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ABSTRACT 

computer simulation is a flexible and economical way for 

rapid prototyping and concept evaluation with Neural 

Network (NN) models. Increasing research on NNs has led 

to the development of several simulation programs. Not 

all simulations have the same scope. Some simulations 

allow only a fixed network model and some are more 

general. Designing a simulation program for general 

purpose NN models has become a current trend nowadays 

because of its flexibility and efficiency. A proper 

programming language specifically for NN models is 

preferred since the existing high-level languages such as 

C are for NN designers from a strong computer background. 

The program translations for NN languages come from 

combinations which are either interpreter and/or 

compiler. There are also various styles of programming 

languages such as a procedural, functional, descriptive 

and object-oriented. 

The main focus of this thesis is to study the 

feasibility of using a compiler method for the 

development of a general-purpose simulator - NEUCOMP that 

compiles the program written as a list of mathematical 

specifications of the particular NN model and translates 

it into a chosen target program~ The language supported 

by NEUCOMP is based on a procedural style. Information 

regarding the list of mathematical statements required by 

the NN models are written in the program. The 

mathematical statements used are represented by scalar, 

vector and matrix assignments. NEUCOMP translates these 

expressions into actual program loops. 

NEUCOMP enables compilation of a simUlation program 

written in the NEUCOMP language for any NN model, 

contains graphical facilities such as portraying the NN 

architecture and displaying a graph of the result during 

training and finally to have a program that can run on a 

parallel shared memory multi-processor system. 
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Recently, usage of Neural network 

rapidly in solving applications 

(NN) models has ! grown 
~ __ • I 

involving massive,,'., 

parallelism such as image processing, pattern recognition 

and combinatorial problems where the traditional 

programming method is not suitable. Due to its self

organising and adaptive nature, the model potentially 

offers a new parallel processing paradigm that could be 

more robust [Lippman (1987), Kung (1993)]. 

A NN model is a structured distributed information 

processing system consisting of processing elements or 

nodes interconnected together with unidirectional signal 

channels called connections. A connection has a strength 

of type inhibitory or excitatory. This strength is called 

a weight. Each node has a single output connection which 

branches into as many collateral connections as desired. 

It can process local information and carry out localised 

information processing [Rumelhart et al. (1986), Simpson 

(1990) ] • 

NN models are also mathematical models that can 

abstract parallel information handling features of 

biological systems. They are made up of many relatively 

simple elements called neurons and closely related to the 

physiology of the brain [Korn (1991b)]. The human brain 

contains more than lOll neurons and 1014 synapses or 

connection weights in the human nervous system [Forrest 

et al. (1988), Manner (1989), Kung (1993)]. Each n,euron 

can have from 1000 to 100000 interconnections with other 

neurons. They send excitatory and inhibitory messages to 

each other and update their weights on the basis of these 

simple messages. In the NN models the term neurons is 

represented by processing elements or nodes. The brain is 

able to operate easily in parallel to solve problems such 

as pattern recognition but the computer is a high-speed 

serial machine which is unable to solve simple 

recognition. Therefore in modelling the brain's basic 

system, the problem to be solved must suit the parallel 

model. 
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NN models can be implemented in various ways. These 

can range from a very complex hardware VLSI design to 

software simulators on a digital computer. Hardware 

implementations are faster than software simulators but 

they are confined to special purpose NNs. computer 

simulation is more flexible and economical for rapid 

prototyping and problem solving [Feldman et al. (1988), 

Nijhuis et al. (1989), Almassy et al. (1990), Nelson et 

al. (1991), Shumsheruddin (1992)]. Increasing research on 

NNs has led to the development of several simulation 

programs. All the simulation tools have a different scope 

of design and implementation. Some simulations allow only 

a fixed network model and some are more general. 

Designing a simulation program for general purpose NN 

models has become a current trend nowadays because of its 

flexibility and efficiency [Shumsheruddin (1992)]. 

1.1 THE ROLE OF NEURAL NETWORK MODELS 

NNs and their computational properties have attracted the 

interest of researchers in the area of machine perception 

by presenting an exciting, complementary al ternati ve to 

symbolic processing paradigms. They hold with them the 

promise of exceedingly fast implementations, coupled with 

flexibility through self-organisation or learning rather 

than computer programming. 

Modelling the NN can be divided into 2 categories 

[Kung (1993), Korn (1991b)] Biological-type and 

Application-driven NN. For the Biological-type NN, the 

model mimics biological neural systems such as 

audio/vision functions like motion field, binocular 

stereo and edge detection. The Application-driven NN 

model is not closely tied to biological realities. For 

these models, the architectures are largely influenced by 

the application because of the following reasons [Kung 

(1993)] :-
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(1) Adaptiveness and self-organisation 

It offers robust and adaptive processing capabilities 

by adopting adaptive learning and self-organisation 

rules. This allows the network to improve with 

experience. 

(2) Non-linear network processing 

It enhances the network I s approximation, 

classification and noise-immunity capabilities. 

(3) Parallel processing 

It usually employs a large number of processing nodes 

enhanced by extensive interconnectivity - massively 

parallelism which provides high speed performance. 

NNs have found many successful applications in 

computer vision, signal or image processing, speech or 

character recognition, expert systems, remote sensing, 

robotics processing, industrial inspection and scientific 

exploration [Maren et al. (1990), Simpson (1990), Kung 

(1993)]. The application domains of NNs can be roughly 

divided into the following categories :-

(1) association 

(2) classification 

(3) pattern completion 

(4) approximation/generalisation 

(5) optimisation 

Association can be of two types, namely auto

association and hetero-association. In auto-association, 

a NN is required to store a set of patterns by repeatedly 

presenting them to the network. The problem is to 

retrieve the complete pattern 

or distorted part of the 

from a partial description 

desired pattern. Hetero-

association involves pairing an arbitrary set of input 

patterns with another arbitrary set of output" patterns. 

The problem is to retrieve a corresponding pattern from a 

given input pattern. 
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There are two types of classifications. The first 

classification involves a fixed number of categories 

alongside a set of input patterns that are repeatedly 

presented to the network. When a new pattern is 

presented, the network is able to identify which category 

this pattern belongs to. The second classification 

involves a situation where there is no prior knowledge of 

the categories into which the input patterns are to be 

classified. In this case a network performs adaptive 

feature attraction or clustering during training. 

Pattern completion is also known as information 

completion, where the original pattern is recovered from 

a given partial information. The process of completion 

takes place for many iterations. A process reaches a 

stable state when there is no change of state. 

Approximation involves the following task. Suppose 

that a non-linear input-output mapping is described by 

the function 

y = I(x) 

where x is an input vector and Y is the scalar output. The 

function I is assumed unknown. The requirement is to 

design a NN that approximates the unknown vector x from I 
after the input-output pairs (xI ,YI), (X2,Y2), ••• , (Xn,Yn) 

have been repeatedly presented. A network is considered 

successful if it can closely approximate the actual 

values for the trained data set and can provide smooth 

interpolations for the untrained data set. The objective 

of generalisation is to yield a correct output response 

to an input pattern for which it has not been trained 

before. 

optimisation applications usually involve finding a 

global minimum of an energy function. Once the energy 

function is defined, the determination of the 

weights is relatively straightforward. 

connection 

In some 

applications, the energy function is directly available. 

In some others, the energy function must be derived from 
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the given cost criterion and special constraints. The 

difficulty associated with the optimisation problem is 

the large possibility of a solution converging to a local 

minimum instead of the global minimum. To tackle the 

problem, several statistical techniques are proposed, 

such as stochastic simulated annealing and mean-field 

annealing. 

1.2 THE ROLE OF NEURAL NETWORK SIMULATION TOOLS 

Among the many uses of computers is simulation. Modelling 

the real-world phenomena to see the affect of varying the 

condi tions on the behaviour of the system can be done 

using the computer. If the real world is adequately 

described in the computer program, the results of the 

program should predict what happens in the real-world 

situation [Springer et al. (1989)]. 
NN simulation software is a computer-aided 

experimentation for NN models, typically implemented on a 

computer [Korn (1991a&b) ]. NN models can also be 

implemented on specialised hardware. Hardware 

implementations currently come in several species such as 

computer emulations. They involve special boards or other 

special hardware, integrated circuit chips, optical or 

holographic devices. 

Hardware implementations are faster than software 

simulations. However, they are for special purpose NN 

models, expensive and require a sUbstantial commitment to 

the use of the system. Software simulations are more 

attractive because they can evaluated easily and the 

commitment is not as restrictive as that of the first 

class. The ease of making software changes has been a 

significant advantage. Redesigning chips take time and 

money whereas simulation can help avoid costly mistakes. 

Computer simulations are ideal for research in NNs 

as they can be developed very quickly and cheaply. They 

are very flexible and these makes it easy to experiment 
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with alternative networks structures, activation 

functions and learning algorithms. They also allow easy 

collection and analysis of data on the behaviour and 

performance of the networks. However, NNs are 

computationally expensive because of the following 

reasons :-

(1) they contain a large number of nodes and 

interconnections. The number of interconnections are 

directly proportional to the complexity of the model 

that can be implemented. 

(2) the learning algorithm involves many iterations in 

order to converge or reach a stable solution. 

To improve the speed of the software implementations, 

several parallel simulator strategies have recently 

appeared. The reasons being that the parallel computers 

can offer faster execution time than the sequential 

machines. 
Software simulation can be obtained either from 

commercially available packages (i.e. BrainMaker, 

ExploreNet, NeuroShell, etc. [Turban (1993) l) or writing 
a simulation program using conventional high-level 

languages such as C. Due to the interdisciplinary nature 

of the NN study, researchers are not always computer 

software experts and thus must rely heavily on commercial 

products. Many packages run on a PC. They provide good 

user interfaces and debugging tools for network 

simulations. Many include thoroughly tested and debugged 

library routines for simulating common types of network 

such as the backpropagation network, etc. Hence, packages 

do not allow extensive model development without a strong 

programming background. Writing a simulation program to 

simulate a network allows greater flexibility and enables 

simulation of arbitrary designs of networks. Specially 

written programs can be optimised for a particular type 

of network which may run faster than simulations 

developed using packages. 
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There are two approaches when writing a NN 

simulation program. The first approach is to design a 

simulation program for specific NN models. This approach 

has been used in practice for quite some time. The second 

approach is to design a simulation tool for any NN model 

[Feldman et al. (1988), Shumsheruddin (1992)]. There are 

two methods of designing this approach. They can be 

classified as, the user interface method [McClelland et 

al. (1988), Tarr et al. (1992)] and programming language 

method. The first method is still restricted to certain 

NN models. For a general-purpose NN simulation, a proper 

language specifically for NN model is preferred. This 

language is called a special-purpose language. A special

purpose language is used to avoid using the complexity of 

the existing high-level languages such as C or FORTRAN. 

From the NN simulation language, the user can write 

a program for any NN model or combine these models to 

suit their applications. A graphical command is also 

available in the program which depicts the NN 

architecture and the graphs of the results. 

The program translations for NN languages come from 

either compiler method [Almassy et al. (1990), Panetsos 

et al. (1993)] or a combination of both interpreter and 

compiler methods [Korn (1989, 1991a&b)]. The compiler 

method has been proved to produce a high performance 

result [Bennett (1990), Ford (1990)]. However, a general

purpose simulator that allows platform portability, ease 

of use and extensive model design freedom with minimal 

usage training may be considered as an effective 

simulation tool [Myler et al. (1992)]. 

The programming style based on the compiler method 

is further classified as a procedural, functional, 

declarative or object-oriented method [Ford (1990), 

Maeder (1991)]. 
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1.3 OBJECTIVE OF NEURAL NETWORK COMPILER - NEUCOMP 

The main focus of this thesis is to study the feasibility 

of using a compiler method for the development of a 

general purpose simulation program NEUCOMP, that 

compiles the procedural style of programs known as the 

NEUCOMP language. The NEUCOMP language is a high level 

language. It is specially designed to cater for NN models 

with the complexity of the commands from the existing 

high level C-like language being simplified. This idea is 

based on Korn's work (Le. DESIRE/NEUNET) [Korn (1989, 

1991a&b)]. The translated program is based on a 

combination of interpreter and compiler methods. However, 

NEUCOMP is designed using the compiler method. A NEUCOMP 

program is written as a list of mathematical 

specifications of the particular NN model. The 

mathematical statements can be written as scalar, vector 

or matrix assignment required by the NN mOdels. 

NEUCOMP enables the compilation of a simulation 

program written in the NEUCOMP language for any NN model. 
, 

It contains graphical facilities such as portraying the 

~ architecture and displaying a graph of the results 

during training. Finally a parallel version of the i 

compiler (NEUCOMP2) generates a program that can run on a 

parallel shared-memory multi-processor system. 

1.4 ORGANISATION OF THE THESIS 

The research presented in this thesis covers the design 

of a general-purpose simulation tool. Specifically, its 

main focus is to study the feasibility of using a 

compiler method for the development of a general purpose 

simulation program. It includes a detailed study of the 

design of the NN compiler known as NEUCOMP and its 

language called the NEUCOMP language. They are 

implemented on a UNIX machine. A design of a parallel NN 

compiler (NEUCOMP2) is also introduced. NEUCOMP2 is 

implemented on a shared-memory parallel machine, SEQUENT 

Balance machine at the PARC (Parallel Algorithms Research 
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Centre, Loughborough University of Technology). Basic 

graphical facilities such as displaying NN architectures 

and various kinds of XY-graphs that depend on the type of 

applications are also included. Since the machine that 

supports NEUCOMP does not support graphical facilities, 

all graphical displays are done on a PC using 

'Mathematica' [Wolfram (1991)]. This kind of graphical 

activities can give a flexible design to the user. 

The thesis is organised as follows. Chapter 2 gives 

a brief discussion on the taxonomy of the NNs, some 

examples of popular NN models and a survey of a general

purpose simulation tool. In chapter 3, a brief discussion 

of the compiler design and programming technique are 

presented. Various programming methods for the high-level 

programming languages and the compiler-construction tools 

such as 'Lex' and 'Yacc' are explained. Chapter 4 gives a 

detailed design of NEUCOMP and its language, the NEUCOMP 

language. In that chapter the design of graphical 

displays on PC using 'Mathematica' is also discussed. Its 

purpose is to display graphical results computed by a NN 

program. Chapter 5 discusses briefly the concepts of 

parallel computer architectures and parallel programming 

and gives a detailed design of the parallel NN compiler 

(NEUCOMP2) and its language. Comparisons of the speedup 

on selected NN models running using NEUCOMP2 are shown. 

Chapter 6 contains an application using selected NN 

models for solving three different problems such as 

character recognition, intertwined spirals and travelling 

salesman problems. Sequential and parallel results are 

presented and their execution times and speedups are 

measured. Various graphical results are also shown which 

depend on the type of applications and type of graph to 

be shown. Finally chapter 7 summarises and gives 

conclusions on the topics discussed throughout the 

thesis. Discussions on further research work conclude the 

final chapter of the thesis. 
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CHAPTER 2 

A SURVEY OF NEURAL NETWORK MODELS 
AND SIMULATION TOOLS 
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This chapter covers the discussion of NN models which 

include the taxonomy of NNs, examples of some popular NN 

models based on their taxonomy and a survey of some 

currently general-purpose NN simulation tools. 

The taxonomy of the NN models are identified by 

their network architectures, node characteristics and 

training or learning rules. A network architecture 

contains the nodes that are grouped in terms of layers 

such as the input layer, hidden layer (if mul tilayer 

network) and output layer. The node characteristics 

include the type of a node and the use of Gl. transfer 

function for the activation node. The training or 

learning rules are based on supervised or unsupervised 

learning algorithms. These rules specify an initial set 

of weights which should be adapted during training. 

Examples of NN models which represent different 

classes of the network are discussed. The backpropagation 

network is a multilayer feedforward network. The 

counterpropagation is a multilayer network in which one 

of the layers is the competitive layer network. The 

Kohonen Self-organising network is a topological network. 

The Adaptive Resonance Theory (ART) network is a two 

layer network with feedforward and feedback connections. 

The Hopfield network is a single layer network with 

feedback connection. The backpropagation and 

Counterpropagation networks use supervised learning 

algorithms whilst the Kohonen, ART and Hopfield networks 

use unsupervised learning. 

Some current general-purpose NN simulation tools are 

presented in the last section of this chapter. They cover 

the programming style of defining and simulating the NNs 

[DasGupta et al. (1990), Korn (1989, 1991a&b), Hu 

(1991) ). These programming languages are known as 

special-purpose 

[Nijhuis et al. 

al. (1992»), an 

languages. In the non-specific languages 

(1989), Koopman et al. (1990), Myler et 

existing high-level language such as C is 

used to support the tools. The built-in functions such as 

NN structures and their learning algorithms are called 
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interactively 

this approach 

using a graphical user-interface. However 

is not flexible enough to allow the 

designer to try several NN models. In order to run the 

new NN structures or learning algorithms, a high-level 

programming language like C-program code and its function 

calls are defined. These routines are then compiled and 

linked with the simulation tools. 

2.1 TAXONOMY OF THE NEURAL NETWORK MODELS 

since the beginning of the 1980's the interest in NNs has 

greatly increased and a large range of models have been 

developed for different purposes [Dayhoff (1990), Maren 

et al. (1990), Simpson (1990), Kung (1993), Haykin 

(1994)]. However they can be specifically based on the 

following characteristics:-

, 
(1) network architectures 

(2) node characteristics, and 

(3) training or learning rules 

Their details are now explained in this section. 

2.1.1 Architecture of Neural Networks 

NN architectures or topologies are 

nodes into layers and linking 

interconnections. The following 

describe the NN architectures are :-

formed by organising 

them wi th weighted 

characteristics to 

(1) The number of layers in a network such as a single 

layer, two layers or multilayer. 

(2) The type of connections are 'feedforward', 'feedback' 

and 'lateral'. Feedforward means data from nodes of a 

lower layer propagate forward to nodes of an upper 

layer via feed forward connection network. Feedback 

allows data from nodes of an upper layerto,befed back 
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to a lower layer via feedback connections. For 

lateral, there are connections between nodes in the 

same layer of nodes or local feedback to themselves. 

(3) The connection maybe fully or locally connected. 

(4) The connections can be excitatory (positive weights) 

or inhibitory (negative weights). 

Based on the above distinctions, six different 

architectures related to the classes of networks can be 

identified, as shown in figure 2.1. 

2.1.1.1 Multilayer feedforward networks 

The mu1ti1ayer feedforward networks as shown in figure 

2.1a, propagate data from the previous layer to the next 

layer. They range from simple two-layer perceptron to 

feedforward networks with multiple hidden layers. with 

suitable supervised training algorithms, i.e. the 

backpropagation [Rumelhart et al. (1986)], such networks 

map input patterns on to desirable output patterns. The 

feedforward networks of one or more hidden layers are 

capable of doing generalisation and pattern recognition. 

2.1.1.2 Single layer networks 

The fully connected or laterally connected single layer 

networks or Hopfie1d-type networks have only one layer as 

shown in figure 2.1b. A one layer network can only 

activate one pattern at a time. The lateral or recurrent 

connections cause different patterns to appear in the 

single layer with each iteration of operation. Laterally 

connected networks are typically used for pattern 

autoassociation. Autoassociative networks can store many 

patterns, but can only manifest one at a time. They are 

good for generating clean versions of patterns they have 

learned when given a noisy or incomplete pattern as a 

starting point. 

14 



The Hopfield network [Aleksander et al. (1990), 

Beale et al. (1990), Lippmann (1987») and Brain-State-in

a-Box [Maren et al. (1990), Simpson (1990») are examples 

of a single layer network. 

2.1.1.3 Topological networks 

The topological networks are two layer networks. The 

second layer is based on topological-ordered vectors 

where the nodes are laterally connected, fiqure 2.10. 

This layer acts as a competi ti ve layer, f ires selective 

output nodes (i.e. winner node) if an input pattern 

minimises or maximises corresponding functions. -During 

learning, a measure of the vector distance between the 

different vector nodes is used to adjust their relative 

position in the vector. The use of topological-ordered 

vectors is to cluster different classes of input 

patterns. 

This class of network includes the Learning Vector 

Quantisation and Kohonen Self-organising networks [Beale 

et al. (1990), Dayhoff (1990»). 

2.1.1.4 Two layer feedforwardlfeedback networks 

The two layer feedforward and feedback networks function 

like a Hopfield-type network with symmetrical 

connections. They can be seen as a two layer non-linear 

feedforward/feedback network, as shown in figure 2.ld. 

Patterns sweep from one node layer to the next, and then 

back again, slowly relaxing into a stable state that 

represents the network's association of the two patterns. 

This type of network structure is particularly good for 

associating a pattern in the first layer with another 

pattern in the second 

heteroassociation. They 

classification. 

layer, which is called pattern 

can also be used for pattern 
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The two most popular two-layer feedforward and 

feedback networks are the Adaptive Resonance Theory (ART) 

[Beale et al. (1990)] and Bidirectional Associative 

Memory (BAM) type of network [simpson (1990), Wasserman 

(1989)]. 

2.1.1.5 Multilayer competitive networks 

The multilayer network that contain one- layer with 

lateral connections are specifically designed for 

competitive learning purposes (figure 2.1e). These 

connections contain excitatory (positive) connections and 

inhibitory (negative) connections which balance each 

other in a certain way. The output of the network is 

determined by the combination of the connection weights 

between the output layer and the winner node of the 

competitive layers. 

The Counterpropagation network 

of networks [Hecht-Nielsen (1987, 

(1990) ]. 

2.1.1.6 Cascading the networks 

belongs to these type 

1988, 1989), Dayhoff 

The possibility of cascading different structures, figure 

2.1f, open up a sixth type of network structure known as 

'hybrid network' [Maren et al. (1990)] or 'sequential 

network' [Korn (1991b)]. The basic variables are not 

individual node activations, but the input and output 

patterns of node layers or subnetworks. Feedforward and 

feedback connections relating such vector variables can 

form an interesting and powerful vector state machines. 

2.1.1.7 Network with local feedback 

The network with local feedback is also known as 'dynamic 

neural network' [Korn (1991b), Hush et al. (1993)] or 
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'temporal model' [Kung (1993)]. The network structures 

discussed earlier known as static network [Korn (1991b), 

Hush et al. (1993), Kung (1993)]. static network are 

categorised by node equations that are memoryless. That 

is, their output is a function only of the current input, 

not of past or future inputs or outputs. 

