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Abstract
The Energy Management Strategy (EMS) has a huge e�ect on the performance of any hybrid
vehicle because it determines the operating point of almost every component associated
with the powertrain. This means that its optimisation is an incredibly complex task which
must consider a number of objectives including the fuel consumption, drive-ability, com-
ponent degradation and straight-line performance. The EMS is of particular importance
for Fuel Cell Hybrid Electric Vehicles (FCHEVs), not only to minimise the fuel consump-
tion, but also to reduce the electrical stress on the fuel cell and maximise its useful lifetime.
This is because the durability and cost of the fuel cell stack is one of the major obstacles
preventing FCHEVs from being competitive with conventional vehicles.

In this work, a novel EMS is developed, speci�cally for Fuel Cell Hybrid Electric Vehicles
(FCHEVs), which considers not only the fuel consumption, but also the degradation of the
fuel cell in order to optimise the overall running cost of the vehicle. This work is believed
to be the �rst of its kind to quantify e�ect of decisions made by the EMS on the fuel cell
degradation, inclusive of multiple causes of voltage degradation. The performance of this
new strategy is compared in simulation to a recent strategy from the literature designed
solely to optimise the fuel consumption. It is found that the inclusion of the degradation
metrics results in a 20% increase in fuel cell lifetime for only a 3.7% increase in the fuel
consumption, meaning that the overall running cost is reduced by 9%.

In addition to direct implementation on board a vehicle, this technique for optimising
the degradation alongside the fuel consumption also allows alternative vehicle designs to
be compared in an unbiased way. In order to demonstrate this, the novel optimisation
technique is subsequently used to compare alternative system designs in order to identify
the optimal economic sizing of the fuel cell and battery pack. It is found that the overall
running cost can be minimised by using the smallest possible fuel cell stack that will satisfy
the average power requirement of the duty cycle, and by using an oversized battery pack
to maximise the fuel cell e�ciency and minimise the transient loading on the stack.

This research was undertaken at Loughborough University as part of the Doctoral Train-
ing Centre (DTC) in Hydrogen, Fuel Cells and Their Applications in collaboration with the
University of Birmingham and Nottingham University and with sponsorship from HORIBA-
MIRA (Nuneaton, UK). A Microcab H4 test vehicle has been made available for use in test-
ing for this research which was previously used for approximately 2 years at the University
of Birmingham. The Microcab H4 is a small campus based vehicle designed for passenger
transport and mail delivery at low speeds as seen on a university campus. It has a top speed
of approximately 30mph, and is �tted with a 1.2kW fuel cell and a 2kWh battery pack.
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Chapter 1

Introduction

This chapter presents an overview of the subject area of fuel cell hybrid electric vehicles
and the motivation for research in this �eld. The bene�ts of this type of powertrain over
conventional vehicle powertrains are described, and the areas for further development are
highlighted. At the end of the chapter, the scope of the project is de�ned and an outline of
the report is given along with a list of the speci�c contributions made.
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1.1 Overview

The prime motivation for the development of Fuel Cell Hybrid Electric Vehicles (FCHEVs)
is a reduction of the transport industry’s current reliance on limited fossil fuel resources.
Until recently, almost every vehicle on the road relied exclusively on an Internal Combus-
tion Engine (ICE) converting the chemical energy contained within a fossil fuel into kinetic
energy. Not only are fossil fuels a limited resource, but on combustion they produce harm-
ful emissions such as carbon monoxide (CO), carbon dioxide (CO2) and oxides of nitrogen
(NOx). These gases have been shown to have a harmful e�ect on the environment on a
global scale. To compound the issue, demand for personal transportation has increased
dramatically over the past 20 years due to world population increase and the trend is set to
continue as developing countries such as China, India and Mexico continue to expand [10].
Fuel cells o�er the bene�t that they are able to use a renewable energy source, and produce
no harmful emissions from the vehicle, whilst still being able to compete with conventional
powertrains in terms of performance, range and ease-of-use.

Through consumer awareness and taxation incentives, the automotive industry is ex-
periencing ever-increasing pressure to produce more energy e�cient and less polluting
vehicles in order to combat these issues. Over the past two decades, increasingly stringent
legislation and rising fossil fuel prices have driven the industry to signi�cantly improve the
thermal e�ciency and dramatically reduce the emissions of ICEs; however, these engines
will always be limited by the Carnot e�ciency. This represents the maximum possible
thermodynamic e�ciency as de�ned by the temperature rise of the combustion gases. As
a result, these e�ciency gains are quickly becoming less substantial, more complicated
and more expensive to develop and therefore the industry has begun to explore alternative
powertrain arrangements.

Over the past few years almost every major vehicle manufacturer has introduced at
least one Hybrid Electric Vehicle (HEV) or Battery Electric Vehicle (BEV) into their range.
This represents a major step in the implementation of low carbon transport and a radical
departure from the ICE which has been the sole power source of almost every mainstream
vehicle for over a century. BEVs have a lot to o�er in terms of e�ciency and emissions,
especially for urban driving, but they are subject to a major drawback in terms of range and
recharging time. A high performing BEV, available today, the Tesla Model S, has a range
of up to approximately 300 miles and requires an hour to charge in ideal circumstances,
whereas an ICE vehicle will travel a much larger distance before refuelling and even then
be refuelled in a matter of minutes. Barring a technological breakthrough, there is very
little that can be achieved to improve these �gures drastically. The battery pack already
represents a signi�cant proportion of the mass of these vehicles and increasing its size will
only serve to further increase this; meaning more energy is required to propel the vehicle
and therefore diminishing returns are seen in terms of additional range (Figure 1.1). This
makes BEVs ideal for city driving, but unsuitable for consumers wishing to travel large
distances and has led to design of the hybrid vehicle, de�ned by the use of multiple energy
storage devices on board the vehicle.

A typical hybrid vehicle on sale today uses the ICE in combination with a battery with
the aim to maximise the bene�ts of each. A hybrid powertrain has a number of advantages
over a conventional powertrain with regards to both e�ciency and emissions. Firstly, for
the majority of designs, it is possible to operate the vehicle at low speeds purely on electrical
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Figure 1.1: Vehicle curb weight sensitivity to the BEV range depending on various driving
cycles, considering a compact car (C segment vehicle) - Eberle et al. [1]

power. This allows the vehicle to operate as a battery electric vehicle for short journeys
(where the engine would not have time to warm up and reach maximum e�ciency), or
in low emission zones (which are becoming increasingly common in major cities where
localised pollution can be a problem). A second major bene�t is that the kinetic energy
of the vehicle can be recovered by regenerative braking. This energy would normally be
lost as heat in the brakes of the vehicle and can represent a signi�cant e�ciency gain for
certain types of journey. Finally, the e�ective e�ciency of the ICE can be improved upon by
operating it more frequently at its most e�cient operating points. This is achieved by using
the electric motors to make up the di�erence in load in order to meet the driver’s demand.
Due to these bene�ts, ICE HEVs are highly likely to dominate the automotive market for
the next few decades, however, using an ICE on board the vehicle means that they still rely
on diminishing fossil fuel supplies and still produce harmful emissions.

In the long-term, hydrogen o�ers many bene�ts over fossil fuels. It is a renewable
resource and can be produced by the electrolysis of water almost anywhere in the world.
This means that not only is there almost unlimited availability, but also alleviates many
energy security issues and reliance on politically unstable oil-rich countries. In addition to
this, it can be produced locally by remote communities and therefore is not subject to the
high transportation costs of fossil fuels. Finally, hydrogen does not produce any harmful
emissions when oxidised and therefore no emissions are produced by the vehicle. This
is particularly bene�cial in urban environments where localised pollution can be a severe
problem. Although hydrogen can be combusted in an ICE, the bene�ts are maximised if it
is used in a fuel cell which is able to operate at a much higher overall e�ciency.

When compared to a pure BEV, a FCHEV has the potential to provide a competitive
range at a lower mass and packaging volume cost, whilst still maintaining all of the ad-
vantages of a full electric powertrain. This is because a fuel cell system has a much higher
energy density by mass. This allows for more chemical energy to be stored without increas-
ing the mass of the vehicle signi�cantly. The main reason for this is that hydrogen has a
very high energy density and that the energy storage and the conversion elements of the
fuel cell system are completely decoupled. As a result, the tanks can be sized to meet the
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storage requirements while the stack itself can be sized to meet the power requirements.
Another advantage of storing energy separately is that the tanks can be re-�lled in a com-
parable manner to fossil fuels, unlike a battery which must be recharged electrically and
hence is limited by the rate at which the electrical energy can be safely supplied and con-
verted into chemical energy by the battery. Fuel cells are generally considered to be a strong
candidate for the transportation market in the long-term, but in the short to middle term
there are a number of technological challenges to overcome. These include the cost and
lifetime of the stack, and the production, transportation and storage of hydrogen as a fuel.
In its gaseous form, hydrogen is extremely energy dense by mass, but exhibits very low
volumetric density and therefore it can be hard to package on board a vehicle, see Figure
1.2.

Figure 1.2: Hydrogen Tank Packaging in GM HydroGen4 - Eberle et al. [1]

This means that it is generally highly compressed (350-700 bar) or cryogenically lique-
�ed when stored on board a vehicle. These techniques have various drawbacks, such as
safety concerns due to the high pressure of the tank in the case of gaseous storage, or the
requirement for high performance insulation and gas venting due to “boil-o�” in the case
of liquid storage. A third alternative is chemical storage using compounds such as metal-
hydrides, hydrazine, ammonia, or organic compounds. This can overcome issues with the
energy density by volume and improve packaging concerns. However, metal-hydrides tend
to have a very low gravimetric density (up to around 9% in the case of lithium, boron and
aluminium based compounds), organic compounds can introduce impurities into the hy-
drogen to which may degrade Proton Exchange Membrane (PEM) fuel cells very quickly,
and for most compounds the chemical reaction required to release the hydrogen often re-
quires an input of energy and may be subject to slow rates of reaction, limiting the rate of
release of the fuel.

With regards to cost, current fuel cell stack technology is estimated as costing as lit-
tle as $59/kW (2015) under mass production [11], however this is still almost double the
US Department of Energy (DoE) target of $35/kW [12]. This issue is aggravated by the
relatively short lifetime of the fuel cell stack, estimated at less than 3000 hours by Chen
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et al. [13], well short of the DoE target of 5000 hours. These issues combine to make the
purchasing and maintenance of prohibitively expensive for consumers when compared to
conventional technology. Economically, the issues of high cost and the short lifetime of fuel
cells are interdependent. The cost of the fuel cell can be reduced, for example, by reducing
the platinum loading on the catalyst layer, however this will tend to a�ect the long-term
performance of the cell and therefore reduce its usable lifetime. The cost of the system
could also be reduced by using a smaller stack and running it at a higher relative power,
however this will also tend to reduce the operating e�ciency and is likely to increase the
rates of degradation, reducing the lifetime of the system. This means that it is hard to gauge
whether the initial cost saving of using a lower platinum loading or a smaller stack will be
outweighed by the increased maintenance cost due to reduced reliability.

The �nal problem preventing mass production of fuel cell vehicles is that of infrastruc-
ture. Whereas fossil fuels are widely available around the world, there are still only a few
hydrogen re-fuelling stations which are open to the public. This presents a typical “chicken
and egg” scenario due to the fact that consumers are unlikely to purchase a vehicle they
are unable to re-fuel and re-fuelling stations are unlikely to supply hydrogen until there is
demand from consumers.

Despite these drawbacks, there is considerable interest from industry with a number of
major automotive manufacturers beginning to produce hydrogen fuel cell vehicles for con-
sumer market in limited numbers. These vehicles include the Honda FCX-Clarity (2007),
Hyundai ix35 FCEV (2014), and the Toyota Mirai (2015). In addition to these vehicles, Daim-
ler AG, Nissan, Renault and Ford have announced a strategic agreement develop a common
fuel cell system for mass market vehicles for as early as 2017 and Alfa Romeo, Audi, BMW,
Chang’an, FAW, Fiat, General Motors (GM), Lotus, Kia, Mazda, Peugeot, SAIC, Subaru,
Suzuki and Volkswagen have all released concept FCHEVs in the past 10 years.
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1.2 The Requirement for Low Carbon Vehicles
The number of cars worldwide passed the 1 billion mark around 2010 [14] and it is predicted
that there could be 1.5 billion vehicles by 2020 [1], 2 billion by 2035, and 2.5 billion by 2050
[15]. The main reason for this growth is due to dramatic worldwide population increase
from 7 billion today to an estimated 9 billion by 2050 [14], and the on-going growth of
developing nations such as China, India and Mexico. Currently, more than 95% [1] of the
fuel used for propulsion purposes comes from fossil sources. The combustion of limited
fossil fuel reserves on this immense scale causes a number of signi�cant issues in our society
including depletion of crude oil reserves, risks to energy security, greenhouse gas emissions
and air pollution. Each of these is covered in more detail below;

Oil Depletion Fossil fuels are formed from the remains of decaying organic matter which
has been exposed to heat and pressure over millions of years. As a result, they are a limited
resource and over time will become increasingly complicated and expensive to extract and
re�ne. A recent model [2] suggests that we may have already hit a peak of oil production
which could be expected to plateau (with gradual decline) for another 50-100 years before
beginning to decline more sharply (Figure 1.31). This plateau is explained by the extraction
of unconventional sources partially o�setting declines in conventional oil. Given the esti-
mated increase in the number of vehicles worldwide it is therefore imperative that this fuel
is used as e�ciently as possible.

Figure 1.3: Estimated Oil Production - “Best Guess” Scenario - Mohr et al. [2]

1FSU - Former Soviet Union
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Energy Security The global scale of this problem has a number of societal and political
implications worldwide. One of the most worrying issues is energy security. Oil is not
uniformly distributed around the world and some of the largest conventional reserves are
concentrated in politically unstable regions. Europe has very little of its own reserves and
hence relies heavily on foreign oil for more than 80% of its supply [14]. Unless demand
reduces in line with the anticipated reduction in supply, political tensions around this issue
are set to become more volatile.

Greenhouse Gas Emissions The greenhouse e�ect is the process by which the atmo-
sphere reduces the loss of heat from the planet and therefore maintains a surface temper-
ature higher than it would be otherwise. Earth’s natural greenhouse e�ect is critical to
supporting life; however, the emission of greenhouse gases, primarily due to the burning
of fossil fuels, can increase its e�ect and hence arti�cially increase global temperatures
(“Global Warming”). Carbon dioxide is by far the leading greenhouse gas emitted by road
vehicles; however, there are a number of other greenhouse gases that are also emitted by
vehicle exhaust pipes including methane (CH4) and oxides of nitrogen (NOx). In the United
Kingdom, the transportation sector contributes 21% of total greenhouse gas emissions, of
which 92% is due to road transportation alone [16]. Worldwide, approximately 3 billion
tonnes of CO2 are produced each year due to road vehicles [14].

Air Pollution The combustion of fossil fuel produces a number of chemicals harmful to
health and to the environment. There are a number of compounds emitted from the exhaust
pipe of the vehicles which are of concern;

1. Carbon dioxide (CO2) is a direct product of complete combustion (along with wa-
ter) and is therefore produced under ideal combustion conditions. As well as being
a greenhouse gas, it dissolves in water to form carbonic acid which contributes to
acid rain and oceanic acidi�cation. In ideal combustion circumstances, CO2 emis-
sions are directly proportional to the fuel consumption; therefore, CO2 emissions
can be reduced by improving the e�ciency of the engine.

2. Carbon monoxide (CO) is the result of incomplete combustion of fuel. It com-
bines with haemoglobin to produce carboxyhaemoglobin, which reduces the bloods
ability to carry oxygen. In high enough doses, it is fatal, and in smaller doses causes
dizziness, headache, nausea and fatigue. Under normal operating conditions, very
little carbon monoxide should be emitted from the vehicle due to reaction with oxy-
gen in the catalytic converter to form carbon dioxide.

3. Particulate Matter (PM) is another, more extreme, result of incomplete combus-
tion, most often seen as soot from the exhaust. PM is made up of microscopic solid
and liquid matter suspended in the exhaust gas, and can cause a number of health
problems including respiratory disease and cancer. They are more likely to be pro-
duced by diesel vehicles, and therefore modern diesels are often �tted with a Diesel
Particulate Filter (DPF) which can reduce PM emissions by up to 80%.

4. Hydrocarbon emissions are generally the result of unburned fuel or oil. This covers
a wide range of compounds found in petrol/diesel which can cause asthma, liver
disease, lung disease and cancer.
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5. Oxides of nitrogen (NOx) is the generic term for nitric oxide (NO) and nitrogen
dioxide (NO2) which are formed from air due to extremely high temperatures and
as a result are actually produced when the engine is running most e�ciently. This
means that the objective to reduce NOx often competes with the objective to min-
imise fuel consumption, and hence CO2 emissions. NOx can cause or worsen respi-
ratory diseases such as bronchitis or emphysema.

Over the next 50-100 years, as the world population grows and developing nations
emerge, the global demand for personal mobility is certain to increase. Even the most
advanced conventional powertrain options cannot prevent this leading to a higher crude
oil demand by the transportation sector. Unless the transportation industry becomes less
reliant on fossil fuels, this is likely to cause increased levels of air pollution, greenhouse
gases and rising transport costs due to dwindling fossil fuel supplies. Fortunately, there are
a number of ways this can be achieved including BEVs and hybridisation in the short term
and exploring alternative, clean, renewable fuels, such as hydrogen, in the long-term.
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1.3 Background

1.3.1 A Brief History of Fuel Cell Vehicles
The invention of fuel cells is usually credited to Sir William Grove in 1839. Although it was
initially only considered a curiosity due to immaturity of electrical technology, it was an
idea far ahead of its time. Almost 100 years later, in 1932, Francis Thomas Bacon developed
the �rst practical hydrogen-oxygen fuel cell, and in the 1960s The National Aeronautics
and Space Administration (NASA) began using fuel cells on the Apollo space program.
Fuel cells were chosen due to their small size and weight compared to batteries and solar,
relative safety compared to nuclear power, and an abundance of hydrogen fuel already on
board the spacecraft. Alkaline fuel cells continued to be used throughout the Apollo and
Space Shuttle missions.

Figure 1.4: 1966 GM Electrovan Fuel Cell System Layout - Qin et al. [3]

In the automotive industry, the world’s �rst Fuel Cell Hybrid Electric Vehicle (FCHEV)
was the “Electrovan” (Figure 1.4) developed by GM in 1966 which also used an alkaline fuel
cell and cryogenic liquid hydrogen (and oxygen) storage [1]. It had only two seats due to
the 1800kg fuel cell system and storage tanks taking up most the rear of an originally 6
seater Handivan and weighed 3220kg [17]. The 160kW (peak) Union Carbide fuel cell stack
was rated for 1000 hours of use and propelled the van to top speeds of 70mph with a range
of 100-150 miles [17]. It was only used on company property due to safety reasons, and the
technology was deemed too expensive for commercial exploitation and so the project was
discontinued. Marks et al. [17] summarised the problems relating to the fuel cell as;

1. Heavy weight and large volume
2. Short lifetime
3. Complicated and lengthy start-up and shut-down procedures.
4. Removal and disposal of exhaust products such as by-product water, gas bleeds, and

gas leaks.
5. Sensitivity to contamination, both in the gases and the electrolyte.
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6. Complexity of the three separate �uid systems of hydrogen, oxygen, and electrolyte.
7. Di�cult temperature control requirements.
8. New safety problems such as high voltages, electrolyte leaks, hydrogen leaks, pos-

sible collision hazards.
9. Critical gas-electrolyte pressure balance during transient conditions and on grades

or curves.

The Proton Exchange Membrane (PEM) fuel cell was invented during the 1960s by
Willard Thomas Grubb and Leonard Niedrach of General Electric. This invention allevi-
ated many of the above concerns which were due to the use of liquid potassium hydroxide
(KOH) electrolyte in the Electrovan, however a new problem was introduced: The Na�on
ionomer electrolyte used in PEM fuel cells is very sensitive to temperature and therefore
high quantities of platinum catalyst are required in order to make reaction rates feasible
for energy generation. These issues prevented further development of fuel cell vehicles
for another 30 years until developments in compressed hydrogen storage, computer based
controllers and low platinum loading catalysts drove down the cost and complexity of fuel
cell stacks, making the development of the FCHEV feasible again.

These developments coincided with the closure of the Apollo program which saw many
NASA experts move to private companies and therefore a new era of development in FCHEVs
was stimulated. In 1994, Daimler-Benz AG introduced the NeCar I, the world’s �rst PEM
FCHEV powered by a 50kW fuel cell stack developed and supplied by Ballard Power Sys-
tems [18]. The vehicle was based on a MB-180 van and used compressed hydrogen stored
at 300 bar. This was followed by the NeCar II, a passenger minivan in May 1996, the NeCar
III, based on Mercedes’s B-Class passenger car, and the NeBus, a fully functioning city tran-
sit bus in 1997. The latest generation, the NeCar IV was introduced in 1999, with a 70kW
Ballard fuel cell, a top speed of 90mph and a range of 280 miles bringing fuel cell vehicles
much closer to modern production vehicles in terms of usability and performance. During
the same period, Toyota, GM, Mazda, Ford, Honda, Nissan and Volkswagen also began de-
velopment on their own fuel cell powered vehicles with fuel cells stacks ranging in power
from 10 to 75kW and demonstrated ranges of up to 310 miles [3].

The performance of this generation of FCHEVs was a lot closer to that of their ICE coun-
terparts; however, a number of problems still presented themselves. Ferdinand Panik [18]
states that the gravimetric and volumetric densities of the system still required compromise
in terms of passenger and luggage space with the NeCar III, and lists this as a priority target
for the NeCar IV, based on the Mercedes Benz A-Class. Panik also mentioned the high cost
of the system to be a major disadvantage compared to conventional technology.

The GM HydroGen project was started in the late 1990s. Early versions used an Opel
Za�ra MPV body style with liquid hydrogen storage, but GM later moved to 700 bar com-
pressed hydrogen storage with the HydroGen4 (introduced 2007) which was �tted to a
Chevrolet Equinox crossover with a number of structural modi�cations to the chassis for
packaging safety reasons [19]. This gave the vehicle 4.2kg of Hydrogen and a range of ap-
proximately 250 miles. By 2012, 119 HydroGen4 vehicles had been driven by over 10,000
customers, accumulating over 4 million kilometres. From this testing, GM highlighted that
the reliability of the system required further work, stating that 10% of the fuel cell stacks
would fail before 650h usage and 50% before 1450 hours. Analysis into failure methods
highlighted membrane degradation due to humidity changes, Ostwald ripening of the plat-
inum catalyst and carbon corrosion of the catalyst [1]. Eberle et al. state that many of these
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failure methods can be tackled by the control strategy due to the fact that under ideal op-
erating conditions in a laboratory, fuel cell stacks can operate for several thousand hours.
As a result, they demonstrated a number of simple modi�cations which could improve the
50% failure time to 3500 hours.

The new millennium has seen a big push by major automotive manufacturers to mature
hydrogen and fuel cell technology with the introduction of the HydroGen project by GM
and the �rst limited leasing of Toyota’s FCHV in 2002 to the recent introduction of the �rst
commercially available fuel cell vehicles, the Hyundai ix35 Fuel Cell, and the Toyota Mirai
(Figure 1.5) in 2015. In addition to these, GM, Honda, Daimler AG, Nissan, Renault and Ford
are all also planning to release FCHEVs over the next 5 years. However, there are still a
number of technical issues that must be overcome before FCHEVs will be truly competitive
with conventional technology.

1.3.2 Current Challenges for Fuel Cell Vehicles
Despite the recent releases of the Honda FCX-Clarity, Hyundai ix35 FCEV, and the Toyota
Mirai, there are a number of problems preventing FCHEVs from being competitive with
ICE vehicles. These are the cost and reliability of the fuel cell stack itself, and the supply,
storage and transportation of the hydrogen fuel. These have been previously mentioned in
the overview section; however, they are covered in more detail below.

Figure 1.5: 2015 Toyota Mirai - Vehicle Sales Brochure
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1. Cost Fuel cells are expensive compared to conventional technology. As of 2016, the
Toyota Mirai is available to buy in the US for $57,500. This can be compared to
Toyota Camry Hybrid which is priced at $27,625. This price is slightly higher than
a 2011 estimate by the International Council on Clean Transportation (ICCT) [20]
putting the estimated cost of a fuel cell vehicle at $50,000 in 2015. The reason for
their high cost is due to a number of reasons including the immaturity of the tech-
nology and manufacturing processes, the low production volumes, but also due to
the materials involved [14]. The cost of fuel cell vehicles is therefore expected to be
reduced over the next decade, as manufacturing technology matures and produc-
tion volumes increase, many sources estimate than the price of a FCHEV could be
around $27,000 - $30,000 by 2026 [20].
A major material cost of a fuel cell is the platinum required for catalysis. Catalysts
currently require high quantities of platinum which signi�cantly in�ate the cost of
the system and therefore there is a lot of research into how to reduce the amount of
platinum on the catalyst. GM estimate approximately 80g of platinum was required
per vehicle in 2012, but estimate that this could be reduced down to 30g by 2015, and
just 5-10g by 2020-2025 by using platinum-alloy shell on a more a�ordable core [1],
this represents a reduction from approximately $3000 per vehicle to just $200-$400
and corresponds to the amount used in catalytic converters for ICE engines.

2. Durability Fuel cells tend to degrade gradually in a similar way to batteries and
therefore they are generally assessed by the number of hours of usage until a cer-
tain level of performance has been lost. The US DoE [12] has set a target of 5000
hours for vehicular applications based on a 250,000km lifetime at an average speed
of 50km/h. A lot has been achieved in this area over the past decade; in 2003, 50%
of the HydroGen3 project vehicles had failed before 250 hours of usage, however by
2012 their average lifetime had increased by a factor of almost 6 to 1450 hours. GM
believe to be able to increase this further to 3500 hours using demonstration level
technology [1] and anticipate that production vehicles released around 2017 could
last 7500 hours on average with only 10% failing before 5500 hours.
A major area of focus for durability is the proper management of the fuel cell. Fuel
cells for static applications can have lifetimes in the 10,000’s of hours due to much
more predictable and stable loading, as well as signi�cantly fewer start-stop cycles.
When used for transport, fuel cells are subject to a much harder life including sig-
ni�cantly more start-stop cycling, transient loading and operation under conditions
known to cause accelerated ageing such as idling and high power usage. By con-
trolling these conditions, and advanced start-up and shut-down control, the lifetime
of the fuel cell can be signi�cantly increased.

3. Hydrogen Storage It is nearly impossible to compete with the high energy density
of liquid fossil fuels of approximately 12kWh/kg. Although hydrogen has a high en-
ergy density by mass (33kWh/kg), it has a very low density by volume and therefore
needs to be compressed for storage on board a vehicle [14]. This typically reduces
its e�ective energy density to just 10% of an equivalent tank of fossil fuel. There
are a number of storage methods that have been used including high pressure com-
pression at 350-700 bar, liquefaction, and chemical storage. Each of these will be
discussed individually;
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(a) Compression - The most popular method in use today is simply to compress
hydrogen at 350-700 bar for storage in pressure vessels. The advantages of
this method are that it is relatively mature technology and compression of the
fuel is relatively e�cient at 80-91% [21]. Pressure vessels exhibit very little
permeation, and do not introduce impurities into the fuel. However, there
are a number of targets yet to be met, including the cost of the system and
the volumetric and gravimetric densities. The latest “Type IV” carbon �bre
over-wrapped pressure vessels are a relatively mature and robust solution,
but at $17/kWh, still cost more than double the US DoE’s 2017 target [22].
“Type IV” tanks can achieve approximately 5.2wt.% at 700 bar [14].

(b) Liquefaction - Liquefaction of hydrogen involves cooling it to approximately
-253◦C (20K) where it becomes a liquid and therefore the pressure is no
longer an issue. The major advantage of this method is that high gravi-
metric densities of approximately 5wt.% [23] can be achieved without the
safety concerns associated with a high pressure vessel. The downside is that
liquefaction of hydrogen requires the input of a lot of energy, equivalent to
approximately 30% of the fuel, and that the tank on board requires signi�-
cant insulation to maintain the fuel at this temperature. Despite this, there
is still “boil-o�” of hydrogen which needs to be vented and results in a loss
of approximately 0.3% per day [21].

(c) Chemical Storage - There are a number of chemical options for binding
with hydrogen including metal-hydrides, amine borane complexes, hydrazine,
ammonia, and organic compounds such as carbohydrates, hydrocarbons and
cycloalkanes. These chemicals work by binding with the hydrogen and stor-
ing it as in liquid or solid state as part of a compound and as such allow
much higher volumetric energy densities. The best compounds are able to
store up to approximately 10.9wt.% in theory [21] (NaAlH4); however, �g-
ures closer to 6wt.% are achievable in reality [14]. The main downsides to
chemical storage are the energy required to release the hydrogen, the rate
of release of hydrogen, potential contamination of the fuel, and potential
toxicity of the compounds used.

(d) Hybrid Storage - A relatively new �eld of storage involves the combina-
tion of more than one type from the three aforementioned categories. Cryo-
compressed hydrogen uses a solution similar to liquid hydrogen storage, but
the liquid hydrogen is contained within a pressure vessel meaning that “boil-
o�” gas does not need to be vented until pressures reach 100’s of bar. In most
cases, the hydrogen will be used by the vehicle before this will occur mean-
ing that this energy is not lost. Toyota are also targeting 8wt.% by combining
metal-hydride storage with compressed gas [14].

The reason hydrogen storage density is an issue is due to range requirements and
so it is closely related to the tank-to-wheel e�ciency. Obviously if the fuel cell was
more e�cient, less fuel would be required to achieve the same range and therefore
the requirement on the storage system is reduced. For example, the Honda FCX
Clarity has 4.1kg of hydrogen storage capacity, equating to 490MJ of chemical en-
ergy and a range of 240 miles. In comparison, the modern petrol engine in the VW
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Golf VI has 40Kg of petrol storage capacity, equating to 1800MJ and a range of 552
miles. This means the Golf has 3.6 times the energy storage capacity, but only 2.3
times the range due to the much lower tank-to-wheel e�ciency of the ICE.

4. Hydrogen Infrastructure The problem with infrastructure is a classic chicken and
egg scenario. Without existing refuelling stations, consumers will be reluctant to
purchase a FCHEV, but without an existing customer base, refuelling stations are
reluctant to provide hydrogen. This is compounded by the immaturity of the tech-
nology especially that regarding storage due to variations in the requirements for
the refueller in terms of coupling standards, supply pressure, safety standards, and
even the supply of gaseous or liquid hydrogen as required by di�erent vehicles.
The industry has responded to this situation with a number of joint initiatives be-
tween various interested parties, including collaboration projects between vehicle
manufacturers to introduce a standardised fuel cell vehicle architecture such as that
between Daimler AG, Nissan, Renault and Ford. There have also been projects to
create “hydrogen highways” in California, Europe and Japan where chains of hy-
drogen equipped refuelling stations allow customers to use FCHEVs locally.
The Toyota Mirai is currently only available in limited locations where there is a 700
bar hydrogen supply including South East London and Swindon in the UK, and in
California in the US. This allows people to use the vehicles locally, but would mean
that another vehicle would usually be required for distance driving. To account for
this, Toyota provides free rental vehicle service when additional range is required.
As more vehicles are sold, the expectation is that it will become economical to open
more hydrogen refuelling stations and therefore more locations will become avail-
able.

In summary, fuel cell vehicles are just beginning to appear on the market; however,
they are not yet truly competitive with conventional technology and are only available in
limited locations due to high cost, low reliability, poor range, and limited infrastructure. As
a result, they are a niche product aimed at the luxury market as a second car similar to early
BEVs. Over the next decade, through incremental improvements in the technology and the
natural cost reduction in cost due to maturity of the technology and higher production
volumes, many of the technical targets are expected to be met and FCHEVs will begin to
become more competitive with current ICE powertrains.
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1.4 Test Vehicles - Microcab H4 and Microcab H2EV
The Microcab H4 was developed by Microcab, a spin-out company from Coventry Univer-
sity, and 5 examples were delivered to the University of Birmingham campus in early 2008,
see Figure 1.6. The H4 is designed to replace diesel vans and cars which were formally
used for mail delivery, food distribution and estate services [24]. For campus operation, the
diesel vehicles were found to be extremely polluting and ine�cient due to the low speed,
intermittent usage patterns, each emitting approximately 4 te of CO2 per year.

Figure 1.6: The Microcab H4 FCHEVs at the University of Birmingham - Kendall et al. [4]

The Microcab H4 has been designed speci�cally for this type of duty cycle at minimal
cost and therefore has a very low top speed of approximately 30mph and a peak acceleration
of just 3ms-2. The Microcabs cost just £50,000 each to manufacture including the mould for
the composite bodywork. They are �tted with a 1.2kW nominal Ballard Nexa PEM fuel cell
stack in combination with 4 deep-discharge AGM lead acid batteries giving a total battery
capacity of 2.1kWh at a nominal 48V. This is used to supply electricity to the brushed DC
motor supplied by GE. The motor has a nominal peak power of 10kW [24], rising to 20kW
in short peaks. Finally, the vehicle is also �tted with a small 12V auxiliary battery which is
used to supply power to ancillaries and lighting and also for fuel cell start-up.

The vehicles were used at the University of Birmingham for approximately 2 years ac-
cumulating over 4000km of usage as urban taxis and for mail delivery. During this period,
it was found that the tank-to-wheel e�ciency of the vehicle was below expectations at just
18%. Sta�ell [6] reports that this could be improved by examining the vehicle from a sys-
tem level in order to match the e�cient operating regions of various components, and the
implementation of more advanced control strategy to optimise the operating state of the
powertrain in a holistic sense.

Two of the vehicles used at the University of Birmingham have been made available
at Loughborough for examination and development purposes. In addition to this, there
is the possibility of limited access to the new Microcab H2EV through MIRA, a project
sponsor. The Microcab H2EV is an evolution of the H4, which features a redesigned chassis,
a 5kW Horizon fuel cell stack, 4.3kWh lithium-ion battery pack and two 20kW peak DC
motors. This gives the vehicle an increased top speed of 55mph although it is still in active
development by Microcab and speci�cation is liable to change. In addition to this, there is
limited availability for testing for the Microcab H2EV. More details on both test vehicles
are given in Chapter 3 - Vehicle Modelling.
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1.5 Energy Management Strategy (EMS)

The control requirements of any hybrid powertrain are not necessarily trivial. On a tra-
ditional vehicle with no hybridisation, the driver controls the engine using the accelerator
pedal. The movement of the pedal directly determines the operating state of the ICE in
order to produce the mechanical power required to drive the vehicle. However, on a hybrid
vehicle, having an additional energy conversion device means that there is now an extra
degree of freedom for control purposes. There is still only one control input, the driver
demand; however, this demand can be satis�ed by either the ICE, the electric motors, or
by some combination of each. Using the ICE will directly result in some fuel consump-
tion; however, using the electric motor will deplete the battery. Therefore some fuel can
be saved in the short term by using the electric motor in order to reduce the load on the
ICE; however, the battery State of Charge (SoC) must later be replenished usually at the
cost of additional load on the ICE. The overall operating e�ciency of the system is highly
dependent on how the load is applied to the ICE over time. In order to make this decision,
many hybrid vehicles use a supervisory controller, which is generally known as the Energy
Management Strategy (EMS).

Put simply, the role of the EMS is essentially to control the energy stored in the batteries.
There are two main strategy types; Charge-Depleting (CD) and Charge-Sustaining (CS). A
CD strategy will allow the battery SoC to gradually fall over time with the assumption that
the vehicle will be recharged when it is stopped. A CS strategy on the other hand, will
attempt to maintain a relatively constant SoC in the batteries during usage because the bat-
tery is not intended to be recharged during times when the vehicle is inactive. It is possible
to achieve these targets with relatively simple strategies; one example is the “thermostatic”
strategy. This strategy works in an analogous way to a thermostat (hence its name). The
battery is initially allowed to discharge until it drops below a �xed threshold, at which point
it is charged. Once the SoC reaches a second, higher, threshold, the charging is stopped, and
the battery is allowed to discharge again. The actual operating points of the components
during discharge and charge conditions will vary depending on the design of the vehicle.
For example, the ICE may be o� during discharge and run at its most e�cient operating
point during charge, or the ICE may be run at maximum e�ciency during discharge and at
maximum power during charge.

The decisions made by the EMS determine the operating points of various powertrain
components, and therefore will have a large e�ect on the overall operating e�ciency of
the vehicle. A well designed EMS has been shown to improve fuel economy in the order
of 10% - 20% [25–27]. However, the fuel consumption is not the only concern of the EMS.
A strategy optimised solely on the fuel consumption may exhibit a number of negative
aspects. For example, in an ICE hybrid equipped with an automatic gearbox, the EMS is
usually responsible for choosing the active gear. If no consideration to the number of shifts,
the optimal strategy will likely change gear frequently to ensure the vehicle is always in its
most e�cient state, however this behaviour may be unpleasant to the driver. Equally, for a
FCHEV, the strategy may cause highly transient loading on the fuel cell in order to avoid
cycling losses in the battery, however this will tend shorten the life of the fuel cell.

There is a great quantity of research in the literature with regards to optimisation of
the EMS. The vast majority of this work focuses on ICE based hybrid vehicles, and much
of this work is equally valid for fuel cell vehicles. However, there are a number of issues
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that are speci�c to fuel cells, especially those linked to the challenges mentioned previously.
Although the EMS cannot a�ect the cost of the stack directly, it is possible that by improving
its operating e�ciency the fuel cell stack could be downsized, leading to a reduction in
cost indirectly. In addition to this, increased e�ciency will also reduce hydrogen storage
requirements. Finally, the reliability of a fuel cell will depend on how it is used. For example,
vehicular applications are generally quite harsh on the fuel cell due to a high degree of
transient loading. If the EMS is designed to take account of common degradation methods,
then the reliability of the stack could be improved.

1.6 Research Aims and Objectives
The overall goal of this work is to identify the best methods in which to optimise the holis-
tic design of a FCHEV using pre-existing or already available components. Research will
focus on two inter-related areas; the Energy Management Strategy (EMS) and the electrical
system design. It has been chosen to investigate both areas concurrently, rather than to
simply focus on one in order to highlight the interactivity of these two design choices. The
EMS will have a signi�cant e�ect on the optimal system design, however the system design
will also a�ect the decisions made by the EMS. Therefore, it is important to consider them
concurrently in order to arrive the at the optimal �nal design.

Speci�c objectives for the research are;

• To identify the speci�c design requirements for an EMS on board a FCHEV based
on a thorough review of engineering literature.

• Identi�cation of the latest methods for the optimisation of FCHEV electrical pow-
ertrain system design.

• Application of state-of-the-art EMS techniques to the Microcab H4 and/or Microcab
H2EV (depending on availability).

• Evaluation of the potential scope for improvement with regards to the challenges
faced for FCHEVs (covered in Section 1.3.2).
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1.7 Contributions
The speci�c contributions made in this thesis are as follows:

• A comprehensive review of the major requirements for the EMS of a FCHEV, inclu-
sive of fuel e�ciency, fuel cell degradation, battery degradation, and drive-ability
(Chapter 2).

• Quanti�cation of fuel cell degradation modes under control of the EMS suitable for
use in the cost function for optimisation of the EMS (Chapter 3).

• Development of a validated reduced order model of a FCHEV, speci�cally the Mi-
crocab H4 (Chapter 3).

• Development of a process for stochastic drive-cycle modelling based on real-world
logged data (Chapter 4).

• A novel application of Stochastic Dynamic Programming (SDP) which is inclusive
of fuel cell degradation in addition to fuel consumption. Each of these costs has been
weighted by their monetary values in order to estimate the total running cost of the
vehicle. This is compared to the state-of-the-art optimal techniques based solely on
fuel consumption (Chapters 5 and 6).

• A component sizing exercise for a fuel cell vehicle using the optimal control strategy
for each system design examining the running cost of each design, and the e�ect of
battery and fuel cell stack size on the operating e�ciency, operating range and stack
lifetime (Chapter 7).
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1.8 Thesis Format

This thesis details the development and testing of an EMS for a low speed FCHEV. The
contents of each chapter are;

Chapter 2 - Literature Review

The second chapter is the literature review. The literature review begins with a brief ex-
planation of the various components which may be used in the system design of a FCHEV,
and how these components are sized in order to optimise the performance of the vehicle as
a whole. Following on from this, the requirements of the EMS are investigated. A variety
of work including EMS development, accelerated ageing techniques and Failure Mode and
E�ects Analysis (FMEA) are examined in order to identify the criteria for optimisation of
the EMS. Finally, a number of techniques for optimising the EMS itself are outlined and
compared. The chapter concludes with a summary of potential areas for further work.

Chapter 3 - Vehicle Model

The third chapter de�nes the vehicle model used for development of the EMS. Two models
have been created; a detailed forward-facing model has been used for testing and a reduced
order model which has been developed for EMS optimisation. SDP optimisation is a highly
computationally expensive technique which requires computationally e�cient calculations
in order to estimate the probability and cost of transitioning between each state. Both mod-
els are validated against test data obtained from the Microcab H4 available at Loughborough
University.

Chapter 4 - Markov Chain Modelling of Duty Cycle

The development of an EMS using SDP requires a stochastic model of the anticipated duty
cycle. In order to produce this model, test data of the Microcabs logged at the University
of Birmingham have been used in conjunction with logged data of a variety of campus
vehicles used at Loughborough University. These datasets have been used to develop a
Markov chain which represents the probability of the vehicle’s subsequent acceleration,
given its current velocity and acceleration.

Chapter 5 - Controller Development

Chapter �ve describes the main focus of the work, the development of the SDP optimised
control strategy. The problem is explicitly de�ned at the beginning of the chapter, and fol-
lowing this the method used for calculating the required probability and cost matrices is
described. A cost function is derived which estimates the anticipated fuel consumption and
stack degradation and weights these by their respective monetary values. Finally, the pa-
rameters of the optimisation are chosen and an example of an optimised strategy is shown.
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Chapter 6 - Strategy Simulation & Analysis
Chapter six describes the e�ect of the novel control algorithm on both the fuel consump-
tion and the fuel cell degradation of the Microcab H4. The results of the control strategy
are compared to that of the current strategy employed on the Microcab, and a fuel con-
sumption only optimisation representative of recent work in the literature. It is found that
for the current design, the 1.2kW fuel cell is insu�cient to maintain the battery SoC under
normal usage even when the optimal control strategy is applied. Therefore, the results are
recalculated for a 4.8kw stack representative of that in the newer Microcab H2EV. It is found
that the current control strategy is no longer appropriate for the system design and that the
degradation inclusive controller reduces the estimated degradation by approximately 15%
for only a 4% increase in fuel consumption when compared to the strategy optimised purely
on the fuel consumption. This gives an overall running cost saving of around 9%.

Chapter 7 - Optimisation of Hybrid Component Sizes
Chapter seven presents a component sizing exercise using the results of the SDP optimised
controller. A number of system designs with a variety of fuel cell stack sizes and battery
capacities are proposed. The optimal control strategy for each design is calculated using
SDP and the simulated results of each system design are compared. It is found that the
running cost of the vehicle is minimised by using the smallest possible fuel cell stack that
will satisfy the average power demand of the duty cycle and that increased battery size up
to double the current capacity results in reduced fuel consumption and degradation.

Chapter 8 - Conclusions and Further Work
The closing chapter draws conclusions from the results obtained and presents recommen-
dations for further research.

1.9 Publications
Sections of this work have previously been published as the following;

• Tom Fletcher, Rob H Thring, Martin Watkinson, and Iain Sta�ell. Comparison of
fuel consumption and fuel cell degradation using an optimised controller. ECS Trans-
actions, 71(1):85-97, 2016. DOI: 10.1149/07101.0085ecst

• Tom Fletcher, Rob Thring, and Martin Watkinson. An Energy Management Strategy
to concurrently optimise fuel consumption & PEM fuel cell lifetime in a hybrid vehicle.
International Journal of Hydrogen Energy, 0360-3199, 2016. DOI: 10.1016/j.ijhydene.2016.08.157
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Chapter 2

Literature Review

There is a great quantity of research into Energy Management Strategy (EMS) in the lit-
erature, although the volume of work into the optimisation of Fuel Cell Hybrid Electric
Vehicles (FCHEVs) is relatively limited [4–6, 19, 24, 28–40]. The vast majority of research
has investigated the e�ect of new energy management algorithms with respect to Internal
Combustion Engine (ICE) hybrid vehicles [8,9,25–27,41–67]. This work has been included
in the literature review because many of the same techniques can be used in order to opti-
mise FCHEV energy management. The results are likely to di�er however because FCHEVs
tend to have signi�cantly di�erent constraints on the optimisation in terms of fuel econ-
omy (see Figure 2.1) and component lifetime. In addition to ICE hybrid research, a few
niche applications of EMSs, such as Unmanned Aerial Vehicles (UAVs) [68], have also been
included where they are appropriate to the discussion.

Di�erent techniques used to optimise the EMS on board Hybrid Electric Vehicles (HEVs)
are compared. The literature review is broken down into three sections. The �rst section
focusses on the system design and component sizing. Each of the major components are
described and di�erent approaches to the sizing of components for a FCHEV are examined.
In the second section, the requirements of the energy management are examined. The vast
majority of research focuses solely on fuel economy, however the EMS can a�ect other areas
of performance and therefore examination of the literature in these �elds is also important.
In the concluding section, the algorithms used to optimise the fuel economy will be broken
down into progressively complex methods, with the latest techniques at the end of the
literature review. The literature review concludes with suggested areas for further research
and development.
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2.1 System Design

“We strongly feel that the “optimization” of a fuel cell vehicle must encompass all these
aspects jointly, i.e., storage capacity, supervisory control policy, low-level FC controller and

the interplay between them.” Guezennec et al. [28]

System design, especially component sizing, is very closely related to the EMS strategy
and they should be considered concurrently. This is because the strategy decisions made
by the EMS will have signi�cant e�ect on the size of the fuel cell and batteries required.
Conversely, the optimal strategy will depend on the size of the components available. As an
example, the size of the battery pack required to balance transient loads will depend on the
EMS strategy decisions as to how much energy bu�er is required. If EMS only uses 5% of
the capacity of the battery, the battery pack speci�ed may be too large. On the other hand, if
the battery pack is downsized, the resulting penalty on using a larger State of Charge (SoC)
range will cause the EMS to behave di�erently. Considering both aspects simultaneously
will result in the best overall system design.

2.1.1 Fuel Cells

A fuel cell is an incredibly e�cient method of extracting the energy from hydrogen fuel.
Proton Exchange Membrane (PEM) (also known as Polymer Electrolyte Membrane (PEM))
fuel cells operate at a relatively low temperature, which means they have fast start-up and
shut-down times, and a low system packaging volume and mass. These advantages over
other technologies make them ideal for transportation use. Unfortunately, the low temper-
ature operation also means that they require expensive Nobel metal catalysts in order to
work and are sensitive to poisoning from impurities in the hydrogen supply.

Fuel cells running on pure hydrogen produce no emissions other than water and are
much more e�cient at extracting the chemical energy and converting it into electrical en-
ergy than an ICE and generator. In addition to this, they have a much simpler design with
fewer moving components. This makes a fuel cell the ideal choice for a zero-carbon ve-
hicle. Unfortunately, fuel cells are sensitive to transient loads which can cause increased
rates of degradation. They can also be aged by running them at power levels above/below
their optimal range. For this reason, fuel cells are often combined with a short-term energy
bu�er such as batteries and/or supercapacitors to absorb the transient loads experienced in
transportation duty cycles.

2.1.2 Batteries

Modern battery technology, especially the development of lithium-based batteries, has meant
that in recent years their use in personal transportation has almost become competitive
with ICEs. Using lithium-ion batteries, the Nissan Leaf is a competitive family car which
o�ers a range of up to 120 miles on the New European Driving Cycle (NEDC) operating
on battery power alone. This range makes the Leaf suitable for everyday driving for most
people; however, it is considerably less than an equivalent ICE vehicle. The battery pack
on the Leaf also increases the price of the vehicle, making it signi�cantly more expensive
than its ICE counterparts.
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There are three main battery chemistries used in transportation; lead acid, Nickel Metal-
Hydride (NiMH), and lithium-ion. The lead acid battery has been used as a Starter Lighter
Ignition (SLI) battery for many years. Lead acid batteries are maintained best by keeping
them at full charge, which means they are particularly suited to this use, where they are
constantly charged by the alternator on the engine. Lead acid batteries are relatively cheap
and when used as SLI batteries, they are well understood and tend to be reliable. Unfor-
tunately, they degrade relatively quickly when more deeply discharged, especially if they
are not recharged fully. Compared to other types of re-chargeable battery chemistry they
have a relatively low energy and power density. Lead acid batteries have been also used in
electric vehicles such as the General Motors (GM) EV1 and the Reva G-Wiz.

NiMH batteries are best known in transportation as the battery type used on the Toyota
Prius, although they were also used as the battery for the second generation of the GM EV1.
They have higher speci�c energy and power than lead acid, but not as high at lithium-ion.
They are generally used for high power applications due to their low internal resistance,
but su�er from high rates of self-discharge so are equally unsuitable for low power applica-
tions. Unfortunately, NiMH batteries exhibit poor cycle e�ciency. In transportation, NiMH
batteries represent the “middle-ground” between lead acid and lithium-ion in terms of both
cost and energy density.

Finally, lithium-based battery chemistry has the most promising future in transporta-
tion. Lithium-ion battery technology has improved signi�cantly in recent years due to
its use in consumer electronics such as laptops and mobile phones. Lithium-ion batteries
have high energy and power densities compared to other battery chemistries, meaning that
Battery Electric Vehicles (BEVs) based on lithium-ion batteries are beginning to be compet-
itive with conventional vehicles for short-range journeys, especially city driving. They also
have a high cycling e�ciency improving the fuel economy of hybrid vehicles, and the charg-
ing cost of BEVs. Unfortunately, they are very expensive and the battery pack on a modern
BEV represents a signi�cant proportion of the cost of the vehicle (even leading some man-
ufacturers to o�er the battery on lease separately to the purchase of the vehicle). Despite
this, the energy density of lithium-ion batteries is relatively poor compared to gasoline, so
although modern BEVs such as the Nissan Leaf are able to compete on everyday driving
cycles, they must be recharged on longer distance journeys. Many consumers aren’t willing
to accept this, especially when even a “fast charge” may take around 45 minutes and would
have to be performed at least twice just to meet the range of a conventional vehicle.

Even the gravimetric energy density of lithium-ion batteries is too low for current BEV
to be truly competitive with conventional vehicles in terms of cost and range. However,
they o�er a number of advantages when combined with an ICE or a fuel cell to create a
hybrid vehicle. The battery can be used to alter the operating point of the fuel cell in order
to optimise the fuel economy, or to balance the load and reduce transient loading in order
to protect the stack. Another advantage of using a battery pack with a fuel cell is to absorb
regenerative braking energy; however, this will tend to degrade the battery. This is due to
the high charge current which may over-charge the battery, or produce excess heat due to
the internal resistance of the battery. In general, batteries are aged by overcharging them,
deeply discharging them, by extremes of temperature and by excessive cycling. Batteries
tend to cope with transient loads better than fuel cells mostly due to the lack of an external
reactant supply; however, they will still exhibit some degradation.
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2.1.3 Capacitors

Capacitors o�er an alternative to batteries in hybrid vehicles, and are occasionally used in
addition to a battery pack. Capacitors have a much higher power density, but a lower en-
ergy density. They are also very resilient to transient loading and cycling. This means they
can be charged at very high rates of current such as those available when regeneratively
braking. Another advantage of capacitors is that they require very little maintenance. Un-
fortunately, their low energy density means that they are only suitable for very short-term
energy storage.

Supercapacitors work well to reduce the damage to the batteries and fuel cell. Work
by Sun and Kolmanovsky [69], suggests that the use of a supercapacitor alongside a high
pressure fuel cell helps alleviate some of the most damaging transients caused by com-
pressor spooling. This is because when a sudden current demand occurs, the cathode
pressure decreases as the oxygen is reacted more quickly. This means the compressor is
required to increase its power in order to maintain the pressure, and this increase in com-
pressor load adds to the already increased current draw, exacerbating the problem. Adding
a supercapacitor to the fuel cell output helps dampen this transient load, decreasing the
degradation on the fuel cell. Thounthong et al. [70] have performed a demonstration of a
fuel cell/battery/supercapacitor hybrid power source. Detailed examination of the current
drawn from each of the power sources showed that the supercapacitors absorbed many of
the transients, alleviating the potential damage to both the batteries and fuel cell.

2.1.4 DC/DC Converters

A common component in many FCHEVs is the DC/DC converter. DC/DC converters are
primarily used to step the voltage of di�erent components up or down to meet the voltages
of other components. The Microcab H4 has 3 DC/DC converters due to three di�erent
operating voltages used on-board. The main converter is used to step the fuel cell voltage
up from a nominal 24V to the nominal 48V of the battery pack and motor. The other two are
used to step the 24V of the fuel cell down to the nominal 12V of the auxiliary components
such as the lights, and to step the 12V auxiliary system back up to the 24V of the fuel cell
in order to provide power to start the fuel cell.

It is not necessary to include a DC/DC converter in a hybrid vehicle if the fuel cell,
battery and capacitor voltages are correctly matched. However, there are a number of ad-
vantages to doing so. Firstly, the inclusion of a controllable DC/DC converter is a straight-
foward way for the EMS to manipulate the load on the fuel cell. Secondly, the capability
to step up or down the voltage between the battery pack gives more freedom to the design
of the fuel cell stack and/or battery pack. For example, traction batteries tend to operate at
high voltages in order to minimise ohmic losses, which will be proportional to the current.
This can be achieved by running individual cells in series rather than in parallel, however
it is not as easy to design a high voltage fuel cell stack, which may require re-design of
reactant gas channels, cooling, and product removal methods. Some energy will be lost;
however, DC/DC converter e�ciency is generally quite high. Therefore, a higher overall
e�ciency may be possible by using a DC/DC converter than by running the battery pack
at a lower voltage.
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2.1.5 Component Sizing

Given the advantages of a hybrid system, the question arises of the best way to combine the
multiple power sources in order to create an optimal design. Component sizing has been
heavily researched, and a multitude of distinct designs have come forward. Available on
the automotive market today are a variety of varying degrees of hybridisation, generally
classi�ed into three categories; “Stop-Start Technology”, “Mild Hybrids” and “Full Hybrids”.
Stop-start technology represents the mildest degree of hybridisation where a conventional
vehicle is capable of rapidly stopping and starting the engine, quickly enough to reasonably
allow the engine to be stopped when the vehicle is stopped, but still allow the engine to be
restarted without driver intervention. Some stop-start vehicles, such as the 2013 BMW 1-
Series are even capable of low levels of regenerative braking by using the existing alternator.
Mild hybrids are generally de�ned by the replacement of the starter-alternator system with
an electric traction motor allowing higher levels of regenerative braking in addition to stop-
start technology. Mild hybrids have less of a cost and weight penalty when compared to
full hybrids, but still o�er many of the advantages of a hybrid system. Finally, full hybrids
are generally de�ned by the ability to operate in electric only mode for a limited range.
Full hybrids generally o�er all of the advantages of a hybrid system, albeit at an increased
weight and cost compared to a conventional vehicle.

Most FCHEVs (including the Microcab H4 and H2EV) fall into the full hybrid category
because they are generally able to run on battery power alone (although some fuel cell
vehicles do not incorporate a signi�cant battery pack and so would fall into the mild hybrid
category). The comparative size of each of the components needs to be optimised in order to
maximise the bene�ts of the hybridisation. A lot of research has been performed in this area
for both ICE based HEVs as well as FCHEVs. This work generally consist of a parameter
sweep simulations of di�erently sized engines, fuel cells, batteries and capacitors over a
single or multiple drive-cycles. Inputs to the parameter sweep are generally the capacity,
cost and weight of the components and outputs are the performance, cost and weight of the
system. These simulations are heavily a�ected by the control algorithms used to perform
the EMS. Power management and component sizing are the biggest factors that a�ect the
fuel e�ciency of FCHEV and Kim and Peng [71] suggest that they should be considered
concurrently.

