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Abstract

We employ the reverse non-equilibrium molecular dynamics method (RNEMD)

of Müller-Plathe [Phys. Rev. E 59, 4894 (1999)] to calculate the shear viscosity

of colloidal suspensions within the stochastic rotation dynamics - molecular dynamics

(SRD-MD) simulation method. We examine the influence of different coupling schemes

in SRD-MD on the colloidal volume fraction φC dependent viscosity from the dilute
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limit up to φC = 0.3. Our results demonstrate that the RNEMD method is a robust and

reliable method for calculating rheological properties of colloidal suspensions. To obtain

quantitatively accurate results beyond the dilute regime, the hydrodynamic interactions

between the effective fluid particles in the SRD and the MD colloidal particles must be

carefully considered in the coupling scheme. We benchmark the method by comparing

with the hard sphere suspension case, and then calculate relative viscosities for colloids

with mutually attractive interactions. We show that the viscosity displays a sharp

increase at the onset of aggregation of the colloidal particles with increasing volume

fraction and attraction.

1 Introduction

During the recent years there has been a growing interest in the field of ceramic processing

in developing colloidal processes based on additive manufacturing (ink-jet printing, stereoli-

tography etc.). In these processes control on the rheological properties of the suspensions

such as the viscosity is crucial to optimize the flow rates in channels and, more generally, to

control the final properties of the ceramic objects that are formed. The viscosity and rhe-

ological properties are dictated by the spatio-temporal arrangements of the colloids, which

depend on the colloidal interactions.1

Colloidal suspensions are complex fluids whose behavior is governed by many parameters

such as pH, size, and the physical properties of the colloidal particles. Because of these many

factors, numerical simulations are a very useful tool in helping to understand and control the

suspension properties avoiding expensive experimental trial-and-error procedures. An im-

portant point for correctly estimating the rheological properties lies in the correct description

of hydrodynamic interactions in the numerical simulations.1 Among the different available

numerical methods which model hydrodynamics, the stochastic rotation dynamics coupled

with molecular dynamics (SRD-MD) has been proven to be a fast and reliable method for

colloidal suspensions.2–4 SRD-MD is a particle based method introduced by Malevanets and
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Kapral in 19995 where the fluid is represented by point particles. The dynamics of the fluid

is described by the SRD part and the dynamics of the colloids by the MD part which are

coupled. Different schemes for coupling can be found in the literature: including the colloids

in the SRD time steps,6,7 introducing interactions between colloids and fluid particles,2,8 or

using some collision rules to remove the fluid particles from the colloids and to allow mo-

mentum and energy exchange.7,9 The different schemes do not describe the hydrodynamic

interactions at the same level and the choice of the scheme depends on the properties to be

studied.10

In Ref. 11 SRD-MD simulations were used to calculate the shear viscosity of hard sphere

suspensions. It was computed by introducing a shear by the Lees-Edwards boundary con-

ditions12 in order to calculate the stress tensor from which the shear viscosity is deduced.

This computation method implies introduction of complex boundary conditions as well as

the use of a thermostat which can have an uncontrolled influence on the results. Here, we

propose an alternate method that does not suffer from such shortcomings. It is based on the

idea to calculate the viscosity in SRD-MD simulations by a reverse nonequilibrium molecular

dynamics method (RNEMD) proposed by Müller-Plathe.13 This method reverses the cause

and effect picture used in the sense that the momentum is imposed and the velocity gradient

is measured. This method is simple because in it only momentum between the particles is

exchanged and there is neither the need to use complex boundaries nor to insert a thermo-

stat. In the first part, following Ref. 11, the RNEMD method is used to determine the shear

viscosity of hard sphere suspensions. The hard sphere system is an excellent benchmark

that allows comparison with many other studies. In our case particular attention is paid

to the influence of the different coupling schemes that can be used in SRD-MD to couple

the dynamics of the fluid particles and that of the colloids. After benchmarking the method

is used to study the shear viscosity of suspensions where colloids interact via an attractive

potential, which is a model better suited to study real suspensions where aggregation of the

colloidal particles may take place.
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2 Simulation methods

2.1 The hybrid SRD-MD method

The colloidal system considered in this work is the same as in Refs. 2,11 and 14. It consists

of spherical silica particles of radius ac = 300 nm and of mass Mc = 2.49×10−16 kg embedded

in water. Density of silica and water are fixed at ρc = 2000 kg m−3 and ρf = 1000 kg m−3,

respectively. The dynamics of the suspensions is simulated by the hybrid SRD-MD method.