Dynamic networks, on the other hand, are systems 

with memory. They are more suitable for temporal pattern 

recognitions. Their node equations are typically 

described by differential or difference equations. They 

can be categorised into three different groups namely 

networks with feedforward dynamics, networks with output 

feedback and networks with state feedback. 

However, the models of cascading the networks and 

dynamic networks are not discussed in this thesis. 

2.1.2 Node characteristics 

All NNs have a set of processing nodes which represent 

the neurons or nodes. These nodes operate in parallel, 

ei ther synchronously, as in the case of most computer

simulated networks, or asynchronously, like biological 

NNs. Each node, receive$ input.} from one or more of its 

neighbours, computes an output value (it's activation 

state), and sends it to one or more of its neighbours. 

Input nodes receive signals from the environment and 

output nodes send signals to the environment. 

The input from the environment may be analogue or 

digital. If the selected network design is optimised for 

bi-state nodes, some preprocessing will be necessary to 

represent the input data in binary format. The output to 

the environment requires the activation of one or more 

nodes, either for a single iteration operation or for 

several iterations. This output may be interpreted as a 

pattern classification, pattern associated with the 
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input, completed or noise-cleaned version of the input 

pattern. 

(a) Multilayer 
feedforward network 

(d) Two layer feedforwardl 
feedback network 

(b) Single layer 
network 

(c) Topological 
network 

competitve 
layer 

(e) Multilayer 
competitive network 

the network 

Fig. 2.1: six NN structures 
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The activation state of - a node, varies with time. 

Different networks allow different sets of activation 

values for their nodes. The activation level may be 

discrete or continuous, bounded or unbounded. Many 

networks employ a binary node having 0 and 1 as the only 

two possible levels of activation. other networks allow 

integer-valued or real-valued activation levels. 

Activated nodes can be the sum of the products of 

its inputs and the weights of their connections or rely 

on some defined threshold function known as the transfer 

function or activation function (figure 2.2) This value 

may change for every iteration until a stable pattern or 

convergence state has been reached. Although a single 

node may send out only one signal value from its end, the 

values which are received by the connected nodes may 

differ. This is because the strength of the signal which 

is sent out by a node is modified by the weights. 

The nodes of the network are connected together by a 

set of links called connections. The connections are 

usually unidirectional, as in the case of biological 

systems, but may be bi-directional. Weights are the 

connection strengths between the node and its neighbours. 

They can have a positive value or negative value. The 

negative value connection is known as an inhibitory 

connection and the positive value connection is known as 

an excitatory connection. 

Figure 2.3 is a simple example of a node with the 

following information :-

(1) ao, aJ> ... , an-l are the activation values of nodes 0,1, ... ,n-1 

and the input values to node i, 

(2) neti is the sum of products of weights between node i 

and output nodes of its neighbours, 

(3) wij is the connection weight from node j to node i, 

(4) ai is the activation value or output value of node i, 
(5) f is one of the functions as shown in figure 2.2. 
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Fig. 2.2: Threshold-function 
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2.1.3 Learning rules 

A neural network model has to be trained before it can be 

useful for various applications. The learning rules 

specify how the weights of the connections in the network 

are to be adjusted during the learning process or 

training. During learning, the weights are usually 

adjusted in a large number of small steps. 

Learning denotes changes in the NNs that are 

adaptive in the sense that the NNs can do the same tasks 

drawn from the same population more efficiently next 

time. 

Many learning algorithms have been introduced with 

the objective to allow the network to produce the correct 

output at a specific period of time. Figure 2.4 shows the 

NNs commonly categorised in terms of their corresponding 

learning algorithms - supervised network and unsupervised 

network [Wasserman (1989), Beale (1990)]. 

Neural Networks 

I 

Unsupervised Supervised 
- Hopfield network - Multilayer network 
- Kohonen Self-organizing network - Counterpropagation network 
- ART network 

Fig. 2.4: Neural Network's learning algorithms 

2.1.3.1 Supervised learning rule 

Supervised learning requires the training data to be 

consist of a pairs of input patterns with a target 

patterns representing the desired output. These training 

patterns are called vector-pairs. The weights are adjusted 
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during training until the input patterns approach the 

output patterns. Therefore, the learning will benefit 

from the existence of a teacher. As an example, figure 

2.5 illustrates how the weight vectors, i. e. w, 
represented by the linear hyperplanes are gradually 

adjusted to separate one class of patterns from another. 

These weights can be adjusted by using the following 

update rule :-

where the amount of adjustment is proportional to the 

difference between the teacher response and the actual 

value. 

t=0 
100 

f 50 + 
t=2 

w2 
+ 

0 0 
00 0 

0 
00 

t=70 
-50 

-50 0 50 100 

w 1 --<·· 
Fig. 2.5: Classification of two groups of 

patterns during training 

2.1.3.2 Unsupervised learning rule 

For an unsupervised learning, the training set consists 

of an input training pattern only. Therefore, the network 

is trained without the benefit of any target value. The 
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network learns to adapt based on 

collected through the previous training 

examples are the Hebbian learning 

the experiences 

patterns. Typical 

rule and the 

competitive learning rule. A simple version of Hebbian 

learning is that when nodes i and j are simultaneously 

excited, the strength of the connection between them 

increases in proportion to the product of their 

activations. 
In competi ti ve learning, a node learns by shifting 

connection weights from its inactive to active input 

nodes. If a node does not respond to a particular input 

vector, no learning takes place in that node. If a 

particular node wins the competition, then each input to 

that node gives up some proportion of its weights and 

these weights are equally distributed among the active 

inputs of the node. Figure 2.6a illustrates three natural 

groupings or clusters of the input patterns and a 

possible initial state of the weights that may exist 

before training. Figure 2.6b illustrates a typical final 

state of the weights that results from the use of the 

competi ti ve learning rule. In particular, each of the 

output node has discovered a cluster of inputs by moving 

its connection weight vectors to the centre of gravity of 

the discovered cluster. 

(a) before training (b) after training 

Fig. 2.6: Geometrical interpretation of the input 

vectors (dots) and weight vectors (crosses) 

before and after training 
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2.2 EXAMPLES OF THE NEURAL NETWORK MODELS 

-In the -following section some important NN models are 

presented. They are the backpropagation, Hopfield, 

Kohonen, Adaptive Resonance Theory (ART) and 

Counterpropagation networks. 

2.2.1 The back propagation network 

The backpropagation network is _ a multilayer network. It 

has an input layer, one or more hidden layers and an 

output layer. Its network architecture is shown in figure 
2. la. This network is used to solve problems such as 

pattern recognition and function approximation. 

The backpropagation learning algorithm is a 

systematic method for training a multilayer network since 

a two layer network fail~ to solve 

[RUmelhart et al. (1986)] . In 

supervised learning algorithm. 

hard-learning problems 

addition, it is a 

An extended version of the backpropagation method 

called Gradient Range-Based Heuristic (GRBH) [Sanossian 

et al. (1991)] for accelerating the learning is used. The 

weights are adjusted during training using the following 

formula :-

where 

Wij is the weight from node j to node j, 

p 

Opj = f'j (net pj ) ~WjkOPk' 

dW,j(t) = Wy (t)-wif(t -1), 

for the hidden node, 

f3 is the momentum factor 
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i)E(w) 
and a., ( k=l, ••• , n), depend on • A small 

ilwij 

value of a. is chosen when 
i)E(w) 

ilwij 
is large and 

large a. for small 
i)E(w) 

ilwv 

The algorithm aims to minimise the error function E 
by adjusting the weights in the network so that they 

correspond to those at which the error surface is the 

lowest. The error function is 

The variable ~i is the target value for output node i and 

input pattern p, 
(

n-I ) 
and Opt = f ~ wijopj +biast • 

J:O 

error is calculated as E = I.E
p

• 

p 

2.2.2 The Hopfleld network 

The global 

The Hopfield network is a single layer unsupervised 

network. Each node is connected to every other node as 

shown in figure 2.1b. All of these nodes are input nodes 

as well as output nodes. Their connections are symmetric, 

that is, wij = Wjt and wi/ = 0 • 

The Hopfield network was introduced by Hopfield 

(1982) based on the physical models of materials with 

magnetic properties. Hopfield used this network as an 

associative memory with binary input and output vectors. 

Later this network [Hopfield et al. (1985)] was improved 
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to accept continuous input values and used to solve the 

combinatorial optimisation problem. 

This section discusses only the Continuous Hopfield 

network. A larger range of information can be stored 

using analogue nodes. These nodes use a Sigmoid function 

rather than a Hard-limit (figure 2.2). Hopfield applied 

such" network to the • TSP , (Travelling S/.ilesman Prob_lem). 

[Hopfield et al. (1985)]. This is a difficult 

optimisation problem that belongs to the NP-complete 

class of problems. The task of the salesman is to visit 

all the N cities on his list once and only once, 

returning to his starting point after travelling the 

minimum possible distance. 

Hopfield and Tank [Hopfield et al. (1985)] map the 

N-city TSP onto a network with NxNmatrix. The element of 

the matrix (node) is written as nia. The row i, 

corresponds to the city number and column a, corresponds 

to the station of the tour in which this city is visited. 

A valid tour is characterised by an activation pattern 

wi th exactly N nodes active and N(N-J) nodes inactive. There 

must be exactly one entry of one in each row and column 

of the matrix, n. 
The task of the TSP is to find the tour which has 

the shortest total length among the valid tours. To allow 

the network to compute a solution to the problem, 

Hopfield and Tank represents the following energy 

function to be minimised, 

EO is the total length of a tour and the other terms are 

intended to ensure constraint satisfaction, the constant 

An being Lagrange parameters [Muller et al. (1990)]. The 

total length of a tour is written as follows :-
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where dij denotes the distance between the cities i and j. 

The matrix dij is the Euclidean distance in a two

dimensional plane which is written as :-

The first additional terms of the energy function, 

1 a_ P 

E\ =2~ ~>ia niP 
J a, fJ 

is chosen such that it vanish if each row corresponding 

to a city contains a single one with all the other values 

being zero. The second additional term, 

is zero if each column corresponding to a position in the 

tour contains a single one. The last constraint, 

is used to enforce the presence of N entries of magnitude 

one such that they will be zero only when the total 
number of one I s in the network is N, the number of 

cities. 

The approach to a solution of minimal energy E[n] can 

be described by a differential equation in time t [Muller 

et al. (1990)] as shown below :-
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where 

uia is the local field of node nia , 

1 
T is the temperature which nia= 2/' l+e- Uia T 

determines the slope of the Sigmoid function, and 

T representing the typical time constant of the nodes. 

The differential equation of uia has to be solved 

numerically. 

differential 

The Euler' s method is used to 

quotient by the quotient 

differences. It gives the following results, 

2.2.3 The Kohonen network 

replace this 

of forward 

The Kohonen network is a two layer feedforward network as 

shown in figure 2.1c. The first layer is an input layer 

and the second layer is a grid or map arranged in a one 

or two dimensional array. These layers are fully 

interconnected, as all input nodes connect to all nodes 

in the second layer. The network is trained by 

unsupervised learning. 

The second layer is known as a competitive layer. 

Incoming patterns are classified by the nodes that they 

activate in the competitive layer. Similarities among 

patterns are mapped into closeness relationships on the 

competitive layer. After training is complete, the 

pattern relationships and groupings are observed from the 

competitive layer. 
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The first step in operating a Kohonen network is to 

compute a matching value for each unit in the competitive 

layer by using the following equation, 

n-l 
dj = I,<xrWij)2 

j=O 

where di is the distance between the input pattern and the 

competitive node i, Xj is an input value for node j and wij 
is the weight between the input node j and the competitive 

node i. 

The closest matching unit to a training input is 

computed as the minimum distance of di which is given by 

where c is the winner node. 

After the winning node is identified, the next step 

is to identify the neighbourhood consisting of those 

nodes that are close to the winner in the competitive 

layer. The neighbourhood consist of the units that are 

within a square centred on the winning node c. 
The weights are updated for all nodes that are in 

the neighbourhood and the winning node c based on the 

following equation :-

where a is the learning rate and i is the competitive 

node in the neighbourhood. The learning rate, a, begins 

initially at a relatively large value. During the 

learning process, a is decreased over the span of many 

iterations. The suggested rate [Dayhoff (1990)] is:-
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where aD is the initial value set by choice, i.e. 0.2 -

0.5. T is the total number of training iterations and t is 

the current iteration. 

The size of the neighbourhood is also adjusted 

according to 

where nO is initially the neighbourhood size chosen either 

one-half or one-third of the width of the competitive 
layer. The neighbourhood is for all (x,y) such that, 

c-n<x<c+n and c-n<y<c+n. sometimes this calculated 

neighbourhood goes outside the grid of units in the 

competitive layer; in this case the actual neighbourhood 

is cut off at the edge of the grid. 

2.2.4 Adaptive Resonance Theory (ART) 

The ART is an unsupervised, competitive 

algorithm. It is a two layer network arranged in 

learning 

feedback 

and feedforward connections as shown in figure 2.1d. The 

layers have different functions unlike the 

backpropagation or Kohonen networks. The first layer can 

be an input layer or a comparison layer and the second 

layer can be an output layer or a recognition layer. Both 

are interchangeable during training. 

There are three models of ART called ART1, ART2 and 

ART3 [Beale et al. (1990) 1. The ART1 is for a binary 

input value and ART2 is for real value. Both have similar 

architectures. ART 3 uses equations that model the 

dynamics of chemical neurotransmitters. This section 

discusses only the ART1 network. 

The major feature of ART1 is the ability to switch 

modes between plastic (the learning state where the 

internal parameters of the network can be modified) and 

stable (a fixed classification set), without detriment to 

any previous learning. The network also displays many 

behavioural type properties, such as sensitivity to 
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context, that enables the network to discriminate 

irrelevant information or information that is repeatedly 

shown to the network. 

An input vector is presented to the input layer and 

passed to the second layer using the following equation 

n-l 

Sj = LWijXj 
j=O 

where si is the output of node i in the competitive layer, 

wij is the feedforward weight between the input node j and 

the output node i and Xj is an input value for node j. The 

second layer is now in recognition mode where the best 

matching exemplar is calculated as :-

where c is the winner node to represent one class of 

pattern. 

At the comparison stage - when a new pattern is 

presented to the first layer, this pattern is compared 

with the already learned pattern against a vigilance 

threshold, p. The vigilance parameter controls the 

resolution of the classification process. A low choice of 

threshold ( p < 0.4) will produce a low resolution 

classification process, creating fewer type. A high 

vigilance threshold (p = 1) will produce a very fine 

resolution classification. 

When 

n-l 

LVcj(t)Xj 
j=O 
~':"'n-_71--> p, where Vcj 

LXj 
j=O 

is the feedback weight 

between the input node j and the competitive node c, then 

the classification is complete. All weights are then 

refined as follows :-
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(1) vcj(t+l)=vcj(t)Xj, for the feedback weight. 

(2) 
Vcj(t) Xj 

wq (t+l)= n-l ' for the feedforward weight. 

When 

0.5+ ~>Cj(t)Xj 

n-l 
LVCj(t)Xj 

j=O 

"'j=_O"--..,--__ < p, the next best-template matching node of 
n-l 

LXj 
j=O 

the recognition layer is considered using the equation 

se = max(si) • 

The learning time for this network is much faster 

than the i terati ve convergence procedures proposed for 

most other NNs such as the backpropagation method. This 

is because the weights are set to the optimum values in 

very few learning cycles. 

2.2.5 The Counter propagation network 

The Counterpropagation network is a combination of two 

well-known networks: the Self-organising map of Kohonen 

and the Grossberg networks [Hecht-Nielsen (1987, 1988, 

1989), Dayhoff (1990)]. The basic architecture of the 

network is shown in figure 2.1e. 
The first layer is an input layer and the third 

layer is an output layer. In between these layers is the 

competitive layer. The competitive layer performs a 

competitive classification to group the patterns. The 

learning algorithm at the Kohonen layer is based on 

unsupervised learning and the learning algorithm at the 

Grossberg layer is based on supervised learning. 

When the input vector is presented to the network, 

the competitive layer then performs the weighted sum, 
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n- 1 

Si = I,W(JOXj 

j=O 

Both X and ware normalised first so that their vector 

lies on a unit radius. wij is the weight between the input 

node j and the competitive node i. The node, c with the 

highest sum calculated as :-

is considered as the winner node at the competitive 

layer. 

Only the weights of the interconnections that go to 

the winning node c are adjusted using 

where a is the learning rate. The network output values 

are then compared to the target pattern, and the output 

layer of weights is updated as 

where Vjc is the feedforward weight between the 

competitive node c and the output node j, 1 is the target 

value of output node j and f3 is the learning rate for the 

output layer. 
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2.3 CURRENT NEURAL NETWORK SIMULATORS 

In order to define any of the NN simulation programs, a 

computer programming language is the most suitable. 

Through the language, the designer has the freedom to 

explore various simulation programs. 

There are several methods to define networks by a 

computer program. One is to use an already existing high

level programming language such C or Pascal but many NN 

researchers do not come from a strong computer 

background. However, 

exist. specifically for 

,many programming_lang\lag~s 

the NN models [Paik et al. 

(1987), Almassy et al. 

(1991), Korn (1989, 

Vellacott (1991), 

(1990), DasGupta 

1991a&b), 

Panetsos et 

Zell 

al. 

et al. (1990), Hu 

et al. (1991) , 

(1993)]. These 

programming languages are known as the special-purpose 

languages. They cover many methods of programming styles 

such as declarative (descriptive), procedural and object

oriented. 

The main objective of providing various styles 

of programming languages is that they are easy to use. 

Discussion of how these programming styles have been 

implemented in a high-level language are explained in the 

next chapter. A brief view of some NN languages are now 

given in this section. 

2.3.1 Procedural language for Neural Network 

The procedural language approach follows the algorithmic 

step of computation (section 3.4.1). 

The DESIRE/NEUNET is a new environment for 

interactive experiments with NNs developed by Korn (1989, 

1991a&b). It is for personal computers run under the PC

DOS/MS-DOS operating system. Special versions of 

DESIRE/NEUNET can generate ANSI C source code and then 

can be inserted in other user programs, including 

embedded-computer applications. The DESIRE/NEUNET 
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language is a high-level language specifically designed 

for general-purpose NN models. Its program is based on a 

simple vector/matrix notation for NN models. One

dimensional arrays represent vectors such as node 

activations and signal patterns, and two-dimensional 

arrays represent matrices which holds connection 

strengths or weights. 

The structure of the DESIRE/NEUNET language is 

divided into two parts. The first part is called the 

interpreter program segment namely 'experiment protocol' 

and the second part is called compiled program segment 

namely 'simulation run'. Hence, the translation of the 

DESIRE/NEUNET program thus involves two separate tasks of 

interpretation and compilation. 

The experiment protocol initially sets all array 

definitions to zero or can fill any desired array by 

using data/read assignments. It also involves program 

loops, modify model variables, simple assignment, setting 

scales and scalar parameters for graphical display, and 

then calls a simulation run or runs. A statement to call 

this simulation run is drone The compiled code or 

simulation run does 'exercise' the simulation model 

through a sequence of time steps or trial. It can also 

manipulate complete arrays and solves difference 

equations to produce time histories, node activations, 

performance measures and display or list such results in 

a variety of ways. This program segment is written under 

a program named, DDVAkfIC. The DYNAMIC program segment is 

separated from the interpreter program by the DDVAkfIC 

statement, which must be the only statement on its line. 

An example of a DESIRE/NEUNET program is shown in 

figure 2.7. It shows that successive. rows of the INPUT 

and TARGET pattern matrices serve as input and target 

vectors for training. A simple least-mean-squares 

algorithm or Widrow-Hoff LMS algorithm minimises the 

error measure. Further details, examples and user-manual 

can be found in Korn (1991b). 
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N = 3 
ARRAY layer1[4], layer2[2], bias[4],weight[2,4] 

ARRAY INPUT[N,4], TARGET[N,2] 

DATA 1,2,3,4;0,0,1,1;-1,0,-1,0 I read INPUT 

DATA 10,20;50,60;0,0 I read TARGET 
gain = 0.2 

min = 0 I max = 1 
NN = 30 

t = 1 I TMAX = NN - 1 I drun I stop 

DYNAMIC 

iROW = t 
VECTOR layer1 = INPUT# + bias 
VECTOR layer2 = weight*layer1; min,max 

VECTOR error = layer2 - TARGET# 

LEARN weight = gain*error*layer1 + moment*weight 

DOT enormsqr = error*error 

Fig. 2.7: A simulation program for two-layer network 
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2.3.2 Declarative language/or Neural Network 

A declarative language 

language) for NN is a 

(also known as descriptive 

non-procedural language which 

allows the user to describe the network topologies and 

lets the computer undergo algorithmic steps of 

computation by itself (section 3.4.2). A brief discussion 

of a declarative language for NNs based on Leighton et 

al. (1992) is now presented. 

Aspirin/MIGRAINES (version 6.0) is a NN environment 

developed by the MITRE corporation. The Aspirin/MIGRAINES 

system is written for a UNIX environment. Aspirin is a 

high-level declarative language used to describe 

arbitrarily complex NNs and their learning algorithms. It 

includes the definition of the type of network, the size 

and top'ology of the network and descriptions of the 

network's input and output. It may also include items 

such as user defined function and the user manual for the 

MIGRAINES system. Aspirin supports the backpropagation 

learning techniques and topological variations. 

The Aspirin program is then compiled by its code 

generator and generates a C program to simulate the 

network. It is further compiled using a standard compiler 

and linked either to the MIGRAINES interface or used with 

other application-specific systems. MIGRAINES is a 

terminal-based interactive interface that allows the user 

to export data from the NN simulation program to 

graphical packages such as 'Mathematica' [Wolfram (1991)] 

via UNIX pipes. MIGRAINES was intentionally kept separate 

from Aspirin so that the limitations of MIGRAINES do 

not restrict the performance of Aspirin. 

Aspirin is organised around the concept of a 'black 

box' description of NN. A black box NN is an abstract 

unit which receives external input and produces some 

output. A complete NN is one example of a black box. A 

black box can also be a subnetwork of a larger, complex 

NN system. 
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2.3.3 Object-oriented language for Neural Network 

Object-oriented concepts will be discussed in section 

3.4.3 of the following chapter. A brief example of an 

object-oriented language for NN based on Hu (1991) is now 

presented. Hu gave an informal overview of a general

purpose NN simulation language called an Object-Oriented 

Neural Network Language (OONNL). OONNL follows many 

characteristics of object-oriented methodology and 

embodies the features of NN models. The compiler for 

OONNL was implemented on a SUN3 workstation. 

