled

simulations.

• Implement the fully coupled system using a severe crosswind test case and eval-

uate the fully-coupled response against the simplified one-way coupled approach.
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Chapter 2

The Flow around a Generic

Road Vehicle
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2.1 Introduction

In order to determine a best practices for simulation of the flow field around an automo-

tive body, specifically a sports utility vehicle (SUV) geometry, a selection of methodolo-

gies will be assessed for their suitability in reproducing experimental results. Analysis

will focus on wake structure and base pressure predictions which will have a large

impact on the accuracy of the predicted drag value.
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2.2 The Generic SUV Geometry

The Generic SUV model used for these tests was designed by Dr. Daniel Wood, within

the Aeronautical and Automotive Engineering department of Loughborough University

[77]. The design was the result of a thorough analysis of 39 SUVs, from 12 manufac-

turers with model years spanning 1970 to 2011. With 27 characteristic length measure-

ments taken and collated: the vehicle side profiles, normalised by vehicle height, were

overlaid as shown in Figure 2.1a. Geometrical trends over the years were extracted,

such as increasing wheelbase and decreasing sill height and based on extrapolation of

these trends, a 2017 Generic SUV geometry was predicted, as shown in Figure 2.1b.

(a) Overlaid side profile of 39 SUVs (b) Projected 2017 SUV Geometry

Figure 2.1: Design stages of the Generic SUV geometry.

The wind tunnel model is an evolution of this geometry, with modifications to make it

suitable for experimental testing. The final model is shown in Figure 2.2 and features a

steep diffuser of 30° and substantial taper angle of the body’s front overhang along with

radiused edges to promote attached flow. The model was dimensioned in such a way as

to limit solid blockage in the Loughborough University model scale (LUMS) wind tunnel

to approximately 5% which results in an overall model scale size of 25%. An overview

of some of the key geometry dimensions is provided in Table 2.1. The model was

designed to facilitate a number of different configurations, with changes in ride height,

underfloor roughness and with and without wheels. Details of these configurations have

been published by Wood et al. [77], and for this study, the standard configuration with

nominal ride height (65 mm), wheels and no underfloor roughness as shown in Figure

2.2 is used.
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THE FLOW AROUND A GENERIC ROAD VEHICLE

Figure 2.2: Generic SUV wind tunnel model.

Table 2.1: Generic SUV dimensions.

Length (L) 1040mm

Width 410mm

Height 376mm

Wheelbase 650mm

Frontal Area (A) 0.139m2

Re (L, 40m/s) 2.85× 106

2.3 Experimental Data

The experimental Generic SUV data, used for the purposes of validation, was obtained

by Wood et al. [77] in the LUMS wind tunnel. This wind tunnel is an indraft, low-

turbulence facility, designed to accommodate automotive shapes of up to 1/4 scale at

5% blockage. The novel ‘horseshoe’ design and important dimensions are shown in

Figure 2.3.

The geometry features a bell-mouth intake, settling chamber, contraction of ratio 7.3 : 1

and working section measuring 1.92 m × 1.32 m in width and height. Flow is guided
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1.6.1 GENERAL DESCRIPTION OF THE PROPOSED INDRAFT TUNNEL 

 
 

Figure 1-5: 3D Solid Model 
 

 

 

 
 

(a) 3D Solid Model of the LUMS wind tunnel
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Figure 2-3: Side elevation of contraction and working section (dimensions in mm). 

 
 
Station A on Figure 2-3 is located 154mm upstream of the centre of the working section (and the 
balance point of resolution).  Station A, is the plane in which boundary layer, velocity uniformity and 
turbulence measurements were performed (see relevant sections in Chapter 3). 
 
 

2.3.5 ASPECT RATIO 

Su (1991) also showed that the rule-of-thumb of maintaining aspect ratio similarity along the length 

of the contraction in order to prevent the flow from distorting was not necessary.  Su proposed that a 

square cross section was a good choice for the settling chamber no matter what the geometry of the 

test section.   

 

An inlet of internal dimensions 4270mm x 4270mm was therefore used in this design, since 

restrictions in the available width for the wind tunnel meant that having a square settling chamber 

allowed a larger diffuser to be used downstream of the fan (see Figure 1-6).   

 

(b) Dimensions of the LUMS wind tunnel

Figure 2.3: The LUMS indraft, low-turbulence wind tunnel [78].

around the 90° corners of the tunnel by vertically mounted turning vanes. A 140kW fan

located downstream of the second corner is capable of driving flow through the working

section at a maximum speed of 45 m/s. The contraction section and flow conditioning

screens located in the settling chamber, limits freestream turbulence intensity to 0.15%

in the centre of the working section, as measured by Johl et al. [79, 78]. Corner

fillets originating at the start of the contraction aim to reduce secondary flows while

diverging walls of the working section aim to eliminate any horizontal buoyancy in the

flow. With a model installed, aerodynamic forces and moments can be measured using

a six-component balance, located underneath the working section. Four pins of 8 mm

diameter pass through the working section floor, with a 2 mm clearance ring, to support

the model under each wheel and connect to the balance. This arrangement isolates the

model from the ground but results in a wheel standoff. Transparent side walls in the

working section allow flow field measurements using Particle Image Velocimetry (PIV)

whilst more flow intrusive methods such as hotwire and cobra probe measurements are

common.

In the Generic SUV tests, PIV was used by by Wood et al. [77] to obtain two-

dimensional, planar velocity fields along six planes, (three horizontal and two hori-

zontal) in the vehicle’s wake. These planes stretched downstream with a length of ap-

proximately 0.4L and their width, height and position relative to the vehicle is shown

in Figure 2.4. Base and diffuser surface pressure values were recorded using an array

of 75 pressure tappings, 63 on the base and 12 on the diffuser, but due to the scale

of the model and size of the instrumentation located inside the model, tappings were

limited to one half of these surfaces. As a result, experimental surface data is subject to
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THE FLOW AROUND A GENERIC ROAD VEHICLE

interpolation errors and assumes a symmetric base and diffuser pressure distribution.

Finally, the six-component, underfloor, virtual centre balance measured aerodynamic

force and moment data.

Surface pressures and forces were corrected for blockage effects using the MIRA correc-

tion based on continuity, Equations 2.1 and 2.2 where A′ is the ratio of model frontal

area to working cross sectional area (A′=0.056 for the Generic SUV).

Cpcor
= 1− 1− Cp

(1−A′)−2
(2.1)

CDcor =
CD

(1−A′)−2
(2.2)

Figure 2.4: Experimental normalised u velocity on PIV planes.

A fixed ground plane in the tunnel required non-rotating wheels and led to the develop-

ment of a floor boundary layer. No boundary layer reduction devices were employed and

previous measurements in an empty tunnel at model centre have recorded thicknesses
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(δ99) of around 60mm. Coincidently, this height approximately corresponds to the ride

height of the SUV, hence the flow in the underbody region will be strongly influenced

by this tunnel boundary layer. Wheels were not in contact with the ground, which

ensures balance measurements were not influenced by any grounding of the model. All

wheels feature a flat on the tyre surface to simulate a typical contact patch and rested

on pins, leaving a 4 mm clearance between the wheel and the ground, as shown in Fig-

ure 2.5.

Figure 2.5: 4mm clearance between wheel and floor of the LUMS wind tunnel.

2.4 Computational Domain and Grid Generation

A simplification of the LUMS geometry is used to define the outer boundary of the

computational domain. The complete indraft loop is not modelled, but is extended

downstream from the end of the first diffuser with uniform cross-section, as shown

in Figure 2.6. It is assumed that this simplification does not affect the flow within

the working section and also avoids the 3D modelling of the corner turning vanes.

The bell-mouth at the inlet of the tunnel has also been removed and the inlet of the

computational domain is taken from the location of the final flow conditioning screen

within the settling chamber, 0.20 m upstream of the contraction. The SUV body is

located at the centre of working section replicating the experimental setup.

On the SUV’s surface, triangles are limited to a size of 1 mm (0.001L) to help maintain

curvature and prevent any unphysical flow separation. Figure 2.7 shows the surface

elements around one of the front wheels where due to the high curvature of the geometry

and high flow velocity this may be an issue. The pins on which the model rests are 8 mm
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THE FLOW AROUND A GENERIC ROAD VEHICLE

Figure 2.6: LUMS domain.

in diameter and thus their surface elements are limited to a smaller size of 0.25 mm

(2.5×10−4L). The complete domain contains 4.4×106 surface elements, with 3.3×106

of those found on the SUV.

Figure 2.7: SUV surface grid.

In the simulations, the SUV boundary layers are resolved and not modelled using wall

functions. Thus the thickness of the near wall layer for the SUV surfaces is set to ensure

a non-dimensional near wall spacing y+ < 1. Eleven additional layers of increasing

thickness ensure even blending into the adjacent, 1 mm isotropic, hexahedral, core grid

elements, shown in Figure 2.8b. It is not practical to resolve the boundary layers along

the tunnel walls due to the large surface area and significant amount of cells that would

result, thus a near wall grid of y+ > 30 is used and the velocity gradient at the walls is

modelled using wall functions.

The hexahedral volume elements in the core grid are set using a dimension of 16 mm.

Five refinement regions are added around the SUV where cells halve in size between

47



each refinement region from 16 mm to 1 mm (0.015L to 0.001L) elements. Downstream

and within the first diffuser, elements are allowed to grow up to a size of 64 mm. The

total number of volume elements for the complete domain is approximately 74× 106.

(a) Vertical, axial cut through volume (b) Prism layers on SUV surface

(c) Vertical, transverse cut through volume (d) Refinement around SUV

Figure 2.8: SUV volume grid.

2.5 Numerical Approach

Three methodologies are assessed for their suitability in predicting the experimental

flow field. A single steady-state Reynolds-Averaged Navier-Stokes (RANS) method

and two unsteady methods: unsteady RANS (URANS) and Detached-Eddy simulation

(DES). For all methods, a segregated incompressible finite volume solver is used with a

second order upwind scheme for convection and diffusion terms of the momentum and

turbulence equations.

For the RANS method, turbulence is modelled using the k−ω SST model. This model

was developed by Menter [80] with the aim of reducing a high sensitivity to values of
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ω in the freestream (a behaviour of the standard k− ω model) by switching to a k− ε
model outside of the boundary layer. As a result, this model performs wells in strong

pressure gradients and large separated regions, both of which are features of the SUV

flow.

The validity of this model in the flow prediction around automotive bodies has been

shown by Ashton and Revell [81] and Ashton et al. [82]. In their studies, several

RANS turbulence models have been compared for their accuracy in capturing the flow

field around an Ahmed body [83]. This bluff bodied geometry features a large, smooth

vertical base surface as well as a top roof slant which could vary in angle between 25°

and 35°. Thus, inverted, this rear-end is geometrically similar to the Generic SUV

and should exhibit comparable flow separation characteristics. From the wide selection

of RANS turbulence models assessed in their study, the k − ω SST turbulence model

provided the most accurate flow prediction of the flow velocity and turbulent kinetic

energy over the top-slant and within the base wake. However the downstream length

of the wake was still significantly over predicted. As the angle of the SUV diffuser is

comparable, it will be interesting to see whether a RANS methodology will perform to

a similar level.

For the URANS method, the k − ω SST turbulence model is maintained and time

dependency is introduced with a second order temporal scheme and time-step ∆t =

2.5×10−4 seconds (or non-dimensional ∆tU/L = 1×10−2). This limits the CFL number

to < 10 throughout the domain. In comparison, the DES simulation is performed using

the Spalart-Allmaras IDDES formulation and to ensure a desired CFL < 1, the non-

dimensional time-step is reduced by an order of magnitude, ∆t = 2.5×10−5 seconds (or

non-dimensional ∆tU/L = 1× 10−3). For both unsteady methods, the simulations are

initialised using the converged RANS predictions to speed up the settling period. The

initial transient is defined as the point at which the backward average of the drag and

lift coefficients stabilises and settles. The flow fields are time averaged from this point

for a period of 1 second or 40 convective flow units (40×L/U). All simulations are run

using CD-Adpaco’s Star-CCM+ v10.04.009 on 320 2.0GHz Intel E5-2650 processors of

the HPC-Midlands facility,.
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2.6 Boundary and Inlet Conditions

A velocity inlet and flow outlet are used at the entrance and exit of the domain re-

spectively and no-slip boundary conditions are applied to the tunnel walls. A working

section velocity of 40 m/s is desired to mirror the experimental tests. This velocity is

measured by a pitot-static tube located at the end of contraction/start of working sec-

tion, 0.2 m below the roof and 0.5 m right of centre. Thus, in order to set appropriate

inlet values, a preliminary calibration study is required. A theoretical law derived by

Batchelor [84] states that the u velocity component through a contraction increases

with the inverse of the contraction ratio. Using this relationship, the flow should enter

the contraction at a velocity of 5.46 m/s, in order to achieve the desired working section

speed. Due to the inclusion of settling chamber upstream of the contraction, it was

found that the actual value defined at the inlet needed to be slightly lower, at a value

of 5.39 m/s. An inlet turbulence intensity value of 3% is required to achieve a value of

0.15% at the centre of the empty working section in accordance with the measurements

of Johl [79, 78] and as no turbulence length scale measurements have been taken, an

inlet value based on the aperture of the last flow conditioning screen 1.29 mm, is used.

The set of inlet conditions is given in Table 2.2.

Table 2.2: LUMS inlet conditions.

Velocity (m/s) Turb. Intensity(%) Turb. Length Scale (mm)

LUMS Domain 5.39 3 1.29

Using the above inlet conditions, a simulation of an empty working section was per-

formed. For this simulation, the Generic SUV geometry was removed from the domain

along with the five grid refinement regions but the non-dimensional near wall grid

spacing y+ > 30 on the tunnel walls was maintained. Figure 2.9a shows the predicted

boundary layer profile on the floor at the centre of an empty working section. Also

shown is the experimental profile measured by Johl [78] at the same location. The

results suggest that the simulation provides a good replication of the boundary layer,

most noticeably in the upper half of the profile. Below 30 mm, a small velocity over-

shoot is present, which shows up greatest in the lowest levels of the boundary layer,
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although this is emphasized due to the coarse resolution of the measured values (a

factor of the physical apparatus size).
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Figure 2.9: Validation of the simulated flow in an empty working section by experiment

values.
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Above the boundary layer and in the freestream, the velocity variation with height at

the centre of the working section is shown in Figure 2.9b, where all values are expressed

as a percentage of the pitot velocity. Again, a good correlation with experiment values

is clear, with the simulation capturing the velocity profile reasonably well. A slight

difference in the values around the core of the working section exists, but this is due to

the limited number of experimental measurements which make up the average velocity

profile. Due to the duration of physically obtaining these measurements, the experi-

ment profile represents an average of only three tests and thus, is heavily weighted by

variations between each test.

Accurate simulation of the wind tunnel flow is crucial for future simulations which use

the LUMS wind tunnel, and the results from this preliminary study give confidence in

the simplified domain, generated grid and chosen boundary and initial conditions.

2.7 Results

Before any flow field comparisons are made between the methodologies, an important

result from the steady state RANS simulation is discussed. The behaviours of the

drag coefficient and momentum and turbulence residuals for the RANS simulation are

shown in Figure 2.10. It can be seen that there is good convergence during the first 750

iterations, however after this point, the solution is unable to settle at a steady state.

The source of these numerical fluctuations can be found by analysing the standard

deviations or root mean squares (RMS) of the pressure and u velocity variables on and

around the SUV, Figure 2.11. Using this method provides a quantitative measure of the

numerical fluctuations in these variables over the last 2000 iterations. It is clear that

the inability to converge to a steady state solution is a result of large fluctuations in the

underbody flow, particularly in the wakes of each wheel, Figure 2.11a. Furthermore, by

analysing the RMS of pressure in Figure 2.11b, the fluctuations in the drag coefficient

can be identified on the shoulders of each wheel, within their housings and on the

diffuser surface. With such large fluctuations, the most sensible method is to average

the flow field over the last 2000 iterations. This data is presented henceforth in Figures
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2.12 and 2.13 for comparison with time-averaged URANS and DES predictions in the

form of coloured contours of u velocity, normalised by the freestream velocity of 40 m/s

and constrained to the PIV planes.
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Figure 2.10: Behaviour of the RANS drag coefficient and residuals.
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(a) RMS of normalised u velocity, PIV Plane Y=0.17

(b) RMS of pressure coefficient on SUV surface

Figure 2.11: Standard deviations of velocity and pressure on and around the SUV

over the last 2000 iterations.
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Figure 2.12: Experimental and computational normalised u velocity comparison on

vertical PIV planes. Centreline: Y = 0 (Left) and behind wheels: Y = 0.17 (Right)

[77].
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Figure 2.13: Experimental and computational normalised u velocity comparison on

horizontal PIV planes. Lower: Z = 0.187 (Left) and upper: Z = 0.318 (Right) [77].
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On first inspection, all methodologies appear to predict the wake structure reasonably

well, with arguably, no obvious, large-scale differences in the flow. In order to extract

some of the finer differences, Figure 2.14 shows a selection of overlaid contour levels

from these planes.
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Figure 2.14: Overlaid normalised u velocity contour levels [77].

All methodologies provide a reasonable prediction of the large recirculating base wake

structure in the centreline plane Y = 0. The overall length of this structure varies

between the methodologies: URANS and RANS over predicting and DES under-

predicting the length, but despite this, the contouring of velocity levels within this

region are fairly consistent with the experiment. Towards the ground, the strength

57



of the high velocity flow which exits the underbody and is accelerated by the diffuser

also varies slightly between the methodologies, and are on average, an under predic-

tion of the experiment. There is a much larger variation in the path of this flow and

in fact one may argue that the URANS and RANS methods provide a more accurate

prediction of the direction present in the experiment. On closer inspection through the

flow streamlines of Figure 2.15, it appears that this is coincidental as the RANS and

URANS methodologies both predict a separation bubble over the diffuser surface which

leads to a stronger upwash into the base wake. On the other hand, the DES prediction

shows attached flow in this region and although no experimental measurements in this

region have been taken, evidence of attached diffuser flow can be seen in the contouring

of the experiment results highlighted in Figure 2.12.

As expected, these results are comparable to the Ahmed body simulations of Ashton et

al. [81, 82], who showed that switching from a RANS to a DES methodology provided

a more accurate velocity prediction in the wake. More specifically, DES was shown to

increase the magnitude of turbulent kinetic energy (TKE) in the top-slant shear layer

which led to more turbulent mixing and a shorter recirculation region. The Generic

SUV is similar to the Ahmed body in the rear end geometry, with a vertical base

surface and 30◦ diffuser comparable to the top-slant. Although no turbulent kinetic

energy values were recorded in the SUV experiments, Figure 2.16 shows the differences

in TKE between URANS and DES predictions over the diffuser surface. The DES

methodology clearly predicts much higher levels of turbulent kinetic energy which is

ultimately responsible for keeping the flow attached over this surface as already shown

in Figure 2.15. These larger energy levels are transported into the base wake which

promotes more turbulent mixing and a shorter base wake, which is consistent with

Ashton et al. [81, 82]. However, in this particular case, the increase in turbulent

kinetic energy is a result of differences in the flow prediction over the rear axle, a

geometric feature not present in the Ahmed body simulations of Ashton et al. [81, 82].

It is unconfirmed whether without the rear axle, the angle of slant alone would effect

the TKE prediction, due to rounding of the diffuser’s bottom edge which is designed

to promote flow attachment.

58



THE FLOW AROUND A GENERIC ROAD VEHICLE

(a) URANS

(b) DES

Figure 2.15: Streamlines over the rear diffuser in the centreline Y = 0 plane.
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(a) URANS

(b) DES

Figure 2.16: Turbulent kinetic energy over the rear diffuser in the centreline Y = 0

plane.
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Moving outboard to the plane inline with the wheels Y = 0.17, the quality of the RANS

and URANS predictions deteriorates in comparison to the DES. A more clearly defined

over prediction in the downstream length of the base wake structure and a weakening of

the strongest recirculation value are features of both the RANS and URANS predictions

and strong indicators to a reduction in turbulent mixing and inability to correctly

resolve the highly unsteady wakes of the rear wheels.

In the lower horizontal plane, the low velocity horseshoe structure is formed due to the

entrainment of the wheel wakes into the base wake. Again, due to the highly unsteady

nature of the flow in this region, the DES methodology outperforms the RANS based

methods in predicting the shape and volume of this structure. A slight asymmetry

in the results suggests that a longer averaging period (> 40 convective flow units) is

required, however, this structure still displays a level of asymmetry in the experimental

results which were averaged over a much longer period (5480 convective flow units).

Thus, due to the length of simulated time required, increasing the averaging period in

an attempt to obtain symmetric results is computationally impractical at present.

On the upper horizontal plane, wake asymmetry is even more clear in the DES pre-

diction, suggesting a large-scale, low frequency bi-stability in the wake. The levels of

recirculation are coherent with the experiment, however the overall shape of the wake

varies towards the tail, with a more rounded shape predicted. Interestingly for the

same averaging period, the URANS prediction does not display the same level of asym-

metry and as a result, the shape of the wake in this plane is more consistent with the

experiment.

In terms of wake structure alone, these comparisons show that a RANS or URANS

methodology is unable to accurately capture the entire experimental wake structure,

generating unwanted flow separation over the diffuser and over predictions in the length

of the base wake. A DES methodology is the preferred choice. By keeping the flow

over the diffuser attached and resolving the highly unsteady flow in the wake of the

rear wheels, the velocity distribution in the base wake more accurately matches the

experimental flow field.

As well as flow velocity within the wake, comparisons of base pressure are performed
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in Figure 2.17, where the pressure coefficient values have been corrected for blockage

using Equation 2.1. It is clear that the move from a RANS to a URANS methodology

does not offer any improvements with both methods over predicting the pressure in

the centre of the base. In comparison, the distribution obtained with DES matches

the experiment much more closely, with pressure values evenly growing up the base

surface. On the diffuser, limited pressure tappings restrict a thorough comparison to

the experiment over the entire surface, however differences between the computational

predictions can be assessed. Behind the wheels, pressure distributions are similar be-

tween all predictions, but towards the centreline, the RANS and URANS separation

bubble is clearly identified by a region of low pressure.

The accuracy of the base pressure prediction has a strong influence on the body’s drag

coefficient. As shown in Table 2.3, the base drag contributes to approximately 46% of

the total drag coefficient. It is important to mention that the experimental base CD

has been calculated using an area weighted integration from the coarsely distributed

pressure tappings on one half of the base. Thus in order to make a true comparison,

the simulation averages have been calculated in the same fashion, with base pressures

extracted from the same locations rather than using the finer resolution of the surface

grid. In contrast, the total CD and CL values were measured using the underfloor

balance, thus the simulation values represent the sum of both the pressure and shear

force components over all surface elements.

The high qualitative accuracy of the DES base pressure prediction is reflected in the

base drag coefficient value, differing by only 6 counts (1 drag count = 0.001) to the

experiment. For the URANS and RANS predictions, these errors are much larger, 27

and 23 counts respectively. In terms of total CD error, these values are reduced to 4, 16

and 14 counts respectively, implying an over prediction in drag elsewhere on the SUV.

