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Abstract 

Many substituted salicylanilides, particularly halogenated salicylanilides have 

strong anti-bacterial properties and in the past have been employed as bactericides in 

soaps. However, this has led to photoallergy causing serious adverse skin reactions. 

Although most photoallergens will elicit a response in only a small fraction of the 

people exposed 3,3',4',5-tetrachlorosalicylanilide (T4CS-H) is unusual in inducing 

photo allergy in a high fraction of those exposed and displays a high specificity 

towards serum albumin. The proposed mechanism of the protein-photoallergen 

binding is thought to proceed via the formation of highly reactive species such as free 

radicals. The albumin in the skin is believed to be the carrier protein in the skin that 

binds with T4CS- to form an antigen. 

The technique of time resolved nano-second laser flash photolysis has been 

employed to study the photochemistry of the anion T4CS' and a structurally similar 

photoallergen 3,4',5-tribromosalicylanilide (TBS) in solution when excited with U.V 

radiation. The transient absorption spectrum obtained from exciting solutions of 

T 4CS· in polar solvents has been assigned as comprising of the triplet state, radical 

anion T3CS··, and the build up of a product. The assignment of the triplet state with 

(Amax. = 650 nm) was based on oxygen quenching and triplet-triplet energy transfer 

experiments. Transient absorption in the range 400-470 nm is attributed to the radical 

anion: T3CS~, This was not significantly affected by the presence of molecular 

oxygen. The addition of mono mer human serum albumin (mHSA) to solutions of 

T4CS· had significant affects on both the kinetics and yields of observed transients. It 

also leads to a marked reduction in the oxygen quenching rate constant of the triplet 

state. This demonstrates that the triplet state is protected from molecular oxygen upon 

binding to mHSA. To determine the stoichiometry and affmity of binding, dark­

binding studies were carried out to investigate the association ofT4CS- with mHSA. 

The results showed that there are two strong binding sites. 

Both T4CS- and TBS- were found to be capable of sensitising the production of 

singlet molecular oxygen e~g(02)) in 1:19 ethanol: D20 solvent. 1bis may explain 

the weak phototoxicity ofT4CS-, 
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Introduction 



1 Introduction 

1.1 Photochemical Principles 

1.1.1 Photochemical Reactions 

The study of photochemistry deals with a unique type of chemical reaction: 

photochemistry is all about exciting the electrons of molecules with discreet packages 

of light energy called photons; in what is analogous to a bimolecular interaction 

between the light and molecule. The remarkable behaviour of molecules once they have 

captured a photon of light distinguishes photochemical reactions from thermal 

reactions; a photon of light excites a molecule in a way that heat cannot. One of the 

major difference lies in the different electron distribution in gronnd and excited states of 

an excited molecule; consequently leading to major alterations in chemical behaviour. 

A second major difference is in the thermodynamics: since an electronically excited 

state of a molecule has a higher (in most cases a great deal higher) internal energy than . 

the ground state, there exists a much greater choice of reaction pathway for the excited 

state on thermodynamic grounds. In particular, an excited molecule can give rise to 

high energy species such as: free radicals, singlet and triplet states, strained ring 

compounds or rearrange into another isomer that are not readily formed (if they are 

formed at all) from the ground state. 

It is now over a century, since the first laws of the of photochemistry were formulated 

in the works of Grottus and Draper which state: Only the light which is absorbed by a 

molecule can be effective in producing photochemical change in a molecule. The 

second law of chemistry deduced by Stark and Einstein originally stated that: each 

molecule taking part in a chemical reaction caused by light absorbs one quantum of the 

radiation that causes the reaction. However, this was later modified by Stark and 

Bodenstein to take into account secondary chain reactions. The second law restated is: 

The absorption of light by a molecule is a one-quantum process, so that the sum of the 

primary process quantum yields must be unity. The light that produces photochemical 
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changes occurs over wavelengths of 200 to 740 nanometres (mn). This is the DV and 

visible part of the electromagnetic spectrum, and is shown in figure (1.1), it is only a 

small portion of the spectrum - but happens to be the region that photochemists utilise 

most. 

Ultravlolet-8 Ultravlolel-A Yellow 

X-rays Ultravlolel-C Violet Blue Green Orange R,. Infrared 

200 280 320 390 445 500 575 585 620 740 

Wavelength in nanometres 

Figure (1.1) The ultraviolet and visible spectrum a/electromagnetic radiation. 

1.1.2 Absorption of radiation 

When a photon passes close to a molecule, there is an interaction between the 

electric field associated with the molecule and that associated with the radiation. This 

perturbation may not result in a permanent change in the molecule, but it is possible for 

a reaction to occur in which the photon is absorbed by the molecule. This occurs when 

the molecule absorbs a quantum of radiation whose energy corresponds to a transition 

within the molecule. Transitions between energy levels take place in instantaneous 

jumps. The difference in energy between the two levels involved in the transition 

(Lili), determines the frequency of the photon that can be absorbed through a 

relationship first deduced by Niels Bohr: this is Lili = h v. Where h is Planck's 

constant (6.63 x 10-34 Js) and v is the frequency of radiation (S-I). 

Photochemists tend to think in terms of energies in molar quantities; conventionally 

in kJ morI, therefore a modification gives: 

(1.1) 
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Where NA is Avogadro's constant (6.022 x 1023 mort), c is the velocity of light in a 

vacuum (2.998 x 108 m s·, ) and t. is the wavelength. 

For photochemical experiments, chemists ideally need monochromatic light, i.e. light 

of one wavelength. The absorption of a monochromatic beam of light by a homogenous 

absorbing system is described well by the Beer-Lambert law, which can be represented 

by: 

1=1 010.'" (1.2) 

or 

log(IolI) = Ecl (1.3) 

which describes how the intensity, I, of the radiation transmitted through the sample 

decreases exponentially with increasing path length of the sample, I, and the sample 

concentration, c. 10 is the incident radiation intensity and E is the molar absorption or 

extinction coefficient. 

The quantum yield of a photochemical reaction ($) can be defined. in one of two ways: 

rjJ = No.of molecules undergoing a process 

No. of quanta of light absorbed 

rjJ = Rate of a process 
Rate of absorption of quanta 

(lA) 

(1.5) 

Equation (1.4) defines the quantum yield as a ratio of the number of molecules 

undergoing a process over the number of photons absorbed, and equation (1.5) defines it 

as a ratio of the rates of the processes involved. In the absence of any competing 

photochemical processes, the efficiency of the quantum should be unity. If other 

processes are in competition then the efficiency will be determined by the relative rates of 

the competing processes. 
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1.1.3 Electronic Structure of Molecules 

The electrons in a molecule occupy molecular orbitals, which are often formulated as 

linear combinations of the valence shell atomic orbitals. One molecular orbital is 

bonding (i.e. more stable than the initial atomic orbitals) the other is antibonding (i.e .. 

higher in energy than the initial atomic orbitals). We are concemed with the types of 

orbitals found in organic molecules that originate from the overlap of atomic s and p 

orbitals. Orbitals which are completely symmetrical about the intemuclear axis are 

designated cr (sigma) ifbonding and cr' (sigma star) if antibonding. Molecular orbitals 

derived by mixing two parallel p orbitals are called 1t (Pi) and 1t' (Pi star). For certain 

compounds notably those of Groups V, VI or VII, there are non-bonding electrons 

(designated n), which are not involved in bonding and can be regarded as being 

localised on their atomic nuclei. The most commonly encountered transitions upon 

excitation are: n~ 1t', 1t~ 1t', n~ cr', and cr~ cr'. An energy level diagram showing 

the different type of transitions is shown in figure (1.2). 

I" I" 
* n-

* TI 
I" I" 

* n- TI 
Energy 

n 

* TI-TI 

TI 

* ()-() 

cr 

Figure (1.2) Approximate energy level diagram showing different types of transitions. 
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1.1.4 Excited States 

Excited state molecules contain two unpaired electrons in different orbitals, each 

electron carrying a spin angular momentum with a spin quantum number s, and the 

value of m, can be ± 112 depending on the "direction" of the electron spin. The total 

spin angular momentum possessed by a many electron atom or molecule is represented 

by the total spin quantum number S, which may be calculated as the vector sum of all 

the individual contributions from each electron - from this the spin multiplicity M gives 

the number of states expected in the presence of an applied magnetic field, and is given 

by M = 2S + 1. Thus, molecules whose electrons have the same (parallel) spin posses 

S = 1 and a spin multiplicity M = 3 are termed triplet states - triplet states are 

paramagnetic and can interact strongly with external magnetic fields. If however, the 

electron spins are different (opposed), then S = 0 and M = 1, and the resulting states are 

termed singlet states. These two distinct species, co=only occur in photochemistry 

and have very different physical and chemical properties. The Pauli exclusion principle 

states that no two electrons in an atom can have the same values for all four quantum 

numbers, thus triplet states posses two unpaired electrons in different molecular 

orbitals. Another rule governing electron configurations is Hunds rule of maximum 

multiplicity which states that: 

1. Electrons will occupy different orbitals whenever energetically possible. 

2. Two electrons occupying degenerate orbitals will have parallel spins in their lowest 

energy state. 

As a result of Hund's rule excited triplet states have lower energies than their 

corresponding excited singlet states. 
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1.1.5 Electronic Transitions 

Electronic transitions in polyatomic molecules can be represented pictorially using 

potential energy I nuclear separation diagrams; these simplifY the vibrational motions of 

a molecule upon excitation by considering the transition along a single "critical co­

ordinate". The relative intensities of bands are governed in terms of the Franck-Condon 

principle - this principle states that the time required for absorption of a quantum of light, 

and the resultant transition of an electron to an excited state is so short (_10-15 s) 

compared to the period of vibration of the molecule (_10-13 s), that during the act of 

absorption and excitation the nuclei do not alter appreciably their relative positions (i.e., 

internuclear distance r) or their kinetic energies. As a consequence of this, electronic 

transitions between two potential energy surfaces can be represented by vertical lines 

connecting them - as shown in figure (1.3). 

nuclear configuration 

Figure (1.3) Transition between states of similar nuclear geometry. 
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This example, represents a common situation where excitation leads to stretching of 

a bond. This is expected whenever the excited electron is promoted into an 

antibonding orbital, thereby weakening the bond. At room temperature in condensed 

phase, most molecules will be in their Oth vibrational level as a result of the Boltzmann 

distribution, so the most favoured transitions occur from v" = O. The vertical line 

originates at the midpoint of v" = 0 since the vibrational wave function is maximum 

here. The probability of transition to a particular vibrational level v' in the excited state 

is determined by the product of the vibrational wave functions for the two states i.e., 

the overlap of the two wave functions. Thus, in the example shown in figure (1.3), 

transitions from v" = 0 to v' = I, 2 and 3 occur with the v· = 0 ~ v' = 2 transition 

expected to be the strongest; the other transitions will be less probable and therefore 

less intense - this would lead to an absorption spectrum as illustrated in figure (lA). 

0 .... 2 

Intensity 
0 .... 1 

0-+0 

Figure (1.4) Absorption spectrum resultingfrom the situation infigure (1.3) 

The above discussion also applies to the resulting fluorescence bands, with 

transitions from v' = 0 ~ (v' = n, ... ,2,I,O). The transition probabilities between 

different electronic states in a molecule are governed by what are known as selection 

rules. These are summarised as follows: 

I) Spinforbidden: Transitions involving a change of spin, or multiplicity, are strongly 
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'forbidden' i.e. t.S * O. Therefore intercombinations such as singlet --+ triplet are 

'forbidden', whereas singlet ~ singlet is "allowed". 

2) Symmetry forbidden: For a transition to be "allowed" there must be good spatial b 

overlap between the orbitals of the states involved. Therefore 1t ~ 1t' is allowed 

whereas n ~ 1t' is not. 

The fact that spin-forbidden transitions can be seen at all, is due to a phenomenon 

known "as spin-orbit coupling". Since the electron is charged and spinning, it is 

expected to have not only spin angular momentum, but also a magnetic moment. The 

orbital motion of the charged electron produces a magnetic field; which can interact with 

the nucleus - giving rise to spin-orbit coupling. The magnetic torque thus created, can 

invert the spin i. e. changes the direction of its magnetic moment, resulting in a change in 

the total spin-angular momentum of the system. Overall, the total angular momentum is 

conserved by a corresponding change in the orbital angular momentum. As a 

consequence of spin-orbit coupling, originally pure singlet and triplet states are mixed to 

a small extent. 

1.1.6 State Diagrams 

Energy level diagrams can be used to represent diagranunaticaIly the various electronic 

states of a molecule. The singlet and triplet states are arranged in order of increasing 

energy and numbered in the same order i.e. So, SI, S2 ... and TI, T2 respectively. With 

such diagrams, it is possible to represent all the physical processes that can occur upon 

the absorption of a photon by the ground state, to produce an excited state. This is best 

represented by what is known as a Jablonski diagram - as shown in figure (1.5). 

9 



Tn 

--
11 VR 

S2 '"'- .. ,.= 
VR • 

IC *" I IC 

VR / 

0 
T2 

~ 
ISC li ~IC 

-../' .. ~ -- ~/ --- S1 -
... " 

Fluorescence T1 
ISC" 

;VR , 
Phosphorescence 1, 

VR", ,r' .. , , 
Figure (1.5) Modified Jablonski diagram for polyatomic molecules. 

1.1.7 The Jablonski Diagram 

Absorption of radiation by a molecule in its ground state, So, can depending on the 

frequency, v, lead to population of vibrational levels in SI, S2 .... S. states. In figure 

(1.5), the v = 2 of the S2 level is shown. In solution rapid vibrational relaxation, VR, 

occurs dissipating this excess vibrational energy with a rate constant in the region of 

lOll _1013 
S·I, resulting in the population of the lowest vibrational level of the 

electronically excited state - here, v = 0 of the S2 level This may undergo internal 

conversion, le, yielding an isoelectronic vibronic level in the SI. Again rapid 

vibrational relaxation occurs to give the lowest vibrational level of SI. Deactivation 

from this energy level can occur by four mechanisms: 

1. Fluorescence 

2. Internal Conversion, IC 

3. Intersystem Crossing, ISC 

4. Photochemical processes; yielding products 
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IfISC occurs to populate the lowest triplet state T], rapid vibrational relaxation occurs 

resulting in the population of the lowest vibrational level of the T I state, where 

deactivation can occur via three mechanisms: 

1. Phosphorescence 

2. Intersystem Crossing, ISC 

3. Photochemical processes; yielding products 

The above deactivation routes can be classified as either being radiative, or non-radiative 

transitions. 

1.1.8 Radiative Transitions 

Fluorescence is a spin allowed process that occurs between states of the same 

mUltiplicity. Excitation to SI state of an organic molecule in solution may be followed by 

the emission of fluorescence accompanying the SI ~ So transition. Since fluorescence is 

strongly allowed, it occurs on relatively fast timescales; with a rate constant in the region 

of 106_109 S·I. The magnitude of this rate constant explains why in most cases, 

fluorescence does not occur from higher excited states since internal conversion with rate 

constants in the region of 1012 S·1 will compete effectively. Experimental observations can 

be generalised into a set of rules as follows: 

1. Kasha's rule [1]: Radiative processes occur from the lowest electronic state of a given 

spin multiplicity, independent of the energy of the electronic state excited initially. 

2. Vavilov's law: The fluorescence quantum yield, $r, is independent of the energy of the 

electronic state excited initially, i.e. independent of excitation wavelength. 

There are exceptions to these rules: notably azulene and related compounds have been 

shown to fluoresce from S2 ~ So. 
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Phosphorescence is the radiative transition that occurs between states of different 

multiplicity; the most common being from the T I ~ So. The forbidden nature of the . 

transition (i1S = 1) does not mean phosphorescence cannot be observed since spin-orbit 

coupling encourages the mixing of singlet and triplet states - with the result that 

otherwise forbidden transitions become weakly allowed. The resulting 

phosphorescence transition is much less intense than the corresponding fluorescence 

transition, and occurs with an extremely long radiative lifetime 10.3-10 sec. Allowing 

collisional electronic vibrational energy-transfer with solvent molecules to compete 

favourably with the radiative deactivation of the excited triplet states - which is why 

with the exception of a few compounds such as biacetyl, phosphorescence is rarely 

seen in fluid solution, but is more commonly associated with rigid media where 

diffusion of solvent molecules and quenching cannot occur. 

1.1.9 Non Radiative Transitions 

Internal Conversion (IC) is a radiationless transition that occurs between states of 

the same multiplicity. Internal Conversion occurs from the vibrationless level of the 

higher state to an isoenergetic vibrational level of the lower state, this results in the 

molecule having some excess vibrational energy above the lowest vibrationless level. 

In solution phase this excess energy is rapidly dissipated by collisions with solvent 

molecules; a process referred to as vibrational relaxation (VR). The rate of IC is 

governed by the energy gap between the initial and final states involved - the smaller 

the energy gap the higher the rate. The rate ofIC from high energy excited states i.e. 

S2 ~ SI or T2 ~ T I is rapid with an associated rate constant of _1012 S·I. Internal 

conversion between· SI and So however, is slow due to a much larger energy 

separation; this allows fluorescence and inter-system crossing to compete favourably. 

Intersystem crossing (IS C) is a radiationIess transition that occurs between electronic 

states of different spin multiplicity. The two most important transitions being S I ~ T n 

and T I ~ So. The former occurring from the zero point vibrational level of S I to an 

isoenergetic level of TI or some higher excited triplet level i.e. SI ~ Tn. The 
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efficiency is determined by the energy gap (.:ili SoT). ISe can occur via a spin-orbit (S­

O) coupling mechanism. When the energy gap is small the process is efficient and 

proceeds at a rate similar to that of fluorescence, i.e. 106 _109 
S-l. The presence of 

heavy atoms can greatly enhance S-O coupling and therefore enhance the rates of ISe 

transitions. 

These processes are the possibilities that occur intramolecularly. Another important 

phenomenon in photochemistry is the transfer of energy between electronically excited 

donor molecules and molecules of another species in their ground states. This is 

known as intermolecular energy-transfer, and the various processes of quenching are 

described below: 

1.1.10 Intermolecular Electronic Energy-Transfer Processes 

The transfer of energy from an electronically excited donor D * to an acceptor 

molecule A usually in its ground state can be represented by equation (1.6): 

(1.6) 

This process can result in a "photosensitization" reaction. A becoming "sensitised" 

to a wavelength of radiation absorbed not by A but by D. Thus, the physical 

requirement that the molecule of interest absorb the wavelength of radiation being 

provided in a photochemical experiment, can be relaxed if a suitable sensitiser can be 

found. Energy-transfer mechanisms are usually classified according to the initial spin 

multiplicity of D* and the final spin multiplicity of A*. For example, the process 

shown in equation (1.7) is termed "triplet-triplet" energy transfer. 

(1.7) 

There are a number of different mechanisms by which energy transfer can occur: 
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Radiative Energy Transfer 

Radiative energy transfer involves the emission of a photon from the initially excited 

molecule D' and its re-absorption by the molecule A - as represented below: 

D'~D+hv 

hv+A~A' 

(1.8) 

(1.9) 

This process is sometimes referred to as "trivial". The mechanism requires that the 

emission spectrum ofD' must overlap with the absorption spectrum of A. The efficiency 

will be dependent on the degree of overlap of these spectra and on the strength of the 

transitions. 

Long-Range Coulombic Energy Transfer 

As D' and A are brought together in solution, they feel each other's presence due to 

long range coulombic forces experienced by their charge clouds. As D' and A approach, 

the D' dipole (excited electron) LUMO (Lowest Unoccupied Molecular Orbital) interacts 

with the A dipole (an unexcited electron in the HOMO), the resulting dipole-dipole 

interaction can cause the electron in the HOMO of A to oscillate more violently -

therefore becoming more energetic. This may lead to the excitation of the electron in the 

HOMO ofD' to be promoted to the LUMO of A (provided this is not greater in energy 

than the HOMO ofD') - with a corresponding de-excitation of the excited electron on 

D'. This process is shown schematically in figure (1.6) . 
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Figure (\.6) Energy level diagram showing electron movements in long-range Coulombic energy 
transfer. 

The end result of this is that D' has become de-excited and has returned to it's ground 

electronic state, D, with a simultaneous excitation of A to A'. Energy has been 

transferred despite the fact that the two species have not come into close contact, i. e. no 

spatial overlap occurs between the clouds of D' and A. Since no actual physical contact 

is required, energy transfer may take place over distances considerably greater than the 

molecular radii. Forster [2] obtained the following expression for the rate of energy 

transfer for a dipo le-dipo le mechanism: 

(1.10) 

where K is a constant accounting for the refractive index of the medium between D' and 

A, K is an orientation factor which accounts for the directional nature of the dipole-dipole 

interaction, and for a solution containing randomly orientated molecules K2 has a value of 

2/3, keD is the radiative rate constant for the decay of the donor, RDA is the molecular 

separation and J( E) is the spectral overlap integral. 

Coulombic energy transfer is subject to strict spin selection rules, and are those that 

apply to molecules individually: which state that there should be no change in spin 
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multiplicity of either species. The energy transfer processes favoured by the Coulombic 

mechanism are, therefore: 

ID' + IA~ ID+ lA' 

ID' +3A~ ID+ 3A' 

Short-Range Electron-Exchange Energy Transfer 

(1.11 ) 

(1.12) 

In contrast to energy transfer by a Coulombic mechanism, energy transfer by electron 

exchange requires that the donor and acceptor are sufficiently close together (-1-1.5 nm), 

to allow the electron clouds to overlap and an exchange of electrons to take place. The 

exchange transfer mechanism occurs when the excited electron on D' transfers into the 

LUMO of A with a simultaneous transfer of an electron from the HOMO of A into the 

corresponding orbital on D, as shown in figure (1.7). 

• 
• 

D A 

+ 
+-1-
++ 

• 
D A 

Figure (1.7) Energy level diagram showing electron movements in electron-exchange energy 

transfer. 
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The exchange mechanism of energy transfer was quantified by Dexter [3] who derived 

the following expression: 

eRDR
) 

kEN (Exchange) = KJe - -L- (1.13) 

where kEN is the rate constant for energy transfer, K is related to the specific orbital 

interactions, J is the spectral overlap integral normalised for the acceptor molar decadic 

absorption coefficient and RDR is the donor-acceptor separation relative to their Van der 

Waals radii 1. 

Since a specific intermediate is formed between donor and acceptor molecules, 

restrictions on electron spin changes are determined by the spin of the complex formed. 

This is known as the Wigner rule of spin conservation [4]. Wigner's spin rule states that 

for a collisional process, spin angular momentum must be conserved. Therefore if SA 

and Ss are the spin quantum numbers of the reacting species then the complex formed by 

the two molecules will posses total spin SR given by series (1.14) and likewise if Se and 

So are the spin quantum numbers of the products the total spin Sp, given by series (1.15). 

SR = SA + Ss. SA + Sa - I, ... I SA - Ss I 
Sp = Se + So. Se + So - 1, ... I Se - So I 

(1.14) 

(1.15) 

Then for a collision process to be spin-allowed, series (1.14) and (1.15) must have at 

least one value in common. For example: 

S 1 1 o I (1.16) 

Here the value 1 is common and therefore the above reaction is 'allowed' with the 

intermediate complex existing as a triplet. Similar calculations to the one above show the 

following to be spin allowed processes: 
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Singlet-singlet energy transfer: ID' + lA ~ID+IA' (1.17) 

Triplet-triplet energy transfer: 3D'+IA ~ ID+ 3A' (1.18) 

Triplet-singlet energy transfer: 3D' + 3 A ~ ID+IA' (1.19) 

Molecular oxygen is the most common candidate for 3 A, the ubiquitous nature of 

oxygen means that it plays a prominent role in photochemistry. Discussed below are the 

principal reactions of oxygen in photochemical reactions. 