In this method the fluid is described by a SRD model with Nf point particles of mass mf .

In SRD, the fluid particles evolve according to a simple scheme composed of two steps: a

streaming and a collision step. During the streaming step, the position vectors of the fluid

particles ri are updated as follows:

ri(t+ ∆tSRD) = ri(t) + vi(t)∆tSRD, (1)

where vi(t) is the velocity of particle i at time t, and ∆tSRD the SRD time step. For the

collision step, the simulation box of size Lb is divided in smaller collision cells of size a0. For

each cell, the collision is performed by rotating the velocities of particles relative to the cell

center of mass velocity vcm as follows:

v′i(t) = vcm + R(α) [vi(t)− vcm] , (2)

with R being a stochastic rotation matrix and α the angle of rotation. When the SRD

is coupled with MD (SRD-MD), instead of Eq. (1) the fluid particles follow the molecular

dynamics equations of motion which are realised with a time step ∆tMD. In general ∆tSRD >

∆tMD, and therefore several MD steps are performed between two successive SRD collision

steps. In SRD, the fluid properties (such as the viscosity) depend on three independent

parameters:2,8

1. The dimensionless mean free path λ = ∆tSRD/t0, where t0 is defined as t0 = a0

√
mf/kBT
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(kB and T are the Boltzmann constant and the temperature, respectively). To simulate

a liquid λ� 1.

2. The average number of fluid particles per cell γ. This number has to be kept relatively

small in order to have good computational efficiency.

3. The rotation angle α which should be chosen in the range [90◦,170◦] for a liquid. In

this study, all the simulations are performed with α = 90◦.

Once the different parameters have been fixed, the temperature is calculated according to

the relation

T =
a2

0mf

kBt20
, (3)

and in three dimensions the analytical shear viscosity η0 of the pure fluid can be obtained

as the sum of the kinetic and collision contributions as15

η0 = ηkin + ηcol, (4)

with

ηkin =
γkBT∆tSRD

a3
0

[
5γ

(γ − 1 + e−γ)(4− 2 cosα− 2 cos 2α)
− 1

2

]
, (5)

and

ηcol =
mf(1− cosα)

18a0∆tSRD

(γ − 1 + e−γ). (6)

In the hybrid SRD-MD simulations, the dynamics of colloids is described by molecular

dynamics (MD). A velocity Verlet algorithm is used to update the positions ri and the

velocities vi of particles at each time step ∆tMD:16

ri(t+ ∆tMD) = ri(t) + ∆tMDvi(t) + ∆t2MD

Fi(t)

mi

; (7)

5



vi(t+ ∆tMD) = vi(t) + ∆tMD
Fi(t) + Fi(t+ ∆tMD)

2mi

, (8)

with forces Fi(t) on particle i at time t.

In order to model the interaction between the fluid particles and the colloids, the SRD

and MD parts have to be coupled. In the present work three different coupling schemes will

be analyzed. For each coupling, parameters used in the simulations are chosen in order to

reproduce the tracer diffusion coefficient DT of an isolated silica particle at T = 293 K.

Coupling Scheme I: The velocities of the colloids are rotated during the SRD

steps6,7 A simple way to couple the fluid and the colloid dynamics is to sort the colloidal

particles in the SRD cell and include their velocities in the rotation step. For a collision cell

with Nc colloids of mass Mc, and Nf fluid particles of mass mf , the center of mass velocity

of a cell is given by

vcm(t) =

∑Nc

i=1Mcvi(t) +
∑Nf

j=1mfvj(t)

NcMc +Nfmf

. (9)

In this method, the SRD cell size a0 = 500 nm has to be of the order of the colloidal size.