However without experimental drag evolution data over the body, the source(s) cannot

be identified.

The errors in lift coefficient are consistently large across the methodologies: −104,

−107 and −99 counts for DES, URANS and RANS respectively, with all simulations

predicting a negative lift in contrast to the experiment. The same is true for both front
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(a) Experiment (b) DES

(c) URANS (d) RANS

Figure 2.17: Base and diffuser pressure coefficient distribution [77].

and rear lift values, with simulations predicting a weaker lift or stronger downforce for

all methodologies. This consistency suggests that there is something in the experiment

setup that is not being correctly simulated. One explanation may involve the standoff

between the wheel and floor of the tunnel and in particular the clearance around the

pins on which the model rests. The pins have diameter of 8 mm, whereas the holes in

the floor have a diameter of 12 mm, leaving a 2 mm clearance around the pin. With the

tunnel running, the pressure difference inside and outside the working section will draw
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flow through the gaps and into the working section. This will lead to an increase in

pressure on the flat of each wheel and an overall increase in lift force. Again, without

experimental pressure data on these surfaces this cannot be confirmed. It would be

possible to investigate this effect computationally by creating additional inlets around

the pins, however as this is an undesirable effect of the experimental facility and not

representative of the on-road interaction between a wheel and the ground, no resources

have been invested in exploring this.

Table 2.3: Averaged force coefficients.

Exp DES URANS RANS

Base CD 0.203 0.197 0.176 0.180

CD 0.445 0.441 0.429 0.431

CL 0.041 −0.063 −0.066 −0.058

CLF
0.194 0.133 0.120 0.115

CLR
−0.153 −0.196 −0.186 −0.173

A comparison of the computational resources required for the three simulations used

in this study is shown in Table 2.4. The high cost of running a DES simulation in

comparison to RANS or even URANS is clear. In order to obtain a converged and

equally averaged solution, the time taken to run a DES simulation in comparison to

RANS and URANS is increased by a factor of approximately 35 and 9 times respectively.

Therefore it is reasonable to suggest that if computational resources are limited, a

URANS methodology can be used to provide an initial, economical flow field prediction.

However as shown by the flow field comparisons, a DES methodology should always be

used where possible to provide the most accurate representation of the experimental

flow.
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Table 2.4: Computational costs and run times.

RANS URANS DES

Computational time step ∆t (s) - 2.5× 10−4 2.5× 10−5

Wall clock time per iteration or ∆t (s) 3.00 12.03 10.49

Simulated time averaging window (s) - 1 1

Number of iterations or ∆t in averaging window 2, 000 4, 000 40, 000

Wall clock time for averaging window (s) 6, 008 48, 095 419, 600

Total number of iterations or ∆t 5, 000 5, 000 50, 000

Total wall clock time (s) 15, 021 60, 150 524, 500

Speed up factor from DES 34.92 8.72 1

2.8 Summary

This study has shown that a RANS methodology is unsuitable for the simulation of

wind tunnel flow around a Generic SUV geometry. Large numerical fluctuations due to

the wheel wakes and their interactions with the body prevent a converged steady-state

solution. As a result, an unphysical average over solver iterations was generated in

an attempt to remove the fluctuations from the final solution. Despite this averaging,

there were large differences to the experiment flow, with separation over the diffuser, re-

ductions in turbulent mixing, and an overall longer base wake. A URANS methodology

introduced a meaningful time dependency into the solver but offered no improvement

in accuracy to the final time-averaged flow field. A DES methodology is the preferred

choice as this approach was capable of matching the attached experiment diffuser flow

and resolving the highly unsteady flow in the wake of the rear wheels.

The respective accuracies of the flow field predictions were reflected in the base pressure

distributions and force coefficient values. The base drag coefficient differed by only 6

counts to the experiment compared to 16 and 14 counts for the two RANS based

methods. All lift coefficient values were under predicted, regardless of the methodology.

This suggested that the experiment setup was not correctly simulated and a theory

concerning the clearance around the balance pins and standoff between the wheels and

ground was proposed.
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In terms of computational expense, the DES methodology added significant cost to the

simulation. The RANS prediction was obtained in approximately 1/35th of the time

and URANS 1/9th. It was suggested that a URANS methodology could be used to

provide an economical flow field prediction should computational resources be limited,

however where possible, a DES methodology should always be used.
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Chapter 3

The Flow Around an

Oscillating Davis Body
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3.1 Introduction

In determining a suitable technique of including geometry motion within a computa-

tional fluid domain, simulation of an oscillating Davis model is performed. In particular,

the simulation will recreate the experimental tests performed by Baden-Fuller [85]. The

advantages of this particular test case are the simplicity of the model and an existing

strong understanding of the specific flow topology [86, 87]. As a result, any differences

that may exist in the choice of motion technique should be clearly identifiable and not,

as may be the case with a more detailed and realistic geometry, lost in the complexity

of the flow.
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3.2 A Review of Motion Techniques

Including motion of geometry within an automotive CFD simulation is becoming a more

common occurrence, driven primarily by concerns regarding correct wheel simulation.

The difference in flow physics between static and rotating wheels and the contribution

to overall vehicle drag has been shown comprehensively over the years [88, 89, 90, 91].

As a result, this has been recognised by the ‘United Nations Economic Commission

for Europe’ (UNECE) in their ‘Worldwide Harmonised Light Vehicles Test Procedure’

(WLTP), which states that for determination of vehicle road load for use in emissions

calculations, the aerodynamic drag obtained using wind tunnel facilities shall incor-

porate rotating wheels and a moving ground. For this reason, the inclusion of wheel

rotation in experiment will become standard practice for automotive OEMs, and the

importance of being able to move geometry within computational simulation will be

magnified.

The most straightforward method of including wheel rotation in CFD simulation is via

traditional boundary conditions, where rotating surfaces are described by imposing a

rotational velocity as a wall boundary condition. For a surface of revolution such as

a solid, cylindrical wheel this boundary condition is exact as shown in Figure 3.1, but

for realistic wheel designs, it does not accurately reproduce the effect of rotation. In

particular, the transient changes in pressure distribution and mass flow through the

wheel caused by the rotation of the wheel are neglected [92]. Thus the rotating wall

boundary condition cannot be used with confidence to investigate key aspects of wheel

design [93]. In spite of this, studies that do use the rotating wall boundary condition

show reasonable validation results for overall vehicle force values and because of this,

the method is commonly used despite the inaccuracies in flow physics, [94, 95, 96, 97].

An alternative and more commonly used method is the Moving Reference Frame (MRF)

approach [91, 98, 99, 100, 101]. This approach requires the definition of an ‘MRF

region’ around the rotating component, in which an artificial momentum is added to

the flow without physically moving the solid or mesh elements . At the interface, flow

properties are directly translated from the rotating to the stationary regions however,
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Figure 3.1: An example of the rotating wall boundary condition on a simplified wheel.

as flow within the MRF region is quasi-steady, any transient effects of the rotation are

not translated across the interface. The size of the MRF region for which momentum

is applied should ideally only include those fluid elements which are swept through

by the rotating geometry. If the region is too large, an excessive amount of angular

momentum will be added to the flow, creating unphysical results in the flow field [100].

For this reason, a popular method of employment is to model the rotation of the wheel

hub using the MRF approach and to use a rotating wall boundary condition on the tyre

surface. An example of this technique is shown in Figure 3.2a and has been performed

by Waschle [91] and Landstrom et al. [98, 102] amongst others.

The MRF approach is generally considered to provide a good approximation of wheel

rotation however, one should bear in mind that as the wheel is not physically rotating

in the MRF, the positioning of the spokes can have a critical impact of the resulting

flow field [103]. A way of resolving this issue is the addition of mixing planes at the

interfaces to average the properties of the flow circumferentially, however this adds to

the cost of the simulation and still does not account for any transient wake effects

resulting from the rotation.

In order to include these transient effects, a sliding mesh approach can be employed

within an unsteady simulation. When using this approach, a sliding mesh region is

defined in a similar fashion to the MRF region as shown in Figure 3.2b, however unlike
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were some limitations in available CAD data for the 
specific test vehicle and it was necessary to make some 
simplifications in the diffuser area and around the 
engine. The CAD geometry was prepared in the 
software ANSA, meshed using Harpoon and solved 
using FLUENT. Post processing was performed in the 
software Ensight. 

The finished mesh consisted of approximately 44 million 
cells and the vehicle model is shown in detail in Figure 5 
below. Realizable k-! model was used with standard wall 
functions when solving in FLUENT. Moving ground and 
rotating wheels were modeled using a moving wall 
boundary condition on the ground and tangential velocity 
on the tyre geometry. The rims rotation was modeled 
using a MRF volume defined in a similar way as 
suggested in [16] and [17]. Figure 6 shows the MRF 
volume definition for Rim 1. Due to time reasons, only 
rotating wheels were considered in the CFD analysis. 

 

Figure 5 Surface representation of the vehicle model 
used in the CFD simulations [15] 

MRF volumeMRF volume
 

Figure 6 Definition of the MRF volumes 
used in order to simulate rim rotation [15] 

 
EXPERIMENTAL RESULTS 

 

The experimental results will be presented in three parts. 
First the local flow field is presented and analysed for all 
configurations and thereafter the global aerodynamic 
properties are presented. Finally a comparison between 
the global aerodynamics and the local flow field is made. 

LOCAL FLOW FIELD 

The local flow field is presented as contour plots of total 
pressure coefficient defined in Equation 1 as the local 
total pressure with respect to the reference pressure, 
normalized with free stream dynamic pressure. In-plane 
velocity vectors as well as a cut from the vehicle 
geometry are also visible in the figures. 
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Plane 1, Parallel to rear wheel 

Figures 7-10 shows the total pressure coefficient and in-
plane velocity vectors in Plane 1 for Configuration 1-2 
and 7-8 respectively. Comparing moving ground on and 
off show that the total pressure is generally higher 
towards the ground for both rims with moving ground 
activated. The flow structures between the two wheels 
appears overall very similar for moving ground on and 
off respectively. A drop in pressure can be noted at the 
upper left part of the wheel in all configurations. The 
moving ground on configurations show a somewhat 
larger area that is affected by this local decrease. This 
reduction in total pressure most likely corresponds to a 
small vortex structure shedding from interaction with the 
wheel and wheelhouse. With rotating wheel this 
phenomena is somewhat enhanced. 

 

Figure 7 Total pressure coefficients and in-plane  
velocity vectors Rim 1 moving ground off 

A local increase in total pressure is observed in the 
upper left corner towards the base of the vehicle. The 
area of high total pressure appears slightly larger for the 
moving ground condition indicating possibility for higher 
pressure recovery at the base. It can also be noted that 
total pressures in the upper right corner are noticeably 
higher with moving ground. 
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(a) A moving reference frame (MRF) volume

defined around the wheel hub [98]

Figure 3. Simulation Geometry (for fixed-floor
configuration)

Figure 4. Tire Rib and Tread Details (From Scan), for
fixed-floor configuration

Figure 5. Simulation Geometry for Rotating Tires:
Treads are covered by smooth surface to better match

rotation effect.

Figure 6. Region of wheel rotation for simulations using
true rotating wheel approach
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(b) A sliding mesh region defined around the

wheel hub [92]

Figure 3.2: Methods of simulating wheel hub rotation.

the MRF, all geometry and mesh elements within the region physically rotate. Thus,

for every time-step, the location of the wheel’s spokes are changing and flow is allowed

to move through the sliding mesh while subject to the highly transient effects of the

rotating geometry. An advantage of this approach is the versatility in its application,

as rotation of non-axisymmetric geometry can be simulated. Conversely the approach

comes with the added cost of running an unsteady simulation.

A number of comparison studies have shown an improvement in flow field accuracy

when using the sliding mesh approach rather than the MRF and rotating wall methods,

[92, 97, 103, 104]. Kandasamy et al. [97] showed a greater accuracy in predicting

aerodynamic force coefficients for a collection of vehicle rear end variants ranging from

estateback to fastback and a selection of these results are shown in Figure 3.3. Across

the majority of designs, errors in the drag coefficient appear higher for both rotating

wall and MRF with a maximum error of 5% in both cases, compared to a value of

2% for the sliding mesh. The errors in lift coefficient are even more conclusive with

consistently smaller deltas using the sliding mesh approach across all rear end designs.

The application of these approaches in automotive aerodynamics simulations is not

restricted to wheel rotation; other dynamic motions of road vehicles can be simulated

using these methods. One example where the sliding mesh approach is directly applica-

ble is for simulation of vehicle yawing motions. This has been shown by Tsubokura et
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al. [105], Theissen [23] and Wojciak [22] in reproduction of dynamic yawing motion of a

vehicle on a wind tunnel turntable. With a sliding mesh region enclosing the complete

vehicle geometry as shown in Figure 3.4, rotation about the yaw axis can easily be

achieved.

Figure 3.3: Effect of motion technique for rotating wheel simulation [97].

4.1 Numerical setup

walls are defined as frictionless walls. The floor is a moving wall with the same velocity
as the inlet velocity of the flow. The vehicle and strut surface are treated as normal walls.
In line with the experiment, the wheels do not rotate.
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Sliding Mesh Interface

Figure 4.2: Top view of numerical domain with sliding mesh interface and boundary
conditions.

4.1.3 Model motion

The oscillation of the vehicle in the experiment is modeled using a sliding mesh interface
between rotating and non-rotating domain, see Figure 4.2. The mesh interface is set up
on a cylinder with 1.8 m radius around the rotating axis and reaches from the moving
belt up to the top of the strut. Amplitude and frequency of the rotation are identical
to the standard test case of the experiment, i.e. f = 2 Hz and β = ±3.3◦. Additional
simulations are performed at constant yaw for the approximations of quasi-steady load
transients, to which the unsteady developments are compared.

As mentioned by Theissen [107], turbulent fluctuations of the flow field around bluff bodies
as well as the non-deterministic nature of Lattice Boltzmann solvers result in slightly
different aerodynamic peak loads when simulating several gust events consecutively. At a
confidence level of 95%, the confidence interval is only 0.016 for Cy and 0.006 for CMx and
CMz when simulating a single gust event or a single oscillation period. Therefore, five full
oscillations are modeled and phase averaged. Then, the confidence interval improves to
0.006 for Cy and 0.002 for CMx and CMz . In other words, the probability that the phase
averaged yaw moment peak is in a range of ±0.002 around the phase-averaged peak value
is 95%.

4.1.4 Numerical grid

The standard numerical grid has three layers with a cell size of 1.5 mm, which surround
the whole vehicle. Nine layers with 3 mm cell size follow. Then, the cell size is coarsened
using two offset regions of the vehicle geometry and five rectangular boxes, which are
positioned one into another. The dimensions of the first offset region defining a local cell
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Figure 3.4: Sliding mesh boundary conditions of Wojciak [22]
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Motion relative to other objects, such as overtaking manoeuvres can also be performed

using the sliding mesh approach [106, 107, 108]. However, in order to fix the domain

dimensions whilst keeping the desired level of grid refinement around the moving ve-

hicle, grid deformation is commonly used in addition to the sliding mesh. Figure 3.5

shows how when using this approach, the domain is initially split longitudinally into

two sections: a static region on one side of the domain containing the overtaken vehi-

cle, and a sliding mesh region on the other side containing the overtaking vehicle. The

sliding mesh is then split into three sections. A region of constant size fixes the grid

refinement around the vehicle, which is bookended by two regions in which the grid

elements are allowed to deform, stretching and shrinking accordingly to account for the

motion of the vehicle along the domain. This type of motion would not be possible

with the sliding mesh technique alone, as the inlet and outlet boundaries on either side

of the sliding interface would no longer coincide.
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Figure 3.5: Dynamic grid technique to simulation overtaking [106].

All the motions discussed so far have only one degree of freedom: rotation about a

single axis or translation along a fixed path. For more complex motions, the use of the

techniques discussed so far is limited. One example is a superposed steering action on

top of wheel rotation. For the simulation of wheel rotation, it has been shown that a

cylindrical MRF or sliding mesh region can be defined around the wheel hub as this

shape is symmetrical about the rotation axis. With the addition of steering motion,

this shape is no longer appropriate as a symmetrical region about both the rotation and

steering axes is required (a sphere). In addition this region can no longer only surround

the central hub and has to expand to also enclose the tyre surface as both the hub and

72



THE FLOW AROUND AN OSCILLATING DAVIS BODY

tyre undergo the steering motion. However, due to the contact with the ground and

the close proximity of the chassis, a shape with these symmetrical properties is not

possible and thus the use of the MRF and sliding mesh approaches is limited.

A second motion with more that one degree of freedom is body movement on a sus-

pension system, with potential motions including pitch, roll and heave. Again the

limitations of the MRF and sliding mesh approaches are exposed due to the close prox-

imity of the wheels and ground. In other industries such as aerospace and marine, this

is not an issue as the bodies are surrounded by fluid and are located far from external

wall surfaces. Dean et al. [109] and Morton et al. [110] demonstrated this in the

simulation of high speed aircraft manoeuvres containing up to six degrees of freedom.

In order to simulate these complex motions, alternative techniques are required. One

example is grid deformation which is usually coupled with the arbitrary Lagrangian-

Eulerian (ALE) method to handle the motion of the grid vertices. Grid deformation

has already been touched upon in this review for the simulation of overtaking, and was

shown to help remove many of the limitations of the MRF and sliding mesh approaches.

In this approach, volumetric grid elements are able to deform to allow motion of solid

geometry, thus no additional regions need to be defined and the close proximity of

wall boundaries are not an issue. Cheng et al. [111] and Tsubokura et al. [105, 112]

showed how this technique was capable of simulating flow around a vehicle subjected

to a dynamic pitching oscillation. More recently Kawamura and Ogawa [113] combined

pitch and heave, motion in two degrees of freedom, to investigate the effect of unsteady

aerodynamic lift force on vehicle dynamics and Kawakami et al. [114] combined lateral

and yaw motions to investigate the effect on aerodynamic side force and rolling moment.

These studies clearly demonstrate the suitability of the grid deformation technique

for simulation of chassis motions in multiple degrees of freedom, however care has to

taken when employing this method for large scale motions. Excessive grid distortion,

highly skewed elements and negative volume cells are all potential consequences of the

method and can deteriorate the quality of the flow prediction. For this reason, the

grid deformation technique is only suitable for small scale motions unless coupled with

additional methods such as the sliding mesh as shown in simulation of overtaking.
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3.3 Overset Grid Method

The overset grid method was developed by Steger et al. [73] in collaboration with the

NASA Ames Research Center as a means of generating a high quality, structured grid

around complex geometries. By dividing the geometry into several parts, a collection of

individual grids can be patched together, or overlaid to form one single computational

domain with data exchanged between the grids via inter-grid communication methods.

Fittingly, the method is also known as the Chimera approach, named after the legendary

Greek creature that was compounded of incompatible parts.

Over the years, research into the method has been funded due to prominent mission-

critical projects of the NASA Johnson Space Center’s Space Shuttle Program and a

useful review of the internal technology development has been performed by Chan [115].

The earliest application of the structured overset grid method to a real engineering

problem [115], is taken from Buning et al. [116] who adopted the method to perform

ascent analysis of the integrated space shuttle vehicle, in the wake of the 1986 Challenger

accident. As shown in Figure 3.6, individual, high quality grids were generated around

the external tank (ET), solid rocket booster (SRB) and orbiter (ORB) components.

For each grid intersection, a background and overset region was identified and a hole

was cut in the background mesh to accommodate the overset grid. The specific details

of this hole cutting procedure are described in detail shortly and Figure 3.7 shows the

result of the hole cutting procedure on each grid.

28

Figure 2.7: Symmetry planes of all gridsFigure 3.6: Overset grids around an integrated space shuttle vehicle [117].
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It was realised that the overset grid method could also be applied to relative body-

motion simulations, with individual geometry parts moving through the domain. Thus

the hole cutting procedure would take place at every simulation time-step. This re-

alisation initiated studies into separation characteristics of the solid rocket boosters

from the external tank [118] and debris analysis after the Shuttle Columbia accident in

2003 [119]. The success of these simulations has led to higher fidelity simulations with

significantly finer grids and the overall development of six-degree of freedom (6DOF)

multi-body motion capabilities [115].

29

Outer

(a) ET grid (b) ORB grid

Outer
boundary

(c) SRB grid

Figure 2.8: Grid cross-section showing holes

(a) ET Grid

29
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(a) ET grid (b) ORB grid
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boundary

(c) SRB grid

Figure 2.8: Grid cross-section showing holes

(b) ORB Grid
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(a) ET grid (b) ORB grid
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Figure 2.8: Grid cross-section showing holes

(c) SRB Grid

Figure 3.7: Holes cut in the grids around the space shuttle [117].
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In order to describe the steps in implementing the overset grid method, a simple,

two-dimensional example has been created in which a structured overset grid around a

square body sits within a larger background grid. These two grids are shown separately

and overlaid in Figure 3.8. With an overset mesh boundary condition applied to the

outer boundary of the overset region, the hole cutting procedure takes place. There are

variations across codes in the algorithms employed in this step, but generally speaking,

all algorithms determine, for each cell in the background region, wether the cell centroid

lies underneath the overset region. If this is the case, the cell is classed as inactive and

temporarily removed from the background mesh, thus creating a hole, as shown in

Figure 3.9. However to ensure successful inter-grid communication, there is a slight

overlap in the background and overset active cells so that no unwanted holes are left in

the assembled grid. The inactive cells are not permanently deleted from the background

region because should the overset grid move, inactive cells may need to become active

at a later time.

(a) Background Grid (b) Overset Grid

(c) Background and Overset Grids Overlaid

Figure 3.8: A 2D example of background and overset grids.
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(a) Hole cut in Background Grid (b) Initialised Grid

(c) Background Grid (d) Overset Grid

Figure 3.9: A 2D example of hole cutting and initialised overset grid.

With a hole cut in the background region, the next step of the overset grid procedure

is acceptor and donor cell search. Acceptor cells (also referred to as ghost cells) are

defined as the first layer of inactive cells adjacent to active cells. Thus, these cells form

a seal around the inactive region of the background grid and active cells of the overset

grid, as shown coloured in red in Figure 3.9. Donor cells, shown in green, are active cells

of the background grid which are overlaid by the overset’s acceptor cells. Between these

two cell types, data transfer takes place. The accuracy of the transfer is determined

by the order of the interpolation scheme used and also the difference in grid element

size between the two regions at this point. For this reason it is recommended that

the background region has additional refinement at the point of intersection with the

overset region. This can have an impact on computational cost especially for moving

geometry, as the background grid refinement will have to be put in place pre-emptively

over the anticipated path of the overset region.

In the automotive industry, examples of the overset grid method are few and far be-

tween. This is surprising as there are several potential applications where this technique
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could be useful. For example, design optimisation studies which require evaluation of

component geometry variations such as the profile or inclination of vehicle’s rear spoiler.

With an overset grid around the spoiler, variations to this geometry can be performed

without the time consuming and expensive task of re-meshing the complete domain for

every design. However, an application of this type could not be found in literature.