The structure of OONNL is divided into two parts. 

The first part is the description of the NN model and the 

second part 

amongst the 

is the description of information flowing 

processing units (nodes or neurons) and 

information processing in the units. 

The description of the NN model involves defining 

the NN topology such as specifying the processing units 

and connections as well as the specification of the value 

of units such as activation function and connection 

strength. OONNL defines a processing unit as an object 

which includes the unit name, class name, its connection 

with other units and their 'weights, and name of 

procedures such as learning rule and activation function. 

OONNL implements inheritance by class. A class is an 

abstract of objects. units can be classified as input, 

hidden and output units and share common attributes such 

as activation function. OONNL provides a set of 

statements to define a class that includes a number of 

units sharing common attributes. 

Data flow and control flow as well 

oriented methodology in OONNL is realised 

processes of information flowing and 

as object

through the 

information 

processing in the unit. Data flow involves processes such 

as get data from the outside, world, feed data forwards or 

backwards, and control flow involves processes such as 

how to stop iterations when the desired learning is 

satisfied. 
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CHAPTER 3 

BASIC COMPILER CONCEPTS 
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This chapter covers the basic concepts of compiler design 

which comprises its definition and comparison with an 

interpreter; .the process of compilations; high-level 

programming methods; a brief discussion of some popular 

compiler-construction tools or compiler generators; and 

the general structure of a NN compiler called NEUCOMP and 

its language (the NEUCOMP language) • A high-level 

programming language is a computer language that a human 

can understand whereas a low-level language is the 

machine language. 

An interpreter is another technique of translating a 

high-level programming language. The comparisons of the 

compiler approach over an interpreter and its advantages 

in terms of execution speed will be discussed briefly. 

The third section of discussion is about the process 

of compilation. It shows the technique of how the design 

of a compiler is broken down into many phases or modules. 

From the understanding of this technique, we can then 

understand how a NN compiler (NEUCOMP) can be developed. 

Its explanation can be found in the next chapter. 

The fourth section of discussion explains how high

level programming languages are designed into various 

methods such as procedural, declarative, object-oriented 

and functional programming methods. A brief discussion of 

each is given in this section. 

which programming method is 

convenient to use leads to a 

language method for NEUCOMP. 

A clear understanding of 

easier to program and 

preferred choice of a 

Since designing a compiler is a complicated task, 

which may involve frequent changing of program syntax, 

the use of compiler-construction tools or compiler 

generators are recommended. Popular tools such as 'Lex' 

and 'Yacc' are available under the UNIX operating system 

can help the designer to reduce programming maintenance. 

These are explained in the fifth section. 

In the last section, the· structure of NEUCOMP and 

the NEUCOMP language are introduced. 
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3.1 COMPILER 

A compiler is a program which translates a program 

written in one language, the source language, to an 

equivalent program in a second language, the target 

language [Aho et al. (1986), Bennett (1990)]. During 

this translation process, the compiler reports the 

presence of errors in the source program together with 

diagnostic information about the source program being 

compiled. A target language can be another programming 

language or the machine language that already exists in 

the computer being used. 

Figure 3.1 shows the general structure of the 

compiler. Typically the source language will be in a 

high-level programming language such as FORTRAN or 

Pascal, and the target language will be the machine code 

for the computer being used or an assembly language. 

~I Compiler I~ 

Fiq. 3.1: Overall structure of a Compiler 
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3.2 INTERPRETER VERSUS COMPILER 

Translation of the source language into the target 

language can be done by two approaches, namely, as the 

compiler and the interpreter [Aho et al. (1986), Bennett 

(1990), Ford (1990)j. 

The compiler reads the source code program and 

converts it into the target code program. This means that 

the entire program code is translated once and resaved as 

its target code. All errors of syntax or grammar found by 

the compiler during the translation process will be 

displayed together with the diagnostic information. This 

includes the type of errors that have occurred and the 

type of corrections that should be done. Recompilation is 

then required to the corrected source program. If there 

is no error after the end of translation, the translated 

code is then executed. The possibility of finding any 

errors of syntax during this execution process does not 

happen. There is no need to recompile the program once 

compiled when we want to execute the code program 

repeatedly. 

An interpreter reads the program's statements one at 

a time. Each single statement is translated and if an 

error is found, the translation process is stopped. The 

user can then correct it immediately and if there is no 

error, the translated code is then executed. The process 

is then continued for the next statement. This means that 

the translation and execution phases occur together and 

not separately as in the case of the compiler. ., Doing 

the translation and execution at the same time has given 

a slight advantage to the interpreter. When error occurs 

we can immediately pinpoint its source from the original 

high-level language program. This is often a, great help 

when developing and debugging programs. However, 

interpreters suffer from poorer execution speeds than 

their compiler competitors, particularly involving large 

scale repetition of code in loops. This· is because the 

source code must be translated each time it is executed, 
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and then the repeated translation of the same code within 

a loop is clearly wasted. Ford (1990), has shown a 

comparison of Borland's Turbo BASIC which offers a 

compiled BASIC which is compatible with several 

interpreted versions based on the same hardware 

configuration. The result shows that the execution speed 

of a compiled version is two times faster than an 

interpreted version. 

The choice of whether to compile or interpret is to 

a large extent influenced by the nature of the high-level 

language and the environment in which it is used [Bennett 

(1990), Ford (1990), Wilson et al. (1993)]. For example, 

FORTRAN is relatively simple and designed for translation 

to machine code. It is often used for solving big 

numerical problems on mainframe computers, where the 

speed of execution is essential. It is thus invariably 

compiled. BASIC, on the other hand, is mainly used on 

personal microcomputers where clearly error handling is 

important. The lack of processing power and memory could 

make compilation very difficult. However modern 

interpreters such as for the LISP language often use both 

interpretation and compilation •. Programs are interpreted 

during program development to avoid time-consuming 

compilations each time the program is changed and to give 

clear error handling. When development is complete, 

compilation can begin. 

Most language translation use a combination of 

compilation of high-level language into an intermediate 

low-level language which is then interpreted into a 

machine code [Bennett (1990}].· For example, the UCSD 

Pascal compiler, , generates an intermediate code, 

PCODE, for interpretation. This is because compilation of 

high-level language into machine code is time consuming. 

If an error happens during execution it is difficult to 

relate the machine code that caused the error to its 

equivalent high-level code. It is easy to compile a high

level language into an intermediate language, i.e. an 

assembly language which is not too time consuming and 
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efficient to execute. When an error occurs during 

execution the intermediate code is easier to relate to 

the source language. 

3.3 THE PROCESSES OF COMPILATION 

The process of compilation is broken down into two main 

parts - analysis and synthesis [Aho et al. (1986)]. The 

analysis part breaks up the source program into 

constituent pieces and creates 

representation of the source program. 

constructs the desired target 

an intermediate 

The synthesis part 

program from the 

intermediate representation. synthesis requires more 

specialised techniques. The analysis is broken down into 

three phases lexical analysis, syntax analysis and 

semantic analysis. The synthesis is also broken down into 

three phases - the intermediate code generation, code 

optimisation and code generation. Each phase transforms 

the source program from one representation to another. 

The process of compilation as shown in figure 3.2 has 

become the standard routine in the development of the 

compiler [Aho et al. (1986), Bennett (1990)]. However in 

practice, some of the phases maybe grouped together and 

the intermediate representations between the group phases 

need not be so explicitly constructed. 

Often, the phases are collected into a front-end and 

back-end [Aho et al. (1986), Bennett (1990)]. The front

end consists of phases that depend primarily on the 

source language and are largely independent of the target 

machine. These normally include lexical and syntax 

analysis, the creation of the symbol-table, semantic 

analysis, and the generation of intermediate code. The 

front-end also includes the error handling that goes 

along with each of these phases. The back-end includes 

those portions of the compiler that depends on the target 

machine. Generally, these portions do not depend on the 

source language, just the intermediate language. The 
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back-end takes the intermediate. language representation 

as input. It undergoes the code optimisation phase, the 

code generation along with the necessary error handling 

and symbol-table operations. 

symbol-table 
manager 

semantic 
analyser 

error 
handler 

r 
front end 

'---~;::,==~---J intenmediate code L-_--=='/,ir---' 
generator 

1 
back end 

1 

Fig. 3.2: Phases of compilation 

Distinguishing the front-end with the back-end can 

help to produce compiler portability. For example, to 

produce the same language running on different machines, 

its associated back-end needs to be modified. To compile 

several different languages into the same intermediate 
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language, a common back-end running on the same machine 

can be used. 

Discussions on phases of figure 3.2 are now 

explained. The lexical analysis is the first stage in the 

process of compiling the source program. The stream of 

characters making up the source program is read from 

left-to-right and grouped into tokens. A token is a 

sequence of characters having collective meaning. The . .:!=_erminal 

as complete entities, 

such as integer or variable names of complete keywords 

rather than the individual characters. The program that 

carries . out this analysis is called a lexical analyser or 
, ----_ .. 

scanner. 

The syntax analysis phase groups the stream of 

tokens from the lexical analyser to form a valid sentence 

or grammatical phrases. Usually, the grammatical phrases 

of the source program are represented by a parse tree. 

The program that undergoes this analysis is called a 

syntax analyser or parser. 

The semantic analysis phase checks the parse tree 

generated by the syntax analyser for semantic errors. It 

determines which variables are to hold integers, and 

which are to hold floating point numbers. It also checks 

that the size of all arrays are defined. 

After the syntax and semantic analyses, the parse 

tree produced is converted into an intermediate 

representation. This representation can be the three

address code for a general-purpose assembly language 

which is still not dependent on the target machine. It 

serves as an interface between the front-end and back

end. The three-address code consists of a sequence of 

instructions, each of which has at most three operands. 

When generating these instructions, the compiler has to 

decide on the order in which the operations are to be 

done such as the mUltiplication precedes the addition 

operation in the source program. 

The code optimisation phase attempts to improve the 

intermediate code into a more efficient equivalent, so 
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that when translated into a target code it runs faster. 

Basically the tasks in the code optimisation are to 

minimise the number of operations carried out in the 
source program by giving an alternative solution. It also 
minimise the number of memory accesses. The meaning of a 

program does not change. A significant fraction of time 

of the compiler is spent on this phase. 

The final phase of the compiler is the generation of 

the target code, consisting of assembly code or machine 

code. Memory locations are selected for each of the 

identifiers used by the program. Intermediate 

instructions are then translated into a target assembly 

statements or a sequence of machine instructions that 

perform the same task. 

Two other activities, symbol-table management and 

error handling, as shown in figure 3.2, interact with 

those six phases. The programs involved are called 

symbol-table manager and the error handler. 

Symbol-table management is an essential module in a 

compiler. It builds up information about the identifiers 

used in the source program and collects information about 

various attributes of each identifier. These attributes 

may provide information about the storage allocated for 

an identifier and its types. In the case of procedure 

names, it provides information such as the number and 

types of its arguments, the method of parameter passing 

and the type returned. A 'symbol table' is a data 

structure containing a record for each identifier, with 

fields for the attributes of the identifier. The data 

structure allows us to find the record for each 

identifier quickly and to store or retrieve data from 

that record quickly. For example, in the lexical analysis 

it may only hold the text of an identifier's name. During 

the syntax and semantic analyses, information about the 

identifier's type and scope will be added. When doing the 

semantic analysis and intermediate code generation, we 

need to know what the types of identifiers are, so that 

the source program uses them in a valid way and the 
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proper operations can be generated on them. During code 

generation we may wish to associate an address with an 
identifier. 

The error handling involves detecting the error and 

reporting the type of error undergoing diagnosis. Every 

phase in the compiling process can encounter errors. 

However, after detecting an error, the phase must somehow 

deal with that error, so that compilation can proceed, 

allowing further errors in the source program to be 

detected. The lexical phase can detect errors where the 

characters remaining in the input do not form any token 

of the language. The syntax and semantic analyses phases 

usually handle a large fraction of the errors detectable 

by the compiler. The errors where the token stream 

violates the grammar rules of the language are determined 

by the syntax analysis· phase. During semantic analysis 

the compiler tries to detect constructs that have the 

right syntactic structure but no meaning to the operation 

involved. This can be operations such as to add two 

identifiers, one of which is the name of an array and the 

other the name of a procedure. The intermediate code 

generator may detect an operator whose operands have 

incompatible types. The code optimiser, doing control 

flow analysis, may detect that certain statements can 

never be reached. The code generator may find a compiler

created constant that is too large to fit in a word of 

the target language. 

These are all important considerations in order to 

obtain the true compilation. 
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3.4 PROGRAMMING LANGUAGES 

A computer is a tool that solves problems by means of a 

programming language. Computers obey instructions which 

are issued to them. In order for the instructions to be 

understood both by the person who issues them and by the 

computer which obeys them, they must be issued in a 

particular form. The set of instructions and the rules by 

which they are to be issued and acted upon, forms the 

basis of the computer language. A computer program is a 

series of instructions which are executed in an 

appropriate order to perform a particular task [Ford 

(1990), Wilson et al. (1993)]. 

Programming languages are 

programming languages and 

classified into low-level 

high-level programming 

languages. A low-level language is one which is close to 

the machine's own language, and is therefore usually 

harder for humans to use. Such languages are assembly 

language and machine codes. Machine code languages are a 

series of computer instruction written in binary. An 

assembly language follows a series of machine codes' 

instructions but they are written using mnemonic codes 

[Ford (1990), wilson et al. (1993)]. Programming at low 

level is a very difficult task. It requires a long job 

for a specialist computer expert who might take many 

hours to find any error. Because of this a high level 

language is designed to be easy for humans to learn and 

use. These languages are sometimes known as human

oriented languages. 

All languages except machine code itself, need to be 

translated before they may be executed by the computer's 

processor. Assembly language is translated using an 

assembler. An assembler is a program written in machine 

code which is able to translate the assembly language 

instructions into the machine code which they represent. 

High level languages are translated using a compiler or 

an interpreter (section 3.2). 
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Nowadays there are many high level languages. Their 

existence has an objective at a higher level than others. 

These will be the languages which make a particular 

attempt to provide ease of programming for human beings 

[FOrd (1990)]. However they can be grouped into a variety 

of styles. The most commonly identified programming 

styles are procedural, declarative, object-oriented and 

functional programming [Maeder (1991)]. The existence of 

the many programming styles are normally suited to 

specific applications. For example, FORTRAN is designed 

to suit numerical and scientific computation, COBOL is 

for business-data processing and PROLOG is suitable for 

logic programming such as an expert system and natural 

languages processing [Ford (1990), Wilson et al. (1993)]. 

3.4.1 Procedurallanguages 

conventional programming languages such as C, Pascal and 

FORTRAN support the procedural style. It involves 

frequent use of assignment statements to change the state 

of the computation and solve problem algorithmically 

[Springer et al. (1989)]. 

The following steps describe how to solve a problem 

algorithmically :-

(1) An understanding of the problem. 

(2) A solution to the problem is designed and this 

solution is broken down into a series of distinct 

tasks of development of the algorithm. 

(3) The tasks required are then translated into a 

suitable series of programming statements. 

The advantage in designing an algorithm is that the 

programmer has a free choice of choosing the best method 

for efficient execution [Ford (1990)]. 

A brief description of some procedural languages are 

then explained. BASIC - Beginners I All-purpose Symbolic 
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Instruction Code, was motivated by the desire to have 

available a programming language which would be simpler 

to learn than FORTRAN. It is an interpretative language. 

It has become particularly commonly used for programming 
smaller microcomputer systems. 

FORTRAN, FORmula TRANslation, was based on the 

original purpose of the language - to solve numerical 

computations. It was the first high-level language 

introduced, in 1950. At that time the majority of 

programming was being undertaken by programmers working 

in assembly language or machine code. FORTRAN became 

popular because it served a realistic and desirable 

alternative to low-level language programming for 
mathematical and scientific applications. 

Pascal is commonly taught in courses on programming. 

Pascal is usually preferred to BASIC as the introductory 

language for specialist computer science students because 

it is well structured. This helps to make a program more 

readable. 

COBOL which is an acronym for COmmon Business 

oriented Language is suitable for use in writing programs 

which could handle efficiently large amounts of data in 

file processing applications. 

The C language has become popular recently for a 

wide variety of programming applications. C may be 

distinguished from other languages by its chief design 

goal to be a tool for working programmers. It is 

flexible, convenient, powerful, portable and efficient. 

It is designed by programmers for programmers, and has 

become one of the most popular and widely used 

programming languages for the development of 

applications. Amongst facilities provided are compact 

codes such as the actual statements which need to be 

written in order to perform a given operation in Care 

significantly shorter than the corresponding instructions 

in many other languages. C provides both high-level as 

well as low-level language support such as assembly 

language which is required by a system programming 
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environment. It is widely available on a variety of 

different computers including UNIX operating system. 

3.4.2 Declarative languages 

A declarative language provides an efficient 

programming in logic. It is mainly used in the 

artificial intelligence. 

way for 

field of 

An advantage of the use of a declarative language is 

that much of the work in writing a program is undertaken 

by the computer whereas the procedural approach involves 

human decision processes in designing the suitable 

algorithm. When a declarative language is used to solve a 

problem, the programmer is relieved from the 

responsibility to define the method to be used, which is 

instead selected by the language [Ford (1990»). 

The steps in writing a program in a declarative 

language are :-

(1) understand the problem. The programmer's tasks are 

restricted to reaching a clear understanding of the 

problem. 

(2) code as a program that describes the problem to the 

computer using suitable language statements. 

Naturally the language cannot be expressed to 

display the same intuition which the programmer might 

display. Therefore, the efficiency of writing the actual 

program which is often far faster in a declarative 

language but not efficient in the execution of the 

result. 

Declarative languages are suitable in the 

development of expert systems and other database 

programs. They involve logical decision-making programs 

many of which are particularly difficult to write in a 

procedural language. An example of logic programming is 

PROLOG - PROgramming in LOGic. 
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3.4.3 Object-oriented languages 

A recent advance in programming languages has been the 

ado!,tion of the object-oriented style of 

programming. This style is particularly suitable for 

simulating objects in the 'real world' and for 

structuring large systems in ways that allow recurrent 

patterns of computation to be shared by similar objects 

[Springer et al. (1989), Ford (1990) and Wilson et al. 

(1993)]. 

In this style of programming, certain objects are 

defined that respond to messages passed to them. We can 

think of an object as a computer dedicated to solving a 

particular type of problem. The input is the message 

passed to the object, the object does the computation, 

and the output is the value returned by the object. 

Objects provide a way of combining characteristics and 

operations to give a level. of abstraction beyond that 

offered by records and procedures. Objec~aredescribed as 

some local data together with a set of procedures that 

operate on that data. All calculations are performed by 

sending messages to objects, and problems are solved by 

identifying real-world objects and modelling them by 

object-oriented programming. 

Object-oriented languages support data abstraction 

and information hiding. An object has a hidden local 

state and exports operations that can act on this state. 

Meanwhile an object-oriented program consists of a set of 

objects that communicate with one another through calls 

of these exported operations. It also supports the 

concept of inheritance and dynamic binding. A central 

feature of object-oriented programming is that new 

classes are not created from scratch, but by inheriting 

information from existing classes which they can then 

modify or extend. The new class is said to be a subclass 

of the class from which it was derived, a superclass. 

Software reuse is central to the object-oriented 

approach. Object-oriented systems typically have a large 
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number of predefined classes from which new classes may 

be created. 

An object of a subclass can always be used when an 

object of its superclass is expected. When an operation 

originally defined in a superclass is redefined in a 

subclass, the decision as to which operation is 

applicable in a given situation can be delayed until run 

time, that is, we have dynamic binding. Dynamic binding, 

where the decision about which version of an operation is 

to be used is delayed until run time, is then examined. 

Obj ects send messages to one another. On receipt of a 

message at run time, an object decides which method it 

will use in response. 

Some examples of object-oriented 

Smalltalk and c++. Smalltalk was designed 

languages are 

to be used with 

powerful personal computers complete with windows, pop-up 

menus, icons and mouse pointing device, which has led the 

way in providing a user-friendly interface for both the 

expert and 

traditional 

language. 

non-expert user. c++ 
imperative language 

is a hybrid between a 

and an object-oriented 

3.4.4 Functionallanguages 
-:-A, :funct[onaC language is mainly characterised by the 

.,,:: 

relalacement 

functions. 

of .~-ssignment 

It involves 

statements by 

the evaluation 
calling 

of an 

expression through a calling function instead of changing 

the value of variables through an assignment [Ford 

(1990), Wilson et al. (1993)]. It is closer in spirit to 

mathematics. Procedural languages use a sequence of 

commands to carry out the derived operation whereas in a 

functional language they are recursi vely executed. The 

problem with an assignment statement is that when it used 

in conjunction with reference parameters or non-local 

variables in subprograms it can lead to side effect and 

aliasing [Wilson et al. (1993)]. 
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Functional language behaves like a mathematical 

function. Its program usually consists of a series of 

function definitions followed by an expression that 

involves the application of the function. It represents 

symbolic expressions and other information in the form of 

list structures in computer memory. Problem solving using 

a functional language involves symbolic manipulation that 

requires dealing with mathematical functions and formal 

mathematical reasoning such as Lambda calculus. 

The functional language approach arose mainly 

because the designers were mainly mathematicians. They 

were particularly interested in applying computing to 

artificial intelligence problems such as game playing, 

theorem proving and natural language processing, and 

developing a mathematical theory of computation. 

LISP which is a List Processing 

example of a functional language. It 

language, 

was the 

is an 

first 

functional language 

during the period 

(l993) ]. 

to be widely used. It was implemented 

from 1959 1962 [Wilson et al. 
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3.5 COMPILER GENERATORS 

Designing a compiler is not an easy task. It involves a 

very large, complex programming project. Therefore the 

use of compiler-building tools can be a significant help 

to the compiler writer. Compiler generators are the 

software-development tools used to generate various 

phases of a compiler [Aho et al. (1986), Bennett (1990), 

Lemone (1992)]. Such tools are also referred to as 

'compiler-compilers', or 'translator-writing systems'. 