1.1.11 Quenching by molecular oxygen 

Unlike any other homonucIear diatomic molecule having an even number of electrons, 

oxygen is paramagnetic in its ground state. A simple molecular orbital diagram using the 

linear combination of atomic orbitals is shown in figure (1.8). 

• 
~ ______ .,. 3 er;. 

-t * 2p 

2s 2s 

Figure (1.8) Molecular orbital diagram/or ground state molecular oxygen. 
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The two highest energy unpaired electrons appear in degenerate htg' orbitals, these 

electrons are of the same spin and hence the ground state of oxygen has triplet 

multiplicity and has the group theoretical symbol 3~g.. There are two possible 

arrangements of the electrons in the htg' orbitals: they can be spin paired in the same 

orbital or the electrons can be spin paired in separate orbitals. These two electronically 

excited singlet states of oxygen are known I ~g and I~/ states respectively and lie 

94 and 157 kJ morl respectively above the ground 3~g. state. In condensed media, the 

lifetime of O2' e ~g +) is short due to rapid relaxation to the state I ~g. It is the I ~g state 

which is referred to as 'singlet oxygen' because the reactivity of singlet oxygen is almost 

exclusively observed from this state due to its appreciable lifetime. The most common 

way of generating singlet oxygen is via organic dye sensitised energy transfer to ground 

state molecular oxygen. The triplet-singlet energy gap for molecular oxygen results in 

ground state molecular oxygen quenching the lifetime of almost all the lowest lying triplet 

states as shown in equations (1.20) and (1.21): 

(1.20) 

Collisional spin-allowed energy-transfer (1.21) 

Quenching of excited singlet states can also occur if the excited singlet lifetime is long 

or a high concentration of oxygen is present according to the equations: 

ID' + O2 e~g) ~ 3D' + 3~ e~gl Spin allowed catalysed intersystem crossing (1.22) 

(1.23) 

where 02' e ~g) represents singlet oxygen. 

Reaction (1.23) can only be seen if the singlet-triplet energy gap exceeds 95 kJ mori, the 

(0,0) excitation energy of singlet oxygen. 
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1.1.12 Singlet Oxygen 

As can be seen not all of the quenching processes lead to the production of singlet 

oxygen. The overall quantum yield of singlet oxygen production will be given by the sum 

of the yields of production from oxygen quenching of both the first excited singlet and 

triplet states: 

(1.24) 

The quenching of singlet oxygen may be due to chemical reaction or physical 

quenching. The principal mechanisms for physical deactivation in fluid solution are 

outlined overleaf. 

Solvent Quenching: The lifetime (t 8) of singlet molecular oxygen in solution is 

extremely variable depending upon the solvent employed.' For instance the weak 

emission at 1270 nm has a maximum lifetime of28 ms in CCL , whereas in solvents such 

as water, hydrocarbons and alcohols this is drastically shortened to a few tens of micro­

seconds. This is thought to be directly related to the absorption of the solvent at 

1270 run, the greater the absorption here the shorter the singlet oxygen lifetime, 

suggesting that the deactivation route of singlet oxygen is via direct conversion of its 

electronic excitation energy into vibrational energy in the solvent. This can be 

demonstrated upon the deuteration of solvents, which reduces the infra-red absorption at 

1270 nm so as not to facilitate such an energy transfer, and correspondingly increases 

considerably the lifetime of singlet oxygen. 

Charge-Transfer quenching: Quenching of singlet oxygen via a charge transfer or 

partial charge transfer exciplex by certain compounds such as sulphides, phenols and 

amines has been suggested, the general mechanism proposed may be represented as: 

(1.25) 
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Energy Transfer quenching: The quenching of singlet oxygen in fluid media via the 

energy transfer mechanism shown in the equation below has been documented for a 

number of compounds. 

(1.26) 

The acceptor A is required to have a triplet energy ofless than or approximately equal 

to 95 kJ mol .1. The most studied of such compounds is ~-carotene having a low lying 

triplet state (88 kJ mol ·1 ) [5] and has been widely demonstrated to quench singlet 

oxygen via electronic energy transfer. 

The spontaneous radiative deactivation of singlet oxygen C Llg) to the ground state, 

producing phosphorescence as shown below: 

(1.27) 

The above is an inefficient process with a low phosphorescence quantum yield which 

emits in the near infrared region of the spectrum. It is possible to detect the decay of 

singlet oxygen luminescence by the development of I-R sensitive germanium 

photo diodes; allowing detection of this process directly under many experimental 

conditions. 

Details of such apparatus are discussed in the experimental chapter (section 3.4). 

Once a molecule has absorbed a photon ofUV-VIS radiation and has become excited, 

the next step is to follow the fate of the excited species. The excited state can last 

anything from a few seconds down to femtoseconds. Studies on extremely short lived 

excited states can be carried out thanks to a technique known as flash photolysis -

developed in 1949 by a British chemist called George Porter [6] who shared the 1967 

Nobel Chemistry Prize for the study of ultra-fast chemical reactions with the German 

Manfred Eigen and fellow Briton Ronald Norrish. 
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Principally flash photolysis is an experiment in which a large initial concentration of 

electronically excited molecules is produced by an intense burst of radiation. The 

subsequent decay of the excited state may be followed by detection of its emission, or by 

monitoring its absorption by using a second (often continuous) light source operating at 

the appropriate wavelength. Experimental details of flash photolysis will be discussed in 

much greater depth in section 3.3. An important requirement for a photochemical 

experiment is that the light source must produce a pulse of radiation that lasts for a much 

shorter time than that of any subsequent processes that we wish to monitor, and ideally 

be of just one wavelength, these requirements are met by laser light. The special and 

unique properties oflaser light are outlined below. 

1.2 LASER LIGHT 

Coherence: Laser light is composed of regular and continuous waves,· it is both 

temporally and spatially coherent. Temporal coherence means that it is nearly a single 

frequency i. e. the spread in frequency or line width is small. If the wave holds its shape 

with time it is said to be spatially coherent. In contrast ordinary light is incoherent; 

producing waves over a wide range of frequencies as a result of the random process of 

spontaneous emission. 

Directionality: Laser light is highly directiona~ having a low level of divergence, which 

allows the beam to be focused on a spot of very small dimensions. 

Monochromaticity: Most sources of light are white (polychromatic), whereas laser 

light is monochromatic. 

1.2.1 Historical Development 

The development oflaser light had its origins with the work of Einstein who advanced 

the concept of stimulated emission of radiation in 1917 [7]. This concept of stimulated 

emission was only used in theoretical discussions, it was not for about 30 years that 

practical application of this concept was put into practice. Several proposals were 
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followed for using stimulated emission as a means of amplification, but it was Gordon, 

Zeiger and Towns [8] who in 1953 obtained continuous micro-wave amplification and 

oscillation within an ammonia molecule. This device was given the acronym MASER 

(Microwave Amp1i1ication by the Stimulated Emission of Radiation). It was six years 

later that the same principle was applied to coherent radiation in the visible region, in the 

form of Maiman's ruby laser [9]. This was soon followed in 1961 by the gas laser of 

Javan, Bennett and Herriot [10] and the semiconductor laser in 1962. The term LASER 

is an acronym for Light Amplification by the Stimulated Emission of Radiation. With an 

atom having only two possible energy states, an upper state E2 and a lower state El, 

absorption of radiation can occur if the energy of the photon is such that it exactly 

matches the energy gap in the molecule i.e. hv = E2 - El. Once an atom has absorbed a 

photon the reverse process can also take place i. e. the atom can change from the high 

energy state to a low energy state with the emission of a photon. An important feature of 

this emitted light is that there are two processes at work; it was Einstein who showed 

that emission can be spontaneous and stimulated. The former is a random process and 

does not require the presence of radiation, whereas, the latter is found only in the 

presence of radiation; a photon having an energy equal to the energy difference between 

the two levels interacts with the atom in the excited state causing it to relax to the lower 

state with the emission of a second photon. Importantly, the photon emitted travels in 

the same direction as the stimulating photon. The three radiative processes are shown in 

figure (1.9). 
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Figure (1.9) Schematic representation of the three radiative processes that can occur in a non­
degenerate two level energy system. 

and can be represented by the following equations and rates: 

Absorption MJ + hv ~ M2 

Spontaneous Emission M2 ~ MJ + hv 

Stimulated Emission M2 + hv ~ MJ + 2hv 

rate = BI [MJ] 

rate = A[M2] 

rate = B'[M2]I 

(1.28) 

(1.29) 

(1.30) 

where MJ and M2 are molecules in lower and upper states respectively and I is the 

intensity of radiation. The coefficients B, A and B' were investigated in 1917 by Einstein 

and are known as the Einstein coefficients, he showed that B and B' are in fact identical 

so the same term can be applied to both. From these expressions the rate of absorption 

of radiation is given by: 

Rate of change of absorption: 

Which can be simplified to: 

1= -BI[MJ] + A[M2] + BI[M2] 

1= BI( [M2] - [MJ] ) + A[M2] 
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Under normal circumstances stimulated emission is unlikely to occur, making the 

M2 + hv ~ Ml + 2hv encounter of low probability. Therefore the last term in the 

equation (1.32) being negligible can be ignored giving: 

1= BI ( [M2] - [Ml] ) (1.33) 

The term [M2] - [Md is influenced by the Boltzmann distribution which says that the 

populations will be biased towards the ground state i.e. [M2] < [Md, this being negative 

shows that the net process is one of absorption. If however it could be arranged for 

[M2] > [M1] - a situation known as a population inversion, the net process would be 

emission rather than absorption i.e. the sample would emit more light than what was 

shined on it. Furthermore, if the emitted radiation is 'fed back' into the system, further 

emission by the process of stimulated emission of light can occur i.e. the light is 

amplified. 

To create a population inversion energy must be supplied to the system. Obviously 

supplying the system with heat will just increase the population of all levels. Population 

inversion is achieved by two main methods; one is by passing an electrical discharge 

through a gas causing ionisation. Examples of these types are: Helium-Neon, Carbon 

Dioxide and the Argon laser. Alternatively, energy in the form of light can be supplied; 

this is termed optical pumping and is generally applicable to solid-state lasers. A flash 

tube is the usual source, discharging photons with energies corresponding to the excited 

states creating a high density of these excited states. 

The above discussion is based on a simple two-level energy system, the difficulty with 

the two-level arrangement is that any pumping which raises atoms from the lower level 

to higher, tends almost equally to lower atoms from high to low. The best that can be 

achieved is to raise 50% of the atoms to the upper level. As of yet no two-level laser 

has been made, however in three and four level laser systems population inversion is 

more easily achieved. 
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1.2.2 Solid State Lasers 

The first laser, the ruby laser of Maiman is an example of a three level system, a 

simplified energy level diagram is shown in figure (1.10). 

Energy 

Pumping 

Rapid (non-radiative) 

transition 

E, -----''----.-- Metastable State 

Lasing transition 

_--J'--__________ -'-_ Ground State 

Figure (1.10) Schematic Representation of the three -level Laser. 

Ruby is sapphire (Ah 0 3), containing a small amount of chromium in the form of 

Cr203, it is the Cr3+ ions that are excited to an upper state E2 by an intense flash of white 

light. Instead of remaining here fast relaxation occurs to a middle state Et by a 

radiationless transition. Once an atom reaches this middle state it spends an unusually 

long time there before dropping down by spontaneous emission, to the ground state. 

States such as this are termed metastable and it is because of this characteristic that the 

population of the middle state builds up while the ground state is depleted, i.e. a 

population inversion has been achieved. However in a three level laser the method of 

obtaining population inversion between the middle and ground state is somewhat 

inefficient. This is because the middle state is effectively empty at the start of the 

pumping as a result of the Boltzmann distribution, at least half the population of the 

ground state molecules must be pumped into the middle level before population 

inversion is achieved. A more recently developed laser is the Neodymium laser, which 
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employs the triply charged ion of the rare earth metal neodymium (Nd3
+), in yttrium 

aluminium garnet (YAG). The neodymium laser is a four-level system and is the most 

widely used solid state laser, its major advantage over the ruby laser is its lower lasing 

level is above its ground state. 

Energy 
Pumping 

Rapid (non-radiative) 

transition 

E2 __ ---.:1-,-__ Metastable State 

Lasing transition 

E, _____ L-___ 

__ ---lL-____________ Ground State 

Figure (1.11) Schematic representation of the four -level laser . 

. In the four-level laser as shown in figure (1.11) atoms in the ground state Eo are 

pumped to the highest level E3 from which they descend non-radiatively, to the 

metastable state E2• Providing level El is sufficiently high above the ground state then it 

will be effectively empty and so a comparatively small population in E2 is needed to 

ensure a population inversion between E2 and El, laser action can therefore take place 

between these levels. It is this type oflaser which is employed in Loughborough for flash 

photolysis experiments, detailed explanation of the laser set up is given in the 

experimental chapter (section 3.3). 
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CHAPTER 2 

Photoallergy, 3,3',4',5 - tetrachlorosalicylanilide 

Chemistry and Serum Albumin 



2 Photoallergy and 3,3',4',5 - tetrachlorosalicylanilide Chemistry 

2.1 Introduction 

Many substituted salicylanilides, particularly halogenated salicylanilides, have 

aroused great interest because of their fungicidal and germicidal properties - it was to 

make use of their potent anti-bacterial properties that salicy1anilides like 3,3',4',5-

tetrachiorosalicylanilide (T4CS-H) have in the past been widely employed as 

antiseptics and bactericides - commonly used in soaps and deodorants. 

Unfortunately, after passing the conventional toxicological screening tests and being 

marketed, they were soon found to lead to photoallergy [1 - 3], causing serious 

adverse skin reactions. Although most photoallergens will elicit a response in only a 

small fraction of those exposed [4], tetrachiorosalicy1anilide is unusual in being 

capable of inducing photoallergy in a very high fraction of those exposed. . This 

photoallergy is believed to be brought on by the influence ofUV light on the anion of 

tetrachiorosalicylanilide (T4CS-) with human skin leading to photodermatitis. Users 

of these soaps developed an incapacitating photodermatitis after a brief exposure to 

sunlight, in some cases the skin remained abnormally sensitive to sunlight for months 

or years after termination of all known contact with the photosensitiser [5]. 

Cutaneous photosensitivity to tetrachlorosalicy1anilide and other salicylanilides is 

generally accepted as a drug-induced photoallergy. Based on clinical observations 

and results with experimental animals, this disease has been determined to be an 

immunologic reaction of the delayed hypersensitivity type. The major difference 

between contact sensitivity and photoallergy is that light exposure is a necessary 

prerequisite for the photoallergic response. 

Photoallergy can be defined as an acquired altered reactivity of the skin to light in 

the presence of a photosensitizer [6]. Photosensitivity is a term to describe abnormal 

or adverse reactions to light energy. Photosensitisers can either be photoallergic or 

phototoxic in action - the majority of photosensitisers are phototoxic in action. It is 
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important to distinguish photo allergy from this far more common cutaneous 

photosensivity condition, since these two conditions are hard to distinguish clinically. 

2.2 Photoallergy Vs Phototoxicity 

As already stated photo toxicity is much more common than photoaIlergy - indeed 

the ordinary sunburn reaction falls into this category. A photo toxic response can be 

elicited from all individuals if enough light energy of the appropriate wavelengths, and 

in the case of the photosensitised system, enough of the photosensitiser is present in 

the skin. Thus, phototoxic responses can be likened to primary irritant reactions, 

they are characterised by erythema and at times edema occurring within a few 

minutes to several hours after exposure followed by hyperpigrnentation and 

desquamation confined to the exposed areas. The histology may well show a severely 

damaged epidermis, particularly if the sensitiser is applied to the skin. In contrast 

photoaIlergic reactions are generally uncommon, and where data is available it 

appears that only a small percentage of an exposed population is susceptible to each 

photoaIlergen. The clinical patterns range from immediate urticarial to delayed 

papular and eczematous lesions. In general less energy is required to induce a 

photoallergic response than a phototoxic lesion dependent on the same spectrum. 

The histology is also different - details are given in an excellent review article on 

photoaIlergy by J.H. Epstein [6]. 

2.3 Photoallergic compounds 

Listed in figure (2.1) are the chemical structures of several known photoallergens 

with the appropriate reference to their photoaIlergy indicated in brackets. The best 

established photoaIlergic compounds include several halogenated salicylanilide 

derivatives, most important being tetrachlorosalicylanilide in that it gives the 

strongest photo allergic response. 
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Figure (2.1) Structures of well-known photoallergens with appropriate reference to their 
photoallergy in brackets. 
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The above includes agents used for their antibacterial, antifungal and tranquilliser 

properties. Structurally, there is some diversity amongst this group of compounds, but 

obvious features include aromatic rings and in many cases the presence of halogen 

atoms. However, it must be noted that cellular metabolism may convert these 

compounds into the actual photoallergic species. The ground state absorption spectrum 

of all these compounds extends into the UV A (320 - 400 nm) part of the spectrum. 

2.4 Photoallergic Drug Reaction 

The observed skin responses to photoallergic compounds and the appropriate 

wavelengths of light, are believed to result from a delayed hypersensitivity response to 

an antigen formed in the skin when certain chemicals penetrate the skin, absorb light 

and bind to protein. This can lead to a photo allergic response occurring by the pathway 

shown below [18]: 

CHEMICAL 

+ 

PROTEIN 

hv 

light absorbed 
by chemical 

ANTIGEN 

(covalent photoadduct) 

I 
! 
I sensitised 

!Iymphocytes 

I , 
Erythema 

Edema 

Vesicles 

Figure (2.2) Proposed pathway leading to a photoallerg;c response. 
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In photoallergic reactions the photochemical process plays the role of an initiator, 

i.e. light from the sun, whereas the host's own irmnunologic mechanism may play the 

role of the effector. The two primary problems in the understanding of photoallergic 

mechanisms concern the definition of the nature of the antigens (an antigen is a 

substance that stimulates the production of an antibody) and the antibodies involved. 

2.4.1 Requirements for a PhotoalIergic response 

The first requirement for a photoallergic compound is that it must be able to be 

adsorbed into the skin, i.e. penetrate the skin from the outside or from the interior of 

the body and remain there long enough for photochemical reaction to take place. Once 

adsorbed, it or its metabolite must absorb light striking the skin. This absorption of 

light is followed by a structural change in the substance, to produce a reactive species. 

The product of this reaction fulfils the structural requirement to be able to bind 

covalently to protein(s) for the formation of an allergen. Contrast this with many 

photo toxic compounds that react upon irradiation, producing singlet oxygen, which 

consequently can produce cellular damage such as oxidation of amino - acid residues. 

UV radiation in the UV A and UVB penetrates to various depths in the skin, 

depending upon the wavelength [19]. So the location at which photochemical reaction 

takes place will very much depend upon the ground state absorption spectrum of the 

photoallergic species. Because albumin is a soluble protein present in the skin in a 

reasonably high concentration it is considered a likely candidate for the carrier protein 

of the antigen. 

2.5 Photodermatitis due to Tetrachlorosalicylanilide 

Late in 1960 there occurred the first of a series of acute photodermatitis due to 

tetrachlorosalicylanilide, affecting initially a total of 53 people [7], twenty-four of these 

were hospital cases. Typically, the onset of the dermatitis occurred after the patients 

had long spells out in the open. The symptoms the patients suffered were: swelling and 

redness of the skin, erythema, scaling and oedema. In many cases relapses would 
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occur days later. What was significantly striking, was that the dennatitis was entirely 

confined to the light-exposed areas, however all light-provoked patch tests proved 

negative, as were provocative drug tests. Around the same time similar symptoms 

occurred in a group of factory workers, affecting an eventual total of27 individuals. It 

was initially supposed that the manner of the mctory work - treating metal at high 

temperatures with the release of hydrocarbons may be in some way connected with the 

resulting dennatitis - numerous samples were taken for testing. It was however, 

noticed that the washing rooms were stacked with bars of a popular germicidal soap. 

This soap was used rather prodigiously owing to the dirty nature of the men's work, 

and that the affected men usually reported on Mondays, having become worse at the 

weekends. Furthermore it was particularly brought to attention that several instances 

of severe recurrences occurred over the holiday period when the men were away from 

work. Patch tests against dilutions of suspected oils proved negative. However, it was 

rather fortuitously discovered in the course of the investigation that a solution of the 

aforementioned soap was fluorescent. A patch test using 1 % solution of the soap was 

the only sample to give an unequivocal positive result. Further hospital cases revealed 

that affected patients used the very same soap, therefore, it soon became clear that the 

debilitating dennatitis was connected with the use of this germicidal soap. Enquiries at 

the manufacturers revealed that a new germicide: tetrachlorosalicylanilide had been 

incorporated into the soaps. 

Tetrachlorosalicylanilide was developed as a deodorant and bacteriostatic agent, 

having a wide range of activity against skin organisms. It was patented in the United 

States in 1955, and had been used in several consumer, industrial and detergent 

preparations in Great Britain and the United States. The outbreak of photodennatitis 

caused by tetrachlorosalicylanilide was at the time surprising; the halogenated 

salicylanilides were not hitherto regarded as photosensitisers, though halogen­

substituted fluoresceins had been shown to be photodynamic substances [20]. Indeed 

tetrachlorosalicylanilide had passed the conventional toxicological screening tests; 

preliminary patch tests [21, 22] suggested that it was no more an irritant or potential 

sensitiser than comparable concentrations ofbisphenols. 
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Now it was recognised that the culprit of the incapacitating photodermatitis after 

relatively brief exposure to light was tetrachlorosalicylanilide, further work on the 

photochemical behaviour was carried out to try to gain an insight to understanding the 

problem. In some people the skin remains abnormally sensitive to light for months or 

even years after all known contact with the offending compound has ceased. Patients 

suffering these symptoms are known as 'persistent light reactors' or PLR, a term 

coined by Jillson and Baughman [9] to describe patients suffering from this as a result 

of photosensitisation to bithionol. 

Willis and Kligman [5] carried out in vivo experiments to investigate this PLR effect, 

they carried out photo tests at different time intervals after the application of a 1 % 

concentration of the various photosensitisers to human skin. At intervals of two 

weeks, the patch sites were uncovered and exposed to 3 minutes of radiation, the 

experiment was carried through for a total of ten weeks. The results showed that for 

every subject that was exposed to tetrachlorosalicy1anilide or trihromosalicylanilide 

(TBS-H) the skin remained strongly photoreactive for the duration of the experiment 

i.e. up to at least ten weeks after a single application, and significantly there was no 

great decrease in the intensity of reaction during this time. The blank unirradiated site 

proved negative, ruling out any contact allergy. Investigation was also performed on 

how long the reaction would persist at covered and uncovered sites. Again a 1 % 

concentration of each photosensitiser was applied to two sites which were exposed to 3 

minutes of xenon arc window glass radiation - one site was covered the other left 

uncovered. The results showed that when light is totally excluded the reaction does 

not occur beyond fifteen days. However, on uncovered sites the adverse skin reaction 

to tetrachlorosalicy1anilide and tribromosalicy1anilide still persisted from fourteen days 

to more than six months (six months being the maximum period of observation). These 

observations clearly show that a photo allergic response can occur under the influence 

of diffuse, low energy light. The persistence of the photosensitiser in the skin was 

ascertained by extracting dermatatic tissue with ethanol. The extracts were analysed 

by comparing their ground state absorption spectra and peak fluorescence bands with 

the authentic chemicals. These methods revealed the presence of the photosensitising 

compound in the extracts. In conclusion to these findings Willis and Kligman suggest 
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that the explanation for the PLR, is that the chemical simply remains in the skin for 

exceptionally long periods. 