Peters et al. [120] applied the structured grid technique to assemble a high quality grid

consisting of 176 individual grids, around the complex shape of the DrivAer fastback

model, shown in Figure 3.10. Surface pressure values obtained using the assembled

grid, agreed reasonably well with results obtained using traditional gridding techniques.

However, a significant drawback and a possible reason for the scarce application of the

method in the automotive industry is the substantial labor time and expertise required

to generate the overset grids, approximately 90 man hours in their study.

(a) Overlapping surface grids
(b) Intersection of volume grids between Hood

and Windshield

Figure 3.10: Structured overset grids used by Peters et al. [120].

For road vehicle body motion simulations, Tsubokura et al. [67] and Carbonne et

al. [121] applied the method to investigate the effect of unsteady aerodynamic forces

due to a crosswind on a vehicle’s path. Although useful, this simple, two-dimensional

test case does not take full advantage of the method’s 6DOF capabilities. Similarly,

Winkler et al. [122] used the overset grid method to study the effect of crosswinds on

a road vehicle, shown in Figure 3.11. The simplified bus geometry used in their study

represents a more realistic on-road problem as the large side area results in a vehicle

more susceptible to this type of event. However, in a similar fashion to Tsubokura et

78



THE FLOW AROUND AN OSCILLATING DAVIS BODY

al. [67], motion was restricted to the dominant motions, yaw angle rotation and side

translation, thus only two degrees of freedom. Again, the full 6DOF capabilities of the

method were not exploited.
28 N. Winkler et al. / Computers and Fluids 138 (2016) 26–34 

Fig. 3. Part of the mesh including the overlap region. View from above in the X-Y 
plane of the vehicle during a yaw motion. The position of the studied bus is plotted 
in white. 
basically uses the Reynolds Average Navier–Stokes (RANS) ap- 
proach for regions without separation and close to the solid sur- 
faces, while the Large Eddy Simulation (LES) approach is used in 
the regions of separated flow. In this work the so-called improved 
delayed DES (IDDES) approach is used, which is favourable for 
flows with large separation zones. By resolving more of the turbu- 
lence, the IDDES approach is shown to better capture the location 
of the reattachment point than a standard DES, [20] . 

The motion of the vehicle in the aerodynamic computations is 
enabled through the use of the overset mesh technique, which can 
handle the interaction between moving meshes. Here, the mesh 
consists of two regions, that is an overlap region including the ve- 
hicle and a background region, which the overlap region moves 
in relation to. The meshes are shown for a horizontal plane in 
Fig. 3 where the overlap mesh is rotated in relation to the back- 
ground mesh to show its capabilities. Between the two regions 
there is an intermediate region of a few cells, not shown in the 
figure, where the solution field is interpolated from one region to 
the other at every time step using the least squares approach. The 
mesh consists of an unstructured hexahedral trimmed grid of in 
total 24 · 10 6 cells with 9 · 10 6 cells belonging to the overlap 
region including refinements in three steps with 20 prism layers 
nearest to the vehicle with a total thickness in the wall normal 
direction of 0.0141 m with a stretching of 1.25 and a length of 
0.0044 m, which corresponds to 0.003 vehicle lengths, giving a 
y + < 11 for the conditions used. The cell size in the refinement re- 
gions were chosen based on the work in [21] where aerodynamic 
computations of the tractor-trailer truck configuration with the 
same Reynolds number Re were studied by comparing the C d value 
with the measured C d from [22] . In the present study, the compu- 
tations over estimated the C d value by 12% and did not change in 
favour by either increasing or decreasing the cell size. There are 
several reasons to this deviation as e.g. a too dissipative solution 
due to the numerical schemes chosen. However, there is an un- 
certainty in the geometry of the tractor-trailer truck configuration 
used for comparison, which might explain the relatively high de- 
viation in the C d value. Further work to get a better match with 
experimental results was not carried out, since it was considered 
not to affect the outcome from this work. 

Fig. 4 shows the surface of the bus including a vertical plane 
together with a zoomed in figure showing the prism layers close 
to the surface of the vehicle. The cell size for the background re- 
gion, which dictates the main cell size in the overlap region, was 
chosen small enough not to give spurious oscillations. For a larger 
cell size, it was found that spurious oscillations appeared in the 
pressure field, which affected the aerodynamic loads on the ve- 
hicle. The background mesh has a size of 22.5 × 6 × 1.5 vehi- 
cle lengths, while the overlap region has a size of 5.5 × 2.5 × 1 

Fig. 4. Upper; surface mesh of the vehicle body and a cut through the aerodynamic 
domain. Lower; zoom in on the rounded part of the vehicle body showing the tran- 
sition from the prism layers to the main aerodynamic domain. 
vehicle lengths. The model is a 1/8 scaled model and run with a 
speed of 91.6 m/s in the aerodynamic domain, which is corre- 
sponding to Re = 2 · 10 6 in accordance to the original wind tunnel 
measurements. A Re > 1 · 10 6 was shown to give Reynolds num- 
ber independent results [22] . The time step used for the compu- 
tations is 6 · 10 −5 seconds giving a convective Courant number be- 
low one close to the vehicle for the RANS part of the flow field 
and occasionally up to five in the fluctuating parts of the flow 
field, which is possible without a diverging solution due to the im- 
plicit solver used. The meshes were constructed and the compu- 
tations performed in the CFD code STAR-CCM+ version 9.02 from 
CD-Adapco where a second-order temporal scheme was used and 
a hybrid second-order upwind/bounded central differencing dis- 
cretization scheme was used in space. The computations were run 
on a CRAY XC40 system, with Intel Xeon E5-2698v3 cores having 
64 GB of memory per node, using 6 nodes with a total of 192 
cores. The computational time is approximately 12 h, using 2500 
time steps for each run, starting from an initial solution with the 
vehicle just upstream of the crosswind passage. 

To use the aerodynamic loads, i.e. lateral force F ya and yaw mo- 
ment M za , as input to the vehicle dynamics model, which uses 
non-scaled values, the loads are scaled according to the lateral 
force coefficient C s , Eq. (1) and the yaw moment coefficient C yaw , 
Eq. (2) . The time step is scaled according to the Strouhal number 
St , Eq. (3) . The vehicle dynamics model then predicts the actual 
motion of the vehicle, which again have to be scaled back when 
used in the aerodynamic domain with the velocity ratios and the 
size for every time step for the two-way coupling approach. 
C s = F ya 

1 / 2 ρu 2 ∞ A (1) 
C yaw = M za 

1 / 2 ρu 2 ∞ A · L (2) 
St = L 

u ∞ · t (3) 
u ∞ denotes free stream velocity, ρ density, A frontal area, L vehicle 
length and t time. 
2.2. Vehicle dynamics 

The vehicle dynamics are represented through a so called 
single-track or bicycle model derived from the equations of trans- 
lational and rotational motions. Hence, the model considers two 

Figure 3.11: Overset grid used by Winkler et al. for evaluation of vehicle behaviour in

a crosswind [122].
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3.4 Experimental Data

The Davis model used in these tests was taken from the original development by Davis

[86]. The geometry features a long front slant, short roof and a sloped 20° backlight.

This fastback shape is more representative of a production vehicle than the more com-

monly used Ahmed body [83], whilst the simple geometric features allows the assess-

ment of more fundamental flow field characteristics. The wind tunnel model was built

to 1/6th scale with a characteristic length L=0.625 m, frontal area of 0.036 m2 and

a blockage factor of approximately 1.4% based on the model frontal area and cross-

sectional area of the LUMS wind tunnel working section. Other important dimensions

such as width (W) and height (H) are provided in Figure 3.13. Baden-Fuller investi-

gated the effect of rounded and square rear pillars but for this study, only the rounded

pillars are used. As a result, all edges were rounded to a radius of 20 mm. The ground

clearance between the model and the floor was set to 40 mm.
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Figure 53, Davis model dimensions 

 

The base model configuration has all the edges rounded with a 20mm radius with all the 

surfaces smooth, the second model is the exactly the same apart from the rear pillars that are 

squared off rather than rounded, shown in Figure 54. Throughout the thesis these will be known 

as the ‘round-edged model’ and the ‘square-edged model’ respectively. There is a small recess 

on the rear pillar of the square-edged model to which Mansor attached extensions to the rear 

strakes but these are not used in this work and in chapter 3 it is shown that they do not have any 

negative influences on the overall flow field and are ignored in the remainder of the thesis. 

 

 
Figure 54, The two upper halves of the Davis model with different rear pillar geometries 

 

Figure 3.12: Davis model drawing [85].

The experimental tests were performed in the LUMS wind tunnel and were divided into

two sets: static tests of the model at several fixed yaw angles and dynamic tests where

the model was driven in a sinusoidal yaw angle oscillation. For the static tests, the

model was connected to the underfloor balance and turntable of the working section

however, for the dynamic tests, the desired oscillating frequency of 1Hz and amplitude

of ±10° was too high for the balance yaw drive, so an oscillating model rig was used.

This rig was an adaptation of the one designed by Mansor [123] in which free oscillation
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of the model, driven by the aerodynamic yaw moment, was performed. The springs

in Mansor’s rig were replaced by an electric motor and crank arm and the model was

connected to the rig using a 20 mm diametre support shaft and low-friction bearings,

as shown in Figure 3.13.
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Figure 38, Yaw motion of the balance 

 

To create consistent and long lasting sinusoidal oscillating motion an electric motor and crank 

replaced the springs used by Mansor. These were designed to be adjustable to give different 

yaw amplitudes and frequencies of motion. Two images of the mechanism and its installation 

are in Figure 39 and Figure 40. 

 

 
Figure 39, Cranked oscillating model rig, isometric view 
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The model was held in place above the floor of the wind tunnel by bearings that supported the 

shaft from the model. The crank mechanism was beneath the floor of the working section. All 

the components were attached to the beam that was held in place by bolts, which were flush to 

the floor of the wind tunnel, such that the model was in the centre of the working section, in the 

same place as when taking steady state measurements. 

 

 

Figure 40, Cranked oscillating rig installed beneath the working section floor 
 

The motor was chosen to provide suitable torque to overcome the aerodynamic yaw moment 

and model inertia while turning at 1Hz. The linkages were designed to be low inertia and light 

weight and spherical bearings were used to allow for any out of plane motion caused by 

manufacturing tolerances. A set up plate and control arm were manufactured to ensure the 

oscillation was centred on 0º yaw. 

 

With the model oscillating at 1Hz, in an onset windspeed of 40m/s, it produces a reduced 

frequency of 0.049 that Mansor found produced self-excitation. Using the definition of reduced 

frequency in Sims-Williams (1), these onset conditions produce a reduced frequency of 0.098 

which means the motion should be expected to produce a quasi-static aerodynamic response 

from the model. 

 

The crank length was chosen to create a yaw angle amplitude of ±10º, with a maximum yaw 

rate of 10º/s, which was based upon the yaw angle range considered by Mansor and also 

because it should produce significant differences in the flow field from the 0º situation without 

Figure 3.13: Driven oscillation model rig used by Baden-Fuller [85].

The amplitude of the driven oscillation was designed at ±10°, however due to flexing

in the motor caused by the inertia of the model, a consistent overshoot in yaw angle

produced an actual amplitude of ±11°. The oscillation frequency of 1Hz and wind

speed of 40 m/s corresponds to a reduced frequency of K = 0.098 using the definition

of Sims-Williams [124] shown in Equation 3.1. A 10 second sample of the motion is

shown in Figure 3.14.
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reaching the upper yaw angle limit of the linear approximation of the lateral aerodynamics of 

the Davis models. 

 

Although the motor driven motion is forced, unlike the free oscillations created by the springs, 

any periodic features in the flow field should lock into the motion of the model in a similar way 

to that shown in (129) and (17) where periodic features lock-in to the motion of the model. 

 

The yaw angle created by the motion was quantified using an angular potentiometer attached to 

the base of the model shaft. This gives an output voltage between 0- 5V with a linear response, 

accurate to 0.5%, based on the angle. 

 

A 10 second sample of the model motion at 1Hz and 40m/s is shown in Figure 41. The motion 

was subject to cycle to cycle variations in amplitude and frequency. Slight asymmetry in the 

motion was also present due to lash within the gearing of the motor but was not more than ±0.2º. 

 

 
Figure 41, Driven yaw oscillations, KM = 0.049 

  

The small inconsistencies in the frequency are due to small fluctuations in the voltage across the 

motor; this was minimised by using a stabilised voltage supply but the time period of the 

oscillations could vary up to ±0.02s from 1s. 

 

The yaw angle amplitudes of the oscillations are slightly larger than the design specification 

caused by the motor flexing slightly when the model is at the largest yaw angles. This flex is 

caused by the inertia of the model acting onto the motor at the point of greatest rotational 

acceleration and the aerodynamic yaw moment reacting against the motor. Despite these, the 

yaw angle overshot is very consistent, creating a yaw angle amplitude of 11º. 

  

Figure 3.14: A sample of the oscillating model motion [85].

K =
2πfL

u
(3.1)

For both sets of tests, two-dimensional, planar velocity fields were recorded using par-

ticle image velocimetry (PIV) on two vertical cross planes parallel to the base of the
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model. These planes were located 0.25L and 0.5L downstream from the base surface.

In addition, surface pressure values were recorded using an array of 241 pressure tap-

pings located symmetrically on both sides of the model and on the backlight and base

surfaces. The exact locations of these tappings are shown in Figure 3.15. As a result, ex-

perimental surface pressure distributions are subject to interpolation errors. Extracted

values of pressure were corrected for the 1.4% blockage using equation 3.2 where A′ is

the ratio of model frontal area to working section cross sectional area (A′=0.0148 for

the Davis body at 0° yaw angle).

Cpcor
=

Cp + 2A′

1 + 2A′
(3.2)

Figure 3.15: Davis model pressure tapping locations [85].

The tests differed in their measurements of aerodynamic forces and moments. For the

static tests, the six-component, underfloor, virtual centre balance was used. Whereas

for the dynamic tests, the model was not connected to the balance, thus forces and

moments were calculated through an area weighted integration of the surface pressures.

3.5 Computational Domain and Grid Generation

To determine a suitable grid for prediction of the Davis model flow field with reasonable

accuracy, two static tests at yaw angles of 0° and −10° are simulated initially. This is
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then followed by the dynamic tests, using two motion techniques: the sliding mesh and

overset grid methods. For this reason, a total of four computational grids have been

generated.

As the experimental tests took place in the LUMS wind tunnel, the outer domain

generated in the previous SUV case study can be transferred. This simplified geometric

model features the contraction and first diffuser sections and was shown to provide an

excellent replication of the empty working section flow.

For the two static grids, the Davis model is placed at the centre of the turntable at

the appropriate yaw angle. On the surfaces of the model and support shaft, triangular

surface elements are limited to a size of 1 mm (0.0017L) in order to maintain the

curvature of the model’s radiused edges, Figure 3.16. As a result, approximately 7×105

elements define the model’s surface and contribute to a total of 1.8×106 for the complete

domain.

(a) Leading Edge (b) Base Surface

Figure 3.16: Davis model surface grid.

Growing outwards from the surface, prism layers are defined to capture the developing

boundary layer. A non-dimensional wall spacing value y+ < 1 and 8 prism layers to

a total thickness 1 mm (0.0017L) are used to resolve the near wall velocity gradient.

Unlike the SUV case study, wall functions are used on the walls of the tunnel, thus the

near wall spacing value is increased to y+ > 30.

A polyhedral mesher is selected to discretise the fluid volume. A slow expansion rate of

1.2 is chosen to slow the growth of volume element size from the edge of the model prism
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layers, thus keeping a moderate level of refinement around the entire model. Elements

grow up to a maximum volume of approximately 0.001 m3 in the bulk of the domain.

Over the rear half of the model, a volumetric control region of fixed 2 mm (0.0034L)

diametre elements is added to capture the wake of model with reasonable accuracy.

As shown in Figure 3.17d for the −10° yaw angle grid, the location of the refinement

region is also yawed, thus its location with respect to the vehicle is consistent. Finally,

the grids are subjected to 8 optimization cycles to ensure the highest quality. The total

number of volume elements is approximately 15.7× 106 for both grids.

(a) Vertical, axial cut through volume (b) Wake Refinement

(c) Horizontal cut through volume, 0° yaw (d) Horizontal cut through volume, −10° yaw

Figure 3.17: Static Davis model volume grid.

For the first dynamic grid using the sliding mesh approach, the domain is split into

two separate regions. A cylinder is defined around the Davis model with the same

diameter of the wind tunnel turntable 1.6 m and a chosen height of 0.4 m (2.5H).

This cylindrical region is then subtracted from the LUMS domain to generate a new

‘background’ domain. At the intersection of the background and sliding mesh regions,

an in-place internal interface is created to allow data transfer between the to regions. To

maintain accuracy of this transfer, a similar element size on the interface is set in both

the sliding and background mesh regions. The resulting total number of volumetric

elements is approximately 16×106 with 10×106 in the sliding mesh region and 6×106
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in the background. The two regions are shown in Figure 3.18.

(a) Vertical, axial cut through sliding mesh

region

(b) Vertical, axial cut through background

region

(c) Horizontal cut through sliding mesh region (d) Horizontal cut through background region

Figure 3.18: Sliding mesh volume grid.

For the overset approach, the same cylindrical region can be used as the overset grid

however, the background grid is different. No subtraction takes place, and the back-

ground grid simply takes the form of the empty LUMS domain. As shown in Figures

3.19 and 3.20, additional refinement is required in the background region in the volume

where the overset grid lays, in order to maintain accuracy of the inter-grid communica-

tion. As a result, the number of elements in the background grid increases to 6.4× 106

and the total number to 16.4× 106.
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(a) Uninitialised overset grids (b) Initialized overset grids

(c) Hole cut in background grid
(d) Initialized overset grid region

Figure 3.19: Overset volume grid.
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(a) Background (b) Overset

(c) Background (d) Overset

Figure 3.20: Overset grids: -1: inactive, 0: active, 1: donor, 2: active (intermediate

cell layer used by the hole cutting process), 3: acceptor.
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3.6 Numerical Approach and Boundary Conditions

As intended, the numerical approach and boundary conditions follow on from the results

of the first SUV case study. The IDDES formulation of the Spalart-Allmaras Detached

Eddy turbulence model is selected, alongside a second order temporal scheme with a

time-step of ∆t = 2.5 × 10−5 seconds (non-dimensional ∆tU/L = 1.6 × 10−3). This

limits the CFL number to < 1 in the smallest wake elements.

A DES method is usually applied to much finer grids with a total number of elements

closer to 100 × 106, however a grid containing this level of refinement is impractical

due to current computational resources and the simulated time required to capture

several periods of the model’s oscillation. In a thorough evaluation of computational

methods for the simulation of flow around an Ahmed body, Ashton and Revell [81]

obtained reasonable results using a DES methodology on a grid of similar size. The

main shortcoming of their approach was a slight under prediction of the turbulent

kinetic energy in the initial separated shear layer of the 25° rear slant. This led to

a reduction of turbulent mixing in the wake and ultimately an over prediction of the

downstream wake length. This may be a similar issue for the Davis model which

features a comparable 20° rear slant.

For the static cases, simulations were initialized using a steady state RANS solver before

switching to DES for 10 convective flow units (10 × L/U) to allow the flow to settle.

This was followed by an averaging period of 40 convective flow units (0.625 seconds).

Similarly, the dynamic simulations were initialized at a fixed 0° yaw angle using the

same procedure. After this, the model was allowed to oscillate at the same rate as the

experiment for a total of two time periods (2 seconds).

An inlet velocity of 5.39 m/s and turbulence intensity of 3% provides values of 40 m/s and

0.15% respectively in the working section. As shown in Case Study 1, at the model’s

location in the tunnel, these boundary conditions also provide an accurate replication

of the boundary layers formed over the tunnel walls and the velocity variation over

the total height of the working section. Baden-Fuller [85] found that the model was

insensitive to Reynolds number effects above a critical value of 1.3×106 based on model
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length L. Hence these tests were performed at a Reynolds number of 1.7× 106.

3.7 Results - Static Tests

The results of the two static tests at 0° and −10° yaw are presented first. A comparison

of the wake flow field at 0° yaw angle in the two PIV planes located at 0.25L and 0.5L

downstream of the model are presented in Figure 3.21. The colouring of the contours

indicates values of the in-plane velocity magnitude (v and w velocity components) and

are expressed as a percentage of of the onset velocity (40 m/s). In addition, in-plane

velocity vectors are overlaid on top of the contours to show the direction of the flow as

well as its strength.

For the 0° yaw angle at 0.25L, the computational results are in good agreement with

the experiment, with an accurate prediction of the location and strength of the two

counter-rotating vortices which dominate the wake flow. This accuracy is maintained

downstream as indicated by the high similarity between results in the 0.5L plane. One

noticeable difference between the results is the slight asymmetry in the experimental

flow field. This is especially interesting given the difference in averaging windows: the

computational results represent an average of 0.625 seconds or 40 convective flow units

whereas the experimental PIV measurements represent a much longer average of almost

300 seconds or 19,200 convective flow units. This suggests that the experimental asym-

metry is a consequence of yawed onset flow conditions or imperfections in the model

which have not been included in the simulation. This is consistent with the Generic

SUV experimental results shown in Case Study 1 which also displayed an asymmetric,

yawed flow field at 0° yaw angle for a similarly long averaging window and the results

of Pavia et al. [125] and Perry et al. [126] who showed, that a simplified square-back

vehicle exhibited a long-period bi-stability in the flow using the same facility,.

This experimental asymmetry is maintained in the surface pressure values as shown in

Figure 3.22. A higher pressure at the front lower edge of the body’s right hand side

and asymmetric distribution over the backlight and base surfaces suggest that the onset

flow is slightly yawed with respect to the body. Although the time averaging window

89



(a) Simulation 0.25L (b) Simulation 0.5L

(c) Experiment 0.25L [85] (d) Experiment 0.5L [85]

Figure 3.21: Davis model 0° yaw angle PIV planes showing in-plane velocity

magnitude as a percentage of onset velocity (40 m/s).

is shorter in comparison to the PIV data, (2048 convective flow units compared to

19,200), the simulated surface distribution is much more symmetric for a considerably

shorter window (only 40 convective flow units).

The coarseness of the experimental pressure tappings and resulting data interpolation

makes comparison to the more detailed distribution and peak regions such as the suc-

tions at the roof edges slightly misleading. For this region a second distribution has

been generated using interpolation of the simulation pressure values extracted only at

the locations of the experimental tappings. Using this to compare to the experiment it
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(a) Simulation

(b) Simulation Coarsened

(c) Experiment [85]

Figure 3.22: Davis model 0° yaw angle surface pressure coefficient.

is clear that the pressure distribution on the sides of the body is predicted well, with

the exception of the slight asymmetry. This has a direct influence on the high accuracy

of the C pillar vortices identified in the PIV planes which are sourced by this flow along

these surfaces. Contrastingly, on the backlight, there are differences in the distribution

most clearly towards the roofline. A U shaped region of lower pressure is predicted in

the simulation which is not present in the experiment. This lower pressure indicates

a much stronger flow separation from the roof’s trailing edge and is clear evidence of

an under prediction of the turbulent kinetic energy in the initial separated backlight

shear layer in agreement with the Ahmed body simulations of Ashton and Revell [81].