This value is chosen as proposed in Ref. 7 such that the cell volume is close to the colloidal

volume. The average number of fluid particles per cell is fixed at γ = 30. The mass of the

fluid particle is calculated as mf = 4.167× 10−18 kg according to:2

mf =
a3

0ρf

γ
. (10)

The dimensionless mean free path λ is fixed at 0.1. Different values of t0 have been tested.

Measurements of the tracer diffusion coefficient DT of an isolated silica particle computed

from the mean-square displacement method2,17 have shown that t0 = 3.6× 10−3 s is a value

which gives the correct result. The SRD time step is thus fixed at ∆tSRD = 3.6 × 10−4 s.

Simulations are performed in a cubic box of linear size Lb = 20a0 and the number of fluid
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particles is

Nf =
γL3

b

a3
0

. (11)

For this coupling scheme, the fluid particles are homogeneously spread in the simulation

box because they can penetrate the colloids. Because of this the method is unable to faith-

fully describe all the relevant hydrodynamic interactions in the suspension. For example,

lubrication effects7 are completely missing from Coupling Scheme I.

Coupling Scheme II: An interaction potential between the colloids and the fluid

particles is introduced in the MD part2,8 In the present work, colloids and fluid

particles interact via a repulsive inverse power potential2

Vcf =


εcf

(
σcf
r

)12
, (r ≤ rc ≡ 2.5σcf);

0, (r > rc).

As suggested in Refs. 2 and 8, to avoid depletion attractions σcf has to be chosen smaller

than the colloidal radius (σcf < ac). Under this condition, the fluid particles can slightly

penetrate the colloids, which mimics the lubrication forces. The parameters used in this

work are the same as those proposed by Tomilov et al.,2 i.e. σcf = 0.8ac and εcf = 2.5kBT.

The SRD parameters are fixed as follows: a0 = ac/2 = 1.5 × 10−7 m, γ = 5, and λ = 0.1.

The mass of a fluid particle is fixed at mf = 6.75×10−19 kg according to Eq. (10). The time

scale t0 is determined as proposed in Ref. 2 based on the Stokes-Einstein expression for DT

and the Enskog-Boltzmann-type kinetic theory adapted for slip boundary conditions, which

gives t0 = 7.37×10−4 s. The size of the simulation box is fixed at Lb = 32a0 and the number

of fluid particles is obtained from:2,11

Nf =
γ

a3
0

(
L3

b −NC
4

3
πσ3

cf

)
. (12)
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Coupling Scheme III: The fluid particles are removed from the colloids at each

MD time step which corresponds to stick boundary conditions on the surface

of the colloids7,9 The third scheme consists of applying given reflection rules during the

MD steps if a fluid particle penetrates a colloid. In our work, the method of stochastic

reflection proposed by Padding et al.9 is applied. This reflection rule is often used because it

acts as a thermostat. For this coupling, the angular momentum of the colloid is needed and

therefore the colloids’ rotational motion is included in the MD step integrations. During an

MD step, if a fluid particle overlaps with a colloid it takes half a time step back (-v∆tMD/2)

and it is placed on the surface of the colloid at position r∗ along the shortest vector from

the colloid’s surface. After this a new velocity v′ is imposed on this fluid particle. The new

velocity v′ is given by the sum of the local velocity vloc on the colloid surface and a random

velocity component whose normal and tangential components vn and vt are taken from the

distributions

p(vn) ∼ vn exp(−βv2
n), (13)

and

p(vt) ∼ exp(−βv2
t ), (14)

with β = mf/(2kBT ). The local velocity is defined as

vloc = Vi + Ωi × (r∗ −Ri), (15)

where Vi the velocity of the colloid i, Ωi its angular velocity, and Ri its position. When

the second half of the time step is completed, the new position is obtained with the velocity

v′ (+v′∆tMD/2). All the linear momenta and angular momenta changes are added to the

colloid: ∆Pi =
∑
δpj =

∑
m(v − v′) and ∆Li =

∑
m(r∗ −Rj)× (v − v′). At the end of

the time step, the momentum and angular momentum changes are updated for the colloid as

Vi −→ Vi + ∆Pi/Mc and Ωi −→ Ωi + ∆Li/I, where I is the colloid’s momentum of inertia

(here I = (2/5)Mca
2
c). The SRD parameters used for this coupling are the same as for the
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second coupling, namely a0 = ac/2 = 1.5×10−7 m, γ = 5, λ = 0.1 and mf = 6.75×10−19 kg.