Basic component sizing techniques involve manual calculation of the required compo-
nent sizes based on simple rule-based controllers. For example, Wu and Gao [72] describe
a method used to size the components of a fuel cell/supercapacitor HEV. Calculations are
performed to determine the power required to meet performance targets such as top speed
and grade-ability. It is assumed that the cost of the fuel cell and supercapacitor banks are
a function of the number of units. The cost, weight and volume of the system are then
optimised and the results are subsequently simulated.

A better method for sizing components involves a parameter sweep of component sizes
in order to �nd the best overall system. Schaltz et al. [36] present the results of a param-
eter sweep simulation investigating the in�uence of battery and ultracapacitor sizing on
a FCHEV. The energy management for this investigation is rule-based and is used to en-
sure that the fuel cell can be run continuously at a �xed power, whilst the supercapacitors
and battery pack absorb any short and long-term transients respectively. Schaltz et al. [36]
concentrate on the trade-o� between the size, mass and cost of the system and the battery
lifetime and concludes that over-sizing the battery pack and ultracapacitors will decrease
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the battery degradation signi�cantly for an increase in system cost, but without a�ecting
vehicle performance.

Bauman and Kazerani [73], perform a comparative study in order to assess the e�ects of
using each technology on component lifetime and system cost. The MATLAB simulation
uses a rule-based controller in order to manage the SoC of the capacitors and batteries
and to limit transient loads on the fuel cell. They conclude that overall, the best designs
minimise the cost by sizing the fuel cell to cope with power demand at the highest cruising
speed of the vehicle. According to Bauman and Kazerani, the most desirable designs require
a battery pack due to the low energy density of using ultracapacitors on their own. The
usage of ultracapacitors is marginal, increasing the cost of the system, but improving the
fuel economy and lifetime of the battery pack.

Rousseau et al. [5] use simulation to assess the required degree of hybridisation for a fuel
cell vehicle. In the simulation, a heuristic energy management strategy is used, specifying
a minimum power to turn the fuel cell on and battery SoC targets based on vehicle speed.
It is decided that the vehicle requires a peak power of 160kW, and various combinations of
battery and fuel cell power are used to meet this goal. It is found that as the battery size
increases, more regenerative braking energy can be recovered. Conversely, as the battery
size increases, and the fuel cell size is decreased and more energy is re-cycled through the
battery. This gives an optimum degree of hybridisation for fuel economy. It is also found by
Rousseau et al. [5] that modi�cations to the parameters used in the rule-based controller can
have signi�cant e�ect on the results. It is therefore imperative that the control algorithm
used accurately represents that of the �nal vehicle.

Under certain conditions, the control algorithm used for component sizing exercises
may give an unfair representation of the results. For example, a heuristic algorithm which
prioritises regenerative braking over fuel cell operating e�ciency could be designed by ag-
gressively targeting a relatively low SoC in the battery. This may result in a high battery
capacity appearing relatively unattractive because the controller ensures that capacity is
available at all times. Conversely, if the algorithm prioritises the fuel cell operating e�-
ciency, perhaps by allowing the battery SoC to vary over a larger range, a higher battery
capacity will appear more attractive. Therefore, using an identical control algorithm for
each design doesn’t necessarily give an objective comparison. In order to isolate the ad-
vantages of each design, the control strategy should be optimised individually.

In order to eliminate e�ects caused by variations in the controller, it is possible to use
dynamic programming to calculate the optimal EMS for each design. Dynamic program-
ming techniques allow optimal control, e�ectively allowing each design to perform to its
maximum performance potential. This gives the system designer the best possible result for
each con�guration. Sinoquet et al. [74] present a parametric study focussed on variations
in size of powertrain components for a hybrid vehicle with respect to fuel consumption.
Results are obtained using a Deterministic Dynamic Programming (DDP) controller which
shows that a 1.04kWh battery pack gives the best fuel consumption. Lower battery capac-
ity results in a loss of recovered braking energy, but higher capacity increases the mass
of the system, resulting in an overall increase in fuel consumption. Kim and Peng [71]
present a combined optimisation problem using Stochastic Dynamic Programming (SDP)
to be used to choose both the component sizing and the power management strategy in
order to maximise fuel e�ciency.
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2.1.6 Summary
In summary, the electrical system of a FCHEV is usually made up of a fuel cell, batteries and
an electric motor. The fuel cell is used as the primary power source, with the battery pack
included to absorb transient loads in order to protect the fuel cell; however, this will tend
to age the battery pack. Supercapacitors are sometimes used either instead of the battery
pack or in addition to it. As they a very resilient to transient loading and high currents,
they are often used to protect the battery (or fuel cell directly) from transient loads and
the high currents associated with regenerative braking at the expense of addition cost and
complexity to the system. There have been a number of works examining the optimal sizing
of components, mostly using “rule-based” controllers (see Section 2.3.1). These controllers
may favour particular system designs due to heuristic assumptions and therefore this bias
is eliminated by using optimal control methods. Techniques such as DDP and SDP will
exploit the advantages of each individual design allowing for a fairer comparison.
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2.2 EMS Requirements

“In a fuel-cell-battery vehicle, the battery stores regenerative braking energy, provides extra
power during accelerations, and propels the vehicle at low speeds to avoid operating the fuel

cell at low power (in its low-e�ciency region).” Bauman and Kazerani [73]

The key role of the EMS is to manage multiple energy storage devices in order to meet
the driver’s requirements. In order to understand how to control the EMS, the system
design of a FCHEV must be understood. Fuel cells are hybridised with a battery for two
main reasons. Firstly batteries (and/or capacitors) are able to absorb regenerative braking
energy and secondly the battery can be used to balance the load on the fuel cell in order
to operate it for e�ciently and reliably. Sekine and Kojima [38] mention that degradation
and cost are two major areas for improvement in FCHEVs. Using the battery to balance
transient loads and operate the fuel cell within its optimum region will limit the degradation
of the fuel cell [73]. Using the battery to provide additional power also allows the fuel cell
to be downsized, potentially reducing the cost [36]. In addition to improving its lifetime,
operating the fuel cell within its optimum region will also improve its e�ciency.

2.2.1 Fuel Economy

The vast majority of research into the EMS focuses solely on improving the fuel economy
of the vehicle [5, 9, 29–31, 44–47, 51, 52, 56, 63, 71, 73, 74]. This is important for FCHEVs
not only to reduce running costs, but also to improve the range without increasing energy
storage requirements. The e�ciency of the fuel cell depends on its load. At low loads, the
ancillaries such as the compressor, fans and humidi�er use a signi�cant proportion of the
current compared to the useful output, causing a reduced overall e�ciency. As the load is
increased, this ancillary draw becomes less signi�cant, but ohmic losses increase. At very
high loads, the mass transport of chemical species across the fuel cell becomes the limiting
factor and the voltage begins to drop signi�cantly. Rousseau et al. [5] compares the typical
operating e�ciency for a fuel cell system and an ICE in Figure 2.1.

Figure 2.1: Fuel cell e�ciency vs. load - Rousseau et al. [5]
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In addition to the operating point of the fuel cell, the e�ciency of other components in
the system must be considered. The e�ciency of energy recovery from braking will depend
on the SoC of the battery at the time of braking events. If the battery is fully charged, or the
braking power is higher than the battery can accept, then the energy will be lost [29]. It is
therefore important to maximise the power that the battery can accept before any braking
procedure in order to maximise the energy recovered. Bauman and Kazerani [73] achieve
this in a fuel cell-ultracapacitor hybrid vehicle by ensuring that the energy stored in the
capacitor is inversely proportional to the kinetic energy of the vehicle.

As part of the system design there may also be power electronics present, such as
DC/DC converters and inverters. For example, in the Microcab H4 test vehicle there are a
total of three DC/DC converters used. The e�ciency of these devices will have an e�ect
on the overall fuel economy [6,73]. The main DC/DC converter is used to step the fuel cell
output voltage (24V nominal) up to the battery voltage (48V nominal). As the e�ciency of
this converter will likely vary with the load, it must be taken into account when consider-
ing the optimal operating point for the fuel cell. Additional e�ciency losses may include
the traction motor, auxiliary loads and battery cycling. Sta�ell [6] has produced a Sankey
diagram showing the energy losses obtained from 4000km of mileage accumulation of the
Microcab H4 on the University of Birmingham campus, see Figure 2.2.

Figure 2.2: Sankey diagram showing the average e�ciency of the Microcab powertrain -
Iain Sta�ell [6]

The Sankey diagram shows that the overall e�ciency of the Microcab H4 powertrain
is approximately 18%, but Sta�ell [6] states that 30% to 50% [19, 35] e�ciency has been
reported in other FCHEVs, which could be achieved by system level optimisation of the
Microcab powertrain. This can be attained by improved component selection including
more advanced DC/DC converters in combination with a more e�ective EMS [6]. It can also
be seen from the Sankey diagram, that the e�ciency of the brushed DC motor is particularly
low (75%). This puts a signi�cant additional load on the rest of the system which could be
reduced by using a more e�cient motor.
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“The optimal running points of individual components do not necessarily coincide with one
another, meaning that a global compromise is required to avoid undesired operating points

within the system” Iain Sta�ell [6]

Sta�ell also points out that some of the di�erent components may have competing ob-
jectives in order to maximise their individual e�ciencies. For example, is it more e�cient
to run the fuel cell at its most e�cient operating point even if this causes the batteries to
be cycled more than necessary (with the associated e�ciency loss)? It is the role of the
EMS to make decisions in order to answer this question. Overall, the EMS must be able
to identify the global optimal operating points for the full powertrain, taking into account
all signi�cant e�ciency losses in the system, in order to optimise the fuel economy of the
vehicle as a whole.

2.2.1.1 EMS Strategy Examples

The optimisation of vehicle fuel economy is the main focus of almost all research into EMS
strategy. This is because the EMS has a direct in�uence on the fuel economy of any HEV
and gains of around 30% [48] can be achieved with sophisticated control strategies.

Lin et al. [45] look solely at improving the fuel economy of an ICE powered FedEx de-
livery truck using hybridisation. It is found that with simple “rule-based” control, the fuel
economy is improved by 31% over the FTP cycle, which is further improved on by an addi-
tional 14% due to optimisation of the rule-based controller using DDP. Guezennec et al. [28]
examine the potential to increase the system e�ciency of a FCHEV using mild hybridis-
ation. The introduction of hybridisation using an Equivalent Consumption Minimization
Strategy (ECMS) strategy resulted in a 48% improvement in the fuel economy. This im-
provement is achieved by running the fuel cell in its optimal e�ciency operating region
for a higher proportion of the drive-cycle tested and a reduction in the time the fuel cell
spends idling. It is also found that the peak power demand from the fuel cell is dramatically
reduced. This results in an e�ciency increase due to the reduction in ohmic losses which
are proportional to the fuel cell power.

Schi�er et al. [29] explore the potential to optimise the fuel economy of a FCHEV using
supercapacitors for regenerative braking. A number of potential state based strategies are
examined and it is found that the best fuel saving can be achieved by maximising the super-
capacitors capability for powering acceleration and absorbing regenerative braking energy
over a strategy. This strategy shows a 25% reduction in fuel consumption when compared
to a strategy which purely aims to run the fuel cell in its most e�cient operating region.

2.2.1.2 Summary

In summary, there are various ways that the EMS can optimise the fuel economy of a
FCHEV. Firstly, the fuel cell should be run in its optimal operating region for as much
time as possible. The e�ciency of the fuel cell varies signi�cantly with its load. At idle or
low loading, current is still required to run ancillary devices meaning that poor e�ciency
is achieved. At high power, ohmic losses and mass transport limitations signi�cantly a�ect
the output voltage leading to a drop in e�ciency (see Figure 2.1). Therefore, it is best to
run the fuel cell at part load, with approximately 30% of the maximum rated power being
optimal. Secondly, the advantages of being able to store recovered braking energy should
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be maximised. This often means that the battery SoC should be kept well below 100%, and
its temperature should be kept low, in order to maintain its capability to absorb this energy.
Finally, the operating e�ciency of all other components in the powertrain should also be
considered. This is because the e�ciency of some devices such as DC/DC converters varies
with load and this e�ciency loss can signi�cantly a�ect the e�ciency of the system as a
whole.

When compared to an ICE hybrid, the optimisation of fuel consumption on a FCHEV is
generally quite simple. This is because the operating state of the fuel cell can be de�ned by
a single parameter, its total power output, rather than the combination of speed and torque
output. FCHEVs are set up in a series con�guration and therefore the e�ciency is totally
decoupled from the vehicles velocity.

Overall, the system should be considered in a holistic sense. The various targets men-
tioned above may compete with each other under certain circumstances and therefore po-
tential savings due to various strategies should be compared in order to obtain the lowest
fuel economy possible. For example, although it is bene�cial to keep the fuel cell running
around 30% power, if this means that the batteries will become highly charged and there-
fore unable to recapture kinetic energy from braking, this may be detrimental to the overall
fuel economy. Equally, the DC/DC converters may be very ine�cient at 30% power, and it
may be more bene�cial to target a slightly higher or lower operating region after they are
taken into account. Depending on the design of the system, each of these targets may have
varying e�ect on the overall system e�ciency and the optimal strategy for one design may
not coincide with the optimal design for another.
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2.2.2 Fuel Cell Degradation

“Component decay or failure is a�ected by many internal and external factors, including
material properties, fuel cell operating conditions (such as humidi�cation, temperature, cell

voltage, etc.), impurities or contaminants in the feeds, environmental conditions (e.g.,
subfreezing or cold start), operation modes (such as start-up, shut-down, potential cycling,

etc.), and the design of the components and the stack.”
Yuan et al. [75]

There is a large volume of research into fuel cell degradation ranging from detailed
electrochemical modelling [76] to empirical work on accelerated ageing testing [75, 77] to
Failure Mode and E�ects Analysis (FMEA) [78]. Therefore, the literature shown in this
report [12,32, 69, 75–85]only represents a fraction of the work being performed . However,
the main targets for the reduction of fuel cell degradation have been examined in order to
identify achievable targets for a supervisory controller to work with. The US Department
of Energy [12] sets a target of 5000 hours lifetime for vehicle based fuel cells in order to
compete with conventional technology. A typical �gure representative of current PEM fuel
cells is approximately 3500 hours [1]. The EMS is not directly responsible for managing
the fuel cell; however, the decisions it makes can signi�cantly a�ect the conditions in the
stack [80]. An e�ective EMS has the potential to not only increase the useful lifetime of the
fuel cell, but also to reduce the required number of hours of operation to be competitive with
conventional ICEs by running the fuel cell for less time relative to the vehicle’s operational
time.

Fuel cell component failure and decay can occur due to a variety of reasons including
material properties, operating conditions, impurities in the reactants and environmental
conditions [75]. The EMS will have no control over some of these degradation methods,
such as impurities in the fuel, but can have a signi�cant e�ect on degradation due to operat-
ing conditions. External in�uences such as environmental conditions can also be managed
by the EMS by varying the operational mode in order to minimise their e�ect. This section
will review the most well-known causes of Membrane Electrode Assembly (MEA) perfor-
mance degradation, which can be split into three categories; catalyst layer, membrane layer,
and Gas Di�usion Layer (GDL). The main targets for the EMS are summarised in a table at
the end.

2.2.2.1 Catalyst Layer

The catalyst layer of a PEM fuel cell is generally made up of a porous carbon support to
which platinum catalyst particles are attached. In order to maximise the e�ectiveness of
the catalyst and minimise the material cost of the fuel cell, platinum particles of nanome-
tre scale are distributed as evenly as possible across the support (see Figure 2.3). Catalyst
layer degradation is largely due to two main causes; the agglomeration and sintering of the
platinum particles and the corrosion of the carbon support. Both of these have the e�ect
of reducing the Electro-Chemical Active Surface Area (ECASA) and hence reducing reac-
tion rates and therefore cell voltage. These processes generally occur naturally within the
cell and over time the cell voltage will decrease, however certain operating conditions can
increase the rate of degradation signi�cantly and therefore these should be avoided.
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Figure 2.3: Major Causes of Electro-Chemical Active Surface Area (“ECASA”) Reduction

Carbon corrosion is one of the major causes of catalyst layer degradation, and occurs
due to the electrochemical oxidation of carbon catalyst support. As the support degrades,
the catalyst particles become detached and either fall to the bottom of the cell or are carried
away in the waste products. The e�ect is minimal at low potentials due to the slow kinetics
of the reaction [75]. Despite the presence of the platinum catalyst in a PEM fuel cell, po-
tentials below 0.55V vs. Reversible Hydrogen Electrode (RHE) [75] pose negligible risk of
carbon corrosion. Carbon corrosion happens fastest as high cell potentials, or low current
loading, and is especially accelerated at open-circuit. During start-up and shut-down, and
in situations of fuel starvation, the non-uniform distribution of fuel on the anode can also
increase the rate of carbon corrosion. These circumstances must be avoided when at all
possible in order to limit the degradation of the catalyst layer.

The agglomeration and sintering of catalyst particles can occur due to migration as
the carbon support is degraded and the particles become mobile. This leads to an ECASA
reduction and hence a reduction in cell performance. High cathode potentials may also
cause the formation of oxides on the surface of the catalyst which can lead to a loss of
activity. Although the oxide layer tends to be temporary, the particles may agglomerate as
the platinum is reduced leading to a permanent loss of activity.

2.2.2.2 Membrane Layer

The membrane layer of a PEM fuel cell is generally made of Na�on ionomer which is chosen
due to its excellent proton permeability and relative thermal and mechanical stability. It
forms a barrier preventing the electron conduction whilst allowing protons to pass through.
Damage may occur to the membrane due to a variety of inter-related reasons (see Figure
2.4) each of which may exacerbate the others.

Membrane degradation can be split into mechanical, chemical and thermal damage [75].
Mechanical damage may occur due to defects during the MEA fabrication; however, it can
also occur due to thermal stress and drying of the membrane. Thermal stress will cause the
membrane to dehydrate which leads to a loss of proton conductivity [75]. Decreased proton
conductivity causes an e�ective increase in the internal resistance of the cell which itself
can lead to further heating. Chemical damage is caused by cationic contaminants which
can penetrate the membrane and lead to reduced protonic conductivity.
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Figure 2.4: Major Causes of Membrane Degradation

The EMS can do very little about congenital defects or mechanical damage introduced
during fabrication of the MEA. Equally contaminants in the reactant supply are out of the
scope of the EMS; however, the EMS can have a large e�ect on the thermal homoeostasis of
the membrane. The controller may be able to take action in order to prevent over-heating
and subsequent dehydration of the membrane by monitoring the temperature and humidity
of the fuel cell. Na�on-112 swells to 167% of its dry volume when it is fully saturated with
water [1] which can put signi�cant mechanical stress on the membrane. Liu and Case [80]
show that cyclic loading of the MEA in a PEM fuel cell increases the membrane degradation
when compared to constant current. This is attributed to hydrothermal-mechanical stress
resulting from wet-dry cycling which may cause microscopic and macroscopic holes in the
membrane.

Zhang et al. [77] explain that open-circuit voltage without electrical loading enhances
MEA degradation in addition to carbon corrosion of the catalyst support. This is due to the
formation of peroxide radicals generated by incomplete reduction of oxygen at the cathode,
and by the signi�cant gas crossover which occurs at the anode/membrane interface under
open circuit voltage [77]. Conversely, if the reactant gases are over saturated with water
due to high current loading, the electrodes and gas di�usion layer can become �ooded,
causing blockages and hence localised reactant starvation and thermal gradients across the
membrane [77].

2.2.2.3 Gas Di�usion Layer (GDL)

The gas di�usion layer and bipolar plates are generally the most stable components of the
fuel cell, but may su�er from carbon corrosion in a comparable manner to the catalyst [75].
However, due to the absence of platinum, the reaction kinetics are even slower than the
catalyst layer. From an EMS standpoint, the catalyst layer represents a tighter constraint.
Similarly, the bipolar plates may su�er from thermal distortion, but are not damaged by ex-
cessive heat as quickly as the membrane and therefore thermal protection of the membrane
should also prevent damage to the bipolar plates.
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2.2.2.4 Low-Level Controller

Depending on the complexity of fuel cell system, there may be a low-level controller re-
sponsible for controlling the auxiliary components such as a fan, compressor, and/or hu-
midi�er. It is therefore useful to consider the low-level control of the fuel cell as separate to
the supervisory control performed by the EMS. The fuel cell controller is responsible, for
example, for controlling the fan in order to manage the fuel cell temperature. The EMS, on
the other hand, is responsible for supervisory control, e.g., managing power in the battery
and providing the power demand to the fuel cell controller. Guezennec et al. [28] mention
that they should be considered simultaneously. This is because in order to provide an op-
timal system, the EMS must be aware of the constraints on the low-level controller. The
fuel cell system on the Microcab H4 is provided with a built-in controller that will man-
age temperature, humidity and reactant supply. The EMS is therefore only responsible for
choosing the operating point of the fuel cell with regards to load. Depending on the control
authority of the low-level control, sudden changes in this load may cause the fuel cell to
operate outside optimal conditions. The EMS must therefore take these constraints into
account in its design in order to minimise fuel cell degradation.

2.2.2.5 EMS Strategy Examples

A number of authors have proposed EMSs that combat fuel cell degradation, mainly fo-
cussed on two major causes; the reduction of transient loading, and prevention of reactant
starvation. Thounthong et al. [70, 86] and more recently Aouzellag et al. [87] target the re-
duction of transient loading with a “rule-based” approach using rate of load change limits
on the fuel cell and the battery pack. Pukrushpan et al. [88], Vahidi et al. [32] and Lin et
al. [31] focus on the control of oxygen �ow in order to prevent reactant starvation. More
recently, Xu et al. [89] has developed a multi-mode strategy that includes limitations on the
upper and lower fuel cell power as well as the reduction of transient loads by using penalty
functions on a DDP optimisation.

Vahidi et al. [32] mention data shown in a patent by Ballard [90] where the fuel cell
voltage is reversed during oxygen starvation. They also mention that low concentrations of
oxygen may also cause a signi�cant rise in temperature within the fuel cell. In high pressure
fuel cells, the oxygen is supplied using a compressor which may account for up to 30% of
the fuel cell power during a rapid increase in air �ow. This means that the compressor adds
to the power demand on the fuel cell making the problem worse. The EMS can alleviate
this problem by avoiding the sudden demand of high current and instead ramping up the
load on the fuel cell slowly, allowing the fuel cell controller to maintain the reactant supply
reliably.

Thounthong et al. [86] develop a hybrid EMS for a fuel cell/battery/supercapacitor
power supply where the rate of fuel cell demand power is limited in order to reduce the
transient loading on the fuel cell. This also has the advantage of limiting high power usage
potentially allowing the fuel cell to be downsized. A similar method is used by Guezennec et
al. [28] for an ECMS and by Di Cairano et al. [66], who use Model Predictive Control (MPC)
to predict the anticipated power demand over a short horizon in order to smooth the en-
gine power of an ICE in a hybrid vehicle. Although not applied to a fuel cell vehicle, it is
mentioned that this approach could be used to extend the lifetime of a fuel cell on board a
FCHEV.
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It must be mentioned that these limits represent hard constraints on the controller and
are heuristic in nature. This means that although they seem to be bene�cial in simulation
testing, no quanti�able advantage is given other than a pure reduction in the transient
loading and the implied advantages of this. Aside from the work in this thesis, no research
has been found that quantitatively relates the degradation methods mentioned above to the
optimisation of the EMS.

2.2.2.6 Summary

In conclusion, the most important degradation methods from an EMS standpoint are carbon
corrosion of the catalyst layer and dehydration damage to the membrane due to wet-dry
cycling and overheating. Carbon corrosion occurs at high cell potentials, during start-up
and shut-down and due to fuel starvation. This can be limited by avoiding low power
operation and refraining from start-stop cycling of the fuel cell where possible. Thermal
degradation can lead to damage to the membrane and bipolar plates. Although the low-
level controller is primarily responsible for managing the temperature of the fuel cell, the
EMS can assist by avoiding higher power demand for extended periods of time. Finally,
reactant starvation and sudden humidity changes can be avoided by limiting the rate of
load changes and avoiding transient loads on the fuel cell [28].

Although the EMS can do little to prevent a number of signi�cant degradation meth-
ods, there is a lot that the EMS can do to limit degradation due to the operating condition
of the fuel cell. Overall targets for the EMS are to limit start-stop cycling and minimise
transient loading in order to prevent localised fuel starvation and humidity changes to the
membrane. The EMS should also avoid running the fuel cell at extreme loading conditions
including both high and low power demand. Low power demand causes a high potential,
leading to corrosion of the catalyst support, oxidation of the catalyst and the production of
peroxide radicals. On the other hand, high current demand can cause increased cell internal
resistance leading to overheating and dehydration of the membrane as well as fuel starva-
tion due to potential supply limitations. A concise list of the main EMS strategy concerns
for limiting degradation of PEM fuel cells has been summarised in Table 2.1.
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Method Mechanism EMS Action

Carbon Corrosion of
Catalyst Support

The carbon catalyst support is
electrochemically oxidised more rapidly
at high cell potentials, leading to ECASA
reduction [75]

Ensure fuel cell is electrically
loaded when running

Fuel starvation due to current demand
exceeding supply limit leads to oxidation
of the carbon support [75]

Ensure current demand does not
exceed reactant supply limitations

Non-uniform distribution of fuel on the
anode during start-up and shut-down
leads to localised reactant starvation and
hence oxidation of the carbon
support [75]

Limit start-up/shut-down cycling
where possible

Non-uniform distribution of fuel on the
anode during transient loading leads to
localised reactant starvation and hence
oxidation of the carbon support [75]

Limit sudden transient loading

Cell “�ooding” can cause localised fuel
starvation and hence oxidation of the
carbon support [75, 77]

Ensure current demand does not
exceed product removal

limitations

Formation of Oxides
on Surface of

Catalyst

Oxidation/Reduction cycling of the
catalyst surface causes the particles to
agglomerate and hence ECASA
reduction [75]

Ensure fuel cell is electrically
loaded when running

Membrane Chemical
Attack

Open-circuit voltage causes formation of
peroxide radicals and high gas crossover
at the anode/membrane interface [75, 77]

Ensure fuel cell is electrically
loaded when running

Membrane
Hydrothermal-

Mechanic
Stress

Load cycling can cause the membrane to
swell and contract as the humidity
changes leading to mechanical stress on
the membrane and the formation of
holes [1, 80]

Limit sudden transient loading

Membrane Thermal
Degradation

Thermal stress due to high current
demand causes membrane dehydration
and decreased proton conductivity
leading to further heating and possible
membrane damage [75]

Ensure current demand does not
exceed heat removal limitations

Oxygen starvation can cause rapid
temperature rises [32, 69, 75, 79]

Ensure current demand does not
exceed reactant supply limitations

Cell “�ooding” can cause localised
oxygen starvation [75, 77]

Ensure current demand does not
exceed product removal

limitations

Table 2.1: EMS Strategy Concerns for Limiting Fuel Cell Degradation
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2.2.3 Battery Degradation
“Particularly high temperatures, high currents, and high energy throughput are the main
factors that force the deterioration of batteries’ electric characteristics.” Roscher et al. [91]

The EMS is directly responsible for the SoC and current loading of the battery at any
point in time. This means that it will have a signi�cant e�ect on how quickly the bat-
tery degrades. Batteries degrade for a number of reasons depending on the chemistry,
but the most signi�cant methods of degradation are caused by operating them outside of
their temperature and voltage limits [7, 36, 91] or by over-cycling them [7, 91]. Generally,
a battery should never exceed its maximum voltage [7, 91]. This can be caused by either
attempting to charge a fully charged battery or exceeding the current that the battery can
safely absorb. For traction batteries, this is most likely to occur during regenerative brak-
ing. Equally the battery should not be allowed to drop signi�cantly below its minimum
voltage (“deep-discharge”) [36]. This may occur by either attempting to draw current from
an empty battery or exceeding the current that the battery can readily supply, and is most
likely to happen during traction. Finally, charge-discharge cycles will cause incremental
damage to the battery and therefore the EMS should avoid cycling the battery more than
necessary. Manufacturers will usually provide a battery lifetime estimate which is given as
a number of cycles before the battery is reduced to 80% of its original capacity.

2.2.3.1 Lead Acid Batteries

Lead acid batteries are currently used as the battery in the Microcab H4 which is available
for testing at Loughborough University and therefore an understanding of lead acid battery
degradation causes is important for the design of an EMS suitable for this vehicle. Ruetschi
[7] and Nakamura et al. [92] have written comprehensive articles analysing lead acid battery
degradation mechanisms. The ageing mechanisms depend on the use of the battery and
are often interdependent, i.e., degradation due to one mechanism may increase the rate of
another. The most common ageing mechanisms are listed below;

Figure 2.5: End of Life Lead Acid Battery Grid - Ruetschi [7]
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1. Anodic corrosion (of grids, plate-lugs, straps or posts, see Figure 2.5) Anodic
corrosion is considered by Ruetschi [7] to be the “natural” ageing mechanism in lead
acid SLI batteries. Anodic corrosion is caused by the inherent electrochemical insta-
bility of metallic lead in the positive plate meaning that it is practically unavoidable,
however the kinetics of the corrosion are so slow (due to a formed corrosion �lm)
that satisfactory service life is possible. In order to achieve the best service life,
Ruetschi [7] recommends that over-charging should be avoided and end of charge
voltage should be appropriately limited.

2. Positive activemass degradation and loss of adherence to the grid (shedding,
sludging) As the battery is recharged after being discharged, lead oxide may be
re-deposited in slightly di�erent morphology than existed before. With repeated
cycling, the active anode mass gradually changes shape, losing mechanical strength
and electrical conductivity. Charging at high current has a favourable e�ect on the
positive active mass, possibly due to the higher temperature associated. In fact, up
to 60◦C [7] has shown to be optimal, above which grid corrosion may become the
life-limiting factor. With appropriate design for deep-discharge, batteries may reach
1500 cycles to a Depth of Discharge (DoD) of 80%, but standard SLI batteries would
not cope with 100 such cycles [7].

3. Negative activemass degradation and loss of adherence to the grid It has been
found that the high current charging in electric vehicles as a result of regenerative
braking has a tendency to degrade lead acid batteries. Nakamura et al. [92] suggest
that the elevated temperature caused by high current charging causes additives in
the cathode active material to decompose. In order to con�rm this, a number of
tests were performed where the temperature of the battery was carefully managed.
It was seen that the capacity of the battery dropped signi�cantly when charged at
temperatures above 50◦C.

4. Irreversible formation of lead sulphate in the active mass (crystallization,
sulphation) "Sulphation" is a major cause of lead acid battery failures and results
from the irreversible formation of crystalline lead sulphate. Lead sulphate can only
be partially reconverted back into an electrochemically active form, leading to a re-
duction in the capacity of the battery. It is most likely to occur when the batteries
remain in a partially discharged form for prolonged periods of time. This has been
shown by Nakamura et al. [92] to be a major cause of traction battery failure in elec-
tric vehicles due to irregular charging patterns and continued usage after a partial
re-charge, such as from regenerative braking.

5. Short-circuits Short-circuits are almost always the result of deep-discharge [7].
This is caused by lead sulphate precipitation in the dilute acid. On recharge, this lead
sulphate is converted to metallic lead potentially shorting the separator medium.
Short-circuits can also occur from loose, partly sulphated, lead oxide particles which
have broken o� the anode corrosion layer. Suspended in the electrolyte, they can be
transported to the edges of the plates or the bottom of the cell, potentially causing
a short-circuit.
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6. Loss of water Although many modern lead acid batteries are considered mainte-
nance free, su�ering from very little (if any) water loss, there are certain situations
which can cause signi�cant evaporation or electrolysis of the water. Overcharging
leads to rapid loss of water through electrolysis and should be limited to a maximum
of 4% [7] in order to prevent this. Self-discharge electrolysis can also take place if
the batteries are left at open-circuit voltage for extended periods of time.

2.2.3.2 Lithium-ion Batteries

Lithium-ion batteries are quickly becoming the default design choice for any high power,
high capacity energy storage application, especially where the weight is important due to
their high energy and power densities. The new Microcab H2EV uses lithium-ion batteries
for energy storage, and therefore an understanding of degradation causes is important for
the design of an EMS for this vehicle. The degradation of lithium-ion batteries is also the
result of complex interactions between di�erent processes occurring within the cells [93].
A summary of the processes associated with lithium-ion battery degradation can be found
below [93–95].

1. Electrolyte decomposition [93, 95] As with lead acid batteries, the lithium-ion
battery anodes operate at potentials outside of the electrochemical stability of the
electrolyte components. This causes an irreversible decomposition of lithium-ions
at the electrode/electrolyte interface, which builds up a protective layer known as
the Solid Electrolyte Interface (SEI). The SEI protects the electrolyte from reduction,
and simultaneously defends the charged electrode from corrosion. Unfortunately,
the SEI does not provide complete protection and this reaction continues to occur
(albeit at lower rates) throughout the batteries life. As time passes, the SEI will
eventually penetrate into pores in the electrodes (and the separator) causing an ef-
fective decrease in the active surface area of the anode, increasing the impedance
of the cell. Excessive heat will increase the kinetics of this reaction, and tempera-
tures above 80◦C [93] have been known to cause exothermic side reactions in the
SEI which can lead to “thermal runaway”.

2. Solvent co-intercalation [93] Solvent co-intercalation is caused by overcharging
the battery and causes a loss of active material on the anode, as well as a permanent
loss of active lithium.

3. Current collector corrosion [93] Current collector corrosion is caused by over-
discharging the battery (“deep-discharge”) and causes over-potentials at the anode
which lead to impedance rises and inhomogeneous distribution of current and po-
tential.

4. Lithium metal plating [93] Lithium metal plating occurs mainly at low temper-
atures, high cycling rates, and inhomogeneous current and potential distributions.
This causes lithium metal to react directly with the electrolyte, contributing to loss
of the electrolyte.

5. Structural changes in the active material [93] Only minor changes are expected
to occur within the active material (typically less than 10% [93]) during the up-
take and removal of lithium-ions from the electrode under normal use. Structural
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changes, however, can cause mechanical stress which might result in cracking or
related damage.

Work by Peterson et al. [94] and Zhang et al. [95] suggest that for modern lithium-ion
cells used in electric vehicles, the most common degradation mode is decay of the SEI layer
and associated capacity loss. The SoC range used by Zhang et al. [95] was between 30%
and 80% DoD. In conclusion, the decay of the SEI due to high temperatures (above approx-
imately 60◦C) is by far the most common cause of lithium-ion battery degradation seen
in automotive use, even for batteries with a large SoC duty range. Elevated temperatures
are most likely to be caused by excessive power draw. In contrast to lead acid batteries,
lithium-ion batteries do not exhibit signi�cant degradation caused by partial charging (e.g.,
“Sulphation”) or self-discharge and therefore are more suitable for battery vehicle duty cy-
cles where they will be required to absorb regenerative braking energy and not necessarily
maintained at full charge.

2.2.3.3 EMS Strategy Examples

Vagg et al. [96] develop a control strategy for a retro�t hybridised vehicle using the square
of the current to estimate the stress on the electrical powertrain. Although this does not
directly relate to any physical ageing mechanism, the square of the current is proportional
to the ohmic losses and therefore heat generation in the battery and motor. By minimis-
ing the heat generation, the thermal stress on the battery should be minimised. This is
incorporated into the cost function in order to allow trade-o� against the fuel consumption
by changing the weighting value. It is found that it is possible to reduce the mean square
battery current by approximately 13% without compromise to the fuel economy.

Moura et al. [64] use two di�erent models to predict the ageing of a lithium-ion battery.
The �rst is a detailed electrochemical model to predict the growth of the SEI �lm depending
on the current and SoC of the battery. Using a weighting parameter, the SEI �lm growth is
incorporated into the cost function for a Charge-Depleting (CD) strategy. The results show
that the controller tends to deplete the battery quickly initially in order to avoid the elevated
level of growth which occurs at high SoC. The SoC begins to stabilise around 50-60% slowly
depleting to around 25% until near the end where the strategy becomes charge-sustaining.

The second method employed by Moura et al. [64] is simply to penalise the energy
throughput of the battery and hence attempt to limit excessive charge/discharge cycling. It
is found that by minimising the energy throughput of the battery, the fuel consumption of
the vehicle is dramatically increased due to the engine spending a much higher proportion
of the journey at undesirable operating points. Speci�cally, for a 57% reduction in energy
throughput, the fuel consumption is increased by 82%. This demonstrates the fundamental
trade-o� that exists between these two targets.

2.2.3.4 Summary

In summary, lithium-ion batteries are much more suited to be traction batteries when com-
pared to lead acid. This is not only due to their higher gravimetric energy density, but also
because they do not exhibit degradation caused by partial charging such as that caused
by regenerative braking events. In contrast lead acid batteries should be maintained at
100% charge whenever possible. This may mean that the capacity of lead acid batteries to
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absorb regenerative braking energy may be reduced when compared to lithium-ion. Ide-
ally, lithium-ion batteries should be maintained at approximately 80% charge allowing for
a higher reserve capacity for regenerative braking events and a lower risk of overcharging,
although work by Moura et al. suggests that even lower SoC is desirable when considering
SEI growth.

Lead acid batteries are fairly resilient to charging and discharging at temperatures up to
50◦C, however the temperature of lithium-ion batteries should be controlled very carefully.
This is because the major causes of degradation, such as SEI decay, occur at much higher
rates at elevated temperatures. In addition to this, exothermic reactions which can lead to
catastrophic failure of the battery may occur at temperatures above 80◦C. The temperature
of the battery can be managed by the EMS by avoiding high currents which may lead to
heating due to the internal resistance of the cell.

Both chemistries are degraded by overcharging and “deep-discharge”. For lead acid
batteries, this competes with the objective to maintain a high SoC, whereas this is easily
managed for lithium-ion batteries by targeting a lower SoC. Equally, for both chemistries,
excessive cycling should be avoided. This can lead to active mass redistribution leading to
a reduced active surface area and hence lower cell performance in both chemistries, and
to lithium metal plating in lithium-ion batteries. A concise list of the main EMS strategy
concerns for limiting degradation of lead acid and lithium batteries has been summarised
in Table 2.2.
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Method Chemistry Method EMS Action

Negative Active
Mass Degradation Lead Acid

High currents and associated
temperatures caused by regenerative
braking charging events cause the
cathode to degrade [92]

Reduce Regenerative
Braking if Battery

Temperature Increases

Formation of Lead
Sulphate

(“Sulphation”)
Lead Acid

Partial charging caused by
regenerative braking events as well as
never completely charging the cell
can cause gradual formation of lead
sulphate [7, 92]

Try to maintain battery
at full charge where

possible

Short-circuits Lead Acid

Deep-discharge events cause
precipitation of lead sulphate in the
dilute acid, subsequent charging
converts this to metallic lead
potentially shorting the separator [7]

Avoid deep-discharge

Water Loss Lead Acid Water loss is most often caused by
overcharging the battery [7] Avoid over-charging

Positive Active
Mass Degradation

Lead Acid
Mainly

As the battery is cycled the active
mass is gradually redistributed on the
anode causing a reduction in
mechanical stability and electric
conductivity [7]

Avoid cycling battery

Anodic Corrosion Both

Anodic corrosion occurs constantly in
both chemistries. Although the
kinetics of the reaction are slow, it
occurs at higher rates when the
temperature is increased. In lead acid,
it can be accelerated signi�cantly by
over-charging [7]

Avoid over-charging
and manage
temperature

SEI Decomposition Lithium-ion

SEI Decomposition occurs constantly
in lithium-ion batteries, but reaction
kinetics are increased by increased
temperatures [93, 95]

Manage temperature at
all times

Solvent
Co-intercalation Lithium-ion Solvent co-intercalation is caused by

overcharging the battery [93] Avoid over-charging

Current Collector
Corrosion Lithium-ion

Current collector corrosion is caused
by over-discharging the battery
(“deep-discharge”) [93]

Avoid deep-discharge

Lithium Metal
Plating Lithium-ion

Lithium metal plating occurs mainly
at low temperatures, high cycling
rates, and inhomogeneous current
and potential distributions [93]

Limit cycling where
possible, avoid

deep-discharge and
manage temperatures

Table 2.2: EMS Strategy Concerns for Limiting Battery Degradation
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2.2.4 Drive-ability

“Drivability is a rather vague term that covers many aspects of vehicle performance
including acceleration, engine noise, braking, shifting activity, shift quality, and other

behaviours.” Opila et al. [53]

The term “drive-ability” covers a wide range of parameters perceived by the driver of
the vehicle. This includes pedal response, noise and vibration [8, 53]. The vehicle should
be able respond to the driver’s input in a predictable and consistent manner. For example,
this means that the vehicle should not be slower to accelerate when the battery SoC is low.
Drive-ability may also take into account the behaviour of the system in the event of a com-
ponent failure [56]. Drive-ability concerns are often taken into account after optimisation
of the fuel economy of the vehicle, leading to a non-optimal overall solution [62]. By in-
cluding drive-ability concerns in the optimisation routine of the EMS, a globally optimal
solution can be found.

2.2.4.1 Gear Shifts

The majority of the work in the literature with concern to drive-ability is focussed on HEVs
with automatic transmissions. In situation, the EMS is usually responsible for choosing
the optimal gear in order to control the operating point of the engine. Obviously for a
FCHEV with a single �xed gear such as the Microcab, gear shift vibration is not a concern;
however, some of the lessons learnt in the development of these controllers are still relevant
for many FCHEVs, and potentially for the new Microcab H2EV. Work by Pisu et al. [8, 50]
seeks to minimise driveline vibration and achieve smooth gear changes by modelling the
sti�ness’ of the driveshafts (see Figure 2.6) and incorporating the resulting vibration into
the optimisation of their controllers.

Figure 2.6: Drive-ability Metrics, Pisu et al. [8]
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Opila et al. [26, 53] attempt to combat a number of other issues after discussion with
drive-ability experts at Ford Motor Company. A primary concern for Ford is the driver’s
perception of what the engine and transmission are doing. The driver is often aware of
changes in engine noise, and of gear shifts. The main problems are high frequency of engine
stop-start events, high frequency of gear shifts, including “hunting” and unexpected gear
shifts [53]. Opila et al. [26, 53] break these issues down to two baseline metrics, the num-
ber of engine stop-start events and the number of gear shifts. By incorporating a penalty
into their optimisation function, they are able to reduce the number of engine stop-start
events and the number of shifts, with the secondary e�ect of reducing gear shift “hunt-
ing”. By tuning the penalty weighting factors for fuel economy, engine stop-start events
and gear shift events, they are able to trade the drive-ability of the vehicle against the fuel
economy. In their 2012 work [26], it is shown that they are able to maintain the drive-
ability of Ford’s baseline controller whilst improving fuel economy by 11% by using their
optimised controller. Vidal-Naquet and Zito [62] show that without drive-ability included
in the optimisation, there are over 300 gear shifts with approximately 30% of these taking
place within 2 seconds of one another. By including the drive-ability metrics and tuning
the weighting parameters, a �nal result of just 107 shifts is achieved with only 2% increase
in fuel consumption.

2.2.4.2 Power Availability

Vidal-Naquet and Zito [62] treat the instantaneous potential acceleration available as a
drive-ability metric in addition to the frequency of gear shift events. The instantaneous
acceleration metric improves the “feel” of the vehicle, because more power is available in
reserve if the driver chooses to accelerate. Generally, for a HEV �tted with an automated
transmission, the optimal fuel economy will be achieved by shifting gear as soon as possible
to ensure the engine speed is low. The acceleration potential metric will tend to delay the
shifts so that more power reserve is available, however this will be directly at the expense
of the fuel economy [62]. Vidal-Naquet and Zito [62] note that the weighting parameters
can be tuned to achieve manufacturers desired drive-ability/fuel consumption balance for
di�erent vehicle driving modes such as “Sport”, “Normal” and “Economy”. FCHEV trans-
missions are often single speed, and therefore this drive-ability metric is not a�ected by the
transmission. However, Schi�er et al. [29] use a benchmark termed “Power Constraint” in
their optimisation. This metric penalises times when the fuel cell and supercapacitors in
their vehicle are unable to cope with driver demand, e�ectively a negative instantaneous
potential acceleration. This drop in power will a�ect the driver’s perception of the vehi-
cle, however Schi�er et al.’s method does not measure acceleration potential above of the
normal driver demand. Overall, a combination of both metrics would be ideal, the instan-
taneous available power should be maximised, but additional penalty should be added if it
becomes negative.

Traditionally, the throttle pedal of an ICE vehicle is used to directly control the en-
gine throttle valve, but increasingly the pedal position is electronically sent to the engine
Electronic Control Unit (ECU) as a measure of the driver’s torque demand. For non-hybrid
vehicles, this is simply done so that the ECU can over-ride the drivers demand in situations
such as cruise control or traction control action is in e�ect. Under normal circumstances,
the position is passed straight through to mimic a cable controlled throttle. In HEVs how-
ever, the question arises of what the driver expects when the pedal is depressed. There are
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multiple sources of mechanical torque on parallel and combined HEVs so should the pedal
mimic a cable throttle, directly control engine torque, or overall wheel torque including
actions of the gearbox and traction motors? Boris et al. [97] have found that the driver is
not signi�cantly a�ected by a throttle pedal which mimics a cable throttle or by a pedal
which directly controls engine torque. However, the driver is often unable to compensate
for pedals which directly control the wheel torque including the actions of an automatic
transmission.

2.2.4.3 Summary

The test vehicle available for this project is the Microcab H4 which has a single �xed gear
ratio, meaning that no optimisation is required for gear change events. However, the fuel
cell can be compared to the ICE in a fossil fuel HEV, and the frequency of fuel cell start-
stop events will contribute to the driver’s perception of the vehicle. In addition to this, the
power reserve available for acceleration may be related to the fuel cell power because of the
limited power capability of the batteries, especially on the H4, and therefore this could be
included in the optimisation of the EMS strategy. The motor is the sole source of mechanical
torque and so the pedal should directly control the produced motor torque. Similar brake
pedal control concerns exist for regenerative braking, especially when combining with the
mechanical brakes, however on the Microcab H4, regenerative braking has been disabled
[4]. Finally, the fuel cell system may generate some additional noise at high power due
to the fans running at a higher speed. This may be of concern to the driver under certain
conditions. A summary of the drive-ability concerns has been provided in Table 2.3, the
main concerns for a FCHEV highlighted in bold text.

Drive-ability Issue EMS Strategy Concerns

Driveline Vibrations Minimise torque oscillations

Engine/Fuel Cell Stop-Start Penalise Engine/Fuel Cell On-O� Cycling

Engine/Fuel Cell Noise Penalise High Power Engine/Fuel Cell Usage at Low
Speed

Excessive Gear Changes Penalise Gear Change Events

Gear Change “Hunting” Penalise Gear Change Events

Power Availability Penalise Lack of Power Availability

Accelerator Pedal Control Pedal Controls Motor Torque

Braking Pedal Control Pedal Controls Total Braking Torque

Table 2.3: EMS Strategy Concerns for Drive-ability
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2.2.5 Conclusions

Tate et al. [52] list the main objectives for conventional vehicle powertrain optimisation as
“fuel economy, emissions, torque deviations and component protection”. Hybrid vehicle ve-
hicles also require additional objectives: “In addition to certi�cation requirements, a manu-
facturer may have other control objectives including battery life management, system thermal
management to prevent component overheating, and minimization of the customer’s percep-
tions of ‘odd’ behaviour.”

It can be seen that there are various requirements for the EMS, some of which may
have competing objectives. Work in the literature shows a number of di�erent approaches
to this problem. A sizeable proportion of research papers simply compare the fuel econ-
omy of di�erent EMS methods. This simpli�es the results and makes them easier to com-
pare directly. This is particularly useful when performing sizing exercises or comparing
di�erent algorithms for suitability purposes. However, these results may not be useful un-
der real-world conditions due to an undesired amount of component degradation and/or
poor drive-ability. When used on board vehicles, these algorithms are often modi�ed to
improve durability and/or drive-ability aspects, inevitably leading to a reduction in overall
performance.

Fuel cell and/or battery degradation and the associated replacement costs can represent
a signi�cant running cost of a HEV and therefore should be considered concurrently with
fuel running cost. Much of the work in the literature tends to include simple constraints
used in order to manage the degradation of the battery, but these are often quite simpli�ed
and are implemented arbitrarily. One example of this is Sinoquet et al. [74] who set hard
constraints on the battery SoC, at a minimum of 50% and maximum of 70% SoC. These
numbers seem to be set arbitrarily and signi�cantly reduce the usable capacity of the bat-
tery pack. By incorporating realistic battery degradation metrics into the EMS strategy,
additional battery degradation could be traded o� against fuel economy for optimisation of
overall long-term running cost. In addition to this, the usable capacity of the battery pack
can be maximised, leading to a reduction in the required battery size for similar levels of
performance.

For real-world vehicles, drive-ability constraints are often added to the EMS strategy af-
ter optimisation [62]. This means that the EMS strategy is optimised based on fuel economy
and/or a cost function and then additional algorithms are subsequently added to over-ride
the optimised strategy when it would detriment drive-ability aspects of the vehicle. This is
a consequence of the product design cycle where the EMS strategy has caused poor drive-
ability, which has only become apparent during testing. This leads to an EMS strategy
which may su�er from signi�cantly degraded performance when compared to the opti-
mised strategy. A lot of work has been done by manufacturers to identify what drivers
perceive to be poor drive-ability. By incorporating these metrics into the optimisation,
the fuel economy may be improved signi�cantly while still maintaining good “feel” to the
driver. As an example of this Opila et al. [26] show that they are able to maintain the drive-
ability of Ford’s baseline controller whilst improving fuel economy by 11% when using their
optimised EMS strategy.

Many research papers propose cost functions based on a number of factors including
fuel economy, emissions, component degradation and drive-ability. Fuel economy is gener-
ally treated as the overall target for optimisation. Generally, component (especially battery)
degradation is accounted for by the use of constraints. For example, SoC limits for the bat-
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tery [74] or load change rate limits for the fuel cell [28]. There is potential for improvement
by including the component degradation as part of the cost function optimisation. Com-
ponent degradation could potentially be appropriately weighted by Mean Time To Fail-
ure (MTTF) and replacement cost to optimise long-term running cost rather than simply
the fuel cost. Drive-ability is very di�cult to quantify and requirements may change de-
pending on the type of vehicle and its use. Vidal-Naquet and Zito [62] recommend the use
of a variable weighting depending on the manufacturer’s requirements.

In conclusion, this section has identi�ed a large number of objectives for the EMS strat-
egy and how they can be combined using a cost function. Some of these objectives are
mutually bene�cial, for example avoiding cycling of the battery will increase its operating
e�ciency and protect it from degradation, however others are competitive, avoiding tran-
sient loads on the fuel cell may protect the fuel cell, but will tend degrade the battery. By
incorporating multiple objectives into the cost function and weighting them representa-
tively, the overall optimal strategy can be calculated. The primary objectives for the EMS
have been summarised in Table 2.4.
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EMS Concern Reason Potential Action

Optimise Fuel Economy Minimise Running Costs Penalise fuel usage over
drive-cycle

Attempt to Maintain
Battery at Full Charge

Lead Acid Only - Prevent
“Sulphation” Penalise deviation from full charge

Avoid Cycling Battery Prevent Positive Mass Degradation
of Battery Penalise Battery Charge/Discharge

Avoid Overcharging
Battery

Prevent Anodic Corrosion of
Battery Penalise high SoC

Avoid Deep Discharging
Battery

Prevent Solvent Co-intercalation
in Lithium-Ion Batteries and

Potential Short-circuits in Lead
Acid

Penalise low SoC

Manage Battery
Temperature

Prevent a Number of Battery
Degradation Causes

Penalise High/Low Battery
Temperature

Avoid Low Current
Demand on Fuel Cell Prevent ECASA Reduction Penalise low fuel cell current

loading

Avoid High Current
Demand on Fuel Cell

Prevent Reactant Supply, and
Product and Heat Rejection Limits

Being Exceeded

Penalise high fuel cell current
loading

Limit Fuel Cell Start-Stop
Cycling

Prevent ECASA Reduction and
Membrane Degradation

Penalise number of fuel cell
stop/start events

Avoid Transient Fuel Cell
Loading

Prevent Hydrothermal-Mechanical
Stress of Membrane and Localised

Fuel Starvation

Penalise high rates of fuel cell load
change

Limit Fuel Cell Start-Stop
Cycling Improve Drive-ability Penalise number of fuel cell

stop/start events

Maximise Power
Availability Improve Drive-ability Penalise low power availability

Table 2.4: Primary EMS Strategy Objectives
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2.3 EMS Techniques
A very good overview of optimal energy management strategies can be found in the April
2007 IEEE Control Systems Magazine by Sciarretta and Guzzella [48]. This work concen-
trates on ICE HEVs, but much of the work is appropriate to FCHEVs also. According to
Sciarretta and Guzzella, achievable improvements in fuel consumption can be as high as
30% over conventional vehicles, but improvements of this magnitude can only be realised
with sophisticated control systems.

The simplest strategies are those used in practical situations, especially industrial ap-
plications [30, 73], where the emphasis is to get a vehicle up and running as quickly as
possible. Generally, under these circumstances, the EMS strategy is based on a number of
hard coded heuristic rules, for example increase the engine/fuel cell power when the bat-
tery SoC is low. Heuristic controllers vary greatly in complexity [9, 73] and performance,
but are generally very robust and quick to implement in real-time [36]. Unfortunately, they
often require manual tuning and therefore can be very time-consuming to optimise.

Following on from heuristic controllers, there are a number of works utilising machine
learning techniques in order to optimise the EMS such as neural networks [68], game theory
[67], and dynamic programming [45,46,98]. These techniques generally use a model of the
vehicle in order to optimise the control strategy using a cost function. As a result, they
generally produce better results than heuristic controllers. They also have the advantage
that they are much quicker and easier to adapt the control strategy to di�erent vehicles
and/or duty cycles simply by re-running the optimisation using di�erent input data.

In order to maximise the performance of HEVs there has been considerable e�ort into
implementing optimal control using Deterministic Dynamic Programming (DDP). DDP
guarantees the optimal strategy for a speci�c drive-cycle [45], but these strategies are time
variant and therefore the solution requires ideal prior knowledge of the drive-cycle and
is impossible to implement directly on board a vehicle [63]. However, DDP is often used
in order to analyse the ideal solution for comparison purposes, or for the design of “rule-
based” strategies [46]. By analysing the decisions made by the DDP solution, the logic of a
“rule-based” controller can be optimised to maximise its performance. In addition to this,
because DDP provides the optimal solution to the problem, it makes a consistent baseline for
comparison purposes to other techniques, therefore it is common to researchers to report
the performance of their controller compared to the DDP solution.

In order to overcome the limitations of DDP, Stochastic Dynamic Programming (SDP)
is used to generate strategies that are based on the state of the vehicle. By modelling the
driver’s demand as a Markov Decision Process (MDP), SDP techniques can be used to �nd
the optimal control action to perform in each possible vehicle state. SDP solutions yield
causal state feedback controllers and are entirely time-invariant [47]. This means that they
can be implemented directly on board the vehicle. The performance of the SDP gener-
ated strategy is generally very near optimal [51], but will heavily depend on the quality of
training data used.