The reduction in turbulent mixing keeps the flow separated over the upper portion of

the slant but is contained by the strong C pillar vortices. As a result, the pressure

recovery over the lower half of the backlight is slightly over predicted in strength. The

91



anticipated over prediction in wake size as a consequence of the turbulent mixing deficit

as shown by Ashton and Revell [81] is not relevant in this case. As shown in the PIV

planes, the wake is dominated by the C pillar vortices, which due to the longer back-

light, are much stronger in comparison to those present in the Ahmed body flow and

hence control the size and structure of the wake.

The large differences in backlight surface pressure distribution are not reflected in the

force coefficients. Table 3.1 presents the force coefficients calculated from an area

weighted integration of the surface pressures at the pressure tapping locations. The

simulation backlight lift and drag contributions differ to experiment by 7 and 16 counts

respectively. This is a useful example of how reliance on force coefficient comparisons

can be misleading. The large differences, specifically the stronger suction towards the

top of the backlight and the over prediction in pressure recovery towards the lower edge

appear to balance out in the area weighted average.

On the base surface, the pressure distributions appear significantly different with much

lower pressures found in the experiment. The effect of using coarsely distributed pres-

sure tappings (only six tappings on the base surface) is evident by comparing the two

simulation distributions. The reasonable level of symmetry seen in the full simulation

data is lost in the coarse interpolation procedure, implying an unphysical asymmetric

nature of the flow and this may also be the case with the experiment results. There

appears to be an disproportionate difference in the drag coefficient values, however,

it is believed that the experimental value reported by Baden-Fuller is incorrect by an

order of magnitude based on an interpreted average pressure value on the base surface.

Table 3.1: Force coefficients at 0° yaw angle, calculated from integration of surface

pressures at tapping locations.

Experiment [85] Simulation

Backlight Lift 0.254 0.247

Backlight Drag 0.092 0.108

Base Drag 0.009 0.110
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At −10° yaw angle, an A pillar leeward vortex is formed in addition to the two C pillar

trailing vortices. These three vortices are identifiable in the velocity fields shown in

Figure 3.23. The locations and strengths of the two trailing vortices are matched well

by the simulation, however this is not the case for the A pillar vortex. The rotational

strength of this structure appears to be over predicted and is located higher up the

body, aligned with the roof.

(a) Simulation 0.25L (b) Experiment 0.25L [85]

Figure 3.23: Davis model −10° yaw angle PIV planes showing in-plane velocity

magnitude as a percentage of onset velocity (40 m/s).

It is predicted that the inaccuracies in the A pillar vortex are a consequence of the

short time averaging window in comparison to the experiment rather than an effect

of the coarse grid and computational method. Baden-Fuller showed how this A pillar

vortex is an unsteady flow feature, with a weak, periodic separation behaviour. In all

instantaneous experimental vectors field, the A pillar vortex was present but its location

varied vertically and laterally with significant but seemingly uncorrelated changes to its

size and strength. An example of the instantaneous, experimental flow field is shown in

Figure 3.24a which shows the position of the vortex at (y/W = −0.25, z/H = 1.3), a

location which more closely agrees with the simulation. Using cross-correlation based

conditional averaging on the experimental data, repeated modes were extracted and it

was found that the vortex could separate at the roof trailing edge or remain attached

all the way down the backlight. Figure 3.24b shows the result of experimental vortex
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core tracking on the leeward side confirming the unsteady nature of this flow structure.

Given this behaviour, lengthening the simulation’s averaging window in an attempt to

achieve a similar mean vortex location is computationally impractical at this stage.

(a) Experimental instantaneous vector field at 0.25L
(b) Experimental leeward side vortex core

tracking at 0.25L

Figure 3.24: Davis model −10° yaw angle unsteadiness in the A pillar vortex [85].

A comparison of the surface pressure distribution at −10° yaw angle is presented in

Figure 3.25. The predicted distribution on the windward side of the body is in excellent

agreement with the experiment, whereas on the leeward side, the effects of the A pillar

vortex unsteadiness and the shorter time averaging window are evident in the low

pressure region underneath this flow structure. This is made even clearer by Figure

3.26, which shows the difference in pressure |∆Cp|, between the windward and leeward

sides of the body. Despite this, the overall effect on the balance measured side force and

yaw moment coefficients shown in Table 3.2 is small, with values differing by only 9 and

5 counts respectively, to the experiment. On the backlight, a similar behaviour to that

seen in the 0° yaw angle simulation exists. An over prediction in the roof separation

is indicated by the larger region of low pressure towards the top of the backlight and

an over prediction in the pressure recovery on the lower portion can be seen. Again,

on the base surface, there is a significant change in the pressure distribution, but due

to the coarseness of the pressure tappings, conclusions on the simulation accuracy for

this surface cannot be made with confidence.
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(a) Simulation

(b) Simulation Coarsened

(c) Experiment [85]

Figure 3.25: Davis model −10° yaw angle surface pressure coefficient.

There is good evidence to suggest that the current grid and computational methodology

can be used to provide an accurate prediction of the flow field at static yaw angles up to

the designed maximum yawed angle of the oscillating rig. The largest effect of the coarse

grid appears to be an over prediction in the separation off the roof trailing edge over the

entire yaw angle range. The wake dominating trailing vortices are predicted well, as is

the unsteady A pillar vortex which is formed as the yaw angle increases. In conclusion,

this grid and methodology can be adopted for use in the dynamic simulations.
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(a) Simulation

(b) Experiment [85]

Figure 3.26: Davis model −10° yaw angle, |∆Cp| = |Cp windward − Cp leeward|.

Table 3.2: Force coefficients at −10° yaw angle, (measured by balance in experiment).

Experiment [85] Simulation

Side Force -0.217 -0.208

Yaw Moment -0.062 -0.057

Front/Rear Side Force -0.171/-0.047 -0.161/-0.047

3.8 Results - Dynamic Tests

The results for the driven 1Hz sinusoidal oscillation are now presented. Initially the

sliding mesh method is used and later comparisons will be made to the overset tech-

nique. Figure 3.27 shows the behaviour of the side force coefficients for one oscillation

period. For both experimental and computational results, front and rear side force

values have been calculated using the total side force and yawing moment, as shown in

Equation 3.3. This data has been smoothed using a low pass filter to remove some of

the small scale unsteadiness in the side force. Also shown are the experimental coef-

ficients which have been periodically averaged over 1056 oscillation periods to remove
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cycle-to-cycle variations in frequency and magnitude due to the supply voltage and the

effect of the forces on the motor. Finally, the quasi-steady experiment values at static

yaw angles have been included.

CYF
=

CY

2
+ CMZ, CYR

=
CY

2
− CMZ (3.3)
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Figure 3.27: 1Hz oscillation: Side force coefficient.

It is clear that the simulation does not predict the large hysteresis that is present in

the experiment, with the front and rear side force following the static values. It is also

clear that the hysteresis present in the experiment only exists around the front half of

the body. Baden-Fuller showed that this hysteresis was a consequence of a time lag

in the evolution of the leeward A pillar vortex. Isosurfaces of Q criterion=200 000 s−2

are useful in identifying this vortex in the simulation results and Figure 3.28 shows the

high similarity and lack of any lag in this structure at the two −10° yaw angle states.

In this instance, increasing and decreasing yaw angle is independent of sign and thus

refers to growth in the absolute value of the yaw angle.
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(a) −10° Increasing (b) −10° Decreasing

Figure 3.28: 1Hz oscillation: Isosurfaces of Q criterion=200 000 s−2.

Figure 3.29 shows the surface pressure on the sides of the body, instantaneous pressure

for the simulation and averaged at the same position over multiple oscillation periods for

the experiment. The high similarity in simulation pressure distributions between −10°

increasing and −10° decreasing yaw angle could be expected from the lack of hysteresis

observed in the force coefficients, whereas variations in the experimental distributions

can be identified as expected. At −10° and increasing in yaw, the experimental pressure

distribution bears a much closer resemblance to the 0° static distribution of Figure 3.22

than the −10° static distribution of Figure 3.25. However, on the windward side, there

is evidence of yawed flow with high suction over the C pillar. The beginning of a shift

in pressure along the windward A pillar indicates a delay in the dissipation of the A

pillar vortex that was formed on this side of the body when it was at positive yaw.

The experimental hysteresis in this region is confirmed by Figure 3.30 which shows the

behaviour of pressure at a single tapping location under the A pillar.
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(a) Simulation −10° Increasing

(b) Simulation −10° Decreasing

(c) Experiment −10° Increasing [85]

(d) Experiment −10° Decreasing [85]

Figure 3.29: 1Hz oscillation: Surface pressure on sides of the oscillating Davis body

(windward RHS and leeward LHS).

At −10° and decreasing in yaw angle, the pressure distribution is much closer to that

when static at −10°, albeit with a stronger suction over the leeward C pillar indicating

the location and strength of the leeward A pillar vortex. It is clear that the behaviour

of the A pillar vortex over the front half of the body is the main source of the hysteresis

that exists in the experiment.

The existence of hysteresis at this reduced frequency (K = 0.098) is surprising. Sims-

Williams [124] described how at frequencies as low as this, the flow can be expected to

behave in a quasi-steady manner. This is consistent with the simulation results which

displayed minimal hysteresis and suggests that an external source such as yawed onset

flow or imperfections in the wind tunnel model are responsible for the experimental
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Figure 3.30: 1Hz oscillation: Pressure at A pillar tapping location.

time lag. Asymmetric A pillar radii or leading edge imperfections could introduce

variations in the formation of the A pillar vortex and evidence of this is shown by the

shift in the origin of the front side force hysteresis which is not centred about zero. On

close inspection of the physical wind tunnel model, such features are found. Due to the

nature in which the model is assembled, from a base plate and upper section, an offset

in the leading edge geometry is present. This is more clearly shown in Figure 3.31 and

it is unknown whether any attempts were made to reduce this offset during the tests.

If present in the wind tunnel tests, it is reasonable to assume an early separation from

the leading edge and possible reattachment will exist. Evidence of this is shown in the

experiment pressure distributions around the leading edge.
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Figure 3.31: Leading edge of the wind tunnel model.

In an attempt to generate flow hysteresis, the simulation has been repeated at the

higher frequency of 10Hz, which corresponds to a reduced frequency of K = 0.98.

This frequency falls around the value where the flow will no longer be quasi-steady,

as stated by Sims-Williams [124] and hence hysteresis can be expected. The same

oscillation amplitude has been used for the higher frequency simulations.

The side force behaviour at this higher frequency is shown in Figure 3.32. As expected

hysteresis has been generated, but unlike the experiment results at 1Hz, the amount of

hysteresis has increased at a similar rate in both the front and rear side force contribu-

tions. It is clear from Figure 3.33 that the A pillar vortex has not fully developed along

the length of the body as it increases in yaw angle. However when returning, sufficient

time has passed for the vortex to grow in strength and downstream length, hence the

two different values of side force at −10° yaw angle. In a similar fashion, the time taken

for this vortex to convect downstream and pass the body is longer than the time taken

for the body to return to 0° yaw, hence the asymmetric flow topology at this angle.

The two topologies that are generated are dependent on the direction of rotation and

interestingly are mirror images of each other. Hence, the overall hysteresis, unlike the

experiment, is centred about (0, 0).
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Figure 3.32: 10Hz oscillation: Side force coefficient.
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(a) −10° Increasing (b) −10° Decreasing

(c) 0°: Negative rotation

(d) 0°: Positive rotation

Figure 3.33: 10Hz oscillation: Isosurfaces of Q criterion=200 000 s−2.
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3.9 Results - Motion Evaluation

The overset grid approach was only applied to the higher frequency 10Hz oscillatory

motion and not the lower 1Hz motion. In terms of computational resources this was

considerably more efficient since the oscillation period and thus time to obtain a com-

parison of one complete rotation is much shorter. The choice of motion technique,

sliding or overset grid, has a minimal effect on the flow prediction for this particular

simulation. This was shown in Figure 3.32 in which the force coefficient curves of the

two approaches lie on top of each other. The largest difference between the two ap-

proaches was computational expense. Table 3.3 shows the cost per time step and for

one complete oscillation period for each method. Also included in this table, is the cost

for a static simulation, which is used to show the effect on cost of including motion

in general. For this particular simulation, the sliding grid approach is clearly a much

faster option, offering a speed up of approximately 84% over the overset grid, although

whether this level of speed up is maintained for more complex motions or finer grids is

undetermined.

Table 3.3: Computational costs of motion techniques.

Static Sliding Grid Overset Grid

Wall clock time per ∆t (s) 5.78 7.28 13.36

Wall clock time per oscillation period (s) - 29,188 53,432

Speed up from overset grid approach 2.31 1.84 1

3.10 Summary

In the simulation of the Davis body wind tunnel tests by Baden-Fuller, a coarse compu-

tational grid with a DES turbulence model has been used to provide results with a good

level of accuracy. At static yaw angles, the dominant flow structures such as trailing

vortices were predicted well and the location of the leeward A pillar vortex present at

large yaw angle is consistent with the unsteady behaviour of this structure that was
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found in the experiments. A slight over prediction in the amount of separation off the

roof trailing edge is an indication of a lack of turbulent kinetic energy in the backlight

shear layer and this is consistent with existing literature.

For the dynamic tests in which the body undergoes a driven, periodic sinusoidal rotation

in yaw angle, the flow hysteresis found in the experiment could not be matched at

the same frequency. The simulated flow displayed a quasi-steady behaviour obtained

from static yaw angle tests and this is consistent with existing literature for the given

reduced frequency value. The source of the experiment hysteresis was located in side

pressure distributions underneath the front A pillar. It was suggested that this was

due to an external source such as yawed onset flow or asymmetric A pillar radii that

would cause variations in the flow around this edge and formation of the A pillar

vortex. Imperfections in the wind tunnel model’s leading edge added further evidence

to this claim. Increasing the oscillation frequency by an order of magnitude was found

to generate a large flow hysteresis, visualised in both the front and rear side force

coefficients. Iso surfaces of Q criterion were used to identify the largest source of this

hysteresis: the delay in the formation and dissipation of the A pillar vortex.

The choice of motion technique, sliding or overset grid, had a minimal effect on the

flow prediction for this particular simulation. The largest difference was found in com-

putational expense where the time taken to run using the overset grid approach was a

factor of approximately 1.84 times slower than when using the sliding mesh.
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Chapter 4

The Fully-Coupled System
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4.1 Introduction

The aim of this study is to design and implement a coupled system between CFD

software and a vehicle dynamics model. In this particular system, aerodynamic loadings

will be used as an input into a dynamics model to cause or influence body motion.

This motion will be returned to the CFD simulation where the position of the body is

updated. Thus the two simulations run simultaneously, with continuous data exchange.

A suitable test case for a system of this type is the experiments of Mansor [123], in which

the Davis model rotates in yaw due to variations in the aerodynamic yaw moment. The

motion is restricted by a pair of springs which limit the angular displacement and rate,

thus producing an oscillatory motion. A simplified sketch of the test rig is shown in

Figure 4.1. This arrangement is the basis for the tests performed by Baden-Fuller [85]

which were simulated in Chapter 3, however, the motion is no longer controlled by an

electric motor but by the properties of the springs, the inertia of the model and the

aerodynamic yaw moment. A single degree of freedom, second order equation serves
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as a simple dynamics model and this is shown in Equation 4.1 where Izz is the body’s

moment of inertia, Cr is the mechanical damping term, Kr is the mechanical stiffness

term and MZ is the aerodynamic yaw moment input.

The paper describes the initial development of the method for estimating the transient
aerodynamic derivatives from time response data acquired during the dynamic wind tunnel
tests. For the purposes of this analysis, the aerodynamic derivatives are considered to act
as a stiffness and damping to the model motion.
The frequency range of importance in crosswind studies has been identified as

approximately 0.2–2.0Hz (Goetz, 1995) at full scale. At motorway speeds this corresponds
to reduced frequencies between approximately 0.03 and 0.3 where reduced frequency is
defined as

Km ¼
fL

V
. (1)

To ensure similitude of the periodic flows these reduced frequencies are matched in the
experimental set-up by altering the stiffness of the springs shown in the apparatus. The
effect of Reynolds number on the derivatives is also investigated by varying the tunnel free
stream velocity.

2. Experimental set-up

The wind tunnel tests were undertaken in the 1.92" 1.32m, closed working section, low-
speed, open-circuit wind tunnel in the Department of Aeronautical and Automotive
engineering at Loughborough University. The oscillator mechanism is mounted to a rigid
support structure outside the working section and the circular section steel rod, of 20mm
diameter, passes through a clearance hole in the ceiling. The model is mounted to the end
of the support rod and is free to rotate in yaw. The combination of the tunnel flow and the
model oscillation then provides an unsteady wind input.
The model employed in the study is a simplified road vehicle shape (Davis model)

constructed from fibreglass. This model was previously used by Passmore et al. (2001) to
estimate aerodynamic derivatives from unsteady surface pressure arising from a sinusoidal
gust input. The model dimensions are shown in Fig. 2. In this application, the model
geometric blockage is approximately 1.4%.

ARTICLE IN PRESS

Spring

Potentiometer

To data acquisition computer

Rigid support
structure

Wind

Fig. 1. Oscillating model rig.

S. Mansor, M.A. Passmore / J. Wind Eng. Ind. Aerodyn. 96 (2008) 1218–12311220

Figure 4.1: The Mansor oscillating test rig [123].

Izzβ̈ + Crβ̇ +Krβ = MZ. (4.1)

The test rig was designed so the effect of both reduced frequency and Reynolds number

could be investigated by varying the properties of the springs or the wind speed. A

total of ten springs with increasing levels of stiffness were used in the experiments,

with a reduced frequency range of (0.1–1.6), using the definition of Sims-Williams

[124]. Similarly, the range of Reynolds number tested was (4.3 × 105– 1.7 × 106).

For this computational study, only one spring type is used. The K5 spring used by

Mansor [123] has a linear stiffness Ks, of 806 N/m which when installed as a pair on

the rig (separated by a distance of 2b) provides a torsional stiffness Kr, of 16.12 Nm/rad,

Equation 4.2. Mansor estimated the model’s moment of inertia, Izz = 0.095 kgm2 and

calculated the natural frequency of the rig with these springs installed, ωn = 13.01 rad/s

using Equation 4.3. A value for the mechanical damping Cr was determined using a
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wind-off oscillation test in which the model was released from an initial yaw angle with

no wind input and the yaw angle response recorded. It was found that for an oscillation

frequency in the range of 1–2Hz, a damping ratio value ζ of approximately 0.005 (0.5%

of critical damping ζ = 1) is appropriate and correlates to a Cr value of approximately

0.0124 Nms/rad using Equation 4.4.

Kr = 2Ksb
2 (4.2)

ωn =

√
Kr

Izz
(4.3)

Cr = 2ζωnIzz (4.4)

Using these values and the graphical programming environment Simulink, the second

order spring equation 4.1 can be visualised by the dynamics model shown in Figure 4.2.

Figure 4.2: Simulink model of spring equation.

This model has been validated using the same wind-off test method: a value of MZ = 0

is set as the aerodynamic input and an initial yaw angle β0 = 17° is set at the second

integrator. The model’s yaw angle response is shown in Figure 4.3 alongside the outer

bounds of the equivalent experimental response.
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Figure 4.3: Wind-off yaw angle response.

4.2 The Coupled System

For the coupled system, a feedback loop is added to return the angular yaw rate to the

CFD simulation as shown in Figure 4.4.

The data exchange between the CFD code and the dynamics model is handled via

a Level-2 MATLAB S-Function and Javascript coding. This S-Function controls the

opening of a port over which data is sent back and forth. The actual transfer is

performed by a collection of Java macros as both Simulink and Star-CCM+ can be

controlled using Java APIs. The procedure of connecting the two simulations and the

data exchange is described below.

1. Initialise CFD simulation

2. Initialise and run Simulink model

3. Port opened with specified hostname and number

4. Run connector macro in Star-CCM+ and connect to open port

5. Yaw rate and solution time values sent from Simulink

6. CFD solution advanced one time-step

7. Aerodynamic yaw moment value sent from Star-CCM+

8. Data received by Simulink and simulation advanced one time-step

9. Step 5–8 repeated automatically

10. Finish time reached and port closed
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Figure 4.4: Coupled model of spring equation.

This coupled model has been used for the wind-on simulations, which were conducted

at wind speeds of 10, 20 and 40 m/s or reduced frequencies of 0.79, 0.39 and 0.20 based

on the wind off natural frequency of the rig.

4.3 Computational Grid and Numerical Approach

The only difference between the experimental setups of Mansor [123] and Baden-Fuller

[85] were the radii of the Davis body edges, 10mm for Mansor and 20mm for Baden-

Fuller. However, the Baden-Fuller model has been used for these simulations so that

the computational grid and boundary conditions can be taken directly from the previ-

ous case study. This will be taken into account when comparing to the experimental

response. It was shown in the previous case study, that the choice of motion tech-

nique had a minimal effect on the resulting flow prediction, and the only difference

was found in computational cost. For this reason the sliding grid approach containing

approximately 16× 106 polyhedral elements has been selected.

In order to determine the effect of the aerodynamic yaw moment on the body’s motion,
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a minimum simulated time of 10 seconds has been chosen based on preliminary anal-

ysis of the experimental results. It was found that this time window corresponds to

approximately 20 oscillation periods when using the K5 spring, and should provide an

adequate sample to determine the effect of any aerodynamic stiffness and damping on

the body’s yaw response. However, due to the now substantial length of the simulation,

changes to the numerical methodology are required to obtain results in a practical time

frame. A URANS methodology with k− ω SST turbulence modelling has been chosen

for which the time step is increased by an order of magnitude to 2.5 × 10−4 seconds

(∆tU/L = 1.6 × 10−2). The Simulink dynamics model was initialised with the same

time step value and thus when running, the data exchange between the two simulations

took place at every time step.

A URANS methodology was shown to provide an economical prediction of the flow

around the Generic SUV geometry with the largest inaccuracies found in the prediction

of the wheel wakes. As the Davis body is a more geometrically simplified vehicle design,

this methodology should provide reasonable results. This assumption has been tested

by repeating the 10Hz driven oscillation simulation of the previous case study using the

URANS approach. Figure 4.5 shows a similar level of hysteresis in the front side force

coefficient when compared to the DES methodology however, the rear contribution is

clearly over predicted. Figure 4.6 shows that a larger leeward A pillar vortex and lower

shedding frequency, keeps the vortex in place over the rear half of the body for longer,

and is the source of the larger rear contribution. This may not be a significant issue for

the free oscillation simulations as the maximum reduced frequency to be tested (0.79)

is lower than the value at this driven frequency (0.98). In this instance, the benefits

of reduction in computational cost outweigh the potential improvements in flow field

accuracy due to the length of simulated time needed.