2.6 Photobinding to Proteins 

The photochemical binding of tetrachlorosalicylanilide was first reported by Jenkins, 

Welti and Baines in 1964 [23]. They showed that after exposing a mixture of 

tetrachlorosalicylanilide and y-globulin (y-G) to daylight for 5 hours the eluted protein 

was found to produce strong fluorescence. When exposure to daylight was omitted, 

the eluted protein did not fluoresce strongly. Since tetrachlorosalicylanilide itself 

cannot be eluted, the fluorescence derived from the protein must be due to 

tetrachlorosalicylanilide combining with the protein via excitation by the sun's light 

energy to form a conjugate. Hilal [24,25] showed that upon irradiation of a solution 

containing tetrachlorosalicylanilide and a simple protein type compound: protamine 

sulphate, a complex was formed between tetrachlorosalicylanilide and protamine, again 

the findings were based on fluorescence measurements. Later, Kochevar and Harber 

[26] reported that the anion oftetrachlorosalicylanilide (T4CS") binds non-covalently to 

HSA in the dark, however under the same conditions binding to bovine y-G did not 

occur. They also demonstrated the reversible nature of the dark-binding of T4CS· to 

RSA, by precipitating out the protein with alcohol and re-dissolving in buffer which 

resulted in a lowering of fluorescence, repetition of this process eventually removed all 

fluorescence. Irradiation of solutions containing T 4CS· with RSA and y-G resulted in a 

red shift in the fluorescence maximum in the case with RSA, but with y-G the 

fluorescence maximum was the same as observed when irradiation was carried out in 

the absence of protein, indicating that no photoproduct between T4CS· and the y-G had 

formed. In an attempt to determine which amino acid(s) T4CS· covalently binds to on 

the protein molecule, amino acid analysis was carried out on irradiated samples of 

T4CS· and RSA and on untreated RSA. In aerated samples it was found a 15% 

reduction in the histidine content of the irradiated sample, however, analysis in the 

absence of oxygen revealed no difference in the histidine content. Although these 
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results do not indicate which amino acid T 4CS· covalently binds to, it suggests that 

T4CS· is sensitising the photooxidation ofhistidines in albumin. 

Stimulated by this work Barrett [27] investigated the behaviour of radio labelled 

C4C]-tetrachlorosalicy1anilide (C4C]-T4CS) (labelled at the amide carbon atom) with 

bovine insulin, a model protein, having a low molecular weight whilst containing most 

common amino acids. Binding of [14C]_ T4CS· was found to be exclusive to the B­

chain of the protein, digestion of this chain with trypsin showed 78% of the original 

activity to be associated with amino acids 1-22 of the B-chain sequence. Radio tracer 

techniques indicated the presence of one molecule of C4C]-T4CS· associated with the 

peptide; amino acid analysis indicated that one histidine residue from the peptide was 

missing, presumed to be modified by the covalent binding of C4C]-T4CS·. When the 

molar ratio of [14C]-T4CS· was increased, irradiation resulted in a significant loss of 

phenylalanine (in addition to histidine). From these results it was concluded that the 

primary site ofT4CS·to bovine insulin is at one of the histidines in the B-chain, with a 

secondary site at one of the phenylalanine residues. As stated previously, the work of 

Kochevar and Harber [26] also suggested that the covalent linkage of T4CS· may be 

close to histidine residues on the HSA molecule. 

Rickwood and Barratt [28] investigated the non-covalent binding of T4CS· to 

monomer HSA. Using a nitroxide spin-label analogue of tetrachlorosalicylanilide, 

binding studies on enzymatically and chemically modified HSA were carried out using 

electron spin resonance (ESR) spectroscopy. The spin analogue used was 3,5-

dichlorosalicylamido-4-(2,2,6,6-tetrarnethyl-piperidine-l-oxyl) (DCS-TEMPO), which 

is shown in figure (2.3) along side T4CS-H for comparison. 
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Figure (2.3) Chemical Structures ofT,CS·H, DCS· TEMPO and NEDS. 

Kochevar and Rarber [26] showed that N-ethyl-3,5-dichlorosalicy1anilide (NEDS) 

which lacks the aniline ring ofT4CS-R (also shown in figure 2.2) was able to bind and 

react photochemica11y with RSA in a similar fashion to T4CS', thus it appears that the 

property of photochemical reactivity towards proteins lies in the chlorinated salicyl ring 

of the T4CS' molecule and the substituted aniline ring appears to be unimportant. 

Therefore DCS-TEMPO was deemed a suitable substitute compound since the changes 

in incorporating the nitroxide radical do not alter those properties of interest. 

Analysing the data obtained by plotting a Scatchard plot of the binding of DCS­

TEMPO to RSA monomer in the absence of UV light resulted in a single strong 

binding site with a binding constant of 6.1xl 06 
Ml. There also appeared to be a 

number of additional sites with much lower binding constants. In the same study it was 

found that the photochemical binding ofT4CS' to RSA significantly reduces the extent 

of DCS-TEMPO binding to the protein, demonstrating that the major site of 

photochemical binding of DCS-TEMPO and T4CS' are the same. A later study [29] 

attempted to identifY the major covalent binding site. Solutions of RSA monomer in 

the presence of [14C]-T4CS' were irradiated with UV light (360mn) and subjected to 
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cyanogen bromide cleavage to yield two main fractions C and N. The radioactive 

counts showed a preference for binding to the N-fragments. On further reduction, 

carboxymethylation and maJeyJation seven characteristic cyanogen bromide peptides 

were produced, by far the greatest degree ofradioJabelling with ['4C]-T4CS' was found 

in residues 124 (cys)-298 (met) of the protein molecule. The position of the covalent 

binding site was further narrowed down by frrst performing a tryptic digest which 

removes residues 1-181 inclusive. The main fragment from the tryptic digestion 

retained 90-100 % of the activity of the original complex, this then underwent 

cyanogen bromide cleavage 182-298 of the RSA sequence, and was found to contain 

75-80 % of the recovered [14C]-T4CS' activity; which suggested that the major 

covalent binding site for T4CS' is located between residues 182-298 of the albumin 

molecule. Further work was carried out on the binding of DCS-TEMPO to 

enzymically and chemically modified RSA [30]. This was achieved by extensive 

digestion of RSA with trypsin, to yield a main fragment consisting residues 182-585 of 

the RSA molecule. A repeat of the Scatchard plot of the binding of DCS-TEMPO to 

the tryptic main fragment showed a single binding site, with a binding constant of 

3. 7xl 05 MI, which is 16-times lower than that obtained for the intact RSA. This result 

shows that although the major binding site is still present in the main fragment, its 

geometry has been considerably affected by the removal of the N-terminal region of 

the molecule. Further, it was shown that chemical modification of the single 

tryptophan (residue 214) of the RSA molecule reduced the binding constant by 60%, 

evidence of the proximity of this tryptophan residue to the T4CS' / DCS-TEMPO 

binding site; concurring with previous findings since the lone tryptophan residue lies 

betweenresidues 182-298 of the RSA sequence. 

2.7 The Photochemistry of Tetrachlorosalicylanilide 

It was shown by Jenkins et al [23] that upon irradiation of 3,3',4',5-

tetrachlorosalicylanilide in aqueous alcoholic phosphate buffer solution (pR = 7.3) by 

ultra-violet light or sunlight, decomposition to 3',4' ,5-trichlorosalicylanilide takes 

place, but no observed decomposition occurred when 3,3',4',5-tetrachlorosalicylanilide 

40 



was irradiated in aqueous alcohol alone (PH = 3.3) or in aqueous alcoholic 

chloride (PH = 2.2). The pK. value of tetrachlorosalicy1anilide is near 5.6, so these 

results suggest that it is the ionised form of tetrachlorosalicylanilide (T4CS") that is 

photoreactive; exchanging a hydrogen atom for the 3-chloro atom upon irradiation to 

give 3',4' ,5-trichlorosa1icylanilide (T3CS-). An indication of the possible mechanism 

was shown by the electron spin resonance spectra of tetrachlorosalicylanilide powder; 

which when irradiated with sunlight or ultra-violet light clearly indicated the presence 

of free radicals. 

Coxon et al [31] using infrared spectroscopy to identify products from their 'nujol' 

mulls, irradiated twenty six different substituted salicylanilides with ultra-violet light 

and examined the products. It was found that 3,3',4',5-tetrachlorosalicylanilide gave 

3',4' ,5-trichlorosalicylanilide as a product in agreement with Jenkins et al. So it 

appears that the salicy1anilide loses its 3-chloro atom through some free radical 

mechanism. In fact all 3,5 halogen salicylanilide anions lost the 3-halogen atom on 

irradiation, but halogen atoms on the anilide ring were not affected by near ultra-violet 

radiation. The first step could be homolytic cleavage of the carbon-chlorine bond in 

the 3 - position to give a free radical as shown below. 

e 
~ ~Cl as ~ £(Cl 

Cl C I h. 

"'" 
C "'" I 

"'" "'--N "'" Cl 
"'--N Cl 

I &9 I 
&9 H 

H 

Cl 
Cl 

Figure (2.4) Irradiation of the ionised form of 3,3 ',4', 5-tetrachlorosalicylanilide leading to 
homolytic cleavage of the 3 C-Cl bond to produce a free radical. 

+ Cl 

Evidence for the production of free radicals during the reaction was provided by 

the release of iodine when potassium iodide was added during irradiation, iodine was 
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not released from solutions kept in the dark. It was postulated that the initial reaction 

must be due to the release of halogen atoms as halide ions do not release iodine from 

potassium iodide. No halogen atoms are removed from unionised salicylaniJides - so 

it appears that a phenolic oxygen atom is essential for the reaction, this could be due 

to inductive effects as well as hydrogen bonding - the neighbouring oxygen increasing 

the !ability of the 3-halogen atom by induction. Morikawa et al [32] confirmed these 

findings, showing that 3,3',4',5-tetrachlorosalicylanilide undergoes a one-step 

photodecomposition to 3',4' ,5-trichlorosalicylanilide. 

Davies et al [25] utilising 365 mn light irradiated tetrachlorosaJicylanilide, and 

monitored the reaction by potentiometric titration of the chloride ions produced by 

the reaction: 

Cl" + RCH20H ~ cr + RCHOH + If' (R = alkyl group) (2.1) 

They found that in 0.02 % aqueous-alcoholic solutions, one molecule of can yield not 

just one but up to three chloride ions depending on the initial pH of the solution, a 

solution buffered at physiological pH (7.4) liberated three chloride ions per molecule 

tetrachlorosalicylanilide photolysed. However no attempt was made to determine the 

products. 

EpJing et al [33] investigated the primary and secondary photoproducts of 

tetrachlorosaJicylanilide photolysis using gas chromotography to separate the 

photoproduct mixture. Separation of the mixture showed the complexity of the 

photoreaction, although the only significant photochemical reaction involved 

dehalogenation. GC/MS and high field FT-NMR spectroscopy were employed, 

where the isolated products were compared with authentic materiaJs so a definitive 

identification ofthe products could be made. TypicaJIy, isolated materials accounted 

for> 95% of the starting material. It was shown that sequential loss of more than 

one halogen occurred whenever the pH of the solution was sufficiently high that the 

anionic form of the salicylanilide was present. Solutions buffered at lower pH's 

underwent less secondary photodechlorinations. Preferential loss of the chlorine from 
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the 3-position was observed which is consistent with previous findings and with a 

general higher reactivity of chlorines "ortho" to a substituent [34, 35], which has been 

rationalised as a steric effect. The same findings were also found by Chignell and Sik 

[36] who photolysed 3,3',4',5-tetrachlorosalicylanilide in buffered aqueous ethanol 

(PH = 7.4) and found a very rapid loss of the 3 - chloro atom, followed by the much 

slower release of 5- and then 4'- chloro atoms to give 3' -chlorosalicylanilide as a 

stable photoproduct. 

As already stated the first dechlorination results in the formation of 3',4' ,5-tri­

chlorosalicylanilide as the primary photoproduct. Irradiation of this photoproduct 

was carried out in order to evaluate the chronology of dechlorination from different 

positions. Secondary dechlorination was found to involve a loss one of the remaining 

halogens, the predominant photoreaction found being the formation of 3',4'-di­

chlorosalicylanilide and 3',5-di-chlorosalicylani1ide depending on the solvent 

composition, see table (2.1): 

Solvent 3' ,4' -di-CS 3' ,5-di-CS 

1% EtOHJH20 27 73 
5% EtOHJH20 39 61 

45% EtOHJH2O 66 34 
75% EtOHJH2O 92 8 

HSAl5%EtOHJH2O 90 10 

Table (2.1) Products following irradiation of 3 '.4'.5 - trichlorosalicylanilide in various solvent 
compositions. 

Finally the irradiation of 3',4' -di-chlorosalicylanilide and 3' ,5-di-chlorosalicylanilide 

led to the predominant formation of 3' - chlorosalicylanilide, with traces of the other 

isomers being formed. This variation of product with polarity was explained as being 

due to the degree of solvation ofthe phenolic anion; in the more polar media this anion 

is effectively solvated, and the 'sa1icyclic acid' ring is less photoreactive than the 

'aniline' ring. Conversely, in less polar media the anion is less effectively stabilised, 
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and the ring becomes more reactive. Following the loss of chlorine from T4CS·, an aryl 

radical is formed. Involvement of the aryl radical has been confirmed upon irradiation 

of T4CS· in CH30D I D20 - which led to no incorporation of deuterium into the 

photoproducts, hence the hydrogen incorporated into the dechlorinated products is a 

hydrogen atom rather than a proton. Evidence of aryl radical has also been provided 

by Chignell and Sik - using 2-methyl-2-nitrosopropane (MNP) as a spin trap, 

irradiation with 365 nm light of a solution of T4CS· in 50% ethanol produced only 

solvent derived radicals, but T4CS· in a 0.1 N NaOH generated an ESR spectrum 

consisting of a broad triplet, assigned as an aryl radical, formed from dechlorination of 

T4CS· in the 3-position; to give an adduct with the structure as shown below: 

OH 

Cl 

o ~CI 

~"N~CI 
I 
H 

Figure (2.5) Dechlorination of T,CS· to give a photoadduct - showing that an aryl radical is 
formed. 

Once an aryl radical is formed, it can then either: dimerize, abstract a hydrogen 

atom as already shown, or attack a reactive site such as an aromatic amino acid in a 

protein. Elemental analysis and NMR spectra [33] indicated that dimer formation was 

the greatest in solvents without readily abstractable hydrogens, see table (2.2): 

44 



T4CS· conc. CM) Solvent composition DimerYield 
(%) 

0.0015 75% i - PrOHlH20 0.1 
0.0015 50% i - PrOHlH20 0.5 
0.0015 30% EtOHlH20 2.5 
0.032 65% MeOHlH20 6.2 
0.032 55% MeOHlH20 10.4 
0.070 t-BuOH 35 

Table (2.2) Dimer formation in various solvent compositions. 

It was noted that no dimer formation was observed following irradiation of other 

salicylanilides's nor when T4CS· was irradiated in the presence ofHSA or BSA. This 

can be explained by the fact that the two T 3CS·· moieties required for dimer 

formation are prevented from reacting with each other due to their fixed positions on 

the HSA molecule. 

Irradiation of T4CS· in the presence of cysteine led to photoreaction to give tri­

chlorosalicylanilide and cystine. When irradiation was carried out in the presence of 

glycylglycine [36], ESR studies showed the trapping of a carbon-centred radical 

formed from hydrogen atom abstraction from the backbone methylene carbon atom 

of the C-terminal glycene residue. On replacing T 4CS· with salicylanilide, no 

glycylglycine radical was formed; this supports postulates that aryl radicals generated 

by photodechlorination of T4CS· are responsible for this hydrogen abstraction 

reaction. When T4CS· is irradiated with HSA [21] and then chromatographed on 

lipophilic Sephadex the associated chlorosalicylanilide fluorescence is found with 

the eluted protein molecule, but when similar irradiation of HSA containing 3' ,4' ,5-

tri-chlorosalicylanilide was followed by Sephadex chromatography, the eluted HSA 

displayed a very weak fluorescence, while other chlorosalicylanilide's showed no 

tendency to photo-bind to HSA at all. Similar photobinding experiments with BSA 

showed photobinding of chlorosalicylanilide and to the eluted protein, though not as 
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efficiently as with RSA, whilst 3',4',5-tri-chlorosalicylanilide failed to show any 

photobinding to BSA whatsoever. Since the loss of fluorescence in the eluted protein 

fractions containing chlorosalicylanilide's other than T4CS' was not due to greatly 

diminished fluorescence quantum yields by loss of chlorines (see table 2.3), this 

suggests that T 4CS' is the most capable salicylanilide for binding to protein. 

Compound <l>r 

3'-CS 0.08 
3'-5-di-CS 0.19 
3' ,4' -di-CS 0.08 

3',4',5-tri-CS 0.19 
T4CS' 0.23 

Table (2.3) Fluorescence yield ofT,CS' and other chlorosalicylanilide 's in 5% ethanolic water, 
excited at 251nm. 

2.8 Serum Albumin 

2.8.1 Introduction 

Serum albumin occurs in blood plasma and serous fluids, it is the principal and 

most abundant protein in blood plasma [37] and serves as a depot protein and 

transport protein for a number of endogenous and exogenous compounds. A prime 

example for instance is bilirubin which binds with a high affinity to albumin [38], this 

interaction increases its solubility in plasma and reduces its toxicity. Albumin has 

also been suggested as a possible source of amino acids for various tissues [39] and is 

the principal player in the colloid osmotic pressure of blood. The high concentration 

of albumin in the blood results in it being of great physiological importance and the 

fact that it can be isolated and purified relatively easy on a large scale has resulted in a 
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large number of binding studies. These investigations have been further stimulated by 

the successful determination of the primary sequence of many of the serum albumins. 

2.8.2 Structure 

It was Hunter and Mcduffie [40] who in 1959 showed that albumin is a single 

peptide chain. In fact all serum albumins consist of a single polypeptide chain, and 

are characterised by a low content of tryptophan and methionine and a high content 

of cystine and the charged amino acids: lysine, arginine, aspartic and glutamic acids. 

However, due to the massive size of the protein chain it was a long time before its 

primary sequence was determined. It was not until 1975 that the peptide sequence of 

human serum albumin was published by Brown and co-workers [41], this was 

subsequently slightly modified [42]. Meloun et al. [43] independently published the 

sequence. of human serum albumin the same year with extremely good agreement 

between the two, the peptide sequence of bovine serum albumin was also published 

by Brown [44]. Comparison of the two sequences show there is about 80% 

homology between human serum albumin and bovine serum albwnin, and what 

differences there are in the peptide sequence are conservative in nature, e.g., 

hydrophobic amino acids are replaced by other hydrophobic amino acids and not by 

polar ones. 

The unique three-dimensional structure of human albumin with its characteristic 

looping structure was described by Saber 1977 et al [45] who explained how the nine 

loops are linked by disulphide bridges, which stabilise the three-dimensional structure 

of albumin. The amino acid sequence of both human serum albumin and bovine 

serum albumin with the cysteine linkages are shown in figures (2.6 ) and (2.7). 
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Figure (2.6) Amino acid sequence of HSA, showing cysteine linkages to form multiple double 
loops. 

Figure (2.7) Amino acid sequence of BSA, showing cysteine linkages to form multiple double 
loops. 
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2.8.3 Survey of ligands Bound to Albumin [46] 

A unique feature of albumin is its ability to bind a wide variety and a large number 

of biological materials, and its flexibility in adapting its shape to fit the ligand. A 

survey of Jigands bound to albumin shows that nearly allligands bind to a few high 

affinity sites plus a greater number of weaker sites. In most cases binding data has 

been analysed according to the Scatchard model [47] which assumes that the ligand in 

question is bound to classes of identical, independent binding sites. A large number 

of negatively charged and electrically neutral drugs bind to albumin with comparable 

association constants (104 to 105 Ml). Although albumin itself at physiological pH 

carries a negative charge, it has been proposed that albumin can bind negatively 

charged ligands in preference to positively charged ligands. However, albumin is also 

able to bind several positively charged drugs with an association constant comparable 

to that of the most negatively charged drugs. It must be noted that when carrying out 

ligand binding studies to serum albumins, the data does have to be treated with some 

caution. This is because binding data can be influenced by numerous factors such as 

temperature, pH, albumin concentration, and type and concentration of salts in the 

solution studied. It is possible fur different batches of albumin which have been 

purified according to the same principles, resuhing in difThrent binding parameters. 

Therefore, to some extent wide limits have to be accepted when binding results 

obtained in different laboratories are compared before conclusion of significant 

differences are drawn. 

For a fully comprehensive look at the various structural and ligand binding 

properties of serum albumin(s) the reader is recommended to refer to two excellent 

reviews by Theodore Peters and Kragh - Hansen [46, 48]. 
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CHAPTER 3 

Experimental 



3 Experimental 

3.1 Ground State Absorbtion Spectra 

All ground state spectra were recorded using a PU-8800 dual beam DV-VIS 

spectrophotometer (Philips), spectra being obtained using lcm x 1 cm quartz or glass 

cuvettes. 

3.2 Steady State Emission Spectra 

Emission spectra were recorded using either a Fluoromax spectrophotometer (ISA 

Instruments S.A (UK) Ltd), or a LS50 Perkin Elmer luminescence spectrometer. All 

spectra recorded used conventional right angle geometry. 

3.3 Nanosecond Laser Flash Photolysis 

Two laser flash photolysis lasers are employed in Loughborough. Both are 

Neodymium doped Yttrium Aluminium Garnet (Nd: YAG) lasers that are operated in Q­

switched mode. One is built around a JK Lasers (now Lumonics) JK2000, the other a 

Lumonics hyper YAG HY200 Laser. A schematic diagram of the flash photolysis system 

is as shown in figure (3.1). 
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Figure (3.1) Schematic diagram of the apparatus used for laser flash photolysis experiments. 

The fundamental wavelength of these lasers is located in the near infra-red region of 

the spectrum at 1064 run. However, this wavelength is not of use for photochemical 

investigations - what is required is UV -VIS radiation. This can be obtained by passing 

the fundamental wavelength through appropriate frequency doubling or mixing crystals, 

producing second, third and fourth harmonics. Second hannonic generation to give 

532 run is achieved by passing the fundamental wavelength through a deuterated caesium 

dihydrogen arsenate crystal (DCDA). Frequency mixing of the 532 run light with the 

remaining undoubled 1064 run light in a potassium dihydrogen phosphate (KDP) crystal 

results in the generation of the third harmonic at 354.7 run. The fourth harmonic, located 

at 266 nm, is obtained by frequency doubling the second harmonic in an ammonium 

dihydrogen phosphate (ADP) crystal. The excitation wavelength used for photochemical 

studies in this thesis was almost exclusively 354.7 run with occasional use of 532 run. 

The JK and HY laser pulses generated are gaussian with respect to time and have full 
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width at half maximum (FWHM) of approximately 20 and 8 ns respectively. The 

analysing source on both systems is a 300W xenon arc lamp (Optical Radiation 

Corporation). Appropriate filters can be placed between the analysing source and sample 

to cut off unwanted wavelengths. The detection system comprises a fl3.4 grating 

monochromator (Applied Photophysics Ltd.) which has fuJly variable (0 to 8mm) 21 mm 

height bilateral slits front and back and an R928 side window photo multiplier tube 

(Hammamatsu Ltd.) The accelerating voltage applied to the photomultiplier tube was by 

a 412B (FLUKE) high voltage supply. The signal from the photomultiplier tube was 

directed in the case of the JK laser system either into a 7612D transient digitiser 

(Tektronix Ltd.) or a TDS420 digitising oscilloscope (Tektronix Ltd.) - both having a 

maximum single shot digitising rate of 5 ns per point. The HY laser uses a 2432A digital 

oscilloscope having a maximum single shot rate of 4 ns per point. 