Figure 3.3 shows how the compiler generators generate a 

compiler based on rules to be defined by a compiler 

writer. Although this figure implies that an entire 

compiler can be created by a compiler generator, in fact, 

compiler generators cannot yet generate entire compilers 

automatically [Lemone (1992)]. 

Compiler 
Generator 

Compiler 

Fig. 3.3: An Overview of a Compiler Generator 

Existing compiler generators are implemented in 

various phases [Aho et al. (1986), Lemone (1992)]. For 

the front-end of a compiler, the phases are often termed 

a lexical analyser generator, syntax analyser generator 

and semantic analyser generator. Generator phases for the 

back-end of compilers are still very much a research 
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topic although work has been done on code generator 

generators [Aho et al. (1986), Lemone (1992)]. 

The best-known compiler tool is 'Yacc - Yet Another 

compiler-Compiler', written by steve Johnson (1978). Yacc 

runs on the UNIX operating system and is associated with 

another tool called 'Lex - A Lexical Analyser Generator', 

written by Lesk et al. (1975) which generates a scanner. 

3.5.1 Lex - A Lexical Analyser Generator 

Lex is a scanner generator written in C. It takes a 

description of a set of sentences that make up the 

grammar for token to generate a scanner program called 

yy./ex.c [Lesk et al. (1975), Aho et al. (1986), Bennett 

(1990), Lemone (1992)]. It can be compiled and linked 

with other compiler modules. The program yy.lex.c contains 

an integer-valued function called, yy/exO which returns 

the next token from the source program. An example of 

such tokens is a sentence "1", "0", "0", which represent a 

token for number 100. 

The syntax of token is described in the form of a 

regular expression. The regular expressions and actions 

to be carried out are specified by the user in the Lex 

program. A Lex program contains a format that allows the 

user to define a type of string representing token and 

action code written in a C program to be carried out. For 

example, a list of characters that represent an 

identifier, a C routine mknameO is called to save an 

identifier name in the symbol table and return the token 

IDENTIFIER from this routine. Similarly, for a list of 

digi ts that represent number, a routine mkva/O converts 

this string of digits into a numeric value and return the 

token NUMBER. The routine mknameO and mkva/O are 

specified by a user in the Lex program. Figure 3.4 shows 

how a Lex generates the scanner program written in C, 

yy.lex.c. It is then compiled to produce an object code 
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known as scanner. The output of scanner is the list of 

tokens. 

@ ~I Lex ~~ program 

8 ~I C compiler ·8 
} __ -I~~I scanner 

Fig. 3.4: An Overview of Lex 

3.5.2 Yacc - Yet Another Compiler-Compiler 

Yacc is a parser generator written in c program. It takes 

a specification of a programming language grammar and 

semantic actions, and generates LALR(l) parsing tables 

and a shift-reduce pars er called y.tab.c [Johnson (1978), 

Aho et al. (1986), Bennett (1990), Lemone (1992)]. It can 

be compiled and linked with other compiler modules such 

as the scanner generated by Lex as shown in figure 3.5. 

The program y.tab.c contains a routine called yyparseO which 

is called to carry out parsing. The function yyparseO in 

term uses yylexO from program yy.lex.c, for the next token 

from the source program. y.tab.c is also compiled to 

produce an object code known as parser. Its input is the 

list of tokens produced by scanner and its output is the 

parsed tree. 

The Yacc program contains a format that allows the 

user to define valid sentence or grammar rules for the 
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source language. For example a sentence if (expression) then 
statement is a grammar rule for I if statement I. The string if 
and then, the symbol I (' and I) 1 are tokens produced by the 

scanner while expression and statement are other grammar 

rules. Further details of grammar rules, and the use of 

Yacc and Lex are discussed in chapter 4 when designing 

and implementing NEUCOMP. 

C compiler 

,...---'--.., token 
scanner parser 

'--___ -' get next 
token 

Fig. 3.5: Lex with Yacc 
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3.6 STRUCTURE OF A NEURAL NETWORK COMPILER 

The general structure of a NN compiler called NEUCOMP and 

its language (the NEUCOMP language) are now explained in 

this section. 

3.6.1 The General Structure o/NEUCOMP 

The compilation of a programming language naturally 

breaks down into a number of logical phases (section 

3.3). These phases may run simultaneously, or they may 

run consecutively. 

Compilation of a high-level program has been proved 

to produce a high performance result [Bennett (1990), 

Ford (1990)]. However, to develop a true compiler is a 

difficult task. It involves a large, complex programming 

project [Aho et al. (1986), Lemone (1992)]. NEUCOMP takes 

a simpler approach as the objective here is to study the 

suitability of the NEUCOMP language to perform general 

implementations of NN models. The simplified phases of 

compilation are shown in figure 3.6. The reason is to 

provide an ad hoc and workable compiler at an early stage 

so that when it is successful a true compiler can be 

later developed. The C language is chosen as the target 

language because it is portable to any machine under the 

UNIX platform. It has a ::./ > structured data type, is 

machine independent and has more mathematical library 

routines provided by the UNIX operating system. 

The semantic analysis for NEUCOMP is done during the 

syntax analysis. The output after the semantic analysis 

is the target program which is in C. The code 

optimisation and code generation (section 3.3) are not 

carried out on the C program because the C compiler has 

its own code optimiser. However, for the execution of an 

assignment statement involving a matrix/vector 

manipulation there may be repeated loops of the same 

matrix/vector size. This may affect the performance of 

the program. The loop optimiser is responsible for 
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combining the same vector or matrix loop of every 
matrix/vector assignment from the target program in order 
to remove the repeated loops. 

Lexical Analysis 
Syntax Analysis 

Semantic Analysis 

loop 
Optimiser 

Fig. 3.6: Phases of compilation 

3.6.2 The General Structure o/the NEUCOMP language 

Many of the properties of the NN models described are 
governed by the mathematics of linear algebra [Rumelhart 
et al. (1986)]. vector and matrix analysis are a useful 

way to describe a pattern of numbers. In a NN model, many 
quantities are best represented by vectors and matrices. 
For example, activations of a node can be written as, 
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y = fCW*x+b) 

where y is a vector of a current node, x is a vector of 

the previous node impinging on the current node, W is a 

matrix which represents the connection strengths between 

nodes x and nodes y, b is a vector which represents a bias 

to node y, and! is an activation function, i.e. sigmoid 

function. 

The NEUCOMP language is a procedural high level 

language which is designed for a user to write a 

simulation program specifically for any NN model. It 

contains information regarding the list of mathematical 

specifications required by the NN models as well as 

standard high-level programming statements such as 

if.. then .. else and while .. do statements. The mathematical 

specifications used are represented by either a scalar, 

vector or matrix manipulation. The NEUCOMP will translate 

these expressions into the actual loop expressions. 

The idea which brought about the development of the 

NEUCOMP language came from the mathematical 

representation of the DESIRE/NEUNET language (section 

2.3.1). The DESIRE/NEUNET program is translated using a 

combination of both an interpreter and compiler whereas a 

is translated by a compiler. NEUCOMP program 

DESIRE/NEUNET uses an interpreter on a program segment 

which contains variables definition, simple assignments 

and loop initialisation on matrix/vector variables. Ford 

(1990) has shown experimentally that interpreters suffer 

from poor execution speed particularly those involving 

large scale repetition of code in loops (section 3.2). 

Also as explained in section 3.2, an interpreter is 

useful for program development because it avoids time-

consuming operations during compilation each 

source program is changed. Furthermore, most 

translations use a combination of compilation 

level language into an intermediate low-level 

which is then interpreted into a machine code. 
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The Procedural approach is chosen because 

traditionally this approach has been established since 

the evolvement of the FORTRAN language. Furthermore, the 

procedural approach allows a list of mathematical 

specifications to be easily organised or written 

algori thmically. Other approaches as mentioned earlier 

which are declarative (descriptive), functional and 

object-oriented are not suitable for writing a series of 

mathematical specifications. An example of the 

declarative approach is Nessila [Korb et al. (1989)]. 

This language performs poorly because it is hard to 

implement and takes too long to generate a large NN. 

However, its new version, Nessus, which is based on the 

procedural approach is more efficient [Zell et al. 

(1991)]. To my knowledge, there has been no 

implementation of a NN language based on the functional 

approach. Even though a functional language such as LISP 

has been established for AI. research however for NN 

research, 

implement 

it is more difficult 

[Myler et al. (1992)]. 

to understand and 

The object-oriented 

approach is a new field for a NN language. Hence, only 

those people with a good background in computing prefer 

to use an object-oriented language. 

The NEUCOMP language structure (figure 3.7) follows 

the general structure of the C-Ianguage [Kernighan et al. 

(1980)]. It shows that program_name under NEURALNET is the 

name that must be given as a program heading for a 

simulation program. The identifier-declarations is a section 

where one or more variables for scalar, vector or matrix 

operations are declared either as global or local. All 

variables must be of type real, integer, string or file. 

The content within MAIN PROGRAM ... END is the body of a 

program or main program where one or more statements or 

statement-list can be written to carry out the simUlation. The 

statement-list such as I assignment-statement I, I if-statement I , 

and calling I subprogram I are parts of NEUCOMP language 

statements. 
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The sub program_declarations are declarations of one or 

more subprograms of types procedure or function. The 

structure of a subprogram (figure 3.8) follows the same 

structure of the main program. A subprogram allows the 

reference by a name to a collection of statements which 

perform a clearly defined purpose. The procedure 

statement serves like a function in C of type void and the 

function statement serves like a function in C which 

returns a value. However the type of a return value is 

based on a type of a variable after statement RETURN. 

Provision of procedure and function can make the program 

well structured and help to improve program readability. 

The argument in a subprogram contains one or more 

variables depending on the argument of its calling 

subprogram. The argument in the calling subprogram acts 

as a passing parameter to the declared subprogram. 

The capital letter words such as NEURALNET, 

MAINPROGRAM, END, PROC, FUNC and RETURN as shown in 

figure 3.7 and figure-3.8, are the reserved words. 
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NEURALNET program_name 
identifier declarations (global use) 

MAINPROGRAM 
identifier declarations (local use) 
statement list 
END; 

subprogram_declarations 

Fig. 3.7: structure of the NEUCOMP language 

PROC procedure_name argument 

identifier declarations (local use) 

statement list 

END; 

FUNC function_name argument 
identifier_declarations (local use) 
statement list 
RETURN variable; 

Fig. 3.8: structure of subprograms 
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CHAPTER 4 

A NEURAL NETWORK COMPILER 

66 



This chapter discusses the design and implementation 

of a NN compiler called NEUCOMP which includes the 

mathematical specifications on scalar, vector and matrix 

operations; designing and implementing the compiler; 

compilation of the compiler modules; some NNs simulation 

programs; and developing the required graphical displays. 

The design and implementation of NEUCOMP includes 

the definition of the NEUCOMP language which is based on 

grammar rules or productions and the process of 

compilation which involves the lexical analysis, syntax 

analysis, semantic analysis and optimising the loops or 

loop improvement. The lexical and syntax analyses phases 

are implemented using the compiler tools, Lex and Yacc 

(section 3.5) which both generate the C program modules. 

The semantic analysis is implemented in conjunction with 

the syntax analysis. These compiler modules are compiled 

with other C program modules, 1. e. user-support routines 

and loop optimiser. The executable compiler program is 

called NEUCOMP. 

The NN simulation programs for some NN models are 

developed and compiled by NEUCOMP. The chosen models are 

the backpropagation, Kohonen, ART! and Counterpropagation 

networks. They are chosen based on the differences of 

their structures and learning algorithms (section 2.2). 

The graphical features are used for viewing and 

analysing the simulation results. However, the NEUCOMP 

language does not provide a statement to display the 

results. An existing graphical software is recommended 

for such purposes. It provides facilities to allow us to 

wri te the graphical program easily. The graphical 

features that are explained' in this chapter are the 

programs to display the NN structure, XY-graph and 

plotting points for data clustering. The simulation 

results from the NEUCOMP program can then be transferred 

to a graphical software package. 
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4.1 MATHEMATICAL SPECIFICATIONS 

An assignment statement is presented as follows:-

variable assigntype expression (4.1) 

where variable can be a scalar, vector or matrix variable, 

assigntype is a mathematical operator of types '=',' +=' , 

'-=', '*=' or ' /=' and expression can be a variable or 

variables in a mathematical expression. A scalar variable 

holds a single value. A vector variable is a one

dimensional array and matrix variable is a two

dimensional array. 

For example, a mathematical specification for the 

activation function (4.2) and the modification weights 

during training (4.3) in the backpropagation algorithm 

are expressed in the matrix-vector forms as follows:-

layer2 = /(weight*layer1 + bias2) (4.2) 

weight += alpha*dweight + beta*cweight (4.3) 

where alpha and beta are scalar variables, layer] and layer2 
are vectors which represent the nodes in the first and 

second layers, bias2 is a vector variable which represents 

'bias' on the second layer, cweight is a matrix which 

contains the change of weight, weight is the connection 

strength between the first and second layers, dweight is 

the matrix derivative of weight and f is the activation 

function such as the sigmoid function (figure 2.20). The 

operator '+=' is equivalent to 

weight = weight + ... 

The compiler translates (4.2) and (4. 3) 

following algorithms :-
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for (i = 0, m-1) { 

} 

n-l 
layer2[i] = f( L,(weight[i][k] * layer1[k])+ bias2[i]); 

k=O 
for (j = O,n-1) 

weight[i][j] + = alpha * dweight[i][j]+ beta * cweight[i][j]; 

where weight[i] [k] means the connection weight from node k 
to node i. 

An assignment statement is divided into 3 types. The 
first is a scalar assignment, second is a vector 
assignment and third is a matrix assignment. In a scalar 

assignment, the left hand-side (4.1) is a scalar variable 
and its right-hand side must give a scalar result. 

In the following section, vector and matrix 
assignments will be discussed. The vector and matrix 
variables are named as, vector and matrix, and a scalar 
variable is named as scalar. 

4.1.1 Vector assignment 

In a vector assignment, the left hand-side of (4.1) is a 
vector variable and its right hand-side must contain the 
following expressions :-

4.1.1.1 Scalar expression 

Scalar expression can be a number, a scalar variable or 
mathematical expression that gives a scalar result. For 
example :-

vector = scalar + 3 
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This means that the calculated scalar 

assigned to all vector components. 

translated statement is as follows :-

for (i = 0, m-i) 

expression is 

The equivalent 

vector[i] = scalar + 3; 

4.1.1.2 Vector expression 

A vector expression can be a vector variable or 

mathematical expression that gives a vector result. The 

size of the vector must be equal to the vector size of 

the left hand-side of (4.1). For example:-

vector = vectorl + vector2 

vector = scalarl*vectorl - scalar2 

Each component of a vector expression is assigned to each 

component of a vector variable. The equivalent translated 

statement is as follows:-

for (i = 0, m-i) { 

} 

vector[i] = vectorl[i] + vector2[i]; 

vector[i] = scalarl*vectorl[i] - scalar2; 

4.1.1.3 Matrix-Vector multiplication 

Matrix-vector multiplication is a product between a 

matrix and vector variables. The column size of a matrix 

must be equal to the size of the vector variable. The 

result is a vector of size equal to the row size of the 

matrix and the vector size of the left-hand side of 

(4.1). For example:-

vector = matrix * vectorl + vector2; 
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Each component of the multiplication results is assigned 
to each component of the vector variable. The equivalent 
translated algorithm is as follows :-

for (i = 0, m-1) 

n-l 
vector [i] = I.(matrix[i][k] *vector1[kj) + vector2[i]; 

k=O 

4.1.1.4 Function expression 

A function expression can be a built-in function or a 
user-defined function. The function type depends on its 
argument. If the argument is of scalar type, the function 
type is a scalar. If its argument is a vector, the 
function type is a vector with size must be the same as 

its left-hand side of (4.1). For example:-

vector = SIGMOID(matrix*vector1+vector2)i 
vector = SQR(scalar) i 

where SIGMOID and SQR are built-in functions. The 
equivalent translated algorithm is as follows:-

for (i = 0, m-1) { 

} 

n-l 
vector[i] = SIGMOID( I.(matrix[i][k] *vector1[kj) + vector2[i] ); 

k=O 
vector[i] = SQR(scalar)i 

4.1.1.5 Vector-Matrix assignment 

A vector-matrix assignment is involved when an expression 

contains a matrix variable. There are two ways of 
representing this matrix variable as a vector type. These 
are :-
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(1) to get all values of a matrix on a specified row, the 

following statement is used :-

vector = matrix@; 

(2) to get all values of a matrix on a specified column, 

the following statement is used :-

vector = matrix#; 

The specified row or column depends on the status of a 
reserved word ROW. Its use will be explained later. 

4.1.1.6 Recursive Vector assignment 

The operator used in the previous assignment is only '='. 
However, other operators def ined under assigntype of (4. 1) 
can be applied. They serve as a recursive assignment for 
a vector variable on the left-hand side of (4.1). For 
example, the update operator is written as follows :-

vector += vector_expression 

It is equivalent to the following statement, 

vector = vector + vector_expression 

The equivalent translated algorithm is as follows:-

for (i = 0, m-1) 
vector[i] += vector_expression; 

The operator '+=' and other recursive operators are also 

valid operators for C language. 
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4.1.2 Matrix assignment 

In a matrix assignment, the left hand-side of (4.1) is a 

matrix variable and its right hand-side must contain the 

following expressions :-

4.1.2.1 Scalar expression 

A scalar expression can be a number, a scalar variable or 

a mathematical expression that gives a scalar result. For 

example :-

matrix = scalar + 3; 

This means that the calculated scalar expression is 

assigned to all matrix components. The equivalent 

translated statement is as follows :-

for (i = 0, m-1) 

for (j = O,n-1) 

matrix[i][j] = scalar + 3; 

4.1.2.2 Matrix expression 

A matrix expression can be a matrix variable or 

mathematical expression that gives a matrix result. The 

row and column size of this matrix must be equal to the 

size of the matrix variable of the left hand-side of 

(4.1). For example :-

matrix = matrix1 + matrix2; 

matrix = scalar1*matrix1 - scalar2; 

Each component of a matrix expression is assigned to each 

component of a matrix variable. The equivalent translated 

statement is as follows :-
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for (i = 0, m-1) 
for (j = 0, n-1) { 

} 

matrix[i)[j) = matrix1[i)[j) + matrix2[i) [j)i 

matrix[i)[j) = scalar1*matrix1[i)[j) - scalar2i 

4.1.2.3 Function expression 

A function expression can be a built-in function or a 
user-defined function. The function type depends on its 
argument. If the argument is of scalar type, the function 
type is a scalar. If its argument is a matrix, the 

function type is a matrix with size must be the same as 
the left-hand side of (4.1). For example :-

matrix = SQRT(matrix1)i 

where SQRT is a built-in function. The equivalent 

translated statement is as follows :-

for (i = 0, m-1) 
for (j = 0, n-1) 

matrix[i)[j) = SQRT(matrix[i)[j))i 

4.1.2.4 Outer-Product o/two vectors 

The outer-product of two vector yields a matrix with its 
row size equal to the size of the first vector and its 
column size is equal to the size of the second vector. 

For example :-

matrix = vector1~vector2i 

The equivalent translated statement is as follows :-
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for (i = 0, m-1) 
for (j = 0, n-1) 

matrix[i)[j) = vector1[i)*vector2[j); 

4.1.2.5 Matrix-Vector assignment 

A matrix-vector assignment follows a similar concept to 
that of vector-matrix assignment. However, an expression 
contains a vector expression and a matrix variable of the 
left-hand side of (4.1) acts as a vector type. There are 
two types that represent a vector for a matrix variable. 
These are :-

(1) to get all values of a matrix on a specified row is 
written as follows :-

matrix@ = vector; 

(2) to get all values of a matrix on a specified column 

is written as follows :-

matrix# = vector; 

The specified row or column depends on the status of a 
reserved word ROW. Its uses will be explained later. 

4.1.2.6 Recursive Matrix assignment 

A recursive matrix assignment follows the same concept as 
a recursive vector assignment. For example, the update 
operator is written as follows :-

matrix += matrix expression 

It is equivalent to the following statement, 

matrix = matrix + matrix_expression 
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The equivalent translated algorithm is as follows:-

for (i = 0, m-1) 
for (i = 0, n-1) 

matrix[i][j] += matrix_expression; 

4.1.2.7 Matrix transpose 

The matrix transpose is written as matrix&. 

4.1.3 Vector Dot Product 

The dot product symbol is 

operator *. A dot-product 
vectors of the same size. 

For example :-

, .' to distinguish it from 

is a multiplication of two 

It produces a scalar value. 

scalar = vector 1. vector 2 

The equivalent translated algorithm is as follows :-

, 

n-\ 
scalar = L(vectorl [k] *vector2 [k]) 

k=O 
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4.2 THE DESIGN AND IMPLEMENTATION OF COMPILER MODULES 

This section contains a detailed discussion of how the NN 

compiler (NEUCOMP) is designed and implemented. It begins 

with the design of its language (NEUCOMP language). The 

NEUCOMP language is the high-level programming language 

specifically designed for any NN simulation. 

4.2.1 Defining Formal Grammar 

Formal grammars are used to define the syntax of a 

language [Aho et al. (1986), Bennett (1990)]. This syntax 

is specified in a top-down fashion. Grammar rules or 

productions are used to def ine each component of the 

language from a simpler component, i.e. individual 

characters, into a sentence. 

The general form of a production used in the 

definition of a programming language is :-

where entity A is made up of the string of simpler B1B2B3 

... Bn which could be a character or a string defined 

elsewhere. It .means that A will be replaced with B1B2B3 ... Bn 

when we find A anywhere in the definition of the program. 

When a string cannot be expanded further, it is called a 

. sentence. Hence, syntactically correct programs are 

sentences derived using the formal grammar defining the 

syntax of the programming language. 