SDP has become the most popular technique for EMS in recent years [16,26,30,31,44,47,
53, 63, 64, 71, 96]. There is a lot of research going into re�nement of the technique by using
di�erent algorithms, such as Shortest Path SDP. Other authors are investigating re�nement
of the cost function to include additional requirements such as drive-ability [53], battery
degradation [64, 96] and emissions [63].
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2.3.1 Heuristic Controllers
“Early energy-management controllers were based on heuristic considerations inspired by the
expected behaviour of the propulsion system. For instance, the maximum torque of an ICE is
low at low speeds, while electric motors can usually produce high low-speed torques. Thus, a
common control strategy is to run the powertrain in a purely electrical mode from standstill

to a chosen vehicle speed.” Sciarretta and Guzzella [48]

2.3.1.1 “Rule-Based” Controllers

The simplest form of energy management control, and hence the basis for early EMS strate-
gies, is the “rule-based” controller. Rule-based controllers use a set of predetermined “rules”
to determine the operating state of the system. One of the simplest methods is to “thermo-
statically” control the battery SoC. In these controllers, the engine or fuel cell is switched
on (or increased in power) when the battery goes below a pre-designated “low” level and
switched o� (or reduced in power) when the battery SoC goes above a prescribed high
level. The “thermostatic” controller is often used as a reference baseline [30] or to form the
backbone of more complicated strategies. Bauman and Kazerani [73] describe a rule-based
strategy for a FCHEV where the battery is only charged by the fuel cell when the SoC is
lower than 50%. This is to minimise the losses associated with DC/DC converters, resis-
tance in the wiring, and cycling e�ciency of the battery. A number of other rules are also
speci�ed in order to maximise the e�ciency. These include a minimum fuel cell current
of 7.55% of the maximum in order to avoid the poor e�ciency operating region, and a rate
limit on the fuel cell power in order to stay within manufacturer guidelines.

Another rule-based strategy is described by Bauman and Kazerani [73] for a FCHEV
using ultracapacitors. It is decided that the ultracapacitors are to be used solely for acceler-
ation and regenerative braking, as opposed to a battery which would also be used for low
speed operation. This means that the energy stored in the ultracapacitors and the vehicles
kinetic energy should sum to a constant at all times, see Equation 2.3.1 whereW represents
a weighting factor and N represents a design constant.

W
1

2
mv2 +

1

2
cV 2 = N (2.3.1)

This strategy is very e�ective assuming that there is no bene�t in using the ultracapac-
itors for any other reason. This is not always true. For example, this equation does not
consider changes in the gravitational potential energy of the vehicle (although this would
only require a simple modi�cation). It also runs the fuel cell reactively in order to meet
this requirement, not necessarily running it at its optimal e�ciency and meaning that the
e�ciency of the complete system may not be as high as possible.

A similar approach is used by Schaltz et al. [36] and by Thounthong et al. [86], however
in these papers, the fuel cell is designated as the primary energy source for the vehicle.
Rather than controlling the fuel cell based on the battery SoC, it is controlled based on the
power load of the vehicle. Transient loads are avoided by the use of a low pass �lter on the
control, meaning that the battery is required to balance the di�erence. This strategy should
have the same overall e�ect as managing the fuel cell loads based on a �ltered battery SoC,
however in this case the fuel cell is being managed directly and therefore low e�ciency
operating states can be avoided more easily.
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An alternative approach, performed by Rousseau et al. [5], is to examine the limitations
of the components, and set rules in order to ensure proper behaviour of each component.
The EMS controls the set-points of the fuel cell and motor torque, and turns the fuel cell
on or o�. The strategy proposed by Rousseau et al. is to set a number of rules to ensure
that the motor does not exceed its maximum speed and torque limits, the battery SoC stays
within a prede�ned operating range, and the fuel cell does not exceed its rate of load change
limits. On top of these rules, an algorithm is used to ensure that the battery SoC deviation
is minimalised. This technique for developing a strategy tends to give better component
degradation protection at the expense of fuel economy.

Thounthong et al. [70] also propose an EMS strategy based on the limits of the com-
ponents. Using a fuel cell/battery/supercapacitor hybrid power source on a test bench, the
voltage of a DC bus is controlled. This DC voltage is the supply to a motor which is ramped
up with constant acceleration. Each of the components is connected to the DC bus using
a DC/DC converter and each is actively controlled. Because the supercapacitors have the
quickest response, feedback control is used to run the supercapacitors in such a way as to
regulate the voltage on the bus. The batteries are then controlled based on the SoC of the
supercapacitors, but limited to a maximum current slope. Finally, the fuel cell is controlled
based on the SoC of battery, limited by a (smaller) maximum current slope. These param-
eters are chosen in order to limit the degradation to the batteries and fuel cell. It is shown
that the strategy manages the three sources very well during ramp up of an electric motor,
and that the fuel cell and batteries are not subjected to harsh transients. However, because
the voltage of the batteries and supercapacitors are controlled to constant set-points rather
than based on variables such as the kinetic energy of the vehicle, it is anticipated that the
e�ciency of regenerative braking may be poor unless the supercapacitors and/or batteries
are heavily over-sized. In addition to this, there is no guarantee on the e�ciency of the
system, because the feedback controllers run the fuel cell reactively to the battery voltage
and therefore the actual operating point of the fuel cell is not managed.

2.3.1.2 State Based Controllers

More complex rule-based strategies are generally state-based. Schi�er et al. [29] describe a
control strategy represented by four vehicle states; standstill, acceleration, constant speed
and braking. In each of the inertial states, di�erent control options are described. For
example, during the standstill state, Schi�er et al. suggest that the battery could be charged
at constant power, at fuel cell maximum power, at the fuel cell maximum e�ciency or the
maximum power within the acceptable e�ciency region of the fuel cell. By combining the
options in each state, three strategies are proposed and these are each simulated over a
number of drive-cycles.

In order to compare the results, Schi�er et al. [29] use three benchmarks; the fuel con-
sumption, energy lost in the brakes and “power constraints” (when the fuel cell and capaci-
tors cannot supply the demanded power). It is decided from the results that the best overall
strategy is to use the supercapacitors as much as possible during braking and acceleration.
At constant speed and standstill it is best to charge or discharge them at the highest rate
within acceptable e�ciency of the fuel cell in order to reach an optimal voltage based on the
vehicle speed. This strategy gives the best overall fuel consumption and power availability;
however, more energy is lost to the brakes than one of the alternative strategies proposed.
It is concluded that the best fuel economy is achieved because the best strategy prioritises
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the e�ciency of the fuel cell over the e�ciency of the regenerative braking.

Figure 2.7: Strategy Flowchart - Xiong et al. [9]

Xiong et al. [9] propose another state-based controller. In the strategy proposed by
Xiong et al., the states are based on the component operating modes, rather than the vehi-
cle states. The modes consist of; 1) Motor only, 2) Engine only, 3) Series Charge, 4) Parallel
Charge, 5) Motor Assist, 6) Standing Charge and 7) Regenerative Braking. The driver has
some degree of control over the operating mode of the vehicle because the vehicle is �tted
with a manual transmission with 1st gear removed. When the driver selects �rst gear, the
vehicle operates as a series hybrid, while all other gears operate the vehicle as a parallel
hybrid. The EMS strategy then picks the operating mode of the vehicle based on the bat-
tery SoC and the torque requested by the driver. The decisions are made according to the
�owchart shown in Figure 2.7. It can be seen that despite the fairly complex implementa-
tion and the ability to cope with driver selected operating modes, the overall function of
the strategy is to “thermostatically” control the battery SoC while simultaneously meeting
the drivers torque demands.

2.3.1.3 Equivalent Consumption Minimization Strategy (ECMS)

Equivalent Consumption Minimization Strategy (ECMS) involves calculating the equiva-
lent fuel consumption related to the SoC variation of the battery. The instantaneous cost
function is the sum of the actual fuel consumption and of the equivalent fuel consumption
relating to the use of the battery. See Equation 2.3.2, where ṁf (PE(t)) represents the fuel
consumption and ζ(Pb(t)) represents the fuel equivalent of electrical energy. The assump-
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tion behind this method is that the variation in the SoC will be compensated at some point
in the future by a change in the fuel consumption. The electrical energy and fuel energy
are not directly comparable; therefore, the challenge with this method is to calculate the
equivalence between the two as accurately as possible.

Jt = ṁf (PE(t)) + ζ(Pb(t)) (2.3.2)

The advantage of ECMS over other heuristic strategies is that the controller can be
optimised for fuel economy using this cost function whilst still maintaining the battery
SoC. “Rule-based” controllers tend to either control the SoC, but not necessarily run the
fuel cell (or ICE) as e�ciently as possible, or optimise the fuel economy over the short-term,
but may be subject to gradual SoC drift over time depending on the duty cycle. This means
that separate charge or discharge modes are often required in case the battery is under/over-
charged which can lead to long-term e�ciency loss [42]. ECMS, on the other hand, uses
an estimate of the future anticipated cost of using battery SoC in order to optimise the
long-term fuel economy whilst still maintaining a Charge-Sustaining (CS) strategy.

ECMS is a relatively popular technique in the literature due to its relatively simple im-
plementation for real-time control, but also the ability to optimise for a wide range of targets
including emissions [42, 99] and drive-ability [28, 56, 62]. There are also a number of tech-
niques for the calculation of the equivalence factors using theoretical data [42], empirical
data [99], and even online adaptation based on the current driving conditions [100].

Johnson et al. [42] use theoretical derived graphs to map the fuel consumption to battery
SoC change. This is then adjusted using a regulation factor based on engineering judgement
to ensure battery SoC sustenance. This factor is included for a number of reasons. Primarily
it corrects for inaccuracies in the equivalence calculations, but it also helps to constrain the
battery SoC range and long-term target. Finally, it corrects for any additional goals in the
cost function such as emissions regulation that aren’t accounted for in the equivalence
factor.

In order to account for component failure and inaccuracies in the equivalence factor,
Zhang [56] suggests the inclusion of some rule-based strategy and introduces Rule-Based
Equivalent Consumption Minimization Strategy (RECMS). The controller works by using
an ECMS based strategy under normal conditions, when the battery SoC is between 40%
and 70%. If the SoC deviates from this range, the rule-based strategy is used instead. This
strategy is shown to be more fault tolerant than pure ECMS.

The performance of ECMS is highly dependent on the equivalence factors used. Musardo
et al. [100] show that if the equivalence factor is optimised based on the expected duty cycle
of the vehicle, the performance of ECMS is only slightly sub-optimal compared to the DDP
solution. In this case, no SoC regulation factor is required. Unfortunately, this is only possi-
ble if the duty cycle is known in advance, which is not the case for real-world driving. If the
duty cycle varies in any way, the SoC is liable to deviate, leading to worse overall perfor-
mance. Rather than using a regulation factor, Musardo et al. propose Adaptive Equivalent
Consumption Minimization Strategy (A-ECMS), which involves the real-time adjustment of
the equivalence factor parameters, based on recent driving history. This method is shown
to reliably regulate the battery SoC over a wide range of drive-cycles and improve fuel
economy by 20% compared to a baseline “thermostatic” strategy.
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2.3.1.4 Summary

“Rule-based” strategies are fairly simple for the user to understand, and are usually simple
and robust enough to implement on a real-time controller. Even the simplest strategies
exploit many of the advantages of a hybrid electric powertrain and often show signi�cant
fuel economy gains over conventional ICE vehicles of up to 30% [45]. However, further
gains can be achieved using more complex controllers, or by using a di�erent sets of rules
based on the state of the vehicle. The best heuristic strategies use ECMS to optimise the
fuel economy (and other targets) using predictions as to how SoC deviations will a�ect
future fuel consumption. Under ideal conditions, ECMS controllers are able to achieve
near-optimal results [100].

For each of these controllers, the decisions made by the EMS adhere to reasonably theo-
ries, but may neglect some opportunity to further improve their e�ectiveness. Very often it
would be trivial to implement minor changes in order to improve the strategy. For example,
by adding an additional rule to prevent running the fuel cell at low load, or reducing the
battery current when it is hot. However, “rule-based” controllers can quickly get very com-
plicated. As additional rules are added, new parameters are created which must be tuned
for each vehicle and its likely usage pattern.

Heuristic strategies tend to be very dependent on the exact con�guration of the test
and the components used on the vehicle. For example, if the fuel cell has a larger e�cient
operating region or the drive-cycle includes more frequent braking events, the alternative
strategy proposed by Schi�er et al. [29] prioritising regenerative braking e�ciency may
have been more e�cient overall. The design of a rule or state based strategy that is able to
cope with a large number of real-world circumstances, may become quickly become very
complex in order to be sure that the strategy is safe for both the driver and for the com-
ponents [9]. Even for ECMS, the performance of the strategy is highly dependent on the
optimisation of the equivalence factor. This means that a heuristic strategy which works
well for one design may not necessarily translate very well to a di�erent design. In fact,
Bauman and Kazerani [73] used three di�erent strategies for three di�erent vehicle archi-
tectures during their simulated comparisons.

Of the heuristic strategies that have been proposed, A-ECMS seems to be by far the most
e�ective. This is because it overcomes the major downside to many heuristic strategies in
that it adjusts the equivalence factor on board the vehicle based on recent driving history.
However, A-ECMS has only been shown to work at optimising the fuel consumption. It has
been found by Johnson et al. [42] that the equivalence factor can be a�ected by additional
targets such as emissions, and further work could be performed to investigate whether
A-ECMS could account for this disturbance.
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2.3.2 Machine Learning Techniques

Machine learning has a distinct advantage over heuristic controllers in that the control
output can be optimised automatically, which tends to give much better performance with-
out the complexity of a large number of “rules”. Another signi�cant advantage is that the
controller can be re-optimised for di�erent vehicle architectures with minimal e�ort when
compared to heuristic controllers. In the majority of circumstances, machine learning is
performed o�ine and the subsequent result applied to the test vehicle, although some less
computationally expensive algorithms can be performed on board the vehicle for continu-
ous optimisation [68].

Machine learning techniques work by using a model of the vehicle, including all compo-
nents relevant to the EMS. The performance of the vehicle under a wide range of operating
conditions and control actions can then be assessed with regards to the objectives set out
in Section 2.2. These results can then be used to optimise the control actions of the EMS
in order to minimise a cost function. This results in a strategy which tends to give much
better performance than a heuristic controller of similar complexity due to the fact that
the optimisation can take into account the relative performance and interaction of every
component in the powertrain and optimise the system as a whole.

There are various downsides to machine learning techniques, however. Firstly, a model
of the vehicle which is capable of reproducing the vehicles behaviour and the interaction
between various components is required. This must accurately simulate the vehicle over a
wide range of operating conditions, often inclusive of conditions that may be undesirable in
reality, such as at the extremes of battery SoC. This is because the model must appropriately
penalise these conditions. In actuality, this is only a minor downside because these models
are often required for optimisation of heuristic controllers anyway.

More importantly, machine learning algorithms are often very computationally expen-
sive, requiring high performance computer hardware and signi�cant amounts of time to
produce an adequate solution. As a result, the model of the vehicle is often simpli�ed, and
the number of states are minimised in order to run the algorithm e�ciently. This may a�ect
the performance of the strategy when it comes to full-scale testing.

Finally, the optimisation is subject to the “Garbage-in. Garbage-out.” principle, and
therefore not only must the model be accurate, but also the cost function must be su�cient
to assess the vehicles performance. If the vehicle model is inaccurate or the cost function is
not su�cient, often the resultant strategy requires subsequent heuristic modi�cation before
implementation on board a real vehicle. This will often detriment its performance. Exam-
ples include considerations as to the drive-ability of the vehicle [53] and the capabilities
of the real-time hardware [16]. It is important to include as many as these considerations
into the optimisation as possible, however this often competes with the requirement for
computational e�ciency.

Overall, due to their increased performance, and the continual improvements in com-
puter technology, machine learning techniques are becoming more popular in both academia
and industry for optimisation of the EMS on board HEVs. A number of machine learning
techniques and closely related algorithms have been used in the literature, ranging from
arti�cial neural networks [68], to the application of game theory [67], and dynamic pro-
gramming [45, 46, 98].
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2.3.2.1 Neural Networks

Harmon [68] describes the energy management strategy used on board a hybrid electric
UAV using a Cerebellar Model Arithmetic Computer (CMAC) neural network. As a baseline,
Harmon uses a rule-based controller based on the ideal operating line of the ICE. This runs
the ICE up to its most e�cient operating point and uses battery power to supplement this
when required. This is a Charge-Depleting (CD) controller, which may not always be su�-
cient and so an alternative Proportional Integral Di�erential (PID) Charge-Sustaining (CS)
controller based on battery SoC is also used when necessary. When compared to optimal
control and other approaches mentioned in the literature, Harmon states that the CMAC
controller (along with fuzzy logic) tends to be much less computationally complex and
therefore more e�cient when used on board the vehicle. Harmon performs the learning
o�ine, but notes that the algorithm could be implemented on board the vehicle due to its
computational e�ciency.

2.3.2.2 Deterministic Dynamic Programming (DDP)

Although DDP is not technically covered by machine learning, many machine learning
techniques rely on the same principles and so it makes sense to cover DDP as part of
this section. Deterministic Dynamic Programming (DDP) is a method for solving com-
plex problems by breaking them down into smaller sub-problems. By solving the simpler
sub-problems, a combination of the solutions can then be used in order to reach the optimal
overall solution. The advantage of DDP over brute-force methods is that the solutions to
the sub-problems are stored or “memo-ized”; this means that identical sub-problems only
need to be solved once, dramatically reducing computational time when there is a large
degree of overlap. Because DDP examines every possible solution before picking the best
one, it is guaranteed to produce the optimal solution to the problem and is not subject to
the issue of local minima. The downside of DDP is that it requires perfect prior knowledge
of the problem, and that it still has a large computational burden for complex problems
involving many states.

The energy management problem in a hybrid vehicle is highly suitable for the applica-
tion of DDP. This is because it exhibits the properties of “overlapping sub-problems” and
“optimal substructure”. A problem is said to have “overlapping sub-problems” if it can be
broken down into a number of sub-problems for which the solution can be reused mul-
tiple times. That is to say that in an attempt to �nd the optimal solution to the energy
management problem, if the vehicle is at the same point in the drive-cycle, with the same
battery SoC as in a previous attempt, then the previous solution can be reused rather than
attempting to solve the same problem again. This gives DDP its advantage over more naive
techniques that do not reuse previous solutions. A problem is said to have “optimal sub-
structure” if the overall solution can be e�ciently constructed from the optimal solutions to
its sub-problems. This means that if the optimal solution for the entire drive-cycle requires
that the vehicle is at a speci�c battery SoC at a particular time, then the optimal solution to
reach this point combined with the optimal solution to get from this point to the end will
be identical to the solution to the complete drive-cycle.

One of the �rst research papers to apply DDP techniques to EMS strategy is by Brahma
et al. [98]. The authors explain that many rule-based strategies rely on the assumption that
the globally optimal solution results from the instantaneously optimal control decisions
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and that in reality, this is not the case because the control choices at one instant may a�ect
future decisions. This is particularly true for CS techniques where the �nal SoC is desired
to be the same as the initial value. In this case, there may be an advantage in allowing the
battery SoC to �uctuate during the cycle whilst still meeting the �nal constraint. This can
introduce signi�cant complexity for rule-based controllers. Brahma et al. produce a highly
simplistic model of a series hybrid vehicle represented by the Equation 2.3.3 [98].

Pm = Pbηb + PEηE (2.3.3)

Pm represents the motor power, Pb represents the battery power and PE represents the
engine power. The e�ciencies de�ned above, ηb and ηE , represent the full e�ciency of each
branch of the powertrain, not just the e�ciency of the corresponding component. Brahma
et al. set the vehicle’s power demand, Pm, and a battery SoC deviation as constraints. The
objective function to be minimised is the chemical energy consumed over the drive-cycle,
and in addition to this, SoC deviation is also penalised using a weighting factor. The power
split is controlled using the sole unconstrained degree of freedom (given the motor power
constraint) which is the engine power, PE . Although DDP is more computationally e�cient
than brute-force methods, it can still take a signi�cant amount of time to �nd the solution.
In order to minimise the time that their algorithm takes, the simulation is discretized into
one second time-steps and 5kW engine power increments. It is found that the time for the
simulation and the accuracy must be balanced, but increasing the �delity of the simulation
past a certain level does not noticeably improve the results.

Lin et al. [45] present a more complex DDP optimisation of an EMS strategy. In their
work, the vehicle is a parallel hybrid and includes an automated transmission. This means
that the EMS is responsible for controlling the motor power and gear selection in addition
to the engine power. The motor power becomes a dependent variable due to a constraint
that the total power produced by the engine and the motor must meet the demand power;
however, the gear selection adds an additional dimension of complexity to the optimisation.
The optimisation also includes a number of additional constraints in order to improve the
durability of the components and the drive-ability of the vehicle. These are represented
by limits on the engine speed, engine torque, motor torque, battery SoC and transmission
input shaft speeds. These prevent the components from exceeding the manufacturers rec-
ommended limits, but are also included to ensure that the system operates smoothly from
the driver’s perception. Finally, the cost function is mainly based on the fuel consumption,
but is augmented in order to penalise battery SoC deviation, and frequent gear shifts. This
results in the �nal cost function shown in Equation 2.3.4 [45].
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min J = min
{TE,k,shiftk},k=0,1,...K−1

{
K−1∑
k=0

[
mf (k) +WGG(k)

]
+WHHK

}
(2.3.4)

Where mf (k) represents the fuel consumption at each time step, WGG(k) represents
the gear shift penalisation factor (weighted) and WHHK represents the �nal battery SoC
deviation penalisation factor (weighted). Note that in contrast to the work by Brahma et
al. [98], only the �nal battery SoC deviation is penalised, rather than the SoC deviation
at each time step. This is bene�cial because it does not encourage additional cycling of
the battery in order to keep the battery SoC near to the initial value throughout the drive-
cycle. The cost function can be designed to include any number of parameters. In a separate
paper Lin et al. [46] present an alternative cost function that includes the emissions of the
vehicle rather than the number of gearshifts. See Equation 2.3.5 whereWNOx,WPM andWH

represent di�erent weighting parameters for NOx, particulate matter and SoC deviation
respectively.

J =
K−1∑
k=0

[
mf (k) +WNOxNOx(k) +WPMPM(k)

]
+WH(HK −HT )2 (2.3.5)

Lin et al. [46] remark that complex models are of no use for dynamic optimisation due
to their high number of states. This means that they take unnecessarily long to perform the
calculation. Therefore, in order to perform the optimisation, Lin et al. develop a simpli�ed
vehicle model to run at 1Hz. It is decided that the dynamics faster than this can safely
be ignored from an EMS standpoint. This is achieved by the use of quasi-steady state sub-
models which can be quickly simulated. The �nal optimised solution can then be simulated
on a highly detailed model to ensure the results from the simpli�ed model are reliable and
accurate.

Ansarery et al. [40] remark that DDP has a very high computational cost, and that multi-
dimensional problems such as the work by Lin et al. [45, 46] where more than one control
output is optimised, can potentially take a prohibitive amount of time. This is known collo-
quially as the “curse of dimensionality”, because each additional state signi�cantly increases
the amount of time required to run the optimisation. This problem has so far precluded
many DDP strategies from being useful on real-time controllers used on board vehicles;
however, it is still useful for o�ine optimisation of a strategy as long as the number of
states is kept low.

Perhaps a more signi�cant problem with DDP is the requirement to know the drive-
cycle of the vehicle in advance so that the entire trip can be simulated. DDP works by
calculating the optimal control action to perform at each instant in the drive-cycle, and
the solution will be a time dependent set of control actions. This also means that the DDP
solution is only optimal for the exact drive-cycle simulated (and if changes were to occur,
the result would need to be recalculated). Therefore, DDP cannot be used directly on board
a vehicle without an accurate prediction of the future power demands. Dextreit [67] notes
that DDP optimisation techniques are typically used for “1) assessing the best achievable
performance of a given powertrain over a given drive-cycle and 2) calibrating parameters
of a conventional rule-based (RB) control policy to replicate the optimal state and control
trajectories generated by the DDP policy”.
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Lin et al. [45, 46] examine the results of their DDP optimisation in order to produce
a “rule-based” controller that will perform with similar performance on board a vehicle.
By detailed examination of patterns in the DDP solution, a number of “rules” are devised.
In particular, the gear shift logic obtained from the DDP solution was found to have a
dramatic e�ect on the fuel economy when compared to a baseline “rule-based” controller.
It was found through independent dynamometer testing that hybridisation of a delivery
truck using the baseline controller improved the fuel economy by 31%, and the optimised
“rule-based” controller improved the fuel economy by a further 14% [45].

One �nal problem with DDP based algorithms is that they are generally based on the
optimisation over a single drive-cycle, which may or may not be representative of real-
world driving. Because of this, DDP strategies tend to exhibit “cycle-beating” [47] traits.
They usually exhibit features that, to some degree, give very good performance over the
drive-cycle that they have been optimised for, but do not translate well on other drive-
cycles, or for real-world driving. This can lead to inferior performance during real-world
use. Therefore, care must be taken to ensure that more than one drive-cycle solution is
examined and that all drive-cycles used for development are representative of real-world
use.

An alternative use for DDP optimisation is as a reference baseline for di�erent EMS
strategies [28, 53]. It is known that DDP will give the optimal solution, and therefore it
provides a fair baseline for comparison. DDP has been used in this way for a large number
of strategies such as SDP [31,47], ECMS [61], Game Theory (GT) [67], Neural Networks [27]
and MPC [54]. Finally, DDP makes an excellent controller for sizing and parameterisation
studies [53, 74]. DDP gives the best possible solution for any given powertrain design so
results are directly comparable, and will not be a�ected by the “priorities” of a rule-based
controller. Sinoquet et al. [74] present a parametric study focussed on variations in the size
of powertrain components for a hybrid vehicle with respect to fuel consumption. Results
are obtained using a DDP controller and are used to �nd the optimum size of key powertrain
components for a given drive-cycle. The advantage of using DDP is that it �nds the optimal
strategy for any combination of components. This avoids the risk that the control policy
a�ects the results. For example, a “rule-based” control policy that “prioritises” regenerative
braking over e�cient engine operating points may skew the results towards a larger battery
than would be optimal. Sinoquet et al. [74] conclude that these �gures are very sensitive
to inaccuracies in the initialisation variables and parameters used in the cost function and
therefore care must be taken when choosing these values.

In conclusion, DDP is useful technique because it is able to �nd the optimal solution to
a particular problem. However, a high computational burden, the requirement for perfect
prior knowledge of the drive-cycle, and “cycle-beating” traits mean that it is generally not
suitable for direct implementation in real-time controllers. Generally, DDP is most often
used for development of rule-based controllers, which attempt to mimic the behaviour of
the DDP solution in order to provide a very well performing sub-optimal solution. These
controllers, however, can still exhibit “cycle-beating” traits and therefore, care must be
taken during examination of DDP solutions, and preferably, the solution to multiple di�er-
ent drive-cycles should be examined. However, DDP is still an extremely useful technique
for generating a baseline in order to compare alternative strategies, or for comparison be-
tween di�erent system design options. This is because the DDP solution is the optimal
solution to the speci�c problem, of which there is only one.
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2.3.3 Stochastic Dynamic Programming (SDP)
Although DDP produces the optimal solution to a speci�c problem known a priori, there are
a number of limitations when it comes to using it on board a vehicle for real-time control.
In order to overcome these issues, Lin et al. [47] propose the use of Stochastic Dynamic
Programming (SDP). SDP is a similar technique to DDP, but rather than examining a single
drive-cycle in the time domain, SDP works by �nding the optimal solution based on the
state of the vehicle, and the probability of transitioning to another state. Using SDP allows
multiple drive-cycles, or even real-world data, to be examined concurrently by combining
the data using a Markov Chain. SDP produces a causal solution which is entirely time-
invariant and therefore suitable for direct implementation on board a vehicle. It must be
noted, however, that SDP is often even more computationally expensive than DDP, and
for an individual drive-cycle, the solution will almost certainly be less e�ective than the
(optimal) DDP solution.

Lin et al. [47] propose that the driver power demand can be modelled as a �nite sequence
of discrete-time values, see Equation 2.3.6 [47].

Pdem ∈ {P 1
dem, P

2
dem, ..., P

K
dem} (2.3.6)

It is then assumed that the driver power demand in the next time step, P k+1
dem can be

predicted using a two-dimensional Markov Chain depending on both the wheel speed, ωkw,
and the driver power demand, P k

dem, in the current time step. See Equation 2.3.7 [47]. This
allows the driver power demand to be modelled using a number of transitional probabilities.
These are obtained by Lin et al. by analysis of standard drive cycles; however, other authors
such as Moura et al. [64] and Zhang et al. [63] have used real-world logged data such as
that obtained from the National Household Travel Survey [101].

pil,j = P
(
P k+1
dem = P j

dem|P
k
dem = P i

dem, ω
k
w = ωlw

)
i, j = 1, 2, ..., NP , l = 1, 2, ..., Nω

(2.3.7)

This stochastic model of the drive-cycle allows the generation of a state transition ma-
trix, which represents the probability of the vehicle transitioning to each future state based
on its current state. The following states can then be calculated from the probabilities for
that state and so on. The cost of each of these transitions can also be calculated, and dy-
namic programming is then used to �nd the optimal control action to perform in each state
in order to minimise the cost function considering the likelihood of all future vehicle state
transitions and their associated costs. In order to produce a meaningful result, the solution
must converge. This can be achieved by;

1. Discounting each future state in an in�nite horizon problem [30, 31, 47, 51, 96].
2. Considering only a �nite number of states by estimating the typical journey length

[63].
3. Including an absorbing terminal state with no on-going cost accumulation [26, 52,

53, 64]
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2.3.3.1 In�nite Horizon Markov Decision Process (MDP)

The earliest and by far the most common technique [30, 31, 47, 51, 96] to employ SDP is by
de�ning an in�nite horizon problem. The objective is to �nd the optimal control policy,
u = π∗(S), so as to minimise the total expected cost, Jπ(S0), over an in�nite horizon, see
Equation 2.3.8 [47].

Jπ(S0) = lim
K→∞

E

{
K−1∑
k=0

λk−1Γ (Sk, π(Sk))

}
(2.3.8)

In this equation, Γ is the instantaneous cost incurred and λ is a discount factor between
0 and 1 that allows for the in�nite horizon problem to converge as the time step, t, increases.
It can be seen in the equation that the cost, Jπ(S0), and hence the resultant control policy,
π(S0), is purely related to the initial state of the vehicle, S0, and is completely independent
of any other variables including time. This means the solution is causal and time-invariant
and therefore it is trivial to implement the solution on board the vehicle.

Lin et al. [47] test their SDP derived EMS over a number of standard and random drive-
cycles and �nd that this approach o�ers a more robust power management strategy that
outperforms previous work [45, 46] using an optimised rule-based strategy based on the
DDP solution.

This technique is also used by Schell et al. [30] who describe the design of the Daimler-
Chrysler Town and Country “Natrium” FCHEV and the development of its control strategy.
A traditional rule-based strategy using battery SoC management is used as a baseline for
the SDP algorithm. Simulation results show a possible 15km (2-3%) increase in range using
the SDP controller. In 2006, Lin et al. [31] describe the use of their SDP algorithm in order
to optimise the fuel consumption of a FCHEV. Following on from the work in [30, 47], the
SDP algorithm is show to improve the fuel consumption of a medium sized Sport Utility
Vehicle (SUV) on a range of di�erent drive-cycles. This SDP result is also shown to reduce
fuel cell voltage �uctuation which may increase the reliability of the fuel cell stack.

2.3.3.2 Finite Horizon MDP using Commuting Time Estimation

One of the downsides to the in�nite horizon algorithm is choosing an e�ective discount fac-
tor which is representative of real-world driving. A small discount factor tends to optimise
more e�ectively for shorter journeys than for longer ones and will tend to over penalise
SoC deviation mid-cycle if the solution is required to be charge-sustaining [52]. In order
to overcome this issue, Zhang et al. [63] suggest including a “Commuting Time Distribu-
tion” in the calculation. Using historic data concerning the drivers previous total journey
times, the problem can be solved as a �nite horizon MDP, negating the requirement for a
discount factor. Zhang [63] uses simulation to show that this technique is able to produce
an 11.6% improvement in fuel economy over the rule-based controller used on board the
Toyota Prius.

Jπ(S0) = lim
K→kmax

E

{
K−1∑
k=0

Γ (Sk, π(Sk))

}
(2.3.9)
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This technique e�ectively sets the drive-cycle length to optimise over, but the solution
can be subject to a similar downfall to an in�nite horizon solution with too small a discount
factor. This is because it may not consider what would be the optimal solution if the drive-
cycle were to carry for longer than expected. Using a �nite horizon solver may also tend
to promote Charge-Depleting (CD) behaviour if the horizon is not long enough, which is
undesirable if a Charge-Sustaining (CS) strategy is required.

2.3.3.3 Terminal State MDP

A more advanced method to eliminate the discount factor is to include an absorbing “ter-
minal state” with no on-going cost. Given an in�nite horizon, the probability of being
“absorbed” at some point by the terminal state becomes 1. Because the terminal state has
no on-going cost, the solution will converge as this happens. This technique has been used
by a number of authors, such as Tate et al. [52], Opila et al. [26, 53] and Moura et al. [64].
Moura et al. mention that this terminal state allows for more accurate representation of
drive-cycle length, when compared to an in�nite horizon, which is critically important for
plug-in HEVs with a CD strategy.

The de�nition of the Markov chain is slightly complicated by the addition of the termi-
nal state, Se, see Equations 2.3.10 to 2.3.13 [64].

pil,j =P
(
P k+1
dem = P j

dem|P
k
dem = P i

dem, ωw = ωlw
)

(2.3.10)
pil,e =P

(
P k+1
dem = P e

dem|P k
dem = P i

dem, ωw = 0
)

(2.3.11)
1 =P

(
P k+1
dem = P e

dem|P k
dem = P e

dem, ωw = 0
)

(2.3.12)
i, j =1, 2, ..., NP , l = 1, 2, ..., Nω (2.3.13)

It can be seen that simultaneous with the probabilities of transitions between states
(Equation 2.3.10), there is also the chance of transitioning to a terminal state when the
vehicle’s speed is 0 (Equation 2.3.11). The vehicle will then remain in this state inde�nitely
(Equation 2.3.12). The probability of a transition to the terminal state allows for the cost
function to converge as K goes to in�nity. This means that a discount factor is no longer
required when calculating the in�nite horizon cost, Jπ(S0), see Equation 2.3.14.

Jπ(S0) = lim
K→∞

E

{
K−1∑
k=0

Γ (Sk, π(Sk))

}
(2.3.14)

As well as more accurately representing drive-cycle length, the terminal state SDP tech-
nique allows for costs based on the �nal state of the vehicle. For example, the cost function
could be designed to be CS by allow penalising a di�erence between the initial and �nal
states only. This means that the SoC may be allowed to �uctuate throughout the cycle in a
comparable manner to an energy balance “rule-based” controller (see Equation 2.3.1).
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2.3.3.4 SDP Summary

In conclusion, SDP overcomes the main disadvantages of DDP and produces a solution
which can be directly used on board the vehicle. This is because the solution to the SDP
problem is entirely causal, and time-invariant. It is also guaranteed to be the optimal so-
lution to the given problem and can account for a large quantity of training data without
much increase in computational e�ort. However, SDP is very dependent of the quality of
the training data and its accuracy with regard to the future use of the vehicle. It is highly
computationally intensive and therefore optimisation is required to be performed o�ine,
with only the solution, π∗(S0), stored in the real-time controller. This means that it won’t
take into account changes in the duty cycle of the vehicle. There is also limited research
available as to the real-world implementation and e�ectiveness of SDP controllers outside
of simulation. This is of concern because often the simulation models of SDP based solu-
tions are often heavily simpli�ed in order to reduce the computational burden.

2.3.4 Game Theory (GT)

Dextreit [67] presents the experimental implementation of a Game Theory (GT) controller
on board the Freelander2 HEV at Jaguar Land-Rover. The controller penalises the fuel con-
sumption, NOx emissions, vehicle operating condition deviation and battery SoC devia-
tion in a non-cooperative game between the driver and the powertrain. The controller
is drive-cycle and time independent and is shown to outperform the baseline controller
over real-world driving cycles. The baseline controller is a rule-based controller based on
the DDP solution optimised on the NEDC. Dextreit [67] states that HEV controller opti-
misation techniques in the literature typically penalise fuel consumption and battery SoC
deviation only. In the game theory solution, the driver is the �rst “player” who selects
the drive-train operating conditions, wheel speed and torque request. In response to this,
the powertrain controller is the second “player” who then selects the powertrain control
variables. This represents a non-cooperative game based on the assumption that the driver
does not think about or try to optimise the fuel economy or emissions whilst driving. Using
simulation, the GT controller is shown to outperform a SDP controller despite providing an
optimised solution almost 200 times faster. The GT controller also outperforms the baseline
controller signi�cantly on the NEDC in simulation, and in multiple drive-cycles on chassis
dynamometer testing.

2.3.5 Model Predictive Control (MPC)

Johannesson [51] compares the potential improvement in fuel economy depending on the
amount of prior information that the controller has available. A baseline controller assumes
perfect access to the complete future power demand and therefore DDP is used to calculate
the optimal control. Three strategies are developed and tested for fuel e�ciency over the
same route. The �rst strategy is a SDP solution based on city driving usage patterns. Jo-
hannesson also develops a single step MPC controller capable of using location and tra�c
data obtained from the Global Positioning System (GPS) on-board and in real-time. These
controllers are compared to the DDP optimal solution. It is shown that the controller with
the lowest amount of information can achieve a fuel economy 1-3% from the optimum, and
the controller with tra�c information can achieve within 0.3% of the optimal control strat-
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egy. Johannesson concludes that the performance of the position dependent and optimal
controllers is almost identical. The position independent controller is capable of very good
performance as long it is well tuned to the drive cycles it is tested on. As the simulation is
limited to repetitions of the same route, Johannesson suggests further work could be done
to test the robustness of the algorithms on di�erent routes and varying types of driving.
Johannesson also mentions that relying on previously measured data is often impracticable
and investigation into a controller that uses information stored in a digital map would be
worthwhile.

2.3.6 Summary

Machine learning techniques o�er a signi�cant bene�t over heuristic controllers in that
they are able to optimise the strategy in a holistic sense much more easily. The performance
of heuristic controllers is generally very dependent on the speci�c vehicle con�guration
and usage pattern and as a result a strategy that performs well in one instance may be
inadequate in another. There is a great variety of examples of many di�erent machine
learning techniques in the literature, although by far dynamic programming and SDP are
the most common. DDP can provide the optimal solution to a speci�c duty cycle and is
therefore very useful as a baseline for comparison or for tuning “rule-based” strategies for
real-time implementation. Unfortunately, the solution provided by DDP is time dependent
and requires perfect knowledge of the exact duty cycle a priori.

In order to overcome this issue, SDP instead �nds the optimal solution to a statistical
model of typical usage patterns. This produces a time-invariant policy which is based on
the state of the vehicle. As a result, it can be directly implemented on board the vehicle.
There are a number of variants in the application of SDP to the EMS problem. Firstly, the
inclusion of additional inputs to de�ne the vehicle state allows the transitional probabili-
ties to be more accurate and the cost function to be made more complex, however this can
signi�cantly increase the computational time required to solve the optimisation. Another
area of re�nement is the exact method used. Finite horizon solvers assume a �xed number
of steps which can be chosen based on historical data [63]. In�nite horizon solvers, how-
ever, continue to re�ne the strategy until it converges. In order to do this, they require a
discount factor which exponentially reduces the weight on future steps. Finally, Shortest
Path Stochastic Dynamic Programming (SP-SDP) solutions include an absorbing terminal
state which does not accumulate cost. As a result, they are able to converge without the
use of a discount factor. The choice of method is largely determined by the type of strategy
required, with in�nite horizon solutions tending to produce the most e�ective controllers
for CS strategies and terminal state solutions proving most e�ective for CD strategies.

Alongside SDP, there are a number of other techniques which have been experimented
with in the literature. Harmon [68] used a neural network to generate the EMS for an UAV,
showing improvement when compared to “rule-based” algorithms, although no quanti�able
comparison to SDP is given. Harmon did remark however, that the technique is much
more computational e�cient and as a result could be performed in real-time on board the
vehicle. Dextreit [67] used GT in order to develop an EMS based on a non-cooperative game
between the driver and the powertrain. It is noted that the EMS based on GT outperformed
the SDP solution despite being much more computationally e�cient, however the exact
implementation of neither controller is given, which may have some bearing on the results.
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Finally, Johannesson [51] investigated the potential bene�t of providing real-time in-
formation of the vehicles location to the EMS. MPC was used to provide an estimation of a
single step using location data obtained using GPS. The results showed that performance
within 0.3% of the optimal solution was achievable; however, this was only marginally bet-
ter than the solution provided by SDP based on o�ine learning. As a result, the additional
complexity of the technique may not be justi�ed purely on a raw performance basis. One
potential advantage of this technique however, is that it may be more robust than the SDP
for real-world scenarios where the vehicles usage patterns may not be accurately repre-
sented by the o�ine learning, or may change over time.
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2.4 Conclusions

Due to the relatively immaturity of hybrid vehicles, there is a large variety of di�erent ap-
proaches to the problem of energy management and the optimisation of the powertrain.
At one end of the scale there are a number of papers describing heuristic controllers which
have been developed and implemented on board test vehicles. These range in complex-
ity from simple “thermostatic” battery SoC management, to complex state machines which
vary their behaviour depending on the operating conditions of the vehicle and the actions
of the driver. At the other end of the scale, there are theoretical results for advanced opti-
misation techniques such as dynamic programming and even predictive control based on
real-time location data.

In consideration of the techniques presented in the literature there are a number of
areas with scope for further research. Firstly, limited work has been found to apply GT,
although Dextreit [67] suggests that it can outperform SDP, which is by far the most popu-
lar technique in recent years. Because SDP calculates the statistically optimal solution, this
is a surprising result, and warrants further investigation. One plausible reason for this is
that SDP requires discretization of the vehicles state space. Due to the computational bur-
den of the optimisation process, and despite modern processing speeds, this discretization
is usually quite coarse in order to produce results in a reasonable amount of time. Dex-
treit mentions that the GT controller is optimised approximately 200 times quicker than
the SDP strategy and therefore it is possible that �ner control is achievable using GT. Con-
versely, other authors have mentioned that diminishing returns are seen when increasing
the �delity of the SDP optimisation and therefore it is equally possible that given a �ner
discretization, the SDP may still be more e�ective.

Another possible area with scope for further research is MPC, and the potential for
improving the performance of the EMS using real-time information about location, route
and road conditions. Many modern vehicles are factory �tted with GPS navigation and
internet connectivity. As a result, the assumption that the duty cycle of the vehicle cannot
be known in advance is no longer necessarily valid. It may soon be possible to implement
DDP on board the vehicle, calculating the optimal EMS for any journey. There are two
major challenges with this however. Even with advanced technology, such as real-time road
condition information provided for by systems such as Intelligent Transport Systems (ITSs),
it is impossible to have perfect knowledge of the future loading conditions on the EMS.
Therefore, it would be interesting to investigate the robustness of such controllers given
imperfect information. Secondly, DDP is computationally expensive and it may be di�cult
to perform the optimisation in real-time. However, one way to get around this problem
would be to perform the optimisation o�-board and transmit the solution to the vehicle
using wireless networking.

In addition to the method used for the optimisation, the variables to be optimised must
also be taken into consideration. A signi�cant proportion of the work in the literature
focuses solely on the optimisation of the fuel consumption. Although this makes a good
baseline for the comparison of di�erent techniques, it has been found when performing
vehicle testing that other concerns such as component reliability and the driver’s percep-
tion are equally important. Strategies optimised purely on the fuel consumption tend to
require subsequent modi�cation to ensure that they are suitable for real-world use, which
inevitably results in a loss of performance. Optimisation of a cost function which takes
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into account these additional considerations often results in a strategy which is suitable for
real-world testing with only a minor increase in fuel consumption.

A relatively broad literature review has been undertaken which has considered not only
FCHEVs, but also other types of hybrid vehicle including gasoline hybrid passenger vehi-
cles, commercial vehicles and even UAVs. At this point, it is therefore important to bring the
focus back to FCHEVs in particular and how these innovations identi�ed from surrounding
research areas can be applied in the context of this project.

In contrast to their ICE hybrid counterparts, the vast majority of research into the design
of the EMS speci�cally for FCHEVs is relatively sparse. There are a number of papers in
which the ICE emissions are optimised alongside the fuel consumption, or the number
of gear shifts is minimised to improve the drive-ability of a parallel hybrid �tted with an
automatic gearbox. The main area of focus speci�c to fuel cells is generally focussed on
the reduction of transient loading using heuristic techniques, however, and very little work
has been found to minimise this using computational optimisation techniques. No work has
been found that is intended to speci�cally reduce the e�ect of other degradation methods
such as those caused by open-circuit conditions or excessive temperature.

As was mentioned in Chapter 1, the reliability of the fuel cell stack is one of the prin-
cipal areas which requires further development for transport applications. The EMS can
have a signi�cant e�ect on the degradation due to the fact that it is directly responsible
for controlling the operating point of the fuel cell at any time. Therefore, the management
of fuel cell lifetime using the EMS will form the main focus of this work. This will di�er
from previous work in the literature in that a quantitative model of the fuel cell degrada-
tion suitable for SDP optimisation will be developed. This model will include a number
of degradation causes, not just transient loading, and will allow estimation of the fuel cell
lifetime to be predicted. The resulting controller can be compared to other controllers in
the literature in order to assess its bene�t and also be used for component sizing exercises
for investigation and optimisation of the hybrid powertrain design.
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2.4.1 Research Questions
The following speci�c research questions have been identi�ed from the literature, with the
questions that will be tackled in this thesis highlighted in bold;

1. Many of the real-time EMS techniques use stochastic methods for predicting the
future demand on the powertrain either inherently, such as SDP or through online
“learning” algorithms, such as A-ECMS and GT. Modern vehicles are often equipped
with a range of information technology such as GPS and wireless networking capa-
ble of providing more accurate predictions of future demand. What impact would
this additional information have on the operating e�ciency of the vehicle compared
to current methods?

2. There is relatively little research into techniques such as GT, Neural Networks (NNs)
and MPC, but what research there is shows promising results. Further research
could be done using these techniques, especially in comparison to popular tech-
niques such as ECMS and SDP.

3. The major causes of fuel cell degradation are relatively well understood under con-
trolled conditions, however there is room for improving the estimation of the rel-
ative contributions of each cause under automotive applications. Under real-life
driving scenarios, which degradation methods are the most signi�cant?

4. The EMS may have a signi�cant e�ect on fuel cell ageing by avoiding situations
known to cause excessive degradation of the fuel cell. To what extent can the
fuel cell ageing be reduced by optimising the EMS with regard to known
fuel cell degradation causes?

5. Popular techniques for optimisation of the EMS such as ECMS and SDP involve the
use of a cost function. A number of fuel cell degradation methods have also been
identi�ed. How can these degradationmethods be quanti�ed so as to be used
in a degradation inclusive cost function?

6. The weighting parameters used in multi-objective optimisation can have signi�cant
e�ect on the results. How should the degradation of the fuel cell be weighted
fairly against more traditional optimisation metrics such as the fuel con-
sumption?

7. Popular heuristic methods for choosing a fuel cell size are to either; a) Choose a
fuel cell with a maximum power equivalent to an ICE. b) Choose a fuel cell with
a maximum power slightly higher than the power required to cruise at maximum
cruising speed. or c) Choose a fuel cell with peak e�ciency at the average power
demand. What e�ect does each of these choices have on the performance
and reliability of the vehicle as a whole?

8. The interactivity between system design and EMS is often mentioned, however there
are only a handful of papers which use optimal control methods for system design
exercises, thereby maximising the bene�ts of each individual design option. What
e�ect would di�erent system designs have on the control decisionsmade by
an EMS designed using optimal control?
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Chapter 3

Vehicle Model

This chapter describes the design of the vehicle model environment used for the con-
trol development and validation testing. Two bespoke models have been created in the
MATLAB®/Simulink®environment in order to characterise the test vehicle. The �rst is a
detailed forward-facing model which accurately represents the test vehicle in as much de-
tail as possible. The second model is a backward-facing model which has been reduced in
order to perform optimisation techniques much more quickly. The results of the reduced
model are shown to accurately reproduce the detailed model under normal conditions.

A modular approach has been taken with focus on keeping the vehicle model as high
a level as possible. The optimisation of the Energy Management Strategy (EMS) using
Stochastic Dynamic Programming (SDP) requires the model to be simulated for every possi-
ble action from every possible initial state. This requires a huge number of simulations, and
therefore it is imperative that the model is kept as simple as possible in order to minimise
the computational e�ort. This has been achieved by using steady state and quasi-steady
state models where possible, and the use of empirical data to describe multiple components
in order to maximise model reduction.

This chapter begins with a description of the overall modelling philosophy taken for
this project. The overall outline of each of the two models is described, and the steps taken
to reduce the detailed model are given. Following this, each of the component models are
described in turn, accompanied by the parameters used for the Microcab H4, and validation
at the component scale. At the end of the chapter, the control models are described, ready
for optimisation using SDP.
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3.1 Model Based Design (MBD)
Simulation forms a signi�cant part of the design process in the development of any modern
control algorithm. This is due to the fact that simulation o�ers a number of advantages
when compared to full-scale testing;

Safety - Most importantly, testing the controller in a fully simulated environment
on a desktop computer involves no risk of damaging the equipment and no risk
of harming personnel. Not only does this allow the safety of the algorithms to be
checked before any equipment or personnel are put at risk, but it also allows exam-
ination of situations that may be too dangerous or expensive to test in full scale.
Speed - It possible to get immediate feedback on any design changes with minimal
organisational overhead. This allows testing to be performed much more frequently,
with the added bene�t of signi�cantly reducing the debugging time of the controller
code. This also allows parameter sweeps to be undertaken in a very short time
compared to full-scale testing and with excellent repeatability.
Detail - Simulation models usually include variables which would be di�cult or
impossible to measure on a vehicle. This allows the e�ect of the controller to be
examined in more detail than would be possible during full-scale testing (assuming
the model is accurate).
Repeatability - Finally, simulation does not require the use of experimental hard-
ware which may be prone to malfunction or poor calibration. This also means that
the results are extremely repeatable.

Simulation models can be used for a number of reasons and their design often depends
on the level of detail required from the results. Firstly, simple models are useful for early
design when details of the system have not been set. Simple models are quick to produce and
run very quickly. This makes them especially useful for parameter sweeps and component
sizing because many potential con�gurations can be tested in a relatively short amount
of time. Complex optimisation algorithms also require the model to be relatively simple
due to the large number of simulation runs. If the model is too complex, the optimisation
can take a prohibitive amount of time to be feasible. However, adding additional detail to
the simulation model allows more representative results to be obtained. For the Microcab
H4, the design has been �nalised and therefore it is possible to generate detailed models
of the vehicles, using experimental data in order to validate the model. The higher level of
accuracy to the actual system means that these models represent the vehicles more closely
and therefore there are likely to be fewer di�erences between the simulation result and
experimental testing. In much of the literature, optimisation of the EMS is performed using
a reduced model and the solutions are subsequently tested using a more detailed model to
ensure the validity of the results.

For this project, a simple model of the vehicle must be constructed that is capable of
being used for EMS strategy optimisation and a more detailed model that can be used for
validity testing of the solution. For the best results, both models should be able to reproduce
experimental results to a relatively high degree of accuracy. Although simple models are
generally quick to implement, it is often unknown what assumptions can be safely made
about the vehicle in advance. Therefore, common practice is to produce a relatively detailed
model that represents the vehicle as accurately as possible. The results of this model can be
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directly compared to experimental data to ensure that the system is well understood, and
the important characteristics are accurately represented. This detailed model can then be
successively simpli�ed while comparing the results in order to produce the reduced model
that still represents the important characteristics of the system.

3.2 Test Vehicles

3.2.1 Microcab H4
Loughborough University currently has access to two hydrogen fuel cell vehicles previously
used on the University of Birmingham’s campus as �eet vehicles. These were designed in
Coventry by Microcab and are each �tted with a 1.2kW fuel cell operating at a nominal
voltage of 24V. These are connected to a 2.1kWh lead acid battery pack operating at 48V
through a DC/DC converter. A 0.6kg hydrogen tank allows a range of up to 80km [4]. Peak
acceleration is approximately 3ms−2 and the top speed is approximately 30mph [4]. These
vehicles are very low power, but are highly suited to the campus drive-cycle they were
designed for. A schematic of the electrical powertrain is shown in Figure 3.1.

DC/DC
“Buck”

24V→ 12V

Auxiliary
Battery

12V

DC/DC
“Boost”

12V→ 24V

Fuel Cell
24V

DC/DC
“Boost”

24V→ 48V

Traction
Battery

48V

Brushed DC
Motor
48V

24V (nominal)

12V (nominal) 24V (nom)

48V (nominal)

0V (Ground)

Figure 3.1: Microcab Electrical Powertrain Schematic

The Microcab H4 has four separate power supply voltages. The �rst of these is the nom-
inal 12V system for running auxiliary components such as the lights, heaters and dashboard
electrics. This has been chosen to allow the use of standard automotive parts in order to
minimise the cost of the vehicle. The 12V system uses a 16Ah lead acid battery. The 12V
system is also stepped up to a nominal 24V using a “boost” type DC/DC converter to sup-
ply power to the fuel cell accessories. This allows the fuel cell to be started and run using
the 12V system. Once the fuel cell is running, it outputs power to a second 24V nominal
system, which in turn is dropped back down to a nominal 12V using a “buck” type DC/DC
converter in order to charge the auxiliary battery. This 24V (nominal) system will vary
much more than the �rst depending on the total output power of the fuel cell and in reality,
can range between approximately 27V at full load and 42V at idle. Tractive electrical power
to the motors is primarily supplied by the traction batteries which run in parallel with a
third DC/DC converter on a nominal 48V system. This “boost” converter is also supplied
by the fuel cell.
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The mechanical design of the powertrain is comparatively simple. The motor controller
draws electrical power from the 48V system as required and supplies it to the DC brushed
motor. The motor controller controls the separately excited DC motor by varying the volt-
age to the motor armature whilst maintaining a �xed �eld. For negative torque, or to drive
the vehicle backwards, a negative armature voltage is supplied. The brushed DC motor
drives the rear wheels of the vehicle through a �xed gear ratio di�erential mounted to the
rear axle. A schematic of the mechanical powertrain layout is shown in Figure 3.2.

Wheel Wheel

Brushed DC
Motor

Di�erential

Motor
Controller

+-

Battery +ve

Battery -ve

Pedal

Figure 3.2: Microcab Mechanical Powertrain Schematic

During operation over a small area, such as a university campus, �eet vehicles such
as small diesel vans obtain a very poor fuel economy and contribute signi�cantly to the
university’s emissions, emitting 400 tons of carbon dioxide into the atmosphere [4]. This
has led the University of Birmingham to trial a number of Battery Electric Vehicles (BEVs)
on campus, but these have a poor range and the batteries su�er from a short lifetime due
to deep discharging. Kendall et al. [4] suggest that the use of Fuel Cell Hybrid Electric
Vehicles (FCHEVs) will avoid these problems allowing faster refuelling and increasing the
lifetime of the batteries. Kendall et al. [4] present the design of these vehicles and the initial
results of approximately 2000km of usage at the University of Birmingham. The vehicles
were shown to operate successfully with a number of advantages over BEVs such as the
refuelling time and battery life improvement. The vehicles had acceptable performance
for the campus drive-cycles that they were subjected to, but upgrading of the fuel cell,
battery and motor would be required to meet the ECE15 urban drive-cycle. Kendall et al. [4]
also mention that the introduction of regenerative braking and increased complexity of the
control systems on board in order to optimise the e�ciency of the system is also required.

Five prototype Microcab H4 FCHEVs were used on the University of Birmingham cam-
pus for 21 months as urban taxis and light goods transport accumulating over 4000km
utilising approximately 68kg of hydrogen. Sta�ell [6] presents the results of this mileage
accumulation study and discusses potential areas of improvement that will have the great-
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est e�ect on the performance of the vehicle. The Microcab H4 was designed in order to
produce a cost e�ective sustainable transport solution. Each of the vehicles cost approxi-
mately £50,000 to manufacture including the cost of the master mould for the Glass-Fibre
Reinforced Plastic (GFRP) body panels. The vehicle was designed from scratch in order
to minimise vehicle weight and hence the requirements for the fuel cell, battery and mo-
tor. The target weight of 500kg was not achieved, however, which Sta�ell [6] cites as the
result of using production parts from existing vehicles for items such as the windscreen
and seats, as well as a switch from aluminium to steel for the chassis. Both of these choices
were made to minimise the cost of design. The inclusion of the battery pack allowed the fuel
cell to be downsized, and it was normally operated at full power until the battery State of
Charge (SoC) reached 100%. The results of the study showed that the vehicles averaged 18%
tank-to-wheel e�ciency, with a peak e�ciency of approximately 27%. Sta�ell [6] concludes
that the e�ciency could be improved by examining the vehicle from a systems level and
matching the e�cient operating points of the various components more e�ectively. This
would also require a more advanced control algorithm to maintain the vehicles powertrain
state in this e�cient region.