The initial yaw angle of the body was set to β0 = 17° in reproduction of the experiment

and the flow was initialised using a steady-state RANS methodology followed by 10

convective flows units using URANS. Thus the flow is fully developed at this static

yaw angle. It is unclear whether this is the correct approach, as the experimental yaw

response data suggests that the body was displaced by an external force from 0° yaw

angle up to 17° with the wind on. The rate of this displacement is not known, and may

112



THE FULLY-COUPLED SYSTEM

in fact vary between tests, thus the flow field at the start of the oscillation (β0 = 17°

yaw angle) may not be fully developed. This may contribute to or even cause, hysteresis

of the flow.

Figure 4.5: Side force coefficient URANS vs DES, 10Hz driven oscillation.

(a) URANS: Negative rotation. (b) URANS: Positive rotation.

(c) DES: Negative rotation. (d) DES: Positive rotation.

Figure 4.6: URANS vs DES at 0° yaw angle, 10Hz driven oscillation: Isosurfaces of Q

criterion=200 000 s−2.
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4.4 Results

The effect of aerodynamic stiffness and damping on the body’s yaw angle response is

clearly shown in Figure 4.7: by increasing the wind speed, the oscillation of the body

is more heavily damped and the frequency of the oscillation is reduced.
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Figure 4.7: Simulated yaw angle response at different wind speeds.

The dominant frequency values for each response have been obtained using a Fast

Fourier Transform (FFT) and presented as a damped frequency ratio fdon/fdoff
(between

wind on and wind off conditions) in Figure 4.8. The values have been plotted against

reduced frequency, calculated using the definition of Sims-Williams [124]. The three

simulation data points fit the experiment data curve exceptionally well. This curve was

formed through testing of all ten springs at a full range of wind speeds, thus producing
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a large span in reduced frequency values. The data trend implies that as reduced

frequency is increased, the effect of aerodynamic stiffness on the body’s rotation is

reduced.
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Figure 4.8: The effect of reduced frequency on the damped frequency ratio fdon/fdoff
.

Stiffness can be defined as a force which acts to oppose a displacement, whereas damp-

ing is a force which acts to oppose a motion. Thus the aerodynamic force can be

decomposed into a stiffness and damping component. These components will have an

opposite sign to the mechanical components, for example, when the model is at a given

yaw angle, the mechanical spring stiffness will act in a direction to return the model

to its initial orientation, whereas the aerodynamic stiffness will act to increase the yaw

displacement.

The reduction in aerodynamic stiffness and reduced frequency increases suggests a

shift, or hysteresis in the aerodynamic yaw moment. Figure 4.9 shows the yaw angle

displacement along with the aerodynamic yaw moment for 10 and 40 m/s wind speeds.

Although due to the scaling, Figure 4.9 does not clearly show any delay between the

responses at either speed, cross correlation of the signals reveal a phase angle shift

between the aerodynamics and displacement of approximately 12° for a wind speed of
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10 m/s and 0° for 40 m/s. Thus, the result follows the principle of aerodynamic stiffness.

The result is also consistent with the data collected by Sims-Williams [124], as the

values of reduced frequency fall within the range where the aerodynamics move from a

quasi-steady to an unsteady behaviour.

It has already been shown that at high reduced frequencies, there is a hysteresis in the

aerodynamic yaw moment. As the velocity and displacement responses are already 90°

out of phase, this hysteresis increases the phase angle between the yaw moment and

velocity response further and moves closer towards the anti-phase state, as shown in

Figure 4.10. Therefore, it can be expected that at high reduced frequencies, a reduction

in aerodynamic damping will exist. This is the case as already shown in Figure 4.7,

where for the same spring properties, a decrease in wind speed and thus increase in

reduced frequency, lowers the total damping of the system.

In contrast to the experimental results shown in Figure 4.11, self-sustained oscillation of

the body is not found at the higher wind speed. A self-sustained oscillation implies that

there is no damping acting on the system or in other words, the aerodynamic damping

is equal in magnitude to, and thus cancels out, the mechanical damping. The reason

this does not occur in the simulations is unknown, however, some possible explanations

are made. The smaller model edge radii of 10mm in comparison to the simulation’s

20mm, may introduce a stronger sensitivity to Reynolds number. This may effect the

formation of the pillar vortices which have been shown to have a dominant influence

on the aerodynamic yaw moment and any hysteresis in this load. Alternatively, the

increase in wind speed and resulting increase in drag force may introduce additional

mechanical damping into the system. More specifically, the increase in load on the

supporting shaft may increase the friction on the bearings. The value of mechanical

damping used in the simulations was obtained from the wind-off response, thus any

change to this value caused by the increase in wind speed is not accounted for. One

final explanation may concern the accuracy of the turbulence model. The self-sustained

oscillation was found to exist even with no initial body displacement. This suggests

that the oscillation is driven by an unsteady vortex shedding from either side of the

body which the current k − ω SST turbulence model and larger time step value may

be unable to resolve.
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Figure 4.9: Hysteresis of the aerodynamic yaw moment with respect to angular

displacement for different wind speeds.

117



Time (s)

Ya
w

 R
at

e 
(D

eg
/s

)

A
er

od
yn

am
ic

 Y
aw

 M
om

en
t C

oe
ffi

ci
en

t

0 5 10

-200

-100

0

100

200

-0.1

-0.05

0

0.05

0.1

(a) 10 m/s

Time (s)

Ya
w

 R
at

e 
(D

eg
/s

)

A
er

od
yn

am
ic

 Y
aw

 M
om

en
t C

oe
ffi

ci
en

t

0 5 10

-200

-100

0

100

200

-0.1

-0.05

0

0.05

0.1

(b) 40 m/s

Figure 4.10: Hysteresis of the aerodynamic yaw moment with respect to angular

velocity for different wind speeds.
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Figure 4.11: Experiment yaw angle response at different wind speeds [123].

4.5 Summary

Despite the lack of self-sustained oscillation, these results clearly demonstrate the ef-

fectiveness of the proposed fully coupled system for simulating aerodynamically driven

motions. As originally intended, aerodynamic data is given to a dynamics model which

returns positional data in a continuous closed-loop cycle. For the current simulations,

the rate at which data can be transferred appears to have a negligible effect on the total

expense when compared to a single, moving geometry, CFD simulation. As a result,

this underlying coupling mechanism can be applied to more complex motions containing

multiple degrees of freedom and influence by more aerodynamic loading components.
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Chapter 5

A Realistic Road Vehicle in a

Real World Environment
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5.1 Introduction

The natural wind contains both shear and turbulent effects as shown in Chapter 1, con-

ditions which are rarely included when assessing a vehicle’s aerodynamic performance.

The main reason for this is this difficulty in generating such conditions during physical

testing. On road tests rely on the desired conditions occurring naturally, and when

they do, limited apparatus prevents detailed measurements of both the natural wind’s

behaviour and the effect on the flow around the vehicle. On the other hand, wind tun-

nel tests offer a degree of control and repeatability over the upstream conditions whilst

also allowing detailed capture of the flow and accurate force measurements. Despite

these benefits, tests are often limited in the magnitude of flow unsteadiness that can

be generated and are unable to produce the levels of shear in the natural wind. For

this reason, such facilities cannot be used for all conditions experienced on the road.
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It was shown in Chapter 1 that computational simulation removes many of these phys-

ical restrictions imposed when studying the effect of a real world environment on a

vehicle’s aerodynamics. Time dependent boundary functions can be used to generate

an infinite number of potential flow conditions and thus are a much more appealing

method of assessing the effects of a real world environment on a road vehicle.

The effects of realistic turbulence levels on a vehicle’s aerodynamics have been discussed

previously, where it was shown that added turbulence leads to more mixing in the wheel

and base wakes. This increase in mixing lowers the pressure within these structures

and ultimately increases the drag. On the other hand the effect of shear is relatively

unknown. This is surprising given the ease in which a velocity profile can be imple-

mented at the boundaries of a CFD domain. Furthermore, the effect of both shear and

turbulence together, thus providing the closest representation of the natural wind, has

yet to be determined. For these reasons, a computational investigation to determine

the effects of shear and turbulence in the natural wind on a vehicle’s aerodynamics is

undertaken here.

5.2 Simulation Approach

The vehicle geometry used for these simulations is the full-scale DrivAer model as first

presented by Heft et al. [127]. This geometry can take three vehicle forms through

interchangeable rear ends. Due to the benefits this can provide in the grid generation

process, both the estate and fastback variants have been selected for use in this study.

Testing two different vehicle types has a more purposeful benefit, as it helps to identify

any effects and conclusions that may be specific to that class of vehicle. It is understood

that this could be improved further by widening the range of geometries, as even with

different rear end geometries, the DrivAer model maintains the same characteristic di-

mensions such as length, width and height, the latter of which may be most important

for wind shear. The model is a closed design with no internal cooling flow, features a

smooth underbody, side mirrors, with non-rotating wheels and treadless tyres. All tyres

have been sliced at a height of 10 mm to produce an approximate contact patch and

these flat surfaces rest on the fixed ground of the domain. The geometry, in both forms,
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(a) Estate (b) Fastback

Figure 5.1: The DrivAer model.

Table 5.1: DrivAer model dimensions.

Length (L) 4.613 m

Width 1.753 m

Height 1.418 m

Wheelbase 2.786 m

Frontal Area (A) 2.168 m2

Re (L, 27.8 m/s) 8.9× 106

is shown in Figure 5.1 with Table 5.1 providing some of the key dimensions. Initially,

the effect of shear alone without any turbulence is investigated, thus two gust profiles

are required: with and without shear. Without shear, a wind speed of 4.9 m/s, constant

with height, is applied perpendicular to the vehicle’s path. When combined with a

vehicle speed of 27.8 m/s (100 km/h) a resultant flow yaw angle of 10° with a magnitude

of 28.2 m/s is generated. As shown previously in Figure 1.9, this yaw angle falls towards

the upper limit that a vehicle will typically experience on the road. For the shear pro-

file, an adaptation of the power law, Equation 5.1, is used with the gradient velocity

vg taking the value of 4.9 m/s and the roughness exponent, α = 0.16 describing open,

smooth terrain. For a fair comparison, the same mass flow should act over the side area

of the vehicle. Thus, the height at which the gradient wind acts is calculated by equat-

ing the flow rate equation, as shown in Equation 5.1. It follows that the gradient wind

velocity of 4.9 m/s should act at a height of z = 0.561 m or 39.5% of the height of the car.
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Q = av =

Without Shear︷ ︸︸ ︷
4.61× 1.418× 4.9 =

With Shear︷ ︸︸ ︷
4.61vg

(
z

zg

)α
= av = Q

32.031 = 22.589

∫ 1.418

0

(
z

zg

)0.16

dz

= 19.473

[
z1.16

zg0.16

]1.418
0

=
29.2

zg0.16

zg = 0.561 m (5.1)

The two v velocity profiles are shown in Figure 5.2 where it can be seen that without

shear, the velocity at the roof of the car is approximately 0.862 times the value with

shear. When combined with the vehicle’s velocity vector, the resultant three dimen-

sional flow velocity is shown in Figure 5.3. As already stated, without shear, the wind

generates a constant resultant flow velocity vector, however, with shear, the angle and

magnitude of this vector increases with height.
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Figure 5.2: Sheared and unsheared lateral velocity profiles.

In the next stage of this study, the effect of turbulence on top of shear is investigated.

Turbulence is introduced into the flow using the synthetic eddy method (SEM) as

proposed by Jarrin et al. [128]. The desired intensity and length scale values of these

turbulent structures are taken from literature and represent typical on road conditions

as shown in Figure 1.12, an intensity and length scale seen by the vehicle of 8% and 2 m

respectively. The intensity at the inlet is assumed to be homogeneous across all three

components of velocity, this disagrees with literature, but without measured values of

124



A REALISTIC ROAD VEHICLE IN A REAL WORLD ENVIRONMENT

Figure 5.3: Sheared and unsheared resultant velocity profiles.

the Reynolds stress tensor obtained from experiment this uniformity is unavoidable

in the selected code. An instantaneous snapshot of the flow with this turbulence is

shown in Figure 5.4 and the variation in the three components of velocity one car

length upstream of the vehicle and at roof height are shown in Figure 5.5. From this

velocity distribution, the actual turbulence intensity experienced by the vehicle can be

calculated, Iu = 8.0%, Iv = 6.5% and Iw = 5.1%. Clearly the turbulence is no longer

homogenous as defined at the inlet due to dissipation of the velocity through the coarse

grid upstream of the vehicle and the presence of the ground. As shown in Equation

5.2, the ratio between the components matches the theoretically determined ratio more

favourably than the experimentally measured values.

σu = σv = σw =

Theoretical [1.11]︷ ︸︸ ︷
1 : 0.8 : 0.5

=

Experimental [1.20]︷ ︸︸ ︷
1 : 1.01 : 0.61

=

Simulated︷ ︸︸ ︷
1 : 0.81 : 0.64 . (5.2)
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Figure 5.4: Simulated turbulent and sheared flow field.
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Figure 5.5: Turbulent velocity field measured one car length upstream at roof height.
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5.3 Computational Grid and Boundary Conditions

For each vehicle type, the full-scale geometry is positioned in a computational domain of

size x=18L, y=13L, z=3L at a distance of 5L and 6L from the primary and secondary

inlets respectively, as shown in Figure 5.6.

Figure 5.6: DrivAer model computational domain.

On the majority of the vehicle’s surface, grid elements of size 0.001L are used, a value

taken from the SUV simulations of Chapter 2. However, due to the more realistic, and

thus more geometrically complex model, smaller elements of size 0.0001L are required

in certain locations in order to maintain a reasonable quality of highly curved, critical

features such as the A and C pillars. Figure 5.7 shows a section of the surface grid

around these features. To within a small range, the total number of surface elements

for the estate and fastback geometries are consistent, approximately 3.6× 106.

(a) Front left wheel (b) A pillar and side mirror

Figure 5.7: Surface grid of the DrivAer model.

Extruded from the surface, 8 prism layers to a total thickness of 5 mm (0.001L) with

a ratio of 1.2 between the layers are used to capture the boundary layer. A non-

dimensional near wall spacing value y+ < 1 over the entire surface ensures that the
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boundary layer is resolved and not modelled using wall functions. Two hexahedral

volume grids are generated using identical parameters: elements grow uniformly in size

from the outer prism layer into a region of fixed 10 mm (0.002L) sized elements. This

region has been shaped in order to capture the yawed wake caused by the crosswind

and stretches 0.5L downstream and 0.3L to the leeward size of the vehicle. This first

refinement region is enclosed by a second of fixed sized 80 mm (0.017L) elements. This

region stretches much further downstream to a length of 2.7L and out to leeward side

by a distance of 1L. Away from this second refinement, grid elements grow uniformly

up to a maximum size of 640 mm (0.14L). These refinement regions are shown in Figure

5.8. As a result, the total number of volume elements is approximately 69 × 106 for

both grids.

(a) Estate centreline (b) Fastback centreline

(c) Horizontal cut at axle height (d) Transverse cut through wheelbase centre

Figure 5.8: Volume grids around the DrivAer estate and fastback geometries.

5.4 Numerical Approach

The numerical method used for these simulations is taken from the practices used in

the previous SUV and Davis model simulations. A segregated, incompressible, finite

volume, semi-implicit, pressure based solver is chosen for all simulations with a hybrid

2nd order upwind/bounded central-differencing convection scheme. Turbulence is mod-

elled with the IDDES variant of the Spalart-Allmaras Detached-Eddy model. Figure
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5.9 shows the locations where the solver switches from RANS to LES: RANS in the

boundary layer and LES away from the vehicle. Consequently, an LES solver is used in

the coarse grid upstream of the vehicle, which will limit the scales of turbulence that

can be resolved when artificial turbulence is introduced at the inlet. A second-order

temporal scheme limits the numerical dissipation of the sheared and unsheared velocity

profiles and time-step of 1 × 10−4 seconds (non-dimensional ∆tUR/L = 6 × 10−4 en-

sures a Courant number below one within the wake of the vehicle. Five inner iterations

per time-step ensure consistent convergence of the residuals. All CFD simulations are

carried out using Star-CCM+ v10.04.009 from CD-Adapco.

Figure 5.9: Delayed DES Function fd (fd = 0 RANS treatment, fd = 1 LES

treatment).

This numerical method is in close agreement with that used by Ashton and Revell

[129] and Ashton et al. [82] in their determination of an appropriate numerical method

to simulate the flow around the estate and fastback variants of the DrivAer model.

They showed that a DES method offered considerable improvements over RANS based

methods in terms of force coefficients wake flow field prediction. The main differences

from their simulation setup are the smaller time-step value and larger face count on

the DrivAer surface.

All simulations were initialised using a steady state RANS solver, before switching to

DES for a settling period of 1 second or 6 convective flow units; (6 × L/UR). The

simulations were then allowed to run for 2 seconds (12 convective flow units) during

which the flow field was averaged. Ideally, this averaging interval would be longer but

due the number of simulations in this study, computational resources were limited.

One 3 second simulation, with or without shear, took approximately 58 hours to run in

parallel on 320 cores of the HPC-Midlands Facility, UK. When turbulence was added
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using the SEM method, this wall clock time increased to approximately 108 hours

due to an increase in the time per iteration. This highlights the significant impact on

computational cost when including synthetic turbulence using this method.

5.5 Results

5.5.1 Sheared Wind Profile

The effects of a sheared wind profile are shown through force and moment coefficients

in Tables 5.2 and 5.3. The values are presented alongside those at 0° yaw angle, without

a wind input, to show the effect of wind in general. In addition, these values can be

compared to a number of experiments that have been conducted at zero yaw and a

measure of simulation accuracy can be determined. The reference velocity used in the

coefficient calculations is taken as the resultant of the vehicle and wind velocities, UR, as

shown in Equation 1.18, however, it is unclear whether this is the appropriate quantity

to use. The forces and moments act in the body coordinate system, (aerodynamic

drag opposing the vehicle’s forward direction) and hence there is an argument that

the reference velocity should be the velocity of the vehicle Uveh alone. The coefficient

values using this alternative reference velocity are also presented in Tables 5.2 and 5.3,

and show increases of up to 13 counts in some cases. Although this does not affect

the overall conclusions as all values are calculated using the same reference velocity,

in other applications such as emissions calculations, the value and hence definition of

drag coefficient is especially important. In addition, at larger yaw angles where the

difference between UR and Uveh is much greater, the variation between these values will

be even larger.
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Table 5.2: Estate force and moment coefficients (reference velocity = UR and [Uveh]).

Estate 0° Yaw 10° Yaw

Unsheared Sheared Sheared and Turbulent

CD 0.309 0.358 0.357 0.372
[0.309] [0.368] [0.368] [0.384]

CL -0.166 -0.015 0.012 -0.0002
[-0.166] [-0.016] [0.012] [-0.0002]

CLF/CLR -0.111/0.055 -0.082/0.067 -0.078/0.090 -0.090/0.090
[-0.111/0.055] [-0.084/0.068] [-0.081/0.093] [-0.092/0.092]

CY 0 0.411 0.409 0.393
[0] [0.423] [0.422] [0.406]

CMX 0 0.056 0.056 0.053
[0] [0.058] [0.058] [0.055]

CMZ 0 0.077 0.077 0.074
[0] [0.079] [0.079] [0.076]

Table 5.3: Fastback force and moment coefficients (reference velocity = UR and [Uveh]).

Fastback 0° Yaw 10° Yaw

Unsheared Sheared Sheared and Turbulent

CD 0.257 0.333 0.335 0.338
[0.257] [0.343] [0.345] [0.348]

CL -0.020 0.056 0.071 0.032
[-0.020] [0.058] [0.073] [0.033]

CLF/CLR -0.081/0.061 -0.051/0.107 -0.042/0.114 -0.060/0.092
[-0.081/0.061] [-0.052/0.110] [-0.044/0.117] [-0.062/0.095]

CY 0 0.351 0.354 0.337
[0] [0.362] [0.365] [0.348]

CMX 0 0.048 0.049 0.045
[0] [0.050] [0.050] [0.046]

CMZ 0 0.096 0.093 0.092
[0] [0.098] [0.096] [0.095]

For both vehicle types, a sheared wind profile has a minimal effect on the vehicle’s force

and moment coefficients, when compared to a constant velocity profile with the same
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mass flow acting over the height of the vehicle. For the fastback, a sheared profile raises

the drag by 2 counts, whereas for the estate, the drag reduces by a single count. The

distributions of drag over the height of the vehicle are presented in Figures 5.10a and

5.10b, where the solid lines represent the front contribution to drag, and the dotted,

the rear. The front distributions for the two vehicles are very similar, as could be

expected for the identical front end geometry, and the sheared profile only appears to

effect the drag generated over the lower portion of the front bumper. In addition, the

distributions for the two yawed cases are the same as the zero yaw case, suggesting

that the rise in drag which accompanies an increase in yaw angle is purely due to an

increase is base drag, this is consistent with the claims of Kawamata et al [130].
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Figure 5.10: The effect of shear on drag coefficient distribution (Front - solid, Rear -

dashed).

It is clear that the small differences in overall drag coefficient is caused by small vari-

ations in the rear distribution. For the fastback, the drag with sheared profile is con-

sistently higher over the height of the vehicle, thus reflecting the overall increase of

total drag. In contrast, the rear distribution over the estate is much more balanced,
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undershooting the unsheared distribution at low heights and overshooting towards the

roof. This behaviour is consistent with the magnitude of the wind velocity which is a

function of height and a result of the estate’s larger lateral area over which this wind

acts.

In addition to drag, side force and yaw moment are important quantities, especially in

crosswind flows, as they have a direct impact on the handling qualities of a vehicle. A

vehicle’s sensitivity to crosswinds is usually determined using the stationary gradients

of side force coefficient dCY/dβ and yaw moment coefficient dCMZ/dβ, with the latter

deemed most important as stated by Stoll et al. [59]. These values have been calculated

assuming a linear relationship between the coefficients and yaw angle over the range

0° to 10°. A larger side force coefficient gradient of the estate, 0.041 /° compared to

0.035 /° of the fastback, is a result of a larger rear lateral area and thus greater rear

side force contribution. Figures 5.11a and 5.11b show the distribution of side force

coefficient along the length of the vehicle and confirm this. The larger rear side force

also has the effect of restoring the yaw moment and thus the yaw moment coefficient

gradient of the estate is smaller than the fastback, 0.008 /° compared to 0.010 /°. As a

vehicle is defined to be less sensitive to crosswinds if the yaw response is small, these

results suggest that the fastback will be judged more sensitive to crosswinds than the

estate [59]

Stoll et al. [59] obtained very similar experimental values of the stationary side force

and yaw moment coefficient gradients for the DrivAer estate geometry, dCY/dβ =

0.039 /° and dCMZ/dβ = 0.007 /°. These values were obtained from a wind tunnel yaw

sweep, where the change in flow yaw angle was achieved by oscillating upstream airfoils

rather than a secondary crosswind inlet or rotation of the model on a turntable. The

high similarity of these values to those simulated places confidence in the computational

values but also the linear assumption of the force coefficients over the yaw angle range.

In addition to these results, Stoll et al. [59] also obtained values for the third DrivAer

geometry variant, the notchback, dCY/dβ = 0.036 /° and dCMZ/dβ = 0.008 /°. These

values imply that this vehicle type will be more sensitive to crosswinds than the estate,

but not as susceptible as the fastback.
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Figure 5.11: The effect of shear on side force coefficient distribution.