Both these devices have the facility of a programmable number of pre-trigger points 

which were set as 24 and 28 points respectively out of a total data record length of 512 

points. Communication of these devices with an IBM compatible personal computer is 

achieved via a PC2A general purpose interface bus (GPIB - National Instruments), which 

allows setting of the instrument parameters and the passing of digital data from the 

instrument direct to the computer. The driver software was provided by National 

Instruments and Tektronix. The shutters that are placed between the analysing lamp and 

sample and laser and sample are controlled by the computer via a DT2808 digital / 

analogue analogue / digital (D/ AI AA/D) card (Data Translation Ltd). 

3.3.1 Data Collection 

The software used to control the operation of both sets of apparatus as well as data 

collection and storage was written in Loughborough by Dr. D.R Worrall, Dr. G.P. Kelly 

and Mr. P.A. Leicester. Overall timing of the events leading to data collection for both 

set of apparatus is controlled by one central timing unit consisting of a quartz oscillator 

and a series of analogue delay modules. This unit was designed and built in 

Loughborough. The first step in data collection is the triggering of the computer, once 

triggered the computer instructs the digitiser to arm its tirnebase and to digitise a signal 
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upon receipt of its next signal. The next step is the opening of the appropriate shutters 

that are situated between the laser beam and the sample and the analysing source and the 

sample. For a transient absorption experiment the baseline is first collected with only the 

analysing light shutter open, next the transient absorption itself is collected with both 

analysing source and laser shutters open. An emission trace is obtained with only the 

laser shutter open and finally the top line with both shutters closed. The correct opening 

of the shutters is achieved by the computer that either allows opening or closing of the 

shutters depending on which data set is being collected. The firing of the laser can 

trigger the digitiser in one of two ways: the JK2000 laser reflects some of the laser pulse 

onto a glass slide aimed at a fibre optic cable which is in turn incident upon a photodiode, 

the HY200 laser triggers the digitiser by residual 1064 nm light incident upon a 

photodiode. On completion of digitisation of the signal obtained from the 

photomultiplier, the data is transferred to the computer, displayed on the screen, and 

stored on disk for later analysis - thus completing a cycle of data collection. Following 

this the computer awaits another signal from the timing unit for the sequence to begin 

again. 

3.3.2 Data Analysis 

To obtain an absorbance change of the intermediate under study with respect to time it 

is necessary to maoipulate the traces collected, i. e. the baseline, topline, absorption, and 

emission (see figure 3.2). This is done as follows: a data array corresponding to signal 

intensity following the laser pulse is generated, it is corrected for emission by subtracting 

the emission trace (E) from the transient absorption (TA) trace. For reliable results it 

should be noted that the emission trace should remain on the screen - overloading of the 

photo multiplier or too strong an emission is not desirable. The range of the screen is 

calculated by subtracting the topline (TL) from the baseline (BL), thus ensuring that the 

calculated transmission change is independent of the position of the two traces on the 

screen. The change in transmission is then calculated according to equation (3.1). 
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I1T(t) = 1- transmissionc 

baselinec 

(3.1) 

Where the sUbscripts c denote that baseline and transmission are corrected for topline 

and emission, respectively. 

The value of interest in solution flash photolysis is the change in absorbance as a function 

oftime, M(t). Using the Beer-Lambert law, I1A(t), is given by: 

( 1 ) 
M(t) = iog lO 1- I1T(t) 

(3.2) 

TL--~~==~~=====-------~~~ E (Emission) 

1 -6. T(t) 

TA (Transient Absorption) 

BL----Jj~----~:===~~==~~== 
6. T(t) 

Time 

Figure (3.2) Schematic diagram o/the experimental data traces recorded/or transmission laser 
flash photolysis experiments. 

3.4 Phosphorescence Measurements 

Phosphorescence emission spectra were carried out using a gated Photodiode Array 

System (EG & G Princeton Applied Research). The Lumonics hyper Y AG HY200 Laser 

was used as the excitation source at 354.7 nm. In this system the detector controller 

determines the timing of events, sending out a pulse to trigger the laser. The laser pulse 
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is detected by a photodiode via a fibre optic cable positioned next to the laser output, and 

the signal from this photodiode triggers the gate pulse interface. The resulting gate pulse 

is amplified and applied to a microchannel plate, thus effectively "opening" the optical 

gate for the gate pulse duration allowing detection by the photodiode array. The emitted 

light from the sample is collected using a fibre-optic which transfers it to a spectrograph. 

Gate widths used were up to 100 llS, with delays from the laser pulse of up to 100 llS. 

3.5 Singlet Oxygen Luminescence Detection 

As already discussed in section (1.1.11), the radiative relaxation of the lowest lying 

excited singlet state of molecular oxygen C Dog), results in the production of 

phosphorescence at 1270 nm. Detection of the phosphorescence was achieved using a 

singlet oxygen luminescence detector. The detector consists of a reverse biased 

germanium photo diode (Judson JJ6-8SP-1205M) coupled to a 55dB gain pre-amplifier 

(Judson PAl 00). Samples are placed in quartz cuvettes and excited with the 354.7 nm 

harmonic of the Nd:YAG laser. To prevent light of unwanted wavelengths reaching the 

detector, filters were used. One was placed in front of the laser beam to filter out any 

residual 1064 nm light (8038 Oriel Scientific Ltd.), the other a long pass infra-red 

silicon filter (Oriel Scientific Ltd). Filter 57900) was placed in front of the photodiode 

preventing all wavelengths below 1100 nm from reaching the detector. The detector and 

filter are placed a few millimetres from the face of the sample cuvette so as to detect 

emission perpendicular to the exciting source. The signal from the detector is then 

digitised and stored by the computer for later analysis. 
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3.6 Preparation of Solutions 

3.6.1 Preparation of Monomeric Human Serum Albumin (mHSA) in 
0.1 M Potassium Phosphate buffer solution pH 7.4 

Potassium dihydrogen orthophosphate (KH2P04) and di-potassium hydrogen 

orthophosphate (K2HP04) solutions were prepared to a concentration of O.1M. The 

KH2P04 solution is then added to the K2HP04 solution whilst stirring until a pH of 7.4 is 

reached. The prepared buffer solution is then degassed and filtered through a 0.22 !lm 

Millipore filter and stored at 4°C. A Sephadex 0-150 column (90 x 2.6 cm) is 

equilibrated with approximately 1 litre of the 0.1 M potassium phosphate buffer (PH = 

7.4). About Img / Iml ofHSA is dissolved in the buffer solution, and this is loaded onto 

the 0-150 Sephadex column. Elution is then carried out, a typical flow rate being 0.4 ml 

/ min. The eluted solution is collected as 4ml fractions by automation. The absorption at 

280 nm is recorded for each fraction, whereby it is possible to identifY the fractions that 

contain the mono mer form of HSA. A typical absorption versus fraction plot is shown in 

figure (3.3). 

MonomerHSA 

~ 

o 10 20 30 40 50 eo 70 eo 
Fraction number 

Figure (3.3) Typical collection spectrograph showing which fractions contain the monomeric 
formofHSA. 
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The fractions that contain the monomeric form of HSA are pooled together. These 

are then concentrated in an Amicon ultrafiltration cell at 15 psi using a ym-l 0 membrane. 

If there are any signs of bacterial contamination, the solution can be filter sterilised 

through a 0.451lm Aerodisc filter. 

The concentration of the fractionated mHSA is determined by equation (3.3). Dilution 

of the solution is required, so that the absorption at the peak of 280 nm will not be off­

scale. 

The concentration is given by: 

A280nm 

[mHSA]I mgmr l = I xlOx(dilutionfactor) 
8. 

(3.3) 

where: 

E HSA at 280 nm = 5.8 

I = the pathlength ofthe cell (cm) 

The concentrated rnHSA solution is stored at 4°C. 

3.6.2 Preparation of Salicylanilide Solutions 

Aqueous solutions of T4CS· and TBS· were prepared by first dissolving the 

salicylanilide in the appropriate alcohol and than adding 0.1 M potassium phosphate 

buffer (PH = 7.4) solution to make up the requisite ratio. The ratio is indicated 

throughout the thesis as a volume percentage, where the percentage of alcohol is stated. 

So that a solution containing by volume 10% alcohol and 90% buffer would be 

represented as a 10% alcoholic aqueous solution. All pH measurements were carried out 

using a Coming 220 pH meter. 
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3.7 Degassing Solutions 

Using a vacuum line the 'freeze-pump-thaw' (FPT) technique was applied. Solutions 

were placed in a limb of the reaction vessel and frozen using liquid nitrogen (77K), the air 

above the frozen solid is evacuated by decreasing the pressure (measurable down to a 

pressure of I x 10.3 mbar). The vacuum tap on the vessel cell was closed and the solution 

is thawed, allowing trapped air in the solution to equilibrate with the rest of the cell. The 

cycle is repeated until no further change in pressure is monitored. 

To avoid denaturing protein samples, solutions containing mHSA or BSA were purged 

with nitrogen gas to remove the oxygen content. 

3.8 Materials 

All solvents (methanol, ethanol, propanol, propan-2-ol, cyclohexane, benzene and 

acetonitrile) were of spectrophotometric grade (Aldrich Ltd.) and were used as received. 

Chemicals were obtained from the following sources: 3,3',4',5-tetrachlorosalicylanilide 

(T4CS) and 3,5,4'-tribromosalicylanilide (TBS) (Kodak). These were purified by 

repeated recrystallization from chlorobenzene, until a sharp melting point of 162-164°C 

was reached for T4CS (literature 162°C) and for TBS 189 -190°C (literature 190-191 

0C). Benzophenone (Aldrich Ltd. Gold Label), 9,10 - diphenylanthracene (Aldrich Ltd. 

Gold Label), naphthalene (Aldrich Ltd. Scintillation Grade), quinine sulphate (Aldrich 

Ltd.), biphenyl (Aldrich Ltd. 99%), rose bengal, bis (triethyl-ammonium) salt (Aldrich 

Ltd. - 90%), I-hydroxypyridine-2-thione (Omadine, Sodium salt) (Sigma 98%). 

HSA (fraction V, fatty acid free) and BSA (fraction V) were purchased from Sigma. 

Monomeric HSA (mHSA) was prepared from the commercial sample with the kind 

assistance of Mrs. R.U. Pendlington as detailed in section (3.5). 

Oxygen and nitrogen were supplied by B.O.C. Ltd and were water free. 
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CHAPTER 4 

Results with T 4CS- and TBS- . 



4.1 Absorption Spectroscopy 

4.1.1 Ground State Absorbance Spectra of (T4CS-H I T4CS") and (TBS-H I TBS") 
in Solution 

Halogenated salicylanilides like T4CS-H and TBS-H are insoluble in water, therefore 

other solvents need to be utilised in order to study their photochemistry. It is possible 

to make aqueous solutions with co solvents. Thus, alcohol/water mixtures can be used 

provided that the salycylanilide is first dissolved in the alcohol and the water is added 

after the anilide has dissolved. The ground state absorption spectra of (T4CS-H I T4CS") 

and (TBS-H I TBS") in a selection of solvents are shown in figures (4.1) to (4.5). 
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Figure (4.1) Ground state absorption spectrum ofT,CS-H in acetonitrile (50pM). 
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Figure (4.2) Ground state absorption spectrum ofTBS-H in acetonitrile (65 pM). 
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Figure (4.3) Ground state absorption spectrum ofT,CS- in methanol (60pM). 
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Figure (4.4) Ground state absorption spectrum ofTBS-H in methanol (60 pM) 
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Figure (4.5) Ground state absorption spectrum ofT .,cS-H in cyclohexane (80 pM). 
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In aqueous cosolvent solutions (T4CS-H / T4CS") and (TBS-H / TBS-) exhibit similar 

spectra; they absorb light in the ultra-violet region of the spectrum (below 400 nm)_ In . . 
pro tic (hydroxylic) solvents under alkaline conditions the molecule is predominantly in 

its ionic form where there are two main absorption bands, one with Ama.. approximately 

360 nm and the other Amax. approximately 280 nm_ Changing to acidic, non-polar or 

aprotic solvents results in a decrease in the absorption coefficient of the 360 nm band 

and an increase in the absorption coefficient at 319 nm_ The 319 nm band is due to the 

unionised form ofT4CS-H or TBS-H, these are illustrated in figures (4.6) and (4_7)_ 

2.5.----------------------------------------. 

2.0 
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T .. CS· Ionised 

.... / 
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. ... 0.0 L-L-__ -'-____ L-__ _L_ __ ---'L...:~_L_ _ __!!...,;,;.;.;,--,;.;.' -;';"" ""--""'-.""--,,--' -.... -
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Figure (4.6) Ground state absorption spectra ofT,CS- and T,CS-H (90 pM) in 50% aqueous 
ethanolic solution, showing ionised and unioinised forms. 
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Figure (4.7) Ground state absorption spectra ofTBS' and TBS-H (100 pM) in 50% aqueous 
ethanolic solution, showing ionised and unionised forms. 
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The equilibrium between the two forms in the case ofT4CS-H may be represented as 

follows: 
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Figure (4.8) Equilibrium between the ionised and unionisedforms ofT ~S-H. 
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It is the anionic form that is photochemically active to near ultra-violet radiation, and 

therefore it is this ionised form that is of interest in photochemical studies. The 

Nd:YAG lasers that will be used in the flash photolysis experiments can produce 

excitation wavelengths located at 354.7 run and 532 run. Since the salicylanilides 

absorb well at 354.7 run, this was the excitation wavelength employed in the flash 

photolysis studies. 

4.1.2 Calculation of the pKa for T4CS-H in 50% ethanolic aqueous 
solution 

The equilibrium between the unionised and ionised forms can be represented as: 

where T4CS-H = unionised form and T4CS' = ionised form 

The equilibrium association constant is given by: 

or 

[7:4CS - Hleqm 
[H+] -K .:....c... __ = 

cqm- a [7:CS-] 
4 eqm 

Taking logs gives: 

. ([~CS - Hlcqm) 
-log[H+]eqm=-logKa-log _ 

[~CS ]eqm 
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(4.2) 

(4.3) 

(4.4) 



where: -log[H+l eqm = pH 

(
[TtCS - HJeqm) 

pH=-logK -log 
U [TtCS-],qm 

(4.5) 

(4.6) 

The pH of the solution depends on the ratio of the concentrations of acid and base, 

and not the actual values. When [T4CS-H] = [T4CS'] then pH = -logI<.. Equation (4.6) 

is of the form of a straight line, such that a plot of pH versus log ([T4CS-H] I [T4CS']) 

should give a straight line with the intercept representing the pI<.. The absorption 

spectra of (T4CS-H I T4CS") in 50% aqueous ethanol solutions at various pH's are 

shown in figure (4.9) showing two isosbestic points suggesting two species are present. 
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Figure (4.9) Ground state absorption spectra ofT,CS' and T,CS-H in 50% aqueous ethanol under 
various pH's, showing two isosbestic points. 
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The pH of the solutions was made more alkaline by adding NaO~s) or acidified by 

adding dilute H2S04 (aq). Absorption A at a given pH and A. (360 nm) can be expressed 

as the sum ofthe absorbances of these two species as shown below: 

(4.7) 

where P.;; represents the absorption of the pure associated and dissociated forms 

T4CS-H and T4CS·. These were measured at pH 3.9 and 12.6 respectively. 

If only two species are present in solution then: 

(4.8) 

Combining equations (4.7) and (4.8) yields equation (4.9): 

[T4CS-H] = (A - [P.;;, T4CS']) I ([P.;;, T4CS.H] - [P.;;, T4CS']) (4.9) 

The concentrations ofT4CS' and T4CS-H are calculated according to equations 

(4.8 and 4.9). 

A plot oflog ([T4CS-H] I [T4CS']) versus pH is shown in figure (4.10). 
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Figure (4.10) Plot of log ({T,CS-H) I (T,CS}) vs. pH 
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The above plot using equation (4.16) should yield a gradient of unity. The actual gradient is 

0.7 which means that assuming only two species are present at all pH's is not right. To 

calculate the pK. would mean using different limits of pH. What is clear from figure (4.9) is 

that solutions at pH =7.4, contain mainly the ionised form: T4CS- and this was the pH used 

for making up solutions throughout the thesis. 
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4.1.3 Calculation of Molar Absorption Coefficients and Verification 
of Beer's Law 

Measuring the absorbance spectra at the desired wavelength of a range of solutions of 

varying concentrations and plotting the absorbance of the solution against the 

concentration of the solution, should give a straight line through the origin if Beer's 

law is obeyed. Deviations from Beer's law can occur for several reasons including 

chemical effects such as dimerisation or cluster formation particularly at high 

concentrations, or by instrumental artefacts such as non-linearity of the photomultiplier 

response. Concentrations ranging from 30llM to 280llM of T4CS· in 50% and 10% 

ethanolic aqueous solutions and of TBS' in 10% ethanolic aqueous solutions were 

prepared. Absorbance measurements were carried out using a 1 cm pathlength cell, 

with a 0.5 nm resolution slit width and a one second integration time. Figures (4.11) to 

(4.13) show plots of absorbance against compound concentration measured at the peak 

of the long wavelength band. 
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Figure (4.11) Change in absorbance at 360 nm ofT,CS' in 50% ethanolic aqueous solution 
(pH=7.4) with increasing concentration, with the Best Straight Line Fit to the data. 
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Figure (4.12) Change in absorbance at 358 nm ofT,CS' in 10% ethanolic aqueous solution 
(pH=7.4) with increasing concentration, with the Best Straight Line Fit to the data. 
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Figure (4.13) Change in absorbance at 361 nm ofTBS' in 10% ethanolic aqueous solution 
(PH=7.4) with increasing concentration, with the Best Straight Line Fit to the data. 
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Figures (4.11- 4.13) show that Beer's law is adhered to up to concentrations of 

approximately 300 JlM. The excitation wavelength to be used in flash photolysis 

studies is 354.7 nm, where we can be sure that Beer's law is obeyed at least up to this 

concentration, which is more than adequate for laser flash photolysis experiments. 

4.2 Laser Induced Degradation ofT4CS-

It is well documented that following irradiation, the anion T4CS' undergoes 

cleavage of a C-CI bond (see section 2.7), resulting in production of a chlorine radical 

according to: 

• + Cl 
hv 

Cl 

Figure (4.14) Irradiation ofT,CS' anion, resulting in loss of the 3 - chloro atom. 

Following this, reaction of Cl' and alcohol can occur according to the following: 

Cl' + R-CH20H --+ R-C'HOH + It + Cl' (4.10) 

Reaction between the alcohol radical and the T3CS' - can then lead to the formation of 

T3CS-H: 

(4.11) 

The resulting production of HCI(aq) will have the effect of lowering the pH of the 

system under study, thereby attenuating the ground state absorption in the 360 nm 

band, as was shown in figure (4.9). This pH change is not desirable for laser flash 
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photolysis transient absorption experiments, therefore it is necessary to use a buffer 

solution. It was decided to use O.lM potassium phosphate buffer with a pH of 7.4, 

this pH is desirable since the salicylanilide will exist almost entirely in its ionized form 

(see section 4.12). ApH of 7.4 is also physiological pH and was the pH used to make 

up human serum albumin (HSA) solutions (for preparation see section 3.6.1). It also 

means that solutions can be prepared consistently and easily, knowing accurately the 

pH and molar absorption coefficients for particular solvent compositions. 

Preliminary experiments to observe the effect of laser excitation on T 4CS· in solution 

was carried out. Aerated and degassed solutions of T 4CS· in 10% and 50% ethanol 

were flashed up to a 100 times, using 354.7 nm light of the JK laser, the energy being 

approximately 20 mJ/pulse. The ground state absorption spectrum was then recorded, 

and the process repeated. The resultant spectra are shown in figures (4.15) and (4.16). 
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Figure (4.15) Degradation ofT,CS· (J 80 pM) in a aerated J 0% ethanolic aqueous solution 
following laser excitation at 354.7 nm. 
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Figure (4.16) Degradation ofT,CS' (/80 pM) in a degassed /0% ethanolic aqueous solution 
following laser excitation at 354. 7 nm. 

Under the same experimental conditions, aerated and degasses solutions of T4CS- in 

50% ethanolic aqueous solutions were flashed. The resultant spectra are shown in 

figures (4.17) and (4.18). 
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Figure (4.17) Degradation ofT,CS- (70 pM) in an aerated 50% ethanolic aqueous solution 
following laser excitation at 354. 7 nm. 
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Figure (4.18) Degradation ofT,CS' (70 pM) in an degassed 50% ethanolic aqueous solution 
following laser excitation at 354.7 nm. 

In the lO% ethanolic aqueous solutions there can be clearly seen a build up of 

degradation product, which exhibits absorption throughout the UV region extending up 

to 900+ nrn. The degradation product is not so pronounced in the 50% ethanolic 

aqueous solutions. In order to observe the build up of product absorption from 400 nrn 

onwards, it is necessary to blow up that part of the spectrum, which is shown in figure 

(4.19). This reveals a growth in product reaching a maximum at about 450 nrn before 

tapering into a long tail. 
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Figure (4.19) A close look atthe product absorption, blown upfromfigure (4. 18}. 

It is advantageous to minimise the degradation that occurs during flash photolysis 

experiments as much as possible. For aerated solutions degradation is not a significant 

problem because as long as a large enough volume of stock solution is prepared for the 

particular experiment in hand, because once a solution is irradiated it can be discarded 

and exchanged for fresh solution. But solutions held in freeze-pump-thaw cells (F-P-T) 

that have been degassed on the vacuum line, are enclosed systems and exchange of 

solution without admitting air is difficult. Conventional F-P-T cells have only one 

small capacity bulb for holding solutions - so once irradiated any degradation products 

rapidly build up. Adaptation of these cells is easily achieved, whereby a large volume 

bulb is used for fresh unirradiated solution and another bulb with vacuum taps fitted is 

used as a refuge tip for discarded solution that has been irradiated. A schematic 

diagram is shown in figure (4.20). This type of F-P-T cell is used throughout the 

thesis for any experimental work that required many laser shots of a degradable 

compound. An example of a transient absorption spectrum obtained using this cell is 

given in figure (4.28). 
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Figure (4.20) Adaptedjreeze-pump-thaw cell; usedfor irradiating degradable solutions. 
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4.3 Emission Spectroscopy 

4.3.1 Fluorescence Spectra 

The fluorescence spectra of tetrachlorosalicylanilide in various solvents were 

obtained using absorbances of approximately 0.1 at the excitation wavelength of 

360 nm. The spectra along with the peak wavelength of emission are shown in figure 

(4.21). The spectra are independent of the excitation wavelength, i.e. Kasha's rule is 

obeyed (see section 1.18). 
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Figure (4.21) Fluorescence spectra obtained by exciting tetrachlorosalicylanilide in a selection oJ 
solvents at 360 nm. 

Using the relationship: LlE = NA hc/A., it is possible to estimate the energy of the first 

excited singlet state, SI. for tetrachlorosalicylanilide and tribromosalicylanilide (which 

have the same fluorescence maximum in the various solvents). This was done by using 

a value of A. obtained by the midpoint wavelength found between the absorption 

maximum and fluorescence maximum. 
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The resultant energies are tabulated below: 

Solvent l\E (So- SI) kJ mol-I 
acetonitrile 393 
ethanol and propan-2-ol 300 
aqueous mixtures 
Toluene, cyclohexane and 287 
1,2-dichloroethane 

Table (4_1) Singlet state energies calculated in various solvents. 

4.3.2 Quantum yield of fluorescence 

Measurements of fluorescence yields are accomplished by comparison with a 

fluorescence standard that absorbs and emits in the same region of the spectrum as 

those of the unknown. Absorbances of the sample and the standard must be similar 

and sufficiently dilute to prevent the occurrence of the inner filter effect (self­

absorption effects). It is preferable that both unknown and standard be dissolved in 

the same solvent. If this is not possible, then corrections for the difference between 

the refractive indices of the solvents must be made according to equation (4.12). 