A typical example of a production of defining the 

'if-statement' for the NEUCOMP language is as follows :-

if statement ::= IF '(' logical_expression ')' 

statement list ENDIF 

where it means that if_statement consists of a reserved word 

IF followed by a symbol '(', followed by /ogicaCexpression, 
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followed by a symbol ')', followed by statemenClist and a 

reserved word ENDIF. 
The syntax of the NEUCOMP language begins with a 

single entity from which all syntactically correct 
programs are derived. It is written as follows :-

program ::= program_heading 
identifier declarations 

main_declaration 
subprogram_declarations 

where program is known as the ' sentence symbol' which 
contains a production of program_heading, identifier_declarations, 
main_declaration and sub program_declarations • 

There is more than one type of production that can 

be written. These are :-

(1) Alternative definition which is written as :-

A : : = B1B2B3 ... Bn 
A : : = C1C2C3 ... Cm 

which can be written as follows '-• 

(2) Self-referential or recursive definition which is 

written as follows :-

A ::= Ax I y 

(3) The null symbol is written as follows :-

A ::= e I B 

where e is a null symbol which means A is either null 

or made up of B. 
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Some examples of the NEueOMP grammar rules are as 

follows:-

(1) subprogram_heading ::= PROe 

(2) identifier list ::= identifier 

FUNe 

identifier list ',' identifier 

(3) identifier declarations ::= e 
declarations list 

where production (1) shows two alternatives in the 

def ini tion of a symbol sub program_heading , production (2) 

illustrates recursion on a symbol identifier_list, and 

production (3) makes use of the null symbol, e which 

means there is no declaration or declarations defined in 

the form of symbol declarations_list. 
The use of all types of productions when specifying 

the syntax of the programming languages is known as the 

'Backus-Naur form' or more commonly BNF after its 

inventors [Aho et al. (1986), Bennett (1990)]. The 

complete BNF specification of the NEueOMP language is 

shown in Appendix A. 

4.2.2 Defining the Symbol Table 

A symbol table plays an important role throughout the 

compilation process because it provides information about 

the names used in the source program. The usage of the 

symbol table is explained. The lexical analyser looks up 

for a name in the symbol table. If it does not exist then 

its name is inserted in the table. The syntax analyser 

looks up for the name and adds information such as the 

type of variable in the symbol table. The semantic 

analyser looks up the name in the symbol table that has 

the. type used in accordance to its role in the program, 

i.e. the procedure name cannot be used as an expression. 
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Hence, the symbol table contains information about 

the names and their type that are used in the program. 

Their declaration are as follow :-

struct symb { 

char *name; 

int type; 

union { 

char *diml, *dim2; 

int status; 

} ; 

char *rval; 

int intoRreal; /* integer or real */ 

int scope; /* local or global */ 

} val; 

where name is a string that holds a variable name, rype is 

used to specify a variable type which could be a file, 

string, function or procedure, scalar, vector or matrix, 

union is the C code used to allow a variable type to 

contain additional information such as a scalar can have 

field types intORreal, rval and scope, a vector or matrix can 

have field types dim], dim2, status, scope and intORreal, and a 

variable of type file does not require any additional 

information: The field types dim] and dim2 are used to 

hold the size of an array in the form of a variable name 

or number. The field type status is used by a vector/matrix 

variable to represent the current status of this 

variable, Le. a matrix variable is used as a vector 

variable (section 4.1).. The variable rval is used by a 

scalar variable to hold an integer or a real constant. 

The field type intORreal is used to show that the variable 

is of type integer or real. The field type scope signifies 

whether a variable is global or local. 

NEUCOMP uses an open hash table for efficient look

ups of names in the symbol table. For example, in 

checking if the name of a variable used in an assignment 

statement has been declared. A linear search is not 
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efficient [Bennett (1990)]. In an open hash table, 
variable names with the same hash index are linked in the 
same list. Therefore, the data structure of an open hash 
table follows the following convention :-

#defirie HASHSIZE 999 

struct symb { 

struct symb *next; 

} ; 

struct symb *symbtab[HASHSIZE]; 

where HASH SIZE is the size of the symbol table and symbtab 

is an array of size HASH SIZE , each pointing to struct symb. 

Discussions on designing and implementing compiler 

modules, references to each field in the symbol table are 
based on the following definitions :-

#define MN symb.name 

#define MT symb.type 

#define MR symb.val.rval 

#define ML1 symb.va1.dim1 

#define ML2 symb. val. dim2 

#define IR symb.val.intORreal 

#define se symb.val.scope 

#define MLT symb.val.status 

4.2.3 Implementing the Lexical Analyser 

The lexical analyser can be designed by hand. However, to 
achieve better program maintenance, using a compiler 
generator is recommended. A tool called Lex (section 

3.5.1) is used to generate a lexical analyser. 
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4.2.3.1 Lex - A Toolfor Building the Lexical Analyser 

Lex is a lexical analyser generator available under the 
UNIX operating system [Lesk et al. (1975)]. It generates 

a stream of tokens useful for syntax analysis. A token is 

a group of individual characters of the source language. 

Lex uses regular expression [Aho et al. (1986) , 

Bennett (1990) , Lemone (1992)] instead of the BNF 
grammars to describe the syntax of each token. Regular 
expressions make use of the following basic operations :-

concatenation 

Alternation 

Arbitrary repetition 

xy 

x I y 

x followed by y 

either x or y 

string x repeated zero 

or more times 

For example, to represent a number the regular expression 

can be written as below :-

means a digit, or a digit followed by one or more digits. 

The structure of the Lex language is as given 

be1ow:-

Lex definitions section 

%% 
Lex rules section 

%% 

User-support routines written in C 

4.2.3.2 Lex Definitions section 

The strings that will be used in the rules section are 

defined in the definitions section. The definition is 

written as a name being defined on the left and its 

definition on the right. For example :-
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comment 

1c letter 

digit 

identifier 

"//".* 
[a - z] 

[0 - 9] 

{lc_1etter} {{lc_1etter} I {digit}) * 

where comment consists of a symbol / / (must be quoted) 

followed by an arbitrary number of characters before 

reaching end of line, lcjetter consists of any lower-case 

alphabet, digit consists of any number between 0 and 9, and 

identifier consists of the first character which must be 

lc_letter then followed by none or more combinations of 

lcletter or digit. 
The definitions section may contain a variable 

definition written in C code enclosed within %{ and %}. 

This declared variable will be used in Lex rules (C code 

section) or user-support routine. 

4.2.3.3 Lex Rules section 

The rules section contains the name of a token on the 

left and the right contains some C program code within { 

and } to obey if that match succeeds. For a token name 

enclosed with { and } means its definition is available 

in the Lex definitions section. An example of the Lex 

rules section for the NEUCOMP language are as follows :-

{identifier} 

NEURALNET 

{ mkname{)i return IDENTIFIERi } 

{ return NEURALNETi } 

where identifier is the name of the token defined in the Lex 

definitions section. It is written within { and }. If the 

input that represents this token is an identifier, Lex 

calls the function mkname{) and returns an integer 

variable, IDENTIFIER to represent the token identifier. 

The name NEURALNET is a token to represent NEUCOMP' s 

reserved word. 
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Every token is assigned with a different integer 
value when the 'Yacc program' (section 4.2.4) is executed 
with -d option. They are defined in a header file, y.tab.h 

which is produced by the Yacc program. This header file 
is included in the Lex definitions. 

4.2.3.4 Lex User-support routines 

The Lex User-support routines are required when we want to 
include a subroutine to support the Lex program. It is 
written in the C language. An example of the Lex user

support routines are mkname () and mkval (). These C-code 
routines are defined by the user. When the Lex analyser 
recognises that a token is an identifier a routine 
mkname() is called. It will look up this identifier in a 
symbol table using function lookup 0 which is declared as 
an external variable in the Lex definitions. .If an 
identifier is not found in a symbol table, its name is 

inserted in a symbol table using the function insertO. It is also 
declared as external variable in the Lex definitions. 
Functions lookupo and insertO are defined in other C 
files. The reason these functions are put separate from the 
Lex program is that these functions are also required by 
other compiler modules such as during syntax and semantic 

analysis. The function mkval () converts a number 
previously defined as a string into a number. 

A Lex program is executed using the Lex command 
code. The output is a file called lex.yy.e written as a C 
program. It contains an integer-valued function called 
yylex() • When this function is called by the syntax 

analyser, it returns the next token from the input 

language (NEUCOMP program). The file, lex.yy.e will be 
compiled with other compiler modules in order to produce 
an executable compiler program. 
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4.2.4 Implementing the Syntax Analyser 

There are many methods of designing a syntax analyser or 
parser. Most of them are table driven [Aho et al. (1986), 

Bennett (1990)]. This is a tedious process when done by 
hand. However, such tables can be generated automatically 

by using a software tool. A popular tool called Yacc is 

used to generate a syntax analyser (section 3.5.2). 

4.2.4.1 Yacc - A Tool for Building the Syntax Analyser 

Yacc (stands for Yet Another compiler-Compiler) is a 

parser generator which is widely available under UNIX. 
A YACC program takes a specification of a NEUCOMP 

grammar and its semantic actions, and produces LALR(l) 
parsing tables and a shift-reduce pars er [Aho et al. 

(1986), Bennett (1990), Lemone (1992)]. The source 
program (NEUCOMP program) is read as a stream of tokens 

provided by a separate compiler module called the lexical 
analyser. The output is the c-program and kept in a file, 
y.tab.c. It contains a routine called yyparse() that is 

responsible for carrying out 

The general form of 
follows:-

the parsing. 

the Yacc language 

Yacc definitions section 
%% 
Yacc rules section 

%% 
User-support routines 

4.2.4.2 Yacc Definitions section 

is as 

The list of tokens for the NEUCOMP language is presented 
in the Yacc definitions section. These tokens are 

returned by the lexical analyser. 
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All tokens are represented by a name which is 

written as :-

%token <name> 

For example, the tokens for the NEUCOMP language are 

specified below :-

%token NEURALNET 

%token IDENTIFIER 

where NEURALNET is a token for program heading and 

IDENTIFIER is a token for a variable. 

When the Yacc program that contains the above 

specifications is executed with -d option, a header file 

called y.tab.c is produced. It contains the list of an 

internal representation represented by a small integer, 

starting from 257 (numbers up to 255 are used for the 

single ASCII characters, 256 is used as an error token). 

Examples of the above tokens are written in the header 

file as :-

#define NEURALNET 287 

#define IDENTIFIER 290 

These representation are useful for the lexical analyser 

to return internal representations of tokens when they 

are recognised. Therefore, before we can run the Lex 

program, we have to run the Yacc program with -d option. 

In the Yacc definitions section, any ambiguity that 

may occur in an arithmetic expression for operators '+', 
'-', , * , and '/ ' can be overcome by specifying their 

precedences as below :-

%left 

%left 
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where operators that have the 
the same declaration. The 

same precedence appear in 
arrangement of higher 

precedences is based on the given order. 
The sentence symbol (section 4.2.1) for the NEUCOMP 

language can also be defined in the Yacc definitions 
section as :-

%start program 

The Yacc definitions section may contain more than 

one variable definition written in C code for the support 

routine. It is written within %{ and }%. 

4.2.4.3 Yacc Rules section 

The Yacc rules section defines the grammar rules and 

semantic actions of the NEUCOMP language. A grammar rule 
or production in Yacc has the following form :-

non-terminal: right hand side { actions }; 

where non-terminal is a string that has its definition on 

the right. Terminal is another word for token. Typical 
rules for the NEUCOMP language are as follows :-

expression: expression PLUS term 

; 

{ $$ = build_tree("+",T_OP,$l,$3); } 
expression MINUS term 
{ $$ = build_tree("-",T_OP,$l,$3); } 
term {$$ = $1; } 

The right-hand side may include terminals (tokens) such 

as PLUS and MINUS, and non-terminals which are expression 
and term. The non-terminal for expression is defined 
recursively and term is defined elsewhere. The vertical 
line 'I' means alt~rnative definition (section 4.2.1). 
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The actions contain C codes which are required to 

perform semantic actions. Each production is given 

semantic rules which describe how to compute the 

attribute value associated with each variable (terminal 

or non-terminal) in the production. This attribute value 

is passed up the parse tree to be used by other 

productions. The variable associated with the attribute 

value has attribute type to describe type of variable. 

This type can be an integer, a character or structure 

type. The attribute value has the form $n or $$ where $n 

is the attribute value associated with the nth. item in 

the right-hand side production. From the example given, 

the $1 is an attribute value associated with an 

expression 

associated 

or term and $3 is an 

with a term (first and second 

attribute value 

production). The 

$$ is the attribute being synthesised or a synthesised 

attribute. It associates with the non-terminal of the 

left-hand side of the production being derived from the 

attribute values on the right-hand side. For example, $$= 

build_tree("+", T_OP, $1,$3) defined from the previous production 

means an expression tree is built from a function buildJree 
and the result is returned to an expression which is in 

the left-hand side of the production. If there is no 

action to be specified, the default is written as $$=$1. 

The attribute type that is associated with the 

variables must be of the same type. Their types must be 

declared in the Yacc definitions section as follows :-

%type <expr_tree> expression 

%type <expr_tree> term 

The type of token can also be defined if we want to do 

semantic action on this token. For example, if we want to 

store or retrieve any information about an identifier in 

the symbol table, the type definition for token 

IDENTIFIER is as follows :-

%token <symb> IDENTIFIER 
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The type for ex pr_tree and symb must be specified by 
the user as a C union of all the types that attributes 
may have in the Yacc program. Examples of attribute types 
used by NEUCOMP are written as :-

union 
{ 

} 

struct symb *symbj 
struct tree node *expr_treej 
char *chrj 

The first and second fields are data structures to build 
up the symbol table and an expression tree respectively. 

When run under Yacc with -d option the above 
definition will appear in y.tab.h as shown below :-

typedef union { 
struct symb *symbj 

struct treenode *expr treej 
char *chrj 

} YYSTYPE 

Any associated attribute is passed back using the global 
variable yylval. This has the type ITSTYPE so that the 
appropriate member of the union must be used. 

4.2.4.4 Yacc User-support routines 

C code is placed in the user-support routines to support 

the semantic actions defined in the rules section. An 
example of a C code written in Yacc rules taken from the 
previous production (section 4.2.4.3) is the function 
build_tree("+", T_OP, $1,$3) • It is defined as follows:-
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struct treenode *build_tree(operand, 
op_type,left_tree,right_tree) 

char *operand; 
int op_type; 
struct treenode *left_tree,*right_tree; 

{ 

} 

struct treenode *tree; 
tree = gettree(); 
tree ->MN = operand; 
tree -> left = left_tree; 
tree -> right = right_tree; 
tree -> MT = op_type; 
return tree; 

4.2.5 Implementing the Semantic Analyser 

The semantic analyser for NEUCOMP 
analysis during syntax analysis. When 

performs 

the syntax 
semantic 
analyser 

recognises the NEUCOMP program construct (production) it 

calls a semantic routine which takes the construct and 
checks for semantic correctness. 

The semantic analyser also translates the NEUCOMP 
program into an equivalent C program. This is done after 
the checking for semantic correctness. 

4.2.5.1 Implementing Semantic checking 

The NEUCOMP's semantic analyser implements four types of 
semantic checking which are :-

(1) checking that an identifier is declared once. 
(2) checking that an identifier used has been declared. 
(3) checking that a variable and value are compatible. 
(4) checking the scope of a variable. 
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The semantic checking is performed on a variable. A 

variable written by the programmer is called an 

identifier. A variable written in capital letters is a 

reserved word, i.e. CYCLE and NPATTERN serve as a 

specific 

The 

purpose (section 4.4) • 

following section shows how the semantic 

checking for NEUCOMP are implemented. While undergoing 

semantic analysis, the identifier in the symbol table is 

changed accordingly. 

Checking that an identifier is declared once 

All identifiers used in a NEUCOMp program are declared in 

the declaration section. Each identifier is declared only 

once. 

The production rule for an identifier-declarations 

is defined as follows :-

identifier_declarations: type identifier_list 'i' 

where the type supported by NEUCOMP is a simple type 

which is an integer, a real, string or file. The 

structure type like record or pointer is not implemented. 

The production rule for identifier _list is further defined as:-

identifier-list : identifier 

lidentifier_list ',' identifier 

where identifier can be a scalar or an array' variable. The 

one-dimensional array variable is known as a vector 

variable and the two-dimensional array variable is known 

as a matrix variable. 

The production rule for a scalar variable is defined 

as follows :-

identifier IDENTIFIER I IDENTIFIER '=' NUMBER 
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where the alternative production allows a variable to be 

declared with an initial value. 
The production rule for a vector variable is defined 

as follows :-

identifier: IDENTIFIER '[' numORid '1' 

and the production rule for a matrix variable is defined 

as follows :-

identifier: IDENTIFIER '[' numORid ',' numORid '1' 

where numORid can be an integer constant or an identifier 
of type integer. This identifier need not be declared 
because the compiler will declare that identifier with 
type scalar integer and insert it in the symbol table. 

To implement declaration checking, the field rype in 

the symbol table declared earlier (section 4.2.2) is used 
to determine the type of the identifier. A small integer 

is represented by a variable type as shown below :-

#define T UNDEF 
#define T SCALAR 
#define T VECTOR 
#define T MATRIX 
#define TINT 

#define T REAL 
#define T STRING 
#define T FILE 
#define T FUNC 

o 1* undefined type *1 
1 1* scalar type *1 
2 1* vector type *1 
3 1* matrix type *1 
4 1* integer type *1 
5 1* real type *1 
6 1* string type *1 
7 1* file type *1 
8 1* function type *1 

The name of an identifier would have been entered into 
the symbol table by the lexical analyser, wi th type T

UNDEF using the function mknameo (section 4.2.3). The 

function lookupO takes a name and yields a pointer to its 
symbol table entry, in which we can set the type field. 

An algorithm to implement the declaration checking 
on a scalar is written as :-
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identifier : IDENTIFIER 

I 

{ if ( $l->MT == T UNDEF ) { 

} 

} 

if ( type is T STRING or T FILE ) 

$l->MT = type; 

else { 1* scalar type *1 
$l->MT = T_SCALAR; 
$l->IR = type; 

} 

else error (" identif ier declared 
more than once"); 

IDENTIFIER I = I NUMBER 

{ 

} 

if 

} 

( $l->MT == T UNDEF ) { 

if (type is TINT or T_REAL) { 

$l->MT = T_SCALAR; 

$l->MR = $3; 
$l->IR = type; 1* int or real 

} 

else error("not an integer or 
a real type"); 

else error ("identifier declared 
more than once"); 

*1 

where T_UNDEF means an identifier is not given any type. 
If the type has been given, the first if-statement will 
not allow the same identifier to be declared more than 
once. An identifier of type string or file, its field 
type in the symbol table, $l->MT is assigned to T STRING 

or T FILE. An identifier of type integer or real, its 
field type, $l->MT is assigned to T SCALAR and its second 
field type, $l->lR is assigned to type T_INT or T_REAL. An 
identifier can be given a value and this is reflected in 
the symbol table as $l->MR. This is shown in the above 

alternative production. 
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An algorithm to implement declaration checking on a 

vector variable and its array size is written as :-

identifier: IDENTIFIER '[' numORid 'l' 
{ if ( $l->MT == T_UNDEF ) { 

} 

} 

$l->MT = T_VECTORj 
$l->IR = typej/*integer or real*/ 
if ( $3 is an integer constant ) 

$l->MLl = $3j 

else 
if ( $3 is an identifier 

} 

and $3->MT == T_UNDEF ) { 

$3->MT = T_SCALARj 
$3->IR = T_INTj 

else 
error ("integer is expected")j 

else error ("identifier declared 
more than once")j 

similar to scalar type declaration, the field type, $1->A1T 
is assigned to T_VECTOR and $1->IR is assigned to T_INT or 
T_REAL. Any information regarding numORid is also kept in 
the symbol table using the field, $1->A1LI depending on how 

numORid is defined. It represents an array 
integer constant or an identifier. If 

size of type 
it is an 

identifier, no declaration is 
compiler will change its type 

necessary because the 

in the symbol table to 

integer scalar. Its size will be determined at run-time. 

This characterises a dynamic-like structure. 
An algorithm to implement declaration checking on a 

matrix variable is similar to vector declaration provided 
that an . array variable declaration has two numORids 

representing two-dimensional sizes. The field type in the 
symbol table, $1->A1L2 is used to store the second 

dimensional size. 
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Checking that an identifier used has been declared 

All identifiers used in the NEUCOMP program must be 

declared before they can be used in the program's body. 

In order to know that an identifier has been declared, 

the field type in the symbol table for that identifier 

must not be T_UNDEF. This value should have been changed 

when that identifier was declared. 
There are three types of functions that return TRUE 

or FALSE. These are used to check an identifier type, 

namely, exisCid, existJile and existJunc. The function exisCid 
returns TRUE when the type of the identifier is either 

integer or real, otherwise it will return FALSE. 

Similarly for the other functions, provided that existJile 
is used to check an identifier of type file and existJunc 
is used to check an identifier of type function or 

procedure. An error message showing that an identifier is 

not declared will be displayed. 
The following shows an algorithm for the semantic 

checking on a production such as 'openfile-statement' and 

'for-statement' :-

openfile_statement: OPENREAD '(' IDENTIFIER ',' 

{ if ( exist file($3) == TRUE ) 

{ 1* do other routine *1 } 
else error("undeclared file name"); 

} 

for statement FOR IDENTIFIER '=' ... 
{ if (exist id($2) == TRUE) 

{ 1* do other routine *1 } 
else error("undeclared identifier"); 

} 

Checking that a variable and value are compatible 

A variable refers to either a reserved word or declared· 

variable (which is an identifier). The value for the 
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NEUCOMP language refers to an integer, a real or string 

constant. 

The type rules involved are :-

(1) if a variable is of type file, it is only used in a 

statement such as open file, read from file, write 

into file and close file. The string constant is 

assigned to this variable to indicate the file name. 

(2) if a variable is of type string, it accepts a string 

constant written within " " or assigned the string 

constant using a read statement. 

(3) if a variable is of type procedure/function, it is 

used in the name of subprogram-heading, calling 

procedure or function. 

(4) if a variable is of type integer or real, it is used 

in the assignment statement and other statements such 

as 'print-statement', 'read-statement', etc. This 

variable is declared as a scalar, vector or matrix 

variable. 

The algorithms to implement semantic checking on (1) to 

(3) which use the functions such as exist...file and existJunc 
are considered as straight forward. However, the rule (4) 

is not really straight forward. 