The time scale t0 is calculated as proposed in Ref. 2 again using the standard Stokes-Einstein

expression for DT and the Enskog friction coefficient for stick boundary conditions:9

ζVENS =
8

3

(
2πkBTmfMc

mf +Mc

)0.5
1

a0

γ
1 + 2χ

1 + χ
, (16)

with χ = I/(MCa
2
c) = 2/5. Here, t0 = 5.177× 10−4 s and therefore ∆tSRD = 5.177× 10−5 s.

The size of the simulation box is again fixed at Lb = 32a0 and the number of fluid particles

is given by

Nf =
γ

a3
0

(
L3

b −Nc
4

3
πa3

c

)
. (17)

It is known that this coupling does not strictly correspond to stick boundary conditions.9

To obtain them, Lamura’s conditions can be applied. This method consists of adding some

virtual particles in the solid (here the colloids) to locally increase the viscosity. However in

order to not perturb the viscosity, these conditions are not applied and we admit a small

amount of slip on the colloid. It is to be noticed that this coupling scheme allows a more

precise description of the hydrodynamic radius of the colloids.

Table 1 summarises the different parameters used in the simulations. At the beginning of

the runs, colloids and fluid particles are randomly placed in the simulation domain (for the

coupling schemes II and III, fluid particles are placed avoiding superposition with colloids).

The computational effort increases with the additional interactions such that Scheme II is

about 16 times slower than Scheme I, and Scheme III is about 7 times slower than Scheme

II.

2.2 Viscosity measurements

In our previous work the viscosity of hard sphere suspensions was calculated using the

hybrid SRD-MD simulation method.11 There a shear was introduced and the viscosity was
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Table 1: Parameters used in the hybrid SRD-MD simulations, with η0 calculated from Eq.
(4). In all the Schemes λ = 0.1 and α = 90◦.

Coupling a0 (m) γ mf (kg) t0 (s) η0 (Pa s) Lb (a0)
Scheme I 5× 10−7 30 4.167× 10−18 3.6× 10−3 3.99× 10−8 20
Scheme II 1.5× 10−7 5 6.75× 10−19 7.37× 10−4 1.5× 10−8 32
Scheme III 1.5× 10−7 5 6.75× 10−19 5.177× 10−4 2.17× 10−8 32

deduced by estimating the stress tensor. In the present study, another method proposed

by F. Müller-Plathe is used instead.13 In this reverse nonequilibrium molecular dynamics

method (RNEMD), a momentum flux is imposed whereas the cause (the velocity gradient)

is measured. This method is preferred to the method presented in Ref. 11 because it is

simple to use and does not require any uncontrollable approximations. Indeed, the RNEMD

method only relies on simple exchanges of momenta between the particles, and no thermostat

or complicated boundary conditions have to be introduced. The RNEMD method can be

summarised as follows:

1. The simulation box is divided in slices along the direction of the shear (here the SRD

cells are used along the y direction).

2. In the middle of the box in the x direction, the fluid particle and the colloidal particle

with the highest momentum in the y direction are selected.

3. At the bottom of the box in the x direction, the fluid particle and the colloidal particle

with the highest momentum in the −y direction are selected.

4. The momenta of the two colloidal particles as well as the momenta between the two

fluid particles are exchanged and the amount of momentum (∆py) transferred between

the slices at y = 0 and y = Lb/2 is calculated. This value is added to Py which is the

total momentum transferred in the simulation.