The current control strategy for managing the battery SoC is to simply run the fuel
cell at maximum power until the battery reaches 100% state of charge [4]. This is achieved
by the DC/DC converter which is programmed to output its maximum voltage of 57.8V
unless limited by the maximum input current of 50A. The DC brushed motor on board the
Microcab H4 is capable of drawing up to 15kW of power from the battery, but the maximum
power from the fuel cell through the DC/DC converter is only approximately 1.3kW. This
means that even over a low speed drive-cycle, such as the campus drive-cycle used by the
University of Birmingham or the New European Driving Cycle (NEDC) urban drive-cycle,
the batteries will tend to be discharged. The fuel cell is programmed to stay on after key-o�
in order to recharge the batteries. During a typical journey on the University of Birmingham
campus, Kendall et al. [4] reports that the batteries were depleted by approximately 25% and
required on average 7 minutes of additional charging time to recover.

Even a highly optimised EMS may not have signi�cant e�ect on the performance of
the Microcab H4 due to the size of the fuel cell. The fuel cell is not capable of meeting
the average power demands over even a low speed drive-cycle. This would mean that the
present EMS strategy of running the fuel cell at maximum power as much as possible may
be the only realistic option. In terms of fuel cell degradation, the fuel cell is run at constant
power so does not su�er from transient loading, but it is generally run above its optimal
operating point. Drive-ability of the vehicle is generally quite good because the fuel cell
is running in parallel with the batteries, but as the battery pack is discharged, the throttle
pedal response of the vehicle deteriorates. Again, without upgrading the fuel cell, there is
little that can be done about this.

It must also be noted that the battery pack in the Microcab has no cell balancing mecha-
nism and over a number of cycles, signi�cant voltage di�erence between individual 12V bat-
teries has been noted. This means that some batteries are being signi�cantly overcharged
by the fuel cell, whereas others are being undercharged and hence more deeply discharged
when the vehicle is used. This has lead to the battery pack being replaced twice since the
vehicles have been at Loughborough University.
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3.2.2 Microcab H2EV
Another vehicle available to the project is the Microcab H2EV. This vehicle is the latest
iteration of the Microcab and features a 5kW fuel cell, 4.3kWh lithium-ion battery pack,
and two 20kW peak power DC motors. The hydrogen tank has been upgraded to 1.8kg to
achieve an estimated range of 180 miles. The maximum speed of the vehicle has also been
improved to 55mph. The Microcab H2EV is available to the project through MIRA Ltd., an
industrial sponsor to this project. Unlike the H4, the H2EV is still in active use, however,
so the potential for modi�cation is much lower. A report by Fisher et al. [39] discusses the
changes made to the Microcab for the CABLED project in 2011 & 2012.

The Microcab H2EV was used in the CABLED project which involved the H2EV, along
with a number of electric vehicles, being made available to a number of people from diverse
backgrounds. Data were collected concerning the range, performance, driver behaviour and
battery charging infrastructure. Fisher et al. [39] state that the H2EV was the only vehicle
in the project to have a hydrogen fuel cell. This meant that the recharging time involved
re�lling the 1.8kg hydrogen tank which took only 5 minutes compared to a 6-8 hour [39]
charging time for the other electric vehicles. Fisher et al. [39] also mention a number of
problems that have been noted in previous works involving an earlier version of the vehicle
which included the size of the fuel cell, and purity requirements of the fuel. In order to
meet the requirements of the ECE15 drive-cycle, the fuel cell has been upgraded to a 3.2kW
high temperature Proton Exchange Membrane (PEM) fuel cell. Fisher et al. [39] state that
commercial o�-the-shelf Solid Oxide Fuel Cells (SOFCs) were not considered due to long
start-up times. The battery pack has also been upgraded from approximately 1.9kWh lead
acid pack to a 4.8kWh lithium-ion pack with a higher cyclic e�ciency ( 74% to 83%). In
order to meet performance objectives, the previous 2.25kWe separately excited DC motor
has been replaced with two 12.56kWe permanent magnet AC motors, one driving each front
wheel. According to Fisher et al. [39], the fuel cell is now able to keep up with average urban
usage and the battery pack is sized to allow su�cient time for the fuel cell to warm up or
drive for approximately 15 miles without hydrogen. A number of issues were encountered
during the integration of the new components and a lot of work was performed to ensure
the safety of the vehicle under a range of failure modes. This means that the development
of the energy management system is limited and there is further work possible in this area.

The Microcab H2EV is currently in constant development and since the CABLED project
the high temperature 3.2kW PEM fuel cell has been replaced by a 5kW Horizon fuel cell. The
H2EV is road legal, and the new components mean that it is able to cope with a number of
low speed drive-cycles. Unfortunately, because it is still in active development by Microcab,
this project will have limited access to it for testing purposes.
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3.3 Model Architecture
A simulation environment has been created for this project using MATLAB®/Simulink®.
The main plant model is a forward-facing simulation model controlled using a Proportional
Integral (PI) “driver” to control the vehicle speed, see Figure 3.3. The model can be split into
two main components; the controller and the plant model. The plant model (red) can be
broken down into the vehicle, motor/driveline, DC/DC converter, traction battery and fuel
cell sub-models. The controller (blue) can be split into two main components; the “driver”
which controls the speed of the vehicle and the EMS which is responsible for controlling
the output power of the fuel cell.

Reference Speed “Driver” Motor/Driveline

Battery

DC/DC Converter EMS

Fuel Cell

Vehicle

vdem εv Tdem

Fwv

v

−

VbatIm

IDC,outVbat

VFCIFC

H

PFC

Pdem

v, v̇

Figure 3.3: Detailed Model Outline

The plant model follows the vehicle’s powertrain architecture using a modular ap-
proach. The fuel cell is connected to the battery pack using a DC/DC converter. The battery
pack is connected directly to the motor and the motor power is dependent on the driver’s
demand. Each of these components is connected using the voltage and current signals in
a feedback loop. The motor is controlled by the “driver” PI controller which is based on
the di�erence between the drive-cycle demand speed and the speed of the vehicle as cal-
culated by the vehicle model. The EMS controls the DC/DC converter output power based
on the speed and acceleration of the vehicle, the current battery SoC and the current fuel
cell demanded power.

The forward-facing approach accurately represents the chain of causality observed in
the real world. The “driver” will attempt to follow the demanded speed reference, based on
the response of the vehicle. In contrast, in a backward-facing model, the speed of the vehicle
is assumed to perfectly follow the reference signal. For this reason, forward-facing models
are generally considered to be the more thorough approach, more accurately representing
the likely behaviour of the vehicle in all conditions. The inclusion of comprehensive “driver”
models may also allow study into the interaction between the driver and the vehicle in terms
of drive-ability.
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A more signi�cant advantage of a forward-facing model, especially in regard to the Mi-
crocab, is that the behaviour of the vehicle is more accurately represented outside of its
normal performance limits. If the vehicle is unable to achieve a speed or acceleration rep-
resented in the drive-cycle, the vehicle will accelerate at its maximum rate. In comparison,
a backward-facing model may attempt to simulate speeds or accelerations that the vehicle
is physical incapable of achieving. In this case, the model may fail, or produce erroneous
results. As the Microcab is relatively low powered and operates close to its performance
limits, a forward-facing approach has been chosen for the validation model.

3.3.1 Reduced Model
For optimisation using SDP, it is imperative that the model is as simple as possible due to
the large number of iterations required (10,000+). As a result, a reduced model has been
created which dramatically reduces the computational e�ort required for the optimisation
process. The overall architecture is very similar to the detailed model and the reduced
model reuses a number of sub-models created for the detailed model, however two major
changes have been made to improve the speed of the calculations, see Figure 3.4. Firstly,
the reduced model is backward-facing in order to remove the feedback loop associated with
the “driver” controller. Secondly, the reduced model is based on the �ow of power between
components rather than the coupling of a �ow and an e�ort (e.g., voltage and current,
speed and force etc.). This eliminates a number of algebraic loops within the sub-models,
dramatically improving the computational e�ciency.

Drive Cycle Vehicle

Motor/Driveline

Battery

DC/DC Converter EMS

Fuel Cell

v

Pm,mech

Pm,elec

PDC,out

PDC,in

H

PFC

Pdem

v, v̇

Figure 3.4: Reduced Model Outline

Although the forward-facing model gives a more accurate representation of the vehi-
cle outside of its performance limits, this is not necessarily required for SDP optimisation.
The optimisation process uses logged data for reference and as a result does not contain de-
mands that exceed the performance limits of the vehicle. In addition to this, the logged data
represents the actual speed of the vehicle inclusive of any interaction between the driver
and the road conditions. In this case, a backward-facing approach is more appropriate, as
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long as the assumption that the reference data does not exceed the performance limitations
of the vehicle holds valid. Therefore, the use of a backward-facing model should not a�ect
the accuracy of the results in any way.

Feedback loops can considerably increase the time required for the simulation to com-
plete. This is because these loops are iteratively solved at each time step until the result
converges within a set tolerance. The variable step solver may need to reduce the time step
in order to achieve this, which leads to an even higher number of calculations and hence
a slower simulation. By basing the model on the power �ow between electrical compo-
nents, rather than the voltage and current, these feedback loops are eliminated, resulting
in a much more e�cient model. The removal of these loops may a�ect the results due to
the assumption that the performance of the electrical components are una�ected by their
supply voltage. Although it is expected that this e�ect will be small, the detailed model can
be used for validation of the optimised controller.
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3.4 Simulation Plant Model

3.4.1 Vehicle Model
The forward-facing vehicle model calculates the speed of the vehicle based on the tractive
e�ort and the drag forces on the vehicle, see Figure 3.5.

Fw Vehicle Interial Model

Drag Forces

v

Fd

−

Figure 3.5: Forward Facing Vehicle Model

To calculate the drag forces, the vehicle model uses the standard straight-line perfor-
mance equation, where the total force due to drag, Fd, is made of components from the
rolling resistance FR, the aerodynamic drag FA, the incline of the road, FI , and the braking
force FB , see Equation 3.4.1.

Fd = FA + FR + FI + FB

=
1

2
ρCdAfv

2 +mg(Ad +Bdv) +mg sin(β) + Tb/rr
(3.4.1)

The acceleration of the vehicle is then calculated based on the di�erence between the
tractive e�ort supplied by the motor, Fw, and the drag force, divided by the e�ective mass
of the vehicle, me, (inclusive of rotational inertia of the driveline). The vehicle speed, v, is
the integral of the acceleration (Equations 3.4.2 & 3.4.3).

v̇ =
Fw − Fd
me

(3.4.2)

v =

∫ (
Fw − Fd
me

)
dt (3.4.3)
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3.4.1.1 Reduced Model

The reduced model uses a backward-facing approach and therefore the same equations are
used in the reverse order. The model calculates the required tractive e�ort based on the
vehicle speed, see Figure 3.6. It can be seen in Figure 3.6 that the �ow of information is
now unidirectional, which results in a signi�cant reduction of the computational burden.

v Drag Forces

Vehicle Interial Model

Fw
Fd

Fa

Figure 3.6: Backwards Facing Vehicle Model

3.4.1.2 Characterisation

The Microcab H4 was subjected to a coast-down test at the Motor Industry Research Asso-
ciation (MIRA) proving grounds as part of a �nal year project by Jonathon Mansell [102].
The vehicle motor was disconnected and the vehicle was towed up to 60km/h, the tow bar
was released and the vehicle was allowed to coast to a stop. Further information about the
test procedure can be found in the project report [102], available from the Department of
Aeronautical and Automotive Engineering, Loughborough University. The time to decel-
erate was recorded in 5km/h steps. These data have been used to estimate the parameters
used in the vehicle model as shown in Table 3.1.

Parameter Value
Gross Mass, m 940 kg
Frontal Area, Af 1.43 m2

Coe�icient of Rolling Resistance, Ad 0.017
Coe�icient of Rolling Resistance, Bd 0.00065
Coe�icient of Aerodynamic Drag, Cd 0.482

Table 3.1: Vehicle Speci�cation

The test data and the model results are shown in Figure 3.7. It can be seen that the selec-
tion of these parameters accurately match the deceleration seen during testing. Compared
to a typical car, the coe�cients are relatively high; a modern vehicle would be aiming to
achieve approximately 0.01 for Ad and 0.3 for Cd. This is likely due to the “box” shape of
the vehicle and drag in the drive-train, however especially for the aerodynamic drag, it is
relatively unimportant due to the design for low speed.
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Figure 3.7: Coast-down Test
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3.4.2 Motor & Driveline
The motor and driveline model provides two main functions. Firstly, the model calculates
the torque based on the driver’s demand and subsequently the tractive force. Secondly, it
uses the mechanical load on the vehicle to calculate the electrical load on the battery and
fuel cell, see Figure 3.8. An empirical model has been created of the motor and driveline
e�ciency which calculates the current drawn by the motor based on the vehicle’s speed,
the driver’s torque demand and the battery voltage. This model encompasses the entire
mechanical driveline, the electric motor and its power electronics. Although a physical
model would give better insight into what is happening within this system, this information
is of little use for development of the control system due to the fact that the EMS has no
control over the e�ciency losses within this system.

Tdem

v

Vm

rg/rr

Motor Controller rg/rr

Motor E�ciency

Fw

Im

Tm

ωm

Figure 3.8: Motor & Driveline Model

The Microcab motor directly drives the wheels through a di�erential with a �xed ratio.
There is only a single gear, and therefore the operating conditions of the motor and driveline
are directly proportional to the speed and acceleration of the vehicle. As these are the only
degrees of freedom, the model of the motor and driveline can be very simple. The motor
speed, ωm, is calculated using the vehicle speed, v, the �nal drive ratio, rg, and the rolling
radius of the wheel, rr, see Equation 3.4.4. The motor torque, Tm, is calculated as a function
of the driver demand, Tdem, and the motor speed (Equation 3.4.5). The tractive e�ort is
calculated using the motor torque, the �nal drive ratio, and the rolling radius of the wheel
3.4.6

ωm = v
rg
rr

(3.4.4)

Tm = f(Tdem, ωm) (3.4.5)

Fw = Tm
rg
rr

(3.4.6)
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The e�ciency of the motor and mechanical driveline has been mapped against motor
speed and torque using chassis dynamometer testing. This e�ciency map is included in
the model as a lookup table (Equation 3.4.7). The current drawn by the motor, Im can be
calculated as the mechanical power of the motor, Pm, divided by the driveline e�ciency,
ηm and the motor supply voltage, Vm (Equation 3.4.8).

ηm = f(Tm, ωm) (3.4.7)

Im =
ωmTm
ηmVm

(3.4.8)

3.4.2.1 Reduced Model

The reduced model uses the same empirical data to calculate the electrical power require-
ments of the motor; however, there is no longer the requirement to calculate the motor
torque from the driver demand. Both the speed and the tractive force are obtained from the
vehicle model. The motor speed and torque are calculated using the rolling radius and �nal
drive ratio and multiplied to calculate the total ideal mechanical power. This is divided by
the total driveline e�ciency obtained from the empirical data to calculate the total electrical
power drawn by the motor, see Figure 3.9.

Fw

v

rr/rg

rg/rr

Motor E�ciency Pm

Tm

ωm

Figure 3.9: Reduced Motor & Driveline Model
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3.4.2.2 Characterisation

The speci�cation of the motor and driveline can be found in Table 3.2. As the motor is able
to run at its peak rating for up to one hour, the peak power and peak torque have been used
as limits on the model. This is because the motor is unlikely to ever exceed this time rating
for campus driving cycles.

Parameter Value
Maximum Torque, Tm,max 46 Nm
Maximum Speed, ωm,max 3650 rpm
Peak Power, Pm,max 12 kW
Continuous Power, Pm,cont 2.24 kW
Rated Torque, Tm,rated 5.86 Nm
Peak Time Rating, tm,rated 60 minutes
Gear Ratio, rg 8.47
Rolling Radius, rr 0.276 m

Table 3.2: Motor and Driveline Speci�cation

The e�ciency of the motor and driveline as a whole has been empirically derived using
chassis dynamometer testing at Loughborough University. The objective of these tests was
to calculate the electrical power draw of the motor at a range of speeds and tractive e�ort
forces. The vehicle was driven onto the chassis dynamometer, which was operated at con-
stant force. The vehicle speed was controlled by the driver using the accelerator pedal. At
each mapping point, the motor supply voltage and current draw were measured using sen-
sors installed on the vehicle and logged alongside the dynamometer sensors using National
Instruments hardware. The e�ciency was calculated as the total mechanical power gener-
ated at the wheels as measured by the dynamometer, divided by the total electrical power
supplied to the motor. This e�ciency will therefore take into account all losses which occur
between these points in the vehicle including; ohmic losses in the motor and motor con-
troller, eddy currents in the motor, windage and friction in the motor and driveline. The
motor torque curve and �nal e�ciency map are shown in Figure 3.10.
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Figure 3.10: Motor & Driveline E�ciency Map
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It can be seen that the peak operating e�ciency of the motor and driveline is slightly
above 70% at approximately 200 rads-1 and 16Nm. However, much of the main operating
region is between 40% and 70%. This is fairly typical for a brushed DC motor as used in
the Microcab, but signi�cantly lower than brushless DC motors as used in many other
electric vehicles such as the Microcab H2EV. Although the motor is capable of regenerative
braking, this functionality has been disabled in the Microcab due to component failures (for
more information see "Hydrogen Hybrid Vehicles for University of Birmingham Campus"
[24]), and therefore it has not been possible to determine the e�ciency map of the motor
operating at negative torque values.

Figure 3.11: Motor Model Validation

Figure 3.11 shows a sample of test data also gathered during dynamometer testing of a
logged duty cycle (see Chapter 4). The top graph shows the electrical power drawn by the
motor in blue, and the tractive power measured by the dynamometer in red. The dashed
black line shows the model estimation of electrical power based on the measured tractive
power. The lower graph directly compares the e�ciency calculated from the test data and
from the model. It can be seen that, despite its simplicity, the model accurately represents
the complete motor and driveline e�ciency under the majority of circumstances, although
the �t could be re�ned further with additional testing.

Page 86 of 244 Tom Fletcher

mailto:T.P.Fletcher@lboro.ac.uk


CHAPTER 3. VEHICLE MODEL PhD Thesis

3.4.3 Battery Pack

The battery model is a quasi-steady state semi-empirical model used to calculate the SoC
and voltage of the battery based on the net current �ow. The battery current is positive
for current �owing into the battery, calculated by subtracting the current drawn by the
motor from that supplied by the DC/DC Converter. The SoC estimation is a simple a charge
accumulation model based on the nominal capacity of the battery. The voltage estimation
uses a combination of the Shepherd equation and Peukert’s Law, see Figure 3.12.

Ibat

SOC Estimation

Voltage Estimation Vbat
H

Figure 3.12: Battery Model

The Shepherd equation (Equation 3.4.9) is a semi-empirical model used to predict the
voltage of the battery, Vbat, dependent on the current, Ibat, and the SoC, H . The �rst term,
V0, represents the open-circuit voltage, the second, kf (1−H), represents the voltage drop
due to the battery SoC, the third due to the internal resistance,Ri, and the �nal term empir-
ically represents the sudden voltage drop at low SoC using an experimentally determined
over-voltage coe�cient, ks, also known as the Shepherd coe�cient.

Vbat = Vbat,0 − kf (1−H)−RiIbat − ks
1

H
(3.4.9)

For lead acid batteries, the over-voltage coe�cient is highly dependent on the current.
At low current draws, the voltage will not begin to suddenly drop until a very low SoC is
reached, whereas at high loading, the e�ect of this parameter will occur much sooner. This
can be accounted for by using Peukert’s Law (Equation 3.4.10). Peukert’s law describes how
the capacity of the battery is a�ected by the current loading. This uses the Peukert expo-
nent, np, to calculate the Peukert capacity, Cp, which is constant for all current loadings.

kp = I
np

batt (3.4.10)

Peukert’s law can be rearranged to solve for the time to depletion, t, and multiplied by
the current in order to calculate the normalised capacity of the battery, see Equation 3.4.11.

Cn = CpI
1−np

bat (3.4.11)

Combining this with the Shepherd equation gives Equations 3.4.12 and 3.4.13, where F
represents the absolute Depth of Discharge (DoD) (measured in Ah) and f(I) represents
the relative DoD at that current (expressed as a ratio between 0 and 1). These equations
di�er slightly depending on whether the cell is charging or discharging, and the empiri-
cally derived parameters Cp, ks, np, V0, kf , and Ri are subscripted to di�erentiate between
charging, c, and discharging, d.
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f(I) =


F

Cp,dI1−np,d
, if Ibat ≤ 0

1− F − Cp,c(1− |I|1−np,c)

Cnom
, otherwise

(3.4.12)

Vbat =


Vbat,0,d − kf,d

F

Cnom
−Ri,dI − ks,d

1

f − 1
, if I ≤ 0

Vbat,0,c − kf,c
F

Cnom
−Ri,cI − ks,c

1

1− f
, otherwise

(3.4.13)

This model does not include dynamic e�ects due to internal resistance or mass transport
within the cell, and also does not include the e�ects of temperature. In order to prevent
algebraic loops in the model, a low pass �lter has been used to simulate some delay in the
reaction of the output voltage. This �lter roughly replicates the response of the battery
during testing, however, it is anticipated that the dynamic e�ects of the battery should not
signi�cantly a�ect the results due to the fact that the dynamics of the battery are much
faster than that of the EMS as a whole.

Temperature, however, may have signi�cant e�ect on the performance of the battery,
but has been neglected in this model because a) it is not the focus of the investigation, b)
inclusion would signi�cantly increase testing and validation requirements, and c) the extra
state would increase the computational e�ort required for optimisation. The major advan-
tage of this model is that it is relatively simple, but detailed enough to include the main
e�ects of current and SoC over a wide range of values, and that can easily be parameterised
using experimental results, and as a result, the reduced model uses an identical battery
sub-model.

3.4.3.1 Characterisation

The traction battery pack in the Microcab is made up of four AGM lead acid batteries con-
nected in series, giving a total nominal voltage of 48V and a total nominal capacity of 44Ah
(2.1 kWh). AGM lead acid batteries were chosen due to their deep discharge capacity and
low cost. The speci�cation of the battery pack is shown in Table 3.3.

The battery pack has been characterised using the battery testing rig available at Lough-
borough University. A single battery was charged and discharged at various levels of cur-
rent and the voltage was measured as the state of charge decreased. The resulting data were
compiled and used to optimise the coe�cients used in the combined Shepherd-Peukert
model. The �nal optimised coe�cients are shown in Table 3.4, and the resultant map of
battery voltage against current and state as charge is shown in Figure 3.13. It has been as-
sumed that all four batteries will behave identically and therefore the output voltage of the
single battery can simply be multiplied by a factor of 4. Although in reality this is a simpli-
�cation, it represents the ideal case. This model represents a battery pack maintained by a
battery management system, although technically the Microcab H4 is not �tted with one.
Battery balancing may have an e�ect on the results, however, it is di�cult to accurately
represent typical deviations between batteries and still generate reproducible results.
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Quantity Value
Battery Model Enersys PC1200
Chemistry Lead Acid
Battery Type AGM
Nominal Voltage, Vbat,nom 12 V
Maximum Voltage, Vbat,max 12.84 V
Minimum Voltage, Vbat,min 11.7 V
Nominal Capacity, Cnom 44 Ah
Short-circuit Current, Ibat,max 2600 A
Batteries in Series, Ns 4
Batteries in Parallel, Np 1
Internal Resistance, Ri 4.5 mΩ

Table 3.3: Battery Pack Speci�cation

Parameter Value
Open-Circuit Voltage, V0 12.84 V
SoC Voltage Drop Coe�cient, kf 1.14 V
Shepherd Discharge Coe�cient, ks,d 0.2
Shepherd Charge Coe�cient, ks,c 0.1
Nominal Capacity, Cnom 44 Ah
Peukert Exponent (Discharge), np,d 1.28
Peukert Exponent (Charge), np,c 1.013
Peukert Capacity (Discharge), Cp,d 100 Ah
Peukert Capacity (Charge), Cp,c 100 Ah
Internal Resistance (Discharge), Ri,d 4.5 mΩ
Internal Resistance (Charge), Ri,c 10 mΩ

Table 3.4: Battery Pack Model Coe�cients
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Figure 3.13: Battery Voltage Estimation

The results of the battery model have been compared to test data logged on the vehicle
during dynamometer testing. Figure 3.14 shows the comparison between the test data in
blue, and the model estimation of battery voltage and power based on the input current and
depth of discharge (calculated by coulomb counting). The model estimation is shown as a
dashed black line. It can be seen that the model accurately represents the test data during
both charging and discharging.
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Figure 3.14: Battery Test Data
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3.4.4 DC/DC Converter

The role of the main DC/DC converter is to step up the voltage generated by the fuel cell
(nominally 24V) to the traction battery pack voltage (48V nominal). The model assumes that
the DC/DC converter output power perfectly follows the demand from the EMS controller
and any dynamic e�ects can be safely ignored. As a result, the model DC/DC converter can
be extremely simple, see Figure 3.15.

Pdem

VDC,in

VDC,out

Output Power

E�ciency

IDC,out

IDC,in

PDC,out

Figure 3.15: DC/DC Converter Model

The output current, IDC,out, is calculated as the EMS demand, Pdem, divided by the
output voltage, VDC,out, see Equation 3.4.14.

IDC,out =
Pdem
VDC,out

(3.4.14)

An empirically derived linear equation is used to calculate the power drawn at the input.
The input current, IDC,in, is simply calculated by dividing the input power by the input
voltage, VDC,in, see Equation 3.4.15.

IDC,in =
1

ηDC(PDC,out)

PDC,out
VDC,in

(3.4.15)

3.4.4.1 Reduced Model

The reduced model of the DC/DC converter neglects the coupling of voltage and current and
is based solely on the �ow of power through the DC/DC converter. As a result, there is no
feedback between the fuel cell and DC/DC converter, nor between the battery and DC/DC
converter and the model is entirely unidirectional in order to maximise the computational
e�ciency of the model, see Figure 3.16.
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Pdem Output Power

E�ciency

PDC,out

PDC,in

PDC,out

Figure 3.16: DC/DC Converter Model

3.4.4.2 Characterisation

The speci�cation of the DC/DC converter is shown in Table 3.5. The DC/DC converter
is rated to a maximum power of 1.7kW, however, the fuel cell is only rated at 1.2kW and
therefore the true output power of the DC/DC converter is actually limited by the supply
voltage from the fuel cell. The maximum e�ciency of the fuel cell is given as 81% which
correlates well with the test data.

Parameter Value
Model Zahn DC6350F-SU
Maximum Power, PDC,max 1.7 kW
Input Voltage Range, VDC,in 24-63 V
Output Voltage Range, VDC,out 24-63 V
Maximum Input Current, IDC,in,max 50 A
Maximum Output Current, IDC,out,max 46 A
Switching Frequency 125 kHz
Maximum E�iciency, ηDCDC,max 81 %

Table 3.5: DC/DC Converter Speci�cation

Analysis of around 110 hours of data collected at the University of Birmingham by
Iain Sta�ell shows that the DC/DC converter e�ciency can be approximated using a linear
relationship between output power and input power. In reality, the relationship is likely
to be more complicated than this, and the e�ciency is likely to vary depending on the
input and output voltages as well as the loading. However, the DC/DC converter on the
Microcab is used under a relatively limited range of operating points, each of which can be
fully described using only a single variable, either the input power or output power. As a
result, it is possible to simplify the model signi�cantly with minimal loss of �delity.

Figure 3.17 shows a selection of the data logged during the Microcab’s usage on the
University of Birmingham campus. The linear relationship is used to predict the output
power of the DC/DC converter based on its input power. It can be seen that the linear
relationship accurately represents the vast majority of the test data. Figure 3.18 shows the
relationship of output power to input power for the same test data. The linear relationship
is very clear in this plot. There is a very high amount of noise in these data, which is
most apparent around 1000W output power. This is because the DC/DC converter spends
a substantial proportion of its time in this region.
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Figure 3.17: DC/DC Converter Test Data

Figure 3.18: DC/DC Converter Output Power vs. Input Power

Tom Fletcher Page 93 of 244

mailto:T.P.Fletcher@lboro.ac.uk


PhD Thesis CHAPTER 3. VEHICLE MODEL

3.4.5 Fuel Cell
The fuel cell model calculates the voltage of the fuel cell stack dependent on the current
drawn by the DC/DC converter. The model also calculates the fuel consumption, and the
degradation of the stack. Like many of the other sub-models, the fuel cell model is a steady
state model based on empirical data in order to maintain simplicity. The fuel cell stack
on the Microcab includes an integrated controller which is responsible for managing the
internal operating state of the stack. It has been assumed that this controller is able to
manage the stack conditions at a much faster rate than the EMS is likely to change the
load and therefore any dynamic e�ects can be neglected. This assumption may not be
valid, especially for rapid changes in load, such as instantaneously moving from idle to full
load, however the EMS will be designed to avoid such dynamic e�ects and therefore this
assumption should have negligible e�ect on the �nal results.

IFC

On Switch

Polarisation Curve

E�ciency

Degradation Model

VFC

ṁf

DFC

Figure 3.19: Fuel Cell Model

The fuel cell polarisation curve from the equipment datasheet is used to calculate the
operating voltage from the current drawn by the DC/DC converter, see Equation 3.4.16.
The fuel consumption, ṁf , and degradation voltages due to the operating point,DFC,p, and
transient loading, DFC,l, are also calculated in a similar fashion (Equations 3.4.17, 3.4.18 &
3.4.19). Finally, the degradation due to cycling, DFC,c, is accounted for each time the fuel
cell is switched from o� to on, see Equation 3.4.20, where a negative fuel cell power denotes
that the fuel cell is switched o�.

VFC = f(IFC) (3.4.16)

ṁf =

∫
f(IFC)dt (3.4.17)

DFC,p =

∫
f(IFC)dt (3.4.18)

DFC,l =

∫
f

(
|dPFC
dt
|
)
dt (3.4.19)

DFC,c =

{∑
1

Ncyc
, if PFC,t ≥ 0 ∧ PFC,t−1 < 0

0, otherwise
(3.4.20)
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3.4.5.1 Reduced Model

The reduced model is almost identical except that the separation of voltage and current is
no longer required and therefore the polarisation curve is not included. This also means
that the empirical relationships are based on the net power rather than based on the fuel
cell current loading.

PFC

On Switch

E�ciency

Degradation Model

ṁf

DFC

Figure 3.20: Fuel Cell Model

3.4.5.2 Model Validation

The fuel cell has been tested in-situ, logging data using a serial interface to the built-in
controller. An example set of results is shown in Figures 3.22-3.24. It can be seen that the
model based on the datasheet shows a good correlation with the test data despite the age
of the fuel cell system.
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Figure 3.21: Fuel Cell Test Data
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Figure 3.21 shows the raw measured voltage, net current, power and temperature of the
fuel cell against time. The model estimation of voltage and power based on the datasheet
are calculated from the measured current. It can be seen that the model shows a very good
correlation in general, but tends to underestimate the voltage slightly in the mid-range
around approximately 20A. This also leads to a slight underestimation of the net power in
the same range.
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Figure 3.22: Fuel Cell Polarisation Curve

Figure 3.22 shows the same data using the net current as the independent axis. The
temperature is represented by the colour of each data point. It can be seen that the measured
fuel cell voltage is consistently higher than that predicted by the datasheet, and as a result
the net power is also slightly underestimated by the model. There also seems to be a slight
variation in the voltage due to temperature. It can be seen that the voltage at the beginning
of the test where the fuel cell was between 20◦C and 40◦C is closer to the model prediction
that that later in the test where the fuel cell is running between approximately 40◦C and
60◦C. This can be explained by higher reaction rates at elevated temperatures, although this
could also be due to other factors than the lower temperature at the beginning of the test,
such as recharging of the auxiliary battery. Finally, it can be seen in Figure 3.22 that the data
are very consistent. The fuel cell was cycled between 200W and 1200W �ve times at the end
of the test while the fuel cell was at normal operating temperature. The measured data for
each of these cycles overlays almost perfectly. This suggests that the model is competent at
describing the fuel cell accurately under normal operating conditions despite its simplicity.
This is likely due to the e�ective management of the fuel cell by its integrated controller.
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Figures 3.23 and 3.24 show the measured hydrogen usage and calculated e�ciency for
the same test. It can be clearly seen that the estimation of fuel consumption based on
the datasheet is very accurate under all conditions. As a result, the operating e�ciency is
also accurately represented by the model. Detailed examination shows that the e�ciency
calculated by the model is very slightly lower than the measured data at medium load at
normal operating temperature. This is likely due to the underestimation of the voltage,
and hence underestimated net power output. Therefore, this can be easily remedied by
adjusting the polarisation curve to �t the data.
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Figure 3.23: Fuel Cell Test Data

It can be seen in Figure 3.24 that the e�ciency of the fuel cell correlates well with theory.
The e�ciency is very low at idle and low loads due to the current drawn by the ancillaries.
Although this current draw is very small, the net power output is also small and there-
fore it is signi�cant in terms of energy usage. The e�ciency quickly rises to a maximum of
around 55% at around 200W, and then gradually declines to around 40% at 1200W net power
output. The linear drop in e�ciency is largely due to increased ohmic losses as a result of
the increase in current. Above approximately 1000W, the hydrogen consumption increases
slightly more quickly than in the range below. This is likely due to mass transport restric-
tions as the fuel cell stack gets close to its maximum load. This increase in consumption
can be clearly seen in the e�ciency data as a steeper decline between 1000W and 1200W.
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Figure 3.24: Fuel Cell Polarisation Curve

Overall, despite its simplicity, the model describes the test data very well. Some vari-
ation in stack voltage due to temperature is seen in the test data, however in the range of
normal operating conditions, this was negligible and therefore it can be safely ignored in
the model. It can be seen in Figure 3.21 that once the fuel cell has warmed up its temper-
ature is regulated by the fuel cell controller to within approximately 5◦C of 55◦C. Within
this range, the e�ciency of the fuel cell varies by less than the noise in the logged data as
can be seen in Figure 3.24. The e�ciency of the fuel cell, however, is slightly lower during
the initial warm-up, until the temperature reaches approximately 40◦C, which corresponds
to approximately 5 minutes of running. The inclusion of temperature could, therefore, im-
prove the results, however this would signi�cantly increase the time required to accurately
parameterise the model, and would also introduce an additional state into the controller
optimisation. This would, in turn, dramatically increase the computational requirements
of the optimisation and therefore it has been neglected, however it could be included with
further work. In addition to this, the estimation of stack voltage is slightly too low in the
mid-range of current loading. This can be easily remedied by adjusting the lookup table in
order to �t the test data rather than using the datasheet information directly.
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3.5 Control System Models
The control systems models used for both the detailed and reduced models are almost iden-
tical, aside from the fact that the detailed model includes an extra sub-model for controlling
the vehicle speed based on feedback from the vehicle. The reduced model is backward-
facing and as a result, it is assumed that the vehicle perfectly follows the drive-cycle de-
mand and hence does not require the “driver” model. As previously mentioned, this means
that the reduced model is able to simulate much faster for SDP optimisation, but may pro-
duce erroneous results if the vehicle is unable to achieve the reference speed or acceleration
demands.

The control system is broken down into three main components; the drive-cycle ref-
erence demand, the “driver”, and the EMS supervisory controller. The reference demand
and the “driver” are responsible for controlling the speed of the vehicle, whereas the EMS
control system is responsible for managing the operating point of the fuel cell and hence
the SoC of the battery pack.

3.5.1 Drive-cycle Reference
The role of the drive-cycle reference block is to provide the duty cycle that the model is
going to simulate. This block forms the main input to the simulation. The drive-cycle block
is a simple lookup table based on time. This block outputs the demanded vehicle speed and
any gradient that has been prede�ned in the drive-cycle. Using this block, it is possible
to simulate any legislative or academic drive-cycle, but also logged data and steady state
conditions, such as �xed speeds or accelerations and gradients.

3.5.2 “Driver” Model
The role of the “driver” model is to control the vehicle speed based on the drive-cycle refer-
ence demand and feedback from the plant model. The interaction of the driver and vehicle
for drive-ability study is not of concern for this project and therefore the “driver” model has
been designed to follow the reference speed as closely as possible rather than accurately
model real driver behaviour.

The model works using a Proportional Integral (PI) controller based on the error be-
tween the feedback from the model and the reference demand. The Microcab H4 does not
have regenerative braking capability and therefore positive torque requests are sent to the
vehicle as throttle demands to the motor and negative demands are transmitted as braking
torque requests to the vehicle model, see Figure 3.25.

20Hz Filter PI Controller

kT

−kB

vref +

v

−

Tdem

Tb

Figure 3.25: “Driver” Model
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3.5.3 EMS Supervisory Controller
The EMS is responsible for managing the SoC of the battery pack by controlling the output
power of the DC/DC converter. This block is the focus of the project and three di�erent
controllers have been developed for this purpose.

3.5.3.1 “Thermostatic” Controller

The �rst is a binary “thermostatic” controller. This model was initially created as a place-
holder for testing the plant model and works by turning the fuel cell on at full power when
the battery SoC drops below a set level. The fuel cell is turned o� again when the SoC
reaches a higher level. This model is often used as a baseline in the literature due to its
simplicity, see Figure 3.26.

“Thermostatic” Controller
SoC Pdem

Figure 3.26: “Thermostatic” EMS Controller

3.5.3.2 Battery Voltage Controller

The second option is a battery voltage controller. The model mimics the current behaviour
of the test vehicle and works by producing a power demand that is designed to control
the battery voltage to a set level. This di�ers from managing the SoC directly because the
output power of the DC/DC converter will be ramped up when the battery is under high
load as well as when the SoC is low. This is because both of these conditions will cause
the operating voltage of the battery to drop. The Microcab H4 does not have an explicit
EMS, but the DC/DC converter is set to produce a constant output voltage of 57.6V when
not restricted by maximum power limitations. As a result, the fuel cell is run reactively to
battery voltage drops. The model replicates this by using a PID controller with the output
limited between zero and the maximum output power of the DC/DC converter, see Figure
3.27.

Vref PID Controller Saturation
+

Vbat

−

Pdem

Figure 3.27: Voltage EMS Controller
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3.5.3.3 Stochastic Dynamic Programming (SDP) Controller

The �nal option is the strategy optimised using SDP. SDP produces a causal policy based
on the inputs provided to the algorithm. The algorithm chooses the optimal action to take
in each possible vehicle state in order to minimise the cost function over a �nite or in�nite
horizon. As a result, the output can be represented by a lookup table which can be directly
implemented in simulation or on board the vehicle.

The SDP controller, therefore, can be very simply represented by a single four-dimensional
lookup table of power demand based on the vehicle speed, acceleration, battery SoC and
the previous output power, see Figure 3.28. Contrary to the rest of the simulation this
sub-model is iterated at a �xed time-step of 1 second.

d
dt

Lookup Table

Delay

v

v̇

H

Pdem

Pdem,t−1

Figure 3.28: SDP EMS Controller

3.6 Summary
Two vehicle models have been created for this project. The �rst is a detailed forward-
facing model which accurately represents the causality of the vehicle in the real world. This
model is used for testing the controller and examination of its behaviour under a range
of conditions. The second model is a reduced order model which has been simpli�ed in
order to dramatically reduce its computational burden. This model is used for the SDP
optimisation process which requires the model to be simulated at least tens of thousands of
times and possibly hundreds of thousands of times for high resolution results. As a result,
it is required to be very quick to simulate.

Both models used a modular substructure allowing individual components to be tested
in isolation. The model is parameterised based on the Microcab H4, but as few parameters
as possible have been used in order to allow the model to be easily changed should more
test data about the Microcab H2EV become available. Experimental data has been used to
create empirical and semi-empirical models of each component to ensure that the behaviour
is representative of the test vehicle. Where possible, independent validation data has been
used to check the accuracy of the model, which has been included in the report.
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Chapter 4

Markov Chain Modelling of Duty Cycle

This chapter describes the development of the Markov Chain model which is used to de-
scribe the usage patterns of the Microcab for mail delivery and passenger transport on a
university campus. Logged data has been obtained from the Microcab’s usage at the Uni-
versity of Birmingham and also for a variety of duty cycles at Loughborough University.
Global Positioning System (GPS) data of the vehicles usage was collected by Matt Lintern
at Loughborough University, and by Iain Sta�ell at the University of Birmingham. These
data have been processed and used to generate a Markov Chain model which can be used
for development of the Stochastic Dynamic Programming (SDP) control strategy.

The �rst two sections describe the methods used to collect and process the data and
identify all individual journeys that were made by the vehicles. It was found that only
11 trips were made by the Microcabs themselves in the data available and therefore the
duty cycles logged at Loughborough have been compared to the Microcab data to identify
a suitable substitute should these data be insu�cient.

Section 4.4 describes the development of three di�erent methods used to generate the
probability matrix that de�nes the Markov chain. The advantages of each of the methods
are compared and a sample of the results is presented.

Finally, Section 4.5 presents a validation of the results and a comparison of each of
the methods described in Section 4.4 to the original data. The Markov model is used to
generate a number of random drive-cycles using the Monte-Carlo method. These drive-
cycles are then compared to the original data using Speed-Acceleration Frequency Distri-
bution (SAFD) analysis in order to assess the validity of the Markov model. Results show a
high degree of �delity of above 97% for almost all of the duty cycles.
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4.1 Introduction
The development of a SDP control strategy requires a model of the vehicles usage pattern
as an input. In comparison to Deterministic Dynamic Programming (DDP), where it is
assumed that the vehicle speed pro�le is known “a priori” to calculating the control strategy,
SDP instead uses stochastic model of the duty cycle that the vehicle is likely to face. This
means that it is not required for the exact pro�le of each journey to be known in advance.
Typically, a Markov Chain model is used for this purpose; this type of model contains the
probabilities of transitioning between vehicle states based on the current and past states
of the vehicle. The production of the Markov model of the duty cycle alongside a cost
associated of transitioning between states, allows the Energy Management Strategy (EMS)
optimisation process to be formulated as a Markov Decision Process (MDP) problem.

The probabilities of the Markov model can be populated using existing data. It is com-
mon in the literature for this probability matrix to be generated either from a number of
standard drive-cycles such as the New York City Cycle (NYCC) and the New European Driv-
ing Cycle (NEDC), however a number of authors have instead used logged data to generate
this information [64]. There are advantages to both methods; the use of standard drive-
cycles allows the results to be easily replicated by others and results can be easily compared,
however the use of logged data is usually a more accurate representation of real-world driv-
ing patterns and the controller is therefore unlikely to exhibit “cycle-beating” traits.

The Microcab H4 is a relatively low powered vehicle designed for use in and around a
university campus. In order to keep the cost as low as possible, the vehicle is equipped with
a DC drive motor, similar to that used in forklift vehicles. As a result, it has a maximum
speed of around 12.5ms−1 or 45km/h [6]. This means that it is unable to complete the vast
majority of standard drive-cycles satisfactorily, see Figure 4.1.

Figure 4.1: Forward facing simulation of the Microcab H4 over the NEDC
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It would be, therefore, unsuitable to use standard drive-cycles as a basis for the Markov
model. However, a large amount of logged data which describes campus drive-cycles is
available to the project. This has been obtained from a variety of campus vehicles used
at Loughborough University and also from data recorded during the Microcabs usage at
the University of Birmingham. This data is also much more representative of the type of
journey that the vehicle is designed for and is therefore much more likely to increase the
vehicles performance in the real world. The generation of the probability matrices used to
describe the Markov model can be split into four steps;
1. Data Logging (Section 4.2)
2. Data Processing (Section 4.3)
3. Probability Matrix Generation (Section 4.4)
4. Validation (Section 4.5)

Each of these steps is described in the following sections, along with justi�cations of the
decisions made in order to produce the best results. There are a number of ways in which
this method could be improved in the future which were not feasible for this project and so
suggestions have been included which could further improve the accuracy of the results.

4.1.1 Other Practical Uses of the Markov Model
In addition to development of the control strategy, stochastic modelling of a vehicle’s in-
tended duty cycle has a number of other potential uses. In fact, the stochastic model could
in theory replace standardised drive-cycles in a number of areas for both the design of the
vehicle, as well as for legislative testing. Because the stochastic model is able to capture a
much wider variety of circumstance, it has the potential to represent real-life driving condi-
tions in a much more realistic manner. It is well known that the real-world performance of
many, if not all, vehicles does not often match the �gures quoted by the manufacturers for
both fuel consumption and emissions. This problem emerges because the vehicle’s design
and optimisation often exhibits “cycle-beating” traits.

These design features may in some cases may be unintended, however very often they
are purposely designed in order to obtain optimal performance in legislative testing, at the
expense of the performance of the vehicle in other real-world circumstances. Whether these
features are intended or not by the manufacturers, they are in �erce competition with each
other in order to present vehicles with the highest possible performance, and these metrics
are often used by consumers when choosing their next vehicle. The discrepancy is most
apparent in simpli�ed drive cycles such as the NEDC, however it is still present in vehicles
designed against more realistic drive-cycles such as the FTP-75, and Artemis cycles. In
order to overcome this problem, Markov models of real-world driving conditions could be
used to produce the next generation of legislative tests using the techniques described in
this chapter.

Designing the vehicle based on a Markov model of the intended duty cycle rather than
speci�c drive-cycles will allow manufacturers to produce vehicles which do not exhibit
these “cycle beating” traits and therefore the vehicle’s performance in the real-world is
likely to be much more similar to the manufacturers “estimated” �gures. By incorporating
the process into legislative testing would also serve to encourage manufacturers to do this,
and allow consumers a fairer comparison of how the vehicles are likely to perform in the
real-world.

Tom Fletcher Page 105 of 244

mailto:T.P.Fletcher@lboro.ac.uk


PhD Thesis CHAPTER 4. MARKOV CHAIN MODELLING OF DUTY CYCLE

4.2 Data Logging
The raw data used for this work were obtained from two previous projects; one at Lough-
borough University and another at the University of Birmingham. At Loughborough Uni-
versity, the collection of data was performed by Matt Lintern for a �nal year project fo-
cussed on the de�nition a standardised Loughborough University campus drive-cycle. GPS
data loggers were attached to a variety of campus vehicles and data were logged at 1Hz
over a period of approximately 3 months whilst the vehicles were used normally. Over this
period, a total of 840 hours of data representing almost 3000km of usage was collected.

At the University of Birmingham, the data was collected by Iain Sta�ell as part of a PhD
project analysing the operation of �ve Microcab H4 test vehicles. These vehicles were used
for passenger transport, mail delivery and experimental testing around the campus over a
period of two years, travelling a total distance of more than 4000km [6]. The main focus
of this project was on the operating e�ciency of the fuel cell and electrical powertrain
components, however approximately 9 hours of up to 10Hz GPS data, representing 80km,
has been made available for statistical analysis of normal usage duty cycle on campus. A
summary of the raw data available can be found in Table 4.1.

Location Duty Cycle
Logged

Frequency
Total
Time

Total
Distance

Max
Speed

Peak
Accel

/Hz /hours /km ms−1 ms−2

Loughborough

Electrical 1 117 325 19 5.0
Grounds & Gardens 1 157 387 10 2.9
Mail Room 1 181 431 21 3.7
Security 1 281 1511 25 4.4
Teaching Support 1 103 187 14 3.5

Birmingham
Mail Room 3 2 12 11 2.0
Teaching Support 3 1 8 10 1.7
Testing 10 6 60 15 2.6

Table 4.1: Summary Logged Campus Vehicle Data

On �rst impression, the data collected from the Microcab vehicles themselves during
their usage on Birmingham campus is the ideal candidate for optimisation of the SDP con-
troller. However, there is very little data available, of which only approximately 3 hours is
representative of typical usage patterns, the rest was collected for analysis of the vehicles
themselves. The SDP optimisation process is highly sensitive the quality of the input data,
and the generation of the Markov chain will produce a more reliable estimate if given large
volumes of data.

In total, almost 3000km of data have been collected at Loughborough. However, some of
this is not representative of the type of journeys that the Microcabs have been designed for.
From examination of the table, it can be seen that the Microcab logged data matches best
with the Grounds and Gardens style duty cycle collected at Loughborough. This is because
these vehicles did not signi�cantly exceed the maximum speed or peak acceleration of the
Microcabs when used at the University of Birmingham.
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4.3 Data Processing
For the purposes of this work, the main logged signal that is of interest is the vehicle’s speed.
This is generated by a GPS data logger using on the current location of the vehicle and its
previous location. The vehicle speed is also used to calculate the acceleration of the vehicle.
The GPS data also contains an estimate of the vehicles altitude, which could be used to
include the road gradient in the analysis, however the data available is not accurate enough
for this purpose and therefore has been neglected. The raw data requires some processing
before it can be used to analyse the usage pattern of the vehicle for SDP optimisation.

4.3.1 Initial Processing
Firstly, the individual logs must be accumulated, and any overlap between logs must be
removed. The logging stops after a �xed interval of 8 hours, therefore may stop in the
middle of a trip. Any incomplete trips must be removed. The raw GPS data are subject
to an accuracy of approximately ±2m which can lead to false readings in the speed trace.
Fortunately, these errors can be e�ectively removed by �ltering the data with only a minor
loss of �delity. The vehicle is assumed to be stopped during any gaps in the data. This
means that these gaps will not a�ect the analysis as only times when the vehicle is moving
are of interest. Overall, the initial processing gives a single continuous speed trace of the
vehicle over the entire logged period encompassing all completed journeys that occurred.
It can be seen in Figure 4.2 that the logging for the Ground and Gardens vehicles began on a
Wednesday and continued for approximately 4 weeks. Logging took place during working
hours with only one missed day (Tuesday) during the �nal week.
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Figure 4.2: Grounds and Gardens Raw Collected Data
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4.3.2 Identify and Extract Individual Trips
The Markov model is required to describe the usage of the vehicle only whilst the vehicle
is active. Ideally, this would be related to the state of the ignition switch of the vehicle,
but these data are not available. Therefore, a number of assumptions have been made to
estimate when the vehicle is likely to be active.

1. The vehicle is moving when its speed is greater than 1.2ms−1 for a period of 60s or
more. This is to avoid noise in the data when the vehicle is static.

2. The vehicle becomes active 10 seconds before it starts moving and remains active for
10 seconds after it stops. This is to ensure the entire journey is captured including
some stationary time either side of the journey.

3. If the vehicle is stationary for less than 10 minutes between periods where it is
moving, it assumed that this is part of a single journey. This accounts for times
when an Internal Combustion Engine (ICE) vehicle may be stationary, but with the
engine running, such as waiting for passengers, or delivering mail. It also ensures
that the journey is not broken by shorter stops such as at tra�c lights.

This process splits the single continuous speed trace into a number of discrete trips.
Figure 4.3 shows an example trip. The top graph shows the raw unprocessed data. In the
second graph, the red solid line denotes the trip, and the dashed black line shows regions in
the processed data which have been removed. The lowest graph shows the speed of the ve-
hicle in relation to its location on a map. This journey appears to begin at the maintenance
building and drive around campus stopping at the Stuart Miller building, the multi-storey
car park and the library before �nishing at the Edward Herbert building. Overall, the jour-
ney takes approximately 16 minutes, of which approximately 11 minutes is spent moving.
The maximum speed was approximately 8ms−1 (18mph), slightly above the campus speed
limit of 15mph.
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Figure 4.3: Grounds and Gardens Processed Data
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4.3.3 Post Processing

For the Grounds & Gardens vehicles, a total of 193 trips are identi�ed using this method.
However there are a number of “false positives” where the vehicle is identi�ed as moving
for a period of greater than 60 seconds, but the vehicle does not appear to be active when the
GPS data are examined in detail. This is likely due to errors in the GPS data which are not
e�ectively removed by the 1.2ms−1 stationary speed limit. Increasing the stationary speed
limit will reduce the number of true trips that are captured and therefore SAFD analysis
(see Section 4.3.3.1) is used to identify any trips which do not correlate with the rest. An
example is shown in Figure 4.4.

Figure 4.4: Grounds and Gardens False Positive
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It can be seen in Figure 4.4 that the trip only lasts for approximately 70 seconds reach-
ing a maximum speed of approximately 3mph. From the bottom plot, it can also be seen
that the vehicle does not move appreciably during this time and follows a strange path not
related to any roads on the map. Although, it is possible that this is genuine data, it is much
more likely that this speed trace is due to drift in the GPS data, possibly due to poor satellite
visibility. By analysing the frequency of speed and acceleration in the journeys, any out-
liers can be easily identi�ed and removed. This technique is known as Speed-Acceleration
Frequency Distribution (SAFD) analysis.

4.3.3.1 SAFD Analysis

Analysis of driving patterns can be a very complex subject, due to the fact that there a large
number of parameters that can be used to characterise a particular journey. For optimisa-
tion of the EMS, the characteristics that most appropriately describe a journey are those
associated with the power usage. This includes terms such as the speed and acceleration of
the vehicle and the incline of the road.

The most basic approaches simply examine the averages or maxima of speci�c param-
eters such as the average speed or peak acceleration. This technique is very good for ex-
amining the requirements of the vehicle design and for analysis into whether the vehicle
is likely to be able to complete the cycle. Although this will give a quick initial idea of
how two drive-cycles compare, there are circumstances where this kind of analysis is too
simple. For example, a drive-cycle which contains a lot of stop-start driving may exhibit
the same maximum speed and acceleration as one that doesn’t, but will more than likely
require a much higher average power requirement. Looking at the power requirement
directly would introduce a lot more complexity into the situation because this would be
dependent on the speci�cation of the vehicle used. Vehicle parameters such as mass and
aerodynamics would be introduced into the equation which would make comparisons be-
tween drive-cycles logged using di�erent vehicles di�cult.

More complicated techniques examine the cumulative frequency distributions [103] of
these parameters, which can give a much wider insight into the energy requirements of the
duty cycle. Two cycles can be compared with the aim to match the frequency distributions
of speed, acceleration and gradient, however considering these variables in isolation can
give the wrong impression. For example, an acceleration at high speed or travelling up a
hill will require more power than the equivalent acceleration at low speed or on �at ground.

SAFD analysis decouples the speed and acceleration using a two-dimensional discrete
state space. Each sample point in the drive-cycle can then be placed in the appropriate
bin and the frequency distribution of each speed-acceleration pair can be calculated. This
gives a three-dimensional histogram where the sum of all bins is equal to one. The shape of
the histogram gives a detailed insight into the driving patterns and the anticipated power
requirements without the additional complexity of including vehicle parameters. The tech-
nique could also be extended to include other parameters such as the road gradient with
little additional complexity although there would be a requirement for additional data to
ensure reliability of the distributions.

SAFD analysis can also be used to numerically compare the percentage agreement be-
tween two trips using Equation 4.3.1. Note that the divisor of two is required because two
SAFD matrices with no overlap would have a total di�erence of two.
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Agreement = 1− Σ|SAFD1 − SAFD2|
2

(4.3.1)

Although not commonly used, this technique has been known about for a long time
[104] and has been more recently used for analysis of driver behaviour [16] and the devel-
opment of the ARTEMIS European driving cycle [105]. Using SAFD analysis, any individ-
ual journeys which show particularly poor correlation to the total distribution, such as that
shown in Figure 4.4 can be identi�ed and removed. However, care must be taken to avoid
losing genuine data, and therefore the threshold is set deliberately low. For the purposes of
this work, any journeys which show less than 30% agreement have been removed.