This section focuses on how semantic checking is 

implemented in the assignment statement. The production 

rule for an assignment statement is defined as follows :-

assignment_statement : variable assigntype expression 

where assignrype is the symbol '=', '+=', '*=' or '/=', and 

expression can be a single item such as a variable, number 

or function, or consists of the following form :-

operand1 operator operand2 

In order to do the semantic checking, the expression 

itself must have- a type. For a single item such as a 
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variable, the expression type is based on the variable 
type. For a function, the expression type follows the 
type of function argument. If its argument is a scalar 
then the expression type is a scalar. If its argument is 
a vector/matrix then the expression type is a 

vector/matrix including its size. 
If the expression is not a single item then the 

following shows an algorithm to assign a type to it :-

(1) assign either real or integer type :-

if (operand1->IR == TINT && operand2->IR -- T_INT) 

expression->IR = T_INT; 

else 
expression->IR = T_REAL; 

(2) assign the type scalar, vector or matrix :-

if (operand1->MT == T_SCALAR && 

} 

else 

operand2->MT == T_SCALAR/T_NUM ) { 
expression->MT = T_SCALAR; 

/* do translate expression */ 

if (operand1->MT == T_VECTOR/T_MATRIX && 

operand2->MT == T_VECTOR/T_MATRIX) { 

if (matrix/vector size are equal) { 
expression->MT = T_VECTOR/T_MATRIX; 
expression->ML1 = operand1->ML1; 

expression->ML2 = operand1->ML2; /*for matrix*/ 
/* do translate expression */ 

} 

else 

} 

else 

error("incompatible size"); 

if (operand1->MT == T_MATRIX/T_VECTOR 
AND operand2->MT -- T SCALAR ) { 

97 



} 

else 

expression->MT = T_VECTOR/T_MATRIXi 
expression->ML1 = operand1->ML1; 
expression->ML2 = operand1->ML2i /*for matrix*/ 

/* do translate expression */ 

if (operand1->MT == T SCALAR 

} 

AND operand2->MT == T_MATRIX/T_VECTOR ) { 

expression->MT = T_MATRIX/T_VECTOR; 
expression->ML1 = operand2->ML1; 
expression->ML2 = operand2->ML2; /*for matrix*/ 

/* do translate expression */ 

The routine to perform do translate expression will be 
explained in section 4.2.5.2. 

After the expression is given a type, the next step 
is to perform semantic checking on an assignment. The 

algorithm is as follows :-

(1) If the variable is of type integer then the 
expression must be an integer. For a variable of type 
real, the expression can be real or integer. 

The following algorithm shows how to perform this 

rule :-

assignment_statement : variable assigntype expression 

{ 

} 

if ( ($l->IR == T_INT && $3->IR == T_INT) 
I I ( $l->IR == T_REAL && ( $3->IR == T_INT 

else 

I I $3->IR== T REAL ) ) ) 
{ goto 2 } 

error("variable and expression 
have different types"); 
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(2) If the variable is a scalar then the expression must 

be a scalar. For a variable of type vector, the 

expression must be a scalar or vector with size equal 

to the size of vector variable. For a variable of 

type matrix, 

matrix with 

variable. 

the expression must be a scalar or 

size equal to the size of matrix 

The algorithm to perform this rule is as follows :-

if ($l->MT == T_SCALAR/T_VECTOR/T_MATRIX && 

$3->IR == T_SCALAR) 

{ 1* do translate assignment *1 } 
else 

if ($l->IR == T_VECTOR && $3->IR == T_VECTOR) { 

if ( $l->MLl == $3->ML1) 1* check sizes *1 

else 

} 

else 

{ 1* do translate assignment *1 } 

error("incompatible vector size ll ); 

if ($l->IR == T_MATRIX && $3->IR == T_MATRIX) { 

if ( $l->MLl == $3->MLl && $1->ML2 == $3->ML2) 

{ 1* do translate assignment *1 } 
else 

error (" incompatible matrix size"); 

} 

The routine to perform do translate assignment will also be 

explained. 

Checking the scope of a variable 

All variables used in a NEUCOMP program can be declared 

either as local or global. The variables which are 

reserved words, are declared as global by the compiler. A 

variable declared by the programmer in the declaration 

section, above the main program is called a global 
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variable. A variable declared in the declaration section 

within main/subprogram (called block) is a local 

variable. Its use is within the block in which it is 

declared. 

The semantic checking for the scope of a variable is 

based on the following simple approaches which are :-

(1) NEUCOMP does not allow a global variable to be 

declared as local. An error message will be displayed 

specifying the same variable is declared more than 

once. The algorithm follows the semantic checking for 

a variable declared once as described previously. 

(2) In the symbol table, the field scope is used to keep 

an integer value type, namely GLOBAL and LOCAL. All 

global variables will have their field scope in the 

symbol table are set to GLOBAL. The field scope for 

the local variables are set to LOCAL. However, at the 

end of the block where they are declared, they are 

removed from the symbol table. This is done by 

searching for all the names with field LOCAL and 

deleting them. In this way, a variable declared in 

two different subprograms, represents two different 

entities which are not related. 

4.2.5.2 Translating into the Target program 

A NEUCOMP program is translated into an equivalent C 

program after semantic checking. This section focuses on 

the process of translation that involves a vector/matrix 

variable such as in an assignment statement. statements 

such as 'for-statement', 'if-statement', 'repeat

statement' and 'while-statement ' involve only a scalar 

variable. Translation on a scalar variable is a straight 

forward process, however, 

requires more effort. 

a vector/matrix variable 

There are three stages involved in the process of 

translating an assignment statement which are :-
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(1) After the parsing of the expression, an expression 

tree is built. An expression tree is a binary tree 

data structure [Wirth (1976)] in which its root is an 

operator and its left and right children are an 

operand. 

(2) An expression tree is then converted into a postfix 

expression. A postfix expression 

that consists of two operands 

is an expression 

fOllowed by an 

operator. Evaluating a postfix expression is easy to 

program because an operator and operand have been 

arranged 

postfix 

based on their precedences. An 

expression for the expression 

written as, 

root 

example of a 

a*b+c*d, is 

null 

(3) The translation is carried out involving two stages. 

First, the postfix expression is translated and then 

an assignment statement which involves variable, 
assignrype and the translation code of the expression is 

translated. These are performed under the if 

condition of the semantic checking on the expression 

and assignment statement as discussed previously. 

Translating the poStflX expression 

The process of translating the postfix expression is 

based on the following operations :-

(1) find the first 3 nodes from the root of the postfix 

expression that contains two operands and an 

operator. The example of the above expression is :-
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The semantic checking was implemented on both 

operands and has been explained earlier. 

(2) translate the expression based on the following 

conditions and find its type. Both are under the 

routine do translate expression. 

(a) If the first and second operands are scalars then 

translate directly into an infix expression, i.e. 

a*b. A bracket is required if an operator is '+' 
or I_I in order to maintain precedences. The type 

of translated code is T SCALAR. 

(b) If the first operand is a scalar and the second is 

a vector then translate into an infix expression 

including "[I)" on the vector variable, i. e. 

a*b[I). Similarly, if the second operand is a 

matrix, it is translated as a*b[I) [J). The use of I 
and J (both are reserved words) will be discussed 

when describing translating an assignment. The type of 

translated code is T_VECTOR/T_MATRIX and the size 

of an array is that of the vector/matrix size. 

(c) If the first operand is a vector and the second is 

a scalar then the translated code and its type are 

similar to (b), Le. a[I]*b. similarly, if the 

operand is a matrix then it is translated as 

a [I) [J) *b. 
(d) If the first and second operands are vectors then 

there are three types of translation, which are :-

(dl) If the operator is '.', then this is a dot 

vector product which gives a scalar type 

result. The library routine for the 

translated code called Dotproduct is used. 

It contains the argument of these two 

vectors and their array size, i.e. 

Dotproduct(a,b,n) where n is the array size 

of vector a. 
(d2) If the variable on the left-hand side of 

an assignment is a matrix, then this is an 
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outer product of two vectors which gives a 

matrix type result. The translated code is 

a[l]*b[J] where the size of the vector a is 

the row size of the matrix and the size of 

vector b is the size of its column. 

(d3) If the variable on the left-hand side of 

an assignment is a vector, then the 

translated code is a[I] *b[I] and its type 

is a vector and the array size is the size 

of the vector a. 

(e) If the first operand is a matrix and the second 

operand is a vector and the operator is '*' then 

this is the matrix-vector multiplication which 

gives a vector type result. The library routine 

for the translated code called MuCmaCvec is used. 

It contains the arguments of these two operands, 

the size of the vector variable and I, i.e. 

MuCmaCvec(a,b,n'/) where n is the array size of the 

vector b. 
(f) If the first operand is a matrix and the second 

operand is a matrix then the translated code is 

i.e. a[I][J]*b[I][J] and its type is also a matrix. 

(3) After translating the two operands and operator, this 

translated code is then 'push' onto the stack. Stack 

is the First-in-First-out data structure [Wirth 

(1976)]. It contains a pointer that points to the 

translated code, the type of this code, and the size 

of array if the type is a vector/matrix. The type of 

expression in the stack is determined at stage (2). 

The following is an example of how the given expression 

is translated :-

(a) From the operation (1), the three pointers that point 

to two operands and operator are :-
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root null 

node1 node2 node3 

(b) From the operation (2), the translated code is a*b if 
both are scalars and its type is T_SCALAR. 

(c) From the operation (3), the translated code and its 
type are pushed onto the stack as shown below :-

ropl,~I·a'b 
stack 

where top is an index that shows the content of the 
top of the stack. The postfix expression is adjusted 
accordingly as :-

root null 

All nodes contain an integer variable called INSTACK. 
For the adjusted node, its INSTACK is set to TRUE 
which means that the operand is the translated code 
from the stack. The adjusted node is also an operand. 

By repeating the same step (c), the stack now 
contains the following translated codes :-

stack 

and the adjusted postfix expression is now 

root null 
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In this case both adjusted nodes have INSTACK value 

TRUE. The operands are taken or 'popped' out twice 

from the stack. They are then merged into one 

translated code. Its type is obtained as in rule (3). 

This translated code is then pushed back into the 

stack as shown below :-

t'P~' 
stack 

Translating an assignment statement 

The routine to translate an assignment statement is under 

the name do translate assignment that was discussed in the 

semantic checking of an assignment statement. An example 

of an assignment statement to carry out translation is as 

follows :-

x = a*b + c*di 

where the expression was translated previously. Its 

translated code is in the stack. The variable x is then 

translated according to the following rules :-

(1) if the variable is a scalar and the type in the stack 

is a scalar, then the routine do translate assignment is 

given by the example below :-

x = a*b + c*di 

or if a and b are vectors of size n then 

x = Dot-product(a,b,n)+c*di 

(2) if the variable is a vector and the type in the stack 

is a scalar, then the routine do translate assignment is 

given by the example below :-
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for (I = 0; I < n; l++) 
x[l] = a*b + c*d; 

(3) if the variable is a matrix and the type in the stack 
is a scalar, then the routine do translate assignment is 

given by the example below :-

for (I = 0; I < m; l++) 
for (J = 0; J < n; J++) 

x[l][J] = a*b + c*d; 

(4) if the variable is a vector and the type in the stack 
is a vector, then the routine do translate assignment is 

given by the example below :-

for (I = 0; I < n; l++) 
x[l] = a[l]*b[l] + c*d; 

where a and b are vectors of size n or if a is a 
vector of size nand b is a matrix of size m*n then we 

have :-

for (I = 0; I < m; l++) 
x[l] = MU1_mat_vec(a,b,n,l) + c*d; 

(5) if the variable is a matrix and the type in the stack 
is a matrix, then the routine do translate assignment is 

given by the example below :-

for (I = 0; I < m; l++) 
for (J = 0; J < n; J++) 

x[l][J] = a[l]*b[J] + c*d; 

where a and b are vector variables of size m and n. 

The variables c and d are considered scalar variables. 
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4.2.6 Dynamic Allocation Memory 

The size of the NEUCOMP's array declaration can be 

defined as static or dynamic. A static size means a 

positive integer constant is allocated to an array 

variable. Dynamic size means a scalar variable become the 

size of an array variable where it will be later 

allocated at run-time. 

The size of the memory that will be allocated at 

run-time is called Dynamic Allocation Memory (DAM). Its 

advantage is that the size of the NN structures can be 

changed at run-time for the particular NN simUlation 

programs. The disadvantage of using static allocation is 

that when changing the size of an array, re-compilation 

and re-execution of the NN program is necessary. 

The following example shows how to declare DAM :-

REAL layeri[ni], layer2[n2], weight[n2,ni]; 

The scalar variables nl and n2 need not be declared. 

NEUCOMP will translate the above declaration into the 

following C-code :-

int ni, n2; 

float **weighti,*layeri,*layer2; 

extern float * setup_vector{); 

extern float **setup_matrix{)i 

main{) { 

} 

printf{"Type size of ni = ")i 
scanf{"%d",&ni); 

printf{"Type size of n2 = ")i 
scanf{"%d",&n2)i 

layeri = setup vector{ni)i 

layer2 = setup vector{n2)i 

weighti = setup_matrix{n2,ni)i 
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The procedure setup_vector() and setup_matrixO are defined in 

the NEUCOMP library routine as follows :-

float *setup_vector(size) 
int sizej 

{ int ij 

} 

float *newj 
new = (float *) malloc(size*(sizeof(float»)j 
return (new)j 

float **setup_matrix(row,col) 

int row,colj 
{ int ij 

} 

float **newj 
new=(float **)malloc(row*(sizeof(float*»)j 
new[O]=(float*)malloc(row*col*(sizeof(float»)j 

for (i=l;i< row; i++) 

new[i] = new[O] + (col*i); 
return (new)j 

4.2.7 Implementing the Loop Optimiser 

Improving the target program so that it can run faster or 

take less memory space or both is a difficult task [Aho 

et a!. (1986), Bennett (1990)]. The improvement is done 
by program transformations that are traditionally called 

'optimisation', although this term is a misnomer because 

there is a rarely any guarantee that the resulting code 
is the best possible. 

Actually, optimising the target program generated by 

NEUCOMP is not really necessary because the target code 

is written in C and the C compiler has its own code 

optimiser. The only improvement that can be done on this 

target program is on the 'for loop' generated by NEUCOMP 

that involves vector and matrix variables as discussed 
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earlier. There may be many repeated loops containing many 
statements involving vector/matrix variables. For 

example, in the backpropagation algorithm (section 
2.2.1), to update the weight and bias between the input 

layer and the first hidden layer we have the following 

matrix/vector operations :-

weightl = alpha*dweightl + beta*cweight; 

cweightl = weightl - oweightl; 

bias2 = alpha*ddelta2 + beta*cbias2; 

cbias2 = bias2 - obias2i 

where the first two equations involve matrix variables 
and the rest involve vector variables. The generated 

target code is as follows :-

for (I = 0; I < n2; l++) 

for (J = 0; J < nl; J++) 
weightl[l) [J)= alpha*dweightl[l) [J)+beta*cweight[l) [J); 

for (I = 0; I < n2; l++) 

for (J = 0; J < nli J++) 

cweightl[l)[J) = weightl[l)[J) - oweightl[l) [J); 

for (I = 0; I < n2i l++) 
bias2[l) = alpha*ddelta2[l) + beta*cbias2[l); 

for (I = 0; I < n2; l++) 

cbias2[l) = bias2[l) - obias2[l)i 

The above program code can then be improved by removing 
the repeated loops as shown below :-

for (I = 0; I < n2; l++) { 

for (J = 0; J < nl; J++) { 

} 

} 

weightl[l) [J)=alpha*dweightl[l) [J) +beta*cweight [I) [J); 
cweightl[l)[J)=weightl[l)[J) _ oweightl[l) [J); 

bias2[l) = alpha*ddelta2[l) + beta*cbias2[l); 

cbias2[l) = bias2[l) - obias2[l); 
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-------------------------------- ------------

The loop optimiser for NEUCOMP was implemented by 

searching the statements that involve the loop for (1=0; ... ) 
and the same array size within the program block. They 

are then combined into one loop. Within the loop for (1=0; 
... ), there can be many repeated loops on for (J=O ... ). This 

can also be done using the same technique. 

4.3 COMPILING THE C PROGRAM 

To compile the C program from the compiler modules and 

the C program from the translated code is now explained 

in this section. 

4.3.1 Obtaining object code for Compiler modules 

The compiler program to develop NEUCOMP contains seven 

files which are main.c, lex.yy.c, y.tab.c, useroutine.c, translexpr.c, 

translassign.c and looptimiser.c. The file main.c is the main 

routine of the compiler program. It contains the call 

function, yyparse() which is a routine defined in y.tab.c and 

optimiser() which is a routine in file looptimiser.c. It also 

contains the functions lookup() and insert() which serve as 

look up names and the insertion of new names in the 

symbol table respectively. The file useroutine.c contains a 

user-support routine for the Yacc program. The files 

translexpr.c and translassign.c are used for translating the 

expressions and assignment statements respectively. 

The command to compile the compiler program is as 

follows :-

cc main.c y.tab.c lex.yy.c useroutine.c translexpr.c 

translassign.c optimiser.c -oNEUCOMP -lm 

where -0 is used to include the name of the executable 

file called NEUCOMP and -lm is used to allow the C 

compiler to access the C library routine that contains 
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standard mathematical 

executable file, 'make' 

corrected source file. 

formula. However, the UNIX 

can be. used to compile just the 

.Those files that involve no 

correction and have been previously compiled will not be 

compiled again. To achieve the above, type make after the 

UNIX prompt. 

Once the compilation is completed with no error, the 

executable file called NEUCOMP can then be used to 

compile any NEUCOMP program using the following command:-

NEUCOMP filename 

where filename is the name of a file that contains a 

NEUCOMP program. 

4.3.2 Compiling the Translated code 

When successfully compiled by NEUCOMP, the file neu.c is 

generated. This file contains the translated version of a 

NEUCOMP program which is written in C. 

However we have to compile the neu.c program together 

with the NEUCOMP's library routine defined in file 

libfonc.c, in order to start a NN simulation. This library 

function contains the functions to evaluate an assignment 

statement such as Dot...product and MuCmaCvec (section 

4.2.5.2). The command to compile these files is as 

follows :-

cc neu.c libfunc.c -0 NET -lm 

where NET is an executable file which can be used to 

execute the simulation program written in the NEUCOMP 

language. The 'make' facility is also used to compile the 

above command. 

In order to simulate other NN models we can have 

other NEUCOMP programs for them. We can then compile and 

execute this program using NEUCOMP as described earlier. 

111 



4.4 SOME NEURAL NETWORK SIMULATION PROGRAMS 

This section contains the discussion of how to write the 

NEUCOMP simulation program on the chosen NN models - the 

backpropagation, Kohonen, 

networks. The size of the 

the simulation program 

structure. 

ART 1 and Counterpropagation 
problem can be changed since 

is based on dynamic-like 

Each program has the heading name which is written 

as :-

NEURALNET name 

where name is the name of valid identifier which need not 

be declared but its name cannot be used elsewhere. 

4.4.1 The back propagation simulation program 

The backpropagation is the multilayer network (section 

2.2.1). A three layer fully connected feedforward network 

is used to develop the backpropagation simulation. Its 

network structure is declared as global variables shown 

below :-

REAL layerl[nl], layer2[n2], layer3[n3], 

weightl[n2,nl], weight2[n3,n2], 

bias2[n2], bias3[n3], pattern[n4,nl], 

target[n4,n3]i 

where layerI is a vector for the input layer, layer2 is a 

vector for the hidden layer, layer3 is a vector for the 

output layer, weightl is a matrix for the connection 

between the input layer and hidden layer, weight2 is a 

matrix variable for the connection between the hidden 

layer and output layer, bias2 is a threshold vector for 

layer2, bias3 is a threshold vector for layer3, pattern and 

target are used to hold the set of input and desired 

patterns respectively. The row size of pattern and target 
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represented by n4, is used to hold the number of patterns 

in the training set. Their columns hold the sizes of 

input and output layers respectively. The values of nI, 
n2, n3 and n4 will be assigned at run-time. 

To train the network, it can be done by using the 

following training loop :-

TRAINING 

... 
END; 

where the statement TRAINING contains a reserved word 

variable of type integer called CYCLE which is initially 

set to 100. It means the number of iterations is 100. 

However, this value can be changed by assigning a new 

value to CYCLE. The training algorithm is within the 

loop. 

To assign an input layer with a pattern, the 

following pattern loop is used :-

EPOCH 

layer1 = pattern@; 

... 
END; 

where the statement EPOCH ... END contains the loop 

starting from zero to the pattern size minus one set by 

an· integer variable called NPATTERN. Each iteration is 

assigned to the reserved word variable called ROW. The 

variable pattern wi th symbol I @' means its rowth. 
represented by ROW is assigned to layer1 (section 4.1.1.5). 

The loop may contain other statements. The NPATTERN is a 

reserved word variable which is initially set to one. It 

means only one pattern is involved in the training 

operation per cycle. However, this value can be changed 

by assigned a new value to NPATTERN. 
The weights are updated during training. For 

example, weight1 is updated as follows :-
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oweightl = weightlj 

weightl += GRBH(alpha,range,aweightl)+beta*cweightlj 
cweightl = weightl-oweightlj 

where the function GRBH (section 2.2.1) is a built-in 
function used to determine the value of alpha when aweigthtl 
is in range. 

Training may be terminated when a global error is 
less than the limit as defined below :-

IF (enormsqr LE limit) BREAK ENDIFj 

where enormsqr is the global error and limit can be set to 
any value, i.e. 0.01 and enormsqr is written as :-

error = target@ - layer3j 
enormsqr += 0.5*(error.error)j 

where @ on target means that all entries on a specific row 
are involved in the above calculation. The value of this 
row depends on the predefined scalar variable, ROUT. It is 
a positive integer used as an index to the matrix row. 
The operator '.' is known as dot vector product. 

The complete program is shown in Appendix c. 

4.4.2 The Kohonen network simulation program 

The Kohonen network is a two layer network that can 
organise a topological map from a random starting point 

(section 2.2.3). The network combines an input layer with 
a competitive layer by unsupervised learning. 

The network structure declared as global variables 
is shown below :-

REAL layerl[nl], layer2[n2], 
weight[n2,nl], pattern[n4,nl]i 
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where layerI is a vector for the input layer, layer2 is a 
competitive layer to be assigned the distance calculated 
between the input vector and their connection strengths, 
weight is a matrix for the connection strength between the 
input layer and the competi ti ve layer, and pattern is 
similar as in section 4.4.1. The values of nI, n2 and n4 
will be assigned at run-time. 

The training loop statement, TRAINING ... END and the 
pattern loop statement, EPOCH ... END are also used in the 

Kohonen training algorithm. 