Figures 5.11a and 5.11b show that the majority of the contribution to the total side force

contribution comes from the front half of the vehicle. This is due to the large pressure

difference between the windward and leeward sides over this half of the vehicle. The

maximum value for both vehicles occur over the A pillar, where a strong flow separation

and low pressure on the leeward side is produced due to the high velocity yawed flow

which accelerates over and across the windscreen.

Much like the drag coefficient, the effect of shear on the side force coefficient is small.

For the estate, a sheared wind profile reduces the side force coefficient by just 2 counts,

whereas for the fastback, shear increases the coefficient by 3 counts. Analysing the side

force distributions, Figures 5.11a and 5.11b, the high similarity can be visualised. As

expected, due the identical front end geometries, the front side force distributions of

the estate and fastback are very similar. In the region of largest side force contribution,

from the front of both vehicles up to the midpoint of the windscreen, a sheared profile
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has very little effect on the side force. There is a slight difference in the distributions

within the range of the front wheels due to the smaller velocity of the sheared profile

which acts in the lower regions and to which the bottom halves of the wheels are

exposed. This reduces the pressure acting on the wheels and hence lowers the side

force in comparison to the unsheared case.

Over the passenger compartment and main section of the vehicle, the effect of shear is

still minimal despite the higher velocity which acts over the upper 60% of the vehicle’s

height. Figures 5.12a and 5.12b show the lateral velocity distribution constrained to a

transverse plane located at x =2 m, close to the top of the windscreen. It can be seen

that despite the large velocity variation of the sheared profile, the local velocity field

around the vehicles are almost identical. As a result, the surface pressure distribution

at this point, especially the pressures on the windward and leeward sides, shown in

Figure 5.13, are very similar between the sheared and unsheared cases.

The minimal differences in front and rear side force distribution are reflected in the

yaw moment coefficient values. For the estate, the slightly larger contributions without

shear over the front wheels and over the rear balance out, resulting in a negligible

impact on the final yaw moment coefficient value. However for the fastback, the same

behaviour over the front, but identical distributions over the rear cause a slight increase

in yaw moment coefficient, 3 counts, without shear.

So far, the magnitudes of the force coefficient variations have been small, a maximum of

3 counts, however these magnitudes increase for the lift coefficient. Tables 5.2 and 5.3

show how the lift coefficient with a sheared wind profile is much larger for both vehicle

types, 27 counts for the estate and 15 counts for the fastback. In addition to side force,

this force can have a large effect on the handling of the vehicle. As shown by Howell

and Le Good [131], similar magnitudes in lift coefficient can influence the subjective

performance of a vehicle during a high speed lane change manoeuvre. For the estate,

the majority of the increase is sourced in the rear contribution (approximately 85% of

the increase) whereas for the fastback the increase is much more even over both the

front and rear. These increases can be more clearly identified in the lift distribution

along the length of the vehicle, shown in Figures 5.14a and 5.14b.
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(a) Sheared

(b) Unsheared

Figure 5.12: Mean transverse velocity at x =2 m (Top of windscreen).

The increase in lift is a result of the lower velocity underneath the vehicle and thus

higher pressure on the underbody, similarly a higher velocity over the roof results in

a lower pressure on this surface. Evidence of this has been seen in Figure 5.13, which

shows a slight variation in the suction strength over the roof and leeward A pillar. This

trend continues downstream from the windscreen as indicated by the distributions

shown in Figures 5.14a and 5.14b and results in a much more substantial impact on

the total lift coefficient.
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Figure 5.13: Fastback surface pressure distribution at x =2 m.
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Figure 5.14: The effect of shear of lift force coefficient distribution.
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5.5.2 Sheared Wind Profile with Turbulence

The effect of a sheared velocity wind profile with added turbulent structures, the sizes

and strengths of which are typical of on road conditions, can be seen in Tables 5.2 and

5.3. For both vehicle types, these flow conditions cause the vehicle’s side force coefficient

to decrease, by 14 counts for the fastback and 18 counts for the estate. Figures 5.15a and

5.15b show the evolution of side force along the length of the two vehicles and Figures

5.16a and 5.16b show the delta of side force coefficient ∆CY between the turbulence

and baseline cases. The majority of the decrease can be sourced over the front halves

of the vehicles and as this portion of the geometry is identical between the two vehicle

types, the profile of the delta curve in this region is maintained.
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Figure 5.15: The effect of shear and turbulence on side coefficient distribution.

Isosurfaces of total pressure coefficient, Cptotal
≤ 0, rendered by values of pressure co-

efficient Cp, provide a useful visualisation of the wake structures around the vehicle,

Figures 5.17 and 5.18 and suggest that with added turbulence, the sizes of these struc-

tures are reduced. This is consistent with the work of Gaylard et al. [44, 45] and
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Figure 5.16: Delta of side coefficient ∆CY = CYShear+Turb
− CYUnsheared

.

D’Hooge et al. [46], who showed that turbulence intensity levels of up to 7% delays

flow separation and thus reduces wake sizes. On first inspection, the large reduction

in the size and length of the front wheel wakes, particularly that of the wheel on the

windward side and the leeward A pillar vortex, appear to be responsible for the de-

crease in side force coefficient. However, analysing the flow around the front bumper at

the height of the wheel axles z = 0.32 m, there is a suggestion that the flow yaw angle

has reduced, Figure 5.19. An increase in the velocity around the windward corner and

decrease around the leeward side can be identified in the contouring of lateral veloc-

ity, whilst the direction of the upstream streamlines indicate a reduction in yaw angle.

Further evidence of this can be seen in the direction of the wheel wakes, Figures 5.17

and 5.18, which also appear to be more inline with the vehicle. This is a consequence

of the short time averaging period which is unable to completely smooth out the turbu-

lent structures and reproduce the exact sheared velocity profile over the entire domain.

Therefore, without calculating and subjecting the vehicle to this lower yaw flow angle,

or running the simulations for longer, it is unclear whether the reduction in side force

coefficient is a result of the change in upstream conditions or a consequence of delayed
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separation due to higher turbulence intensity levels.

Due to the reduction in side force coefficient and the location of this reduction towards

the front of the vehicle, the yaw moment coefficient is also reduced. As already dis-

cussed, the vehicle’s yaw response is the critical parameter when crosswind sensitivity

is concerned, thus these results suggest that subjecting the vehicle to steady onset flow

(a uniform or sheared velocity profile) will provide a worst case condition.

Figure 5.17: Estate: Isosurfaces of Cptotal
≤ 0, rendered by values of pressure

coefficient Cp.
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Figure 5.18: Fastback: Isosurfaces of Cptotal
≤ 0, rendered by values of pressure

coefficient Cp.
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(a) Unsheared (b) Sheared

(c) Sheared and Turbulent

Figure 5.19: Flow around the front windward corner, plane at axle height z = 0.32 m.
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In agreement with the work of Gaylard et al. [44, 45], D’Hooge et al. [43, 46], Howell et

al. [33] and Newnham [34], the addition of freestream turbulence causes an increase in

drag coefficient. For these geometries, the magnitude of this increase is much larger for

the estate geometry than the fastback, 14 and 5 counts respectively, when compared

to coefficients obtained using the baseline, unsheared flow conditions. As the only

difference between the vehicles lies in the rear end geometry, it is reasonable to expect

that the variation in drag will be sourced in this region and this is confirmed by the

∆CD shown in Figures 5.20a and 5.20b.
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Figure 5.20: Delta of drag coefficient ∆CD = CDShear+Turb
− CDUnsheared

.

The fastback geometry used by Gaylard et al. [45] displayed a much larger increase in

drag coefficient, up to 24 counts, for similar turbulent conditions albeit at an averaged

zero degree yaw angle. It their case, it was found that increases in turbulent mixing as

a result of the higher intensity levels in the onset flow, delayed flow separation around

the highly curved rear corners and generated more inboard flow. This in turn increased

the suction at the outer edges of the base surface, generating a larger drag coefficient.

However, this is not the case for the DrivAer geometry, as the sharp edges of the base

surface as shown in Figure 5.1, promote a fixed separation point and hence the ∆CD
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in this region is small in comparison.

For the estate geometry, the much larger increase in drag coefficient can be sourced

using Figures 5.21 and 5.22, which show the time averaged base pressure distribution

and flow structures in the wake. As flow separates from the roof trailing edge, the

increase in turbulent mixing strengthens and tightens the wake’s upper vortex to the

rear of the vehicle, leading to a reduction in pressure on the rear screen. In comparison,

the flow over the fastback remains attached along the majority of the backlight surface,

as shown in Figure 5.23, and hence a comparable increase in drag does not exist.

(a) Unsheared (b) Sheared

(c) Sheared and Turbulent

Figure 5.21: Estate: Time averaged base surface pressure coefficient and flow

streamlines in planes Y = −0.318, 0, 0.318m.
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(a) Unsheared (b) Sheared

(c) Sheared and Turbulent

Figure 5.22: Estate: Time averaged vorticity magnitude in plane Y = 0.318m.
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(a) Unsheared (b) Sheared

(c) Sheared and Turbulent

Figure 5.23: Fastback: Time averaged base surface pressure coefficient and flow

streamlines in planes Y = −0.318, 0, 0.318m.
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5.6 Summary

It has been shown that a sheared crosswind velocity profile, representative of the condi-

tions experienced when travelling through smooth open terrain, has a minimal effect on

a vehicle’s aerodynamic loading when compared to those generated with a uniform ve-

locity profile. However, caution must be taken with this conclusion as only two vehicle

types have been evaluated, and are very similar in geometric dimensions and styling.

It was suggested that of the two geometries, the fastback will be more sensitive to

crosswinds, due to the larger stationary yaw moment gradient, and a sheared velocity

profile did not appear to affect this result.

With the introduction of freestream turbulence, of 8% intensity seen by the moving

vehicle, on top of a sheared velocity profile, much larger variations to the aerodynamic

loads were found. An increase in drag coefficient, consistent with existing literature,

arose most noticeably for the estate geometry, due to a strengthening of the wake’s

upper vortex. In contrast, the side force and yaw moment coefficients were found to

decrease with the realistic flow conditions. It was unclear, whether this reduction was

a result of a reduction in wake size, especially those of the front wheels, or a lowering

of the onset flow angle due to the short time averaging window.

Overall the results suggest that the fastback geometry presents a larger safety concern

in the presence of crosswinds, and the steady, uniform flow conditions, provide the

maximum aerodynamic loads relevant to vehicle stability in this type of event. Hence,

these conditions will serve as a useful application of the six degree of freedom, fully

coupled system.
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Chapter 6

A Fully Coupled, Six Degree of

Freedom Response to a

Crosswind Event
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6.1 Introduction

The fully coupled system is now applied to the simulation of crosswinds. An event

of this type can introduce large disturbances to a vehicle’s aerodynamic loads, which

in turn can have a large impact on its handling and stability. Hence, this event is a

relevant and meaningful application of the fully coupled technique.

As opposed to simulating a naturally occurring crosswind, the flow conditions and test
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procedures will initially follow those set out in an international standard for experi-

mentally assessing road vehicle sensitivity to lateral winds, ISO 12021:2010 [58]. This

standard uses an artificial, 20 m/s gust, produced by a crosswind generator adjacent to

a test track, as shown in Figure 6.1. A vehicle is driven through the gust at a speed

of 27.8 m/s (100 km/h), on what is initially, a trajectory perpendicular to the gust. This

generates a severe flow yaw angle of approximately 35° and a resultant flow velocity

of 34 m/s. The standard is open-loop, meaning no driver response is permitted. The

steering wheel is simply held fixed for a two second period after entering the gust and

as a result, the vehicle deviates from the intended course. This deviation is a direct

consequence of the aerodynamics and not the driver’s ability which can vary across test

drivers, hence the test procedure is highly repeatable and provides a good measure of

the vehicle’s sensitivity to crosswinds.

2.2. State of Knowledge

in running condition are required. This constitutes the most important drawback
as such prototypes are not available until shortly before start of production when
design changes are very costly or may even delay market entry. To avoid tests on
public roads and to improve reproducibility crosswind facilities are used (see Fig. 2.3).
These facilities consist of several large fans which are lined up at the side of a road
and generate an artificial crosswind. The path deviation and yaw rate of a vehicle
travelling through the crosswind are used as a measure of its crosswind stability.
However, to produce acceptable signal-to-noise levels and thus reproducible results,
high crosswind velocities are required which lead to unrealistic aerodynamic yaw an-
gles of 30� and higher. Furthermore, typical crosswind facilities are not capable of
modeling the stochastic variation of natural crosswinds. Since the path deviation at
crosswind facilities generally correlates well with the constant aerodynamic yaw mo-
ment, sub-targets are often assigned for the aerodynamic yaw moment. Thus, wind
tunnel measurements at constant yaw angle allow the verification of the steady-state
aerodynamic behavior early in the development process. These constant yaw mea-
surements, however, do not reproduce real-world wind conditions and therefore are
not capable of predicting the unsteady aerodynamic behavior of the vehicle. For a
more detailed comparison of development tools for crosswind stability refer to Hucho
(2005) and Schaible (1998).

Figure 2.3: Typical development tool for vehicle crosswind stability: Crosswind fa-
cility.

In order to overcome the drawback of traditional testing methods, new approaches -
numerical and experimental - are being investigated for application in the develop-
ment process. This includes in particular, numerical analysis of the unsteady behav-
ior of aerodynamics and vehicle dynamics using computational fluid dynamics and
multi-body simulation. They promise to allow an evaluation of aerodynamic loads
and their influence on vehicle motion very early in the conception phase when ex-
perimental hardware is not yet available. In addition, new testing methods in the
wind tunnel creating time-dependent flow conditions could allow the evaluation of
unsteady aerodynamic loads. Finally, driving simulators may combine models de-
scribing the vehicle behavior regarding aerodynamics and vehicle dynamics with the
actual response of the driver permitting the virtual assessment of crosswind stability
of the complete system.

However, for the assessment of crosswind stability in driving simulators the underlying
models for aerodynamics and vehicle dynamics need to correctly predict the unsteady

9

Figure 6.1: An example of a crosswind generator facility and vehicle response [23].

It has been shown in Chapter 5 that the inclusion of a realistic sheared wind profile

with typical on-road turbulence levels has a minor effect on the vehicle’s aerodynamics.

Hence computationally simulating this experimental test rather than using measured,

on-road gust data is sufficient for assessing a vehicle’s response to an event of this type

and will hopefully promote and ease any future experimental validation of the results

obtained using this fully coupled simulation.

In addition to this open loop test procedure, the same flow conditions will be used for

a closed loop simulation, with a modelled driver in the loop aiming to maintain the

vehicle’s initial trajectory. This is described in Figure 6.2. Using the results of both

simulations, the influence of the driver on the vehicle’s response can be obtained, and

the effectiveness of their input can be determined.
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(a) Open Loop (b) Closed Loop

Figure 6.2: Example vehicle responses during open and closed loop tests [132].

The vehicle geometry chosen for these simulations is the fastback variant of the DrivAer

model. It was shown previously that this geometry has the potential of being the most

sensitive to crosswinds when compared to the estate and notchback variants, based

on the calculation of stationary yaw moment coefficient gradient. As the main reason

for performing this test is to expose any safety concerns, this geometry is the most

appropriate. In addition, this geometry has the benefit that the numerical approach

and grid refinement can be transferred from the previous study.

6.2 Crosswind Profile

Two gusts have been generated, with lengths corresponding to 4 and 12 car lengths

respectively. Both lengths comply to the minimum length prescribed by the standard,

and at a vehicle speed of 27.8 m/s, correspond to a disturbance frequency of approxi-

mately 1.5Hz and 0.5Hz. It has been shown previously by Wagner and Wiedemann

[53], that at frequencies between 0.5Hz and 2Hz, a driver can amplify the vehicle’s

response. Hence after the initial open-loop simulation, the closed-loop simulations can

be used to investigate this result further.

Although a crosswind facility generates a step change in lateral velocity, this is not seen

at the vehicle due to mixing layers at the edges of the gust. Such conditions occur on

the road when passing gaps in roadside obstacles during gusty conditions, as illustrated

by Favre [75] in Figure 6.3a. Hucho and Emmelmann [74], showed that the profile of a

mixing layer seen by a moving vehicle approximately follows a cosine function, shown
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in Figure 6.3b and described by Equation 6.1, where vmax is the maximum strength of

the crosswind in the undisturbed region and XML is the width of the mixing layer. As

shown in Figure 6.3a, the value of XML is dependent on the distance from the fans.

For these simulations, the width of a mixing layer XML is chosen as one car length

corresponding to a frequency of 6Hz or a reduced frequency value of 1.5, based on

the forward speed of the vehicle. It has already been shown in the oscillating Davis

model simulations, that such high values of reduced frequency results in flow hysteresis.

This was also confirmed by Hucho and Emmelmann [74], who found that increasing

the length of a gust’s mixing layer, thus lowering the reduced frequency, reduced the

transient behaviours of a vehicle’s side force and yaw moment coefficients. Therefore

it is reasonable to expect a transient behaviour in these forces for the generated gust

profiles.

3. GEOMETRIES CONSIDERED AND UNSTEADY CROSSWIND MODELS

(a) (b)

Figure 3.3: The crosswind scenario considered (a) as well as the associated wind
gust model normalized with the vehicle’s speed and length (b).

The crosswind scenario used in this thesis has been inspired by the experi-
mental bench of Cairns (1994) and Chadwick et al. (2001): a vehicle model is pro-
pelled at a constant speed through a wind tunnel exhaust. It corresponds to a
sudden strong crosswind exposure and the situation is depicted in Fig. 3.3a. The
crosswind flow is equivalent to a jet flow and two mixing layers develop on each
side of the so-called obstacles. The wind gust is thus modelled as a step function
with smooth transitions representing the mixing zone before and after the jet flow.
These smooth transitions are modelled by cosine functions for which the period,
2 � TST , is chosen. This method has been chosen as it is reported in Hucho and Em-
melmann (1973) that cosine functions are successfully representing measurements
of mixing layers reported in Schlichting (1960).

Figure 3.3b shows a representation of the wind gust model introduced in the
domain. The maximum crosswind speed, Wmax, is set such that the corresponding
maximum yaw angle is 20o (arctangent of the crosswind speed over the vehicle
velocity). This is considered as the most critical crosswind scenario for passenger
cars, Hucho (1998). The crosswind velocity, W(x,t), is a function of both time and
space. The crosswind velocity, W, at the front inlet boundary is only function of
time and is

22

(a) Mixing layers in an on-road scenario [75]
(b) Cosine function for modelling mixing

layers [74]

Figure 6.3: Crosswind mixing layers.

v(x) =
vmax

2

(
1− cos

(
x

XML
· π
))

. (6.1)

Equation 6.1 provides a global description of the mixing layer profile, however from the

moving vehicle’s perspective the profile will vary with respect to time. Equation 6.2

describes this, where TML represents the time taken to pass through the mixing layer.

v(t) =
vmax

2

(
1− cos

(
t

TML
· π
))

, TML =
XML

Uveh
. (6.2)

152



A FULLY COUPLED, SIX DEGREE OF FREEDOM RESPONSE TO A CROSSWIND EVENT

The resulting profiles of the gust seen at the vehicle follow a trapezoidal shape, shown

in Figures 6.4 and 6.5, where t = 0 corresponds to the front of the vehicle hitting the

crosswind region. Due to a time lag as the gust passes down the vehicle’s length, it is

only fully immersed in the maximum yawed flow for 1 and 9 car lengths respectively.

These profiles are similar to the ones used by Favre [75], and represent a third of all

on-road gusts, as found by Wojciak [22].

Figure 6.4: Crosswind profile for gust of length 4L (1.5Hz at Uveh = 27.8m/s).
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Figure 6.5: Crosswind profile for gust of length 12L (0.5Hz at Uveh = 27.8m/s).
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6.3 Simulation Approach and Boundary Conditions

Whilst the aim of this study is to apply the fully coupled system to the simulation of

crosswind, in order to determine whether this level of complexity is need, it is important

to make comparisons to existing, one way coupled methods. As found in the literature

these methods are as follows:

• Quasi-Steady Static Coupling - A database of steady state aerodynamic force and

moments at a range of yaw angles, interpolated over the gust profile and used as

a vehicle dynamics model input.

• Unsteady Static Coupling - A transient history of aerodynamic forces and mo-

ments over a static model used as a vehicle dynamics model input.

The aerodynamic response for the quasi-steady case is formed from two quasi-steady

solutions of constant flow yaw angle: 0° and 36°. These solution are obtained using

an arrangement of traditional boundary conditions with an inlet, outlet and slip walls

as shown in Figure 6.6a. For the 0° yaw angle case the u velocity component is set

to 27.8 m/s at the inlet whereas for the 36° yaw angle case, the vehicle is yawed in

the domain and the resultant velocity of 34 m/s is applied through the inlet u velocity

component. The resulting quasi-steady aerodynamic force and moment values are then

interpolated over the crosswind profile to form an input for the vehicle dynamics model.

The boundary conditions for the unsteady static simulation are more complex, as they

need to be capable of exposing the vehicle to a time dependent velocity profile. There

are several arrangements that can achieve this, the most popular of which is a pair of

inlets and outlets in an arrangement shown in Figure 6.6b. Tsubokura, Nakashima et

al. [72, 133, 67, 68, 70, 134] and Favre [75] showed how this approach requires a pair

of functions at each inlet in order to convect the crosswind profile over the vehicle.

At the main inlet, the u velocity function describes the vehicle’s velocity and a time

dependent v velocity function introduces the crosswind profile. At the secondary inlet,

the u velocity function still describes the vehicle’s velocity but the v velocity function

describing the crosswind now depends on time and position.
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Figure 6.6: Boundary conditions for all simulation approaches.

An alternative to this replaces the secondary inlet and outlet with periodic boundaries,

an arrangement more typically using in the simulations of turbo-machinery blading. By

removing the additional inlet and outlet, only two velocity functions at the main inlet

remain, as shown in Figure 6.6c. When using this method, it is important to ensure

that the domain is wide enough to prevent any flow disturbances from re-entering the

domain on the windward side and influencing the flow around the vehicle, however

for typical vehicle speeds and domain sizes this interference is rare. The method has

been used successfully in crosswind related applications by Demuth and Buck [135] and

Theissen [23].

So far the arrangements discussed all feature static geometry over which the gust passes,
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a frame of reference fixed on the vehicle and comparable to a wind tunnel arrangement

such as that used by Dominy and Ryan [63, 64] and Volpe et al. [65, 66]. In contrast,

the overset grid approach allows a switch to a global frame of reference, so that the

crosswind’s position is fixed in the domain and the vehicle passes through. Thus, this

approach only requires a single, position dependent v velocity function at a secondary

inlet and no u velocity function at either. However, additional grid refinement along

the predicted path of the vehicle is required in order to reduce the interpolation error

between the overlapping grids and thus the increases in computational cost makes this

method a less attractive option.

From the three options discussed, the periodic boundary conditions have been chosen for

the unsteady static simulations. This method is the most straightforward to implement

as it only requires one set of velocity functions at the main inlet and no additional grid

refinement due to moving overset grids. Therefore, the crosswind profile is introduced

via a v velocity disturbance at the main inlet and convected downstream by the u

component.