4.3.4 Analysis of Identi�ed Trips

The logged data can now be analysed with regard to input into the Markov model genera-
tion. It is important that the Markov model accurately represents the typical usage pattern
for the Microcab with regards to the expected load on the powertrain. Analysis of the trips
identi�ed for the Microcab Mail Delivery route and the Loughborough Grounds & Gardens
route are shown in Figure 4.5 and Figure 4.6 respectively. The results for the other duty
cycles are shown in Appendix A. The left-hand side of each �gure shows histograms of
important aspects of the drive-cycles, the right-hand side shows the SAFD analysis of the
complete dataset.
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Figure 4.5: Microcab Mail Room Trip Analysis

Unfortunately, due to the fact that limited data are available for the Microcab, only 3
trips were identi�ed for mail delivery, 2 for teaching support and 6 for testing. For the
mail delivery and teaching support, the trips varied between 3.5km and 3.9km. The testing
data had trips up to 20km although this is not likely representative of normal usage. As a
result, the data are not su�cient to describe every circumstance that the vehicle is likely to
encounter and therefore not ideal for SDP optimisation.
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Figure 4.6: Loughborough Grounds & Gardens Trip Analysis

An alternative is to use some of the data collected at Loughborough. Initial inspection
identi�ed that the Grounds and Gardens data are the most likely to represent the usage that
the Microcab is likely to encounter. It can be seen in the analysis of the trips identi�ed in
Figure 4.6 that the trips varied in distance from 1km up to approximately 13km, although
the vast majority were below 5km, the modal speeds for these trips varied from 2km/h to
7km/h, the same range as the Microcab, suggesting that similar speed limits were observed
by the drivers. It is very important that the Microcab is able to complete the trips in regard
to speed and acceleration limits. If the vehicle is unable to achieve the maximum speed
or peak acceleration, this will severely a�ect the optimisation results. The Microcab saw a
maximum speed of 11ms−1 in normal usage and 15ms−1 during testing, a peak acceleration
of 2ms−2 was reached although 1ms−2 peak was more common for the teaching and testing
trips. The grounds and gardens vehicles saw a maximum speed of 10ms−1 in one trip,
however maximum speeds of around 7.5ms−1 were more common, and a peak acceleration
of 2ms−2, but again 1ms−2 was the modal peak acceleration across all trips.

Of the other duty cycles logged at Loughborough, the electrical (Figure A.1) and security
(Figure A.3) vehicle trips were least appropriate due to much higher maximum speeds and
peak accelerations of more than 3ms−2, which the Microcab would be unable to achieve.
Typical trip lengths for the security vehicles were also much too long. This is largely due
to the fact that these vehicles often leave campus and drive on local roads, and that secu-
rity vehicles are occasionally used to patrol the area for extended periods rather than for
point to point journeys. The mail room (Figure A.2) and teaching support (Figure A.4) vehi-
cles showed a fairly good correlation with the Microcab data, however maximum speeds of
higher than 15ms−1 were observed occasionally. Detailed examination of these trips shows
that they are most likely due to re-fuelling at a nearby service station which requires driv-
ing down a 40mph dual carriageway (Figure 4.7). As the Microcab would be refuelled on
campus, this type journey is not required. Therefore, by removing any trips which exceed
the 15ms−1, the correlation to the Microcab data can be improved, see Figure 4.8.
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Figure 4.7: Loughborough Mail Room Vehicle Refuelling
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Figure 4.8: Loughborough Mail Room Data with Refuelling Journeys Removed

4.3.4.1 SAFD Comparison

SAFD analysis can be used to compare the agreement of the various usage patterns nu-
merically. The comparisons between each type of driving are shown in Table 4.2. It can
be seen that the Loughborough University mail room vehicles most accurately match the
real-world Microcab data. As was mentioned in the previous section, these cycles included
re-fuelling journeys which exceeded the Microcab’s maximum speed. The Grounds and
Gardens trips were all achievable by the Microcab, but showed comparatively poor agree-
ment. Therefore, the SAFD agreement has been recalculated without journeys that exceed
15ms−1, the results of which are shown in Table 4.3.
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Electrical 100 47.5 77.1 71.4 86.6 67.8 70.3 81.8

Grounds & Gardens 47.5 100 64.4 72.6 60.3 68.9 56.3 61.1

Mail Room 77.1 64.4 100 78.5 88.2 83 77.7 77.1

Security 71.4 72.6 78.5 100 81.3 77.5 63.3 76.8

Teaching Support 86.6 60.3 88.2 81.3 100 78 74.4 85.8

Microcab Mail Room 67.8 68.9 83 77.5 78 100 66.1 77.5

Microcab Teaching 70.3 56.3 77.7 63.3 74.4 66.1 100 64.8

Microcab Testing 81.8 61.1 77.1 76.8 85.8 77.5 64.8 100

Table 4.2: SAFD Agreement Between Duty Cycle Types (%)
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Electrical 100 48.1 77.1 71 87.3 68 71.2 82

Grounds & Gardens 48.1 100 65.2 76.5 60.3 68.9 56.3 61.1

Mail Room 77.1 65.2 100 80.6 87.7 82.8 78.9 76.5

Security 71 76.5 80.6 100 82.7 79.1 66.9 78

Teaching Support 87.3 60.3 87.7 82.7 100 78 74.4 85.8

Microcab Mail Room 68 68.9 82.8 79.1 78 100 66.1 77.5

Microcab Teaching 71.2 56.3 78.9 66.9 74.4 66.1 100 64.8

Microcab Testing 82 61.1 76.5 78 85.8 77.5 64.8 100

Table 4.3: SAFD Agreement Between Duty Cycle Types with Limited Speed (%)
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Removing any trips that exceed 15ms−1 only a�ects the journeys made outside campus
which, aside from the security data, were mainly for re-fuelling the vehicles. Therefore, this
should not a�ect the validity of the remaining data. Firstly, it can be seen that the grounds
and gardens and teaching support agreement is unchanged. This is to be expected as none
of the trips exceeded 15ms−1. The electrical, mail room and security SAFD agreements have
changed slightly, but more importantly all included trips now remain below the Microcab’s
maximum speed. The electrical and security vehicles did still exceed the maximum accel-
eration limit of the Microcab. Although these journeys could theoretically be �ltered out in
an equivalent way, there is no real-world justi�cation for this. Therefore, the validity of the
data would be compromised and the SAFD would no longer be representative of real-world
driving patterns.

4.3.4.2 Summary

The data obtained from the Microcab’s usage in Birmingham are the most accurate repre-
sentation of the duty cycle that the vehicle is likely to see. This is because it represents the
actual usage of the vehicles whilst they were used for teaching support and mail delivery on
the University of Birmingham campus. Because this is logged data from the actual vehicles,
it is unlikely to show any speeds or accelerations that the vehicle is unable to achieve, how-
ever it must be noted that the gradient data have been neglected and therefore it is possible
that the vehicles could have exceeded their maximum acceleration or speed if assisted by
gravity during testing. Unfortunately, only limited data from actual use are available and
therefore it may be preferable to use alternative data available from the vehicles logged on
Loughborough University campus.

Initial analysis of the data from Loughborough highlighted the Grounds and Gardens
vehicles as the most likely candidate for an alternative. This is because these vehicles are
similar in performance to the Microcab and rarely leave campus. As a result, the maximum
speeds and acceleration seen in the data do not exceed the capability of the Microcab. How-
ever, after some simple data processing, SAFD analysis shows a better correlation between
the mail room cycle and the Microcab data. Unfortunately, the mail room vehicles occa-
sionally exceeded the capability of the Microcab. On closer inspection of the data, it has
been observed that these trips were made in order to re-fuel the vehicle at a nearby service
station. This would not be required for the Microcab as hydrogen would be available on
campus, and therefore they can be removed without a�ecting the validity of the recorded
data.
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4.4 Probability Matrix Generation
The Markov chain calculates the probability distribution of the subsequent acceleration
over the next time-step given the current speed and acceleration of the vehicle. An example
is shown in Figure 4.9. A discrete-time, discrete-state method will be used with a �xed time-
step of 1 second. This is likely to account for the transient dynamics of the system for the
purposes of the EMS and has been used by a number of previous authors [31, 64]. The
number of states is determined based on the quantity of the data available, but also on the
computational time of the SDP algorithm. For the purposes of this work, an acceleration
step of 1ms−2 has been chosen. This also determines that the speed step size should be
1ms−1. Increasing the number of vehicle states or reducing the time-step would improve
the accuracy of the model, however this would signi�cantly increase the computational
time required to solve the SDP algorithm. An additional state is added to the Markov Chain
to describe the termination of the drive-cycle for shortest-path SDP, see Section 2.3.3.3.

V=0ms−1
a=0ms−2

V=0ms−1
a=-1ms−2

V=1ms−1
a=0ms−2
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Figure 4.9: Example Markov Chain Drive-cycle Model

4.4.1 Discretizing the Data
There are a number of potential methods for discretizing data for generation of the Markov
chain probability matrix. The simplest method is to round the input data to the nearest
state. This is the quickest method and generates satisfactory results; however, it does in-
volve the loss of some information. An alternative method is to interpolate the input data
between each state and applying a weighting to the states either side of the input data. For
example, whereas 2.5ms−1 would round to 3ms−1, the interpolation method would apply a
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weighting of 0.5 to both 2ms−1 and 3ms−1. As a result, more information contained within
the input data is retained and the resulting probability matrix should be more accurate.
This method is more computationally intensive however. A third alternative is to assume
a probability distribution function for the subsequent acceleration. This gives a continu-
ous function allowing for the generation of more states given a limited dataset and may be
more accurate in some cases. However, this method requires the accurate prediction of the
correct probability distribution for the problem, and still requires su�cient data in order to
�t this distribution accurately. A comparison of the methods is shown in Figures 4.10 and
4.11.
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(c) Gaussian Method (µ = 0.02, σ = 0.42)
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Figure 4.10: Discretization at Initial Speed = 5ms−1 and Initial Acceleration = 0ms−2

In the mail room data, there are a large number of sample points available at an initial
speed of 5ms−1 and initial acceleration of 0ms−2 and therefore all methods should perform
well. It can be seen in Figure 4.10, that the data show a symmetrical distribution of accelera-
tions around a modal value of approximately 0ms−2. The result of the rounding method has
the greatest standard deviation, with only 60% of the subsequent accelerations being equal
to 0ms−2. It also shows a higher number of accelerations at -2ms−2 and 2ms−2 compared
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to the other two methods. The accuracy of the interpolation method should in theory be
higher. This is because no information is lost due to the rounding of the data. The �tted
Gaussian distribution for this dataset has a mean of -0.02 and a standard deviation of 0.42.
This gives a distribution of subsequent accelerations where almost 80% are equal to 0ms−2.
Because of the quantity of data available, the di�erence to the interpolated method suggests
that the Gaussian distribution is not ideal for the �t because otherwise there would be a
close correlation between the two.

Considering real-world driving scenarios, this is likely to be true. Under most circum-
stances, there are a number of discrete decisions that the driver could make. For example,
consider a vehicle travelling at a constant speed. The driver may make one of three pos-
sible actions; accelerate up to a higher speed, maintain the same speed, or decelerate to a
lower speed. Each of these decisions would result in di�erent discrete value of subsequent
acceleration, and may each have their own distribution due to continuous variables such
as the gradient of the road and the weight of the vehicle. There may even be more than
three actions; acceleration due to an increase in speed limit may be quite gentle, but an
acceleration due to an overtaking manoeuvre could be much more aggressive.

An alternative dataset is shown in Figure 4.11. In this situation the vehicle is deceler-
ating from a relatively high initial speed. It can be seen that the rounding method shows
a very di�erent distribution in this situation compared to the interpolation method and
Gaussian methods. This is because many of the values round to either 0ms−2 or -2ms−2,
even though the weighted values give a much higher probability of a continuation of the
-1ms−2 deceleration. This shows that the loss of information inherent in rounding the data
can have a signi�cant e�ect on the outcome of the algorithm. It can also be seen that there
is a much better correlation between the interpolation method and the Gaussian prediction.
This correlates with the previous suggestion because when the vehicle is decelerating, the
discrete set of control actions is reduced. In this situation, it is unlikely for the driver to
accelerate, leaving only the continuation of the deceleration, or cessation to maintain con-
stant speed. The fact that the rounded values show a lower chance of a -1ms−2 deceleration
may also con�rm this theory.

A �nal consideration for the Gaussian distribution method is that the distribution prob-
ability reduces exponentially at the extremes, but does not reach zero, unlike the rounding
and interpolation methods. This is of importance due to how the SDP optimisation accounts
for constraints. The SDP cost function applies a very large penalty at the limits of the bat-
tery voltage in order to ensure that the optimised result does not exceed them. If there is
even a very small probability that these limits will be reached, then this could signi�cantly
a�ect the optimised results.
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Figure 4.11: Discretization at Initial Speed = 12ms−1 and Initial Acceleration = -1ms−2
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4.4.2 Results
Once the data has been discretized, the algorithm loops through each possible state and cal-
culates the probability of each subsequent acceleration using one of the algorithms above.
A sample of the transitional probability matrix is shown in Figure 4.12. Each column of the
grid shown should always sum to 100%. It can be seen that, in general, at 5ms−1 the vehicle
is most likely to continue on its previous trajectory. If the previous acceleration was 0ms−2,
it is most likely to continue to be 0ms−2. Gentle acceleration and all deceleration follow
this trend, however high acceleration shows a tendency to begin to reduce. If the previous
acceleration was 2ms−2, it is most likely to continue at 1ms−2 for example.
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Speed (m/s): 5 Reset ViewFigure 4.12: State Transition Probability Matrix - Loughborough Mail Room Cycle (5ms−1)

There are states where there was no data available. This is because the vehicle did not
enter the state at any point in the logged data. This does not pose a problem for the rounding
method because if the state was not entered in the data, then the transitional probability
of transitioning to it will be zero. As a result, it will not a�ect the optimisation in any way.
For the interpolation and Gaussian discretization methods, however, this can cause issues.
It may be possible for the transitional probability of entering a state that was not reached in
the data to be greater than zero, although it will most likely be a very small probability. For
the Gaussian distribution model, this is due to the fact that the probability reduces away
from the mean value, but never reaches 0. For the interpolation method, this could occur
under certain circumstances, such as a previous speed of 2.4ms−1 and an acceleration of
1.3ms−2. In this situation, there is a potential initial speed of either 2ms−1 or 3ms−1, and
a potential acceleration of either 1ms−2 or 2ms−2. Therefore, for an initial speed of 3ms−1,
there will be a small probability of acceleration of 2ms−2 (up to 5ms−1) even if 5ms−1 was
never reached in the data. Modifying the algorithm to be based around the subsequent
speed rather than acceleration is possible; however, this results in a similar issue with the
subsequent acceleration.
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This situation can pose a signi�cant problem for EMS optimisation when using the
interpolation or Gaussian methods. If there is a probability of transitioning into a state
where no data is available, then the probability of transitioning out of this subsequent state
will be unde�ned. This means that it is not possible to continue the stochastic model after
this point and the optimisation will fail. Therefore, it is necessary to estimate what will
happen in this situation.
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In order to alleviate this problem, the transitional probabilities for states which were
not reached can be extrapolated from the data available. It has been found that the most
e�ective method is to interpolate the data where possible and use result of the nearest
available previous acceleration when extrapolation is required. This results in an overall
transitional probability as seen in Figure 4.13. In this case, there was no data available for
an initial speed of 12ms−1 and an initial acceleration of 3ms−2. Therefore, the transitional
probabilities for an acceleration of 2ms−2 have been used. It can be seen that the tendency
is for the subsequent acceleration to reduce to 1ms−2, e�ectively moving the state of the
vehicle away from its limits and therefore reducing the e�ect of the problem.

Estimating the likely response of the vehicle in unde�ned states also helps to improve
the robustness of the controller. In an ideal situation, the logged data used to generate the
Markov model will perfectly de�ne the likely response of the vehicle from every possible
initial state. However, in reality, this is very di�cult to achieve and would require several
hundreds, if not thousands of hours of logged data. As more data are obtained, the likeli-
hood of this occurring becomes smaller; however, there is always a small possibility that the
vehicle could enter a state which was not encountered during testing. Given a reasonable
estimation the likely response of the vehicle, the resultant strategy should make a sensible
decision.
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4.4.3 Terminal State
Shortest Path Stochastic Dynamic Programming (SP-SDP) uses a terminal state to de�ne
the end of a journey in order to avoid using a discount factor. This has a number of bene�ts
because it allows the optimisation to be aware of when and how likely the drive-cycle is
to �nish and allows additional costs to be applied to the end of the cycle such as based
the terminal battery State of Charge (SoC). For a Charge-Depleting (CD) algorithm, this
allows the battery depletion to be managed e�ectively over the duty cycle and therefore
maximise the bene�ts of being able to charge the vehicle whilst it is parked. For a Charge-
Sustaining (CS) algorithm, it allows more �uctuation in the SoC during the cycle, without
losing the ability to constrain the �nal SoC.

The probability of the drive-cycle ending can be calculated in a similar manner to the
transitions between other states. The logged data have already been separated into individ-
ual trips during the data processing, see Section 4.3.2. Therefore, the probability of the trip
�nishing can be calculated using the number of times each state was the �nal state divided
by the number of times the state was entered in total.

The de�nition of the trips in Section 4.3.2 means that the terminal state can only be
entered when the vehicle is stationary. As a result, the �nal acceleration can only be zero
or negative. The probability of transitioning to the terminal state for the Loughborough
mail room duty cycle can be seen in Figure 4.14. It can be seen that there is a very low
overall probability of approximately 0.0012 when the previous acceleration was 0ms−2 and
no possibility at any other time. The transition to the terminal state does not form part of
the main probability matrix in order to allow testing of both SP-SDP and in�nite horizon
algorithms.
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Figure 4.14: Terminal State Transition Probability - Loughborough Mail Room Cycle
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4.5 Validation
Some validation of the Markov chain can be achieved using the Monte Carlo method. The
vehicle is initialised at zero speed and acceleration and then the transition to the next state
is randomly chosen based on the probabilities in the Markov Chain. This process contin-
ues until the vehicle transitions into the terminal state. This will generate a random trip
based on the transitional probabilities contained in the Markov Chain, which can then be
compared to the original logged data, see Figure 4.15. By running a large number of such
simulations, the distribution of various parameters can be compared and SAFD analysis can
be used to calculate a numerical assessment of correlation. A high correlation will show
that the Markov chain e�ectively models the behaviour of the driver and the vehicle for the
assessed duty cycle.
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Figure 4.15: Randomly Generated Drive-cycle Comparison

Figure 4.15 shows a comparison between a logged trip and one of a similar length gener-
ated using the Markov Chain. It can be seen that the trip generated using the Markov Chain
is signi�cantly di�erent to that from the logged data although the generalised behaviour of
the vehicle is quite similar. Both trips show similar top speeds of 10ms−1 and 11ms−1, and
are characterised by a number of journeys at approximately 7ms−1 average speed separated
by periods where the vehicle is stationary. One signi�cant di�erence, however, is that the
speeds in the logged data are continuous whereas in the randomly generated trip they are
not. This is due to the discretization of the data for development of the Markov Chain.
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The Monte Carlo method has been used to randomly generate 10,000 trips for a number
of the duty cycles logged. This allows the distribution of journey lengths, modal speeds,
maximum speeds and peak accelerations to be compared to that of the original logged
data. The results of the Loughborough University mail room duty cycle using the rounding
method are shown in Figure 4.16. It can be seen that the distribution of journey lengths are
quite similar, although the Markov model has produced a number of trips which are longer
in length than the original data. As a result, a lower proportion of trips are between 1 and
2km than in the logged data, but this is still the most common length. The peak modal
speeds are identical, although the logged data show a greater variation either side of this
peak. Both the logged data and randomly generated cycles have a modal maximum speed of
approximately 9ms−1, although the proportion of trips with a maximum speed of between
10 and 14ms−1 is higher in the randomly generated cycles. The logged data show a peak
acceleration of 1ms−2 in 40% of the journeys and 2ms−2 in the rest. In comparison only 10%
of the randomly generated cycles have a peak acceleration of 1ms−1, with approximately
90% reaching 2ms−1. This is perhaps due to the increase in average journey length, meaning
that more trips are likely to hit higher maximum speeds.

Figure 4.16: Statistical Comparison for Loughborough Mail Room Cycle using Rounding
Discretization Method
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Figure 4.17: Statistical Comparison for Loughborough Mail Room Cycle using Interpolation
Discretization Method

In comparison, the results for the same data using the interpolation discretization method
are shown in Figure 4.17. In this case, the estimation of journey length and modal speed is
slightly improved and the peak acceleration seen is identical to the rounding method. How-
ever, it is clear that the interpolation method tends to overestimate the maximum speed.
This is likely due to the issue mentioned in Section 4.4.2, leading to a higher usage of ex-
trapolated data. In the Monte Carlo simulation, as in the SDP optimisation, any errors will
be cumulative. Another point to note is that the interpolation method may result in impos-
sible accelerations under some circumstances. For example, if the maximum acceleration
of the vehicle was 2.1ms−2 at a certain speed, the rounding method would give a maximum
acceleration of 2ms−2, however the interpolation method would result in some weighting
being given to 2ms−2 and some to 3ms−2. Although it is possible to have a similar e�ect
for the rounding method at 2.6ms−2, for example, this would occur as often, and would
result in a lower over-estimation of the maximum acceleration by the model. Therefore,
these results suggest that the interpolation method is not adequate to substitute for higher
resolution grid spacing.
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Figure 4.18: Statistical Comparison for Loughborough Mail Room Cycle using Gaussian
Discretization Method

Finally, the results for the Gaussian discretization method are shown in Figure 4.18. It
can be seen that the maximum speeds reached in the generated trips are much lower than
for the other two methods and closer to the original data, although they are approximately
1ms−1 lower than the original data on average. The estimation of modal speed slightly
di�erent, with the approximately 50% of cycles averaging 7ms−1, and only approximately
30% having a modal speed of 6ms−1, which is again closer to the original data than the other
two methods, although no trips had a modal speed of below 6ms−1 as was seen in the logged
data. The peak acceleration in approximately 60% of the trips was 1ms−2 and in the rest, it
was 2ms−2. This is the opposite of the distribution seen in the original data and is subject
to approximately the same magnitude of error when compared to the other methods. The
journey length, however, is vastly underestimated by the Gaussian distribution method
with approximately 90% of trips lasting less than 2km and no trips exceeding 4km.
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4.5.1 SAFD Analysis
SAFD analysis can be used to numerically compare the randomly generated trips to the
original data. This can then be used to examine the performance of the various discretiza-
tion methods. The Markov chains generated have been used to generate 10,000 random
trips and the SAFD has been calculated on each overall dataset. The agreement of each
result to the original data has been calculated and is shown in Table 4.4.
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Rounding 97.5 98.2 97.6 98.2 98.0 97.0 90.9 97.5

Interpolation 87.5 83.5 89.1 88.5 90.0 91.2 77.5 86.9

Gaussian 86.9 69.1 84.1 83.0 86.9 86.8 65.8 76.6

Table 4.4: SAFD Agreement for Each Discretization Method (%)

It can be seen in Table 4.4 that the agreement of the cycles generated using the rounding
method is very high, with all but the Microcab teaching support cycle having an agreement
of above 97%. Duty cycles for which there were more data available, such as for the Lough-
borough University security and grounds and gardens vehicles, correlated particularly well,
although the data appears to be su�cient to accurately model most of the cycles. The agree-
ment of the Microcab teaching support is likely lower due to the fact that very little data
were available for this cycle, just one hour and only two trips identi�ed. The interpolation
and Gaussian distribution methods also performed relatively well in most circumstances,
although the Gaussian method showed considerable variability between 69.1% and 86.9%
(neglecting the Microcab teaching cycle). This suggests that this method is not very reli-
able, and therefore care should be taken to validate the results. Neither method improved
on the results of the rounding discretization method however.

Considering both the SAFD agreement and the statistical analysis, the rounding method
is the most robust and produces results which correlate with the original data very well
despite the inherent loss of information associated with rounding. Although the interpola-
tion method should in theory improve retain more raw information, it has been found that
small numerical inconsistencies result as part of the interpolation. These inconsistencies
accumulate when the Markov chain is simulated, resulting in signi�cant di�erences in the
generated cycles when compared to the logged data.

It has also been found that the distribution of subsequent acceleration �ts a Gaussian
distribution under a number of circumstances, especially mid-range speed and low absolute
acceleration. However, a single Gaussian distribution at each speed/acceleration pair is
insu�cient to fully describe every situation. This is especially apparent when the vehicle
is stationary, because the modal subsequent acceleration is 0ms−2, but further deceleration
is impossible. As a result, a di�erent distribution may correlate better with the logged data.
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4.6 Conclusions

Overall, the results of the Markov chain using the rounding function compare well to the
original data sets, with an agreement of above 97% for all of the logged duty cycles aside
from the Microcab teaching support data. The interpolation method also performed rea-
sonably well with agreements of around 90% for many of the duty cycles; however, it did
exhibit a tendency to overestimate the maximum speed of the vehicle. Fitting the data to a
Gaussian distribution worked reasonably well for a single acceleration, however the Gaus-
sian distribution does not fully describe the probability distribution under all circumstances
and leads to much larger errors in the simulation of the Markov model using Monte Carlo
simulation due to accumulation. It is expected that the SDP optimisation would be subject
to a similar problem. Although the results of the rounding method correlate well with the
original data, there are a number of ways the accuracy and reliability of the Markov chain
could be improved.

For generation of a Markov chain using historical data there is no substitute for large
quantities of high quality data. The quality of the statistical analysis relies heavily on the
inclusion of every possible situation to be included in the raw data, and also that the fre-
quency of each subsequent acceleration is appropriately weighted. As the set of input data
grows, this becomes more likely and therefore the accuracy of the Markov chain is likely to
improve. A larger volume of data allows for more states, by including additional parameters
such as the road gradient, or by reducing the grid size of speed and acceleration.

The rounding of the data inevitably results in a loss of information, however attempts
to avoid this loss of information by using alternative methods such as interpolation and
Gaussian frequency distributions have shown little value due to a reduction in the relia-
bility of the data. Although the e�ect on a single acceleration is very low, these errors are
cumulative as the Markov chain is simulated or the SDP optimisation process takes place
and therefore can signi�cantly detriment the �nal result.

There is room for improvement in the Gaussian distribution method, for example by
using multiple overlapping distributions to account for acceleration, steady speed and de-
celeration. However, this would be non-trivial and require a signi�cantly larger dataset in
order to have con�dence in the results. As the main bene�t of using this method is to re-
duce the required volume of input data, the value of performing this would be questionable.
The Gaussian distribution also has a number of other drawbacks. Firstly, the distribution
never reaches zero. As a result, there is always the possibility of an acceleration that the
vehicle is incapable of achieving. Although these probabilities are very low, this can lead to
signi�cant errors during optimisation if large costs are used to constrain the optimisation.
Another issue is that the Gaussian distribution is symmetrical. This works well while the
vehicle is moving at low and medium speeds and �ts the data well. However, when the
vehicle is static and therefore cannot decelerate, the modal subsequent acceleration is often
to remain static. As a result, an asymmetrical probability distribution function would �t the
data better. This is also the case when the vehicle is close to its maximum speed although
the issue is less pronounced.

It has also been found that the 1Hz logging frequency is not ideal for producing a 1Hz
model. GPS data are subject to a gradual drift over time and also poor signal can lead to the
potential for the occasional incorrect reading. As a result, the raw data requires �ltering
to reduce the e�ect of anomalous readings, which inevitably leads to a loss of �delity of
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the data. Logging the location at a higher frequency, such as 10Hz, as used during the
Microcab testing data, leads to an increase in the accuracy of the data when �ltered and
analysed at 1Hz. A similar result could be achieved by using additional sensors on board
the vehicle such as an accelerometer. The data from the accelerometer can be combined
with the GPS data using a Kalman �lter to improve the accuracy of speed, acceleration and
gradient measurement.

An additional consideration that was neglected in this analysis is the gradient of the
road. This has a signi�cant e�ect on the power demand of the drive motor and as a result
may a�ect the acceleration of the vehicle. This can introduce signi�cant errors into the
optimisation process if the vehicle was assisted by gravity when accelerating especially if
the vehicle is not normally capable of this acceleration on �at ground. Unfortunately, the
accuracy of GPS altitude data are not su�cient for this purpose, however it may be possible
to include information about the gradient based on the vehicles location and map data. If
map data are unavailable, additional sensors such as an accelerometer or barometer could
be used. The inclusion of gradient data introduces an additional parameter into the model
and would therefore require a much larger dataset for statistical analysis.

Finally, all of the data logging collected for this analysis was collected over a period
of a few months, and for each usage category, the data collection lasted approximately 1
month. As a result, the long-term usage, including rare trips, is unlikely to be accounted
for, and there is also the possibility of seasonal variations. For example, on a university
campus, there may be a di�erence in the usage of the vehicles during term time as opposed
to the holidays, and for the Grounds and Gardens vehicles, there could also be signi�cant
di�erences between summer and winter. As a result, there could be an improvement in the
accuracy of the data if the collection took place over a longer time period of up to one year.

4.6.1 Suitability for EMS Development

The analysis has been performed speci�cally with the development of an EMS using SDP
in mind. Therefore, the parameters that have been chosen have been picked to best suit this
purpose and the resulting Markov model is appropriate for EMS development, especially
considering the data that were available and the computational expense of SDP optimisa-
tion. For example, from examination of the data and experimentation of the input parame-
ters it has been found that increasing the resolution of the model to 1ms−1 and 1ms−2 steps
to 0.2ms−1 and 0.2ms−2 would be possible given the quantity of data available. This allows
the model to more accurately reproduce the drive-cycles seen during the data collection
period, however this would signi�cantly increase (25x) the number of calculations required
for SDP optimisation. Therefore, a 1ms−1 step has been chosen as a good compromise
between accuracy and computational expense.

In an ideal world, one possible improvement would be to include the gradient of the
road. As already mentioned, the gradient could signi�cantly a�ect the power requirements
of the vehicle and therefore should be accounted for by the EMS. Unfortunately, introducing
an extra parameter to describe the state of the vehicle would require signi�cantly more data
and the availability of reliable altitude information. It would also increase the computation
time required to solve the SDP optimisation. However, this issue could be avoided by using
a single parameter such as the tractive e�ort or motor power instead of the combination
of two states, the acceleration and road gradient. This method would also serve to account
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for changes in the mass of the vehicle. One downside of performing this would be that
the Markov chain would then be vehicle speci�c rather than universally suitable for any
vehicle over this type of duty cycle.

4.6.2 Suitability for Other Practical Uses
As mentioned at the beginning of this chapter, a Markov chain model has a number of
other potential uses outside of EMS development. The Markov model allows estimation of
the likely power usage and transient loading when used in combination with a model of
the vehicle. Therefore, the model could be used for a variety of design exercises ranging
from early design phase sizing exercises all the way up to legislative testing. For this type
of usage, the model could be improved by increasing the resolution of the discretisation
with respect to both speed and time because it would not have the same requirements for
computational e�ciency. Given increased resolution, it may also be desirable to improve
the accuracy of the data logging by the inclusion of additional sensors such as a barometer
for altitude and accelerometers for improving the accuracy of the GPS speed estimation
using sensor fusion techniques. This would also likely require a larger volume of data to
be collected. For these purposes, it would also be bene�cial to extend the data collection
period to include seasonal variations in vehicle usage and in order to capture infrequent
journeys.
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Chapter 5

Controller Development

In this chapter, the design and development of the Energy Management Strategy (EMS) for
the Microcab H4 is described in detail. This project uses a Stochastic Dynamic Programming
(SDP) optimised controller based on real-world data due to its near-optimal solution of the
EMS problem and ease of implementation in real-time for on-board control.

SDP works by minimising the long-term result of a Markov Decision Process (MDP)
using a cost function which de�nes undesirable performance characteristics of the con-
troller. This chapter will begin by formally de�ning the MDP, including the development
of a novel cost function which includes not only the fuel consumption of the vehicle, but
also the degradation of the fuel cell in a quantitative sense. Once the problem has been
de�ned, the procedure for solving it using SDP is described in detail, including the exact
method and justi�cation of the parameter selection used for the optimisation. The chapter
concludes with a brief examination of a typical optimal policy obtained using SDP.
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5.1 Introduction
The Energy Management Strategy (EMS) is directly responsible for managing the State of
Charge (SoC) of the battery in the Microcab in order to allow the vehicle to take advantage
of the hybrid powertrain, and as a result, the actions that are taken by the strategy will have
a signi�cant e�ect on the performance of the vehicle. In particular, the fuel consumption,
component degradation and drive-ability are highly dependent of the operating conditions
that are chosen by the EMS controller.

There are a number of approaches to the development of an e�ective EMS, which have
been covered in detail as part of the literature review (see Chapter 2). These range from sim-
ple heuristic controllers to complex strategies based on machine learning techniques, how-
ever this work will focus on optimisation using Stochastic Dynamic Programming (SDP).
SDP is by far the most popular technique in recent years due to its near-optimal perfor-
mance and the ease of implementation of the solution on board the vehicle.

The optimisation of the EMS controller using SDP involves �nding the action which
minimises the total future anticipated cost incurred for every initial vehicle state. SDP uses
a statistical model of the duty cycle and vehicle response in order to estimate the future
cost over a set horizon. This may be �xed (�nite horizon), in�nite (in�nite horizon) or
determined based on model output (terminal state). This means that although the solution
may not be optimal for particular journey, the solution is the optimal time-invariant control
policy for the set of journeys used to de�ne the probabilistic duty cycle model. As a result,
the policy is entirely causal, depending only on the current state of the vehicle and hence
relatively trivial to implement on a real-time controller.

The steps required to develop the controller are shown in Figure 5.1. In order to pro-
duce the optimised controller, the �rst step is to produce a statistical model of the duty
cycle. This model describes the probability distribution of the vehicle transitioning from
its current state to any other state given each control action. Part of this model (which
is independent of the vehicle and control action) has already been created in the form of
the Markov chain model developed in Chapter 4. This model can be extended to include
the battery SoC and the current EMS power demand which will serve as additional control
inputs for the strategy. Concurrently with this, the vehicle model developed in Chapter
3 is used to calculate the cost of each transition. The statistical model and the associated
transitional costs can be expressed as two matrices, which form the foundation of the MDP
problem.

SDP works to solve this problem by calculating the both the instantaneous cost of per-
forming each action from the current state and the future anticipated cost given the new
state of the vehicle and the current control policy. This is an iterative process which is per-
formed in two steps. In the �rst step, the anticipated costs are calculated given the current
control policy (policy evaluation). In the second step, the policy is improved by choosing
the set of actions which will minimise the overall costs (policy improvement). This process
is iterated until either the cost and/or the policy converges.

The output from the SDP algorithm is therefore the policy which minimises the cost
function. This can be applied to the controller as simply a lookup table of control actions
based on the inputs to the original MDP problem, see Figure 5.2.

Page 134 of 244 Tom Fletcher

mailto:T.P.Fletcher@lboro.ac.uk


CHAPTER 5. CONTROLLER DEVELOPMENT PhD Thesis

Logged
Data

Generate Markov
Model

Validate Markov
Model

Simulate Each Initial
State and Action

Calculate Transition
Probabilities

Calculate Transition
Costs

Solve MDP
Using SDP

Test

Figure 5.1: Flowchart of the procedure used to generate the real-time controller

Figure 5.2: EMS Controller Structure - Simulink Model
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5.2 MDP Problem De�nition
The Markov Decision Process (MDP) problem can be de�ned by a set of decision epochs, T ,
a set of Actions, A, a set of States, S, the probabilities of transitioning between each state,
Pij,a, and the reward or cost of each transition Cij,a. The sample rate of much of the logged
data is 1 second, and therefore this is the highest rate which can reasonably be used for the
time step (Equation 5.2.1). This has been deemed acceptable to use by a number of authors
in the literature [45,64] for the MDP problem since any dynamic e�ects faster than this can
be reasonably ignored.

For the design of an EMS for a Fuel Cell Hybrid Electric Vehicle (FCHEV), the set of
actions must determine the operating point of the battery pack and fuel cell and therefore
the output power of the main DC/DC converter has been chosen (Equation 5.2.2). This is
closely related to the fuel cell power and directly a�ects the battery current.

T = {0, 1, ...}s (5.2.1)
A = PDC,out = {0, 200, ..., Pmax}W (5.2.2)

The number of states in the problem signi�cantly a�ects the computational burden, but
must be su�cient to allow accurate calculation of the cost function. The states must also
be su�cient to model the transitional probabilities accurately enough to provide a reliable
estimation of the future states of the vehicle. For this purpose, the speed and acceleration of
the vehicle have been chosen, which has been shown in Chapter 4 to be adequate to model
the duty cycle of the vehicle. Previous authors [45] have developed strategies based solely
on the tractive power demand. As this only uses a single input, it will be must faster to
iterate, however this can severely limit the accuracy of future state transitions, especially
when applying an in�nite horizon solver. Conversely, it may be advantageous to include
the incline of the road as an additional input, however this would considerably increase
the computational time required. The range of values used has been chosen based on the
capability of the vehicle, with a grid spacing of 1ms-1 in velocity and 1ms-2 in acceleration.

The EMS is directly responsible for managing the SoC of the battery and therefore this
must be accounted for in the state de�nition. This could be achieved by either using the
battery voltage as an input vector or the SoC directly, however using the SoC directly has
the advantage that this isn’t a�ected by the current loading on the battery. Although math-
ematically speaking, the optimal policy would give identical results in either case if com-
parative vectors were used, the �nal policy is expected to be more closely related to the
SoC than the voltage and therefore the size of the input vector can be minimised by using
the SoC directly.

Finally, the degradation of the fuel cell is strongly a�ected by on/o� cycling and by
transient loading. In order to include the e�ect of these degradation methods in the calcu-
lation of the cost function, the current operating point of the fuel cell should be included
in measurement of the vehicle state. This has been achieved by the inclusion of the current
demand power from the EMS, which has been chosen because it is already used to de�ne
the set of actions. This minimises the size of the sparse matrices used to store the data
because the output value of this vector will always be the same as the chosen action. Using
the current control action as an input state vector also aids with clarity during examina-
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tion of the resultant policy when compared to using equivalent inputs such as the fuel cell
power. The complete state of the vehicle can therefore be described using Equation 5.2.3.

S = S(a, v,H, PEMS) (5.2.3)

5.2.1 Input Grid Resolution
The MDP to be solved is a discrete problem and therefore each of these inputs should be
discretized in order to de�ne a �xed number of possible states. The size of each of these
inputs will signi�cantly a�ect the memory usage of the optimisation as well as the compu-
tational time required to �nd the optimal policy. This is due to the high dimensionality of
the problem. The total number of states is equal to the product of the sizes of each input
vector, and the matrices required to fully de�ne the problem are equal to the number of
actions multiplied by the square of the number of states. It is therefore important to select
the range, resolution and distribution of the discretization carefully in order to minimise
the number of states whilst maintaining accuracy of the solution.

Example selections for the range and resolution of each of these vectors are given in
Table 5.1. This gives a total of 142,800 discrete states, and 25 actions. As a result, the full-
size probability matrix contains approximately 5× 1011 individual elements, which would
require more than 2TB of storage if stored as a single precision �oating point number. This
is far more than the memory capacity of even a high performance modern desktop PC.
However, this size can be dramatically reduced by the use of sparse matrices in MATLAB
by only storing non-zeros elements. As a result, the matrices have approximately 3 × 107

elements and use only 120MB of memory each (using double precision).

Parameter [Unit] Minimum Maximum Spacing
Vehicle Speed, v [ms-1] 0 15 1
Vehicle Acceleration, a [ms-2] -3 3 1
Ba�ery SoC, H [%] 70 95 0.5
EMS Demand, PEMS [W] 0 1200 50

Table 5.1: Controller State De�nition
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5.2.2 Cost Function

The objective of the SDP optimisation is to choose actions in order to minimise a future
anticipated cost. This cost is calculated by the use of a cost function. The cost function
is designed to either reward positive operating conditions or (more frequently) penalise
negative conditions. The cost function can be customised in order produce a controller
with the desired performance characteristics.

There are two main ways to include operating conditions in the cost function. The �rst
is to use realistic �gures for each state in order to optimise a single variable and weighting
factors to account for multi-variable optimisation. For example, the hydrogen consumption
of the fuel cell can be calculated for each state/action, and using this alone, the optimisation
process will produce a controller which provides the optimal performance with regard to
fuel economy. Using weighting factors for multiple variables allows each to be “traded o�”
against each other. For example, the number of gear shifts could be used to optimise the
drive-ability. A weighting factor, on either the fuel economy or number of gear shifts, could
then be chosen to provide the best compromise between fuel economy and drive-ability.

The second manner in which the cost function can be used is to provide “soft” con-
straints on the optimisation in order avoid certain conditions. This is often how the limits
on the battery SoC are taken into account. Constraints are particularly useful for this pur-
pose due to the fact that it doesn’t matter what the SoC is at any point, as long as it is
within the acceptable range for the battery pack. By introducing very high penalties to
excessively high or low battery SoC and no penalty in between, the controller will attempt
to completely avoid these conditions. As long as the SoC stays within the constraints, the
cost will not be a�ected. Theoretically, soft constraints could be used on their own, but
usually it is more useful to use them in conjunction with a variable to be optimised. This
would, for example, allow the fuel consumption to be optimised whilst keeping the battery
SoC within an acceptable range.

As was found in the literature review, the vast majority of previous authors focus on
optimising the fuel consumption of the vehicle and use this as the basis for the cost func-
tion. Secondary considerations, such as battery SoC maintenance, fuel cell degradation
and drive-ability concerns are usually accounted for by constraints on the optimisation.
The research for fuel cell vehicles lags behind that for Internal Combustion Engine (ICE)
based hybrid vehicles in this regard. More recent work on ICE hybrid vehicles investigates
the trade-o� between fuel consumption and emissions, or the trade-o� between the fuel
consumption and drive-ability.

A major concern for fuel cell vehicles is the reliability of the fuel cell itself and therefore
it is proposed that this should be included in the optimisation process. A number of authors
have proposed strategies that combat fuel cell degradation, mainly focussed on two major
causes; the reduction of transient loading, and prevention of reactant starvation. Although
there is a great deal of research in the literature into speci�c degradation methods, no pre-
vious work has been found to incorporate this research into SDP controller development. It
is therefore proposed that a quantitative analysis of a variety of major degradation methods
should be included in the optimisation process and that these could be weighted against the
fuel consumption by using their respective monetary values. This would allow the overall
running cost of the fuel cell to be minimised by the optimisation process.

The primary cost function developed for this work is made up of three main parts. The
controller will be optimised in order to minimise the overall running cost, made up of the
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fuel cost, Γf and the proportional fuel cell degradation cost, ΓFC . Finally, soft constraints
are used in order to maintain the battery SoC, resulting in a penalty cost, ΓV . Each of these
costs is described in detail in the following sections.

5.2.2.1 Fuel Consumption

The fuel consumption of the vehicle is already calculated by the vehicle model developed
in Chapter 3 and is based on the operating load of the fuel cell. The output of the model is
the fuel consumption, mf , in mg which can easily be converted into a monetary cost, Γf ,
by multiplying by the value of hydrogen fuel, γf , see Equation 5.2.4.

Γf = γfmf (5.2.4)

5.2.2.2 Fuel Cell Degradation

A number of degradation methods have been identi�ed from the literature review. Al-
though some degradation methods, such as the purity of the fuel, are due to circumstances
beyond the control of the EMS, many degradation methods will be directly a�ected by the
operating conditions of the fuel cell and hence can be limited by optimisation of the EMS.
A list of potential EMS strategy actions was identi�ed for each method and shown in Ta-
ble 2.1. There is a lot of overlap in these actions, which can be summarised by four main
operating conditions that should be avoided.

1. Low power operation, especially open-circuit
2. High power operation, especially beyond the reactant supply, product removal or

heat rejection capability of the stack
3. Transient loading
4. On/O� Cycling

Ideally the voltage degradation rate under each operating condition should be quanti�ed
by extensive testing of fuel cell stacks; however, this would be extremely costly and time-
consuming and therefore has been deemed out of the scope of this work. Fortunately, there
is enough data available in the manufacturer’s datasheet [106] and previous literature [13],
to make a reasonable estimate. The manufacturer states an expected degradation rate of
approximately 11.6 µV/h per cell for the stack at full load, with essentially no degradation
below approximately 80 % full load. No low power degradation rates are given; however,
these have been obtained from the literature for a similar fuel cell and scaled to match the
full load data given by the manufacturer. An estimate for the transient loading degradation
has also been obtained from the literature, and the stop-start cycle voltage degradation has
been obtained from the manufacturer’s speci�cation. These �gures are given in Table 5.2.
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Operating Conditions Degradation Rate
Low Power Operation 10.17 µV/h
High Power Operation 11.74 µV/h
Transient Loading 0.0441 µV/kW
Start/Stop 23.91 µV/cycle

Table 5.2: PEM Fuel Cell Degradation Rates (per cell)

As shown in Chapter 3, these degradation methods have been incorporated into the
vehicle model. The degradation of the fuel cell,DFC , is calculated by the model in mV. This
can be divided by the voltage drop at which the fuel cell is said to be fully degraded, Dmax,
to calculate the percentage degradation of the stack. If the degradation rates are assumed to
be constant, which should be valid for the short term at least, then the estimated cost, ΓFC ,
associated with this degradation can be calculated as the percentage degradation multiplied
by the monetary value of the stack, γFC .

ΓFC = γFC
DFC

Dmax

(5.2.5)

5.2.2.3 Battery SoC Maintenance

In addition to minimising the total running cost of the fuel cell, the EMS is also responsible
for managing the battery. The Microcab H4 does not have an integrated battery charger,
and therefore the strategy has been designed to be charge-sustaining. This means there is
no need to have a speci�c �nal SoC target as long as the SoC stays within the acceptable
range to protect the battery from deep-discharge and overcharge throughout any journey.
Any deviation in SoC within these bounds will not detriment the performance of the vehicle
and hence should not be penalised. Soft constraints are therefore ideal for this purpose.

Battery SoC sustenance can be accomplished by setting constraints on the battery volt-
age and will prevent the battery from becoming over-charged or deeply discharged. By
using the battery voltage, rather than state of charge directly, the battery will also be pro-
tected from voltage spikes due to sudden reduction in load from the motors and from voltage
drops during periods of high current demand, such as acceleration. In fact, the degradation
methods identi�ed in the literature review are more closely related to the cell potential than
the SoC directly, and therefore voltage limits will tend to provide better protection than SoC
constraints. This soft constraint has been achieved by assigning a cost, α, to extreme cell
potentials (above Vmax and below Vmin), see Equation (5.2.6).

ΓV =


α
∫

(Vmin − Vbat)dt, if Vbat < Vmin

α
∫

(Vbat − Vmax)dt, if Vbat > Vmax

0, otherwise
(5.2.6)
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Note that the integral of the voltage di�erence is used in the penalty function. This
has been used to ensure that if the battery voltage limits are exceeded, then there is a cost
incentive for the controller to perform actions which will return the voltage to an acceptable
range. If the vehicle components are correctly sized for the application, and the initial SoC
of the battery is acceptable, then this detail will have little e�ect on the results. However, if
the control authority is too low (perhaps due to an undersized fuel cell), or if the initial SoC
is outside the acceptable range (perhaps due to self-discharge while the vehicle is unused),
then the controller will always attempt to return the battery SoC to the acceptable range.
This behaviour has been implemented to improve the robustness of the controller under
non-ideal circumstances.

A value of 104 has been chosen for α. This at least is three orders of magnitude higher
than any cost that is likely to occur as a result of hydrogen consumption or voltage degra-
dation of the fuel cell. This means that the voltage management of the battery will over-ride
any optimisation if the constraints are exceeded. As a result, the optimisation process will
attempt to completely avoid any states outside of the voltage limits of the battery. This is
known as a “soft” constraint due to the fact that it is still possible for the constraint to be
exceeded if otherwise unavoidable. It would be equally acceptable to choose an even higher
value, for example 106, however increasing the number too far may lead to computational
problems during optimisation. This is because double precision �oating point numbers
used in the MATLAB algorithm are accurate to approximately 15 signi�cant �gures. Given
a cost penalty of 1010 or higher, the rounding of the �oating point numbers, could cause
signi�cant errors (in the range 10-2 or $0.01) to accumulate over typical duty cycle lengths
of around 103 seconds (approximately 15 minutes).

5.2.2.4 Final Cost Function

The �nal cost function (Equation 5.2.7) is the sum of the three individual components; the
monetary cost accumulated due to fuel consumption, the proportional monetary cost due
to degradation, and a high penalty due to the battery voltage constraints. This has the net
e�ect of minimising the running cost of the vehicle including fuel cost and degradation,
whilst attempting to completely avoid exceeding the voltage limits of the battery.

Γt = Γf + ΓFC + ΓV (5.2.7)
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5.2.3 Probability & Cost Matrix Generation
The transitional probability matrix describes the statistical chance that the vehicle will tran-
sition from any initial state to each subsequent state. Part of the data used to generate this
matrix is already available in the form of the Markov chain model developed in Chapter 4.
However, the Markov chain model only describes the probabilities of the vehicle transition-
ing between speed and acceleration pairs. The full state matrix must also include the e�ect
of these transitions on the battery SoC, which will also be dependent on the action of the
EMS. This calculation requires the simulation of the vehicle model developed in Chapter
3 from each initial state and for each valid action. The full probability matrix can then be
calculated using Equation 5.2.8.

P(S(a, v,H, PEMS)k+1|(Hk, P k
EMS, u

k)) = P((a, v)k+1)× P((H,PEMS)k+1|uk) (5.2.8)

Each time the model is simulated, it is also possible to calculate the cost accumulated,
and therefore both the probability and cost matrices can be generated concurrently. In
order to produce the results as e�ciently as possible the model is simulated in three steps.
Firstly, the drag model is used in conjunction with the motor model in order to calculate
the electrical power drawn by the motors. Then the fuel cell and DC/DC converter models
are used to calculate the power produced by the corresponding EMS action. Finally, the
two power vectors are summed and used to calculate the net e�ect on the battery model,
see Figure 5.3.

Speed
Trace Vehicle

Motor/Driveline Electrical
Power

Step 1

<105 Iterations

EMS Power
Demand DC/DC Converter Electrical

Power

Fuel Cell

Step 2

625 Iterations

Battery SoC

Step 3

<3,570,000 Iterations

+
+

Figure 5.3: Probability & Cost Simulation Steps
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This technique improves the speed at which the results can be obtained for two reasons.
Firstly, repeated calculations are avoided due to the fact that the drag and motor models
need only be simulated for each speed and acceleration pair, not for each additional combi-
nation of initial SoC and EMS action. For the grid spacing shown in Table 5.1, this reduces
the number of iterations of these models down from a maximum of 3,570,000 to just 105.
Equally, the fuel cell and DC/DC converter models are only simulated 625 times. Therefore,
only the battery model needs to be simulated for every combination of initial state and po-
tential action. Secondly, the �rst two models contain no feedback loops which can cause
the variable step solver to reduce the time-step of the simulation. As a result, by separating
them from the battery model, which contains a feedback loop between the battery voltage
and current, they can be simulated much more quickly than if they were contained in the
same model.

In addition to this, only valid combinations of initial speed and acceleration are simu-
lated. If the probability of any combination has been calculated to be zero during generation
of the Markov chain, then there is no need to perform this simulation. This further reduces
the computational burden of the probability matrix.

5.2.3.1 Battery SoC Estimation
The probability and cost matrices are generated using the vehicle model by simulating every
valid action from every initial state. The subsequent state and associated cost of performing
each action from each initial state is calculated from the simulation results. The cost is easily
calculated using the cost function; however, the subsequent state may not match one of the
�nite states de�ned in the MDP problem. The problem arises that some actions will result in
movement of only a tiny fraction of the grid spacing. This is most apparent with the battery
SoC which hardly changes over the time-step of one second and it would be infeasible to
reduce the grid spacing enough. In order to alleviate this problem, the subsequent state
is represented by a probability distribution split between the grid points. This probability
distribution is then multiplied by that of the Markov model in order to generate the full
transitional probability matrix for this condition.

5.2.3.2 Cost Calculation
In addition to the electrical power output of the DC/DC converter, the model used in step
two of Figure 5.3 also calculates the hydrogen consumption and the fuel cell degradation.
This is used with the battery voltage calculated by the battery model to calculate the �nal
cost for each iteration of the model using Equation 5.2.7.

5.2.3.3 Simulation Output
The �nal output of this calculation is made up of two three-dimensional matrices where
the index of the �rst dimension denotes the initial state, Sk, the second dimension is the
�nal state, Sk+1 and the third dimension denotes the action, Ak. The data contained in
the �rst matrix is the probability of each transition, and the second matrix is the cost of
the transition. Along with knowledge of the states, actions and time-step, these matrices
mathematically describe the Markov Decision Process (MDP) problem. More speci�cally,
the problem is to identify which action to take in each state so as to minimise the cost over
a certain period of time.
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5.2.3.4 Computational E�ciency

Computational e�ciency is of paramount importance to dynamic programming optimisa-
tion due to the “curse of dimensionality”. Dynamic programming techniques explore every
possible combination of actions in order to �nd the optimal solution. As a result, it is very
easy to include too many state dimensions, or use too small a grid spacing for the calcula-
tions to be performed in a reasonable amount of time. It is therefore extremely important
to maximise the e�ciency of the computations, and minimise memory usage.

The model performs 1 second of simulation for each iteration in order to generate the
transitional probability and cost matrices. During this second the initial speed is given by
the initial state, and the acceleration used is the subsequent acceleration expected. Ob-
viously, the combination of initial speed and subsequent acceleration also determines the
subsequent speed. The initial DC/DC output power is given by the initial state simulated
and the �nal DC/DC output power determined by the action. During the simulation, the
model ramps the DC/DC output power linearly between these conditions. Again, the �nal
state of the model with regards to the DC/DC output power is predetermined by the ac-
tion taken, due to the fact that this input to the optimisation process is simply the previous
output of the controller.

As a result of these two facts, it would be feasible to reduce the size of the matrices
signi�cantly by reducing the size of the second dimension (which corresponds to the �nal
state). There is no need to identify the �nal speed if the acceleration is known, and no
need to identify the �nal DC/DC output power if the action is known. Reduction in the size
of these matrices reduces the memory usage, but also reduces the number of calculations
required for SDP optimisation.

However, it is not required to do this due to the fact that sparse matrices are used to
store these data. As previously mentioned, sparse matrices only store non-zero elements
and therefore the additional size of the matrix is not penalised by the consumption of addi-
tional memory. In fact, many of the other probabilities in this matrix will also be zero. For
example, the �nal SoC of the battery is represented by a probability distribution between
the discrete values above and below the calculated value, as a result, only a maximum of
two elements will be non-zero in this dimension. Using sparse matrices also has the advan-
tage that the index of the �nal state can be used to immediately identify the index of the
next initial state with no additional calculations.

Finally, the parallel processing toolbox has been used where possible to improve the
speed of the calculations on computers with multiple cores. Due to the high number of
independent simulations, this has given a massive bene�t, e�ectively reducing the time
required by a factor almost equal to the number of processor cores available. The use
of sparse matrices, parallel processing, model reduction, and performing the simulation
in stages means that the simultaneous calculation of both the transitional probability and
cost matrices takes approximately 24 hours to complete on a desktop PC using a 3.5GHz
quad-core processor when using the grid spacing given in Table 5.1, using less than 2GB of
memory per worker.
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5.3 SDP Solution

Given the probability and cost of each transition it is possible to calculate the statistically
optimal action to perform in each state so as to minimise the overall cost. Considering a
single time-step, the calculation is very simple. Firstly, the cost and the probability ma-
trices are multiplied on an element-by-element basis. The resulting matrix is a statistical
representation of the cost for each transition. The sum of each element in the �nal state
dimension can then be calculated to estimate the stochastic cost of each action for each
initial state. The optimal action can be chosen for each initial state as the one that gives the
lowest stochastic cost. This set of actions is known as the optimal policy.