During the simulations, there is a piecewise linear and symmetric velocity profile of vy(x)

(see Fig. 1) whose slope gives the value of 〈|dvy/dx|〉. The momentum flux Jx(Py) is then
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calculated as

Jx(Py) =
Py
2tA

, (18)

where t the simulation time and A = L2
b. The shear viscosity η can be obtained from

Jx(Py) = −ηdvy
dx

. (19)

The exchange of momentum is performed at each SRD step. Data here have been averaged

over ten independent simulations. The method has been benchmarked with SRD simulations

for a pure fluid. The shear viscosity obtained for the different couplings agrees with the

analytical results reported in Table 1.
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Figure 1: The velocity profile vy(x) obtained from the RNEMD method in a hybrid SRD-MD
simulation with coupling scheme II and volume fraction of colloids φc = 0.1.
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3 Results and discussion

3.1 Shear viscosity of hard sphere suspensions with different cou-

pling schemes

In order to compare the different coupling schemes, benchmark simulations were first per-

formed for hard sphere suspensions.18–21 Different analytical models can be found to describe

the evolution of the relative viscosity of the suspension (ηr = η/η0) as a function of the col-

loids’ volume fraction φc.
22 For dilute suspensions, the relative viscosity can be calculated

by the Einstein relation, which does not take into account any hydrodynamic effects:

ηr = 1 + 2.5φc. (20)

For semi-dilute suspensions the equation of Batchelor introduces a φ2
c contribution as

ηr = 1 + 2.5φc + 6.2φ2
c. (21)

For concentrated suspensions, a semi-empirical formula proposed by Krieger is often used:

ηr =

(
1− φc

φm

)−p
, (22)

where φm is the maximum packing fraction and p a fitting parameter. In the following,

values of φm=0.74 and p = 2 will be used. They give a relatively good approximation to the

experimental measurements by van der Werff et al. and Segre et al.11,18,19

To describe the interactions between two colloids in the SRD-MD simulations, an inverse
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power law potential adapted to describe hard spheres is used:23

Vcc =


εcc

(
σcc
r

)12
, (r ≤ rc ≡ 2.5σcc);

0, (r > rc),

with σcc = 2ac and εcc = 2.5kBT . In the following, the volume fraction of the colloids is

defined for all the simulations as

φc =
Nc4πa

3
c

3L3
b

. (23)

In each simulation run, the shear viscosity η is calculated according to the RNEMD method

and the relative viscosity ηr is obtained by using the corresponding analytical values η0

for the pure fluid reported in Table 1. The relative viscosities obtained with the different

coupling schemes are shown in Fig. 2. The results show that the shear rate γ̇ differs slightly

between the different simulations. It decreases as a function of the volume fraction. The

Péclet number defined as Pe = 6πηa3γ̇/kBT is in the range [0.1, 0.2], [1.6, 2.2] and [1.9, 3.1]

for Coupling Schemes I, II and III, respectively. The shear viscosity is known to depend on

the shear rate. In our work, the Péclet numbers are close to each other and thus the results

can be compared. Moreover, in the case of hard spheres it has been shown experimentally

and numerically that for volume fractions lower than 0.35, the shear viscosity is almost

independent of the shear rate.20 According to this, in the following the different viscosities

can be considered to correspond to those at zero shear rate.

For the three coupling schemes, the relative viscosity increases with the colloid volume

fraction as shown in Fig. 2. For dilute suspensions (φc < 0.1) the results for different schemes

are very similar, as expected. At low volume fractions the interparticle hydrodynamic in-

teractions do not play an important role and the Einstein model is a good approximation

for ηr. For volume fractions larger than about 0.1, we observe that the relative viscosities

significantly differ between the coupling schemes. For a fixed φc, ηr from Scheme I has the

lowest value while from Scheme III it is highest. As we have already mentioned, Scheme
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Figure 2: Relative shear viscosity of the suspensions as a function of the colloid volume
fraction φc as obtained from SRD-MD with the different coupling schemes. The results
are averaged over ten simulations. The Einstein model (Eq. (20)), the Batchelor formula
(Eq.(21)), and the Krieger approximation (Eq. (22)) are also shown. See text for details.
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I cannot correctly describe all the hydrodynamic interactions and lubrication in particular,

which is evident in the data beyond the dilute regime. Moreover, for semi-dilute suspensions

the relative viscosity is lower than that from Einstein’s law, which indicates that the volume

fraction is not well defined for this coupling scheme since the colloids are treated as point

particles in the SRD cell.