The need for refractive index corrections are due to 1) changes in the intensity of 

radiation as it passes from the solution into the air due to refraction and 2) internal 

reflection within a cell may occur. 

All solutions should be tested for oxygen quenching, if oxygen quenching does 

occur then the solutions should be purged with oxygen free nitrogen gas or degassed 

on a vacuum line. Monochromatic excitation of both sample and standard should be 

carried out using identical excitation and emission slit widths, the former ensuring 

the excitation intensity impinging on both solutions will be equal. 

For a typical molecule following excitation to SI energy level: 

(4.12) 
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(4.12) 

and the fluorescence yield <DF depends on <l>r, <DIe and <l>R (SI) (see section 1.1.2) and 

is the ratio of fluorescence probability compared to triplet state formation, internal 

conversion and photochemical reaction probabilities. Using appropriate standards, <DF 

for T 4CS· and TBS· can be calculated by measuring the area under the respective 

fluorescence spectra and comparing with a standard of known fluorescence quantum 

yield. The quantum yield of an unknown can be found using the following equation: 

(4.13) 

where: 

$u = fluorescent yield of the unknown 

$, = fluorescent yield of the standard 

Au, As = the absorbances of the unknown and standard at the excitation wavelength 

Fu, Fs = the integrated emission area across the band for the unknown and standard 

n = index of refraction of the solvent containing the unknown 

110 = index of refraction of the solvent containing the standard 

Two standards were chosen for the calculation of the fluorescence yields of T 4CS· 

and TBS·. These were: 9,10-diphenylanthracene (DPA) in cyclohexane (<l>F = 0.90) [2] 

and quinine sulphate in N-sulphuric acid (<DF = 0.546) [3]. Their ground state 

absorption spectra occur in the same region of the spectrum as that ofT4CS· and TBS·, 

as do their emission spectra (see figure 4.22), so they are deemed suitable standards to 

use for fluorescence quantum yield determinations. 
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Figure (4.22) Emission spectra of the two standards shown with the emission spectrum of 
T,CS' for comparison. 

Experimental 

700 

Fluorescence measurements were carried out on both 10% and 50% ethanolic 

aqueous solutions ofT4CS' and TBS', using small absorbances of approximately 0.1 at 

the excitation wavelength so as to avoid any self absorption effects. The parameters 

used were as follows: 

Excitation wavelength 

Emission range 

Excitation slit 

Emission slit 

Integration time 

= 360nm 

= 365 -700nm 

= O.8nm 

= 2nm 

= 1 nm/sec 

All solutions were degassed on a vacuum line and all spectra recorded with the 

subtraction ofa blank, i.e. solvent alone. 
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Results 

The results are displayed in table (4.2): 

Compound ~F· Solvent nzuo 

DPA 0.90 Cyclohexane 1.422 

Quinine Sulphate 0.55 IN H2SO, 1.339 

T,CS· 0.50 50% ethanol 1.356 

T,CS· 0.36 20% ethanol 1.343 

T,CS· 0.27 10% ethanol 1.339 

TBS· 0.04 50% ethanol 1.356 

TBS· 0.03 10% ethanol 1.339 

Table (4.2) Fluorescence yields ofT,cS· and TBS· in various ethanol compositions. 

An error off 10"10 is estimated for these measurements . 

• ~ was calculated by taking an average of the values obtained from the two standards (which were 

within 5% of each other) . 
• The refractive indices were measured using an Abbe refractometer illuminated by means of a pearl 

electric light bulb. 

4.3.3 Phosphorescence measurements 

Since the first excited triplet state of a molecule is generally longer lived than the 

corresponding singlet state, the triplet state is often involved in the photochemical 

reactions of the molecule. Therefore it is of great importance to locate the T I energy. 

It was decided to calculate the triplet energy of both T4CS· and TBS· by excitation of 

these compounds in a glass at 77K, since phosphorescence is most easily observed in 

rigid matrices that inhibit the quenching collisions that would normally occur in fluid 

solutions, such as quenching by molecular oxygen. 
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Experimental 

T4CS· and TBS· were both dissolved in ethanol, the absorption at the laser 

excitation wavelength of 354.7 nrn was approximately 0.2. The solutions were 

placed in I cm x 5cm test tubes and then cooled in liquid nitrogen to form a glass. 

Likewise benzophenone was prepared into a glass, to use as a standard. The 

apparatus used to detect the emission was the diode array attachment to the HY laser 

system (see section 3.4). 

Results 

The phosphorescence spectra recorded are shown in figures (4.23a) and (4.23b). 
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Figure (4.23a) Phosphorescence spectrum ofT,CS· in ethanol glass (77 K). excitation wavelength 
354.7 nm. 
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Figure (4.23b) Phosphorescence spectrum ofTBS· in ethanol glass (77 K). excitation wavelength 
354.7 nm. 

The phosphorescence emission bands shown are broad and structureless, therefore 

locating the position of the 0-0 band which establishes the TI-Sodifference is difficult 

but can be estimated by locating A..nax. 

For T4CS· "'max. = 458 - 463 nrn which corresponds to a triplet state energy of 

between 258 - 261 kJ mOrI, "'max. for TBS· = 457 - 462 nrn corresponding to a triplet 

energy of between 259 - 262 kJ mOrl. These values are in accord with fluorescence 

measurements where A.max. = 438 nrn since E(TI-So) < E(SI-So), The spectrum 

obtained for the standard benzophenone, gave a triplet energy of 289 kJ mor
l 

that 

concurs with reported literature values [4], verifYing the accuracy of the data. 

4.3.4 Singlet - Triplet Splitting 

The singlet - triplet splitting ofT4CS· and TBS- in ethanolic aqueous solutions can be 

simply calculated from the difference in singlet state and triplet ·state energies. The 

values are given overleaf: 
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Compound ~E (SI - T I) / kJmor l 

T4CS· 42-45 

TBS· 43 - 46 
. 

Table (4.3) Singlet - triplet splitting energies for T,CS· and TBS· in alcoholic aqueous solvents. 

The small values obtained for the singlet - triplet splitting energies are general to 

3(n,lt') configurations which have lower singlet - triplet energy splittings than the 

corresponding 3(lt,lt') configurations. For example the n~lt' configuration of 

benzophenone and formaldehyde have singlet - triplet energy splittings of 27 and 36 kJ 

mor l respectively, whereas for the lt~ It' configuration of naphthalene the splitting is 

131 kJ mOrl. 
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4.4 Dark Binding Studies of T 4CS- with mHSA 

The main aim of these dark binding experiments is the quantification of: 

(1) stoichiometry of binding i.e. the number of binding sites on the protein (mHSA) 

for the interacting species T4CS·. 

(2) affmity of the binding sites for T4CS·. 

Calculation of the binding constant and number of binding sites due to the non­

covalent association of T4CS' with mHSA via changes in fluorescence on binding 

were carried out. 

Choice of Technique 

The measurement of T 4CS· binding to mHSA by spectrophotometry requires that 

the optical properties of the T 4CS' - mHSA complex differ from those of the free 

T4CS' and free mHSA. A great strength of spectrophotometric methods is that the 

results may be obtained instantly and the progress of an experiment modified 

accordingly. Another advantage is that the two components: T4CS' and mHSA are 

allowed to equilibrate and be measured in one vessel, so rapid separations of the free 

and bound ligand are avoided. However, there are certain drawbacks to this 

technique; the main disadvantage of the use of spectroscopy to measure binding is 

that the optical system is used empirically i.e. there is no prior knowledge of how 

large an optical change (in T4CS· or mHSA) is expected on binding. Nor, if multiple 

binding sites are present, can it be assumed that the spectral change on binding a 

second or third ligand molecule will be identical to that observed for the first. 

Fluorescence methods are potentially several orders of magnitude more sensitive than 

absorption methods in absolute terms. Thus, fluorescence methods require less 

experimental material than absorption methods and may cover a wide concentration 

range. Protein or ligand fluorescence is more sensitive than absorption to the 

environment, thus the signal change (relative sensitivity) is likely to be larger on 

protein-ligand interaction if a fluorophore is present. In genera~ changes in 
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absorption on binding are rather small and of limited use in spectroscopic titrations. 

Fluorescence despite its sensitivity to interference, was the method of choice. The 

dark binding experiments were carried out on a Perkin Elmer LS50 luminescence 

spectrometer. 

4.4.1 Emission Spectroscopy (T4CS- with mHSA) 

An excitation wavelength of 360 mn was chosen, since this is the wavelength at 

which maximum absorption occurs the ground state spectrum of T4CS-. This will 

allow a small excitation slit width to be used, without reducing the emission intensity 

too much. The excitation slit width is kept narrow in order to avoid any undue 

photodecomposition which may occur. The emission spectrum ofT4CS' alone and in 

the presence ofmHSA (1:1 stoichiometry) was collected and the difference between 

the two spectra, from which the wavelength of maximum change can be determined 

is shown in figure (4.24). 
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Figure (4.24) Emission spectra ofT,CS' - mHSA conjugate, T,CS' alone and the difference 
spectrum. 
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An emission scan of the phosphate buffer over the range of interest was also 

performed, this showed no emission, so no correction was necessary. The difference 

spectrum, shows that the maximum change occurs at 417 mn, therefore, this was 

selected as the emission wavelength used for the binding experiments. 

Method 

For preparation ofmHSA in O.1M potassium phosphate buffer (pH=7.4) see section 

(3.6.1). A preliminary titration was carried out by adding 5J.!1 aliqouts of T4CS' 

sequentially to 3rn1 of 0.1 M potassium phosphate buffer (PH =7.4); to make sure the 

inner filter effect was not in operation over the desired concentration range. A linear 

plot was obtained, indicating that no such effect is at work. 

To a fluorimeter cuvette 3ml of a known concentration of mHSA was added. A 

similar cell was prepared containing 3ml of buffer alone. Both cuvettes are allowed 

to equilibrate at 25°C. A.tX is set to 360 mn, Aem is set to 417 mn (peak of difference 

spectrumj as previously determined. The titration is performed by adding 5 J.!l 

aIiquots of T4CS' sequentially to each cuvette over the desired range. After each 

addition, the cuvette was stirred and the fluorescence reading at 417 mn read. When 

this reading stabilized an average of 3-5 values were read and the average 

fluorescence intensity recorded. The fluorescence intensity after each addition of 

T4CS' is then plotted against the T4CS' concentration after correcting for dilution, to 

yield two plots. All measurements were carried out at 25°C. 

4.4.2 Results of Dark Binding Data 

The first titration was carried out using a 0.4 J.!M solution of mHSA. The resultant 

emission readings plotted against the T4CS' concentration are shown in figure (4.25). 

The corresponding blank titration is shown in figure (4.26). 
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Figure (4.25) Plot to show the emission intensity recorded at 417 nm as T,CS' was titrated with a 
O.4pM mHSA solution, as of unction ofT,CS' concentration. 

/ 

0.5 1.0 1.5 2.0 

[T,CSlI ~M 

Figure (4.26) Plot to show the emission intensity recorded at 417 nm ofT,CS' as of unction of 
increasing T,CS' concentration, with the Best Straight Line Fit to the data. 
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The second titration was carried out using a 2.1 IlM solution of mHSA. The 

resultant emission readings plotted against T 4CS' concentration are shown in figure 

(4.27). 
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Figure (4.27) Plot to show the emission intensity recorded at 417 nm as T,CS' was titrated with a 
2.1 pMmHSA solution, as afunction ofT,CS' concentration. 

4.4.3 Analysis of Data 

The equilibrium can be represented as: 

+ mHSA • 

1 e b eqm 
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where: 

1° , I = total, free concentration of added T4CS· at equilibrium 

b = concentration of bound T4CS· 

eO = total concentration of binding sites for T4CS· 

e = concentration of free binding sites at equilibrium 

The fluorescence intensity measured, denoted by Fm is given by: 

Fm = bFb + (l0 - b) FU (4.14) 

where: 

Fb = fluorescence increase per J..lM of bound T4CS· (tangent of early part of curve, 

where it is assumed all T4CS· is bound.) 

FU = fluorescence increase per J..lM ofunbound T 4CS· (gradient of blank: titration). 

The binding dissociation constant is given by: 

(4.15) 

or 

K1=ellb (4.16) 

This can be written as: 

K1=(eO- b)(IO - b)/b (4.17) 

=> 
K1 = (b2 - (eO + 1°) b + eO 1°)/ b (4.18) 

This can be rearranged to give: 

(4.19) 
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Solving quadratically gives: 

b = «eo+ 1° + K.!) ±[ (eo+ 1° + Ki - 4eo 1°]112) / 2 (4.20) 

Equation (4.20) can be substituted into equation (4.14). 

A computer program was written by Dr. D.R. Worrall here in Loughborough to fit 

the plots shown in figures (4.25) and (4.27) according to equation (4.14). This was 

done where the parameters from equation (4.14) can be made variable or set. 

Data set no. 1 

The first set of binding data (figures 4.25 and 4.26) produced the following values: 

pu = 153 

pb = 373 

The program which resulted in the best fit and closest agreement with the calculated 

po and pb values, was obtained using a program which fitted all the parameters. This 

gave the following values: 

po =126 

eO= 0.83 

Pb=490 

K.!= 0.2 

Where the total number of binding sites (eO = 0.83 JlM). Since the actual 

concentration of mHSA used in the titration was 0.4 JlM then the number of binding 

sites per mHSA molecule is two, with a corresponding binding dissociation constant, 

K.!, of 0.2 JlM. 
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Data set no. 2 

The second set of binding data (figure 4.27) yielded the following values: 

FU =79 

Fb = 232 

Similarly the program which resulted in the best fit and closest agreement with the 

calculated FU and Fb values was obtained using a program which fixed F
U 

but varied 

the other parameters. The following values were obtained: 

FU =79 

eO= 4.43 

Fb = 237 

K.!= 0.2 

For the second titration the total number of binding sites: eO = 4.43 IlM, the actual 

concentration of mHSA used was 2.1 IlM, therefore the calculated number of binding 

sites per mHSA molecule is two with binding dissociation constants ofK.! of 0.2 IlM. 

These results can be compared with the fmdings ofRickwood and Barratt [5] who 

investigated the non-covalent binding of a spin analogue of T 4CS' to mHSA (see 

section 2.6) and reported a strong binding site with K. = 6.1 x 10
6 
Ml or 

K.! = 0.16 1lM, but report a number of additional sites with much lower binding 

constants. 
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4.5 FLASH PHOTOLYSIS STUDIES 

4.5.1 Excited State Photochemistry of T 4CS- in Solution 

The molar absorption coefficients of the anion of T.CS-H in various' alcoholic I 

buffer solvent compositions were found to be in the region of 9000 dm
3 

mort cm-! at the 

laser excitation wavelength of 354.7 run (see section 4.1.3). Therefore, a ground state 

concentration of approximately 70-100 f.lM is required to gain sufficient absorbance in 

order to perform laser flash photolysis experiments. 

T.CS- in 50% ethanolic aqueous solution was prepared, the ground state absorbance 

at the laser excitation wavelength was 0.70. Using a laser energy of 50 mJ/pulse, the 

transient absorption spectrum of a degassed solution at five time delays is shown in figure 

(4.28). 
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Figure (4.28) Transient absorption spectrum ofT,CS - in a degassed 50%ethanolic aqueous solution 
at five time delays folloWing the laser pulse. 
Delay times are (/) 1.3J1S. (2) 3.2J1S. (3) 7.0 JIS. (4) 14.6 JIS. (5) 45.3 JIS. 
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Following laser excitation, transient absorption is observed throughout the visible 

region; the spectrum appears to consist of two bands: the shorter wavelength band 

has Am.x. = 440 urn, the longer wavelength band has Am.x. = 650 run. There appears to be 

at least some residual absorption right across the spectrum - being far greatest between 

the wavelengths of 400 - 460 run. In addition, flash photolysis studies using identical 

experimental parameters performed on aerated solutions, produced the transient 

absorption spectrum shown in figure (4.29). The aerated transient absorption spectrum 

again shows residual absorption right across the spectrum, however, only the shorter 

wavelength band (Amox. = 440 run) is observed but with approximately a 50% reduced 

absorbance change and the long wavelength band (Am ... = 650 run) is almost completely 

gone. 
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Figure (4.29) Transient absorption spectrum of T,CS· in an aerated 50% ethanolic oqueous solution 
at five time delays following the laser pulse. 

Delay times are (1) J.3jJS. (2) 3.2ps. (3) 7.0 ps. (4) 14.6 ps. (5) 45.3 ps. 
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4.5.2 Analysis of the Long Wavelength Band (Amax,= 650 nm) 

Nanosecond flash photolysis was carried out on degassed 50% ethanolic aqueous 

solutions, using a laser energy of approximately 19 mJ/pulse. The resultant traces 

when analyzed at 650 nm, gave mixed first and second order kinetics - the second 

order component believed to arise from triplet-triplet annihilation. In order to reduce 

this second order component the laser energy was attenuated by means of sodium 

nitrite filters placed in front of the laser beam, The optimum laser energy for a good 

first order decay was found to be approximately 10 mJ/pulse; this however, resulted in 

a low signal to noise ratio - but was improved by recording many traces and averaging. 

The first order rate constant for the intramolecular deactivation of the excited T4CS' 

transient was found to be 1.2 x 105 
S·l corresponding to a lifetime of 8.3 fts. The 

decay is given in figure (4.30). 
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Figure (4.30) Decay andfitting of the T .cS' transient Signal analysed at 650 nm. 
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The experiment was repeated, only this time flash exciting an aerated solution. Fitting 

the decay by first order kinetics results in a rate constant of3.3 xl0
6 

S·I - corresponding 

to a lifetime of 0.3 JlS. 

The oxygen quenching rate constant is given in the equation: 

where: 

k = rate constant in the presence of O2 

k.i = rate constant in the absence of 02 

km = oxygen quenching rate constant 

[02] = oxygen concentration 

(4.21) 

Values for the rate constants obtained from the decay of T4CS· excited state, in the 

presence and absence of oxygen are: 

k = 3.3 x 106 S·I 

k.i= 1.2 x 105 S·I 

The oxygen concentrations in aerated solution are given by: 

[02] in water = 0.29 x 10.3 moll dm·3 [6] 

[02] in ethanol = 2.10 x 10.3 mol/dm·3 [6] 

The estimated oxygen concentration in an aerated 50% ethanolic aqueous solution 

(using a simple vlv ratio) = 0.61 x 10.3 moll dm·3• With these values the oxygen rate 

quenching constant, ko2, is calculated as 5.2 x 10
9 

dm
3 
mor

l 
S·I. 

It is well known that molecular oxygen is a strong quencher of triplet states, ranging 

from approximately 1 x 109 dm3 morl s·1, e.g. 2-methyl-I,4-napthoquinone in H20 [7] to 
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approximately 1 x 1010 dml morl s-I, e.g. indole in cyclohexane [8]- The value obtained 

(5.2 x 109 dml morl 
S-I ) lies in this range - strongly suggesting that in the transient 

absorption spectrum of degassed solutions, the long wavelength band 

("-rn". = 650 nm) is due to the excited triplet state of T4CS- and the shorter wavelength 

band ("-rnax. = 430 nm) appears to be a combination of both triplet state absorption and a 

much longer lived component whose lifetime is not quenched by molecular oxygen. This 

would explain why on these time-scales in aerated solutions the long wavelength band is 

lost and there is a reduction in absorption of the shorter wavelength band. 

Figure (4.31) shows the transient absorption spectrum at four time delays ofT4CS in a 

degassed 10% ethanolic aqueous solution. The ground state absorption at the laser 

excitation wavelength was 0.83, the laser energy was approximately 35 mJ/pulse. 
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Figure (4.31) Transient absorption spectrum ofT,CS - in a degassed lO%ethanolic aqueous solution 
at five time delays folloWing the laser pulse. 

Delay times are (1) I.3JlS. (2) 3.2JlS. (3) 7.0 JlS. (4) 14. 6 JlS. (5) 45.3 JlS. 

101 

700 



In addition, flash photolysis studies using identical experimental parameters performed on 

aerated solutions, produced the transient absorption spectrum shown in figure (4.32). 
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Figure (4.32) Transient absorption spectrum ofT,CS' in an aerated JO%ethanolic aqueous solution 
at five time delays folloWing the laser pulse. 

Delay times are (1) I.3JiS. (2) 3.2JiS. (3) 7.0 JiS. (4) 14.6 JiS. (5) 45.3 JiS. 

700 

When the alcohol content of the mixed solvent is reduced, the lifetime of the triplet state of 

T4CS' is reduced. Shown in figure (4.33) is the decay and first order fitting of the T4CS' 

triplet state in a degassed 10% ethanolic aqueous solution analysed at 650 run. The lifetime is 

approximately 3 IlS. In aerated solutions the lifetime of the triplet state was found to be 

quenched by molecular oxygen to approximately 0.5 lls. 
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Figure (4.33) Decay andfillingofthe T,CS' triplet state, analyzed at 650 nm in a degassed 10% 
ethanolic aqueous solution. 

Again using the equation: k = ki + k02 [02], the value ofko2 can be calculated using the 

following values: 

k = 2.0 X 106 S·I 

ki = 3.3 x 105 S·I 

Estimated [02] in 10% ethanolic aqueous solution using a simple v/v ratio = 

3.54 x 10.3 mol / dm·3 [6] 

This results in a value for ko2, of3.5 x 109 dm3 morl 
S·I. 
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4.5.3 Triplet - Triplet Energy Transfer 

Triplet-triplet energy transfer can occur when the relative energies of the lowest 

excited states of the donor and acceptor are as shown in figure (4.34). 
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Figure (4.34) Favourable arrangement of donor-acceptor energy levelsfor triplet-triplet energy 
transfer. 

Hence, energy transfer from the SI state of the donor to the SI and to the T 1 of the 

acceptor are energy and spin forbidden respectively and are inefficient processes 

compared to T 1 - T 1 transfer which is both energy and spin allowed for the situation in 

figure (4.34). Similarly, transfer from the T 1 state of the donor to the SI state of the 

acceptor will be highly inefficient since this process is both energy and spin forbidden. 

The energy transfer between T4CS' excited triplet state and an acceptor molecule (A) 

can be represented as: 

(4.22) 
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Rate constants for triplet-triplet energy transfer can be obtained from flash photolysis 

measurements by selectively exciting the donor in the presence of an acceptor and 

comparing the transient absorption spectrum of the mixture at suitable times after 

flashing with that of a flash excited solution of the donor alone. At low triplet 

concentrations of donor when there is no self-quenching of triplet states (i. e. no second 

order kinetics), the rate of decay of the triplet state will be equal to the sum of the 

rates of intramolecular and intermolecular deactivation processes as expressed by the 

equation: 

(4.23) 

where: k.i = the overall rate constant for intramolecular deactivation of the T 1 state 

kq = the rate constant for triplet-triplet energy transfer 

[Ql = the concentration of quencher 

[T 1] = the concentration of donor triplet 

The first order rate constant, k, for the decay of the triplet in presence of quencher for 

the above processes is given by the equation: 

(4.24) 

So a plot ofk versus [Ql should give a straight line of slope kq and intercept k.i. 
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Naphthalene as Quencher 

It was decided to see if naphthalene (ET = 254 kJ mor l 
) [9] whose triplet energy is 

lower than that calculated for T 4CS from phosphorescence measurements (section 

4.3.3) would quench the signal attributed to the triplet state of T4CS'. Naphthalene 

being a suitable acceptor molecule because its ground state shows no absorption at the 

laser excitation wavelength of 354.7 nm, therefore all the exciting radiation will be 

absorbed solely by the donor. A transient absorption spectrum of a degassed 50% 

propan-2-ol aqueous solution ofT4CS with naphthalene added (ISO 1lM) was recorded 

and is shown in figure (4.35). For comparison using identical experimental parameters 

the transient absorption spectrum ofT4CS' alone is shown in figure (4.36) at the same 

time delays. What is clear from examining the long wavelength band ('-x. 650 nm) in 

each spectrum, is that the triplet state ofT4CS' is being quenched by the naphthalene. 
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Figure (4.35) Transient absorption spectrum ofT.CS 'with naphthalene added (150 pM) to a 
degassed 50% propan,2,01 aqueous solution atfive time delays following the laser 

pulse. Delay times are (1) 1.4113. (2) 5.3113. (3) 7.7113. (4) 16.0113. (5) 39.0113. 
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Figure (4.36) Transient Absorption Spectrum ofT,CS' in a degassed 50% propan-2-ol aqueous 
solution at five time delays following the laser pulse. 
Delay times are (I) 1.4J1S. (2) 5.3J1S. (3) 7.7 JIS. (4) 16.0 JIS. (5) 39.0 JIS. 
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There is overlap between T .CS- and naphthalene transient absorption; naphthalene's 

triplet-triplet transient absorption is well documented as occurring in the region 400 -

430 nm of the spectrum [10]. This is well below the long wavelength band (A..n ... = 650 

nm) for T.eS·, and therefore this wavelength can be selected to analyse the T.CS· 

triplet-triplet absorption free from any naphthalene signal. 
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Experimental for Naphthalene Quenching 

Solutions of T 4CS in 50% propan-2-01 with various concentrations of naphthalene 

(14 - 412~M ) were prepared, the concentration of T4CS itself being kept constant. 