If now, a second step is considered, the vehicle would have moved from its initial state.
The total cost requires calculation of the cost of the �rst step, but also the cost of the second
step, given the probability of each transition during the �rst step. The probability distribu-
tion of this new state can be calculated using the transitional probability matrix. The cost of
performing the optimal action in each new state has already been calculated, as that would
be a single time-step problem. Therefore, the cost of the second step can be calculated as
the element-by-element product of the probability of each transition during the �rst step
multiplied by the cost of the second step given the single step optimal policy. This can be
then added to the stochastic cost of each action for each initial state. The new policy can
be calculated as the one that minimises the overall cost over both steps.

The two-step policy may or may not be the same as the single step policy. For example,
the single step policy may determine that it is optimal to turn the fuel cell o� under almost
all circumstances in order to prevent degradation and conserve fuel. However, in the second
step, part of this policy may result in the battery voltage penalty being triggered due to
demand from the motors. As a result, it would be bene�cial to have the fuel cell producing
power during the �rst step in order to prevent this from occurring. Therefore, it may be
required to re-calculate the cost of the second step based on the new policy. The total cost
would then need to be recalculated, which may result in yet another change to the policy.
This process is then repeated until the policy is unchanged.

SDP works by taking this idea of adding the immediate cost of each action to the antici-
pated future cost due to the probability distribution of each transition and taking it further
into the future so as to be representative of the time-scales seen in the real world. There are
two main methods, �nite horizon and in�nite horizon. Finite horizon methods assume a
�xed number of time-steps and work in an equivalent way to the example given above. In�-
nite horizon methods however assume that the process is continued for an in�nite number
of steps. As this would invariably result in in�nite cost, a discount factor is exponentially
applied to future steps so as to allow the �nal cost to converge.

The choice of discount factor will a�ect both the accuracy of the results and the time
required for the cost to converge. A low discount factor may cause the solution to converge
very quickly, reducing processing time, but as a result may be unrepresentative of the typi-
cal time-scales seen in the real world, and therefore produce a sub-optimal results. Too high
a discount factor will cause the convergence to take an excessive amount of time, which
may not be necessary to obtain the optimal policy. Often the choice of discount factor is a
compromise between calculation time and accuracy.

More recently a number of authors [52, 64] have used an alternative in�nite horizon
method which does not require a discount factor. This is known as Shortest Path Stochas-
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tic Dynamic Programming (SP-SDP) and uses a “terminal state”. The terminal state is an
additional state added to the model which represents the end of the duty cycle. In order
to do this, it has a 100% probability of transitioning to itself with no associated cost. As a
result, no cost accumulates once the vehicle has entered the terminal state. This means that
the solution will converge for any initial state that has a non-zero probability of eventually
entering the terminal state given an in�nite number of steps. Therefore, no discount factor
(or a discount factor of 1) is required for the in�nite horizon cost to converge.

5.3.1 Mathematical Description

Two techniques will be used in this work, the in�nite horizon and shortest path SDP. A
brief mathematical description of each is given below. Despite its apparent complexity, SDP
can be described by two steps. The �rst is the policy evaluation where the expected costs
of performing the current policy are calculated. The second step is the policy improvement
step, where the policy is chosen as the set of actions which minimises the expected cost.
This process is then repeated until the policy converges.

5.3.1.1 In�nite Horizon

The MDP problem described has been solved using in�nite horizon SDP. The objective is
to �nd the optimal control policy, u = π∗(S) so as to minimise the total expected cost,
Jπ(S0), over an in�nite time horizon. The total expected cost is calculated using Equation
5.3.9, where λ ∈ [0, 1), represents the one second discount factor.

Jπ(S0) = lim
K→∞

E

{
K−1∑
k=0

λk−1Γ (Sk, π(Sk))

}
(5.3.9)

The optimal policy can be found using a policy iteration algorithm. This works by
iteratively evaluating the current policy and then improving the policy until the policy
converges. The policy evaluation step (Equation 5.3.10), given the current control policy,
π is calculated as the cost incurred during the current step added to the expected cost of
future steps given the new state, S ′, that the vehicle has transitioned to.

Jk+1
π (Si) = Γ(Si, π(Si)) + λE

{
Jkπ(S ′)

}
(5.3.10)

The policy is then improved by �nding the action which will minimise the total expected
cost, see Equation 5.3.11.

π′(Si) = argmin
a∈A(Si)

[
Γ(Si, a) + λE

{
Jπ(Si)

}]
(5.3.11)

This process is iterated until the policy remains unchanged for a number of improve-
ment steps. The optimal policy π∗(S) is based on the state of the vehicle, and is causal and
time-invariant and therefore can be directly implemented in simulation or on board the
vehicle.
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5.3.1.2 Terminal State

The solution to the terminal state problem is identical except for the fact that now no dis-
count factor is required. That is to say λ = 1 in the equations above, and therefore the
solution can be slightly simpli�ed:

Jπ(S0) = lim
K→∞

E

{
K−1∑
k=0

Γ (Sk, π(Sk))

}
(5.3.12)

Jk+1
π (Si) = Γ(Si, π(Si)) + E

{
Jkπ(S ′)

}
(5.3.13)

π′(Si) = argmin
a∈A(Si)

[
Γ(Si, a) + E

{
Jπ(Si)

}]
(5.3.14)

This solution will converge given the existence of a terminal state in the model. The
terminal state has three requirements. Firstly, every initial state must be able to eventually
transition to the terminal state given an in�nite number of steps. The terminal state will
always transition back to itself. This transition will incur no cost. As a result, the terminal
state will be “absorbing”. This means that the probability of being in the terminal state will
increase as the number of steps increases. As no cost is incurred in the terminal state, the
solution will therefore converge.
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5.4 SDP Parameter Selection
There are a number of parameters which can be tuned in order to make the compromise
between processing time and accuracy. These include the discount factor, the number of
policy evaluations, and the criteria for when the solution is said to have converged. Many
of these parameters represent a compromise between accuracy and computational burden.
This is because increasing the accuracy of the solution will tend to exponentially increase
the time required for the solution to converge. Therefore, often the process of parame-
ter selection involves de�ning a required level of accuracy and selecting the fastest set of
parameter values which will achieve this.

5.4.1 Discount Factor Selection
The use of a discount factor arti�cially forces the solution to converge and has an impact
on the e�ective horizon of the optimisation. A low discount factor will discount future
costs relatively quickly and as a result may not compensate for future costs su�ciently.
Conversely, a high discount factor will account for future costs more accurately, but will
take longer to converge.

This compromise is particularly apparent in this problem due to how the battery SoC is
managed. No cost is accumulated whilst the battery voltage is within an acceptable range.
Therefore, a strategy which is optimised with a low discount factor will tend towards being
charge-depleting in order to minimise the short-term cost of consuming fuel. This means
that rate at which the charge is depleted from the battery can be controlled with careful
selection of the discount factor. For Charge-Sustaining (CS) strategies, previous authors
have compensated for this by using a penalty for deviation from a target or nominal SoC
instead of (or in addition to) soft constraints. The weighting on this penalty can severely
a�ect the optimisation process, however, and therefore for a charge sustaining strategy,
using a higher discount factor is preferable.

With a high discount factor, the future cost of recharging the battery (in order to avoid
the minimum acceptable SoC limit) will be more heavily weighted. This results in an op-
timisation which is more “aware” of the future cost of recharging and thus will optimise
the strategy accordingly, choosing the optimal conditions under which to allow the battery
SoC to deplete, and the best times to recharge in order to minimise the overall fuel usage.
Unfortunately, the time required for the solution to converge increases exponentially with
increasing discount factor. Therefore, it is important to choose a su�ciently high discount
factor to ensure charge-sustaining behaviour, but no higher, in order to most e�ciently
use the computational time. Fortunately, with modern desktop computers, it is possible to
obtain a su�ciently accurate solution in a reasonable amount of time without applying a
penalty to battery SoC deviation from the nominal value.

More recently, an alternative method to using a discount factor has been developed.
This works by using a terminal state which represents the end of the drive-cycle. The
terminal state has no on-going cost, and always transitions back to itself. This allows the
solution to the optimisation to converge without the use of a discount factor. As a result, the
typical length of a journey is accurately represented. For a Charge-Depleting (CD) strategy,
the battery SoC will gradually decline to close to the minimum value over the length of a
typical journey. For a CS strategy, it is possible to set a �nal SoC target by applying a
penalty to just the transition to the terminal state. This allows the SoC to vary throughout
the journey without accumulating any penalty as long as it returns to the target value by
the end.
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5.4.2 Number of Policy Evaluations
The SDP algorithm has two steps; the �rst is to evaluate the policy, and the second is to
improve the policy. Due to the fact that a single evaluation of the policy is unlikely to
result in a policy change (especially as the solution gets close to converging), it is possi-
ble to improve the computational e�ciency by performing a number of policy evaluations
between each improvement step. However, too high a number of evaluations without a
policy improvement step may result in unnecessary evaluation calculations which are not
representative of the optimal policy. The number of evaluation steps for each improvement
step can therefore be optimised in order to minimise the overall computational burden.

5.4.3 Convergence Criteria
The �nal parameters which require tuning are the convergence criteria. The convergence
criteria de�ne the end of the optimisation process, and signify when the optimal policy
has been calculated. One method is to de�ne a convergence limit on the �nal cost. As the
optimisation process continues, and the future steps are discounted, the total accumulated
cost for each initial condition and action will converge. Future epochs are exponentially
discounted and therefore although the cost will never stop increasing, it will each tend
towards a �nal value for each initial state. By checking the matrix of �nal costs against its
previous value, the optimisation process can be stopped once the change in value is smaller
than a set limit.

This method is una�ected by the number of evaluation steps in between each improve-
ment step, however it can be di�cult to de�ne the convergence limit in advance of the
optimisation, as this will be highly dependent on the data in the transition probability and
cost matrices. As a result, it is required to set a very small value for this convergence in
order to be sure of policy convergence, which in turn will increase the optimisation time.

A better method is to check the policy for any changes since the last improvement
step. If the policy is unchanged, then it is said to have converged and the optimal policy
has been obtained. This method tends to be more time e�cient because it is generally
the policy which is of interest rather than the �nal costs. However, if there are too few
evaluation steps then it is possible that the policy could remain unchanged for a number
of improvement steps, before changing again later. This problem can be avoided by either
increasing the number of evaluation steps or requiring a number of policy improvement
steps where the policy remained unchanged.

5.4.4 Summary
In this work, the SDP algorithm was iterated with 100 policy evaluation steps for each
improvement step and was deemed to be converged when the policy remained unchanged
for 36 improvement steps, representing an hour of drive time. This combination was found
to be the most time e�ective in order to produce reliable results. A value of λ of 0.9999 was
chosen for the one second discount factor. This value is relatively high compared to what
is found in the literature (0.95-0.995) [44,47,51,52]; however, this was found to be required
for charge-sustaining behaviour in the long-term when using only the battery voltage to
constrain the SoC. Using these settings, the SDP optimisation took approximately 6 hours
to solve on a desktop PC using a 3.5GHz quad-core processor.
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5.5 Example Policy
The �nal output of the SDP optimisation process is the control policy which minimises
the cost function over the stochastic duty cycle given by the Markov chain. This can be
represented as a four-dimensional lookup table, where each of the four dimensions rep-
resents the input vector of one of the input states; speed, acceleration, battery SoC and
previous control action. It is therefore very easy to implement this policy in simulation or
in a real-time controller for testing purposes.

A cross section of a typical policy is shown in Figure 5.4. This policy was generated
using the grid spacing given in Table 5.1 and the SDP parameters given at the end of pre-
vious section. It can be seen that the general trends are as expected. For example, the fuel
cell will be run at decreasing load as the SoC of the battery increases. There is also a ten-
dency for the fuel cell to be run at a slightly higher load if the previous power demand was
higher. This is likely due to the controller attempting to avoid transient loading as much
as possible. Finally, it can be seen that the policy has a curved “cli�” edge at the upper
end of the battery SoC with regards to the previous power demand. This is likely due to
the optimisation of the running cost competing with the requirement to stay within the
battery voltage limits. High fuel cell power will likely result in increased battery voltage,
and therefore it suddenly becomes favourable to idle the fuel cell in order to avoid the soft
constraint.

Figure 5.4: Policy Example

It must be mentioned that although the optimal policy is calculated for every state, many
of these states will likely never be entered, especially due to the feedback of the previous
control action. For example, in the data shown in Figure 5.4, above 75% SoC, the policy
never requests more than 3200W. Assuming that the policy is similar at nearby states (i.e.,
ones that may transition to these states), then it is likely impossible that the previous power
would be above 3200W if the SoC is above 75%. This means that detailed examination of
the raw policy can be slightly misleading because the optimal action selected in some states
will have signi�cantly more e�ect on the results than the optimal action in other states.
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However, although in ideal circumstances some of the states will never be entered, the
fact that the policy is calculated for every state is still bene�cial. This is because it improves
the robustness of the solution for real-world use, given that component failure may occur,
or sensor readings may not always be accurate. For example, given an incorrect battery SoC
reading, the strategy would be able to recover when the readings become accurate again.
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Chapter 6

Strategy Simulation & Analysis

This chapter presents the simulation results of various Energy Management Strategy (EMS)
controllers developed using the techniques previously described. The chapter begins with
a brief description of how the controllers are tested. Following this, the results of the initial
Stochastic Dynamic Programming (SDP) optimised controller are presented and compared
�rstly to the baseline controller (based on the Microcab H4’s current strategy) and also to
a controller optimised purely on the fuel consumption.

It is found that for the current design, the 1.2kW fuel cell is insu�cient to maintain the
battery State of Charge (SoC) under normal usage even when the optimal control strategy
is applied. Therefore, the results are recalculated for a 4.8kw stack representative of that
in the newer Microcab H2EV. It is found that the current control strategy is no longer
appropriate for the system design and that the degradation inclusive controller reduces the
estimated degradation by approximately 15% for only a 4% increase in fuel consumption
when compared to the strategy optimised purely on the fuel consumption. This gives an
overall running cost saving of around 9%.
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6.1 Testing Procedure
As mentioned in the previous chapter, the output of the SDP algorithm can be represented
by a four-dimensional look up table which can easily be implemented in the full vehicle
model developed in Chapter 3. This model can then be used in order to simulate various
duty cycles in order to assess the performance of the controller. Initial results are obtained
using the grid spacing given in Table 5.1 and the SDP parameters given at the end of pre-
vious chapter.

The Microcab H4 is designed for very low speed campus driving and cannot complete
any standard drive-cycle. Therefore, logged data of the journeys captured at Loughborough
and Birmingham have been used for testing. Individual journeys identi�ed in Chapter 4
have been input as a speed reference into the model. These journeys are then simulated
and the EMS is used to control the output power of the DC/DC converter based on the
vehicle speed, acceleration, battery SoC and the previous control action. The operating
e�ciency of various components can then be calculated from the results, along with an
estimation of the fuel consumption and fuel cell degradation.

6.1.1 Weighting Factors - Hydrogen and Fuel Cell Stack Cost
In this analysis, the weighting in the cost function associated with the fuel consumption
and the degradation have not been chosen arbitrarily, but instead have been chosen based
on the monetary value of each. However, the de�nition of these �nancial costs is not a
trivial task. One potential option is to simply use the purchase cost of each, experienced
during the design of the vehicle in question. For an automotive manufacturer, this would be
the obvious decision and could be based on highly reliable data, making the cost function
extremely relevant to the exact vehicle and therefore the optimisation would minimise the
real-world �nancial running cost.

However, the Microcab H4 is a concept vehicle and thus the purchase cost of the fuel
cell is highly in�ated compared to that of a production vehicle. Similarly, the hydrogen
fuel supply available at Loughborough University is used primarily for research and devel-
opment purposes and as a result, the associated cost of the supply is not representative of
the anticipated “forecourt” cost for such vehicles. The bespoke nature of such vehicles and
the manner in which they are used means that there is considerable variability in such cost
estimates which depends on the supplier, production quantities and exact system design.
Although using such an estimate would be highly justi�able, the results would not translate
very well to other vehicle designs, making comparison with similar work di�cult.

Instead, it has been decided to consider a scenario in which the fuel cell stack is mass
produced, using present day (2015) estimates of mass production costs from the literature.
This provides two main bene�ts compared to using the actual costs experienced with the
vehicles. Firstly, as mentioned already, the estimates in the literature for mass produced
vehicles are much more consistent allowing for easier comparison to similar work. Sec-
ondly, these costs estimates are based on the scaled up manufacturing cost of the fuel cells
themselves and thus do not include additional components such as the electronic control
unit. These �gures are also not subject to supplier pro�t margins, exchange rate variability
and technical assistance which are all but impossible to separate from the purchase prices
of “o�-the-shelf” stacks such as the Ballard Nexa or Horizon H5000.

The US Department of Energy (DoE) targets a fuel cell cost of $35/kW [12] for fuel cell
vehicles to become viable, although recent estimates tend to be marginally higher, in the
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range of $50+/kW (2015) [13], $49-53/kW (2015) [107], and $61/kW (2009) [108]. Similarly,
dispensed hydrogen costs are expected to be within the range of $2.10/kg to $8.26/kg (2015)
[13, 107], depending on the method of production and transportation costs.

Unless otherwise stated, the data shown in this chapter assume a fuel cost of $3/kg of
hydrogen and a fuel cell cost of $50/kW. This gives the 1.2kW fuel cell used in the Microcab
a replacement cost of $60, and the 4.8kW fuel cell used in later analysis a cost of $240.
These �gures are clearly much lower than the actual purchase costs associated with the
vehicle; however, they have been used for the reasons listed above. These �gures are based
on recent estimates from the literature for current technology, assuming mass production
economy-of-scale. In reality, the prices are likely to be signi�cantly higher for current
fuel cell vehicles due to lower production volumes, but are likely to be lower for vehicles
released in the future due to more advanced technology. As these prices are used only to
weight the degradation and fuel consumption appropriately, the actual magnitudes of the
prices are of little importance compared to the ratio between the two.

6.1.2 Controller Design
The primary controller examined has been optimised to minimise the overall running cost
inclusive of both fuel consumption and the proportional cost of fuel cell replacement due
to voltage degradation. This controller is referred to as the Degradation Inclusive (DI) con-
troller or strategy. This strategy is novel with respect to the inclusion of quanti�able degra-
dation metrics into the cost function. Two other controllers have been developed for com-
parison purposes; the �rst is based on the current EMS strategy of the Microcab, and the
second is a SDP strategy representative of recent work in the literature.

6.1.2.1 Baseline Controller - Current Microcab Strategy
The baseline controller is the Microcab H4’s current control strategy. This strategy attempts
to control the DC/DC converter’s output power in order to maintain a battery pack voltage
of 57.6V. This represents a voltage of approximately 14.4V for each battery, and serves to
ensure every battery is fully charged by the fuel cell. The fuel cell will therefore react to
both a low battery SoC and the drop in voltage associated with ohmic losses due to high
current demand. As the motors may draw more than 10kW of electrical power, and the
maximum power output of the DC/DC converter is only 1.2kW, the batteries tend to be
depleted while the vehicle is moving, and therefore the voltage will drop below 57.6V. In
this case, the DC/DC converter will run at maximum power until the voltage returns to the
set point.

6.1.2.2 Minimal Fuel Consumption (MFC) Controller
The second controller developed for comparison is a SDP controller optimised solely to
minimise the fuel consumption. This represents recent work in the literature, and serves as
a good baseline for comparison to other work in the area. The fuel consumption only SDP
controller has been developed using exactly the same methods as the degradation inclusive
controller, aside from the removal of second term in the cost function (Equation 5.2.7); that
related to the cost of the fuel cell degradation. This comparison allows the e�ect of the
inclusion of degradation metrics into the optimisation to be separated from the normal fuel
consumption optimisation.
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6.2 1.2kW Fuel Cell
The �rst test involves simulating the Microcab H4 in its current con�guration with a 1.2kW
fuel cell. As has been previously mentioned, the fuel cell is relatively undersized for its
usage pattern and as a result, it is designed to continue to run for approximately 10 minutes
after the vehicle is switched o� in order to re-charge the battery pack. Therefore, the vehicle
has been simulated over a number of the drive cycles captured in the logged data, each with
the addition of a 10-minute stationary period after the main duty cycle to allow the battery
SoC to recover.

For each test, the SoC has been initialised so that there is no net change over the com-
plete journey. This avoids any complications involved with accounting for energy stored
in the battery and also allows the typical SoC of each strategy to be examined. Other than
this, the input to each controller is identical. For each controller, a selection of 10 journeys
was tested and the results of one of these were examined in detail. This journey lasts ap-
proximately 1 hour and involves four short trips lasting approximately 5-10 minutes each
with a stationary period in between. The total distance travelled is approximately 6.0 km
with a maximum speed of 6.91 m/s (25 km/h). The mean tractive power required is just
0.35kW, with a peak tractive power of 4.92kW. The full speed trace which represents the
duty cycle can be seen in Figure 6.1.

Figure 6.1: Test Journey
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6.2.1 Baseline Strategy
The current control strategy on the Microcab operates the fuel cell reactively to the battery
voltage. As a result, during periods of high current demand from the motors, the load on
the fuel cell also increases. Due to the stop/start nature of urban duty cycles, this puts a
highly transient load on the fuel cell. Figure 6.2 shows the results of the simulation using
the current control strategy on board the Microcab. The load on the fuel cell can be seen in
the second plot.

Figure 6.2: Accumulated Running Cost for the Current Microcab Controller (1200W)

During periods of acceleration, the motor draws a high current. This current causes
the battery voltage to suddenly drop due to ohmic losses and the fuel cell load increases
in order to compensate. When the vehicle subsequently begins to decelerate, the battery
voltage recovers, and the load on the fuel cell abruptly drops, see Figure 6.3.
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Figure 6.3: Transient loading due to reactive fuel cell load (1200W)
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As each trip continues, the battery SoC gradually falls as the fuel cell generally supplies
less current than that drawn by the motors. It can be seen in the third trip in Figure 6.2 that
during sustained periods of activity, the battery SoC drops signi�cantly enough that the
fuel cell begins to run at full power continuously. Despite this, the battery SoC continues
to fall. This shows that the fuel cell is undersized for the application, and as a result, is
unable to provide enough power to prevent the SoC from decreasing while the vehicle is
active. Given a longer period of activity or a journey lasting more than a few minutes, it
is likely that the battery would be become discharged well before the fuel cell runs out of
fuel.

The lowest plot shows the accumulated running cost as estimated by the model. It can
be seen that the fuel consumed accounts for approximately 72% of the total cost of the
journey which was around $0.31. The total degradation on the fuel cell is estimated at
around 0.15%, representing a proportional cost of $0.09, and putting the estimated lifetime
of the fuel cell at around 704 hours (compared to the datasheet estimation of 1500 hours).
Just over half of the degradation is due to the single on/o� cycle of the fuel cell, 25% due to
the transient loading and 20% due to operation of the fuel cell close to full load.

Table 6.1 shows the results for the complete set of tested journeys. It can be seen that the
fuel consumption is relatively consistent, ranging between 12.5 g/km to 14.8 g/km, which
is approximately proportional to the average power drawn by the motor. The estimated
lifetime of the fuel cell varies considerably from 379 hours to 760 hours. This is very closely
related to the duration of the journey due to the high on/o� cycle degradation cost, and
therefore shorter journeys accumulate less time for the same amount of degradation. This
suggests that the voltage degradation due to start-up and shut-down is a major cause of
fuel cell ageing for this usage pattern.

No Duration Distance Mean Motor
Power

Hydrogen
Consumption

Estimated
Lifetime

Estimated
Range

Total
Cost

1 3817 s 4.3 km 0.55 kW 13.5 gkm−1 587 h 44.4 km $0.28
4 3715 s 6.0 km 0.72 kW 12.5 gkm−1 704 h 48.1 km $0.31
12 2146 s 4.7 km 1.02 kW 13.9 gkm−1 489 h 43.3 km $0.27
15 2315 s 3.9 km 0.77 kW 12.9 gkm−1 489 h 46.6 km $0.23
23 2368 s 2.8 km 0.57 kW 13.2 gkm−1 508 h 45.5 km $0.19
32 1883 s 2.9 km 0.73 kW 13.5 gkm−1 464 h 44.5 km $0.18
41 1546 s 3.2 km 1.02 kW 14.8 gkm−1 379 h 40.6 km $0.21
51 4011 s 5.7 km 0.69 kW 13.6 gkm−1 760 h 44.1 km $0.32
71 2954 s 3.8 km 0.61 kW 12.8 gkm−1 627 h 46.8 km $0.23
78 2919 s 3.1 km 0.49 kW 12.6 gkm−1 648 h 47.8 km $0.19

Total 27674 s 40.2 km 0.69 kW 13.3 gkm−1 574 h 45.2 km $2.40

Table 6.1: Performance Summary for the Current Microcab Controller (1200W)
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6.2.2 MFC Strategy

The second strategy has been optimised using SDP to minimise the fuel consumption only.
The results are shown in Figure 6.4. It can be clearly seen that this strategy puts signi�-
cantly less transient loading on the fuel cell. Compared to the baseline strategy, the fuel
cell power tends to ramp up gradually when the vehicle is moving and as the SoC of the
battery decreases. The strategy runs the fuel cell at full power towards the end of each trip,
gradually ramping the power down when the vehicle is stationary and as the SoC recovers.
In contrast to the baseline strategy, the MFC strategy appears to be more closely related to
the SoC of the battery than the voltage.

Figure 6.4: Accumulated Running Cost for the Fuel Only Optimised Controller (1200W)

Although the SDP strategy uses the SoC as an input rather than the voltage, it could still
react to the battery voltage indirectly by responding to changes in the vehicle speed and
acceleration. These will a�ect the current drawn by the motors, and hence the voltage of the
battery due to its internal resistance. The algorithm does not appear to do this however, and
seems to vary the load inversely proportionally to the SoC. This has the indirect e�ect of
reducing the transient loading on the fuel cell, however, the MFC strategy is not optimised
to do this, and therefore there must be another reason why it makes these control decisions.

At high SoC, the battery voltage risks hitting the upper constraint on the optimisation
and therefore the optimisation is minimising the probability of this happening despite an
increased load from the duty cycle. As the SDP optimisation uses the transitional probabil-
ity matrix to generate its policy, it is “aware” of the possibility that the load may decrease in
the future and the e�ect that this will have on the battery voltage. Due to the highly tran-
sient loading pattern from the campus journeys there is almost always a relatively high
possibility for the vehicle to begin to decelerate, regardless of its current trajectory. There-
fore, in order to protect the battery from its upper voltage constraint, the fuel cell load only
begins to increase once the battery SoC has begun to deplete. By doing this, it is much less
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likely that the increased current from the fuel cell will cause the battery voltage to suddenly
spike above the maximum voltage constraint.

Despite this, there are a number of sharp downward spikes seen in the fuel cell de-
manded power. These generally occur at the beginning of decelerations in the duty cycle
and are therefore likely due to the controller attempting to avoid the maximum battery volt-
age constraint. This suggests that even though the fuel cell power is only increased once
the SoC has dropped, there is still the possibility that the maximum voltage constraint could
be breached. Given that there is an extremely high penalty if this occurs, it is unlikely that
the MFC controller is taking this risk in order to optimise the fuel consumption. It is much
more likely that if a lower power was demanded, the battery voltage would risk breaching
its minimum limit. This suggests that the fuel cell is compromising its overall strategy in
order to avoid the penalties associated with the voltage constraints. This is likely due to the
low maximum power of the fuel cell. As a result, the strategy tends to operate the battery
very close to its maximum voltage constraint in order to allow for sustained periods of high
current demand from the motors.

Compared to the baseline strategy an increase in fuel cost of approximately 6.5% is
observed. As the MFC strategy is optimised to give the minimal fuel consumption, this
again suggests that the strategy is compromised by the battery voltage constraints. The
fuel cell is run at less e�cient operating points in order to minimise the possibility of the
battery reaching its minimum voltage limit during a sustained period of activity. In contrast,
the baseline strategy aggressively targets a high battery SoC, but is not actually constrained
by the battery voltage. As a result, the fuel cell is run at lower overall power for the same
battery SoC, which results in a minor fuel saving at the risk of causing damage to the battery
due to deep-discharge. Figure 6.5 shows a detailed comparison of the battery SoC for both
controllers. It can be seen that both controllers follow relatively the same pattern, however
the MFC controller maintains a SoC which is consistently around 2.5% higher.
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The reduction in transient loading does have an indirect bene�t however, in that the
fuel cell degradation is reduced. The overall degradation using this controller is estimated
at approximately 0.12% representing a saving of around 20%. For the MFC controller, ap-
proximately 70% of the degradation is due to the single on/o� cycle of the fuel cell which
cannot be avoided. There is a 10% increase in the degradation associated with operating
the fuel cell at high load; however, an 80% reduction in the cost of transient loading causes
a 161 hour (24%) increase in the expected lifetime. As a result, the overall estimated cost of
the drive-cycle ($0.31) is identical to that calculated for the baseline strategy.

The results for all ten tested cycles are shown in Table 6.2. As before, the fuel consump-
tion is relatively consistent and now even more closely related to the average motor power.
The fuel consumption is approximately 5% higher than the baseline strategy on average.
Similarly, the estimated lifetime varies considerably and is most correlated to the duration
of the journey. This is because the degradation due to the single on/o� cycle is consistently
the most signi�cant degradation method due to the reduction in transient loading on the
fuel cell. Compared to the baseline strategy, the overall cost is approximately 3.6% lower
despite the increase in fuel consumption.

No Duration Distance Mean Motor
Power

Hydrogen
Consumption

Estimated
Lifetime

Estimated
Range

Total
Cost

1 3817 s 4.3 km 0.55 kW 13.7 gkm−1 1058 h 43.7 km $0.24
4 3715 s 6.0 km 0.72 kW 13.3 gkm−1 878 h 45.2 km $0.31
12 2146 s 4.7 km 1.02 kW 14.4 gkm−1 490 h 41.7 km $0.28
15 2315 s 3.9 km 0.77 kW 13.7 gkm−1 603 h 43.7 km $0.22
23 2368 s 2.8 km 0.57 kW 13.6 gkm−1 721 h 44.0 km $0.17
32 1883 s 2.9 km 0.73 kW 14.6 gkm−1 518 h 41.2 km $0.19
41 1546 s 3.2 km 1.02 kW 15.3 gkm−1 390 h 39.2 km $0.21
51 4011 s 5.7 km 0.69 kW 14.4 gkm−1 976 h 41.8 km $0.31
71 2954 s 3.8 km 0.61 kW 13.6 gkm−1 806 h 44.0 km $0.22
78 2919 s 3.1 km 0.49 kW 13.2 gkm−1 868 h 45.4 km $0.18

Total 27674 s 40.2 km 0.69 kW 14.0 gkm−1 727 h 43.0 km $2.32

Table 6.2: Performance Summary for the Fuel Only Optimised Controller (1200W)
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6.2.3 DI Strategy
The �nal controller is designed in order to minimise the overall running cost of the fuel
cell inclusive of both hydrogen consumption and degradation. As can be seen in Figure 6.6,
the DI strategy behaves almost identically to the MFC strategy. As a result, the costs are
largely similar; both the fuel consumption and estimated degradation costs are identical to
3 signi�cant �gures.

Figure 6.6: Accumulated Running Cost for the Degradation Inclusive Optimised Controller
(1200W)

The fact that both controllers behave very similarly suggests that the control authority
of the EMS is very low, probably due to the low maximum power of the fuel cell. It is likely
that the constraints on the battery voltage are dominating the optimisation process due to
the possibility of a sustained journey which will deplete the battery even if the fuel cell is
run at maximum power. As a result, the SDP optimised controllers tend to run the fuel cell
in such a way as to maintain high battery SoC. If this is the case, they would behave almost
identically to each other because they are both subject to the same voltage constraints, and
the minimisation of fuel consumption and degradation are having negligible e�ect on the
optimisation.

It can be seen in Table 6.3 that the results for all 10 journeys are again almost identical
to those for the MFC strategy. The fuel consumption and total cost of each journey were
almost identical. The estimated lifetime varies very slightly however. The overall degra-
dation of the DI strategy was on average approximately 0.2% higher, although it varies be-
tween 0.7% better and 1.3% worse depending on the journey. Although this shows the that
degradation was not reduced by the SDP algorithm, this result is well within the variation
expected due to the stochastic nature of the optimisation process. As has been mentioned
before, the SDP gives the statistically optimal policy for the transitional probabilities de-
�ned in the Markov chain model, but may or may not give the optimal results for a single
journey (or a small sample) when taken in isolation.
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No Duration Distance Mean Motor
Power

Hydrogen
Consumption

Estimated
Lifetime

Estimated
Range

Total
Cost

1 3817 s 4.3 km 0.55 kW 13.7 gkm−1 1044 h 43.7 km $0.24
4 3715 s 6.0 km 0.72 kW 13.3 gkm−1 874 h 45.2 km $0.31
12 2146 s 4.7 km 1.02 kW 14.4 gkm−1 490 h 41.7 km $0.28
15 2315 s 3.9 km 0.77 kW 13.7 gkm−1 603 h 43.7 km $0.22
23 2368 s 2.8 km 0.57 kW 13.6 gkm−1 723 h 44.0 km $0.17
32 1883 s 2.9 km 0.73 kW 14.6 gkm−1 522 h 41.2 km $0.18
41 1546 s 3.2 km 1.02 kW 15.3 gkm−1 390 h 39.2 km $0.21
51 4011 s 5.7 km 0.69 kW 14.4 gkm−1 970 h 41.8 km $0.31
71 2954 s 3.8 km 0.61 kW 13.6 gkm−1 806 h 44.0 km $0.22
78 2919 s 3.1 km 0.49 kW 13.2 gkm−1 865 h 45.4 km $0.18

Total 27674 s 40.2 km 0.69 kW 14.0 gkm−1 726 h 43.0 km $2.32

Table 6.3: Performance Summary for the Degradation Inclusive Optimised Controller
(1200W)
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6.2.4 Comparison and Summary

The �nal cost of fuel and proportional degradation for each controller is summarised in
Figure 6.7, where in each group of bars, the left bar refers to the baseline controller, the
middle is the MFC strategy, and the right bar is the DI strategy. It can be seen that the
performance of all 3 strategies was very similar overall, and the performance of each of the
SDP optimised strategies almost identical in every case. The fuel consumption of the base-
line strategy was lower for every journey, although the overall cost of the baseline strategy
was higher for 7 out of the 10 journeys, mainly due to the degradation cost associated with
transient loading. On average, the fuel consumption was 5.1% higher for both optimised
strategies compared to the baseline; however, the degradation was on average 21% lower
resulting in an overall cost saving of 3.6% and an increased estimated lifetime of around
26.5%.
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Figure 6.7: Cost Comparison (1200W), Left Bar = Baseline, Middle = MFC, Right = DI

It has already been found at the University of Birmingham [4, 6] that the fuel cell is
generally quite undersized even for low speed campus journeys and as a result requires
approximately 7 minutes [4] in order to replenish the batteries after the vehicle has been
used. As a result, it is �tted with a 10-minute timer relay which keeps the fuel cell oper-
ational after the vehicle ignition has been switched o�. The low maximum power of the
fuel cell results in the gradual depletion of the battery SoC during usage, despite the fuel
cell operating at maximum power. This has resulted in a high stack utilisation of 68% [6],
maximising the bene�t of the fuel cell for a low mass and packaging cost. The downside,
however, is that the vehicle has reduced driving range for a single journey because the bat-
teries will almost certainly become discharged before the hydrogen fuel in the tank is used
up. If the vehicle is driven non-stop, the batteries will become depleted after approximately
15 to 25 minutes which results in a range of just 8km. However, with the intermittent cycles
typically seen on campus, during testing the range has been shown to be approximately 30
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to 45 km [6].
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Figure 6.8: Range Comparison (1200W)

This correlates well with the results of the simulations, shown in Figure 6.8, where the
average range was around 45km for the journeys tested. In comparison, the SDP controllers
only achieved an average range of around 43km, a slight reduction. This is a direct result
of the increase in the fuel consumption for these controllers, see Figure 6.9. It can be seen
that the fuel consumption for the two SDP controllers was consistently higher than that of
the baseline, which was mainly due to these strategies spending less time running the fuel
cell at its optimal e�ciency operating point.

The low maximum output power of the fuel cell does mean that a relatively simple
control algorithm can be used. This control algorithm is designed to run the fuel cell so
that the batteries are kept fully charged. Because the maximum power of the fuel cell is
too low in order to achieve this during driving, the fuel cell runs at maximum power for a
substantial proportion of its time, and the batteries are used to absorb transient loading of
the duty cycle. As a result, the fuel cell runs at a fairly steady load, and experiences fewer
transients than it would do otherwise with this strategy. Unfortunately, the high power
operation results in some degradation of its own, although this is signi�cantly less than
would be caused by a continuously changing load. Despite this, the fact that the fuel cell
is being run reactively to the vehicle load means that there is still considerable transient
degradation when compared to the SDP controllers, which in turn results in a lower average
estimated lifetime of the stack, see Figure 6.10.This is because the baseline strategy manages the SoC using the battery voltage as its
only input. In contrast, the SDP controllers vary the load on the fuel cell in response to the
SoC. For the DI strategy, one reason for this could be the small e�ect of the transient load
cost, however the MFC strategy behaves in an identical manner, therefore this is unlikely to
be the reason. More likely, it is because the SDP algorithm takes the probabilities of future
changes in load into account and the battery is less likely to be overcharged if the fuel cell
power is only increased once the SoC has fallen.
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Figure 6.9: Fuel Consumption Comparison (1200W)
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Figure 6.10: Estimated Lifetime Comparison (1200W)

Despite these di�erences, the SDP optimisation results in a very similar strategy to the
baseline controller, and both the MFC and the DI optimisations produce almost identical
results to each other. Both of these facts suggest that battery voltage constraints domi-
nating the optimisation. The “soft” constraints are implemented by assigning a very high
cost, orders of magnitude higher than the variables to be optimised, to any transition which
would result in these limits being exceeded. Under normal conditions this e�ectively re-
duces the number of valid actions to those which would keep the battery voltage within
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the acceptable range. This is because any action which could potentially allow the con-
straints to be exceeded will have an extremely high cost compared to that associated with
the fuel consumption and stack degradation and therefore should be completely avoided.
For any initial state for which there is no action that will prevent the battery voltage limits
from being exceeded, the optimal action will be the one that most e�ectively minimises the
penalty for exceeding these constraints, attempting to bring the state back to one within
the constraints. In this case, as the costs associated with the main optimisation function
are orders of magnitude lower, they will have negligible e�ect on the overall cost.

Using a 1.2kW fuel cell, it is not possible to guarantee that the battery voltage constraints
will never be exceeded under normal use. For every possible state of the vehicle, even those
in the middle of the acceptable voltage range, there exists a signi�cant probability that the
battery could be depleted (or would be over-charged) even if the fuel cell is run at maximum
power. As a result, the high penalty associated with the constraints a�ects every initial
state, and therefore the costs associated with fuel consumption and stack degradation have
minimal e�ect on the optimised strategy. In other words, the control authority of the EMS
is too low to ensure the protection of the battery which takes priority over the minimisation
of running cost. The optimal strategy is therefore the one that minimises the possibility of
the voltage limits from being exceeded whether or not the fuel cell degradation is included
in the cost function.

In conclusion, the 1.2kW fuel cell stack used in the Microcab H4 is generally undersized
for its application. As a result, it is required to run at full power for almost all of the
time that the vehicle is active just to maintain the battery SoC. The current strategy is
designed to run the fuel cell in order to keep the batteries fully charged at all times, only
letting the battery to act as a bu�er when the current demand from the motors exceeds the
maximum power of the fuel cell. Due to the low maximum power of the fuel cell, the SDP
optimisation results in a similar strategy. The excessive cost associated with the battery
voltage penalties dominates the optimisation process, meaning that the optimisation of
both fuel consumption and fuel cell degradation have insigni�cant e�ect. As a result, the
optimised strategies show only a marginal bene�t over the current strategy with regards
to the minimisation of these targets.
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6.3 4.8kW Fuel Cell

It has been observed in previous work by Kendall et al. [4] and by Sta�ell et al. [6], and
con�rmed in the �rst half of this chapter that the fuel cell in the Microcab H4 is undersized
for its duty cycle when it was used at the University of Birmingham. Although the Micro-
cab provided acceptable performance for short trips, extended journeys tended to deplete
the battery pack faster than it could be charged by the fuel cell. Therefore, one of the im-
provements for the next generation of the Microcab, the H2EV, is to increase the maximum
power of the fuel cell stack. One of the options for the Microcab H2EV is a 5kW fuel cell.
In order to model this, the 1.2kW fuel cell in the Microcab H4 has been scaled-up by a fac-
tor of 4 to a nominal 4.8kW. This new model now simulates four identical 1.2kW fuel cells
operating in parallel. This will give the EMS much more control authority, and allow for
much more �exibility with regards to the load on the fuel cell at any time. As a result of
this additional control authority, the optimisation of the fuel consumption and degradation
should be improved and the bene�ts of the SDP optimisation should be clearer.

Each controller has been simulated over the same selection of logged journeys in order
to assess its performance with the larger fuel cell stack. Because the size of the stack has
been increased, it is also no longer necessary to include the 10-minute stationary period
after each logged journey.

6.3.1 Baseline Strategy

It can be clearly seen in Figure 6.11 that the baseline strategy would result in signi�cantly
more degradation due to transient loading if the size of the fuel cell were to be increased.
This is because the current control strategy aggressively targets a high battery SoC.

Figure 6.11: Accumulated Running Cost for the Current Microcab Controller (4800W)
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The strategy behaves in a similar way to before, increasing the load on the fuel cell as
the vehicle accelerates or is moving at a relatively constant speed, and reducing it when the
vehicle decelerates or stops. However, the increased size of the fuel cell now means that
the battery SoC is managed much more e�ectively and as a result it can be seen that it does
not signi�cantly change throughout the journey. As the SoC does not drop during active
periods, the voltage of the battery remains relatively high and therefore the fuel cell does
not need to run at the limit of its capacity for prolonged periods of time in order to recharge
the battery. This means that the fuel cell is always running reactively to the electrical load
from the motors and as a result, it experiences a highly transient loading pattern.

Figure 6.12 shows a close-up of the operating power of the motor, battery pack and
fuel cell for a section of the journey shown in Figure 6.11. It can be seen that the fuel cell
operating power closely follows the electrical demand from the motors, di�erent only due
to the e�ciency of the DC/DC converter. This results in very little net current on the battery
pack, and a highly transient load on the fuel cell. In fact, the batteries are only really used
during an acceleration at the end of this section of the data, where the power drawn by the
motor exceeds the capability of the stack for just one second. Obviously, using a 4.8kW fuel
cell, this occurs much less frequently than it did with the 1.2kW stack.
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Figure 6.12: Baseline Controller Energy Management (4800W)

Overall, the 4.8kW fuel cell stack operates more e�ciently (45%) than the 1.2kW stack
(41%); this is because it spends more time operating at part load where it is more e�cient.
In addition to this, much less energy (99%) is lost due to cycling losses in the battery. This
results in an overall 16% reduction in the fuel consumed, reducing the fuel consumption
from 12.5g/km to 10.5g/km. Unfortunately, the fuel consumption only counts for approxi-
mately 11% of the total cost of this journey. The highly transient load and the increased cost
of the stack, result in an estimated proportional cost due to degradation of $1.50, meaning
that the overall cost of the journey is increased by around 540% and the estimated lifetime
of the stack is now just 139 hours.
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The results for all ten of the tested journeys are shown in Table 6.4. It can be seen that
the trend continues across the range. The fuel consumption is reduced on all journeys by
between 9% and 22%, resulting in an average fuel consumption of 11.3 g/km, 15% lower than
the 1.2kW fuel cell. However, the estimated cost of degradation is increased massively by
almost a factor of 10 due to the highly transient loading on the fuel cell, reducing the lifetime
of the fuel cell down from an estimated 574 hours to just 166 hours. The degradation due to
operation at very low loading is also increased; however, the degradation due to operation
at high load is reduced by approximately 79%. The reduced lifetime of the stack as well as
its increased cost result in an overall cost increase of 318% when compared to the 1.2kW
fuel cell.

No Duration Distance Mean Motor
Power

Hydrogen
Consumption

Estimated
Lifetime

Estimated
Range

Total
Cost

1 3217 s 4.3 km 0.66 kW 11.9 gkm−1 140 h 50.6 km $1.69
4 3115 s 6.0 km 0.86 kW 10.5 gkm−1 139 h 56.9 km $1.68
12 1546 s 4.7 km 1.41 kW 11.0 gkm−1 223 h 54.6 km $0.62
15 1715 s 3.9 km 1.05 kW 10.6 gkm−1 110 h 56.7 km $1.16
23 1768 s 2.8 km 0.76 kW 11.5 gkm−1 128 h 52.0 km $1.01
32 1283 s 2.9 km 1.08 kW 11.5 gkm−1 188 h 52.2 km $0.55
41 946 s 3.2 km 1.67 kW 11.5 gkm−1 178 h 52.3 km $0.46
51 3411 s 5.7 km 0.81 kW 11.8 gkm−1 270 h 50.9 km $1.04
71 2354 s 3.8 km 0.76 kW 11.4 gkm−1 334 h 52.7 km $0.60
78 2319 s 3.1 km 0.62 kW 11.4 gkm−1 137 h 52.7 km $1.23

Total 21674 s 40.2 km 0.88 kW 11.3 gkm−1 166 h 53.2 km $10.05

Table 6.4: Performance Summary for the Current Microcab Controller (4800W)

Obviously, it would be necessary to modify the current strategy if a larger fuel cell were
to be �tted to the Microcab in order to achieve acceptable rates of degradation. The current
strategy is designed around the current vehicle speci�cation and it is unlikely that the fuel
cell would be upgraded without consideration of the EMS. It can be seen from these results
that there is potential to improve the fuel consumption of the vehicle if a larger fuel cell
were to be used. This is because the current 1.2kW fuel cell runs at full load for a high
proportion of its operating time. Fuel cells su�er from signi�cant ohmic losses a high load
due to the increased current, but may also su�er from mass transport limitations which
can lead to reduced e�ciency as well as possible voltage degradation. Using a larger stack
allows the fuel cell to be run at a more e�cient operating point whilst still providing enough
power to maintain the battery SoC.

It is clear however, that the increased rates of degradation would be unacceptable for
a production vehicle, and would lead to signi�cant maintenance costs. This is because
the EMS no longer takes advantage of the battery pack in order to absorb the transient
loading inherent in vehicle duty cycles. It would therefore be necessary to design a strategy
which would allow a greater degree of battery SoC deviation during the cycle while still
maintaining the fuel economy of using the larger fuel cell. This could dramatically reduce
the transient loading on the fuel cell. One way to achieve this would be to set a rate of
change limit on the fuel cell load as has been performed previously in the literature by
Thounthong et al. [109].
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6.3.2 MFC Strategy

The results for the MFC strategy are shown in Figure 6.13. It can be seen that the strategy
runs the fuel cell near to 800W for much of the time that the vehicle is stationary, increasing
to around 2.0kW while the vehicle is moving.

Figure 6.13: Accumulated Running Cost for the Fuel Only Optimised Controller (4800W)

In contrast to the baseline strategy, the battery SoC is much lower throughout the cycle
and also tends to �uctuate signi�cantly more. The increased size of the fuel cell allows
the MFC optimised strategy to utilise the capacity of the battery to a much greater e�ect.
This is because if high power is required by the motors for a sustained period, the fuel cell
would be able to generate much more power in order to prevent the SoC of the battery from
dropping too low. It is also worth noting that no downward spikes are present in the fuel
cell power, due to the fact that the strategy no longer operates the battery close to its upper
voltage constraint. Therefore, sudden deceleration no longer threatens to cause the battery
voltage to rise above this constraint and as a result, the load on the fuel cell is more stable.

The fuel cell tends to operate in or around its maximum e�ciency for almost the entire
journey; allowing the battery SoC to �uctuate in order absorb the transient loading of the
duty cycle. This results in a further fuel saving of approximately 9% when compared to the
baseline strategy for the 4.8kW fuel cell. Signi�cant degradation savings are also seen; the
transient loading is reduced by approximately 96%, and the low load degradation is reduced
by approximately 40%. This represents a total reduction in voltage degradation of 83%. Even
though this strategy does not take into account any degradation metrics, the improvement
is seen due to the tendency to operate the fuel cell close to its maximum e�ciency. This
operating region results in minimal degradation, and there is also an inherent reduction
in transients by running the fuel cell consistently in its maximum e�ciency region, rather
than reactively to the load.
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In contrast to the MFC strategy for the 1.2kW fuel cell, this strategy seems to be more
closely related to the vehicle speed and acceleration than the battery SoC. The fuel cell is
generally run at high power when the vehicle is moving and lower power during stationary
periods. This is likely due to the fact that there is a reduced risk of the battery voltage from
exceeding its limits due to the increased control authority of the EMS. This means that the
battery SoC can be allowed to �uctuate more in order to act as an energy bu�er. This allows
the operating point of the fuel cell to be chosen to be the one that is most likely to minimise
the long-term fuel consumption.

This strategy is designed to minimise the fuel economy as much as possible, and there-
fore is constantly updating the operating point in order to do this. Unfortunately, the SDP
optimisation requires discretization of the fuel cell operating points. Therefore, there are
times when the optimal strategy results in oscillations between two discrete operating
points in order to achieve the optimal fuel economy. This results in some unnecessary
transient loading on the fuel cell. In addition to this, small spikes in the fuel cell load are
seen during active periods, especially when the vehicle accelerates. Although this may give
the optimal fuel e�ciency, this also results in some unnecessary transient loading.

Table 6.5 shows the results of the MFC across all 10 journeys tested. It can be seen that
the degradation is lower than the baseline strategy for all journeys, ranging between 6.9%
and 11.4% with an average reduction of 9.9%. This represents a reduction of 27.2% when
compared to the SDP strategies optimised for the 1.2kW fuel cell. The biggest cost sav-
ing when compared to the baseline strategy however, is the reduction in transient loading
which increases the estimated lifetime by a factor of 2.5 times, from 166 hours on average
up to 583 hours. This means that the overall cost of the 10 journeys is reduced by 66% when
compared to the baseline strategy; however, the increased cost of the fuel cell means that
this is approximately 60% higher than the MFC strategy designed for the 1.2kW fuel cell.

No Duration Distance Mean Motor
Power

Hydrogen
Consumption

Estimated
Lifetime

Estimated
Range

Total
Cost

1 3217 s 4.3 km 0.66 kW 10.7 gkm−1 693 h 55.9 km $0.45
4 3115 s 6.0 km 0.86 kW 9.6 gkm−1 797 h 62.7 km $0.43
12 1546 s 4.7 km 1.41 kW 9.9 gkm−1 471 h 60.7 km $0.36
15 1715 s 3.9 km 1.05 kW 9.7 gkm−1 515 h 61.8 km $0.33
23 1768 s 2.8 km 0.76 kW 10.4 gkm−1 507 h 57.8 km $0.32
32 1283 s 2.9 km 1.08 kW 10.3 gkm−1 392 h 58.4 km $0.31
41 946 s 3.2 km 1.67 kW 10.7 gkm−1 279 h 56.1 km $0.33
51 3411 s 5.7 km 0.81 kW 10.5 gkm−1 846 h 57.2 km $0.45
71 2354 s 3.8 km 0.76 kW 10.1 gkm−1 614 h 59.5 km $0.37
78 2319 s 3.1 km 0.62 kW 10.2 gkm−1 576 h 59.1 km $0.36

Total 21674 s 40.2 km 0.88 kW 10.2 gkm−1 583 h 59.0 km $3.70

Table 6.5: Performance Summary for the Fuel Only Optimised Controller (4800W)
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6.3.3 DI Strategy

The results of the DI strategy can be seen in Figure 6.14. It can be seen that this strategy
again performs quite similarly to the MFC controller, but with a few important di�erences.
The similar behaviour results from the fact that both controllers have costs associated with
the fuel consumption, but also shows that the optimisation of degradation does not directly
compete with that of the fuel economy. This is because the fuel cell experiences little degra-
dation at its optimal operating point, and therefore it is bene�cial for both fuel consump-
tion and degradation to operate the fuel cell consistently at this point. The most signi�cant
di�erence between the strategies is that the fuel cell tends to operate at an even more con-
sistent load than before, and with no oscillations between discrete operating points. This
is likely as a result of the cost associated with the transient loading, which causes the DI
optimal policy to show some degree of hysteresis on the fuel cell demand.

Figure 6.14: Accumulated Running Cost for the Degradation Inclusive Optimised Controller
(4800W)

The e�ect of this cost can be clearly seen at in the region of 1000-1800 seconds into
the journey, see Figure 6.15. Firstly, between 1000 and 1250 seconds into the journey, the
vehicle is moving. The MFC controller varies the fuel cell power demand dynamically in
response to the varying speed and acceleration throughout the trip. In contrast, the DI
strategy maintains a relatively steady load on the fuel cell gently adjusting the demand as
the trip continues.

The oscillation between operating points performed by MFC strategy is very apparent
between approximately 1580 and 1750 seconds, when the vehicle is stationary. The initial
load on the fuel cell was at 600W when the vehicle �rst stopped at around 1250 seconds.
As the battery begins to recharge, the load on the fuel cell decreases, down to 400W by the
time the vehicle begins to move again at 1820 seconds. Between these separate operating
points, there is a region of oscillation lasting approximately 3 minutes. In contrast, the
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Figure 6.15: Detailed Comparison of MFC and DI Strategies

DI controller stays at the upper operating point during this period, before dropping down
permanently to the lower operating point until the vehicle begins to move again. A �nal
point to notice from Figure 6.15 is that the fuel cell demand from the DI controller tends to
lag behind that of the MFC controller, acting almost like a low pass �lter. This is likely due
to the hysteresis in the strategy, as a result, the fuel cell power is generally lower for the
DI controller at the beginning of active periods, and higher at the beginning of stationary
periods.

For the DI strategy, the overall cost of the journey is estimated at $0.39 with approxi-
mately $0.18 (45%) due to the fuel consumption. The vast majority of the degradation (90%)
was due to the single on/o� cycle of the fuel cell, with the majority remaining cost due to
fuel cell operation at very low current loading. As no cost is associated with operation at
high current loading, this suggests that the 4.8kW fuel cell may now be oversized for the
application.

As a result of relatively minor changes to the strategy, the degradation due to transient
loading is reduced by 97% when compared to the MFC controller. Along with a 20% reduc-
tion in degradation due to low current loading, this results in an overall 17% decrease in
degradation for this strategy and a 20% increase in the estimated fuel cell lifetime. As both
optimisation targets are largely complimentary, the fuel consumption is only marginally in-
creased (3.7%), meaning the overall estimated cost of the journey is reduced by more than
8%. This suggests that there is a signi�cant bene�t to the inclusion of degradation metrics
in the cost function despite their relatively small e�ect on the policy.