Results obtained with Scheme II are somewhat lower than those from the Krieger law.

With this coupling, the radius of a colloid is also not very well defined when interactions

between fluid and colloid are considered. The fluid particles can slightly penetrate the colloids

and the volume fraction has to be appropriately rescaled. Here we adopt the rescaling from

Ref. 2, which consists of converting the volume fractions to a rescaled ones such that the

beginning of crystallization corresponds to the theoretical onset of freezing at φc = 0.494.

Following Ref. 2, which considered exactly the same system, the volume fractions were

rescaled as φr
c = (0.494/0.58)φc. The rescaled curve is shown in Fig. 2 with filled blue stars.

The rescaled data are in good agreement with the Krieger model indicating good consistency

of the rescaling procedure. Finally, for Scheme III the viscosity values are in good agreement

with the Krieger model for all volume fractions here without any rescaling. We can thus

conclude that the Coupling Scheme III correctly incorporates all the relevant hydrodynamic

interactions and is superior to the other schemes described here.

3.2 Shear viscosity of adhesive colloids

We will now apply the SRD-MD method with Coupling Scheme III to study the case of

adhesive colloids where aggregation is possible due to attractive interactions between the

silica particles. We consider a simple model where the silica particles interact via the standard

Lennard-Jones (LJ) potential

Vcc = 4εcc

[(σcc

r

)12

−
(σcc

r

)6
]
, (24)
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with σcc = 2ac. The parameter εcc is varied here to examine different interaction strengths.

For semi-dilute suspensions, using a Baxter potential VB:

VB =


∞, (r < 2a);

lim∆→0 kBT ln
[
12τB

(
∆

2a+∆

)]
, (2a 6 r 6 2a+ ∆);

0, (r > 2a+ ∆).

Cichocki and Felderholf have extended the Batchelor model and they propose that the relative

viscosity can be estimated as24

ηr = 1 + 2.5φc +

(
6.2 +

1.9

τB

)
φ2

c, (25)

where ∆ is the width of the potential well and τB the Baxter parameter, which characterizes

the strength of the attraction between the colloids. The parameter τB tends to zero with

increasing attraction, while the hard sphere limit corresponds to τB −→ ∞. According

to Eq. (25), the relative viscosity increases with the strength of the attraction for constant

volume fraction. Equation (25) has been successfully used to explain the behavior of complex

suspensions where the colloids attract each other.25 Thus, here we will also employ Eq. (25)

to analyze our SRD-MD obtained from the LJ potential.

Results from our SRD-MD simulations obtained by changing the well depth εcc in the

range [0 − 25kBT ] are reported in Fig. 3 for φc = 0.1. In all the simulations, the Péclet

numbers are between 2.3 and 3.3. According to the data, the relative viscosity increases

with increasing εcc. This tendency is in qualitative agreement with Eq. (25). Figure 3

shows also that for εcc < 9kBT , the increase in the relative viscosity is rather modest, but

beyond this value there is a sharp upturn in ηr. This change can be correlated to aggregate

formation in the simulations. For εcc < 9kBT , simulation snapshots in Fig. 4 show that

no stable aggregates are formed and the suspensions have a viscosity close to that of the

corresponding hard sphere suspension. However, for εcc ≥ 9kBT , we can see the formation
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of more stable aggregates which drastically increases the viscosity.
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Figure 3: Dependence of the relative viscosity ηr on the depth of the attractive well of the
LJ potential. Data have been averaged over ten runs. Here φc = 0.1.

To quantify the picture above we have performed detailed simulations as a function of

the volume fraction for two different values of εcc = 7kBT and 14kBT . The results are

shown in Fig. 5, where we also show our numerical results for the hard sphere limit with red

circles (see Sec. 3.1). The hard sphere data agree well with the Batchelor model up to about

φc = 0.2. For the simulations with εcc = 7kBT and 14kBT , the Péclet number decreases with

the volume fraction and is in the range [1.9, 3.1] and [1.4, 2.8], respectively.