A one off simulation of the unsteady-static approach using overset boundary conditions

was performed in order to highlight any unwanted artifacts of the overset method.

Although results are not presented, there was a negligible impact on the forces and flow

field between the overset and traditional, fixed vehicle methods. Thus fair comparisons

between the methods can be made.

Including a six degree of freedom vehicle response in the CFD simulations for the fully

coupled, unsteady dynamic approach adds a higher level of complexity to the bound-

ary conditions. The vehicle motions that need to be included can be split into two

categories. The ‘global group’ describes motions of the entire vehicle and includes

longitudinal and lateral translations along with yaw rotation. The ‘body group’ con-

tains motion of the vehicle’s sprung mass on its suspension system, namely vertical

translation (heave) as well as pitch and roll rotations. Nakashima et al. [72] suggest

a combination of grid deformation and a non-inertial reference frame to include all

six degrees of freedom. In their approach, grid deformation based on the arbitrary

Lagrangian-Eulerian (ALE) method was used for the small-scale body motions as well
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as the yaw rotation, while longitudinal and lateral translations were implicitly treated

through additional terms in the Navier-Stokes equations. The multiple inlet and out-

let boundary conditions were used to convect the crosswind over the vehicle, thus the

flow’s frame of reference was fixed on the vehicle. As the yaw rotation of the vehicle

was physically modelled via grid deformation, the vehicle’s frame of reference yaws,

however after any motion of this type, the flow’s u velocity component imposed at the

main inlet will no longer represent the reciprocal of the vehicle’s forward velocity as

the two frames of reference no longer align, shown in Figure 6.7. Nakashima et al. ac-

counted for this via additional longitudinal and lateral translational terms to ensure the

flow’s u velocity component coincided with the vehicle’s forward direction throughout

the simulation.

Whilst this method has proven effective at including motion within a CFD simulation,

grid deformation can only be used for small scale displacements such as those experi-

enced on a vehicle’s suspension system and small yaw angle rotations. For large-scale

motions, grid deformation can generate highly skewed grid elements and impair the ac-

curacy of the flow prediction. The overset grid approach offers an alternative, capable

of including both large and small scale motions. The proposed method of including

motion in all six degrees of freedom for a fully coupled, unsteady dynamic simulation

uses two nested overset regions: one around the complete vehicle and one around the

vehicle’s sprung mass. In this arrangement, the global and body motions can be treated

separately without deteriorating the quality of the grid elements.

The global overset grid moves in only three degrees of freedom, whilst the body grid

moves in six with the addition of heave, pitch and roll motions. As a result of using this

method, the vehicle ‘drives’ through the domain and through the band of crosswind,

as shown in Figure 6.6d. Due to the switch in frame of reference from a typical wind

tunnel arrangement to an on road observer’s perspective, this is a direct replication of

the vehicle driving passed the crosswind generator and hence could be used to simulate

more complex manoeuvres.
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Figure 6.7: The effect of yaw rotation on simulation boundary conditions: vehicle

forward velocity no longer aligned with u component of inlet velocity.

6.4 Computational Grids

For the three cases, two grids are generated: a static grid and a dynamic grid with

domain sizes (x = 20L, y = 13L, z = 3L) and (x = 25L, y = 10L, z = 3L) respectively.

As the overset grid moves through the domain in the dynamic simulation, the length of

the domain is determined by the desired duration of the simulation. A value of 25 car

lengths at a vehicle speed of 27.8 m/s corresponds to just over 4 seconds, sufficient for

a one second initialisation period during which the flow can develop and then a 2 and

2.5 second simulation time for the two gusts respectively. This is not the case for the

static grid, as the vehicle remains stationary in the domain, and hence the domain can

be shorter in length. The large width value of the static grid ensures that disturbances

do not re-enter the domain on the windward side when using the periodic boundary

conditions. This value is reduced for the dynamic grid as such boundary conditions are

not used and hence, this narrowing can remove unnecessary grid elements.

As already discussed, two overset regions are required for motion in six degrees of

freedom. One overset region, highlighted red in Figure 6.8, includes all four wheels

while the second, highlighted in blue, contains only the vehicle’s sprung mass and

lies nested, within the first. This arrangement allows the global and body motions of

the vehicle to be applied separately. Even though the geometry is fixed in the static

simulations, the overset regions are maintained in the static grid for consistency in grid

refinement, but also allows yawing of the vehicle for use in the quasi-static 36° yaw
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angle simulation without additional re-meshing.

Figure 6.8: Nested overset grid arrangement used by static and dynamic grids.

The position of the refinement that is contained within the overset grids, shown in

Figure 6.8, has been taken from the previous DrivAer model grid as the shape of this

region is still able to capture the predicted flow yaw angle generated over the vehicle.

The volume element size within this refinement is double the value used previously,

with an isotropic dimension of 20 mm (0.004L). The coarsening of the grids when

compared to the previous DrivAer model grid is required in order to speed up the hole

cutting and interpolation stages of the overset grid procedure. This allows acquisition

of results in practical times.

Unlike the local refinement, the global refinement and position of the vehicle within

the domain varies between the two grids. For the static grid, the vehicle is positioned

approximately 6L from the inlet, this allows a one second initialisation period before

the crosswind reaches the vehicle. In the region upstream of the vehicle, refinement

is added to reduce the numerical dissipation of the crosswind profile and as a result,

the static grid contains a total of approximately 1.6× 107 active, hexahedral elements.

Figure 6.9 shows a horizontal slice through the front portion of the domain at axle

height and gives an indication of the locations of the refinement and vehicle position.

For the dynamic grid, the vehicle is initially positioned at the far end of the domain,

close to the main outlet, thus a refinement region which spans the width of the domain

is positioned at a distance corresponding to one second upstream of the vehicle to

maintain the crosswind velocity profile. The length of this refinement varies due to
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the differences in length of the two crosswind profiles, but this does not have a large

effect on the total element count. An additional refinement region runs along the length

of the domain, along a predicted path of the vehicle as shown in Figure 6.9. This is

needed so that the size of the donor grid elements in the outer overset region matches

those of the background; thus reducing interpolation errors during the inter-grid data

exchange. Due to this additional refinement, the total number of elements increases to

approximately 2× 107.

(a) Upstream Portion of Static Grid

(b) Dynamic Grid

Figure 6.9: Position of vehicle and grid refinement within the domain.
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6.5 Numerical Approach

Again the numerical method follows on from the previous DrivAer model simulations

with a segregated, incompressible, finite volume, semi-implicit, pressure based solver

chosen for all simulations and a hybrid 2nd order upwind/bounded central-differencing

convection scheme. Turbulence is modelled with the IDDES variant of the Spalart-

Allmaras Detached- Eddy model. A second-order temporal scheme limits the numer-

ical dissipation of the crosswind profiles and a time-step of 1 × 10−4 seconds (non-

dimensional ∆tUR/L = 6 × 10−4 ensures a Courant number below one within the

LES region. Five inner iterations per time-step ensure consistent convergence of the

residuals. All CFD simulations are carried out using Star-CCM+ v10.04.009 from

CD-Adapco.

As already discussed in the oscillating Davis model study, a DES method is usually

applied to much finer grids with a total number of elements closer to 100×106, however

a grid containing this level of refinement is impractical due to current computational

resources and the increase in physical time that accompanies the overset grid technique.

Table 6.1 shows the values of drag and lift coefficient at zero yaw angle that are obtained

when using this coarse grid alongside the fine grid and several experimental values. It is

clear that this grid and numerical approach is capable of predicting the geometry’s drag

coefficient well. Furthermore the traditional boundary condition method, or the moving

overset technique appears to have a minimal impact on the drag, with a variation in

the coefficient value mimicking the variation between the two experiment values. The

difference in lift coefficient is most likely a result of the variations in the mounting of

the model between the simulation and experiment, the latter featuring a large vertical

mounting strut and small clearance between wheels and ground.

The fully coupled system follows the same format as designed in Chapter 4, with the

addition of a complex vehicle dynamics and driver model. The system is summarised in

Figure 6.10. Due to the differing timescales between the fluid and the vehicle motion,

a difference in timesteps between the aerodynamics and dynamics simulations was

introduced. Thus the data exchange between the two simulations only takes place once
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every 10 fluid timesteps.

Table 6.1: Drag and lift coefficient values using coarse overset grids.

CD CL

Unsteady Static 0.258 -0.038

Unsteady Dynamic 0.254 -0.022

Fine Grid (Chapter 5) 0.257 -0.020

Wieser et al. [136] 0.258 -0.096

Heft et a. [127] 0.254 -

Figure 6.10: Fully coupled vehicle aerodynamics and dynamics system.

6.6 Vehicle Dynamics and Driver Model

The vehicle handling and dynamics model was designed by Dr. Matt Best in the Aero-

nautical and Automotive Engineering department of Loughborough University [137].

The same model is employed on the in-house, 6 degree of freedom Stewart-type plat-

form driving simulator. The vehicle is modelled as a rigid body, free to move in six

degrees of freedom under the influence of nominal drag and tyre forces found from a

combined slip Pacejka formula. The vertical load used in these calculations is com-

puted assuming a linear spring-damper suspension system compensated by suspension

link forces that act at static roll centres. The model has been assembled in the model-

based design environment Simulink, integrated within MATLAB, and initialised with
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values representative of an average family saloon as shown in Table 6.2. The model

includes the weight of the driver with no additional passengers or load.

Table 6.2: Vehicle initialisation parameters.

Kerb Weight + Driver (kg) 1345+75

Wheel Mass (kg) [40, 40, 40, 40]

Roll Inertia (kg m2) 532

Pitch Inertia (kg m2) 2000

Yaw Inertia (kg m2) 2150

Wheelbase (m) 2.786

Height of mass centre above ground (m) 0.53

The vehicle dynamics coordinate system follows the SAE standard J670 [138] and is

shown in blue in Figure 6.11. The centre of this coordinate system is located at the

vehicle’s centre of gravity, split 47/53% along the length of the vehicle and 0.38H above

the surface of the road (approximately coinciding with the top of the wheel hubs). This

weight distribution is representative of a front wheel drive vehicle. In contrast, the

vehicle’s aerodynamics are referenced in a separate coordinate system, defined in SAE

J1594 [139] and shown in black in Figure 6.11. In this coordinate system, the origin is

located on the ground at a mid-track, mid-wheelbase location and the directions of the

x and z axes are reversed. This switch in direction is a result of a desire for positive

aerodynamic drag and lift values but in spite of this switch, the sign convention of all

aerodynamic moments is consistent with the vehicle dynamics. For use in the vehicle

dynamics model, all aerodynamic forces and moments are converted into the vehicle

dynamics coordinate system and thus acts through the vehicle’s centre of gravity.

The driver model was also developed by Best [137] and is a simple path following model

for which the driver provides lateral control through a steering input. For these partic-

ular simulations, the driver provides no longitudinal control as the vehicle is in a cruise

control condition. The parameters which define the model are preview time to a single

point on the road ahead tp, a proportional lateral gain Klat, a driver reaction time tlag,

and a final parameter defining a basic approximation of the understeer gradient Kug.
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Figure 6.11: Vehicle aerodynamics (black) and dynamics (blue) coordinate systems.

Figure 6.12 shows the calculation of the preview point P after preview time tp, and the

lateral deviation from both linear and circular track types. Under a fixed steered wheel

angle δ at time t and constant forward speed u, the forward path radius can be defined

from the well known steady-state handling equation,

R =
LW +Kugu

2(t)/g

δ(t)
. (6.3)

With a vehicle orientation ψ, units vectors are,

t̂G =

cosψ

sinψ

 , n̂G =

− sinψ

cosψ

 (6.4)

and the angle traversed along the arc,

θ = u(k)Tp/R. (6.5)

The preview point P can then be calculated using the arc centre O,

P = G+

1−

cos θ − sin θ

sin θ cos θ

Rn̂G. (6.6)

The deviation of this point from the line segment track type can be calculated,

dL = (P − SL) · n̂L (6.7)
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and steering control is applied (with time delay tlag) based on correction of the current

value δ(t), and the predicted future point error dL,

δ(t+ tlag) = δ(t) +Klatd. (6.8)
AVEC 12 
 

load, which is computed assuming a linear spring-
damper suspension compensated by suspension link 
forces that act at static roll centres.  Four wheel spin 
degrees of freedom are modelled, driven by input drive 
torque τ shared equally at the front wheels.  This is 
reacted by the longitudinal tyre forces and a nominal 
road drag.  A full description of the tyre model is 
available in [5].  The vehicle parameters are nominal 
but consistent with a medium sized passenger vehicle, 
sourced from [7]. 
 Vehicle position and orientation in global 
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3.  DRIVER MODEL 
3.1 Lateral Behaviour 
When driving, I am conscious of tracking one point on 
the road ahead and continuously adapting the steering 
to keep the vehicle on a path toward that point.  The 
amount of preview varies with speed, so a finite 
preview time, Tp seems appropriate.  For straight line 
driving this requires a simple lateral deviation 
correction process, and interestingly the same is also 
true on a fixed radius curve; small corrections are 
needed to the steady-state steer.  The basis of lateral 
control here is therefore forward prediction of vehicle 
position based on current steer angle; the driver is only 
expected to have developed an appreciation of what 
radius a given steer angle will deliver, in the steady-
state, over Tp. 
 A particular problem with driver modelling is 
accurate but computationally simple respresentation of 
the road.  Smooth, eg. circular or splined road 
segments provide a continuous reference, but are 
computationally burdensome.  Here we will principally 
rely on the simplest road reference, a linearly 
interpolated trace of X,Y locations for a prescribed 
simulated track, or from GPS measurements.  However 
this driver model method also lends itself well to 
circular road segments, so both alternatives are 
documented.  Fig 1 illustrates the evaluation of signed 
lateral error at the preview point P.  
 The control operates discretely; from the known 
global position of the vehicle CG, G, orientation ψ, 
speed u and steered wheel angle δ at time step k.  The 
forward path radius under fixed steer angle and 
constant speed is, from the well known steady-state 
handling equation, 
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Fig. 1 : Calculation of preview point and lateral 
deviation from both linear and circular track types 

 
and angle traversed along the arc is 
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One way to locate point P is via the arc centre O, 
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The signed deviation from a circular track segment, dc 
is then simply 

 C C Cd R P O= − −  (6) 

and the validity of the particular segment can be 
confirmed by P satisfying 
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with notation |z signifying the z component of the 
appropriately (3d expanded) vector products. 
 For the linear segment track type, 

 ( ) ˆ.L L Ld P S n= −  (8) 

where, for a valid segment 

 ( ) ˆ0 .L L LP S r r< − <  (9) 

Here the smallest valid dL will be approprate, but two 
snags arise in that (a) checking all segments is 
computationally expensive, and (b) since the line 
segment track is discontinuous in gradient, conditions 
can arise where two, or zero valid segments can exist.  
To avoid both problems, take advantage of the fact that 
P will only progress forward along the track, so 
retaining i as the number of the previously valid track 
segment, at each new control step 

while ( ) ˆ( ) . ( ) ( )L L LP S i r i r i− > ,  i = i+1 (10) 

Steering control is based solely on correction of the 
current value, given the predicted future point error d 
(evaluated as dc or dL above as appropriate), 
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Figure 6.12: Preview point and lateral deviation from both circular and line track types

[137].

This driver model has been tuned to real driver steering data recorded on the in-

house vehicle simulator. Participants were advised to maintain their position within

the lane of a two-laned dual carriageway whilst the vehicle was subjected to the long

crosswind profile. The gust was applied to the vehicle through external aerodynamic

loads obtained from the unsteady static open loop simulation. No warning or prior

knowledge of the gust was given to the participants. There is an argument to suggest

that this information should have been provided as a gust of this profile typically occurs

when exiting a tunnel or passing over an open bridge for which the driver may be given

a visual cue and be prepared to react. From a total of ten participants, five responses

were excluded as they represented a poor driver’s response, either failing to return

to the lane or returning with a significant delay. Such responses could be utilised to

investigate the effect of variation in driver ability, but for the current initial simulations

it was felt that a competent driver’s response was appropriate. For this reason, the

remaining five responses were used to calculate an average steer angle response and
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this is shown in Figure 6.13.
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Figure 6.13: Recorded driver response and calculated average.

A low pass filter was applied to the average steer angle response to remove the unphys-

ical small scale fluctuations resulting from the averaging process. The driver model

was tuned to this smoothed average response using an unconstrained, multivariable

minimisation function. More specifically, the optimal solution was found by minimis-

ing the covariance of the difference between the modelled and reference steer angles.

The variables that were tuned were the preview time tp, proportional lateral gain Klat,

driver reaction time tlag, and approximation of the understeer gradient Kug. The op-

timal values are presented in Table 6.3, with the modelled steer angle response shown

in Figure 6.14. Although the value of driver reaction time appears small (from the

reference data it is expected that this value is approximately 0.5 seconds) the current
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value provides a suitable curve fit to the reference data over the initial steer input.

This suggests that the tlag parameter is ill-defined, and not a true representation of the

driver’s reaction time. It is most likely that this parameter represents a generic time

lag that is dependent on the values of additional parameters such as the preview time.

Table 6.3: Tuned driver model parameters.

tp (s) Klat tlag (s) Kug

1.132 0.003 0.041 0.188
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Figure 6.14: Tuned driver response.
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6.7 Results - No Driver Response

The results of the open loop manoeuvre, without a driver’s response, are analysed first,

with Figures 6.15a and 6.15b showing the behaviour of the vehicle as it moves through

the two bands of crosswind. The figures have been scaled consistently, and therefore

show the differences in gust length with reasonable accuracy. The overlaid horizontal

lines are set at a distance of 1.8 m apart to indicate half a typical motorway lane width.

In an initial analysis of the vehicle’s response, the gust appears to alter the yaw angle

of the vehicle and as there is no driver response, the vehicle deviates laterally from

its initial path. Within the simulated time, this deviation is large enough to encroach

upon the adjacent lane in both events and hence presents a severe safety concern. The

underlying aerodynamics that are responsible for this response and the compete vehicle

six degree of freedom behaviour is now discussed in more detail.

(a) Short Gust (4L)

(b) Long Gust (12L)

Figure 6.15: Motion of the vehicle in the fully coupled, open loop simulations.
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6.7.1 Short Gust

The effect that the gust has on the aerodynamic side force and yawing moment, and

the influence of the coupling method for the short event are presented in Figures 6.16

and 6.17. In these figures, all forces and moments are defined using the standard SAE

aerodynamic coordinate system SAE J1594 [139], thus the moment centre is defined

at mid-wheelbase, mid-track on the surface of the road. However as already discussed,

for use in the dynamics model, these forces are converted into a vehicle dynamics

coordinate system. All vehicle response figures use this dynamics coordinate system.

Over the duration of the gust, there appears to be very little difference in the predicted

loads between the two unsteady approaches. The timings and gradients of the increase

and decrease in side force and yaw moment display minimal variations between the

two. In comparison, there is a clear delay in the loadings when using the steady static

approach. This is caused by the time dependent effect of the gust travelling along

the length of the vehicle, whereas the steady state approach assumes that there is a

constant force acting over the entire vehicle. In this case, the aerodynamic response

follows the timing of the aerodynamic centre’s exposure to the gust.

The front of the vehicle enters the gust at t = 0 and the side force builds. As the

length of the gust’s mixing layer was set to one car length, by the time the maximum

yawed flow hits the front of the vehicle, the rear is only starting to feel the presence of

the gust. By point A, the entire front half of the vehicle is immersed in the maximum

yawed flow, and due to the angle and strength of the resultant velocity vector, the

flow’s front stagnation is shifted from a central position, to the front windward corner,

as shown in Figure 6.18a. In this state, the front contribution to the total side force

dominates over the rear and the aerodynamic yaw moment over shoots the steady static

value. This behaviour agrees well with the observations of Hucho and Emmelmann [74]

and the experiments of Beauvais [61]. In addition, this behaviour is in keeping with

the phenomenon of flow hysteresis identified earlier, conforming to the relationship of

reduced frequency and unsteady aerodynamic loads.

At point B, the entire vehicle is immersed in the maximum yawed flow and thus an
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Figure 6.16: Short gust: Side force
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Figure 6.17: Short gust: Yaw moment

increase in rear side force restores the yaw moment to the steady static value. The

front of the vehicle then starts to exit the gust, indicated by the early decrease in both

loads, and by point C, the entire front half of the vehicle has left the crosswind region.

This point correlates to a negative peak in side force, caused by the larger resultant

velocity and thus low pressure acting over the rear windward side. A similar peak does

not exist in the yaw moment as this load is most strongly influenced by the location of

the high pressure stagnant flow on the vehicle’s front bumper, which has returned to a

central position as shown in Figure 6.18b.

The largest differences between the two unsteady methods occur during the latter half

of the event. It is predicted that the early decrease in aerodynamic yaw moment seen in

the unsteady dynamic response is a result of including the vehicle’s dynamic response

in the CFD simulation. Figure 6.19 shows that during the gust, the vehicle’s yaw angle

increases up to a value of 2.5°. Interestingly, with the arrangement of the crosswind

and vehicle velocity, this positive increase in the vehicle’s global yaw angle, decreases

the resultant flow velocity acting on the vehicle, as shown previously in Figure 1.7 and

Equations 1.18 and 1.19. Although the resultant yaw angle can be shown to increase,
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(a) Point A

(b) Point C

Figure 6.18: Short Gust: Pressure coefficient at the entrance and exit of the gust.

it is thought that the reduction in dynamic pressure dominates over the yaw angle

change and is responsible for the early drop off in the aerodynamic yaw moment, thus

imparting an aerodynamic damping on the vehicle’s motion. After leaving the gust, the

vehicle’s yaw angle continues to grow due to the build up in vehicle’s yaw momentum.

The data curves show that the yaw angle eventually settles at a value between 3.5° and

3.8°. Variations in this value are a result of the delay in the steady static aerodynamic

response and the early decrease in aerodynamic yaw moment identified in the unsteady

dynamic response. These results imply that a one-way coupled, unsteady static method

provides an over estimated or ‘worst case’ prediction of the vehicle’s yaw response which

would be a ‘safe’ technique to use in a design process.
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Figure 6.19: Short gust: Yaw angle
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Figure 6.20: Short gust: Lateral deviation

The vehicle’s lateral deviation is shown in Figure 6.20. This deviation is a result of the

change in yaw angle only, as the friction acting on the tyres is large enough to prevent

any lateral slip. Whilst immersed in the gust, the vehicle deviates by only 0.25 m and

as no driver response can be applied, this deviation grows up to a total distance of

approximately 1.85 m after 2 seconds, corresponding to half a typical motorway lane

width. The variations between the unsteady method’s yaw angle response do not appear

to have a substantial effect on the total displacement, whereas the delay in aerodynamic

response between the steady and unsteady methods results in an 8% reduction in the

final value. These results are comparable to the recent two degree of freedom crosswind

simulations by Carbonne et al. [121] and Winkler et al. [122], who showed a similar

behaviour in vehicle response and aerodynamic loadings for various methods.