These solutions were degassed on the vacuum line to remove dissolved oxygen. Using 

approximately 10 mJ/pulse laser energy the decay of the T 4CS triplet in the various 

solutions was monitored at 650 nm. 

Biphenyl as Quencher 

Likewise biphenyl (ET =274 kJ mor i 
) [11] a compound whose triplet energy is 

close to, but higher than that calculated for T 4CS was selected. Biphenyl also shows no 

absorption at the laser excitation wavelength. 

Experimental for Biphenyl 

Solutions of T4CS in 50% propan-2-01 alone and with a concentration of 90~M 

biphenyl present was made up - the absorbances at the excitation wavelength were 

matched. The solutions were degassed and the decay of the triplet state in the presence 

and absence of biphenyl was monitored at 650 nm. 
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4.5.4 Quenching Results 

Naphthalene 

The traces fitted by first order kinetics gave the results shown in table (4.4). 

Concentration of Naphthalene / IlM Rate Constant k / S·1 • Lifetime / J.lS 

- 1.23 X 10' 8.1 

14 1.61 x 10' 6.2 

69 3.37 x IOs 3.0 

138 4.90 x 10' 2.0 

412 12.1 x 10' 0.9 

Table (4.4) Rate constants for the decay ofT4CS' with varying naphthalene concentration added. 

* An error of ± 10% is estimated for these measurements. 

A plot of rate constant (k) 'versus the naphthalene concentration is shown in figure 

(4.38). 
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Figure (4.36) Plot of rate constant (k) versus naphthalene concentration. 
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The gradient of the plot gives a value of2.60 x 109 dm3 mor! sol ± 10% for the rate 

constant of triplet-triplet energy transfer from T 4CS- to naphthalene. The rate for a 

collisional process cannot be greater than the rate at which the molecules diffuse 

through the solvent medium. Therefore, the upper limit for the rate constant will be 

equal to the rate constant for a diffusion controlled bimolecular process. An 

approximate value for this rate constant can be calculated from the Debye equation 

shown below: 

SRT 
k d'ff =--

I 31] 

where: R is the gas constant: 8.314 JK! mor! 

T is the temperature: 298 K 

11 is the solvent viscosity 

(4.25) 

11 was estimated by taking the average viscosity of H20 and propan-2-ol at 298 K 

Then: 

11 H20 = 0.8904 cp [12] 

11 Propan-2-ol = 1.988 cp [12] 

Average (11) = 1.44 cp ( 1 cp = 10-2 g sol cm-!) 

In this approximation the rate constant is independent of the identities of the 

reactants, and depends only on the temperature and the viscosity of the solvent. 

Applying these numbers to the Debye equation yields kIiff = 4.60 X 109 dm3 mor! sol for 

bimolecular diffusion in 50% propan-2-ol solution at 298 K. The efficiency of the 

energy transfer will depend on the proximity of the triplet state energy level of the 

donor to that of the acceptor. As the acceptor energy is lowered the energy transfer 

110 



efficiency is increased until the rate approaches the diffusion controlled rate [13]. The 

fact that the energies of the D*(T4CS") and A *(Np) are comparable «10 kJ mor l 

difference) means that it is not unreasonable to expect some back energy transfer from 

A *(Np) to D(T 4CS"). This would mean that the measured value of kq should be less 

than that estimated for koiff. which we do find: 

Biphenyl 

Analysis by first order kinetics revealed no change in the lifetime of the T4CS' triplet in 

the presence or absence of biphenyl. 

4.5.5 Discussion 

The flash photolysis experiments performed confirm that triplet-triplet energy transfer 

does take place between T 4CS' and naphthalene, therefore validating the assumption 

that the transient absorption that occurs with t-.. = 650 nm is indeed due to the excited 

triplet state ofT4CS·. The value of2.6 x 109 dm3 morl 
S·I is lower than that calculated 

for the maximum possible rate of bimolecular diffusion, koiff, of 4.60 x 109 dm3 morl 
{I. 

As was expected, no energy transfer occurs between T 4CS' and biphenyl, confirming 

that 254 kJ morl < Er T4CS' < 274 kJ mOrl. 

For unequivocal proof that the excited triplet state of T4CS' is quenched by 

naphthalene by the triplet-triplet energy transfer mechanism, the triplet-triplet 

absorption of naphthalene itself needs to be observed. The naphthalene triplet-triplet 

absorption is well documented to occur in the region of 400 - 430 nm of the spectrum, 

this however overlaps with the shorter wavelength band in the transient absorption 

spectrum of T4CS (t-.. = 430 nm), therefore in order to see the signal arising from the 

naphthalene triplet alone it is necessary to subtract any absorption arising from the 

transient absorption of T4CS. Degassed solutions of T4CS' alone, and with 150 !lM 

naphthalene added, were flashed under identical conditions using matching absorbances 

of 0.70 at the laser excitation wavelength. Analysis took place at 415 nm and a time-
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base of 400ns per point was used and after subtracting any absorption due to T 4CS-

absorption alone from the trace with naphthalene results in a signal from the 

naphthalene triplet alone, which is shown in figure (4.37). 
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Figure (4.37) Naphthalene decay trace, monitored at 415 nm using a 400 ns / point time-base. 
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Using a shorter time-base of 40 ns per point enables us to observe the rise in 

production of the naphthalene triplet and its subsequent decay, and this is shown in 

figure (4.38). 
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Figure (4.38) Rise and decay of naphthalene triplet, using a 40 ns I point time-base. 

Summary of Evidence for the Existence of the T4CS- Triplet State 

I. Phosphorescence measurements (see section 4.3.3). 

2. Oxygen strongly quenches the transient: ko2 = 5.2 x 109 dm3 mort s'! . 

3. At high laser energies decay by first and second order kinetics is observed. 

The second order component arising from triplet-triplet annihilation is reduced by 

cutting down the laser energy to give first order kinetics. 

4. Quenching by naphthalene (Er = 254 kJ mort) the triplet energy of which is lower 

than that of T 4CS' at a rate close to the diffusion controlled rate 

(kq = 2.6 x 109 dm3 mort s'!) and observing a rise and subsequent decay of the 

triplet quencher. 

5. No quenching observed by biphenyl (Er = 274 kJ mor!) the triplet state energy of 

which is greater than that of T 4CS'. 
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4.5.6 Radical anion and product absorption (Amax. = 425 nrn) 

Having identified the part of the transient absorption spectrum due to the excited 

triplet state ofT4CS', a closer examination of the longer lived species which absorbs in 

the shorter wavelength band ("-max. = 425 nm) the lifetime of which is not affected by 

molecular oxygen, was undertaken. This longer lived species is believed to be the 

radical anion T3CS·', which has been shown to be formed upon irradiation of T4CS' by 

homolytic cleavage of the 3 C-Cl bond to produce a free radical (see section 2.7). An 

appropriate time-base was chosen, long enough to miss out transient absorption due to 

the much shorter lived triplet state (-tT "" 8.0J.!s). T4CS' in 50% aqueous ethanolic 

solution, with an absorbance of 0.67 at the laser excitation wavelength was flashed 

using a laser energy of 27 mJ/pulse. Degassed and aerated spectra at four time delays 

are shown in figures (4.39) and (4.40). 
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Figure (4.39) Transient absorption spectrumJrom T,cS' in an aerated 50% ethanolic aqueous 
solution at/our time delays/ollowing the laser Pulse. 
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Figure (4.40) Transient absorption spectrum from T.cS' in degassed 50% ethanoUc aqueous 
solution atfour time delays following the laser pulse. 
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If this transient state is produced solely via the triplet state, then quenching of the 

triplet state by dissolved molecular oxygen which occurs in aerated solutions, 

(k02 = 5.2 X 109 dm3 morl S·I ).should prevent its formation. At first sight, comparison 

of the two spectra appear to exhibit little difference. However, if the individual traces 

taken from each spectrum are overlaid, they do show a difference in the amount of 

radical and product produced upon flashing. This is exemplified in figure (4.41), 

which shows decay traces from each spectrum analysed at 425 nm. 
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Figure (4.41) Kinetic traces analysed at 425 nm, comparing the traces obtainedfromflashing 
T,CS· in degassed and aerated 50% aqueous ethanol solution. 
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The fact that almost no fluorescence quenching was occuring between the degassed 

and aerated solutions showed that there was no quenching of the first excited singlet 

state. This indicates that at least some of the radical is being fonned via the triplet state. 

To determine how much the singlet state is a precursor in the production of the 

radical state, the effect of fluorescence quenching was investigated. It was found that 

pumping an already degassed 50% ethanolic aqueous solution with oxygen to 

approximately three atmospheres resulted in 10% fluorescence quenching. Upon flash 

photolysis, it was found that the radical and product formation was 76% ± 10% of that 

fonned in aerated solution. However, the ground state absorbances required for flash 

photolysis (typically 0.8) are much higher than the absorbances normally used in 

fluorescence measurements « O.1), and therefore may not yield accurate fluorescence 

quenching values - since self-absorption affects may effect the corresponding yields (see 

section 4.3.2). Using absorbances ofless than 0.1 at the laser excitation wavelength in 
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order to eliminate any inner-filter effects, showed no change in the amount of 

fluorescence quenching, showing that the oxygen quenching of the solutions prepared 

for the flash photolysis experiments are valid. 

To obtain an even more significant amount of quenching it was decided to use a 

higher concentration of ethanol - since the oxygen solubility is greater in ethanol 

compared with water. An 80% ethanolic aqueous stock solution of T, CS' was 

prepared, with an absorbance of 0.80 at 354.7 nm. Using this stock solution, one cell 

was degassed and then saturated with oxygen at a pressure of approximately three 

atmospheres, the other cell was left aerated. Saturating the degassed solution with 

oxygen at a high pressure had the desired effect - resulting in 50% quenching of 

fluorescence. 

Flash photolysis studies were then carried out on the two solutions, exciting at 354.7 

nm and monitoring the decays at 425 nm. The resultant traces obtained for the two 

solutions are shown in figure (4.42). 

0.07 

0.06 • 50% emission quenched solution • 
• • Aerated solution 

0.05 
• .. 

0.04 

• 
« 0.03 <l 

0.02 

0.01 

0.00 

0 50 100 150 200 250 

• Time l ~s 

Figure (4.42) Decay traces from flashing T,CS ' in an aerated 80% ethanolic aqueaus solution 
and in a degassed plus oxygen saturated (3 atm.) 80% ethanolic aqueous solution, 
analysed at 425 nlll. 
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The percentage decrease in the amount of radical and product produced is plotted on the 

same time axis in figure (4.43). The average percentage decrease was found to be 34% or 

66% of the signal found in aerated solutions. An error of ± 10% is estimated for these 

calculations. 
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Figure (4.43) Percentage quenching of radical trace per data point. 

Discussion of Results 

If the radical state is derived from both the singlet and triplet state in degassed 

solutions then: 

cl>R = cl>R (S) + cl>R (T) 
(4.26) 

And for aerated solutions: 
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~R02 = ~R 02(S) + ~R 02(T) (4.27) 

In degassed 50% alcoholic aqueous solutions the lifetime of the T4CS· triplet state is 

8.0 f.ls and in aerated solution the lifetime is reduced to 0.3 f.lS. This represents about 

96% quenching of the triplet state ofT4CS·. 

Therefore, we would expect ~R 02 (T) ~ 0 

so we can write: 

(4.28) 

Between aerated and degassed solutions of T 4CS· in 50% alcoholic aqueous 

solutions, no significant fluorescence quenching is observed, but there is a decrease 

in the amount of radical and product produced upon flash photolysis - the amount of 

radical and product detected in the aerated solution was found to be about 66% ± 7% 

of that detected in degassed solutions. Since there is no significant quenching of the 

excited singlet state, with these results it appears that 34% radical and product 

formation is formed via the excited triplet state, leaving 66% formed via the excited 

singlet state. This would mean the ratio of singlet:triplet contributing to the radical 

and product is approximately 2: 1. 

When oxygen is pumped in at approximately three atmospheres into 50% 

ethanolic aqueous solutions, the fluorescence is quenched by 10% when compared 

with aerated solutions. Flash photolysis of the solution containing three atmospheres 

of oxygen gives approximately 76% ± 8% of radical and product formation produced 

in aerated solutions, which equates to 50% of that found in degassed solutions. 

The contribution from the triplet state will be zero in both cases (see equation 5.4) 

but now we would expect the contribution to the radical state and product on the 

basis of 10% quenching of the fluorescence to be in the ratio of 1.8:1, singlet:triplet, 

from the original 2:1. This would equate to 1.8/3 x 100% = 60% of the original 

signal. When taking experimental error into account (± 10%) the values obtained are 

plausable. 
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On going to higher ethanol concentrations, that is 80% ethanolic aqueous solution 

and pumping oxygen in at three atmospheres, results in 50% fluorescence quenching. 

The resulting flash photolysis experiments produce 66% ± 7% radical and product 

absorption of that detected in aerated solutions, which equates to 43% of degassed. If 

the solvent change does not affect the ratio of 2: I then we would expect now to get 

approximately I: I singlet:triplet, equating to 1.0/3 x 100% = 33% of the original 

signal. This is lower than what we observe. 

But what we are dealing with now is a different solvent composition which has not 

had its photochemistry investigated, and we have found that the photochemical paths 

of T 4CS· following excitation is very dependant on the alcohol and water content. A 

possible explanation for these discrepancies is that ~R (S) arises from upper singlet 

states (S. *) and is not quenched by oxygen at least in the case of 50% quenched 

solution. This is not unreasonable since the C-CI bond could break in a single 

vibration in a higher singlet state (S. *) and then will be less likely to break from SI. 

Whatever the complications that arise due to solvent composition and oxygen 

concentration, what is not in dispute is the fact that the radical species and product 

originates both from the excited singlet and triplet state. Hilal also investigated the 

contribution of the triplet and singlet to product formation. He carried out continuous 

photolysis of 50% aqueous alcoholic solutions of tetrachlorosalicylanilide (PH = 6), 

using a 220 watt Hanovia medium pressure mercury lamp as a light source with 

filters to isolate the 365 nm line. Monitoring conductivity changes due to formation 

of cr ions, Hilal showed that oxygen was found to reduce the initial rate of chloride 

ion formation to about half that obtained in nitrogen-saturated solution. To confirm 

this using anthracene as a triplet energy acceptor, he found that both the excited 

singlet and triplet states of T 4CS are responsible for the photolysis, with a 

singlet:triplet ratio of 0.7:1. 
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4.5.7 Kinetics of the Radical Species 

A typical example of a trace analysed at 425 run produced from photolysis ofT4CS­

in an aerated 50% ethanolic aqueous solution with a ground state absorption of 0.7 at 

the laser excitation wavelength is shown in figure (4.44). The half-life of the radical 

species was found to be approximately 60 !!s. 
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Figure (4.44) Typical trace a/radical species, analysed at 425 nm. 

Product Absorption 

The residual absorption is present even when the longest workable time-base 

available to the JK laser system (approximately 10!!s I point) is used. This is strong 

evidence of product formation. To verify this, it was possible to observe the trace over 

a much greater time span, by using a flash gun as an excitation source, and operating 
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the trigger on the JK laser manually. A trace collected over 2.6 seconds is shown in 

figure (4.45). This clearly shows there is no decay, which is conclusive proof that a 

permanent product is being observed. This concurs with the laser induced degradation 

experiments shown in figures (4.15 - 4.18), which show the build of permanent 

product in the ground state absorption spectra following laser excitation. 
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Figure (4.45) Kinetic trace of the permanent product, analysed at 425 nm over 2.5 seconds. 
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4.5.8 Excited State Photochemistry of TBS- in Solution 

TBS' in 50% ethanolic aqueous solution was prepared, the ground state absorbance at 

the laser excitation wavelength of354.7 nm was 0.85. Using a laser energy 0[20 mJ I 

pulse, degassed and aerated transient absorption spectra were collected and are shown 

at five time delays in figures (4.46) and (4.47): 

0.020--.----------------------, 

( 1 ) 

0.015 

0.010 

0.005 

0.000 

_0.005...L-,--....--.....---,,---.---""T--.---.----,--....--.....--I 
500 400 420 440 460 480 

Wavelength I nm 

Figure (4.46) Transient absorption spectrum from TBS' in an aerated 50% ethanolic aqueous 
solution at five time delays following the laser pulse. 
Delay times are (1) 3.7ps. (2) 23.4ps. (3) 53.Ips. (4) 147ps. (5) 218 ps. 
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Figure (4.47) Transient absorption spectrum from TBS' in a degassed 50%ethanolic aqueous 
solution at five time delays following the laser pulse. 

Delay times are (1) 3.7ps. (2) 23.4ps. (3) 53.Ips. (4) 147 ps. (5) 218 ps. 

The above spectra show that A.m ... = 440 run for the early time delays, the longer 

time delays give A.max. = 410-420 run. This absorption is long lived and displays no 

sign of decay, even on the longest time-base used. As with T4CS' this can be 

attributed to product formation. Overlapping individual decay traces of the same 

wavelength obtained from the degassed and aerated spectra showed there to be no 

difference, i.e. the presence of oxygen has negligible effect, thereby ruling out the 

possibility that any of the transient absorption is due to excited triplet state formation 

_ a triplet state would be expected to be quenched by molecular oxygen on these time 

scales. Therefore, it would appear the transient absorption is due to radical 

formation, a typical decay is shown in figure (4.48) - the half-life of this radical 

species is found to be approximately 30 ~s. 
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Figure (4_48) Typical decay following photolysis ofTBS - analysed at 440 nm, showing radical 
decay (r '" 30 ps) and product absorption. 
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There is indirect evidence that the excited triplet state of TBS' is produced upon 

excitation from energy transfer experiments using naphthalene as a quencher (see 

section 4_5.10). An attempt to observe the TBS' triplet state using the HY laser 

system, which has a slightly shorter time resolution capability was carried out. 

TBS' in a degassed 50% ethanolic aqueous solution was prepared, using a laser 

energy of 13 mJ I pulse at the laser excitation wavelength of 354.7 nm and analysing at 

660 nm produced a transient whose resultant decay is shown in figure (4.49). 
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Figure (4.49) Transient decay ofTBS' in a degassed 50%ethanolic aqueous solution analysed at 

660nm. 

Fitting the data by first order kinetics gives a lifetime of approximately 40 ns. The 

same degassed solution was than pumped with oxygen at a pressure of approximately 

three atmospheres resulting in the loss of the transient absorption signal - strong 

evidence that the observed signal is due to the excited triplet state ofTBS". 
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4.5.9 Singlet - Triplet Intersystem Crossing Quantum Yields 

The intersystem crossing quantum yield, (~T)' was measured for T4CS' in 50% and 

10% alcoholic aqueous solutions. Benzophenone is well documented to have a 

intersystem crossing quantum yield of near unity [14] and was therefore used as a 

standard for these experiments. The triplet quantum yield was measured by 

sensitisation of naphthalene by both T4CS' and benzophenone, and comparing the two. 

Excitation at 354.7 nm of a solution containing a mixture of benzophenone and 

naphthalene must result in the initial formation of the benzophenone SI state only, since 

insufficient energy is provided in a 354.7 nm photon to excite the naphthalene SI state. 

The initially formed benzophenone SI state undergoes intersystem crossing to the T I 

state, naphthalene having a triplet state lower in energy than benzophenone can be 

sensitised by triplet-triplet energy transfer from the benzophenone excited triplet state. 

If the concentration of naphthalene molecules is high (ca. 0.1 mol dm·3 
), all photo 

induced triplet states of benzophenone will be quenched instantaneously on the time 

scales of these experiments. The resultant decay of the naphthalene triplet state can 

then be monitored and a value for !1An obtained from the decay (extrapolated to zero 

time after the laser pulse), this value will represent a quantum yield of one. Likewise, 

photoinduced T4CS' triplet states have been shown to be quenched by naphthalene by 

triplet-triplet energy transfer see (see section 4.5.3), again a value for !1An can be 

determined, and the two I!.An values compared. A reaction scheme depicting these two 

processes is shown in figure (4.50). 
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Figure (4.50) Reaction scheme/or the two systems under study after excitation. 

Using an aqueous solvent can provide solubility problems when trying to dissolve 

naphthalene, despite this it was possible to make up to a 0.05 M solution of naphthalene 

in a 50% alcoholic aqueous solution. This was achieved by first dissolving the 

naphthalene in the alcoho~ and then adding the 0.1 M potassium phosphate buffer. A 

concentration of 0.05 M is sufficient to intercept all photo-induced triplet states of 

T4CS·. 
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Ideally in this experiment the same solvent system for both systems would be 

preferable. However, a different solvent system is required for the naphthalene / 

benzophenone system, this is because carbonyl compounds with a (n,1t ') triplet state 

abstract H' from donor molecules efficiently. The radical-like structure of the (n,1t ') 

triplet states are much more able to abstract H' from donor molecules. The primary 

products from H' abstraction by a carbonyl compound are ketyl radicals (R2'C-OH) and 

the radical of the hydrogen donor molecule. So if other photochemical reactions occur, 

between the benzophenone triplet and solvent before interception by the naphthalene 

occurs, the resultant ~T value for naphthalene will be less then unity. For this reason it 

is not recommended to use an alcoholic solvent for the standard determinations since 

the yield will not be known exactly and may well be less than unity. The solvent chosen 

for the benzophenone / naphthalene system was acetonitrile. 

Since two different solvent mediums are to be used it is essential to make sure there 

are no significant solvent shifts in the recorded sensitised naphthalene triplet-triplet 

absorption spectra between the two solvent systems. Therefore transient absorption 

spectra of naphthalene / benzophenone in acetonitrile and naphthalene / T4CS' in 50% 

alcoholic aqueous solution were recorded. The resultant spectra are shown in figure 

(4.51), which shows the characteristic sharp absorption bands of the naphthalene triplet 

(Am•x. = 395 nm and 415 nm) with no spectral shift between the two solvent systems, 

therefore assuming that the molar absorption coefficient (eT) for both solvent systems 

will be approximately the same. 
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Figure (4.51) Transient absorption spectra of sensitised naphthalene from the two solvent systems 
under study. 