It can be seen in Table 6.6 that, similar to the baseline and MFC strategies, the fuel
consumption is relatively consistent across all journeys, ranging between 9.9g/km and
11.2g/km. On average, the fuel consumption is 6.9% lower than that of the baseline strat-
egy, and only 3.2% higher than that of the MFC strategy. The degradation however is much
lower than for both other strategies due to a massive reduction (95.7% on average compared
to the MFC strategy) in transient loading. This results in an overall reduction in the propor-
tional cost of the degradation of 75.7% when compared to the baseline strategy and 14.9%
when compared to the MFC strategy. The reduced degradation means that the estimated
lifetime of the fuel cell is now 685 hours, 18% higher than the MFC strategy, and the overall
cost of the 10 journeys is reduced by approximately 8.9%.
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No Duration Distance Mean Motor
Power

Hydrogen
Consumption

Estimated
Lifetime

Estimated
Range

Total
Cost

1 3217 s 4.3 km 0.66 kW 11.2 gkm−1 934 h 53.6 km $0.37
4 3115 s 6.0 km 0.86 kW 9.9 gkm−1 958 h 60.5 km $0.39
12 1546 s 4.7 km 1.41 kW 10.0 gkm−1 526 h 60.3 km $0.34
15 1715 s 3.9 km 1.05 kW 10.0 gkm−1 566 h 60.0 km $0.32
23 1768 s 2.8 km 0.76 kW 10.8 gkm−1 560 h 55.5 km $0.30
32 1283 s 2.9 km 1.08 kW 10.6 gkm−1 430 h 56.8 km $0.29
41 946 s 3.2 km 1.67 kW 10.7 gkm−1 320 h 56.0 km $0.30
51 3411 s 5.7 km 0.81 kW 10.9 gkm−1 1021 h 54.9 km $0.41
71 2354 s 3.8 km 0.76 kW 10.5 gkm−1 729 h 57.0 km $0.34
78 2319 s 3.1 km 0.62 kW 10.6 gkm−1 700 h 56.5 km $0.32

Total 21674 s 40.2 km 0.88 kW 10.5 gkm−1 685 h 57.2 km $3.37

Table 6.6: Performance Summary for the Degradation Inclusive Optimised Controller
(4800W)
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6.3.4 Comparison & Summary

Increasing the stack size from 1.2kW to 4.8kW now means that the battery SoC can be
e�ectively managed by the EMS. This is because the maximum power of the fuel cell stack
now exceeds the mean electrical power drawn by the motor during normal vehicle usage.
As a result, the range of the vehicle is determined by the capacity of the hydrogen tank
rather than the battery capacity and the vehicle no longer requires stationary periods in
between journeys in order to recharge its battery pack. The increased fuel cell stack size
also now means that it is possible to operate the fuel cell in its optimal operating region for
a higher proportional of time which leads to signi�cant fuel saving and a further increase
in the vehicles operational range. For the baseline strategy designed for the smaller stack,
the fuel consumption is reduced by approximately 16%, and further fuel saving is achieved
using the SDP optimised strategy. Figure 6.16 shows a comparison of each strategy.
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Figure 6.16: Fuel Consumption Comparison (4800W)

It can be seen that the fuel consumption for the MFC strategy is the lowest overall, av-
eraging approximately 9.9% lower than that for the baseline strategy. This is to be expected
due to the fact that this strategy has been optimised to minimise the fuel consumption of
the vehicle. The DI controller also performs well, achieving an average fuel consumption
just 3.2% higher than the MFC. Another advantage of reducing the fuel consumption is
that the vehicles range is also increased. This is because the vehicle will be able to travel
further on the same mass of fuel. Range can be a particular problem for Fuel Cell Hybrid
Electric Vehicles (FCHEVs) due to the packaging concerns of hydrogen storage mentioned
in Chapter 1. It can be seen in Figure 6.17, that the range of the vehicle is increased from
53.2km for the baseline controller to around 59km for the MFC controller, an increase of
10.9%. The range for the DI was also only 3.2% lower on average than that of the MFC
controller.
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Figure 6.17: Range Comparison (4800W)

However, if the fuel cell size were to be increased to 4.8kW, the baseline strategy would
no longer be appropriate due to in a massive increase in fuel cell degradation caused by
transient loading. This is because the current strategy aggressively attempts to maintain
the battery at a high SoC. Using a fuel cell with a maximum power of 1.2kW results in a
strategy which runs the fuel cell at maximum power for a high proportion of its operational
time; e�ectively limiting the transient loading on the fuel cell. However, a larger fuel cell is
able to maintain the battery SoC during typical usage patterns, and therefore runs almost
entirely reactively to the current demand from the motors so that the net battery current is
approximately zero. As a result, the battery is no longer used as an energy bu�er and the
fuel cell absorbs much of the transient loading associated with urban duty cycles.

It would be possible to generate a new heuristic strategy which takes into account the
change in system performance characteristics associated with a larger fuel cell. This could
be achieved by various methods, one of simplest being to limit the rate of change of fuel cell
load [109]. This would reduce the transient loading on the fuel cell signi�cantly, using the
batteries more e�ectively to manage the transient nature of the duty cycle. However, this
type of strategy would require signi�cant testing in order to choose the maximum rate of
change of power in order to achieve optimal performance. Too high a limit and the transient
degradation would not be reduced signi�cantly, but too low a limit and the SoC would not
be e�ectively sustained. Further performance gains could be made adding additional rules
to the controller, for example, by favouring more e�cient operating points or allowing
a higher rate of change on the fuel cell load if the SoC was particularly low. However,
this would further increase the complexity of the strategy and therefore development and
testing time. If the powertrain were to be changed again or the duty cycle varied, these
parameters would need to be re-tuned.

In contrast, the SDP optimisation process takes into account these changes and it is
relatively trivial to re-optimise the strategy for a di�erent powertrain design or duty cy-
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cle. It may even be feasible to continually re-optimise the controller on board the vehicle,
given an initial optimisation performed o�ine. Not only this, but the resultant policy is
not constrained by heuristic rules, which may or may not be applicable to the particular
con�guration or duty cycle. It is therefore perhaps unfair to compare the results of the
SDP optimised strategies directly to the current strategy which was designed for an ear-
lier version of the vehicle, especially in regard to the degradation associated with transient
loading.

Figure 6.18, therefore, shows a comparison of the costs associated for both SDP control
strategies, but not that for the baseline strategy. In this chart, the left bar represents the
MFC controller, and the right bar in each group is the DI controller. It can be seen that the
fuel consumption of the MFC controller is consistently lower than that of the DI controller.
This is to be expected as minimisation of the fuel consumption is the sole target of the MFC
optimisation. However, the fuel consumption only represents approximately 33% of the
estimated cost on average. The other two thirds are represented by the proportional cost
of the fuel cell degradation.
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Figure 6.18: Cost Comparison (4800W), Left Bar = MFC, Right = DI

The vast majority of the degradation for both strategies is due to the start-up and shut-
down of the fuel cell. For the MFC controller, this represents on average 52.4% of the cost
of each journey, and for the DI this is even higher at approximately 57.6%. Obviously, this
must occur at least once for each journey and therefore the voltage degradation due to this
method cannot be reduced any further. For the MFC strategy it may be possible to save
additional fuel by shutting down the fuel cell during stationary periods, however for this
fuel cell, this would increase the degradation massively and is also unlikely to be performed
in reality. For this reason, the fuel cell has been assumed to be running throughout each
test, and a single on/o� cycle is included as an unavoidable degradation cost.
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The most signi�cant di�erences between the strategies are the ageing due to transient
loading and low load operation. The DI strategy optimisation results in an average reduc-
tion in degradation of 95.7% for transient loading and 19.1% for low load operation. As a
result, the degradation costs of the DI strategy are approximately 14.9% lower, giving an
overall cost reduction of around 8.9% on average when accounting for the 3.2% increase in
fuel consumption. The reduced degradation means that the fuel cell stack is estimated to
last an additional 102 hours (18%) on average, see Figure 6.19. There is obviously a huge
bene�t to the inclusion of the degradation metrics into the cost function for the SDP opti-
misation.
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Figure 6.19: Estimated Lifetime Comparison (4800W)

Comparing to the results of the SDP optimised strategies for the 1.2kW fuel cell stack, it
is possible to see that the fuel consumption has been reduced signi�cantly by around 27.2%
for the MFC controller and by around 24.9% for the DI controller. Similar to the results
for the baseline controller, this is most likely due to the running of the fuel cell at a more
e�cient operating point. Using the 1.2kW fuel cell, the average operating e�ciency was
41%, but using the 4.8kW stack, the e�ciency increased to above 52%. In addition to this,
there was a 27% reduction in the energy lost to cycling the battery for the DI strategy and
60% reduction for the MFC strategy although this only represents relatively small saving
overall.

Both strategies saw an increase in the cost of the degradation however, mainly due to
the increased cost of the stack. For the MFC strategy, for both stack sizes, approximately
80% of the degradation was due to the single on/o� cycle of the stack. The increased stack
size reduced the degradation due to high load operation down to zero from 0.193%, but in-
troduced a low load degradation of 0.079% and increased the degradation due to transients
from 0.055% to 0.145%. Overall, the increase in low load degradation and transient degra-
dation was a little more than o�set by the reduction in high load operation meaning that
the total degradation seen across all ten journeys was reduced from approximately 1.05%
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for the 1.2kW fuel cell, to around 1.03% for the 4.8kW stack. However, the increased size of
the stack (by a factor of 4) means that the total cost of the degradation was increased by a
similar amount, from $0.64 to $2.48.

For the DI strategy, the increased control authority and the optimisation of the degra-
dation resulted much less transient degradation (0.006%), and slightly less low load degra-
dation (0.064%). As a result, the total estimated degradation was just 0.88% across all ten
journeys for the 4.8kW stack, representing a reduction of around 17% compared to the
1.2kW stack. However, the increased cost of the 4.8kW stack meant that the projected cost
due to degradation was increased by approximately 3.3 times from $0.64 to $2.11.

Although the degradation rates for both strategies were slightly lower, the estimated
lifetimes of the stacks are shown to be slightly shorter. For the MFC strategy, the lifetime
reduced from 727 hours to 583 hours (19.8%), and for the DI strategy the projected lifetime
was reduced from 726 hours to 685 hours (5.6%). This is due to the 10-minute recharging
period included for the 1.2kW stack simulations. During this period, the vehicle is not being
used for transport purposes, and therefore it is perhaps more appropriate to compare the
useful life of each stack. If the 10-minute recharging period is not included as part of the
useful operational time (but the degradation accumulated is included as it is necessary to
recharge the battery), the estimated useful lifetime for the 1.2kW stack is around 569 hours
for the MFC strategy and 568 hours for the DI strategy. The 10-minute recharging time is
not required for the 4.8kW stack, and therefore the useful lifetime is unchanged. In this
case, the estimated lifetime of the 4.8kW stack is approximately 2.4% higher for the MFC
strategy and 20.5% for the DI strategy when using the larger stack.

Finally, it must be noted that for both optimised strategies, the 4.8kW fuel cell was never
run in the high power region. In fact, the peak demand across all journeys was 3.8kW for
the MFC strategy and just 3.2kW for the DI controller. In addition to this, some degradation
was seen due to operation in the low load region for both controllers. This is the opposite
situation to the 1.2kW fuel cell and suggests that the larger fuel cell is now somewhat
oversized for the vehicle’s duty cycle. Although the increased fuel cell size shows better
fuel economy and a longer lifetime, the increased size directly results in an increase in the
cost of the stack. The running cost of the vehicle would therefore be reduced by using
a smaller stack. The optimal stack size, which minimises the running cost of the vehicle
while still maintaining the battery SoC during long journeys is likely to lie somewhere in
between 1.2kW and 4.8kW. This is investigated more thoroughly in Chapter 7.

In conclusion, all three controllers show e�ective management of the battery SoC due
to the introduction of a larger fuel cell. This increases the control authority of the EMS
enough so that the vehicle is able to operate continuously without depleting the battery
pack. However, changes to the vehicle speci�cation or to the duty cycle often require the
EMS to be re-optimised. For a heuristic strategy such as that currently used in the Microcab
H4, this can mean signi�cant testing is required, and often means new rules are required
in order to combat performance issues introduced by the new speci�cation. One of the
advantages of the SDP technique is that it is relatively trivial to re-run the optimisation
of a SDP strategy in order to account for these changes. As a result of increasing the fuel
cell size from 1.2kW to 4.8kW, the current strategy employed by the Microcab is no longer
viable due to signi�cant transient loading on the fuel cell. The SDP algorithms, however,
are able to take advantage of this new degree of control authority in order to e�ectively
manage the battery SoC and allow for optimisation of their respective cost functions.
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Degradation of the fuel cell accounts for a substantial proportion of the running cost
of a fuel cell vehicle due to the high cost of the stack as well as its relatively poor reli-
ability when compared to conventional technology. As a result, the DI control strategy
showed signi�cant improvement on current state-of-the-art EMSs due to a 14.9% reduction
in projected degradation cost for only a 3.5% increase in fuel consumption. As a result,
the running cost of this strategy has been found to be on average 8.9% lower than that of
a strategy optimised solely for minimisation of the fuel consumption. The DI controller
also shows a 17.5% increase in the projected lifetime of the fuel cell. The vast majority of
this increase in projected lifetime is due to a signi�cant (95.7% on average) reduction in the
transient loading experienced by the fuel cell. Careful examination of the behaviour of the
strategy shows that this has been achieved by the introduction of hysteresis in the fuel cell
load demand by the EMS.
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Chapter 7

Optimisation of Hybrid Component
Sizes

This chapter examines the e�ect of changing the fuel cell maximum power and the battery
capacity on the performance of the vehicle with regards to the fuel consumption and range,
and the degradation of the fuel cell and its anticipated lifetime.

The Stochastic Dynamic Programming (SDP) algorithm has been used to generate an
Energy Management Strategy (EMS) for each combination of fuel cell size and battery ca-
pacity. Each of these strategies has been subsequently simulated over the same 10 journeys
used in the previous chapter, in order to assess the performance of the vehicle.

It is found that the running cost of the vehicle is minimised by using the smallest pos-
sible fuel cell stack that will satisfy the average power demand of the duty cycle and that
increased battery size up to double the current capacity results in reduced fuel consumption
and degradation.
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7.1 Introduction
One of the advantages of SDP is that the optimisation process results in a strategy which is
statistically optimal for the vehicle. This means direct comparisons can be made between
di�erent system designs in order to assess their potential performance bene�ts. Many siz-
ing exercises in the literature use identical control strategies for comparing di�erent system
architectures. At �rst glance, this would seem to be the fairest way to make a comparison,
however the control strategy can have a signi�cant e�ect on the results. For example,
Rousseau et al. [5] �nd that by increasing the minimum fuel cell power threshold in their
control strategy, more energy tends to be lost due to the fuel cell e�ciency losses (due
to generally higher operating point), and less energy lost during braking (due to a gener-
ally lower battery State of Charge (SoC)). As a result, a di�erent combination of fuel cell
maximum power and battery size is preferable when compared to a lower threshold.

In contrast, the SDP optimisation process can be performed for each individual system
design, producing a strategy which will give the statistically optimal performance for that
design. Each resultant strategy will therefore be unique, but will represent the best-case
performance of its respective vehicle speci�cation. In this way, a system design which is
focussed on minimal battery cycling (for example, by using a small battery) can be directly
compared to another focussed on good fuel cell operating point e�ciency (for example, by
using a larger battery) without concern of any bias due to the choice of control strategy.

In order to perform this analysis, almost 1300 simulation journeys have been performed,
representing 128 di�erent system con�gurations; varying the maximum power of the fuel
cell and the capacity of the battery. For each system con�guration, the reduced vehicle
model has been simulated in order to produce the transitional probability and cost matri-
ces, which have then been solved using SDP as described in Chapter 5. Each vehicle has
then been simulated over the same 10 drive-cycles used in the previous chapter in order
to calculate the typical fuel consumption, range, fuel cell lifetime and operating cost when
used on a university campus.

Due to the considerable number of system designs analysed, and the varied sizes of the
battery, the input states have been modi�ed slightly from the values mentioned in Table 5.1.
The primary reason for this is to ensure that the range of input states is representative of the
full range of operating states that the vehicle will enter. The vehicle speed and acceleration
states have not been modi�ed due to the fact that the duty cycle is unchanged, however
the range of the battery SoC and fuel cell power demand have been increased. The range
of battery SoC has been increased because a larger capacity battery is able to provide more
current at the same SoC, see Figure 3.13. As a result, larger battery capacities are able to run
to a lower overall SoC while still providing the same tractive power. In order to prevent the
optimisation process from taking too much time, the spacing of each has been marginally
reduced so that the overall number of states is approximately the same.

Parameter (Unit) Minimum Maximum Spacing
Vehicle Speed, v (ms-1) 0 15 1
Vehicle Acceleration, a (ms-2) -3 3 1
Ba�ery SoC, H (%) 40 100 1
EMS Demand, PEMS (W) 0 Pmax Pmax/20

Table 7.1: Controller State De�nition
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For comparison purposes, both SDP strategies have been simulated. The Minimal Fuel
Consumption (MFC) strategy represents recent work in the literature where the strategy
is optimised purely to minimise the fuel consumption, and the fuel cell Degradation In-
clusive (DI) strategy represents the novel strategy designed to concurrently minimise the
fuel cell degradation alongside the fuel consumption. The comparison of these results not
only demonstrates the bene�ts of the novel DI strategy presented in this thesis, but also
allows the strategy characteristics associated with the optimisation of the degradation to
be identi�ed separately from those associated with minimisation of the fuel consumption.

7.2 Sweep of Fuel Cell Maximum Power
It has been found in Chapter 6 that the 1200W fuel cell �tted to the Microcab H4 is relatively
underpowered for a campus duty cycle, and tends to drain the battery while the vehicle is in
use. In contrast, the 4800W fuel cell planned for the Microcab H2EV is somewhat oversized
for journeys tested; leading to fuel cell degradation caused by operation at very low current
loading, and increased running cost. Therefore, a sweep of various fuel cell sizes has been
performed in order to �nd the optimal fuel cell maximum power output required for campus
usage patterns. The following values have been tested;

Parameter (Unit) Minimum Maximum Spacing
Fuel Cell Maximum Power, PFC,max (W) 600 4800 600
Ba�ery Capacity, Cn (Wh) 2112 2112 -

Table 7.2: Fuel Cell Sweep Values

As in the previous chapter, the assumption has been made that the fuel cell maximum
power output is modi�ed by scaling the output current, so that the nominal voltage is kept
the same. This has been achieved by assuming a number (0.5 to 4) of stacks running in
parallel. Although in reality, the performance characteristics of the stack (e�ciency, degra-
dation rates) may be a�ected by its size, this would signi�cantly increase the complexity
of the sizing exercise, and is likely to have only a small e�ect on the overall results when
compared to the di�erence in stack size.

It is expected that as the fuel cell stack size is increased, the performance of each strategy
will be improved due to the increased control authority of the EMS. The EMS should be
able to maintain the battery SoC as long as the fuel cell is at least equal to the average
power demand over the journey, and this would represent the minimum heuristic design
criteria for the fuel cell size. It is likely that by over-sizing the fuel cell above this minimum
level, that the fuel cell will be able to run at a more optimal e�ciency region, improving
both the fuel consumption and reducing the degradation, and therefore reducing the overall
running cost despite the increased cost of a larger fuel cell. As the fuel cell maximum power
is increased further, the bene�ts are likely to become gradually less signi�cant, and at some
point, the increased cost of the fuel cell will become the dominant factor. This will lead to
the calculation of an optimal size of fuel cell for this type of duty cycle.
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7.2.1 SoC Sustenance
In this work, battery SoC sustenance is managed by the EMS through the use of constraints
on the optimisation. These constraints are implemented using a very high cost penalty
for exceeding them, which is orders of magnitude higher than the values to be optimised.
This is known as a “soft constraint”, and therefore it is possible to breach the constraint by
incurring a very high cost penalty. In general, the optimisation will avoid the possibility of
exceeding these limits when at all possible, however, if this is unavoidable for any reason,
the penalty associated with avoiding the constraints will tend to dominate the optimisation
process, leading to poor performance with regard to the targets to be optimised.

As in Chapter 6, the SoC has been initialised individually for each controller so that
minimal net change is seen over the cycle. The reason for this is due to the way that the
battery SoC is managed. As result, there is no explicit target value and each controller
will �nd its own “natural equilibrium” in order to produce the desired charge-sustaining
behaviour. Therefore, starting both controllers from the same initial value will generally
lead to di�erent �nal values. Accounting for this change in SoC is notoriously di�cult.

Another way of thinking about this is to consider the battery SoC range as a feature of
the control strategy rather than an input to it. As long as each strategy shows negligible net
SoC change over the cycle the results are comparable with regards to fuel consumption and
fuel cell degradation due to the fact that the stored energy in the battery is unchanged. Any
di�erences resulting from the di�erent overall SoC, such as battery cycling e�ciency, are
representative of the decisions that the optimisation process has taken in order to optimise
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Figure 7.1: SoC Sustenance vs. Fuel Cell Size
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Figure 7.1 shows the maximum change in SoC over a single journey and average fuel
cell utilisation over the set of 10 journeys for each size of fuel cell. It can be seen clearly
from the top plot that a fuel cell of 1800W is required for every journey to be completed
without a net fall in battery SoC. This is unsurprising; the highest average power over
a single journey was around 1650W, which shown as a dashed black line. Therefore, care
should be taken when comparing the results of simulations of fuel cells below this size. The
second plot shows the fuel cell utilisation. This is the average power supplied by the fuel
cell, divided by its maximum power. As would be expected, the utilisation decreases as the
maximum power of the fuel cell increases. The black dashed line in this plot represents the
fuel cell utilisation required in order to meet the average electrical power demand over the
complete set of journeys (approximately 880W).

It can be seen that a fuel cell of 600W is unable to maintain the battery SoC for this
type of usage pattern, despite running at full power throughout every journey. In fact, a
utilisation of 146% would be required in order to meet the overall average power demand,
which is obviously not possible. As a result, the battery SoC falls by an average of 9.1% on
each journey and therefore the fuel consumption and fuel cell degradation are likely to be
under-estimated when compared to that of larger fuel cells.

A fuel cell of 1200W requires a utilisation of at least 73% in order to meet the average
power requirement over the set of journeys, and therefore the 1200W fuel cell would likely
be able to complete the set of journeys as a whole. However, there is variation in the
average power requirement of each journey when considered individually, and two of the
journeys have a requirement of more than 1200W. Therefore, a vehicle with a 1200W fuel
cell would experience a drop in SoC for these two journeys even if it ran at maximum power
throughout. In this analysis, each journey has been examined individually and therefore
the average change in SoC for the 1200W is slightly below zero due to SoC drops over
these two journeys. Again, this means that care must be taken when comparing to the
results of larger fuel cells as the fuel consumption and fuel cell degradation are likely to be
underestimated.

The highest average power demand over a single journey was approximately 1650W,
which is represented by the black dashed line in the top plot. This represents the lowest
peak power requirement of the fuel cell in order to complete every journey without requir-
ing additional energy from the battery. It can be seen that all vehicles �tted with a fuel cell
larger than this value were able to complete every journey without a net change in battery
SoC. As a result, these results are directly comparable.

It can be seen that both SDP strategies perform almost identically with regards to SoC
sustenance and overall fuel cell utilisation. This is important because it shows that the con-
straints are working as expected and dominating the optimisation for smaller fuel cells. For
larger fuel cells, the SoC is being managed successfully and therefore it has been possible
to simulate the journeys with zero net change in battery SoC. This means that the energy
stored in the battery is unchanged and the fuel consumption and degradation �gure are
representative of the long-term average values for both controllers.

Figure 7.2 shows the minimum, maximum, and average initial SoC of the battery across
all journeys for each size of fuel cell. It can be seen that both strategies are almost identical
up to 2400W. Above this, the DI controller tends to maintain a slightly higher SoC in general,
although up to 4200W, the minimum value is the same as the MFC controller. In general
both policies tend to utilise a lower SoC as the size of the fuel cell increases.

Tom Fletcher Page 187 of 244

mailto:T.P.Fletcher@lboro.ac.uk


PhD Thesis CHAPTER 7. OPTIMISATION OF HYBRID COMPONENT SIZES

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Fuel Cell Power /W

60

65

70

75

80

85

90

95

S
o

C
 /%

MFC
min

MFC
max

MFC
initial

DI
min

DI
max

DI
initial

Figure 7.2: Minimum, Maximum and Initial SoC vs. Fuel Cell Size

Both strategies perform almost identically up to a fuel cell maximum power of 2400W.
This is likely due to the fact that the battery voltage constraints are dominating the opti-
misation process, suggesting that a fuel cell power of at least 2400W, and preferably above
this value, is required for the optimisation to produce meaningful results. As described in
the previous chapter, if the fuel cell is undersized, the battery voltage constraints will tend
to dominate the optimisation.

As the maximum power of the fuel cell increases, the battery SoC can be allowed to drop
lower without the risk of the lower battery voltage constraint being compromised. This is
because, if required, a larger fuel cell can supply more power should a sudden acceleration
occur. This is bene�cial because it allows the EMS to operate further from the upper voltage
constraint, and with a larger SoC range. This means that more operating points are able
to be used without compromise to the battery voltage constraints and in e�ect the control
authority of the EMS is greater.

For the DI strategy however, the initial value and maximum values do not fall as quickly
as its minimum value or that of the MFC strategy, and hence it tends to utilise a larger SoC
range than that of the MFC strategy. This is likely caused by the hysteresis e�ect of this
strategy as described in the previous chapter. The reluctance to change its operating point
in order to avoid transient degradation causes the DI strategy to have a slower response to
changes in load. As a result, the battery is required to act as an energy bu�er and a greater
range in the SoC utilisation is observed.
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7.2.2 Fuel Consumption
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Figure 7.3: Fuel Consumption vs. Fuel Cell Size

Figure 7.3 shows the average fuel consumption across all 10 logged journeys for each
fuel cell size. It can be seen that the fuel consumption for the 600W fuel cell is lowest at ap-
proximately 9.6 g/km. Fuel consumption sharply rises to a peak of 13.5 g/km for the 1200W
controller, and then gradually decreases down to around 10.4 g/km for the DI strategy and
10.2 g/km for the MFC strategy. It can be seen that both strategies produce almost identical
results up to approximately 2400W. Above this, the DI controller shows marginally higher
fuel consumption. The estimated vehicle range follows an identical pattern albeit inverse.
This is because the range is calculated directly from the fuel consumption and the size of
the fuel storage (which is constant).
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The low fuel consumption at 600W is purely due to the small size of the fuel cell.
Even running at maximum power where the e�ciency is relatively poor, the low maxi-
mum power output means that the fuel consumption is also very low. However, this size of
fuel cell was unable to maintain the battery SoC so this does not constitute a comparable
result. Consequently, when the fuel cell maximum power output is increased to 1200W,
the fuel consumption also increases, even though the 1200W fuel cell was also unable to
maintain the battery SoC for all journeys. Above 1200W, the fuel consumption begins to
decrease. This suggests that at 1800W and higher, the EMS has gained enough control au-
thority in order to begin to optimise the operating point of the fuel cell and hence reduce
the fuel consumption.

At 3000W and higher, the fuel consumption further continues to decrease and the strate-
gies begin to diverge, resulting in a maximum di�erence of 2.4%1 between the two strategies
at 4800W. This suggests that the control authority of the EMS is therefore high enough for
the addition of the fuel cell degradation estimation to make a di�erence to the overall strat-
egy. The fact that both strategies still perform very similarly suggests a good alignment
between the targets of minimising the fuel consumption and minimising the degradation.

Overall, ignoring the result at 600W, the fuel consumption gradually decreases as the
maximum power of the fuel cell increases. This is likely due to the increasing control au-
thority of the EMS meaning that the fuel cell spends more time operating at or near to its
peak e�ciency region. The larger the fuel cell, the more likely it is that the vehicle is able to
cope with a sudden increase in tractive e�ort due to a sudden acceleration, for example. As
a result, it is able to utilise a higher SoC range, without risk of breaching the battery volt-
age constraints. This leads to a higher overall operating e�ciency. This trend is unlikely
to continue inde�nitely however, and it can be seen in Figure 7.3 that the fuel consumption
is beginning to level out. It is expected that for larger fuel cells, the fuel consumption will
begin to increase again. This will occur for a variety of reasons.

Firstly, the grid spacing between the twenty discrete operating points increases as the
maximum power increases; this will have an adverse e�ect on the �ne control of the fuel
cell in the range of desired operating points. It is also possible that some higher operating
points may not be used at all due to the risk of breaching the upper voltage limit. Even if
the grid spacing were to be kept constant (increasing the number of states and therefore
the computational e�ort to complete the SDP optimisation), the fuel consumption would
still begin to increase for larger fuel cells. This is because the average power required to
complete the duty cycle will remain constant, meaning that at some point the fuel cell will
be required to operate below its optimal region. Below approximately 30% of maximum
power, the fuel cell e�ciency sharply decreases due to the current required to drive the
ancillary devices connected to the fuel cell. Finally, although it has not been modelled here,
the increase in fuel cell size will also cause an increase in its mass, for large fuel cells, this
will signi�cantly a�ect the mass of the vehicle, leading to an increase in the electrical power
drawn by the motor.

1Note that this value is slightly di�erent to that calculated in Chapter 6 (3.2%) due to the increased grid
spacing of the SoC and fuel cell power demand
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7.2.3 Fuel Cell Lifetime
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Figure 7.4: Fuel Cell Degradation vs. Fuel Cell Size

Figure 7.4 shows the estimated fuel cell lifetime and voltage degradation for both con-
trollers. It can be seen that the estimated fuel cell lifetime for both controllers tends to
increase approximately linearly up to 2400W, above which they begin to diverge signif-
icantly. The estimated lifetime for the DI controller levels o� above 2400W, peaking at
3000W with a value of 713 hours and then gently falling to 684 hours at 4800W. In contrast,
the estimated lifetime of the fuel cell controlled using the MFC strategy falls signi�cantly
above 2400W, to just 546 hours at 4200W, increasing slightly to 569 hours at 4800W. The
reason for this di�erence is quite clear in the plots below. The MFC controller su�ers from
much more transient voltage degradation above 2400W when compared to the DI strategy.
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As was seen with the fuel consumption, both strategies result in almost identical esti-
mated fuel cell lifetimes up to a maximum fuel cell power of around 1800W. This is again
most likely due to the domination of the battery voltage constraints on the optimisation.
However, in contrast to the fuel consumption, the estimated lifetime of the fuel cell for
each strategy di�ers signi�cantly above 2400W. As a result, the DI controller sees a 27.6%
increase (Figure 7.3) in estimated fuel cell lifetime at 4200W. This is due to a small reduc-
tion in degradation caused by running at low load, and a massive reduction in the transient
loading of the fuel cell.

7.2.3.1 Transient Degradation

For the MFC strategy, transient voltage degradation represents up to 20% of the ageing of
the fuel cell (at 3600W and 4200W). A large proportion of this is caused by oscillations in
the demanded fuel cell load as a result of the strategy attempting to run between discrete
operating points (as was described in Chapter 6) however additional transient loading is
seen due to the transient nature of transportation duty cycles, especially those experienced
during stop/start urban driving such as on a university campus. The transient loading
increases as the maximum power of the fuel cell increases, up to around 4200W, and then
begins to fall again. This is likely due to the increased control authority of the EMS, meaning
more operating points are available for the optimisation and will not cause the battery
voltage constraints to be breached. As the maximum power of the fuel cell increases, grid
spacing between the �xed number of operating points also increases. This means that it
becomes even more desirable for the MFC strategy to oscillate between the points in order
to optimise the fuel consumption. As the maximum power of the fuel cell increases further,
some operating points will be more likely to cause the upper battery voltage constraint
to be breached, and therefore there are fewer valid actions for the EMS. As a result, the
transient loading on the fuel cell is reduced when the largest fuel cells are tested.

In contrast, the DI controller experiences almost no voltage degradation due to transient
loading. This is because the DI strategy optimisation takes the cost associated with fuel cell
degradation into account and therefore shows no tendency to oscillate between discrete
operating points. It appears to achieve this by introducing some hysteresis with respect to
the current operating point, as seen in Chapter 6 (Figure 6.15). A minor negative side e�ect
of this strategy is that the response of the DI controller is slightly slower than that of the
MFC strategy resulting in a larger SoC utilisation.

7.2.3.2 Operating Point Degradation

Both strategies show similar trends in the voltage degradation due to the operating point
of the fuel cell. For small fuel cells up to around 2400W, the strategies are almost identical
to one another and show excessive amounts of degradation due to operation at or close
to full load. This is due to the fact that the fuel cells are required to run in this operating
region due to their small maximum power output. As the size of the fuel cell increases, the
degradation caused by low power operation increases. This is caused by the increased size
of the fuel cell, which is required to run at a proportionally lower load in order to generate
the same average power. Both of these trends are what would be expected.

Even though there is a large region at mid load (between 25% and 80% of full load) that
the fuel cell experiences no degradation due to its operating point; there is no size of fuel
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cell that would not see any degradation caused by this. In fact, there is overlap between the
two modes, and fuel cells between 1200W and 3000W are likely to see some degradation
caused by both high and low load operation. This is likely due to the fact that this size of
fuel cell requires its full range of operating points in order to manage the battery voltage.

Much less degradation due to the operating point is seen in larger fuel cells when com-
pared to smaller fuel cells, despite the fact that the raw degradation rates are similar. This
is likely because the control authority of the EMS is higher for larger fuel cells and the op-
eration at low load is only used when it is bene�cial to do so. For the larger fuel cells tested
(up to 4800W), and likely some slightly larger than this, the degradation due to operation
at low load is likely caused by competition with the fuel economy optimisation. It is likely
that the proportional cost of the degradation is lower than the increased fuel consumption
which would be caused by avoiding this region altogether. As the size of the fuel cell in-
creases further, low load operation will become unavoidable in the same way that high load
operation is unavoidable for smaller fuel cells. Therefore, fuel cells signi�cantly larger than
4800W are likely to see much higher rates of degradation due to operation at low loading.

For fuel cells larger than 3000W, the DI strategy sees between 20 - 40% less degradation
than the MFC strategy due to operation at low load. This is likely due to two main factors.
Firstly, the DI strategy optimisation applies a cost due to this degradation and therefore has
some incentive to avoid it. However, it is also likely caused as a side e�ect of the avoidance
of transient loading. The DI strategy tends to avoid transient loading by applying some
hysteresis on its response to changes in load, and therefore tends to have a slightly slower
response than the MFC strategy. As a result, it tends to operate at a more consistent load,
closer to the average power demand, hence often avoiding short periods of low power
operation experienced by the MFC strategy.

7.2.3.3 Cycling Degradation

Cycling degradation is largely caused by the inhomogeneous distribution of reactants and
products during start-up and shut-down in addition to operation outside normal tempera-
ture, pressure and humidity conditions, see Section 2.2.2.6. Although it would be possible to
allow the EMS strategy to determine when the fuel cell should be started and shut-down,
it has been found that the MFC strategy tends to cause a high number of cycling events
resulting in levels of degradation unlikely to be acceptable in the real world. As a result, it
has been assumed that the simulation of each journey will result in a single cycling event.

It can be seen that the degradation due to this single unavoidable start-stop cycle repre-
sents a large proportion of the degradation for a fuel cell of any size. This is most apparent
for the DI strategy at 3000W, where it represents 96% of the estimated degradation. The
fuel cell used in the Microcab H4 shows a rate of degradation due to start-stop cycling of
approximately 23.91 µV/cycle/cell. This means that even with no degradation from other
methods, the fuel cell would only last approximately 1200 cycles before being considered at
the end of its useful life. As the drive-cycle lengths average approximately 37 minutes, this
represents a theoretical maximum of lifetime of only 744 hours if no degradation was seen
due to other causes, shown as a dashed black line in the uppermost plot. At 3000W, the MFC
strategy results in a de�cit of 99 hours compared to this �gure, whereas the new controller
reduces this de�cit by 63 % to just 37 hours by minimising the voltage degradation due to
other causes.
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In comparison to a more recent fuel cell used by Chen et al. [13], the fuel cell in the
Microcab exhibits quite high degradation due to cycling. Chen et al. used a �gure of
13.79 µV/cycle/cell. If this number were to be used instead of that from the Ballard datasheet,
the degradation due to cycling would still represent approximately 80 % for the baseline
controller and 93 % for the degradation optimised controller. This increases the predicted
lifetime of the fuel cell to 1035 hours for the baseline controller and 1199 hours for the op-
timised controller. In this case the lifetime of the fuel cell has been increased by 16 % due
to the DI optimised control; however, it is still well below the 5000 hour US Department of
Energy (DoE) target for vehicular applications. As there is nothing that the EMS can do to
further reduce the number of cycling events, this suggests that the degradation caused by
cycling is an critical area of focus for future research.

7.2.4 Running Cost
Figure 7.5 shows the average running cost over the 10 journeys for each size of fuel cell. A
comparison of the two strategies is shown in the top plot, with a breakdown of the costs for
each of the strategies shown in the centre and lower plots. It can be seen that there is a clear
correlation of monotonically increasing cost with increased size of fuel cell, although the
trend is not linear. Comparing the two strategies, the costs for both strategies are almost
identical up to 2400W; however, there is a clear reduction in running cost by using the DI
controller above 2400W.

The lowest running cost is achieved by the 600W fuel cell, although this is almost cer-
tainly due to the fact that the maximum power of the fuel cell is unable to provide enough
power to maintain the battery SoC. Therefore, these results do not provide a fair compari-
son with regards to the cost. Following this, there is a sharp rise from $1.56 at 600W up to
$2.30 for 1200W. The 1200W fuel cell was also not capable of completing all of the cycles,
however its average utilisation was well below 100% overall (Figure 7.1), and therefore the
cost is likely to be only slightly underestimated. The �rst truly valid point for comparison
is 1800W, due to the fact that this controller was able to complete all journeys successfully.

The increase in running cost as the size of the fuel cell increases can be directly at-
tributed to the increased overall value of the fuel cell with size. As explained at the begin-
ning of Chapter 6, a fuel cell cost of $50/kW has been assumed. These �gures are based
on recent estimates from the literature for current technology, assuming mass production
economy-of-scale. It has been assumed that the �xed costs of the fuel cell are negligible
compared to the variable costs due to the high price of materials (e.g., platinum catalyst)
and the economy-of-scale a�orded by mass production. This means that a 4800W fuel cell
will cost four times as much as a 1200W fuel cell and therefore assuming identical rates of
voltage degradation, the cost associated will also be four times as much. This increase in
fuel cell value can be seen to be the main contributor to the trend between fuel cell size and
running cost.

However, unlike the increase in estimated fuel cell value, the relationship between the
running cost and the size of the fuel cell is not linear. As the size of the fuel cell increases,
the control authority of the EMS is also increased, and the operating point of the fuel cell
becomes closer to optimal. This results in a reduction in both the fuel consumption and
the rates of degradation for the DI strategy, which signi�cantly o�set the increase in the
value of the fuel cell. As a result, the DI strategy sees only a 47% increase in running cost
between 1200W and 4800W despite a 300% increase in the value of the fuel cell.
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Figure 7.5: Running Cost vs. Fuel Cell Size

Examining the breakdown of the running cost in more detail, it can be seen that it
is dominated by two main factors; the cost of the fuel and the cost of the degradation
due to cycling. The cost of the fuel is reduced by 24% between 1200W and 4800W for
the MFC controller and 23% for the DI controller. However, the increase in the cost of
the degradation due to cycling increases much more than this, resulting in an overall cost
increase over the same range. Due to the fact that only a single on/o� cycle is considered
for each journey, the rate of voltage degradation due to start-stop cycling is �xed. As a
result, it increases proportionally with the fuel cell size. This means that although it only
represents approximately 21% of the running cost at 1200W, it is responsible for 52% of the
cost at 4800W for the MFC strategy and 58% for the DI strategy. Much of the reduction in
fuel consumption is achieved well below 4800W, and diminishing gains are observed as the
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size of the fuel cell increases. This results in a curve in the relationship between running
cost and fuel cell maximum power, although the gradient always remains positive.

Comparing the two strategies, it is possible to see that the reduction in transient loading
on the fuel cell results in a signi�cant cost saving for fuel cells larger than 3000W. For the
MFC strategy, degradation due to transient loading represents up to 13% of the cost (at
4200W), whereas for the DI strategy it is consistently below 1% of the overall running cost.
Despite a slight increase in fuel consumption (2.4%), the overall running cost of the DI
strategy is up to 15% lower (at 4200W) when considering the proportional cost of fuel cell
degradation.

7.2.4.1 Sensitivity to Fuel Cell Cost

If a �xed cost of fuel cell manufacturing or replacement was considered, and the cost of the
fuel cell assumed to follow a linear (y=mx+c) relationship, a doubling of the fuel cell size
would not result in a doubling of the cost. Therefore, it may be possible that the reduction in
fuel consumption would outweigh the increase in cycling degradation cost. Unfortunately,
it is not easy to test this hypothesis due to the fact that the cost associated with degradation
would be changed and therefore the SDP strategy would need to be re-optimised. However,
a change in the associated cost of cycling would not a�ect the strategy. This is due to the
fact that the EMS can do nothing else to further optimise the start-stop cycling.

As previously mentioned, the fuel cell in the Microcab experiences especially high rates
of degradation due to cycling when compared to values in the literature. If the rate of
degradation used by Chen et al. [13] of 13.79 µV/cycle/cell were to be used instead of
23.91 µV/cycle/cell as quoted in the Ballard datasheet, the relationship between the run-
ning cost and fuel cell size would be changed considerably. This is shown in Figure 7.6. It
can be seen that in this case, the reduction in fuel consumption between 1200W and 2400W
more than o�sets in the increase in degradation cost. As a result, discounting the 600W
fuel cell, a 2400W fuel cell becomes the optimal size. Above this, diminishing returns in
fuel economy mean that the running cost begins to rise again.

This shows that the choice of the fuel cell size is quite sensitive to the rate of the fuel
cell degradation. There are a number of factors which are involved in the calculation of the
overall running cost, which tend to compete with each other as the size of the fuel cell is var-
ied. Whereas the fuel consumption and the voltage degradation will tend to decrease as the
fuel cell maximum power increases, the absolute cost of the fuel cell increases. Therefore, it
has been found that from a purely cost perspective, a larger fuel cell is only justi�ed when
the reduction in fuel consumption and voltage degradation observed exceeds its increase
in replacement cost.
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Figure 7.6: Running Cost vs. Fuel Cell Size (assuming lower rate of cycling degradation)
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7.2.5 Summary
“The cost of the system could be reduced by using a smaller stack and running it at a higher
relative power, however this will also tend to reduce the operating e�ciency and is likely to
increase the rates of degradation, reducing the lifetime of the system. This means that it is
hard to gauge whether the initial cost saving of a smaller stack will be outweighed by the

increased maintenance cost due to reduced reliability.” - Chapter 1 - Introduction
The short answer to the above question can be found in Figure 7.5. The running cost of

the fuel cell is minimised by using the smallest possible fuel cell that will meet the average
power requirements of its usage pattern and running it at close to full load. This results
in higher fuel consumption, and higher rates of degradation than using a larger fuel cell,
however the reduced cost of the stack more than outweighs the costs associated with these
downsides.

However, the long answer is more complicated. In actual fact, the bene�ts of the smaller
stack are marginal, and the balance could easily be shifted in favour of a slightly larger stack
by relatively minor changes in the calculation. For example, if the cost due to start/stop
cycling was lower (as shown in Figure 7.6), or if the �xed costs were assumed in addition to
the variable costs of the fuel cell with size, it may mean that a larger stack may be preferable.

In addition to this, there are a number of additional bene�ts to using a larger stack
that are unrelated to the cost. For example, the cost associated is not the only concern
with regard to the fuel consumption. The packaging requirements of hydrogen storage for
transportation are not trivial, meaning that often a compromise is made with regard to its
capacity. This usually means that the fuel consumption has a direct e�ect on the range of
the vehicle, because lower fuel consumption means that the vehicle can travel a greater
distance on the same amount of fuel. The 4800W fuel cell is shown to have reduced the fuel
consumption by almost 30% when compared to a 1200W stack, resulting in a proportional
increase in the vehicles range. Similarly, the reliability of the stack will also a�ect the cus-
tomer’s perception of the vehicle, which can be a crucial factor for emerging technologies.
The larger 4800W stack is shown to have a 28% increase in lifetime (for the DI strategy)
when compared to the 1200W system.

However, increasing the size of the stack inde�nitely would not inde�nitely improve
the fuel consumption and reliability. Diminishing returns are seen in regard to the fuel
consumption up to 4800W, and further increases are likely to cause the fuel consumption
to begin to increase as the power requirements of the duty cycle move past the optimal
operating points of the fuel cell. Similarly, the estimated degradation reaches a minimum
value at 3000W for the DI controller, above which it begins to increase again as the time
spent operating at low power tends to increase. It is therefore important to consider the ve-
hicle’s targets as whole rather than to focus on a single objective, such as the minimisation
of cost.

It is therefore the author’s opinion that a fuel cell of approximately 2400W o�ers the
most bene�cial performance with regards to the cost, range and fuel cell lifetime. Com-
pared to a 1800W fuel cell stack (minimum cost system which would successfully complete
all tested journeys), the range is approximately 8.6% higher, the estimated lifetime is 10%
higher, and the overall operating cost is only 3% higher. It is also very likely that the 10 jour-
neys tested do not fully cover all possible likely circumstances, and the additional power
availability may be required to complete more demanding journeys that the vehicle is likely
to encounter.
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7.3 E�ect of Battery Capacity
The capacity of the battery will also have a signi�cant e�ect on the performance of the
vehicle. The battery is generally used as an energy bu�er which gives the EMS the �exibility
to run the fuel cell at a di�erent load to that required for traction. This means that the
transient loading on the fuel cell can be reduced, but also allows the EMS to run the fuel cell
closer to its optimal operating point, resulting in higher fuel economy and reduced voltage
degradation. Up to a point, the larger the battery capacity, the greater the �exibility in fuel
cell operating point and therefore the higher the gains. However, diminishing returns are
expected as the battery capacity increases, and the bene�ts are expected to level o� once the
capacity of the battery reaches a point where the fuel cell is able to run at an approximately
constant load.

The e�ect of the increase in mass of the battery has not been included in this analysis
due to the small size of the battery pack in comparison to the mass of the vehicle. How-
ever, very large battery packs would also increase the mass of the vehicle signi�cantly and
therefore would begin to detriment the overall fuel economy by increasing the mechanical
energy required to complete the journeys.

The procedure for the battery capacity sweep is the same as for the fuel cell sweep. The
following values have been tested;

Parameter (Unit) Minimum Maximum Spacing
Fuel Cell Maximum Power, PFC,max (W) 2400 2400 -
Ba�ery Capacity, Cn (Wh) 568 4224 568

Table 7.3: Battery Capacity Sweep Values
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7.3.1 SoC Sustenance
A fuel cell with a maximum power of 2400W has been chosen for the battery size sweep
which is more than that required to complete every journey (approximately 1650W). There-
fore, as shown in Figure 7.7, the maximum net change in battery SoC for both controllers
was within 0.1%. This means that unlike the fuel cell size sweep, the fuel consumption,
stack degradation and running cost for every simulation are directly comparable.0.5 1 1.5 2 2.5 3 3.5 4 4.5
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Figure 7.7: SoC Sustenance vs. Battery Capacity

Also shown in Figure 7.7 is the stack utilisation. In this plot, the dashed black line repre-
sents the average utilisation required to drive the traction motors (36.6%), which accounts
for all e�ciency losses aside from cycling losses in the battery. It can be seen that for battery
capacities up to approximately 2.6kWh, the fuel cell utilisation is approximately constant
at around 41%. Above this value, the utilisation drops approximately linearly for the DI
controller to around 39% at 4.2kWh. For the MFC controller the utilisation falls slightly
further to around 38.4%.

The cycling losses in the battery are largely due to charging and discharging at high
“C-rates”, where “C” is de�ned as the current divided by the battery capacity. Discharging
at high C-rates will cause the voltage of the battery will be pulled down signi�cantly, and
similarly, charging at a high C-rate will cause the battery voltage to be pulled up. This is
due to the internal resistance of the battery and the over-voltage e�ects associated with
the Shepherd coe�cient. Power is the product of voltage and current, and therefore even
assuming 100% charge transfer e�ciency, less energy is able to be extracted from the battery
than was required to charge it. This e�ect is relatively small at low C-rates where the
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internal resistance is the dominant factor, but can be signi�cant at high C-rates where the
e�ect of over-voltage coe�cient becomes much higher (see Figure 3.13).

As mentioned, the C-rate is inversely proportional to the battery capacity. This means
that small batteries will experience proportionally higher C-rates assuming the same cur-
rent loading. The fact that the cycling losses are approximately constant for battery capaci-
ties up to 2.6kWh suggests that in this region, the battery spends a considerable proportion
of time close to the voltage constraints. Therefore, even though the fuel cell is large enough
to maintain the battery SoC over all of the journeys, it has limited control authority and the
optimisation is unlikely to show much bene�t. Above 2.6kWh, however, the fuel cell utili-
sation (and therefore cycling losses) begins to fall. This shows that the battery is most likely
operating for more time in regions where the e�ect of over-voltage coe�cient is negligible,
and hence is further from its constraints. As a result, the optimisation of fuel economy and
fuel cell degradation is likely to be more e�ective in this region.

Above 2.6kWh, the DI strategy shows approximately linear decrease in cycling losses.
This is likely a direct result of the increase in battery capacity and hence the proportional
reduction in the C-rate. Comparing the MFC and DI strategies in this region shows that
the MFC strategy results in signi�cantly fewer cycling losses in the battery. This is likely
due to the fact that the reduction in battery cycling losses will compete directly with the DI
strategy objective to minimise transient loading on the fuel cell. As the MFC strategy does
not include this objective, further gains can be achieved in this regard by passing transient
loading inherent in the duty cycle onto the fuel cell.

For lead acid batteries, the e�ect of the increase in battery capacity is compounded
when the battery voltage is used as a constraint as was performed here. This is because the
increased battery capacity means that the same current results in a proportionally lower
C-rate. In turn, the voltage deviation from open-circuit is proportionally reduced when in
the region dominated by internal resistance and exponentially reduced when in the region
dominated by the over-voltage coe�cient. This means that more charge can be withdrawn
from the battery (and hence a lower SoC can be achieved) before the voltage constraints are
exceeded. As a result, the e�ective useful capacity of the battery is increased by far more
than the increase in actual capacity.

Another way of explaining this is that the useful capacity of the battery is related to
the current loading it experiences. The Odyssey PC1200 batteries used in the Microcab
have a capacity of 30Ah when discharged at 41A, but only 26Ah when discharged at 78A.
By increasing the capacity of the battery pack, the current is shared between more cells,
hence the load on each cell is lower and a higher useful capacity is available. In this case, if
the battery capacity is increased by a factor of 1.9 so that the average current on each 12V
battery is reduced from 78A down to 41A, the e�ective capacity is increased by additional
15%, resulting in an overall increase of around 2.2 times. This means that signi�cant gains
can be made with only a slight increase in battery capacity.
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7.3.2 Fuel Consumption
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Figure 7.8: Fuel Consumption vs. Battery Capacity

Figure 7.8 shows the variation of fuel consumption and range with regards to the battery
capacity. It can be seen that in general, the fuel consumption falls as the battery capacity is
increased. As with the SoC, both strategies perform almost identically up to approximately
2.6kWh. Above 2.6kWh, there is a slight di�erence, with the MFC strategy achieving a
slightly lower overall fuel consumption of 10.7g/km at 4.2kWh, compared to the DI strategy
which achieves a minimum consumption of 10.8g/km.

The fuel consumption is expected to reduce as the battery size increases due to the ad-
ditional control authority that is a�orded to the EMS. This allows the EMS more �exibility
with regards to the fuel cell operating point without risk of compromising the battery volt-
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age constraints. As a result, the EMS is able to run the fuel cell for more time in its most
e�cient operating region and therefore produce the same amount of electrical power while
consuming less fuel. In addition to this, the increase in battery capacity also means that the
C-rate of the batteries is reduced, which in turn means that the cycling losses in the battery
are reduced as mentioned in the previous section. This means that the average electrical
load on the fuel cell is lower and therefore less fuel is consumed.

Comparing the optimised strategies, the MFC strategy shows a fuel consumption which
is around 1% lower for any battery capacity above 2.6kWh. This is to be expected because
the MFC strategy is optimised purely in order to minimise the fuel consumption, without
regard to any degradation. It has been noted in the previous section that the MFC strategy
tends to show fewer cycling losses in the battery which would account for a large propor-
tion of this di�erence. This results in a lower fuel consumption, but likely causes additional
transient loading on the fuel cell. Aside from this however, both strategies perform very
similarly, which suggests that the objective of minimising the degradation is largely com-
plimentary to optimisation of the fuel consumption.

It can be seen that aside from the result for a 2.6kWh battery, there is a slight curve in
the trend. This is because as the battery capacity is increased, diminishing performance
gains are achieved. As a result, it is expected that for much larger batteries, the curve will
begin to level out, reaching a limit where the load on the fuel cell is approximately constant
at the average power demand. Although the mass of the batteries has been neglected in this
analysis, at this point the mass increase would become signi�cant eventually causing the
trend to reverse as the increased vehicle mass means that additional electrical power is
required to drive the vehicle. It must also be noted that the additional cost of signi�cantly
larger batteries would also cease to become negligible compared to the overall cost of the
vehicle.
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7.3.3 Fuel Cell Lifetime
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Figure 7.9: Fuel Cell Degradation vs. Battery Capacity

Figure 7.9 shows the estimated lifetime for both SDP optimised controllers. In the centre
and lower plots, the breakdown of degradation methods is shown for each strategy. The
top plot in Figure 7.9 also shows the theoretical maximum fuel cell lifetime based on the
rate of degradation due to cycling. This is shown as a dashed black line. Each journey must
start and stop the fuel cell at least once; therefore, even if no degradation is seen due to any
other methods, the fuel cell will have a �nite lifetime of approximately 744 hours. It can be
seen that the estimated lifetime using MFC strategy peaks at 690 hours (93% of maximum)
for a battery capacity of 2.1kWh. However, the estimated lifetime of the fuel cell using DI
strategy continues to rise as the battery capacity is increased and reaches a maximum of
736 hours, 99% of the theoretical maximum at 4.2kWh.
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In general, the lifetime of the fuel cell for both strategies rises as the battery capacity
increases up to 2.6kWh. It can be seen that both controllers follow almost identical patterns
up to approximately 1.6kWh, at which point the DI controller begins to show marginally
less voltage degradation. Above 2.6kWh, the lifetime of the DI controller continues to in-
crease, however the lifetime of the fuel cell for the MFC strategy begins to fall relatively
sharply to just 525 hours at 4.2kWh.

7.3.3.1 Transient Degradation

In the region below approximately 2.1kWh, the transient degradation for both strategies
is approximately equal and follows the trend that as the battery capacity increases, the
transient degradation decreases. This is due to the increased control authority of the EMS.
Below approximately 2.6kWh, the battery capacity is only marginally large enough for the
battery to operate as an energy bu�er to the fuel cell. This means that although the fuel cell
is able to maintain the net battery SoC over the drive-cycle, its operating point is directly
a�ected by the instantaneous load from the traction motor for a large proportional of the
time. In this region, as the battery capacity increases, the number of options available to
the EMS gets larger, and as a result the EMS is able to choose the actions which will best
optimise its objectives. Below approximately 2.1kWh, the largest advantage is gained by
running the fuel cell close to its most e�cient operating point for more time. This has the
added advantage that it also reduces the transient loading on the fuel cell, and hence the
behaviour of both strategies is similar.

Between 2.1kWh and 2.6kWh, the results of the strategies begin to diverge. It can be
seen that, in this region, the DI strategy continues to reduce the transient degradation,
down to just 3.8µV/cell over the entire set of 10 journeys. Above 2.6kWh, the two strategies
diverge considerably. The vast majority of this di�erence is due to the much higher degree
of transient loading seen with the MFC strategy. In this region, it becomes advantageous
from the fuel consumption perspective to prevent cyclic loading on the battery in order to
minimise cycling losses in the battery. This is achieved by passing the transient loading on
to the fuel cell, which in turn tends to degrade the fuel cell. The DI strategy on the other
hand, penalises this transient loading in its cost function and therefore this situation is
avoided. Because the DI strategy is designed to optimise the degradation as well as the fuel
consumption, the associated costs of each target are traded o� against each other. It can be
seen that the increased fuel consumption caused by avoiding this transient loading is very
small, and therefore the DI strategy is able to signi�cantly reduce the transient loading for
only a marginal increase in the fuel consumption. As the battery size increases up to around
4.2kWh, the battery is better able to act as an energy bu�er to the fuel cell and therefore
the transient loading on the fuel cell can be further reduced.