The winner node at the competitive layer is defined 
as follows :-

layer2< = DISTANCE(layerl,weight}i 

where the symbol '<' means get an index of layer2 when its 
value is the minimum calculated as the distance between 
all nodes in layerI and their weights connected to each 

node in the competitive layer. The word DISTANCE is 
NEUCOMP I s built-in function. This index is assigned to 
ROW where layer2 [ROW] is the minimum. ROW itself is the 
winner node in the competitive layer. 

Although the competitive layer is declared as one
dimensional, it can also be used for two-dimensions. 
Since ROW is the winner node in one-dimension, then the 
winner node in two dimensions can be calculated as 
follows :-

REPEAT 

c = ROW - r*gridi 
IF (c GE grid) r = r + 1 ENDIF 

UNTIL ( c LT grid); 

where rand c is the winner node in two-dimensional layer 
which represents the map, and grid is the square root of 
the competitive size. 

Therefore updating the weights in the neighbourhood 
can be defined as :-
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r1 = r-neighb; 

r2 = r+neighb; 

IF ( r1 LT 0 ) r1 = 0 ENDIF; 

IF ( r2 GE grid) r2 = grid - 1 ENDIF; 

cl = c-neighb; 

c2 = c+neighb; 

IF ( cl LT 0 ) cl = 0 ENDIF; 

IF ( c2 GE grid) c2 = grid - 1 ENDIF; 

FOR (i = r1,r2 + 1) 

FOR (j = c1,c2 + 1) 

ROW = i*grid+j; 

weight@ += lrate*(layer1-weight@ ) 

END FOR 

ENDFOR; 

where neighb is the size of the neighbourhood. The points 

rl,el and r2,e2 are in the two-dimensions of map. 

The complete program is shown in Appendix D. 

4.4.3 The ART1 network simulation program 

The ART1 network is used to classify the binary pattern 

(section 2.2.4). It is a two layer network with the first 

layer an input layer and the second layer a competi ti ve 

layer. There are two network connections called 

feedforward and feedback weights. The vigilance threshold 

can be set between 0 and 1. 

The network structure declared as global variables 

is shown below :-

REAL layer1[n1), layer2[n2), weightf[n1,n2), 

weightb[n1,n2), pattern[n4,n1); 

where layerl is a vector for the input as well as the 

comparison layer, layer2 is a vector for the output as well 

as the recognition layer, weightf is a feedforward weight, 

weightb is a feedback weight and pattern is similar as in 
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section 4.4.1. The values of nl, n2 and n4 will be 
assigned at run-time. 

Only the statement EPOCH ... END is used in the ARTl 
network algorithm since the training loop statement as 

mentioned in the previous simulations are not used. This 
is because training in ARTl involves two stages which are 
the recognition and comparison stages. 

Calculating the best exemplar is done at the 
recognition stage and is as shown below :-

layer2> = weightf*layerl; 

where the symbol '>' means get an index of layer2 when its 
value is the maximum then assign it to variable ROW to be 

used by variable with sign @. 
The comparison stage is done as follows :-

IF (vigilance GE .99) 
weightf@ = weightb@*layerl/(O.S+weightb@.layerl); 
weightb@ = weightb@*layerl 

ELSE 

get next best exemplar when vigilance LT 0.99; 

where vigilance is used to distinguish that the new input 
pattern is different from the existing pattern. For the 
next best exemplar, we have to set weightj@ = 0 and then 
apply '>' again as before so that the new ROW is 
identified. 

The complete program is shown in Appendix E. 

4.4.4 The Counter propagation network simulation program 

The Counterpropagation network consists of a three layer 
feedforward network (section 2.2.5). The first layer is 
the input layer, the second layer is the competi ti ve 
layer and the third layer is the output layer. 

The network structure as declared global variables is 
shown below :-

117 



REAL weightl[n2,nl], weight2[n3,n2], 

layerl[nl], layer2[n2], layer3[n3], 

pattern[n4,nl], target[n4,n3]i 

where layerl is a vector variable for the input layer, 

layer2 is a vector variable for the competitive layer, 

layer3 is a vector variable for the output layer, weightl is 

a matrix variable for the connection weight between the 

input and competitive layers, and weight2 is a matrix 

variable for the connection weight between the 

competitive and output layers, pattern and target are similar 

as in section 4.4.1. The values of nl, n2, n3 and n4 will 

be assigned at run-time. 

Training in the Counterpropagation network involves 

two steps. The first step is to train the competitive 

layer which is based on the Kohonen method. The second 

step is to train the output layer which is based on the 

Grossberg method. To find the winning node and update the 

first weight are similar to the Kohonen network algorithm 

(section 4.4.2) provided that the grid is a one

dimensional array. 

After the winner node is identified, the next step 

is to update the connection weight between the winner 

node in the competitive layer and the output layer. since 

it is a supervised learning, the output vector is then 

compared to the target vector. 

The weight2 is updated as follows :-

layer3 = weight2#i 

error = tlayer-layer3 i 

weight2# += brate*errori , 

where brate is the learning rate at the output layer and 

tlayer is the target vector. 

The complete program is shown in Appendix F. 

Examples to solve problems are explained in chapter 6. 
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4.5 IMPLEMENTING GRAPHICAL FEATURES 

The NEUCOMP program combines with the graphical package, 

i.e. Mathematica software package [Wolfram (1991)] to 

portray some graphical features. Through graphs, the user 

can view items such as the structure of the NN being 

considered and analyse simulation results during 

training. 

The use of an existing graphical package is 

recommended as our own design will make NEUCOMP more 

complicated. Choosing Mathematica does not mean that 

Mathematica provides the type of graph that is needed. A 

program had to be written in the Mathematica language in 
order to create a graph that is required. However, 

programming using Mathematica is not difficult. 

Mathematica provides many graphical functions, i.e. 
drawing circles, lines, etc. as well as numerical and 

symbolic computation. These can be combined to provide 

the appropriate graph. It is more convenient this way as 

it allows user to write any graph to suit his application 

if the available graph library is insufficient. 

The NEUCOMP program and Mathematica program for 

graphical features are two separate programs. The NEUCOMP 

program cannot communicate directly with Mathematica. 

This is the limitation that NEUCOMP had to face. The 

original plan was for the NEUCOMP program to call the 

Mathematica program. By doing this, we can analyse items 

such as the way the weights and activation nodes adapt 

themselves during training. This is because NEUCOMP was 

implemented on the SEQUENT Balance machine at PARCo The 

terminal used is an ASCII terminal. So there is no 

graphical package for the Balance machine. An alternative 

approach is to use the Mathematica software (version 2.0) 

that is available on the PC. It is a text-based 

interface. The data from the NEUCOMP program can be 

transferred to Mathematica by a file. 

The type of graphical features that have been 

implemented so far are :-
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(1) Displaying the NN 

multilayer network. 

(2) Plotting the XY-graph. 

structure, i.e. single or 

(3) Plotting (x,y) for data clustering and valid cities 

for the travelling salesman problem. 

(4) The three-dimensional plotting for the spiral 

problem. 

The travelling salesman and spiral problems will be 

explained in chapter 6. 

4.5.1 Implementing the Neural Network structure 

The program to display a· NN structure was implemented 

through the function called network with two arguments, 

layer and link. The Mathematica command to define this 

function is :-

network[layer_,link_] := ••• 

where ' , is the required symbol applied to a function 

argument, layer stands for a variable which accepts a set 

containing the number of nodes in each layer, and link is a 

variable which accept~ a set containing connections 

between the layers and the type of connection. For 

example :-

network[{2,3,1},{{1,2,0},{2,3,0}}] 

means call the function with the first set {2,3,1} 

assigned to layer and the second set ·{{1,2,0},{2,3,0}} 

assigned to link. The set {2, 3, I} means that layer contains 

a three layer network. The first layer (input node) has 2 

nodes, the second layer (hidden layer) has 3 nodes and 

the third layer (output layer) has a single node. In the 

set {{I, 2, O}, {2, 3, O}}, the first element, {1,2, O} means 

the first layer is connected to the second layer with '0' 
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representing feedforward connection. The feedforward and 
feedback connection are represented by , 1'. Similarly, 
{2,3,0} means the feedforward connection from the second 
layer to the third layer. We can add further connections 
such as a connection from the first layer to the third 

layer which is written as {1,3,0}. 
By using the same function, we can display any fully 

connected layer. For example, the single layer network 
can be written as :-

network[{lO},{{l,l,l}}] 

where the first set, {10} is one layer network containing 

10 nodes and the second set, {{l,l,l}} means the first 
layer is connected to the same layer with lateral 
connections. The two layer network with feedforward and 
feedback connections can be written as :-

network[{2,5}, {{1,2,1}}] 

The network can also contain a layer node arranged in a 

two-dimensional or topological map, for example :-

network[{2,{10,10}},{{1,2,0}}] 

The set {10,10} within the first set is the second layer 
which has nodes arranged in 10*10. Its connection is a 
feed forward connection from the first layer to the second 

layer. 
As explained earlier, the NEUCOMP program cannot 

call Mathematica directly. An alternative approach is to 
save the simulation results in a file. This file is then 
read by a Mathematica program. The file must be declared 
first before it is used. It is declared under the 
declaration section as below :-

FILES filel; 
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-----------------------------------

where FILES is the reserve word for file type and fikl is 

the variable of type file. There are two types of files 

that can be used which are the file for reading and the 

file to be written. For the file to be written, it is 

defined as follows :-

OPENWRITE(filel,filename); 

where the OPE~RITE is the reserved word for open file to 

be written and filename can be a strin'g constant or a 

variable of type string. It is used to give the name of 

the file to be written. 

Let us consider fikl which is used for displaying the 

backpropagation network from the simulation program of 

section 4.4.1. Its filename is named as "bp. net" • The 

following shows the standard command to display such a 

graph :-

PRINTFILE(filel,"The backpropagation network\n"); 

PRINTFILE(filel,"{%d,%d,%d}\n",nl,n2,n3); 

PRINTFILE(filel,"{{1,2,O},{2,3,O}}\n"); 

The first statement is used to display the title of the 

graph. The second statement is to display, the nodes nI, 
n2 and n3 in the three layer network. They can be any 

integer constant because their values are assigned at run 

time. The third statement is to display a feedforward 

connection between the first layer and the second layer 

and from the second layer to the third layer. To make a 

flexible display, such as the number of layers, is quite 

difficult because it depends on how the NN structure is 

declared using the vector variable, i.e. layerl, layer2 and 

layer3, and their connections which are the matrix 

variables, i.e. weightl and weight2. If the fourth layer 

wants to be used then the additional declarations are 

written as :-

REAL layer4[n4), weight3[n4,n3); 
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We can then adjust the respective PRINT FILE statements to 

be able to display the four layer network. Similarly for 

the other networks where we just follow how the network 

has been written initially. 

We now can run the Mathematica program to display 

the NN structure. The Mathematica program to evaluate the 

NN structure is called I displaynet I. When invoked, it 

prompts for the name of the file to be typed in, i.e. 

bp. net • The function network is then called to display the 

respective graph. 

Figure 4.1 shows an example of a three layer network 

with the first and second layers containing two nodes and 

the third layer is a single node. Figure 4.2 shows an 

example of a single layer network with 5 nodes. Figure 

4.3 shows an example of a two' layer network with the 
feedforward and feedback connections. The figure shows 

that the input layer contains 2 nodes and the output 

layer contains 5 nodes. An example of a network 

containing the layer nodes arranged in a two-dimensional 

map is shown in fiqure 4.4. The input layer contains 2 

nodes and the output layer contains 8 x 8 nodes. The 

number of nodes will be shown when the size of the node 

is bigger than 6. Mathematica program cannot cope with 

the situation when all the nodes wanted to be displayed. 
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The backpropagation network 

input layer hidden layer output layer 

Fig. 4.1: A three layer network 

The Hopfield-type network 

o o o o o 

Fig. 4.2: A single layer network 
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The ART1 network 

input layer 

Fig. 4.3: A two layer network with feedforward 
and feedback connections 

The Kohonen network 
8x8 nodes 

c:::=:> c:::=:> c:::=:>.. . 
. 

c:::=:> c:::=:> c:::=:>... c:::=:> 
c=::> c=::> c=::>... c:::=:> 

c=::> c=::> c=::>... c=::> 

input layer 

Fig. 4.4: A Topological network 
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4.5.2 Implementing the XY-graph 

The XY-graph is a two-dimensional graph to display a 

curve of points (x,y). For example, displaying the result 

of the number of iterations vs. error measures in the 

backpropagation algorithm. We can plot a single graph or 

more than one on the same axis. 

The algorithm in the Mathematica program for this 

purpose is written as follows :-

read the title of the graph 

read the title of the x-axis 

read the title of the y-axis 

while (more files) do 

read the file name for the graph 

read the title of this graph 

plot the graph using ListPlot 

endwhile 

Display the whole graph 

An example of such a graph is shown in figure 4.5. The 

graph shows the different results of solving the XOR 

problem. To obtain such a graph, the parameters for 

exper iment1 were set as alpha = 30 and beta = 0.9, and the 

parameters of experiment2 were set as' alpha = 8 and beta = 
0.5. Both experiments were set with the same seeds on 

weights and biases as 1000, 2000, 3000 and 4000. It is 

possible to accommodate more than two graphical results 

on the same axes when further comparison between the 

results is required. 

4.5.3 Implementing other graphs 

Another interesting graph to plot are the points for data 

clustering. It is useful for classification problems 

using the Kohonen network (section 2.2.3). 
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Enormsqr vs no. of iterations 

Enormsqr 

0.4 

0.3 
Exp.1 

0.2 

0.1 

Exp.2 

10 20 30 40 50 60 

No. of Iterations 

Fig. 4.5: Exp. 1 shows the line has not converged. 
EXp. 2 shows the line has converged. 

For the data clustering problem, nl and n2 are 
assigned values of 2 and 64 respectively and the size of 
the pattern is obtained by the random numbers generated 
between 0 and 1. The initial weights of the network are 

set to the value 0.5 plus a small randomised value, i.e. 
within 10%. Figure 4.6a shows the plot of these initial 
weights. Each unit in the competitive layer is a point on 
this graph. Figure 4. 6b shows the network after 1,000 
iterations and figure 4.60 shows the state of the network 
after 6,000 iterations. Figure 4.6d shows the final state 
of the network after 20,000 iterations. Each axis of the 
square in figure 4.6 goes from 0 to 1 because this is the 

range of the entries in the input patterns. 
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Fiq. 4.6a: Initial weights distribution 
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Fiq. 4.6b: Weights distribution after 1,000 iterations 
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Fig. 4.60: Weights distribution after 6,000 iterations 
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Fig. 4.6d: Weights distribution after 20,000 iterations 
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CHAPTER 5 

A PARALLEL NEURAL NETWORK COMPILER 
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This chapter discusses the design and implementation of a 

parallel NN compiler. The design of the compiler follows 

the strategies of the parallelising compiler [Padua et 

al. (1986), Zima et al. (1990»). However implementation 

of the compiler is hardware dependent. The technology of 

computer hardware has been advanced from single processor 

computers to multi-processor computers. These multi

processor computers are also known as parallel computers 

or supercomputers. They are capable of producing better 

and faster performance as more than one processor can 

work in parallel to solve different parts of a single 

problem. The parallel NN compiler known as NEUCOMP2 is 

developed to attain this objective. 

There are many different types of parallel computers 

available today [Babb (1988»). The parallel computer that 

is used to develop NEUCOMP2 is the SEQUENT Balance 8000 

at PARCo It is a shared-memory parallel machine. It 

belongs to MIMD (Multiple Instruction Multiple Data) 

architecture or also known as multi-processor systems. 

A parallel computer provides the software tools and 

a programming system to help a programmer to write a 

parallel program in order to achieve the high performance 

of the parallel computer. Parallel programming on the 

Balance machine can be implemented in two ways depending 

on the type of application. For executing different tasks 

or processes (functions or statements) in parallel, 

function partitioning is used. For executing the same 

task or process (Le. matrix/vector operation) in 

parallel, data partitioning is appropriate. NEUCOMP2 is 

implemented based on the data partitioning method since 

its program contains mostly matrix/vector operations. 

Experiments are carried out to study the performance 

of the NN simulations generated by the compiler in terms 

of the execution time and speedup. The results are then 

compared with the existing special purpose simulator that 

used the same parallel machine [Sanossian (1992»). The 

only NN model used for this purpose is the 

backpropagation network since the available results for 
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comparison was also based on the SEQUENT Balance machine. 

The backpropagation algorithm written in NEUCOMP2 program 

is similar to that implemented by Sanossian. However, for 

other models such as the Kohonen, Counterpropagation, 

ART 1 and Hopfield-type networks, 

performance results which are based on 

will be discussed in the next chapter. 

5.1 PARALLEL ARCIDTECTURES 

their parallel 

the applications 

The architectures for parallel computer systems are 

commonly categorised into the SIMD (Single Instruction 

Multiple Data) and the MIMD (Multiple Instruction 

Multiple Data) computers [Forrest et al. (1987), McBryan 

(1989), Lafferty et al. (1993»). The Array and Pipelined 

computers belong to the first type. Most multiprocessor 

and multicomputer systems belong to the class of MIMD 

computers. These machines have a set of independent and 

autonomous processors and every processor is able to 

execute different instructions concurrently. 

The MIMD computers are classified into two further 

categories, the Shared-Memory Parallel Computers and the 

Message-Passing Parallel computers. This classification 

is based on two different methods of communication 

amongst the processors. The Shared-Memory Parallel 

computers are tightly coupled multiprocessor whilst the 

Message-Passing Parallel computers are loosely coupled 

multiprocessors. 

5.1.1 The SIMD Computer Architecture 

The SIMD Computer Architecture such as array processors 

consist of simple processing units (or nodes) that are 

synchronised to operate in parallel. Each unit consists 

of an ALU (Arithmetic Logic unit) and a number of 

registers. These units are connected to a control unit 

where the instructions are decoded and broadcast to all 
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the units in the system. Therefore the units execute the 

same instruction simultaneously with each unit holding 

different sets of data. Figure 5.1 depicts a simple Array 

computer. As can be seen from the diagram the processing 

uni ts, 1. e. P1 •• Pn are connected to each other via a 

data routing network. The shared memory can have multiple 

modules. Examples of these machines are the Active Memory 

Technology Distributed Array' Processor (AMT DAP) and 

Connection Machines (CM) of the Thinking Machines Corp. 

[Zima et al. (1990), Lafferty et al. (1993)]. 

11/0 unit I 
I 
I 

cont , Control Unit ,. __ ........... _. ................ ~.~." ...... 

I 

rol 
· .... ·1 

\ 

~ P2 Pn • • • 
memory memory memO!) 

Interconnection network 
(data routing network) 

Fiq. 5.1: The structure of the SIMD Array processor 

5.1.2 The M/MD Computer Architecture 

The MIMD computer architecture has a set of independent 

and autonomous processors. Each processor is able to 

execute different instructions. The two categories of the 

MIMD are the Shared-Memory Parallel Computers and 

Message-Passing computers. 
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5.1.2.1 The Message-Passing Parallel System 

In a Message-Passing Parallel system, each processor has 

a number of input/output devices connected to it and a 

local memory where most of the instructions and data are 

stored. These systems are also known as Local Memory 

Systems, Loosely-Coupled Systems or Distributed Memory 

Systems. Communications among the processors are 

performed through a message transfer system. Such systems 

are efficient for tasks that require minimum interactions 

between the processors. The message transfer system is 

usually a routing network. Figure 5.2 depicts a simple 

loosely coupled system. The transputer system is an 

example of such an architecture [Almasi et al. (1989), 

Hwang et al. (1984)]. 

5.1.2.2 The Shared-Memory Parallel System 

The Shared-Memory Parallel System, sometimes called the 

Tightly-Coupled System, has a set of processing units and 

a pool of memory available to all processors through 

which they communicate via a simple time shared bus or 

interconnection network. This type of architecture is 

illustrated in figure 5.3. Examples of these systems are 

the SEQUENT Balance, Encore Multimax and Alliant FX/8 

[McBryan (1989), Lafferty et al. (1993)]. Due to the 

problem imposed by the communication through the shared 

memory, they usually have a relatively small number of 

PEs. For example, the SEQUENT Balance and Encore Multimax 

can only have at most 12 and 20 processors respectively 

for efficient operation. 
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Message transfer system 

LM is Local Memory/Private Memories 
P is Processor 
I/O is input/output 

Fig. 5.2: The structure of the Message-Passing systems 

Autonomous Processors 

P1 • • • 

• • • Mn 

Shared Memories 

Fig. 5.3: Configuration of the Shared-
Memory Parallel systems 
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5.1.3 The SEQUENT Balance 8000 

SEQUENT systems are homogeneous multiprocessors, i.e. 

computers that incorporate multiple identical processors 

(CPus) and a single common memory [Osterhaug (1989)]. The 

SEQUENT CPUs are general-purpose, 32-bit microprocessors. 

The computer used throughout the work presented here 

is the SEQUENT Balance 8000. It is a tightly coupled 

(Bus) based MIMD machine with up to 12, 32 bit 

microprocessors each capable of executing 0.7 MIPS. Each 

processor consist of a CPU, a hardware floating point 

accelerator and a paged virtual memory management unit. A 

two level page table is used to access 16 Mbytes of 

virtual memory. Each processor contains a cache memory of 

8 Kbytes which holds the most recently accessed 

instructions and data. When a processor updates some data 

in its cache, the data in the main memory and other 

caches are updated at the same time. The cache is 

intended to reduce the traffic burden on the bus. 

The operating system is DYNIX, which is derived from 

UNIX. In particular, the scheduler in DYNIX has the 

choice of anyone of the 12 processors to allocate tasks 

to, so that even if no parallel program is being run, the 

total work load is distributed amongst the available 

processors. 
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5.2 PARALLEL PROGRAMMING SYSTEMS 

In order to utilise the available processors and make use 

of their parallel capabilities, s,oftware must be 

provided. The development of the parallel software is 

partly dependent on the hardware available. For example, 

in the most general model of parallel architecture, i.e. 

the MIMD system, there must exist language constructs 

that allow the programmer to program the individual 

processors and to define the data on which they are to 

operate. 