In the absence of oxygen, the change of absorbance at 390 nrn (Mo) due to the 

formation of triplet naphthalene as a function of laser intensity is monitored. The laser 

intensity was attenuated by means of sodium nitrite filters of known transmittance at 

the laser excitation wavelength of354.7 nrn. 

Solutions of both samples were optically matched at the laser excitation wavelength 

-to ensure equal number of photons are absorbed by each sample. Typical aborbances 

being approximately 0.8 at 354.7 nrn. The triplet quantum yield (~T) for T4CS' can be 

determined using the equation (4.29): 

<l> 
_ slope 1',. es-

T-
slopeBz 

(4.29) 

where the first term is the ratio of the slopes of M 390 
nm (extrapolated to zero time 

after laser pulse) as a function of laser intensity for the unknown (T 4CS,) and 
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benzophenone (Bz) respectively. The second term in the equation, accounts for any 

difference in absorbance at the laser excitation wavelength of 354.7 run. A plot of the 

calculated values of "'Ao measured at 390 run versus laser energy gave the plots shown 

in figure (4.52). An error of ± 10% is estimated for each plot. 
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Figure (4.52) A plot of LlA390nm as afonction of laser intensity with benzophenone and T,CS· as 
sensitisers together with the Best Straight Line Fit to the data. 
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Linear regression analysis was performed using the two plots, and this yielded 

slopes of 0.146 ± 0.15 and 0.067 ± 0.07 for the benzophenone , naphthalene and 

T4CS·' naphthalene systems respectively. Applying these to equation (4.29) results in 

a value 0.46 ± 0.09 for the triplet yield (~T) of T4CS· in 50% alcoholic aqueous 

solution. 

Calculation of the triplet quantum yield of T 4CS- in a 10% alcoholic aqueous 

solution cannot be as easily achieved using the same method, because it is not possible 

to make up a high enough concentration of naphthalene to intercept all the photo­

induced T 4CS· triplets. 
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This is due to:' 

1. Insolubility of naphthalene in water - which is now 90% by volume. 

2. A higher rate constant of the T 4CS- triplet state decay in 10% alcoholic 

('t '" 3Jls) solutions compared with 50% alcoholic ('t '" 8Jls) solutions. 

However, assuming that the molar absorption coefficients in 10% and 50% alcoholic 

aqueous mixtures are approximately the same, than the quantum yield in a 10% 

solution can simply be determined by comparing the relative changes in absorbance at 

the Amax. of the transient absorption spectrum for each optically matched sample. The 

results shown in table (4.4) yield a value of 0.36 ± 0.07 for the triplet yield ($r) of 

T4CS- in a 10% alcoholic aqueous solution. 

Solvent * Moat $r 

Amax. 

50% propan-2-o1 4.24 0.46 ± 0.09 

10% propan-2-ol 2.80 0.36± 0.07 

Table (4.4) Triplet yield values for T,CS' in 10% and 50% propan-2-ol aqueous solutions. 

* Direct comparison ofT4CS- in propan-2-ol aqueous solutions with T4CS- in 

ethanolic aqueous solutions did not reveal any difference in the corresponding triplet 

yield values. 

4.5.10 Triplet State Molar Absorption Coefficient ofT4CS-

The molar absorption coefficient of triplet T4CS- in 50% alcoholic aqueous 

solution was measured in a degassed solution relative to that of the benzophenone (Bz) 
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triplet at 525 run (I: = 7220 I mort cm-!) [15]. The change in absorbance at the A.max. of 

the transient absorption for each optically matched sample (absorbance approximately 

0.75 at the laser excitation wavelength) was recorded. Results are shown in table (4.5). 

Compound ~T Amax T-T / run 1:(A..n.x) 

dm3 mor1cm-1 

T4CS- in 50% propan-2-01 0.46 660 6980* 

Benzophenone 1 525 7220 

• An error of ± 10% is estimated. 

Table (4.5) Triplet molar absorption coefficient ofT,CS - in 50% alcoholic aqueous solution. 

4.5.11 Singlet-Triplet Intersystem Crossing Quantum Yield for TBS-

The lifetime of the excited triplet state of TBS- in a degassed 50% ethanolic aqueous 

solution was found to be approximately 40 ns (see section 4.5.7), this is a much 

shorter lived transient species than the corresponding T 4CS- triplet state (lifetime '" 

8f.ls). The maximum concentration of naphthalene obtainable in 50% alcoholic 

aqueous solution is ca 0.05M - which may not be a high enough concentration of the 

sensitiser to intercept all the TBS- triplet states formed. If this is the case then the 

calculated ~ value will result in a triplet quantum yield of TBS- less than its intrinsic 

yield. However, a minimum value for its triplet yield can be obtained, and this was 

found to be 0.3. 
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4.6 Excited State Photochemistry ofT4CS· and TBS·with the 
addition of monomer Human Serum Albumin (mHSA) 

4.6.1 Addition of mHSA to T 4CS· 

mHSA was added to solutions of T4CS· in O.lM potassium phosphate buffer solution 

(PH = 7.4). The concentration of ethanol never exceeded 10% (for preparation and 

calculation of the concentration ofmHSA used see section 3.6.1). 

The ground state absorption spectrum of mHSA in buffer solution is displayed in 

figure (4.53), and shows negligible absorption at the laser excitation wavelength of 

354.7nm. 
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Figure (4.53) Ground state absorption spectrum of human serum albumin (500 pM) 
in 0.1 M potassium phosphate buffer, pH = 7.4. 
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The band with the peak at 279 run, is due to the aromatic residues, tyrosine and 

tryptophan [16]. 
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Flash photolysis studies were carried out on the first fractions collected containing the 

conjugate. The molar ratio ofmHSA:T4CS· was normally greater than 1:\ respectively. 

For flash photolysis experiments the absorbances of the solutions at the laser excitation 

wavelength of 354.7 nm were typically between 0.50 and 0.80, with laser energies 

between 18 and 40 mJ I pulse. 

Figure (4.54) shows a typical transient absorption spectrum at five time delays of an 

aerated solution of mHSA I T4CS· in 10% aqueous ethanolic solution. In this particular 

experiment using an absorption of 0.7 at the laser excitation wavelength, with a laser 

energy of 19 mJ I pulse. 
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Figure (4.54) Transient absorption spectrum of T,CS - with mHSA in an aerated 10% aqueous 
ethanolic solution at five time delays following the laser pulse. 
Delay times are (1) J.Ops. (2) 3.Ips. (3) 6.7ps. (4) I2.9ps. (5) 38.7 ps. 

135 



The same stock was purged with nitrogen gas to remove the dissolved oxygen 

content. The resultant transient absorption spectrum again shown at five time delays is 

given in figure (4.55). 
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Figure (4.55) Transient absorption spectrum ofT,CS . with mHSA in a degassed 10% aqueous 
ethanolic solution at five time delays following the laser pulse. 
Delay times are (1) 5.3 ps. (2) 12.0 ps. (3) 22.0 ps. (4) 51.0 ps. (5) /43.0 ps. 

The two spectra show the same structure, and appear to exhibit one transient 

species. The only difference being that the lifetime of the transient has increased upon 

degassing. This is very strong evidence that the same transient species is responsible 

for the entire transient absorption spectrum, as the quenching by oxygen appears to be 

very similar throughout. This can be exemplified by overlapping the transient decays 

obtained from the spectrum shown in figure (4.54) which were analysed at 430 nm and 

590 nm. These two wavelengths displayed in figure (4.56) were chosen because their 

/),~ values are almost identical. 
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Figure (4.56) Transienc absorption decays ofT,CS ' with mHSA in an aerated 10% aqueous 
ethanolic solulion, analysed at 430 nm and 590 nm. 
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Analysis of the decay traces titted first order kinetics. Typically lifetimes for aerated 

solutions were found to be between 6 and 8 I-IS. Upon nitrogen purging the lifetime was 

found to increase to between 20 and 22 I-Is. Furthermore, pumping oxygen into the 

system under study quenched the lifetime of the transient down to between 2 and 3 I-IS. 

This degree of quenching is in accord with the transient observed being that of the 

triplet state ofT4CS·. 

Using these lifetimes a value can be obtained for the oxygen rate quenching constant, 

k02 . This was calculated to be between 1.6-3.3 x 108 dm) mor ' s· '. If we compare this 

value with the value obtained in mHSA free solutions of 3.5 x 109 dm) mor' s·, (see 

section 4.5.2), we see that the triplet state upon binding to mHSA is protected from 

molecular oxygen at least ten fold. 
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Having identified the transient as being that of the triplet state ofT,CS' when rnHSA 

is added, a comparative look at the transient spectra obtained from the same stock 

solution of T,CS' with and without the presence of rnHSA using identical experimental 

parameters was examined. 

An absorption of 0.8 at the laser excitation wavelength and a laser energy of 36 mJ/ 

pulse was used. Using identical time delays figure (4.57) shows the transient absorption 

spectrum of an aerated solution of T,CS' with rnHSA added, and figure (4.58) shows 

the spectrum in rnHSA free solution, i.e. T4CS' alone 
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Figure (4.57) Transient absorption spectrum ofT,CS' with mHSA in on aerated 10% aqueous 
alcoholic solution at five time delays following the laser pulse. 
Delay times are (I) Ups. (2) 3. Jps. (3) 6.4ps. (4) l2.5ps. (5) 45.7 ps. 
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Figure (4.58) Transient absorption spectrum of T,CS - in an aerated 10% aqueous alcoholic 

solution at five time delays following the laser pulse. 

Delay times are (I) 1.IJ1S. (2) 3. IJIS. (3) 6.4J1S. (4) 12.5W (5) 45.7 JIS. 

The kinetic traces analysed at 430 run obtained from each spectrum are shown in 

figure (4.59). When mHSA is added to T.CS- solution the kinetic trace is clearly 

altered. The transient absorption assigned to being that of the radical anion of T)CS- in 

section 4.5.7 is clearly absent and what remains is the triplet state and reduced residual 

absorption assigned as a product of photolysis. This loss of the radical signal and 

reduction in product will be discussed in chapter 5. 
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Figure (4.59) Kinetic traces obtained from flash photolysis ofT,CS - alone and when mHSA is 

added, analysed at 430 nm. 

4.6.2 Laser Induced Degradation of T 4CS- / mHSA solutions 

250 

As with solutions of T4CS- (section 4.2), the degradation when mHSA is present in 

aerated solution was recorded by taking the ground state spectrum after flashing a 

comparable number of times (100 laser shots) using a laser energy of approximately 24 

mJ/pulse. The resultant spectrum is shown in figure (4.60). 

140 



3.0 ,-----------------------, 

2.5 

2.0 

A 1.0 

0.5 

T,CS· with mHSA before flashing 

-- T,CS· with mHSA after flashing 

0.0 I-----------------===~-__l 

250 300 350 

Wavelength I nm 

400 

Figure (4.60) Ground state absorption spectra ofT,CS · with mHSA before and after flash 
photolysis. 
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The amount of degradation and product formation is greatly reduced when compared to 

solutions ofT,CS· alone (see figures 4.15 and 4.16), this will be discussed in chapter 5. 

4.6.3 Addition of Bovine Serum Albumin (BSA) to solutions of T4CS· 

Similarly BSA was added to solutions containing T,CS·. The mole ratio of 

BSA:T,CS· being greater than I: I. Using an absorbance at the laser excitation 

wavelength of 354.7 nm of 0.80 and a laser energy of 30 mJ/pulse the transient 

absorption spectrum obtained from flash photolysis of an aerated solution is shown at 

five time delays in figure (4.6 1). 
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Figure (4.61) Transient absorption spectrum o/T,CS' with BSA added in an aerated 10% aqueous 
alcoholic solution at five time delays/ollowing the laser pulse. 

Delay times are (1) 3.3J.1S. (2) 10.0 J.IS. (3)24.0 J.IS. (4) 51.3J.1S. (5) 130 J.IS. 

The observed transient absorption spectrum mirrors that when mHSA is added, i.e. 

displaying the two bands with A.m" . = 440 nm and 650 nm. However, there is a 

significant difference in the measured lifetimes, when compared to when mHSA is 

added. Analysis by first order kinetics on the aerated solution results in a lifetime of 

approximately 40~s. Upon purging with nitrogen the lifetime increased to 

approximately 80~s. These values result in an oxygen rate constant, kQ2, of 3.2 x 107 

dm3 mor' s". This is at least five times less than the value obtained for the addition of 

mHSA (ko2 1.6 - 3.3 x 108 dm3 mor' s" ). 
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4.6.4 Addition of mHSA to TBS-

TBS- in a 10% aqueous ethanolic solut ion was prepared. The absorbance at the laser 

excitation wavelength was approximately 0.7. A so lution of TBS- was flashed and 

analyzed at 430 run. The same solution but with mHSA added (molar ratio of 

mHSA:TBS > I: I) was prepared and flashed using exactly the same experimental 

conditions, again the transient was monito red at 430 run. The resultant traces are 

shown below in figure (4.62). 
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Figure (4.62) Decay traces of TBS ' with and without mHSA, analysed at 430 /1/11 . 

As can be seen the addition of mHSA clearly results in the loss of any transient 

signal. Other wavelengths were monito red, these too revealed no transient absorption. 
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4.7 Singlet Oxygen Formation Quantum Yield Determinations 

It is known that many phototoxic compounds react upon irradiation producing singlet 

oxygen, which consequently can produce cellular damage such as oxidation of amino -

acid residues. Kochevar and Harber [17] reported that in aerated samples of T4CS· 

with HSA, upon irradiation there was a 15% reduction in the histidine content of the 

HSA, however analysis in the absence of oxygen revealed no difference in the 

histidine content when compared with solutions of HSA alone. They suggest that 

T 4CS· is sensitising the photooxidation of histidine. Therefore, it was decided to see if 

T4CS· is capable of producing singlet oxygen (l,:lg (02)) which may lead to phototoxic 

action. 

Details of singlet oxygen production, lifetimes in various solvents and quenching 

mechanisms are given in section (1.1.12), with details of the apparatus used for singlet 

oxygen phosphorescence detection given in section (3.4). 

Preliminary experiments utilising D20 as a solvent, after first dissolving the 

salicylanilides in small amounts of ethanol (5% by volume) for solubility purposes, 

indicated that upon excitation with 354.7 nm light, solutions containing T4CS· and 

TBS· sensitise the production of singlet oxygen, albeit, in small yields. To verify that 

the observed signal is actually singlet oxygen phosphorescence and not caused by any 

apparatus artefact - such as noise or detector overloading, the aforementioned solutions 

were purged with nitrogen gas in order to remove the dissolved oxygen. This clearly 

resulted in the loss of the phosphorescence signal • showing that the observed signal 

was due to singlet oxygen phosphorescence. Therefore, having established that the 

formation of singlet oxygen is sensitised by these compounds, the next step was to 

determine their quantum yields, ~~. This can be achieved by comparing the 

phosphorescence intensity sensitised from T4CS· with the phosphorescence intensity 

produced using an appropriate standard. The standard selected was benzophenone in 

benzene solution, for which the quantum yield of singlet oxygen production, ~~, is 

reported to be 0.36 [18]. 

The quantum yield of singlet oxygen production (~~) can thus be calculated from 

equation (4.30). 
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(4.30) 

where the slopes are obtained from plots of lOA versus laser intensity - lOA is the 

singlet oxygen luminescence intensity extrapolated to zero time following the laser 

pulse. The second term in the equation corrects for any differences in ground state 

absorption, n and no are the index of refraction of the solvent containing the unknoWn 

and standard respectively, kr BZ/kr D20 corrects for the variation in the radiative rate 

constants between the two solvents and ~A (Bz) is the quantum yield of singlet oxygen 

production sensitised from benzophenone. 

where: 

n = 1.34 and no = 1.498 [12] 

~A (Bz) = 0.36 

and kr BZIkr D20 = 5.0 [19] 

Experimental 

For the luminescence data collection, the solutions were contained in I cm x 1 cm 

quartz cuvettes with the singlet oxygen luminescence detector being aligned orthogonal 

to the direction of the laser beam. 

T 4CS· and TBS· were prepared in a solution containing a concentration of D20 of 

(Ca 95%), benzophenone was prepared in benzene. The absorbances of the solutions 

were optically matched at the laser excitation wavelength of 354.7 nm to ensure equal 

number of photons are absorbed by each sample, typically absorbances being 0.60. 

In the presence of oxygen (all samples were aerated), the solutions were excited 

using varying laser energies - this was achieved by attenuating the laser intensity by 

placing sodium nitrite filters in front of the laser beam. 
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Results 

The singlet oxygen luminescence decay traces that were collected were analysed at 

1270 run by fitting with 1st order kinetics, and extrapolation to zero time after the laser 

pulse yields a value for lOA. Shown in figure (4.63) is a plot of lOA as a function of laser 

intensity for the standard benzophenone, the data are fitted according to linear 

regression best line fit. 
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Figure (4.63) Plot off A versus laser intensity for benzophenone in benzene. 

An error of ± 10% is estimated for these measurements. 

The best line fit was only performed at sufficiently low laser intensities to ensure that 

the plots of lOA as a function of laser intensity were linear - the plot yielded a slope of 
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1.52 ± 1.5. Likewise, the plot acquired from analysing the data obtained with T4CS' is 

shown in figure (4.64), linear regression analysis on this yielded a value of 

0.28 ± 0.028. 

14 

12 

10 

of! 8 
« .... 
~ 

0_ 6 

4 

2 

0 
5 10 15 20 25 30 35 

% laser intensity 

Figure (4.64) Plot ofI'. versus laser intensity for T,CS' in 95 %D]O. 

An error of± 10% is estimated for these measurements. 

Using these values, the quantum yield of photosensitised singlet oxygen formation 

(<1>,0 from T4CS·'was found using equation (4.30) to be 0.23 ± 0.05. 

The sensitised singlet oxygen quantum yield from TBS· was simiIarly investigated. 

The yield was found to be extremely small, thereby making accurate analysis difficult, 

however a value of approximately 0.06 was obtained for <1>4' Preliminary experiments 

with the addition of mHSA failed to produce any singlet oxygen signal. 
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4.8 I-Hydroxypyridine-2-thione (Omadine - Sodium Salt) 

Omadine (pyrithione) is a known photoallergen [20]. It has been shown to bind 

photo chemically to HSA but unlike T4CS· exhibits no specificity on binding [211· 

Omadine is soluble in water, its ground state absorption spectrum in this solvent is 

shown in figure (4.65). 
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Figure (4.65) Ground state absorption spectrum of omadine in water [I 00 pM] 

The laser excitation wavelength of 354.7 nm occurs within the long wavelength 

absorption band, and so was used as the excitation source. A solution was prepared 

with an absorbance of approximately 0.8 at 354.7 nm. Using a laser energy of 

19rnJ I pulse, a transient absorption spectrum was collected using the shortest 

timebase available (5ns I point) to the JK laser system, the resultant trace is shown in 

figure (4.66). 
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Figure (4.66) Transient absorption spectrum of omadine in water at four time delays 
following the laser pulse. 

Delay times are (1) 90 ns (2) 130 ns (3) 200 ns (4) 700 ns 

650 

The spectrum appears to decay uniformly at the same rate, which is verified by 

kinetic analysis of individual wavelengths which give a lifetime of approximately 90 ns 

when fitted by 1 st order kinetics. Upon degassing, the transient lifetime is found to 

increase to 115 ns. From these values it is possible to calculate the oxygen quenching 

rate constant, k02, is found using: k = k.i + ko2 [02] 

where: 

k= 1.1 X 107 sol 

k.i = 8.7 X 106 sol . 

[02] = 0.29 x 10-3 moll dm-3 in water [6] 

Giving a value of 8 x 109 dm3 mort sol for the oxygen quenching rate constant, ko2, 

this value is consistent with the quenching of triplet states. If this is the excited triplet 

state of omadine, then purging the solution with oxygen should further quench the 
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lifetime, and indeed it is found to be quenched below 60 ns. Unlike the fmdings with 

the triplet state ofT.CS·, the addition of excess HSA had no measurable effect on the 

transient absorption or lifetimes. 

Ornadine was excited at 355 nm and other wavelengths where it absorbs to see if any 

flourescence occurs, but no emission was observed. 

4.9 Rose Bengal 

Rose bengal has also been shown to bind to HSA, although not a photoallergen it 

can be phototoxic. It reacts upon irradiation producing singlet oxygen, this very 

powerful oxidant can result in cellular damage such as oxidation of amino acid 

residues and unsaturated lipids, also cross-linking of membrane proteins has been 

shown to occur [22]. 

Rose bengal absorbs in the visible region of the spectrum (A.max = 549 nm). The 

fundamental wavelength (1064 nm) of the JK laser can be doubled to produce the 

532 nm harmonic (see section 3.3). This wavelength was the excitation source used to 

investigate the excited states of rose bengal and their reaction with HSA. 

A solution with an absorption of 0.8 at the laser excitation wavelength was flashed 

with a laser energy of 63mJ / pulse, transient absorption spectra of both degassed and 

aerated solutions were collected. 

Values for the rate constants obtained from the decay of the rose bengal triplet state 

in the presence and absence of oxygen were: 

k = 4 x 105 S·I 

k.I = 1.3 X 104 
S·I 

The oxygen concentration in water is given by: 

[02] in water = 0.29 x 10.3 mol / dm·3 [6] 
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This gives a value of 1.3 x 109 dm3 mOrl 
S·I for the oxygen quenching rate constant, 

k02. This agrees within experimental error (25 %) with the literature value of 

9.8 x 108 dm3 morl S·I obtained in H20 (pH = 7.2) [23l. Solutions of rose bengal with 

mHSA added to make a molar ratio of 0.9: 1 respectively were flashed under identical 

conditions. Analysing at 600 nm the kinetic traces of aerated and nitrogen purged 

solutions by first order kinetics gave lifetimes of 32 and 120 IlS respectively. The 

oxygen quenching rate constant, k02, is found to be 8.0 X 107 dm
3 
mor

l 
S·I. This value 

is 17 fold less than that obtained in protein free solutions, indicating that the 

photochemical interaction of rose bengal with protein results in strong protection of 

the triplet state from molecular oxygen, similar to the findings with the T4CS' triplet 

state. 
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5.1 T4CS' in alcoholic aqueous solution 

5.1.1 T4CS' in 50% alcoholic aqueous solution 

The value of the pKa for the equilibrium between the ionised and unionised forms 

ofT4CS-H has been found to be 6.1 in the same solvent composition [1] and 5.6 in 

methanol [2]. The molar absorption coefficient at 360 nm (maximum of the ionised 

form) was found to be 9370 dm3 morl cm·l• 

Using two standards the value measured for the fluorescence quantum yield, 4\lF of the 

ionised form ofT4CS' in 50% alcoholic aqueous solutions was found to be 0.5 ± 0.05 

with A.max. = 438 nm. The fluorescence intensity is the same within experimental error 

in the presence and absence of air. The half·life of the singlet state of T4CS' in 

ethanol measured using single photon counting techniques is 2.3 ns [1]. Rate 

constants for singlet state quenching by oxygen ko2, are found to be typically between 

5 x 109 and 3 x 1010 dm3 morl 
51, examples include indole ~H20 

(6.5 x 109 dm3 morl s,l) [3] . and anthracene in ethanol (2.5 x 1010 dm3 morl Si) [4]. 

If the lifetime of the singlet state of T4CS' in 50% alcoholic aqueous degassed 

solutions is similar to that found in ethanol i.e. - 5 ns or k.! - 2 xI08 s'l, then using an 

upper value for km on x 1010 dm3 morl 
Si and applying these values to 

k = k.! + ko2[02] where [02] = 0.6 x 10'3 (see section 4.5.2) gives k = 4xl08 S,I or 

4.6 ns. This is equivalent to 8% quenching and fluorescence quenching of this 

magnitude would be detectable. However, if km were < 1 x 109 S,I or the singlet state 

lifetime were Ins or less, fluorescence quenching will be lower than 2% which is 

within experimental error. 