As can be seen in the data, there is good agreement in the semi-dilute regime with Eq.

(25), with clear nonlinear dependence of the type φ2
c. Using Eq. (25), the data for εcc = 7kBT

and 14kBT can be fitted using Baxter parameters τB = 0.31 and τB = 0.05, respectively.

We note that all the SRD-MD simulations here with Coupling Scheme III are performed

with exchanges of momenta between the particles in the RNEMD method for each SRD

step. The corresponding frequency Γ1 sets the shear rate in the simulations. The relative

viscosity is generally given for the zero shear limit. Therefore to examine the effect of the

17



(a) (b)

(c) (d)

Figure 4: Snapshots of SRD-MD simulations of attractive colloids with φc = 0.1 and various
LJ well depths: (a) εcc = 5kBT , (a) εcc = 7kBT , (a) εcc = 9kBT , and (d) εcc = 11kBT .
Aggregates start visibly forming beyond εcc ≥ 9kBT accompanied by a strong increase in the
relative viscosity.
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Figure 5: The relative shear viscosity of suspensions with attractive LJ colloids as a function
of the colloid volume fraction φc for two values of εcc = 7kBT and 14 kBT . The SRD-MD
data have been fitted to Eq. (25) with τB = 0.31 (purple dash-dotted line) and τB = 0.05
(blue dashed line). For comparison, results obtained for hard spheres are also reported.
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shear rate on the viscosity we performed additional simulations by changing the frequency

of the momentum exchanges. Three other frequencies were tested: momenta are exchanged

every second SRD step (Γ2), every fifth SRD step (Γ5), and every tenth SRD step (Γ10)

(Γ1 > Γ2 > Γ5 > Γ10). The results obtained with εcc = 7kBT are shown in Fig. 6 for

φc = 0.1 and 0.3. A decrease in the frequency induces a decrease in the shear rate and

therefore a decrease in the Péclet number. In all the cases, for the same concentration, no

clear evolution of the shear viscosity is obtained with Pe. However, when Pe is decreased,

the velocity profile becomes very noisy and the results on the shear viscosity are much more

imprecise. The data for small Pe are thus somewhat inaccurate due to the increasing role

of Brownian motion for small shear rates, and thus Γ1 appears here to be a proper rate

parameter for the simulations to estimate the viscosity.
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Figure 6: Dependence of the relative viscosity ηr on the Péclet number for εcc = 7kBT when
the momentum collision rate in the RNEMD method Γ is varied for two volume fractions
(see text for details).
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4 Summary and Conclusions

In this work we have considered the numerical computation of rheological properties of

colloidal suspensions and the calculation of the shear viscosity in particular. To this end, we

have employed the reverse non-equilibrium molecular dynamics method of Müller-Plathe13

within the hybrid SRD-MD simulation method, which is an efficient and widely used method

for colloidal hydrodynamics. In SRD-MD, there are different options to couple the SRD

fluid particles to the MD colloids and we have carefully examined how the coupling scheme

influences the volume fraction dependent relative viscosities ηr(φc). In the dilute regime,

where hydrodynamic interactions are negligible, results obtained with the different coupling

schemes are equivalent. However, for the semi-dilute and concentrated regimes significant

differences appear. The coupling used to mimic stick boundary conditions, called Coupling

Scheme III here, proves out to be quantitatively accurate to calculate the shear viscosity.

In this coupling scheme, hydrodynamic interactions are accurately described and there is

no need to rescale the volume fraction. After benchmarking the method by using the hard

sphere suspension, we compute the shear viscosity of attractive colloids. Simulations show

that the relative viscosity strongly increases at the onset of colloidal aggregation when either

the volume fraction of the depth of the attractive potential well is increased. We also

find that for semi-dilute suspensions, simulation data agree well with the theoretical model

proposed by Cichocki and Felderholf (Eq. (25)). The good agreement obtained here indicates

that SRD-MD simulations combined with RNEMD constitute an effective tool to estimate

rheological properties and they will be used in the future to determine the viscosity of real

ceramic suspensions.
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