For the DI strategy, degradation due to transient loading is further reduced down to just
2.2µV/cell for the largest battery capacity of 4.2kWh. In contrast, the transient degradation
MFC controller does not reduce by as much in the region between 1.6kWh and 2.6kWh, and
even begins to increase for batteries larger than this. This results in a signi�cantly lower
estimated lifetime of the fuel cell for the largest battery capacities.
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7.3.3.2 Operating Point Degradation

The battery capacity obviously has a large e�ect on the degradation due to operating point.
It can be seen that for both controllers, the degradation due to operating point reduces
by around 75% from the 0.5kWh battery up to the 2.6kWh battery. This is because the
battery acts as a bu�er to the fuel cell. Smaller batteries will be less able to absorb loads,
meaning that the full range of fuel cell operating point is required in order to maintain the
battery within its voltage limits. As the battery capacity increases, the battery is able to
absorb transient loads for longer periods of time allowing the fuel cell to operate at a time-
averaged load. This means that it is not required to operate at its extreme limits of power
as often and as a result, the degradation due to operating point is reduced.

Above 2.6kWh, the two strategies behave slightly di�erently to each other. The degrada-
tion due to operation point for the DI strategy continues to decrease to an almost negligible
level for a battery capacity of 4.2kWh. In fact, the degradation due to the operating point is
reduced from 4.7µV/cell when using a 2.6kWh battery down to just 0.6µV/cell when using
a 4.2kWh battery. In contrast, the MFC strategy shows a relatively constant level of operat-
ing point degradation, at approximately 8.0µV/cell, although the balance shifts from 50:50
(low:high) degradation for a 2.6kWh battery to 90:10 for a 4.2kWh battery. This shows that
although the battery capacity is large enough to avoid low load operation, the MFC chooses
to operate in this region to optimise the fuel consumption. In contrast, the DI strategy does
not operate in this region suggesting that the fuel consumption bene�t is outweighed by
the potential degradation. This behaviour is also likely to be related to the avoidance of
transient degradation. The DI strategy penalises transient loading on the fuel cell, instead
operating the stack at a more averaged load; which will inherently mean that it spends less
time at the extreme limits of load.

7.3.3.3 Cycling Degradation

In line with previous results, the degradation due to cycling is the dominant mode of ageing
seen. For the DI strategy, this represents 76% of the degradation seen for the smallest battery
size, and up to 99% for the 4.2kWh battery due to the e�ective management of the other
methods. As before, there is very little that the EMS can do to further reduce this method
degradation. For the MFC strategy, there is more degradation due to other methods with
the largest fuel cell, but cycling is still responsible for 70% of the fuel cell degradation.

It must be noted that the fuel cell in the Microcab H4 does experience a particularly
high cycling degradation rate compared to �gures from the literature, however even using
a smaller estimate based on the �gure used by Chen et al. [13] of 13.79 µV/cycle/cell, the
cycling would still be responsible for up to 98% of the degradation for the DI strategy and
58% for the MFC strategy with a 4.2kWh battery.
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7.3.4 Running Cost
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Figure 7.10: Running Cost vs. Fuel Cell Size
When optimising the DI controller, the fuel consumption and stack degradation are

weighted using their respective costs, and the SDP algorithm is used to minimise the overall
running cost. This means that although the MFC strategy is expected to outperform the
DI controller with respect to the fuel consumption, the reduction in cost associated with
degradation for the DI strategy should mean that its overall running cost should be lower.
The top plot in Figure 7.10 shows the comparison between the two strategies. It can be
clearly seen that as before, both strategies perform almost identically for battery capacities
up to 1.6kWh. Between 1.6kWh and 2.6kWh, the strategies begin to diverge slightly due
to slightly reduced degradation seen when using the DI strategy. For battery capacities
greater than 2.6kWh, the DI strategy results in signi�cantly lower running costs due to a
massive reduction in degradation for only a marginal increase in the fuel consumption.
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It can be seen that for both strategies and throughout the range of battery sizes, the
dominant factors associated with the running cost are the fuel consumption and the cycling
degradation. This correlates with the results found in the fuel cell sizing exercise. The
degradation due to cycling has been minimised using the assumption that each strategy will
only start and stop the fuel cell once, and therefore there is nothing that either optimisation
can do to further reduce this. As a result, it is constant throughout the exercise. The fuel
consumption on the other hand generally reduces as the battery capacity increases due to
the increased control authority of the EMS.

Below 2.6kWh, both strategies perform almost identically, however above this value,
the DI strategy clearly results in a lower overall running cost. This di�erence increases as
the capacity of the battery is increased, and results in a maximum reduction in running
cost of 15% for a battery capacity of 4.2kWh. This is reduction can be attributed to a 98%
reduction in the transient loading on the fuel cell and a 90% reduction in the degradation
due to the operating point. This results in a 40% increase in the estimated lifetime of the
stack, which far outweighs the increase in the fuel consumption of just 0.7%.

7.3.5 Summary

The optimisation of the strategy for various battery capacities has shown that as the battery
capacity increases, the fuel consumption is reduced. This is to be expected due to the fact
that the battery acts as a bu�er on the fuel cell and can absorb sudden loads which would
otherwise cause the fuel cell to operate far from its peak e�ciency. As the battery capacity
increases, this bu�er becomes larger and the EMS is a�orded more �exibility with which to
choose its optimal action. As a result, the performance of both strategies improves as the
battery capacity increases.

The MFC strategy optimises the fuel consumption in two ways. Firstly, the operating
point of the fuel cell is chosen so that its average operating e�ciency is improved; this is
generally performed by running the fuel cell closer to its optimal operating point and al-
lowing the battery to absorb sudden loads. As the battery capacity increases up to around
2.6kWh, this results in both reduced fuel consumption and reduced transient degradation.
Above 2.6kWh, diminishing returns are seen by performing this as the fuel cell spends most
of its time close to optimal operating e�ciency; where the curve of e�ciency against load
is relatively �at. However, for battery capacities above 2.6kWh, the MFC also begins to
minimise the overall load on the fuel cell by reducing the cyclic loading on the battery.
As transient loading on the battery causes cyclic losses in the battery, the MFC strategy
tends to transmit these higher frequency transients onto the fuel cell. This doesn’t signi�-
cantly detriment the fuel cell e�ciency due to the fact that the operating e�ciency curve is
relatively �at in this region and the change in load is quite small. As a result, the fuel con-
sumption is further reduced; however, this is now at the expense of fuel cell degradation.
This means that although the fuel consumption is optimised, excessive transient degrada-
tion on the fuel cell means that the overall running cost begins to increase for larger battery
sizes.

In contrast, the DI strategy is designed to minimise the overall running cost of the fuel
cell inclusive of the degradation. With battery capacities up to 2.6kWh, this strategy be-
haves similarly to the MFC strategy, reducing both fuel consumption and degradation by
running the fuel cell with a steady load close to its optimal operating point. Its performance
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increases as the increased capacity of the battery allows. However, with battery capacities
above 2.6kWh, this strategy begins to diverge from the MFC strategy. As the battery ca-
pacity increases, the cyclic loss in the battery naturally decreases due to the reduction in
C-rate (de�ned by current/capacity). However, unlike the MFC strategy, the DI strategy
does not transmit the high frequency transient loading to the fuel cell in order to further
reduce these losses. In fact, the DI displays some degree of hysteresis on the fuel cell load
and further reduces the transient loading on the fuel cell in order to minimise the cost asso-
ciated with the transient loading degradation. Although this results in a marginally higher
fuel consumption (0.7% for 4.2kWh battery), the reduction in the cost associated with the
fuel cell degradation (approximately 40% for a 4.2kWh battery) massively outweighs this.
As a result, the overall running cost is approximately 15% lower for the 4.2kWh battery.

For a battery capacity of 2.6kWh, both strategies show very similar behaviour and
achieve similar performance in terms of fuel consumption (0.04% di�erence), range (0.04%),
lifetime (2.4%) and overall running cost (1.1%). This capacity battery could be said to be
the minimum which provides acceptable degree of control authority for the SDP optimisa-
tion to show its bene�ts. However, for larger capacities, the DI controller shows a much
higher degree of robustness. Whereas both strategies show continuous improvements in
the fuel consumption, the MFC strategy results in signi�cantly increased degradation as
the capacity of the battery increases beyond 2.6kWh.

Finally, it must be noted that the mass of the battery pack has not been included in this
analysis. This assumption has been made due to the fact that the battery pack is relatively
small in comparison to the total mass of the vehicle and therefore is not likely to signi�-
cantly a�ect the results for the range of capacities examined. However, it must be noted
that the improvement in both fuel consumption and fuel cell degradation seen with increas-
ing battery size will gradually become less prominent for larger sizes of battery pack. As
the battery capacity increases past 4.2kWh, the gains observed are likely to become even
smaller and it is likely that the increased mass of the battery will become the dominant
factor, resulting in the fuel consumption and fuel cell degradation beginning to increase.
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7.4 Conclusions

This chapter has analysed the e�ect of changing both the fuel cell maximum power and
the battery storage capacity with regards to the fuel consumption, vehicle range, fuel cell
lifetime and vehicle running cost. For each system design, two strategies have been opti-
mised using Stochastic Dynamic Programming (SDP); the �rst is designed to minimise the
fuel consumption (MFC strategy) and the second is designed to minimise the overall run-
ning cost, inclusive of both fuel consumption and fuel cell degradation (DI strategy). The
advantage of optimising the controller for each individual design is that near-optimal per-
formance of each design is achieved and therefore system designs which o�er advantages
in di�erent areas can be compared without the possibility of the results being compromised
by a strategy which favours one particular bene�t.

It has been found that on a purely running cost basis, the optimal design is the one
that minimises the fuel cell maximum power and maximises the battery capacity. This is
largely due to the fact that the cycling degradation rates seen on the Microcab contribute
very strongly to its overall running cost. As a result, it is bene�cial to minimise the cost of
the fuel cell as much as possible despite this causing an increase in the fuel consumption and
fuel cell degradation. The minimum fuel cell power required to complete every examined
journey without a net change in battery SoC was 1800W, although the current fuel cell stack
size of 1200W would be su�cient to maintain the battery SoC on an average journey. This
means that although the battery would be depleted over some particularly harsh journeys,
it could be recharged during milder trips, assuming its capacity was large enough.

In reality, there are other aspects to consider in addition to the cost. The hydrogen
storage capacity of Fuel Cell Hybrid Electric Vehicles (FCHEVs) tends to be limited by the
packaging requirements. This means that a reduction in the fuel consumption will most
likely result in a direct increase in the range of the vehicle in addition to the reduced running
cost. In addition to this, the reliability of the stack will also a�ect potential customer’s
perception of the vehicle, which is a highly important area for emerging technologies such
as fuel cell vehicles. Therefore, it may be bene�cial to use a slightly oversized stack in order
to balance these objectives as a whole. During this exercise, it has been found that a 2400W
fuel cell has a range that approximately 9% higher than the 1800W system and an estimated
lifetime that is 10% higher for only a 3% increase in running cost.

With regards to the battery size, larger batteries tended to show a signi�cant reduction
in the fuel consumption and fuel cell degradation when tested using a 2400W fuel cell. It
has been found that for a 2400W system, a battery capacity of at least 2.6kWh is required in
order to ensure that the battery voltage constraints would not be compromised. This would
result in a fuel consumption of around 11.7g/km, an estimated range of approximately 51km
and an estimated fuel cell lifetime of around 705 hours, resulting in an overall running cost
of approximately $0.06/km for the DI strategy. Increasing the battery capacity further to
double (4.2kWh) its current size allows the fuel consumption to be reduced further to around
10.8g/km, and increases the lifetime by another 30 hours (4%).

Comparing the two strategies, there is a clear bene�t to the inclusion of the estimated
fuel cell degradation into the cost function. It has been found that the MFC controller
tends to subject the fuel cell to a high amount of transient loading, especially for large
fuel cell sizes and high battery capacities, where the control authority of the EMS is high.
In comparison, the DI is able to reduce the transient loading by up to 99% in these cases,
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which results in a signi�cant (approximately 40%) increase in the estimated lifetime of the
fuel cell. In doing so, the fuel consumption is only marginally increased, by around 1% for
an over-sized battery and around 2.5% for an over-sized fuel cell. For systems which would
be marginally capable of sustaining the battery SoC, the advantages of the DI controller are
much less pronounced due to the low control authority of the EMS. This is due to the fact
that the EMS is only just able to avoid the voltage constraints and therefore the behaviour
of both strategies is very similar. However, there is often still a distinct reduction in overall
running cost for these systems when compared to the MFC strategy.

The main di�erence between the strategies is that the MFC controller tends to pass
high frequency, low amplitude transient loading onto the fuel cell in order to minimise the
cycling losses in the battery. This reduces the average load on the fuel cell and results in a
small, but signi�cant reduction in the fuel consumption. This is particularly apparent when
the ideal load on the fuel cell is in a region between the discrete operating states de�ned
in the SDP optimisation. In this situation, the MFC strategy will tend to oscillate between
these discrete states rapidly, massively increasing the transient loading on the fuel cell. In
contrast, the DI strategy tends to show some degree of hysteresis on the fuel cell load. As a
result, the transient degradation is massively reduced. This does have the minor downside
that the response of the DI tends to be slower, resulting in a larger range of battery SoC
being utilised and hence greater cycling losses in the battery.

Throughout this exercise, one of the major contributors to the running cost is the degra-
dation associated with start-stop cycling of the fuel cell. This was responsible for up to 99%
of the degradation cost for some system designs when using the DI strategy and for most
realistic designs it was responsible for more than 50% of the running cost for both strate-
gies. Although theoretically it would be possible to allow the EMS to control the fuel cell
start-up and shut-down, in this work it has been found that the fuel cell should be started
at the beginning of the journey and shut down at the end in order to force each controller
to only cycle the fuel cell once. This minimises the cost associated with this degradation
method and there is very little that the EMS can do to further reduce this. As a result, this
highlights that this area is an key area for future research.

Finally, it must be noted that this exercise did not account for the change in the mass of
the vehicle associated with the di�erent system designs. This assumption has been made
on the basis that the range of values used in this exercise is relatively small, and therefore
will result in negligible change to the overall vehicle mass. However, if the exercise were
to be repeated, especially for a larger range of battery capacities, then the inclusion of this
change in mass should be accounted for. In this case, it is likely that for battery capacities
much above 4.2kWh, the fuel consumption and fuel cell degradation is likely to begin to
increase. This would allow the optimal battery capacity to be found.
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Chapter 8

Conclusions and Further Work

This chapter summarises the report and identi�es the key �nding in relation to the issues
introduced at the beginning of the report. The output of the project is compared to the
objectives listed in the introduction, and research questions highlighted in the literature
review. The chapter ends with a critical analysis of the project, including issues encoun-
tered and re�ections on the broader research value of the �ndings. Finally, o0pportunities
for further development are identi�ed as well potential applications of the novel strategy
optimisation.
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8.1 Summary

Fuel Cell Hybrid Electric Vehicles (FCHEVs) have been seen as the “silver bullet” which
could solve a number of issues to do with transportation for a number of decades now. This
is because they do not rely on diminishing fossil fuel reserves. As a result, a hydrogen fuel
cell vehicle will produce no emissions from the vehicle and therefore do not contribute to
localised air pollution. In fact, if run on hydrogen produced by renewable means, a fuel cell
vehicle will not produce any carbon emissions at all. As the global population continues to
increase and the on-growing growth of developing nations puts ever-increasing pressure
on the need for a low carbon solution, hydrogen powered vehicles become increasingly
attractive.

Unfortunately, hydrogen FCHEVs have a number of signi�cant drawbacks especially
in regard to their cost, durability and hydrogen storage which as yet have prevented them
from being competitive with conventional vehicles. When considered separately, the latest
research purports to show that many of these issues are very nearly overcome. For example,
General Motors (GM) estimate that by 2020 to 2025 only 5-10g of platinum will be required
for catalysis by using a platinum-alloy shell on a more a�ordable core [1]. This is compara-
ble to the amount used in the catalytic converters of conventional vehicles. However, when
these issues are considered concurrently this is not always the case. For example, reduced
platinum loading has been shown to signi�cantly increase the rate of degradation due to
Electro-Chemical Active Surface Area (ECASA) reduction.

It is therefore important to consider the vehicle in a holistic sense in order to examine the
trade-o� between these targets and the e�ect that di�erent design ideas have on the e�ect of
the vehicle as whole rather than the particular bene�t in one area. That way, the true overall
bene�t of each new development can be truly assessed. One of the areas that can have a
signi�cant e�ect on the performance of the vehicle as a whole is the Energy Management
Strategy (EMS). The EMS is responsible for choosing the operating conditions of the fuel
cell and as a result contributes signi�cantly to the overall fuel consumption, reliability and
drive-ability of the vehicle. Therefore, when examining the trade-o� between these issues,
it is extremely important to consider the behaviour of the EMS.

In the �rst part of this thesis, a novel EMS has been developed which optimally trades
o� the hydrogen consumption and fuel cell degradation. It has been found that it is possible
to increase the lifetime of the fuel cell on the Microcab H4 by approximately 15% for only
a 3.5% increase in fuel consumption. This corresponds to a reduction in the overall run-
ning cost of approximately 9% when compared to a strategy based solely on optimising the
fuel consumption. The vast majority of this improvement was due to a massive reduction
(approx. 95%) in the transient loading of the fuel cell.

In addition to the immediate e�ects of its implementation, there is another signi�cant
bene�t to this strategy when compared to the latest research in the literature. This optimi-
sation process can be performed on any vehicle design to analyse the real-world bene�ts
of any potential design improvements. Because the optimisation process produces the sta-
tistically optimal strategy for that vehicle, the performance can be directly compared to
alternative designs without concern that the results are a�ected by any bias in the EMS.
Each design will therefore have a unique strategy which maximises its individual bene�ts
and represents the best performance that it can achieve.

This allows alternative designs, such as the introduction of a reduced platinum catalyst,
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to be analysed in a holistic sense and identify their real-world bene�ts as well as any poten-
tial drawbacks. The penultimate chapter of this thesis presents an example of this type of
usage where a component sizing exercise has been performed to identify the optimal fuel
cell stack size and battery capacity for campus driving patterns. This is common exercise
which is often performed in the early design stages of a new hybrid vehicle, and provides
a signi�cant contribution in its own right; however, it only scratches the surface of the
potential applications of the novel strategy optimisation developed.

8.2 Optimal Control of the Microcab H4
The Microcab H4 is a lightweight vehicle designed speci�cally for the transportation of
people and goods around the University of Birmingham’s campus. It has been designed to
replace diesel vehicles which were used previously and su�ered from poor e�ciency and
high emissions due to the low speeds required. The Microcab has been designed to be low
cost, costing just £250,000 to fully manufacture �ve prototype vehicles and is �tted with a
relatively small 1.2kW fuel cell and a 2.1kWh battery pack. It has a top speed of approxi-
mately 30mph and a peak acceleration of just 3m/s. The vehicles were used on campus for
approximately 2 years and accumulated around 4000km of usage, consuming about 68kg of
hydrogen. During this time, the performance of the vehicles was studied and it was found
that the vehicles su�ered from relatively poor e�ciency which would be improved by ex-
amination of the vehicle from a systems level in addition to the implementation of a more
advanced EMS control algorithm.

The current control algorithm on board the Microcab H4 is a heuristic strategy designed
to maintain the batteries at 100% State of Charge (SoC). A thorough examination of the lit-
erature in Chapter 2 revealed that there are a number of signi�cant improvements that can
be made to this type of design. The strategy is extremely simple and based solely on main-
taining the battery SoC, therefore e�ciency gains could be made by the introduction of a
number of rules designed to optimise the operating point of the fuel cell and other compo-
nents on board the vehicle. In this way, these components could be run at a higher overall
operating e�ciency. However, although “rule-based” controllers tend to be robust and easy
to implement on board a vehicle, they do not tend to take advantage of all the potential ben-
e�ts of a hybrid powertrain, meaning that further gains can be made by using more complex
control algorithms. Careful examination of a number of di�erent techniques, ranging from
more complex “rule-based” controllers to machine learning techniques such as neural net-
works, highlighted two potential candidates; Stochastic Dynamic Programming (SDP) and
Adaptive Equivalent Consumption Minimization Strategy (A-ECMS).

Equivalent Consumption Minimization Strategy (ECMS) is a heuristic technique which
involves the calculation of the equivalent fuel consumption related to variation in the bat-
tery SoC. The strategy then minimises the instantaneous cost calculated as the sum of the
actual fuel consumption and the equivalent fuel consumption relating to the use of the bat-
tery. A-ECMS is a development of this strategy which involves the real-time adjustment
of the equivalence factor based on recent driving history. SDP on the other hand involves
the generation of a stochastic model of the duty cycle. This stochastic model is then used
in combination with a vehicle model in order to calculate the cost of each potential action
from each potential vehicle state. The strategy is then determined by the set of actions
which will minimise the cost over an in�nite horizon. Although the optimisation of the
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SDP strategy is extremely computationally expensive, the �nal strategy is captured in a
lookup table which can easily be implemented on board the vehicle.

Both techniques show signi�cant performance bene�ts (around 15-20%) when com-
pared to “rule-based” controllers and are able to replicate the performance of the optimal so-
lution to within 1-2% for the minimisation of the fuel consumption. However, SDP has been
chosen because it is much more straight-forward to optimise the strategy for more complex
cost functions involving not just the fuel consumption, but other performance metrics such
as drive-ability, component degradation and emissions. In this situation, ECMS strategies
tend to require additional correction factors in order to constrain the SoC deviation in the
long-term which can signi�cantly impair their performance.

During the course of the literature review, it was also found that much of the research
into the optimisation of the EMS for fuel cell vehicles focuses solely on the fuel consump-
tion. In this regard, research for FCHEVs lags behind that for Internal Combustion En-
gine (ICE) based hybrids which tends to consider a number of additional factors in the cost
function such as drive-ability, battery ageing and emissions. Although many of these met-
rics, such as the number gear shifts, are not relevant for single gear power-trains such as
in FCHEVs, the degradation of the fuel cell can be signi�cant and is heavily a�ected by the
EMS. It was therefore decided to design a novel EMS that could concurrently optimise both
hydrogen consumption and stack degradation.

The strategy uses a number of metrics in order to quantify the major causes of fuel cell
degradation which are under control of the EMS. These include penalties for operation
at low loading and idle, at high current loading, transient loading and on/o� cycling. In
an ideal case, these �gures would be obtained from extensive testing, however due to the
time and budget restrictions on the project, this has been deemed out of the project scope.
Instead, the �gures used to quantify the degradation are derived from numbers given in
the fuel cell datasheet, along with additional information from the literature. The �nalised
strategy weights the fuel consumption and degradation using their respective costs and is
constrained by the battery voltage in order to ensure charge-sustaining behaviour.

8.2.1 1.2kW Fuel Cell

In Chapter 6, the novel Degradation Inclusive (DI) controller is compared to both the current
heuristic strategy and a Minimal Fuel Consumption (MFC) strategy representative of recent
work in the literature. The MFC strategy is identical in all respects aside from the exclusive
of degradation from the cost function. It is initially found that the 1.2kW fuel cell in the
Microcab H4 is generally quite undersized for its application and as a result is unable to
maintain the battery SoC under all conditions. This means that both controllers optimised
using SDP perform identically due to the voltage constraints dominating the cost function.
As a result, the fuel consumption of the vehicle is increased by approximately 5% compared
to the current strategy; however, the degradation due to transient loading is signi�cantly
reduced, leading to an increase in the estimated lifetime of approximately 27% and an overall
cost saving of approximately 3.6%.

The results for the current strategy, however, do help to validate the vehicle model used
by replicating the results seen during the vehicles usage at Birmingham. It was found by
Sta�ell et al. [6], that the vehicle’s traction battery would tend to deplete if the vehicle
was driven non-stop, giving a maximum range for a single journey to be approximately
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8km. However, with intermittent usage typical of campus driving patterns, the fuel cell
could maintain the battery SoC, tending to recharge it while the vehicle was stationary,
and giving a range up to 45km. In comparison, this strategy achieved an estimated range of
approximately 45km over the cycles simulated for this chapter. The SDP strategies achieved
a slightly lower range of 43km due to the increased fuel consumption. This di�erence can
largely be attributed to the fact that the optimised strategies run the fuel cell at maximum
power and hence a lower e�ciency in order to recharge the battery more quickly during
stationary periods. In contrast, the baseline strategy allows the fuel cell power to gradually
reduce as the battery charge increases, which is more e�cient, but increases the possibility
of the batteries being depleted if the vehicle were to begin being used again after a brief
period of time.

8.2.2 4.8kW Fuel Cell

Overall, it was concluded that the 1.2kW fuel cell was generally quite undersized for the
application. This correlates with previous �ndings by Kendal et al. [4] and Sta�ell et al. [6]
and means that the current control strategy of running the fuel cell near to maximum power
for almost all of the time is the only viable option in order to attempt to maintain the battery
SoC. As a result, the SDP optimised strategies tended to produce very similar behaviour to
the current strategy. Therefore, it was decided to repeat the analysis for one of the options
for the newer Microcab H2EV, a 4.8kW fuel cell. This would allow the potential bene�ts of
the novel control strategy to be examined in detail.

With a 4.8kW fuel cell, the current strategy causes the fuel cell to su�er from a very
high amount of transient loading due to the fact that stack is now able to maintain the
battery at 100% SoC. With the 1.2kW fuel cell, the batteries tended to be gradually depleted
over a single journey meaning that the fuel cell load was relatively stable at 100% power
for much of time, however with a 4.8kW fuel cell, all of the transient loading inherent
in the duty cycle is now passed directly onto the fuel cell and the estimated lifetime of
the fuel cell is reduced down from approximately 574 hours to just 166 hours. This is an
inherent problem with heuristic strategies; what works well on one system design may
not necessarily translate well to another, meaning that direct comparison between system
designs can be very di�cult without concern of bias from the strategy. Although it would
be possible to improve the results with the introduction of a few simple rules, this may
negatively a�ect the results for the 1.2kW fuel cell.

Conversely, it is relatively trivial to re-optimise the SDP strategies for the changes in
the system design. Because the fuel cell is now able to maintain the battery SoC, the op-
timisation is no longer dominated by the voltage constraints and the di�erences between
the MFC and DI strategies are apparent. As would be expected, it is found that the MFC
strategy results in the lowest fuel consumption, approximately 9.9% lower than the base-
line strategy and 3.7% lower than the DI strategy. However, the MFC strategy introduces
in a number of oscillations in the fuel cell load in order to minimise the fuel consumption.
As a result, it also su�ers from a high degree of transient loading. The DI strategy, over-
all, behaves very similarly, but avoids this type of transient loading due to some hysteresis
on the fuel cell loading. This means that transient loading is decreased by approximately
96% when compared to the MFC strategy leading to an increase in the estimated lifetime of
around 18%. This results in an overall running cost reduction of approximately 9%.
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8.2.3 Key Findings
In general, the �ndings of Chapter 6 correlate well with the theory and previous literature.
It has been found that the performance of the vehicle is heavily reliant on both the system
design and the control strategy. An undersized fuel cell leads to generally de�cient perfor-
mance due to the reduced control authority of the EMS, however for an appropriately sized
fuel cell, the di�erences between the strategies is apparent. As would be expected, the MFC
strategy resulted in the lowest fuel consumption and the DI strategy resulted in the lowest
overall running cost. The key �ndings can be summarised as follows;

1. Control Authority: The degree of control authority of the EMS is crucial for opti-
misation of the strategy. If the system is unable to stay within its constraints, then
the cost penalty associated with these constraints will dominate the optimisation
process, and as a result, inferior performance is observed. The 1.2kW fuel cell is un-
able to maintain the battery voltage within its constraints under all circumstances.
Because the cost associated with these constraints is so high, the cost associated
with fuel consumption and degradation is negligible and the performance of the
strategy with regard to these targets is poor.

2. Fuel Consumption: Both SDP strategies tended to show relatively similar perfor-
mance with regard to the fuel consumption. As would be expected the MFC strategy
shows the best overall performance for the 4.8kW fuel cell stack, but for the DI strat-
egy the fuel consumption was only 3.2% higher, which was still approximately 7%
lower than for the baseline strategy.

3. Operating Point Degradation: In general, optimisation of the fuel consumption
coincides with minimisation of the operating point degradation. It is bene�cial for
both strategies to run the fuel cell at its optimal operating point for as much time as
possible. This inherently means that extreme loading conditions tend to be avoided
in order to optimise the fuel cell e�ciency. However, it may be bene�cial from a
fuel consumption point of view to run at low loading conditions under some cir-
cumstances, especially if this means a reduction in the energy losses in other parts
of the system, such as DC/DC converter e�ciency or battery cycling. As a result,
the DI strategy reduced the operating point degradation by approximately 19% for
the 4.8kW fuel cell.

4. Transient Degradation: Minimisation of the fuel consumption can compete heav-
ily with minimisation of the transient loading on the fuel cell. In order to minimise
cycling losses in the battery, the MFC strategy tends to introduce an oscillating load
on the fuel cell under some circumstances. This leads to signi�cant transient degra-
dation, which can substantially reduce the lifetime of the fuel cell. The DI strat-
egy however, avoids transient loading almost entirely by introducing some hystere-
sis into its strategy, massively improving the reliability of the fuel cell for only a
marginal increase in the fuel consumption.

5. Cycling Losses: For both the MFC and DI strategies, the start/stop cycling degra-
dation was the highest contribution to the overall running cost, at 52% and 58%
respectively. There is very little that the EMS can do to further reduce this type of
degradation and therefore it represents a signi�cant area for further research.
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8.3 System Design Using Optimal Control

The performance of any hybrid powertrain depends heavily on the control strategy of the
EMS. This is because the EMS chooses the operating point of the various components
involved which determines whether or not they operate e�ciency. It is therefore important
to consider the design of the EMS when comparing di�erent system designs. SDP is an ideal
candidate for this type of analysis because each strategy can be optimised individually for
every particular design. This means that the maximum performance of each alternative is
given, and the results are directly comparable without concern as to bias in the strategy.

An interesting question that arises in the literature regards the bene�t of using an over-
sized fuel cell in order to limit the degradation. Is it more cost e�ective to use a marginally
sized fuel cell which would need to run close to full power and hence su�er from high rates
of degradation, or an over-sized fuel cell which would be able to run at a more optimal
operating point and therefore experience signi�cantly less degradation? Chapter 7 anal-
yses the e�ect of changing the fuel cell maximum power and the battery capacity on the
performance of the vehicle with regard to the fuel e�ciency, operating range, fuel cell life-
time and operating cost. For each design, both MFC and DI strategies have been optimised
using SDP. Overall, it is found that in order to minimise the absolute running cost of the
vehicle, the smallest fuel cell that is capable of maintaining the battery SoC should be used
in conjunction with a relatively large capacity battery. It must be noted however that the
degradation and cost of the battery were not taken into account due to the assumption that
they would be negligible compared to the relatively high cost of both the hydrogen fuel and
fuel cell stack.

Of the fuel cell sizes tested, it was found that the 1800W fuel cell stack was the smallest
stack which was able to successfully maintain the battery SoC over all of the tested journeys.
This was to be expected due to the fact that the highest average power on a single journey
was approximately 1650W, and the maximum power of the fuel cell would need to be at least
as high as the average power demand in order to ensure no net change in the battery SoC.
For fuel cell stacks of this size and higher, the results were therefore directly comparable,
and it was found that the smallest size (1800W) was the one that minimised the overall
running cost for both the MFC and DI strategies. This can be attributed to the excessive
cost of start-stop cycling and the linear increase in the value of the fuel cell as the stack size
increases.

Given a linear approximation of the fuel cell cost as used in this analysis, as the fuel cell
size increases, so does its value, so although the hydrogen consumption and degradation
rates for larger fuel cell stacks tended to be smaller than that for 1800W, the overall running
cost will still increase with size. However, the results are marginal, and it is shown that a
stack with a lower start/stop cycling degradation rate, as used by Chen et al. [13], would
have a larger optimal stack size of 2400W. This is because the reduction in fuel consumption
and degradation in the region between 1800W and 2400W more than compensates for the
increase in the value of the fuel cell.

However, it is also concluded in this analysis, that there are signi�cant bene�ts to using a
slightly larger fuel cell stack than that with the lowest running cost. By increasing the stack
size to 2400W, the running cost is increased by approximately 3%, however the estimated
range is increased by approximately 9% and the estimated lifetime is around 10% longer. The
fuel consumption is a crucial factor to consider for FCHEVs, because on-board hydrogen
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storage can be an issue with regard to packaging, and therefore increased fuel e�ciency
also often directly correlates to an increase in the vehicle range. The reliability of fuel cells
is also often cited as a concern for this type of vehicle and can have signi�cant impact
on consumer’s perception of the technology which can be a crucial factor for emerging
technologies.

With regard to the battery capacity, for a fuel cell of 2400W, it is found that the fuel con-
sumption generally decreases as the battery capacity increases. This is because the EMS is
a�orded a larger range of fuel cell operating points which will not exceed the battery volt-
age constraints. Both strategies perform very similarly up to a capacity of around 2.6kWh
due to the low control authority of the EMS. Below this point, the choice of fuel cell op-
erating point is largely determined by that which will minimise the risk of exceeding the
constraints on the battery voltage. Above 2.6kWh however, there is a clear bene�t to the
DI strategy, which, despite showing a marginally higher (0.7%) fuel consumption, su�ers
from signi�cantly less degradation (40%) when used with a 4.2kWh battery. This results in
a signi�cantly reduced running cost of around 15%.

8.3.1 Key Findings
Chapter 7 demonstrates the use of the novel control strategy in order to compare di�erent
systems designs. This is achieved by producing a number of optimal strategies considering
vehicle designs with a variety of fuel cell sizes and battery capacities. The results largely
correspond to the trends one might expect from the theory; however, the analysis quanti�es
the real-world trade-o� between the fuel cell cost and reliability. The key �ndings can be
summarised as follows;

1. Control Authority Again, the control authority of the EMS has an enormous im-
pact on the results and it is shown that systems with undersized fuel cell or battery
capacities tend to produce signi�cantly inferior results due to the poor optimisa-
tion of the targets. This analysis compares two slightly di�erent strategies, each
of which are constrained identically. This allows the identi�cation of areas where
the constraints are dominating the optimisation as regions where the two strategies
behave almost identically. It is shown that for undersized systems, the control au-
thority of the EMS is relatively low and no signi�cant bene�t is seen by inclusion of
the degradation into the cost function. However, as the stack size and battery capac-
ity is increased, the DI strategy tends to show massive reduction in the degradation
for only a minor increase in fuel consumption.

2. Fuel Cell Size In order to minimise the running cost of the fuel cell vehicle with
regard to both fuel consumption and degradation, it is optimal to choose the fuel
cell with the lowest maximum power that exceeds the average power required over
the worst-case duty cycle. This is largely due to the excessive cost of start-stop
cycling degradation which cannot be mitigated by the EMS, and due to the increase
in the value of the fuel cell with size. However, the results are marginal and it is
shown that a fuel cell with a lower start-stop cycling degradation rate will bene�t
from a slightly oversized fuel cell. As the size of the stack becomes larger however,
the bene�ts tend to reduce and the value of the stack again becomes the dominate
factor. Therefore, in some cases, it may be bene�cial to oversize the stack slightly,
but it is unlikely to be economical to over-size the stack signi�cantly.
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3. Battery Size The battery capacity can have a signi�cant e�ect on both the fuel
consumption and the fuel cell degradation. Increasing the battery capacity allows
the EMS a higher degree of control authority with which to optimise the strategy.
As a result, signi�cant bene�ts are observed which can be attributed to the fuel cell
being run at a higher overall e�ciency and a signi�cant reduction in the transient
loading for the DI controller.
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8.4 Research Questions
As part of the literature review a number of research questions were raised. In particular,
six speci�c questions were highlighted in Section 2.4.1 for further study as part of this work.
An attempt at answering these questions follows below;

1. How can these degradation methods [see Section 2.2.2.6] be quanti�ed so as
to be used in a degradation inclusive cost function?

As was shown in the literature review, there are a number of known degradation
methods for fuel cells, mostly due to deviation of temperature and chemical species
concentration, either across the whole cell, or in a localised area. Due to the com-
plex interactions between the electrical, chemical and thermodynamic processes in-
volved, examination at a high level requires either a complex mathematical model
or a signi�cant degree of abstraction. For the purposes of developing an EMS using
SDP, complex mathematical models would be unsuitable and therefore simpli�ca-
tion of the degradation methods was chosen. In order to achieve this, four main
operating conditions/events, were highlighted as causing elevated rates of degra-
dation and the fuel cell datasheet was used in order to estimate their e�ect. These
were; high power operation, low power/idle operation, transient loading and on/o�
cycling.
The values used for the cost function were based on �gures from the manufacturers
datasheet [106], cross referenced with �gures quoted in the literature [13]. For more
information on the details of the cost function, see Section 5.2.2.

2. To what extent can the fuel cell ageing be reduced by optimising the EMS
with regard to known fuel cell degradation causes?

The EMS can reduce fuel cell degradation via two methods. Firstly, it can be used
to stabilise the load on the fuel cell when it is in use. It has been found in Chapter 6
that transient degradation can be reduced by around 99% with very minimal (3-5%)
in the fuel consumption. This also serves to reduce the degradation due to operating
point by ensuring that the fuel cell runs at a more consistent load and is therefore
less likely to operate at the extremes of its loading range.
Secondly, the EMS can be used to turn o� the fuel cell when it is not required. By
allowing the EMS to power on the fuel cell only when required, it is theoretically
possible to balance the on/o� cycling degradation with that caused by its operating
point. However, it was found that the degradation due to cycling was so high that it
is never bene�cial to cycle the fuel cell more than absolutely necessary. The optimal
policy is to turn the fuel cell on at the beginning of a journey and o� again at the
end, allowing it to operate continuously in between even if this means that it would
su�er elevated rates of ageing due to operation at idle/low loading.
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3. Under real-life driving scenarios, which degradation methods are the most
signi�cant?
Transient loading of fuel cells in automotive applications is a much-discussed topic
in the literature and is often quoted as an important reason to hybridise a fuel cell
vehicle’s powertrain by using an ultracapacitor or a battery pack. As a result, there
is previous work which incorporates load stabilisation of the fuel cell into the con-
trol strategy. However, no research was found that speci�cally examines typical
transient loads found during transportation usage and their e�ect on the lifetime of
the fuel cell. For other methods of fuel cell aging, such as that due to cycling or the
operating point, there are even fewer mentions.
The work in Chapter 6 examines this area in signi�cantly more detail than has been
done in the past. It was found that for control strategies which do not avoid for
transient loading, this method of degradation accounts for around 0-15% of the age-
ing of the fuel cell. For the vehicle considered in Chapter 6, using a 4.8kW fuel cell,
operating point degradation accounts for approximately 8-10% of the fuel cell aging
depending on the type of control strategy. However, it was found in Chapter 7 that
the degree operating point degradation is much more dependent on the size of the
fuel cell chosen. Finally, the degradation due to on/o� cycling was found to be most
signi�cant, contributing to around 75-96% of the ageing process depending on the
control strategy and size of the fuel cell. As a result, it also contributed to more than
50% of the running cost of the vehicle in some cases. In summary, it was found that
transient degradation can be easily avoided by design of the supervisory EMS con-
troller and operating point degradation is largely dependent on the size of the fuel
cell chosen and the average power requirements of the vehicle. As a result, on/o�
cycling was found to be the most signi�cant unavoidable contribution and therefore
represents a critical area for further research.

4. How should the degradation of the fuel cell be weighted fairly against more
traditional optimisation metrics such as the fuel consumption?

The fuel cell degradation was weighted against the fuel consumption by using their
relative monetary values. It was decided to do this so that it was possible to calculate
overall running cost of the vehicle inclusive of both factors and that this would
be the value to be minimised by the optimisation process. This technique could
also be extended to include other factors such as the degradation of the battery
pack and/or mechanical drivetrain components. However, it was found that de�ning
the cost of the fuel cell was not a trivial task due to the small size of the fuel cell
and the limited production numbers of the vehicle in question, and that using the
actual replacement cost of the fuel cell would heavily weight (200:1) the degradation
over the fuel consumption. Instead it was chosen to use estimated mass-production
�gures from the literature in order to allow fairer comparison between the two. For
more information on the cost function weighting, see Section 6.1.1.
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5. What e�ect does each of these choices have on the performance and relia-
bility of the vehicle as a whole?
The work in this thesis is for a small niche vehicle, designed speci�cally for campus
usage, however, it is possible to extrapolate from the results in Chapter 7 in order
to estimate what they would mean for full-scale passenger vehicles.
a) A fuel cell with a maximum power equivalent to an ICE For fuel cell vehi-
cles, as well as ICE hybrid vehicles, consumers are likely to be concerned with the
power output of the prime fuel converter. This has lead manufacturers to tend to
provide hybrid vehicles with ICEs of a comparable size to their non-hybrid counter-
parts. As an example, the Toyota Mirai is �tted with a 114kW (153hp) fuel cell stack,
similar in maximum power to an equivalent ICE used in this type of vehicle, which
is hybridised with a relatively small 1.6kWh NiMH battery pack. It would be fair
to say that this con�guration puts the Mirai into the “Mild” hybrid category where
the vast majority of the tractive power comes from the prime fuel converter (rather
than the energy bu�er). This may be compared to the results for a large fuel cell and
small battery pack in Chapter 7.
Fuel cells tend to run at their optimum e�ciency at around 30-40% of their maxi-
mum power in contrast to ICEs which reach maximum e�ciency at 50-90% of the
peak power output [5]. As a result, from a fuel consumption perspective it is more
bene�cial to oversize a fuel cell than an ICE. The results in Chapter 7 con�rm this,
suggesting that a large fuel cell will tend to give the best fuel consumption �gures.
The fuel consumption could, however, be improved by also increasing the size of the
battery pack. From a fuel cell degradation perspective, using a large fuel cell will
tend to mean that the fuel cell will experience more transient loading, especially
if the supervisory EMS is not designed to minimise this. This issue is also com-
pounded by the fact that the larger fuel cell will cost more to replace, meaning that
the degradation will contribute signi�cantly to the running cost of the vehicle. Even
with a degradation “aware” controller, the fuel cell is likely to experience signi�cant
transient loading due to the small size of the battery pack, see Figure 7.9.
b) A fuel cell with peak e�ciency at the average power demand

As mentioned in part a), fuel cells tend to reach peak operating e�ciency at around
30% of their maximum power. Therefore, this heuristic design criteria would likely
result in a fuel cell which is around or possibly slighter smaller than that used in the
Toyota Mirai and the overall e�ect would be similar. The fuel cell would run very
e�ciently resulting in optimal fuel consumption, however the fuel cell would be, in
general, quite large and therefore expensive. As a result, the cost of the degrada-
tion would still be fairly signi�cant. If the battery pack was also sized for optimal
fuel consumption, it would likely be larger than that in the Mirai. As a result, the
degradation could be less of an issue due to the battery pack absorbing some of the
transient loading, especially if the EMS had be designed to consider this. The net
e�ect would be an expensive vehicle, for which the reduction in long term running
cost may or may not out outweigh the upfront cost.
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c) A fuel cell with a maximum power slightly higher than the power re-
quired to cruise at maximum cruising speed

Overall, this method would be the most sensible way to choose the size of the fuel
cell. The maximum power of the fuel cell de�nes the maximum cruising speed of the
vehicle due to the fact that if the vehicle exceeds this speed, the battery pack would
gradually be depleted over time and therefore the vehicle would, at some point, have
to slow down. Considering a maximum cruising speed of around 110km/h (70mph),
this would require the fuel cell to produce around 90-110kW. Purely by coincidence,
this is a similar size of fuel cell to that of the previous two answers and as a result,
the e�ects would be similar to those already described.

6. What e�ect would di�erent system designs have on the control decisions
made by an EMS designed using optimal control?
The answer to this question is covered in detail in Chapter 7 for assorted sizes of
fuel cell and battery pack. In particular, it can be seen in Figure 7.2 that in general,
a larger fuel cell means that the EMS will tend to allow the battery pack to drop to a
lower level while running. This is because a larger fuel cell is able to handle sudden
high load demands better without the battery voltage dropping below the minimum
limit. For the MFC controller, this has the net e�ect of running the battery pack at a
lower nominal SoC due to the fact that the maximum SoC tends to fall also. For the
DI controller, the nominal battery SoC tends to fall only slightly, and the maximum
SoC tends to remain fairly high. This is because the DI controller uses the additional
capacity of the fuel cell to smooth out transient loading whereas the MFC controller
tends to use it to maximise the fuel consumption by running the battery at a �atter
part of the battery polarisation curve and hence minimising cycling losses.
One issue that was not encountered in this work is the e�ect of regenerative braking,
however the behaviour of the controller can be analysed in order to estimate what
the e�ect of regenerative braking would be.
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8.5 Conclusions
“The overall goal of this work is to identify the best methods in which to optimise the holistic

design of a FCHEV using pre-existing or already available components.” - Introduction
(Chapter 1)

The work in this thesis began with a review of the design requirements of a FCHEV, con-
sidering the overall requirements of individual components, their interactivity and a critical
analysis of state-of-the-art supervisory control techniques. It was concluded in the liter-
ature review that Stochastic Dynamic Programming (SDP) and Equivalent Consumption
Minimization Strategy (ECMS) represented the forefront of technology, both in popularity
and consistency of performance. A number of other techniques were also identi�ed, some
of which are deserving of further research (see Section 2.4.1), such as Game Theory (GT)
and Model Predictive Control (MPC), however it was decided to focus on well-known tech-
niques for generic hybrid vehicles and how these could be adapted for use on fuel cell vehi-
cles in particular. Using the Microcab H4 as a baseline, a novel EMS strategy was developed
using SDP that concurrently optimises both the fuel consumption and fuel cell degradation.
These areas were chosen in order to broaden the research value of the work because they
had been identi�ed as speci�c areas for which further research was required for FCHEVs.
Improvements in fuel e�ciency serve to alleviate issues due the fuel storage limitations of
FCHEVs (see Section 1.3.2), and reduction of degradation serves to increase the longevity
and long term running costs of such a vehicle, also highlighted as a major limitation of
current FCHEVs.

The project encountered a number of minor issues. The �rst was which was due to
the limited availability of data from the Microcab’s usage at the University of Birmingham
meaning that it was necessary to examine techniques in order improve the quality of the
Markov chain model of the duty cycle. Rather than simply rounding the data in order to
discretize the speed trace, it was theorised that if the data was interpolated and weighted, or
�tted to a known distribution, more information would be retained during the discretisation
process. Although, this was almost certainly the case, both new techniques encountered a
new issue in that it became possible for the vehicle to enter a state which was not encoun-
tered in the test data. This resulted in a Markov chain that could not produce satisfactory
results when simulated. Although, these new techniques were unsuccessful, the valida-
tion procedure of the Markov model did serve well to highlight this e�ciently. In fact, the
same technique (Speed-Acceleration Frequency Distribution (SAFD) analysis) as used for
validation was successfully used to identify similar data captured at Loughborough Uni-
versity that could be used to generate a high-�delity model of a campus duty cycle, closely
correlated with the original data.

Another issue that was encountered was that the initial performance of the SDP opti-
mised strategy was much below expectations. Close examination of the data showed that
the fuel cell was in fact too small to guarantee that the battery SoC could be maintained
even over a relatively mild “campus based” duty cycle. This correlated with previous �nd-
ings [4, 6] from when the vehicle was used at the University of Birmingham. Although,
these �ndings were known in advance, it was hoped that the optimised control strategy
would improve the e�ciency of the system such that the issue would be overcome. How-
ever, the fact that even an optimal control policy could not overcome this issue serves to
prove that it is due to a system design �aw rather than poor control. The issue was over-

Page 226 of 244 Tom Fletcher

mailto:T.P.Fletcher@lboro.ac.uk


CHAPTER 8. CONCLUSIONS AND FURTHER WORK PhD Thesis

come by increasing the size of the fuel cell in the model so that the model would represent
the newer Microcab H2EV which is �tted with a 5kW fuel cell.

Finally, although the small size of the Microcab H4 limits the broader research value of
the speci�c controller design, the techniques that have been developed and demonstrated
using this vehicle could be equally well applied to a larger vehicle which is more represen-
tative of a typical modern passenger vehicle and similar results would be expected. In fact,
due to the higher mass of such a vehicle, as well as a greater range of speeds, it may be
theorised that such a controller could produce even more noteworthy results.

Despite these issues, the SDP controller worked as expected and the overall objectives
(Section 1.6) of the project were met. There were a number of key �ndings which have al-
ready been described in this Chapter, however, there are two that deserve special mention
due to their signi�cance to FCHEVs in general. Firstly, it was found that it is possible to
signi�cantly improve the lifetime of the fuel cell with very little penalty to the fuel con-
sumption. It was shown that by including the fuel cell degradation in the cost function
for SDP, it was possible to reduce the degradation of the fuel cell by around 19% for only
a 3.2% increase in the fuel consumption. Secondly, it was found that the degradation cost
of on/o� cycling was perhaps the most signi�cant degradation method which could not be
further reduced using supervisory control. As a result, it was found that, from a system
design perspective, very is important not to oversize the fuel cell more than is absolutely
necessary. It has also been highlighted that this is a key area for further research.
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8.6 Recommendations for Further Work
There are number of areas for further work from this thesis. These can be separated into
two categories; �rstly there are a number of areas in which the SDP optimisation process
can be developed to improve its accuracy as well its usefulness. Secondly, the use of this
strategy optimisation opens up a vast range of potential applications for the comparison of
di�erent vehicle designs, as well as the analysis of FCHEV performance in a holistic sense.
Each of these categories has been considered individually in the following sections.

8.6.1 Development of the Strategy
This research is the �rst to quanti�ably analyse the trade-o� between hydrogen consump-
tion and fuel cell stack degradation using optimal control. As a result, there are a number
of ways in which this technique can be developed further to improve both its accuracy and
extend its relevance to real-world vehicles. The strategy optimisation in this work has fo-
cussed on areas of particular importance to FCHEVs, such as the fuel cell stack degradation
and the vehicle range. However, many of the factors that in�uence ICE hybrid vehicle EMS
optimisation, such as battery degradation and power availability, are equally important to
FCHEVs. There is already a signi�cant amount of research in these areas and quanti�cation
methods already developed in the literature could be included in the cost function alongside
the fuel consumption and fuel cell degradation.

1. Battery Degradation There are a variety of ways that the battery degradation
could be included. One of the simplest methods would be to include a cost asso-
ciated with the accumulated charge transfer as performed by Moura et al. [64]. This
would allow the lifetime of the battery to be estimated, as well as its in�uence on
the running cost of the vehicle. This has not been included in this thesis, so as to
be able to isolate the e�ect of the fuel cell degradation methods on the optimisation
and also due to the low cost of lead acid batteries which would not be expected to
signi�cantly a�ect the results. However, more advanced battery technology, such
as lithium-ion, tends to be signi�cantly more expensive and more sensitive to its
operating conditions. Therefore, investigation into the three-way trade-o� between
hydrogen consumption, stack degradation and battery degradation may produce
signi�cant results. This work could then be further extended to investigate the ben-
e�ts of including capacitors to protect the battery.

2. Power Availability Many of the drive-ability aspects considered for ICE vehicles
are of little importance to fuel cell vehicles due to their low noise and vibration,
and the lack of requirement for a gearbox. However, some aspects such as power
availability could be included in the cost function. The low size of the battery and
marginal size of the fuel cell in the Microcab H4 means that the straight-line per-
formance of the vehicle can be signi�cantly a�ected by the SoC of the batteries.
Therefore, it may be desirable to include a cost associated with the power avail-
ability as described by Vidal-Naquet and Zito [62] when using this technique for
development of a production vehicle.

3. Fuel Cell DegradationMetricsThe fuel cell degradation metrics used in this thesis
are relatively simple ways of accounting for the many degradation methods appar-
ent in FCHEVs based on the �gures available from the fuel cell datasheet and the
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literature. However, for a more accurate estimation of the stack lifetime for a par-
ticular, it would be possible to improve the quanti�cation of these estimations using
experimental testing. By testing a large number of sample cells and stacks, the ac-
curacy of the parameters could be improved alongside identi�cation of additional
metrics that could be used to quantify the degradation of the fuel cell stack.

4. Model Development In the same vein to the previous point, the vehicle model
used in the work has been kept relatively simple. This has been done deliberately
in order to reduce its complexity and ensure that it is suitable for running multiple
SDP optimisations; however, there is potential for improvement in this regard. For
example, it would be interesting to investigate the e�ect of the fuel cell temperature
on the results. This could be achieved by the inclusion of the fuel cell temperature
as an additional state of the vehicle. Both the e�ciency of the fuel cell and the rate
of fuel cell degradation would be dependent on this, especially during the warm-up
period.

5. Comparison to A-ECMS SDP was chosen as the basis for this control strategy due
to its robustness with regards to the cost function in comparison to ECMS. This is
because strategies based on ECMS often require some sort of regulation factor in or-
der to account for other costs such as that associated with the fuel cell degradation.
However, it may be possible to develop a novel adaptive strategy which accounts
for both fuel consumption and fuel cell degradation using online learning such as
that used in A-ECMS. This would allow potential bene�ts such as real-time adjust-
ment of the degradation estimation algorithm based on feedback from the fuel cell
management system.

6. MPC The development of MPC for hybrid vehicles is a currently rapidly developing
area in the literature, especially the use of a priori information available from con-
nected devices such as GPS navigation, tra�c information and Intelligent Transport
System (ITS). The cost function developed in this thesis could be used in conjunction
with this type of strategy in order to further optimise the strategy.

8.6.2 Applications of the Strategy

The previous chapter in this thesis demonstrates an example application of this strategy
optimisation in order to assess the comparative bene�ts of a variety of fuel cell stack sizes
and battery capacities. However, there is a vast number of potential applications, some of
which would require further development such as mentioned in the previous section. These
include the comparison of more detailed design changes such as the platinum loading on
the catalyst or the e�ect of the introduction of lithium-ion batteries.

1. Experimental Testing The work in this thesis consists solely of simulation using
validated models, however further work could involve some form of experimen-
tal testing. Although Hardware-in-the-Loop (HIL) testing of the fuel consumption
estimation would be relatively easy to perform using the equipment available, vali-
dation of the degradation estimation would be a complex and time-consuming task,
possibly requiring the use of multiple vehicles. It has therefore been decided that it
would not be feasible to achieve signi�cant validation with the resources available
to this project.
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2. Platinum Loading of the Catalyst Another question that arose in the introduc-
tion is the e�ect of reducing the platinum loading on the catalyst. This has obvious
bene�ts in reducing the cost of the fuel cell; however, it can also a�ect the durabil-
ity of the stack. This work could be used to quanti�ably assess bene�ts and costs of
reduced platinum loading in order to identify the optimal balance between cost and
durability.

3. Vehicle Con�guration Changes The Microcab H4 is a relatively old FCHEV de-
veloped almost 10 years ago using a minimal cost philosophy. This work could be
used to assess the potential bene�ts of updating various components individually.
For example, the introduction of a brushless DC electric motor, as used on the newer
Microcab H2EV, would signi�cantly reduce the loading on the fuel cell due to its
higher e�ciency. As a result, it may be more economical to use this type of motor
than to increase the size of the fuel cell to 2400W. Similarly, lithium-ion batteries
have a signi�cantly higher energy density than lead acid and it would be interesting
to investigate if their increased cost is justi�ed by the reduced mass of the vehicle.

4. A More Conventional Passenger Vehicle Finally, this work has focussed on the
application of the strategy for a relatively specialised vehicle. It would be interesting
to investigate the results when considering a more conventionally sized vehicle such
as the Toyota Mirai, or the Hyundai ix35 Fuel Cell. This would allow for examination
using standardised test cycles such as the New European Driving Cycle (NEDC), US
federal drive-cycles and Artemis.
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Appendix A

Drive-cycle Trip Analysis Plots
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Figure A.1: Loughborough Electrical Trip Analysis
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Figure A.2: Loughborough Mail Room Trip Analysis
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Figure A.3: Loughborough Security Trip Analysis
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Figure A.4: Loughborough Teaching Support Trip Analysis
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Figure A.5: Microcab Teaching Support Trip Analysis
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Figure A.6: Microcab Testing Trip Analysis
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