In addition to yaw rotation and lateral deviation, the current study considers motions in

six degrees of freedom. Figures 6.21 and 6.22 show how the vehicle undergoes a negative

roll angle displacement (into the gust) as a result of a large increase in aerodynamic

roll moment. The use of two separate coordinate systems to describe aerodynamics

and dynamics introduces some confusion when analysing this results, as a positive
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aerodynamic roll moment appears to produce a negative vehicle roll angle. However

when converted into the vehicle dynamics coordinate system, the positive aerodynamic

roll moment becomes negative, due to the difference in origin height between the two

sets of axes. As was the case with the yaw moment, a delay in the development of

the roll moment is a feature of the steady static response, whereas the timing in the

two unsteady methods is much more comparable. On top of this rolling motion, the

body pitches, nose down, and the centre of gravity is raised by 6 to 8 mm. When

combined, these three motions describe a overall downward motion of the windward

front corner during the gust which is consistent with the movement of the flow’s large

front stagnation region. For all motions, the maximum angular displacement is small,

most likely due to the realistic levels of suspension stiffness and body inertia. Therefore

the seemingly large response differences between the coupling methods are exaggerated

by the scales of the figures and ultimately have a minimal impact on the overall response

of the vehicle.
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Figure 6.21: Short gust: Roll angle
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Figure 6.22: Short gust: Roll moment
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Figure 6.23: Short gust: Pitch angle
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Figure 6.24: Short gust: Heave

6.7.2 Long Gust

For the long gust, the aerodynamic and vehicle responses show many of the same

properties as identified in the short gust. Figures 6.25 and 6.26 show the same delay in

the steady static side force and yaw moment, whilst the high similarity between the two

unsteady methods as the vehicle enters the gust, specifically the percentage of the over

shoot in yaw moment, is maintained. Over the latter half of the event and as the vehicle

exits, the reduction in yaw moment previously identified is more substantial, due to a

larger vehicle yaw angle whilst immersed in the gust, reaching a value of approximately

11.25°, as shown in Figure 6.27. A second consequence of the large yaw angle is that

the vehicle is exposed to the gust for longer. The resulting curved trajectory through

the gust is evident in the aerodynamic side force by a delay beyond the steady static,

when exiting the gust. This effect was not as clear in the short gust as the change in

yaw angle and hence path through the gust was much more direct.

As shown by Figure 6.27, at 2.5 seconds, after the vehicle has emerged from the gust,

the yaw angle is clearly over predicted by both one-way coupled methods. This is

due to the larger aerodynamic yaw moment generated over the latter half of the event

when using these techniques. As with the short gust, the deviation is a result of

the change in yaw angle during the event and at the end of the event, this deviation
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Figure 6.25: Long gust: Side force
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Figure 6.26: Long gust: Yaw moment

has grown to approximately 5.7 m. At this moment, the entire vehicle lies within the

adjacent lane. Again due to the delay in the steady static yaw angle, the final deviation

value when using this method is reduced, by approximately 7% from the unsteady

static, a percentage comparable to the reduction value calculated for the short gust.

Interestingly the predicted deviation for the unsteady dynamic method falls between the

two one-way coupled methods, which suggests that for this gust length, the steady static

delay has a stronger effect on the deviation, than the inclusion of vehicle motion within

the simulation. The unsteady static method still provides a ‘worst case’ estimate of the

vehicle’s yaw, but now also lateral response. Based on the current trend, it is reasonable

to predict that for an even longer crosswind event, the one-way coupled methods will

substantially over predict the lateral deviation, as the differences in vehicle yaw angle

and hence aerodynamic yaw moment during the gust will be magnified even further.

The magnitude of the deviation for this long gust is comparable to full-scale exper-

iments of Howell [55]. After repeatedly subjecting an SUV vehicle to an artificially

generated crosswind with total length of ten car lengths and mixing layers of three

car lengths, this vehicle deviated in the range of 2 m to 3 m after 2 seconds. Figure
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Figure 6.27: Long gust: Yaw angle
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Figure 6.28: Long gust: Lateral deviation

6.28 shows that after a similar amount of time, the predicted deviation of the fast-

back is approximately 3.2 m. The difference between these values can be attributed to

the change in vehicle classes and hence dynamic properties as well as the variations

in the mixing layer lengths, which at larger values, have been shown to produce a

quasi-steady behaviour of the aerodynamic loads. Although no specific experimental

validation has been performed for the fastback geometry, the similarity in these values

instills confidence in the simulation results.

The collective roll, pitch and heave motions still combine to produce a downward motion

of the front windward corner, as shown in Figures 6.29, 6.30 and 6.31, however there are

some differences in magnitude from the short gust. The maximum roll angle reached

by the vehicle is much larger than in the short gust, approximately double in all cases.

As with the yaw and lateral responses, the unsteady static method provides an over

prediction of this roll response. Although the difference is small, approximately 0.2°,

this is further evidence that the inclusion of motion (in this case roll motion) within

the CFD simulation, has a damping influence on the overall vehicle response. The

small magnitudes of the pitch angle and heave responses are comparable to the short
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gust and thus imply that from these three motions, the vehicle is more susceptible to

rolling during a crosswind event. The steady static pitch response seems to provide

a reasonable average of the two unsteady methods, whereas for heave, this method’s

results suggest that the body is continually rising on the suspension system throughout

the event. In comparison, the unsteady methods predict that after an initial peak in

displacement, the body gradually returns to its initial position. From Figure 6.32, it

can be seen that this is a direct result of the unsteady aerodynamic lift force.
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Figure 6.29: Long gust: Roll angle
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Figure 6.30: Long gust: Pitch angle
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Figure 6.31: Long gust: Heave
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Figure 6.32: Long gust: Lift force
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6.7.3 Computational Costs

The costs of running the methods (on 320 cores) are shown in Table 6.4. The steady

static cost takes into account the time for two simulations, required as a minimum

to generate the aerodynamic response. A speed up parameter, shown alongside the

physical time, has been calculated by normalising the two one-way coupled costs by

the fully coupled.

Table 6.4: Computational costs of coupling approaches.

SS US UD

Short gust wall clock time (hrs) 24 36 121

Long gust wall clock time (hrs) 30 45 151

Speed up from unsteady dynamic approach 5.1 3.4 1

The addition of the moving overset grid approach increases the simulation time by

approximately 3.4× over the unsteady static approach. This is a substantial increase

from the 2.31× found in the oscillating Davis body simulations, Table 3.3, and provides

a measure of the added cost when using more than one overset region in the domain.

Over the steady static approach, this speed up is even more substantial, with the fully

coupled simulation requiring a factor of 5.1× longer.

6.8 Summary

The results from the open loop manoeuvre, with no driver response, suggest that one-

way coupled methods provide a reasonable estimate of the vehicle’s response at signif-

icant reductions in computational cost, when subjected to both short (4L) and long

(12L) crosswind events. The largest differences in the response between a one-way and

fully coupled approach are a result of failing to including the vehicle’s time accurate

yaw angle and position whilst immersed in the gust. As the vehicle yaws during the

crosswind region, the resultant flow velocity reduces, thus lowering the dynamic pres-
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sure and consequently the aerodynamic yaw moment, providing a damping effect on

the yaw displacement. The one way coupled methods do not include this effect, and

thus exposes the vehicle to the maximum flow velocity throughout the event. This

leads to over predictions in the values of vehicle yaw angle and lateral deviation. It is

predicted that for an even longer event, the quality of the one way coupled response

will deteriorate.

It is clear that yaw rotation and lateral translation are the dominant motions in response

to a crosswind event with no driver input. With a realistic vehicle dynamics model, the

stiffness of the suspension system and inertia of the body limit the pitch, roll and heave

motions and do not appear to influence the dominant aerodynamic loads. For future

fully coupled crosswind simulations, it seems appropriate to remove these motions from

the simulation which will also offer reductions in computational expense.

It can also be seen that the steady static method introduces a time delay into the

response, a result of failing to simulate the transient aerodynamic loads as the vehicle

enters and exits the gust. In addition, the method inaccurately predicts the unsteady

behaviour of the aerodynamic lift force throughout the event. An unsteady method cap-

tures the over shoot in the aerodynamic yaw moment which is consistent in magnitude

with empirically calculated and experimentally measured values whilst also including

the unsteady behaviour of the lift force. It is suggested that for future simulations of

this particular test case, an unsteady static approach is used, as this method exposes

the vehicle to the largest aerodynamic loads for the duration of the event, thus pro-

viding a ‘worst case’ prediction of vehicle response. However, when accurate deviation

values are required, or the gust no longer acts perpendicularly to the vehicle’s initial

path, the fully coupled approach is needed.

6.9 Results - Closed Loop

The fully coupled simulation method has also been applied to a closed loop vehicle

dynamics system, with a driver in the loop. As already shown, the driver model has

been developed using human steering angle data obtained through vehicle simulator
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tests of the long crosswind event. The intention of the driver is to maintain their

position within the lane. Using the model, the short and long crosswind simulations

have been repeated to investigate the influence of a driver during both of these events.

The length of the closed loop fully coupled simulations are consistent with the open

loop simulations, 2 and 2.5 seconds respectively, however after this point, the vehicle

dynamics simulation continues to run to a total time of 10 seconds. This simulation

length captures the complete driver’s response. As a result, the aerodynamic loads

are assumed to be quasi-steady after the aerodynamic simulation has ended. This

decision was based on the computational resources that would have been exhausted for

a simulation of the complete length, but also the predicted minimal impact that the

driver’s input would have on the aerodynamics after leaving the gust.

6.9.1 Short Gust

For the short crosswind event, the effect of the driver can be seen in the vehicle’s lateral

deviation, shown in Figure 6.33. Unlike the open loop response, the driver is able to

return the vehicle to its initial path, as intended. A delay in the lateral deviation

when compared to the vehicle’s yaw angle is consistent throughout the event. When

the vehicle first returns to a 0° yaw angle after a positive peak of approximately 2°,

the lateral deviation is not at its maximum. This delay is maintained at the next

zero-crossing which does not coincide with the negative peak in position as the driver

overshoots the initial path. This delay implies that in addition to yaw angle, a lateral

slip contributes to the deviation.

The driver applies a steering input in an attempt to bring the vehicle back to its

initial path. Figure 6.34 shows the steering wheel angle during and after the gust. By

comparing this response to the vehicle’s lateral deviation in Figure 6.33, it is clear that

the driver is not explicitly responding to the position of the vehicle, as the peak steer

angles occur well before the vehicle has reached the positive and negative extremes of

lateral position. The driver actually responds to the vehicle’s yaw motion. A negative

steer angle of approximately 12° in magnitude is applied in an attempt to recover from

the positive yaw angle that has developed as a result of the gust. This peak value is
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Figure 6.33: Short gust, closed loop: Lateral deviation and yaw angle (Dashed).

applied approximately 1 second after entering the gust and is delayed from the peak

yaw angle by approximately 0.15 seconds. As a result the driver is still increasing

the magnitude of their steer angle input when the yaw rate of the vehicle switches

direction. Due to the length of the gust and the reaction time of the driver, Figure

6.34 clearly shows that the driver only begins to apply the maximum steering input

after the crosswind has passed and this delay is responsible for the overshoot from the

vehicle’s initial path.

The total vehicle response is the sum of the vehicle’s reactions due to the driver and due

to the gust. The latter has already been obtained with the open loop simulations, thus

the influence of driver can be calculated by subtracting the open loop response from

the total response with a driver. This is shown in Figure 6.35 through the vehicle’s yaw

rate and clearly shows the delay in the driver’s response. An ideal response would take

the form of the anti-phase of the vehicle reactions due to the gust, however the delay

in the driver’s steer response shifts the vehicle reaction due to the driver. A measure
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Figure 6.34: Short gust, closed loop: Steering wheel angle and yaw rate (Dashed).

of the quality of the driver’s reactions can be calculated using the integral of the yaw

rate’s absolute value |β̇|. This value represents the total yaw angle displacement of

the vehicle, thus by calculating this value for the simulations with and without driver,

the influence of the driver can be numerically quantified. A value of 3.69° for the

open loop and 8.86° for closed loop implies that the driver intensifies the vehicle’s yaw

displacement by a factor of approximately 2.4.

6.9.2 Long Gust

For the long gust, the driver is still able to return the vehicle to its initial path as

shown in Figure 6.36, but the time taken to recover is substantially longer than for the

short gust. Again a delay in the lateral deviation when compared to the yaw angle of

the vehicle indicates that lateral slip contributes to the vehicle’s position. The driver’s

steering input is much more aggressive for this gust, as shown in Figure 6.37. A peak

steering wheel angle of over 20° in magnitude is applied to oppose the growing vehicle
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Figure 6.35: Short gust, closed loop: Vehicle reactions due to crosswind and driver.

yaw angle, however the rate at which this angle is applied is similar to the shorter gust.

As a result, the delay between the steer angle and vehicle yaw rate responses is similar

and an overshoot from the vehicle’s initial path is still present.

Deconstructing the vehicle’s yaw rate into the reactions due to the gust and due to the

driver it is clear the driver’s reactions are still unable to cancel out the vehicle reactions

due to the gust, as shown in Figure 6.38. By the time the vehicle’s yaw rate due to the

gust is decreasing, the rate due to the driver’s input is still increasing in the opposite

direction. The direction of this steering angle is quickly reversed, however as was the

case for the short gust, the delay in this switch causes the vehicle to over shoot its

initial path.

Due to the longer event and larger steering input, the values of total yaw angle displace-

ment are much larger: without the driver 14.17° and with the driver 18.05°. Despite

these larger values, the factor by which the driver intensities the vehicle’s response is

reduced to 1.27. This is consistent with the work of Wagner and Wiedemann [53] who
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Figure 6.36: Long gust, closed loop: Lateral deviation and yaw angle (Dashed).

Time (s)

St
ee

r A
ng

le
 (D

eg
)

Ya
w

 R
at

e 
(D

eg
/s

)

0 2 4 6 8 10

-20

-10

0

10

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Steady Static
Unsteady Static
Unsteady Dynamic

Figure 6.37: Long gust, closed loop: Steering wheel angle and yaw rate (Dashed).
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Figure 6.38: Long gust, closed loop: Vehicle reactions due to crosswind and driver.

showed that at the frequency of the short gust (1.5Hz) a driver amplifies the vehicle’s

reactions with the largest intensification factor, whereas at lower frequencies, such as

the long gust (0.5Hz), the driver is able to compensate for the gust to a better extent.

6.9.3 The Influence of Coupling Approach on the Closed Loop Response

For both gusts, the choice of coupling approach has a minimal influence on the driver’s

and vehicle’s responses. As shown in the open loop simulations, variations in the vehicle

response are caused by the change in yaw angle and hence aerodynamic loads whilst

immersed in the gust. As the driver’s input is determined by the vehicle’s response,

the same will be true for the steering input. For the short gust, due to its length, the

variation in vehicle response between the approaches was already minimal in the open

loop results and with the addition of the driver, a smaller yaw angle is reached during

this period. As a result, the choice of coupling approach has almost no effect on the

driver’s and vehicle’s response for this gust event.
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Similarly, for the longer gust, the driver’s input reduces the yaw angle reached during

the length of the gust. However, the maximum yaw angle reached during this period,

3°, is still large enough to introduce variations into the aerodynamic yaw moment, as

shown in Figure 6.39.
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Figure 6.39: Long gust, closed loop: Yaw moment

At approximately 1.3 seconds, the yaw angle of the vehicle reduces the aerodynamic

yaw moment by approximately 14% when compared to the steady static value. After

this point, a reduction in the yaw angle as the driver returns the vehicle to its ini-

tial orientation, increases the aerodynamic yaw moment back towards the maximum

loading. However this ‘dip’ in load is reflected in the steer angle input and lateral

deviation, by a reduction of 4% and 3% respectively, from the unsteady static values.

This maintains the conclusions of the open loop simulations that the one-way coupled

approaches provide a worst case response, although with the addition of the driver, the

magnitude of the difference between this worst case and the fully coupled response is

reduced.
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6.10 Summary

With the inclusion of the driver, it has been shown that the vehicle is able to return

to its initial path. The time taken for this recovery is dependent on the length of

the gust and it has been shown that for a gust of frequency 1.5Hz, a driver amplifies

the vehicle’s response. The delay in the driver’s response causes the vehicle’s yaw

displacement to be increased by a factor of approximately 2.4 and this results in an

over shoot from the vehicle’s initial path. In contrast, for a longer gust of frequency

0.5Hz, the intensification factor of the driver’s response on the yaw angle displacement

is much lower, approximately 1.27, implying that they have a more positive influence

on the vehicle’s response.

The use of a fully coupled approach for the closed loop simulation is computationally

expensive and does not justify the differences seen in the vehicle response over the

one-way coupled methods. As shown in the open loop simulations, the largest varia-

tion between the approaches emerges from the difference in vehicle yaw angle whilst

immersed in the gust. Due to the driver’s steering input, this yaw angle does not

reach the levels of the open loop simulations and thus is not large enough to promote

significant variation into the aerodynamic loads and vehicle response.
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Chapter 7

Conclusions

A fully-coupled, six degree of freedom system in which a vehicle’s aerodynamics and

dynamics can be assessed using simulation has been designed and evaluated against

current, traditional methods.

In such a system, a vehicle’s aerodynamics should, where possible, be simulated using

a detached-eddy simulation methodology. It was shown through comparison to exper-

imental wind tunnel data of a generic, simplified vehicle geometry, that a Reynolds-

Averaged Navier-Stokes method with k-ω SST turbulence model is unable to capture

the large levels of turbulent mixing in a vehicle’s base wake, resulting in a much larger

structure and consequently inaccurate force coefficients. It was felt that despite the

large increase in computational time, with DES taking approximately 35 times longer

than the RANS simulations to obtain a converged and sufficiently time-averaged predic-

tion, the increase in expense justifies the improvements that are gained in flow physics

prediction.

The overset grid technique was shown to be a suitable method of including moving

geometry components within a CFD domain, such that a vehicle’s dynamic response

could be included in an aerodynamics simulation. This was achieved through simula-

tion of experimental wind tunnel data in which a Davis body underwent a continuous

oscillation in yaw angle. Although the large levels of flow hysteresis present in the

experiment could not be reproduced at the specific reduced frequency (K = 0.098),

it was felt that this was due to imperfections in the experiment, yawed onset flow or

model imperfections, rather than the simulation method. This also agreed with the

relationship of reduced frequency and flow unsteadiness published in literature. Flow
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hysteresis was present in the simulation at a much larger frequency, (K = 0.98), due

to delays in the formation and dissipation of the A pillar vortices.

An alternative technique of including motion using a sliding mesh showed minimal

differences in side force coefficient behaviour, but ran in approximately 55% of the time

taken for the overset grid approach. Despite this speed up, the technique can only be

applied to motion with one degree of freedom, thus the method was not suitable for

the six degree of freedom, fully coupled system.

The aerodynamic side of the system’s architecture uses CD-Adpaco’s STAR-CCM+

v10.04.009 and the dynamics model has been programmed in Simulink/MATLAB.

Communication between software is performed using a collection of Java macros and a

Level-2 MATLAB S-Function. The full set of aerodynamic forces and moments (Drag,

Side Force, Lift, Roll, Pitch, Yaw) are sent to the dynamics model and the appropriate

vehicle response is calculated. The three translational velocity components and three

angular velocity components of the vehicle are then returned to the CFD simulation

and the vehicle’s position in the domain is updated. This data exchange takes place at

every time step, or as desired.

The fully-coupled system was applied to the simulation of crosswind behaviour, but

initially the influence of real world flow conditions on a vehicle’s aerodynamics was in-

vestigated. It was found that the shear in the natural wind during such an event, a re-

sult of the atmospheric boundary layer, has a minimal effect on a vehicle’s aerodynamic

loadings, although this was only investigated for two very similar vehicle geometries

(DrivAer model: fastback and estate) and a single, moderate flow yaw angle of 10°.

Turbulence of 8% intensity on top of a sheared velocity profile has a much larger effect,

decreasing the vehicle’s side force and yaw moment coefficients but increasing the drag.

Inspection of the flow around the vehicle revealed a reduction in the onset flow yaw an-

gle and delay in flow separation from the rear corners and were suggested as sources for

the variations in these aerodynamic loads. The stationary force and moment coefficient

gradients suggested that the fastback geometry was more sensitive to crosswinds than

the estate and that a steady, unsheared crosswind profile would provide the maximum

aerodynamic loads relevant to vehicle stability.
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CONCLUSIONS

With these conclusions, the fully coupled simulation was performed. The fastback

geometry and steady, unsheared flow conditions were selected to provide the potential

worst case conditions. Despite this, the results suggested that an unsteady, one-way

coupled approach, in which the vehicle position is fixed in the CFD simulation, provides

a reasonable prediction of the vehicle’s fully coupled response. The realistic but large

yaw inertia of the vehicle and high suspension stiffness prevents the vehicle reaching any

large attitude or positional change whilst immersed in the gust, from which variations

to the aerodynamic loads can arise. These vehicle properties also limited the roll, pitch

and heave of the body, and the results suggested that these motions could be removed in

favour of a less computationally intense simulation with only three degrees of freedom.

The largest variations between the coupling approaches were between the fully coupled

and a steady, one-way coupled approach. Introduction of a time delay due to the loads

acting through a single point, neglected any unsteady effects of the gust passing over the

length of the vehicle and resulted in an overall under-prediction of the vehicle response.

For the current crosswind conditions, the unsteady, one-way coupled method provided

the worst case response. This was due to a constant resultant flow velocity magnitude

throughout the event. Whereas in the unsteady-dynamic event, the inclusion of the

vehicle’s yaw angle response led to reductions in the magnitude of this vector, thus

lowering the dynamic pressure and aerodynamic forces.

These conclusions were maintained with the addition of a driver model, calibrated from

real driver data recorded on a vehicle simulator. The driver’s steering input reduced

the vehicle’s yaw angle growth whilst immersed in the gust, thus variations between the

one-way and fully coupled methods were minimised even further. By comparing the

vehicle response with and without a driver, the effectiveness of the steering input could

be determined. It was shown that at a gust frequency of 1.5Hz, a driver intensifies the

vehicle’s yaw angle displacement to a greater extent when compared to the response

during a longer gust of over three times the length. This was mainly due to a delay in

the driver’s initial reaction to the gust and is consistent with existing literature.

For the crosswind conditions simulated, which represent a severe and rare event, the

computational cost of running a fully-coupled simulation does not justify the differences
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between the one-way coupled vehicle response. A change in gust conditions or an

alternative vehicle that is more sensitive to yaw motion, either through production of

a larger aerodynamic yaw moment or lower body inertia, may widen the differences in

dynamic response and support the use of the fully-coupled system.

It is suggested that in future applications, for example during a vehicle’s design pro-

cess, that an unsteady, one way coupled approach is taken to determine the effects of

severe crosswinds on vehicle dynamics. This technique can be performed using the vast

majority of commercial and open-source CFD codes and does not require any com-

plex features, such as the overset grid method, which at present is not widely available.

Should the results obtained using this approach suggest that the response of the vehicle

will be significantly altered during the event, then the more computationally intense

and complex fully coupled approach is an appealing tool that could be exploited.
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