These calculations suggest that in 50% ethanolic aqueous solutions the life-time of 

T4CS' maybe less than that found in neat ethanol and this is borne out in fluorescence 

studies which show a decrease in fluorescence yields as the water content is increased 

(section 4.3.2). The phosphorescence band ofT4CS' in ethanol at 77K peaks between 

458 and 465 nm, which corresponded to a first triplet state energy of between 

258 - 261 kJ morl. 
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Upon flash photolysis the excited triplet state was shown to absorb with 

Amax. = 650 run, and was found to have a lifetime of approximately 8 fls in degassed 

solutions. In aerated solutions, the triplet state was quenched by molecular oxygen, 

reducing the lifetime to approximately 0.3 fls - yielding an oxygen rate quenching 

constant, k02, of 5.2 x 109 dm3 morl 
S·I, which is in the range for oxygen quenching 

. of most triplet states. 

Triplet-triplet energy transfer experiments using naphthalene as an acceptor molecule 

(ET = 254 kJ morl ) were found to quench the triplet state ofT4CS·, with a quenching 

constant, kq, of2.6 x 109 dm3 morl S·I. This is not quite the diffusion controlled rate, 

i.e., lower than the maximum possible rate of bimolecular diffusion, kdiff, estimated at 

4.60 x 109 dm3 morl S·I. The rise and decay of the sensitised naphthalene triplet­

triplet absorption was observed confirming that triplet-triplet energy transfer was 

taking place. As expected no energy transfer occurs between T4CS· and biphenyl 

(ET = 274 kJ morl ), the triplet state energy of which is higher than that of T4CS· 

confirming that 254 kJ morl < ET T4CS· < 274 kJ mOrl. 

Triplet yield, ~T, determination was performed by sensitising naphthalene with both 

T4CS· and the standard benzophenone Comparing their relative Mo values 

following laser excitation resulted in a value for ~T of 0.47 ± 0.09. According to the 

second law of photochemistry by Stark and Einstein, the absorption of light by a 

molecule is a one-quantum process, so that the sum of primary process quantum 

yields (~) must be unity. That is ~F + ~ISC + ~R (S) + ~IC = 1, where ~R (S) represents 

photochemical reaction from excited singlet states and ~IC represents internal 

conversion. Using the aforementioned values for ~T and ~F leaves 

~R (S) + ~IC = 0.03 ± 0.14 for T4CS· in 50% ethanolic aqueous solution. 

5.1.2 T 4CS· in 10% alcoholic aqueous solution 

Upon using a smaller concentration of alcohol, that is 10% by volume (maximum 

alcohol concentration when mHSA was added), the molar absorption coefficient at 

358 run (maximum of the ionised band) was found to be 8810 dm
3 
mor

l 
cm·

l
. 
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The fluorescence quantum yield, <l>F, was found to be 0.27 ± 0.03. Upon flash 

photolysis the excited triplet state was shown to absorb with "max = 630 run, and was 

found to have a lifetime in degassed solutions of approximately 3 !-IS and in aerated 

solutions this is quenched down to 0.5 !-IS. The value of, k02, in this solvent was 

estimated as 3.5 x 109 dm3 morl S·I. 

The triplet yield was found by assuming that the molar absorption coefficient in 

50% and 10% aqueous ethanolic solution are approximately the same, and comparing 

their relative Mo at their respective "max. - the triplet yield was found to be 

0.36 ± 0.Q7. This leaves ~R (S) + ~IC = 0.37 ± 0.1 for T4CS' in 10% ethanolic 

aqueous solution. 

Even when taking experimental error into account, it is clear that in solutions of 

T 4CS' with a higher concentration of water, either the rate constant for the 

photochemical reaction increases or the non-radiative process (internal conversion) 

competes much more efficiently. 

In various alcoholic aqueous compositions T4CS' shows negligible solvent shifts in 

absorption and fluorescence maxima, thus the ilE (S-n values for T4CS' in all 

alcoholic aqueous solutions was found to be approximately 42 - 45 kJmorI. This 

small energy value for the singlet - triplet splitting suggest (n, n*) states. 

5.2 Degradation of T 4CS' in alcoholic aqueous solutions 

The ground state degradation experiments carried out on T4CS' in both 50% and 

10% ethanolic aqueous solutions do show that there is product fonnation. A long tail 

tapering from 400 to 900+ run is observed in the ground state absorption spectrum 

following laser excitation. Although no attempt was made in this thesis to quantify 

the yield of product fonnation these spectra do suggest that the product yield in 10% 

alcoholic aqueous solutions is considerably more than it is in 50% alcoholic aqueous 

solutions. This is in accord with the findings discussed earlier which suggest that in 

10% alcoholic aqueous solutions photochemical reaction may be greater. 

Although the lifetime of the radical species is unaffected by molecular oxygen, it 

does have an affect on the amount of radical produced, as we shall discuss. 
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5.3 Kinetics of the radical (Amax. = 425 om) 

Although there are four different tri-chlorosalicylanilide's possible, it has 

consistently been found that the first dechlorination results in the formation of 

3',4' ,5-trichlorosalicylanilide as the primary photoproduct (see section 2.7). Therefore 

the residual absorption found in all the transient absorption spectra is assigned to this 

primary product. 

The half-life of the radical species produced upon exciting T4CS" in alcoholic 

aqueous solutions was found to be approximately 60j.ls - the significance of this 

lifetime will be discussed shortly. 

A possible reaction scheme of the primary photoreactions that occur upon 

photolysis of T4CS" in aerated alcoholic aqueous solutions which is consistent with 

the data found in this thesis and previous findings is shown below: 

T4CS"+hv ~ T4CS" (Sn*) absorption 

T4CS" (SI") T4CS·+hv 
. 

fluorescence ~ 

T4CS· (Sn*) ~ T4CS· (SI*) lC 

T4CS' (S· n) + solvent ~ T 4CS· + solvent 

-
T4CS" (Sn") ~ Cl'+T3CS' dechlorination 

-
T4CS· (SI*) ~ Cl'+T3CS' dechlorination 

T4CS· (SI*) ~ T4CS· (Tn*) lSC 

T 4CS· (T 1*) + solvent ~ T4CS· + solvent 

T4CS" (TI*) ~ T4CS + hv 
.. 

phosphorescence 

-
T4CS· (TI*) ~ Cr+T3CS' dechlorination 

10. Cl' + CH3CH20H It + cr + CH3C'HOH 

11. T3CS'-+ CH3C'HOH ~ T3CS· + CH3CHO 

12. T4CS· (T*) + 302 ~ T4CS· + 102* 

13. T4CS· (T*) + 302 ~ Quenching 
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5.4 TBS· alcoholic aqueous solution 

TBS· exhibits similar ground state absorption to that of T4CS· in alcoholic 

aqueous solutions. Its pK. has been found to be almost identical to that ofT4CS-H 

(approx. pK. = 5.8 in methanol) [1]. The extinction coefficient at 360 nm (maximum 

of the ionised band) was found to be 9997 dm3 mOrl cm·
1 

in 10% aqueous alcoholic 

solution. 

The value measured for the fluorescence quantum yield, $F, of the ionised form of 

the TBS· in alcoholic aqueous solutions is approximately 0.04. This is about a tenth 

of the fluorescence yield found for T4CS·, a reduction that would be expected for a 

heavy atom effect - where the heavier bromine atoms increase the rate of ISC due to 

enhanced spin-orbit coupling. As with T 4CS· the half life of the singlet state 

measured using single photon counting techniques is 2.35 ns in ethanol [1] and 

likewise we would not expect to observe oxygen quenching of the singlet state. 

However, this singlet state half-life which is similar to that found with T4CS· is in 

conflict with the reduced value of $F and requires clarifying (see recommendations for 

further work). 

The phosphorescence band at 77 K almost mirrors that ofT4CS· and peaks between 

457 and 462 nm, which corresponds to a first triplet state energy of between 

259-262 kJ mOrl. 

Flash photolysis of TBS· in 50% alcoholic aqueous solutions revealed only the 

radical species and product on the time scales available to the JK laser system. There 

was found to be no difference between degassed and aerated solutions. The half·life 

of the radical species was found to be approximately 30 Its. Hilal [1] also found that 

oxygen does not have any marked effect on the photolysis of TBS, stating that either 

the reaction proceeds exclusively via the singlet state, or if the triplet is involved, the 

reaction must be so rapid that oxygen does not quench the reaction. However, using 

the HY laser system, which has a slightly shorter time·base, it was possible to observe 

the triplet state of TBS· in 50% alcoholic aqueous solution. Analysing at 660 nm the 

lifetime was found to be approximately 40 ns - which is too short lived to be affected 
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by oxygen in aerated solutions. Upon pumping oxygen at high pressure 

(approximately three atmospheres) into a degassed cell resulted in loss of the transient 

signal. This loss of transient signal attributed to the triplet state would be expected if 

the oxygen rate quenching constant of TBS' is comparable with that found in 

solutions ofT4CS' (k02 of 5.2 xl09 dm3 mOrl S·I). 

Using the same experimental method as that for finding the triplet yield, $r, ofT4CS', 

a minimum value was determined for the triplet yield of TBS· and this was found to 

be 0.3. 

5.5 Addition ofmHSA to T4CS· 

When mHSA was added to solutions of T4CS' there was a dramatic effect on the 

transient absorption spectrum when compared with the recorded transient spectra of 

T 4CS· alone. Now we observe a transient absorption spectrum assigned to the triplet 

which appears to decay uniformly. This is backed up by kinetic analysis at individual 

wavelengths: In aerated solutions, first order kinetic analysis gave lifetimes of 

between 5 and 6 IlS. Verification that the transient spectrum is due to one species was 

sho"':1 by purging the solutions with nitrogen gas to remove the oxygen content - this 

increased the lifetime of the transient species to between 20 and 22 IlS, in contrast 

purging with oxygen quenched the lifetime down to approximately 1.5 IlS. This gives 

ko2 as between 1.6 and 3.3 x 108 dm3 morl S·I compared to 3.5 x 109 dm3 mOrl S·I in 

albumin free solutions, thus clearly showing that the triplet state of T4CS· is being 

protected from molecular oxygen by at least a factor often upon binding to mHSA. 

It is the loss of the radical anion absorption under the time resolution of the JK 

laser that is the most important feature, and may be pivotal in going some way to 

explaining the specificity of T4CS· binding to mHSA. To explain the loss of the 

radical anion absorption we need to look at the possibilities. One possibility is that 

the radical anion formed by the dechlorination of T 4CS· that we have observed in 

non-mHSA solutions is not formed or its yield is greatly diminished in the presence 

ofmHSA. Alternatively the radical's lifetime has decreased greatly enough for it not 
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to be observed on the time scales of these experiments. What is interesting is that 

there is still some residual absorption left over, indicating that product is still being 

formed albeit in a much reduced yield. This is borne out by the ground state 

absorption spectra shown before and after flash photolysis of T4CS' with mHSA 

(figure 4.60) showing much reduced degradation when compared to T4CS' alone -

indicating that upon binding to mHSA, T4CS' has become much more stable. 

5.6 Addition ofBSA to T4CS' 

When BSA was added to solutions of T4CS', similar transient absorption spectra 

were obtained as with the addition of mHSA, the only difference being in the lifetime 

of the triplet state. In aerated solutions the lifetime is approximately 40 Ils and upon 

nitrogen purging it has risen to 80 IlS, resulting in a value ofk02 of 

3.2 xl07 dm3 morl S·I, which is about five times less than that found with mHSA. 

The reason for this difference may be due to the respective binding sites, as there are 

differences in structure between the two albumins. When human and bovine 

albumins are compared there are found to be 118-135 differences or about 20-23% 

difference [5]. 

5.7 Addition ofmHSA to TBS' 

The findings with T4CS' are mirrored when mHSA is added to solutions of 

TBS', where flash photolysis of solutions containing TBS' with mHSA present 

resulted in the loss of all radical absorption when mHSA was added with a mole ratio 

of 1:1 (mHSA:TBS') respectively. The association ofT4CS' with mHSA resulted in 

an increase in the triplet lifetime (discussed in 5.5) from about 51ls -+ 20IlS, i.e., the 

decay has slowed down four-fold. If there is a similar effect extending the triplet 

lifetime of the short lived TBS' triplet state which is over a hundred times faster than 

the corresponding triplet state ofT4CS' from 40 ns -+ 160 ns upon association with 

mHSA it would have been observed using the JK laser system. The limit of detection 

on this laser is around 60 ns, for example detecting the triplet state of omadine (see 

section 4.8). This does not rule out the possibility that the lifetime of the TBS' triplet 
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is not extended at all, but does suggest the processes involved upon association. with 

mHSA are very different form those ofT4CS·. 

5.8 Difference in binding between T4CS· and other photoallergens to HSA 

To recap on section 2.7, it has been shown that T4CS· has high specificity for 

mHSA when compared with other photoallergens. The majority of photoallergens 

bind non-specifically to proteins, many with stoichiometries greater than I: I, 

photoallergen:protein. Barratt and Rickwood [6] carried out dark-binding studies 

with T4CS· and mHSA and found only a single strong binding site. In contrast when 

fentichlor and mHSA were irradiated with UV light (313 nm), it was found at least 

eight molecules of fentichlor were bound per molecule of protein and fractionation of 

the protein of fentichlor-mHSA photoadducts showed that the bound fentichlor was 

distributed fairly evenly throughout the sequence of the mHSA molecule [7]. It has 

been shown that strong non-covalent binding of T 4CS· to protein is a pre·requisite for 

formation of a photoaddition product [8] and since not all proteins present in the skin 

are capable offorming covalent photo adducts with T4CS· only those that can form a 

non-covalent association with T4CS· will go on to form the photoproduct. This is 

exemplified with fentichlor, which unlike T4CS· will react with almost equal 

efficiency with both mHSA and y-globulin [7]. Experiments evidenced by the 

incorporation of salicylanilide fluorescence into HSA [8] indicated that it is T4CS· 

alone that acts as a photoallergen rather than the primary products of irradiation such 

as 3',4',5-trichlorosalicylanilide. This trichloro compound exhibited only weak 

photobinding to mHSA, and other less chlorinated salicylanilide's showed no 

tendency to complex with mHSA at all. Morikawa et al [9] also found that it is not 

the stable photochemical dechlorination products that react with protein. So although 

the other salicylanilide's are quite photoreactive, their weaker complexation with 

mHSA leads them to be less likely to form covalent photoadducts. Thus it appears 

that it is the primary photochemical reaction of T4CS· with mHSA that is paramount 

to causing photoallergy and secondary photochemical reactions are less important. 

The difference in specificity between T 4CS· when compared to other 
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photoallergens is thought to arise from the reactive species formed upon irradiation 

such as free radicals. The lifetime upon irradiation of the T4CS' radical or reactive 

species is thought to be too short lived to allow diffusion away from the strong non­

covalent binding site before a deactivation process occurs, thus leading to high 

specificity to mHSA because it has the ability to dark-bind to this protein. With other 

proteins where there is not this non-covalent association, it is believed the reactive 

species will react with solvent molecules or de-activate through collisions with 

solvent molecules before the chance of combining with protein. Up to now the 

lifetime of the radical species: T3CS·· produced upon photolysis ofT4CS' has not been 

established. In the absence of protein, the half-life of the radical anion was found to 

be approximately 60 f.lS. If we compare this lifetime to other photoallergens like 

fentichlor and bithional, they have been shown using electron spin resonance 

spectroscopy to produce free radicals that have long lifetimes of a few minutes [7]. 

Research by Anita Jones [unpublished] in this laboratory support these findings, she 

has observed radical production from fentichlor and bithional in solution with 

lifetimes of approximately 0.1 seconds - this lifetime is a thousand times as long lived 

as any radical produced from T 4CS' upon irradiation, thus enabling diffusion to sites 

throughout the HSA molecule or the photobinding to other proteins contained in the 

skin. 

5.9 Phototoxicity of T 4CS' 

In Hilal's conclusions he stated that in a 'Persistant Light Reactor' PLR the 

chlorosalicylanilide-protein conjugate would be retained in the skin for long periods, 

which is capable of further photochemical reaction. Here it would act as an active 

centre in the skin and on subsequent exposure to light, both phototoxic and 

photoallergic responses would be anticipated. The phototoxicity he states is due 

principally to the production of hydrochloric acid which would have the effect of 

lowering the pH of the skin and causing localised irritation. Later Kochevar [l0] 

proposed a mechanism (see figure 5.1) that may explain the weak phototoxicity of 

T4CS' and an explanation for PLR. It was shown that irradiation of T4CS' with 
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mHSA in aerated samples resulted in a 15% reduction in the histidine content. 

However, analysis in the absence of oxygen revealed no difference in the histidine 

content. These results indicate that T4CS· is capable of photosensitising the 

destruction of histidine in the presence of oxygen and it is this sensitised 

photooxidation of cell components that has been proposed to be the mechanism 

underlying the phototoxicity of a number of chemicals and the weak phototoxicity of 

T4CS· may be due to this mechanism. 

T4CS + Proteins 

UVA 

Antigen 
for photo allergy 

Endogenous + Proteins .,-
Oxidised proteins 

Immune 
response 

Cutaneous response 

Figure (5.1) A postulated mechanism for persistent light reactivity showing possible initiation by a 
photoallergic compound 

T4CS· and TBS· were found to be capable of producing singlet oxygen, the generation 

of which can cause cellular damage such as oxidation of amino acid residues. The 

production of singlet oxygen sensitised from T4CS· was measured by direct 

comparison with the standard benzophenone. These investigations resulting in $6 of 

0.23 ± 0.05 for T4CS· and 0.06 for TBS·. Upon the addition ofmHSA no singlet 

oxygen was detected. 
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Recommendations for further work 

The work detailed in this thesis has gone part of the way towards an understanding 

of the excited state photochemistry of T 4CS· and TBS· in alcoholic aqueous solutions 

buffered at physiological pH (7.4) upon flash photolysis at 354.7 nm. The excited 

states that are produced along with the lifetimes and quantum yields have built up a 

picture of the primary photochemical processes, but what is required is some 

collaborating evidence using other techniques, for example quantification of the 

product yields. It is clear that the photochemical yields are very dependent on the 

solvent composition. Laser degradation experiments (shown in section 4.2) show 

qualitatively that the yield of permanent product is dependent on the solvent 

composition. The same experimental procedure showed that the addition of mHSA to 

T4CS· (section 4.62) appears to stabilise T4CS· with a reduction in the yield of 

permanent product. What is required is the quantification of the permanent products 

produced from irradiation of T4CS· in the different solvent compositions in the 

presence and absence of oxygen and upon the addition of mHSA. Also the effect of 

change in the wavelength of irradiation on product yields would be interesting. This 

can be achieved by using an appropriate chemical actinometer as a standard. A 

reliable actinometer in the solution phase which has been widely used in 

photochemical research is the potassium ferrioxalate system developed by Parker and 

Hatchard. Details concerning its experimental use are given in most good 

photochemistry books. 

It has been reported that the secondary photochemical transformation of T 4CS· 

appear significantly less important in causing photochemically transformed proteins. 

Flash photolysis studies on the secondary products of T4CS· photolysis have not been 

investigated, so it would be of interest to see how the transient absorption spectra of 

other less chlorinated salicylanilide's compare with that ofT4CS·. 

To resolve the apparent inconsistency in the measured singlet lifetimes of T4CS· 

and TBS· (section 5.4) with respect to the heavy atom effect and fluorescence yields, it 

would be desirable to repeat the determination of the singlet state lifetimes of these 
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two photoallergens using the same method of time-correlated single-photon counting 

under identical conditions. 

Experiments with Human Serum Albumin 

Dark-binding experiments revealed at least two strong binding sites of T4CS' to 

mHSA with a binding dissociation constant K<! of 0.16 flM (see section 4.4). Using 

the same methodology, the stoichiometry and binding constant ofTBS' to mHSA can 

be found. 

Competitive binding between T4CS' with other ligands which exhibit comparable 

or stronger binding constants to the HSA molecule could be investigated. If 

competitive binding is found, additional information on the binding sites of T 4CS' 

within the protein molecule may be deduced and may further narrow down the region 

of binding ofT4CS'to HSA that has been previously reported (see section 2.6). TBS' 

binding to the protein molecule may be in close proximity to that of T4CS' and 

therefore competitive binding studies between these two photoallergens could be a 

starting point. 

Following on from this it would be of great interest to study what affect a 

competitive ligand would have on the transient absorption species produced upon 

flash photolysis of solutions containing the T4CS' - mHSA conjugate. In section (4.6) 

of this thesis, it was shown that the addition of mHSA had a profound affect on both 

the triplet state of T 4CS' and on the amount of radical and permanent product 

produced. 

Singlet Energy Transfer from Tryptophan to mHSA 

There is overlap between the fluorescence spectrum of tryptophan and the 

absorption spectrum of T 4CS' and it follows therefore that there is a possibility of 

electronic energy transfer from the tryptophan residue to T 4CS' by both a non­

radiative and a radiative mechanism. Unpublished data that is referenced in [11], 

gave evidence for the proximity of the T4CS' binding site to the lone tryptophan 

residue of HSA provided by energy-transfer measurements. These experiments 
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indicated that the distance between the tryptophan residue and a T 4CS' molecule 

located at a binding site of HSA is approximately 1.9 mn. Preliminary fluorescence 

measurements obtained from exciting the tryptophan residue results in electronic 

energy-transfer to the acceptor T4CS', which is indicated by an increasing quenching 

of the tryptophan fluorescence in the presence of increasing concentration of T4CS·. 

Details of the experimental procedure and the equations required for calculating the 

energy transfer radius can be found in a paper by F. Wilkinson and G.P Kelly [12]. 

The work in this thesis was exclusively carried out in the solution phase. A wealth 

of further research possibilities would be opened up by carrying out experiments 

using pig skin as a model for human skin. This would require a different 

experimental technique called diffuse reflectance spectrometry, details of this 

technique can be found in [13]. 

In conclusion, there remains much work to be done in this research area. It is 

clear that a understanding of the mechanism whereby T4CS'and TBS' goes on to form 

an antigen, leading to a photoallergic response is far from clear and further work is 

definitely required to reach definitive mechanistic conclusions regarding the primary 

photochemical step which results in a photoadduct between T 4CS' and mHSA. 
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References 

[1] Hilal N.S., Ph.D. Thesis, University of Salford. 77-78 (1973) 

[2] Jenkins F.P., Welti D. and Baines D., Nature 201, 213-219. (1964) 

[3] Lakowicz, J.R., Weber, G., Biochemistry 12, 4171-9 (1973) 

[4] Ware, W.R., J. Phys. Chem. 66, 455-8 (1962) 

[5] Brown J.R., Federation Proceedings 35, No 10 (1976) 

[6] Rickwood D.M and Barratt M.D., Photochem. Photobiol. 35, 643-647 (1982) 

[7] Rickwood D.M. and Barratt M.D., Chem.-Biol. Interactions 52, 213-22 (1984) 

[8] Kochever I.E. and Harber L.C., J. Invest. Dermatol. 68,151-156 (1977) 

[9] Morikawa F., Nakayarna Y., Fukuda M., Harnano M., Yokoyarna Y., Naguru T 

Ishi M and Toda M., In Sunlight and Man. 529-558 Uni.Tokyo Press, Tokyo 

(1974) 

[10] Kochevar I.E., Photochem-Photobiol. 30, 437-442 (1979) 

[11] Rickwood D.M and Barratt M.D., Biophysical Chemistry 19, 69-73 (1984) 

[12] Wilkinson F. and Kelly G.P., J. Photochem. Photobiol, 45,223-232 (1988) 

[13] Wilkinson F. and Kessler R.W., J Chem. Soc., Faraday Trans. 1,77,309 (1981) 

168 