Parallelism in a computer system can be achieved 

through two ways, multiprogramming (or timesharing) and 

multitasking [Osterhaug (1989)]. Multiprogramming allows 

several jobs (or programs) to be processed at the same 

time and this will give the maximum throughput of the 

computer. This is common on most computers nowadays which 

allow more than one user to log on to the machines, 

although they may have one processor [Brawer (1989), 

Silberschatz (1991) ]. The operating system in the 

computer, such as UNIX, is able to handle 

multiprogramming by allocating jobs in a ready queue to 

the CPU as soon as it is free. 

In the other 

programming technique 

consist of multiple 

[Zimaetal. (1990)]. 

handled by the 

Multitasking yields 

individual program. 

situation, 

that allows a 

multitasking is a 

single application to 

processes executing concurrently 

Each one of these processes will be 

different available processors. 

an improved execution speed of an 
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5.3 PARALLEL PROGRAMMING ON THE SEQUENT BALANCE 

The operating system for the SEQUENT Parallel Machine 

namely DYNIX supports mUltiprogramming and multitasking 

[Osterhaug (1989)]. It has library commands to create 

processes and to synchronise them such as the 'fork', 

'join' and 'lock' instructions. An illustration of the 

fork and join operations is shown in figure 5.4. so, it 

is left to the programmer to write a parallel program 

specifying which tasks are to be executed in parallel. 

In the multi tasking programming methods, there are 

two methods available for the users to implement the 

programs. They are data partitioning and function 

parti tioning. Data partitioning involves creating 

multiple, identical processes and assigning a portion of 

the data to each process. This method is also called 

homogeneous multitasking. Data partitioning is 

appropriate for applications that perform the same 

operations repeatedly on large collections of data, i.e. 

vectors. 

job 

••• 

fork 
operation 

tasks 

join 
operation 

Fig. 5.4: Multitasking environment 

The other method, function partitioning, involves 

creating multiple unique processes and having them 

simultaneously perform different operations on the shared 
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memory data set. It 'is suitable for applications that 

include many unique subroutines or functions. This method 

is also called heterogeneous multitasking. Applications 

such as flight simulation, program compilation and 

traditional process control adapt well to function 

partitioning. 

While some 

partitioning or a 

applications 

combination of 

require 

data and 

function 

function 

partitioning, most problems adapt more easily to data 

partitioning. This last method offers some advantages 

over function partitioning, such as less programming 

effort is required to convert a serial program to a 

parallel algorithm. Furthermore, with data partitioning, 

it is easier to achieve an even load balancing among 

processors and also easier to adapt the programs 

automatically to the number of available processors. 

In this chapter, discussion will only refer to the 

data partitioning technique. This method is used to 

implement a parallel NN compiler for the shared-memory 

parallel computer. 

5.3.1 The Data Partitioning method 

The data partitioning method is suitable to execute loop 

iteration in parallel [Osterhaug (1989»). The loop 

iteration is chosen as the code section to be 

parallelised because the parts that offer the best 

opportunities 

[Padua et al. 

al. (1993»). 

amenable to parallelism are the loops 

(1986), Zima et al. (1990), Mohd-Saman et 

Data partitioning involves creating multiple, 

identical processes (i.e. loop iteration) and assigning a 

portion of data to each process. Assigning portions of 

data means each iteration can be executed simultaneously 

depending on the number of available processes. Load 

balancing amongst processes is achieved by a scheduling 

strategy. 
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The following describes the process of performing 

data partitioning :-

(1) A special function is used to fork a subprogram that 

contains a loop iteration into a set of child 

(2) 

(3) 

processes and 

subprogram to 

This function 

each process. 

assigns an identical copy of the 

each process for parallel execution. 

creates a copy of any private data for 

Each copy of the subprogram executes a segment of 

the loop iteration either using static or dynamic 

scheduling [Osterhaug (1989)]. The static scheduling 

divides the loop iterations evenly among the 

processes. In dynamic scheduling, 

iterations are treated as a task queue, 

the loop 

and each 

process removes one or more iterations from the 

queue, executes those iterations, and returns for 

more work. Dynamic scheduling requires communication 

between processes. 

If the loop being executed in 

completely independent which means 

dependencies (section 5.3.3), the 

parallel is no~ 

there exi.st data 

subprogram may 

contain calls to a function that synchronises the 

parallel processes at critical points by using locks 

or barriers. 

(4) When all the loop iterations have been executed, 

control returns from the subprogram. The parallel 

execution processes can either be terminated after 

the calling subprogram, suspends their execution 

until they are needed to execute another subprogram, 

or left to spin in a busy wait state until they are 

needed again. 

5.3.2 Parallel Programming tools 

Some of important DYNIX Parallel Programming tools used 

to implement the parallel compiler are discussed here. 
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The DYNIX Parallel Programming Library includes three 

sets of routines. These are a microtasking library, a set 

of routines for general use with data partitioning 

programs, and a set of routines for memory allocation in 

data partitioning programs. 

The microtasking library routines allows the 

creation (fork) of a set of child processes, assign the 

processes to execute loop iterations in parallel, and 

synchronise the processes as necessary to provide a 

proper data flow between loop iterations. 

For example, the function mJork is used to create 

new processes. A new process is called a child process 

and it is a copy of the original process (called parent 

process). The child process is allowed to access the main 

memory and any open file. The number of processes created 

can be set using the function mJe(procs. Each child 

process has an ID number associated with it when it was 

created. During the execution of the process it might be 

necessary to require the ID number, this can be done by 

calling function m...gecmyid. The· parent ID number is O. 

The function m_kil1...procs is used to terminate child 

processes which is written after the function mJork, the 

function m-park-procs is used to suspend the execution of 

the child processes while the parent process is involved 

in some operation. The execution of the child processes 

can be resumed using the function m_rele-procs. When many 

processes running in parallel try to modify a shared 

variable (section 5.3.3), they have to be synchronised. 

This can be controlled by shared data structures called 

'semaphores'. The simplest of all semaphores is the 

function lock that allows a user to create a critical code 

region that can be accessed by only one process or using 

the function m_sync to check at a barrier. A barrier is a 

synchronisation point where a process waits at a barrier 

until other processes arrive before it can proceed. 

The general-purpose data-partitioning routines 

include a routine to determine the number of available 

CPUs and several process synchronisation routines that 
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are more flexible than those available in the 

microtasking library. For example, cpus_online returns the 

numbers of the CPUs on-line and s_waicbarrier is wait at a 

barrier. 

The memory allocation routines allow a data

partitioning program to allocate and de-allocate shared 

memory and to change the amount of shared and 

memory assigned to a process. For example 

allocate shared data memory. 

private 

shmalloc, 

Figure 5.5 gives an example of using some of these 

functions. 

5.3.3 Analysing Data Dependencies 

Before implementing data partitioning, data dependencies 

in the loop have to be analysed in order to guarantee 

correct results. The analysis involves finding variables 

that depend on previous operations and variables that may 

be executed in any order. Data dependence analyses is an 

important task in parallelising a sequential program. 

This analysis will give information on the inter-relation 

of statements based on how the data in the program is 

computed and used. 

Data dependencies occur in two parts. In the first 

part, data dependencies occur in the programs' statements 

[Padua et al. (1986), Osterhaug (1989), Polychronopoulos 

(1988)]. For example :-

sl a = b + c; 

52: d = a - e; 

where statement sI must be executed first since it 

contains the variable a being stored data, then followed 

by statement s2 in which a is being read. The second part 

of data dependencies is on the loop iteration which is 

the concern of this presentation. The outermost loop is 

chosen as a code section to be executed in parallel. 
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#include <stdio.h> 
#include <parallel/microtask.h> 
#include <parallel/parallel.h> 

main Cl 
{ 

} 

void subprogram(), m fork(), 

m_killJ>rocs Cl ; 
int nprocs; 
printf("Type number of processors: "); 
scanf("%d",&nprocs); 
m_set_procs(nprocs); 
m fork(subprogram); 
m_kill_procsCl ; 

void subprogram() 
/*This subprogram contain loop iteration 

to be executed in parallel */ 
{ 

int nprocs; 
nprocs = m_get_numprocs(); 

} 

Fig. 5.5: Example of parallel program 

Before analysing the data dependencies, identifying 

which data can be shared amongst parallel processes and 
which data is local to each process is discussed first. 
The data that is shared is called shared variables and 
the data that is local is called private variables. The 
private variables are initialised in each iteration. They 
are usually scalar variables. Shared variables need 
further attention. Data dependencies may occur when a 
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program attempts to read and write shared variables in 

more than one loop iteration. These variables can 

sometimes pass incorrect information between loop 

iterations if the iterations are executed out of order or 

two loop iterations try to write the variable 

simultaneously. 

If the shared variable is a read-only variable or an 

array where each element is referenced by only one loop 

iteration, then they are considered as independent shared 

variables. However, the shared variables which are 

dependent can belong to three categories [Osterhaug 

(1989)] which are :-

(1) Reduction variables 

(2) Locked variables 

(3) Ordered variables 

which distinguishes the ways the variables are used. 

5.3.3.1 Analysing Reduction variables 

A reduction variables can be an array or a scalar which 

has the following properties :-

variable op= expression 

where op is either '+','-','*' or 'I'. The following 
example shows the addition of all numbers in an array 

variable:-

for (i = 0; i<n; i++) 
sum += a[i] 

where n and a are independent shared variables because 

they are read only, i is a local variable because it is 

initialised on every iteration and sum is a shared 

reduction variable because it involves the '+=' 
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assignment. If the loop is executed in parallel sum may 

contain incorrect results. 

5.3.3.2 Analysing Locked variables 

A locked variable can be an array or a scalar involving 

read and write operations in more than one iteration. The 

following example shows how the minimum value is searched 

in an array variable :-

least = 999; 

for (i = 0; i<n; i++) { 

min = a[i]; 

} 

if ( min < least ) { 

least = mini 

} 

where n and a are independent shared variables because 

they are read only, j and min are local variables because 

they are initialised on every iteration, and least is 

locked shared variable. Since the loop iterations will be 

executed in parallel, this variable can hold any value in 

each process which is not necessarily the minimum result 

that is required. In order to make sure that only one 

loop iteration is using this variable at a time, it has 

to be locked. 

5.3.3.3 Analysing Ordered variables 

An ordered variable is an array variable which yields 

correct result only if the operations involving the 

variable are executed one iteration at a time, in 

sequential order. The following example contains an 

ordered variable :-
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for (i = 0; i<n; i++) { 

x[i) = xl[i) + x2[i); 

y[i) = x[i+l) - X[i-l); 

} 

where nand y are independent shared variables because n 
is a read only variable and y is an array where each 

element is referenced by only one loop iteration, i is the 

local variable because it is initialised on every 

iteration and x is an ordered shared variable because the 

expressions x[i+i) and xli-i) would contain incorrect values 

if the loop iterations were executed in any order. 

5.3.4 Transforming into Parallel code 

Figure 5.5 has shown some functions to implement parallel 

programs. In this section, the transformation of loop 

iterations into parallel code is discussed. 

The first task is distributing loop iterations to 

processes. This is known as scheduling. The following 

static scheduling is introduced in the outermost loop of 

the sub program that is being forked (figure 5.5) :-

for (i = m_get_myid(); i<n; i+=nprocs) { 

••• 
} 

where i is set to process ID produced by function 

m-15ecmyid and the variable nprocs is set to the number of 

processes produced by function m_seCnumprocs (figure 5.5). 

The loop iterations are divided evenly among the 

processes. 

The next task is to impose parallel mechanisms to 

protect dependent variables in order to produce correct 

results. The following section describes techniques for 

transforming reduction, locked and ordered type data 

dependencies. 
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5.3.4.1 Transforming Reduction variables 

The following example shows the handling of reduction 

variables from an example of section 5.3.3.1 :-

lvar = 0; 

for (i = m_get_myid(); i<n; i+=nprocs) 

lvar += a[i) 

m_lock() ; 

sum += lvar; 

m_unlock() ; 

A local variable Ivar is used to hold the sum of array 

variable within each loop iteration. At the end of each 

loop iteration the function m_lock is called to perform 

the reduction operation to combine Ivar with the shared 

variable, sum and call the function m_unlock. The 

functions m_lock and m_unlock are used to ensure that the 

code section within it is executed by one processor at a 

time. 

5.3.4.2 Transforming Locked variables 

A locked variable cannot be executed simultaneously, so 

the functions m_lock and m_unlock are used as before. The 

function m_lock call should appear on the line immediately 

preceding the first reference to a locked variable, and 

the function m_unlock call should appear after the last 

reference of a locked variable. 

The following example shows the handling of 

reduction variables from an example of section 5.3.3.2 :-
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least = 999; 
for (i = m_get_myid(); i<n; i+=nprocs) { 

min = a[i]; 

} 

m_lockO; 
if ( min < least ) { 

min = a[i]; 
} 

m unlock(); 

The functions m_lock and m_unlock are used within the 
parallel loop to ensure that the code section is executed 
by one loop iteration at a time. 

5.3.4.3 Transforming Ordered variables 

The code section that contains the ordered variables must 

be executed in order. The following example shows the 
transformation of ordered variable from an example of 

section 5.3.3.3 :-

for (i = m get myid(); i<n; i+=nprocs) { - -

} 

while (xguard 1= i) continue; 

xCi] = x1[i] + x2[i]; 
y[i] = x[i+1] - x[i-1]; 
xguard = xguard + 1; 

where xguard is a new shared integer variable. It is 

declared in the main and set to the starting value of the 
loop iteration. The conditional statement used before the 
first reference to the order variable is to allow the 
loop execute only when the loop index is equal to xguard. 

This variable is then incremented at the end of the last 
reference of the ordered variable to allow for the next 

sequential execution. 

148 



5.4 PARALLEL NEURAL NETWORK COMPILER (NEUCOMP2) 

A study of the NN compiler called NEUCOMP (chapter 4) to 

generate~general purpose NN simulation programs have been 

successfully implemented. These simulation programs were 

executed sequentially. 

A further study of designing the NN compiler for a 

parallel machine has been carried out. This section 

discusses the development of an upgradeJ version of 

NEUCOMP named NEUCOMP2. NEUCOMP2 can generate a parallel 

NN simulation program running on a shared-memory parallel 

machine. 

NEUCOMP2 contains an additional stage for detecting 

the existence of parallelism in the sequential program 

generated by NEUCOMP and transforms it into a parallel 

version specifically for a shared-memory parallel 

machine. When a different parallel machine is introduced, 

this routine can be changed to suit the specification 

required by that machine. 

5.4.1 Design of Parallel Neural Network Compiler 

Designing a parallel NN compiler basically follows the 

design of a parallelising compiler. A parallelising 

compiler (sometimes referred to as a supercompiler) is a 

software system that compiles programs targeted for 

execution on a parallel architecture system [Padua et al. 

(1986), Zima et al. (1990)]. This software tool takes as 

input the sequential program, detects any form of 

parallelism that exists and carries out the 

transformation process. 

Figure 5.6, shows the process of generating a 

parallel NN simulation program. The step from the source 

program (NEUCOMP2 program) to generate a sequential 

simulation program, follows the step compiled by NEUCOMP. 

The next compilation' phase is the parallelising 

stage. It .contains routines to detect parallelism and 

transform into parallel codes. The design of the routine 
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is dependent on the architecture of the parallel machine. 

In this section, the design and implementation of the 

parallelising routine on a shared-memory parallel machine 

such as the Balance machine (section 5.3) is discussed. 

NEUCOMP2 
program 

lexical analysis 
syntax analysis 
semantic analysis 
loop optimisation 

sequential 
program 

parallelising 

stage 

parallel 
program 

Fig. 5.6: Process of compilation on a NEUCOMP2 program 

The language for NEUCOMP2 is called the NEUCOMP2 

language. The NEUCOMP2 program has an extra reserved word 

called PARALLEL which must be included when a certain 

procedure is to be executed in parallel. In this case the 

most crucial part in NN simulation is a procedure that 

involves training the network. For example, the 

NEUCOMP/NEUCOMP2 program is written as :-
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MAINPROGRAM 

CALL training; 
... 

END; 

To parallelise the procedure training, statement CALL is 
replaced with PARALLEL, as shown be lows :-

MAINPROGRAM 
... 

PARALLEL training; 

END; 

without the statement PARALLEL, NEUCOMP2 treats the 
program as a sequential program. 

5.4.2 Implementing the Parallelising stage 

The code 
execution 

section 
is the 

identified by 
loop. These 

NEUCOMP2 for parallel 
parts offer the best 

opportunities amenable to parallelism [Padua et al. 

(1986), Zima et al. (1990), Mohd-Saman et al. (1993)]. 

The routine for parallelism will be evoked when the 
word PARALLEL is included in the respective procedure. 
The routine then undergoes the following stages :-

(1) Detection of the loop iteration 
(2) Creating new procedure for loop iteration 
(3) Analyse data dependencies 

(4) Transformation process 

The following sections discuss the development of the 
above stages. 
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------------------------------- -- ---

5.4.2.1 Detection of the loop iteration 

The loop iterations for all matrix-vector statements are 
chosen as code sections to be executed in parallel. There 

are two types of loops to be generated: the 'for loop' 

and 'while lOop'. This follows the explanation given in 

section 4.2.5.2 under 'Translating an assignment 

statement' . 

The matrix assignment statements are generated into 

two 'for loops', Le. for (J = ... ) and for (J = ... ). For 

example, the NEUCOMP/NEUCOMP2 program code for updating 

the weights using the backpropagation algorithm (section 

4.4.1) has the following form :-

weight += alpha*dweight + beta*cweight 

where weight, dweight and cweight are the matrix variables 

and, alpha and beta are the scalars. The translated 

statements are as follows :-

for (I = ..• ) 

for (J = .•• ) 

weight[1] [J] +=alpha*dweight [I] [J] +beta*cweight [I] [J]i 

where J and J are the system variables (reserved words) 

which are written as capital letters. 

The vector assignment statements are generated into 

a single 'for loop', Le. for (J = ... ). For example, to 

assign the training pattern into the input layer, it is 

written as follows:-

layerl = pattern@i 

where layerI is an input layer and pattern is a matrix 

variable. The symbol '@' means all its elements at the 

specific row determined by reserved word ROW are assigned 

to layerI (sections 4.4.1 to 4.4.4) . The translated 

statements are as follows :-
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for (I = ••• ) 
layerl[I) = pattern [ROW) [I); 

The second type of loop statement is the 'while 
loop'. The following assignment statements provided by 
NEUCOMP/NEUCOMP2 will be translated into the 'while loop' 

statement are :-
variable< = expression 
variable> = expression 

where the first symbol '< ' is used in the Kohonen and 
Counterpropagation algorithms for finding the winner node 
based on the minimum calculation of the expression. It is 

written as :-
layer2< = DISTANCE(layerl,weightl); 

and the second symbol '>' 
for finding the winner 

is used in the ARTl algorithm 
node based on the maximum 

calculation of the expression. It is written as :-

layer2> = weightf*layerl; 

NEUCOMP translates the Kohonen algorithm into the 

following code statements which contains the 'while loop' 
statement. 

I = 0; 
SCALARO = DISTANCE(layerl,weightl,I,nl); 

ROW = 0; 
while ( ++1 < n2) { 

} 

layer2[I) = DISTANCE(layerl,weightl,I,nl); 

if (layer2[I) < SCALARO) { 
SCALARO = layer2[I); 
ROW = I; 

} 

Fiq. 5.7: The Sequential code for the Kohonen algorithm 
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where I, SCALARO and ROW are the system variables, nI is 

the size of layerI and n2 is the size of layer2. DISTANCE is 

the built-in function. The final result of the above 

translation is that ROW or the winner node contains the 

index of which layer2 is the minimum and layer2 holds that 

minimum value. 

The translated statement for the second statement, 

Le. ARTl algorithm, is similar provided that the sign 

'<' is replaced by'>' and the final result is that the 

ROW or winner node contains the index of which layer2 is 

the maximum and layer2 holds that maximum value. 

5.4.2.2 Creating new procedure for loop iteration 

Once the respective loop iteration has been detected, 

NEUCOMP2 extracts that loop from its position and places 

it into a newly created procedure called PROCESS followed 

by an integer number starting with 0 to distinguish it 

from another newly created procedure, if any. It's 

original place will then be replaced by this name as a 

calling procedure. For example, the translated code for 

the statement 

layerl = pattern@i 

is written as follows :-

void training () 

{ 

} 

for (I = ••• ) 
layerl[I] = 

... 
pattern [ROW] [I]i 

NEUCOMP2 translates the above 'for loop' into the 

following code statement :-
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... 
void training () 
void PROCESSO() 

... 
{ 

PROCESSO () ; 

} 

void PROCESSO () 

{ 

for (I = ••• ) 
layerl[I) = pattern [ROW) [I); 

... 
} 

PROCESSO is a unique name and written in capital letters. 
If more than one loop is detected, the next new procedure 

will be named as PROCESSl and so on. 
If there are more loops being considered previously 

arranged consecutively, they are then combined into a 
single procedure. For example, calculating the activation 
value for all layers in the backpropagation algorithm 

written in NEUCOMP/NEUCOMP2 codes is as follows :-

PROC training 

layerl 
layer2 
layer3 

... 
END; 

= 

= 

= 

pattern@; 
SIGMOID(weightl*layerl + bias2); 
SIGMOID(weight2*layer2 + bias3); 

where layer], layer2 and layer3 are the vector variables. The 
translated codes are generated in the form of sequential 

codes as shown below :-
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... 
void training() 

{ 

} 

... 
for (1 = ••• ) 

layerl[l] = pattern [ROW] [l]i 

for (1 = ... ) 
layer2[I] = SIGMOID(MuCmacvec(weightl,layerl,nl,I) + bias2); 

for (1 = ... ) 
layer3[I] = SIGMOID(Mul_macvec(weight2,layer2,n2,I) + bias3); 

where MuCmaCvec is the C function used to calculate a 

matrix-vector multiplication. 
NEUCOMP2 then combines the above loops into the 

translated codes as can be seen in figure 5.8. 

5.4.2.3 Analysing Data Dependencies 

The loops to be executed in parallel are now in the newly 

defined procedure. All variables usage within the loop 

iterations have to be analysed in order to identify which 

variable depends on previous operations. This is to 

guarantee correct results when these statements are 

executed simultaneously. 
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... 
void training () 
void PROCESS 0 () 

{ 

PROCESSO()i 
... 

} 

void PROCESSO () 
{ 

int li 
for (1 = ••• ) 

layerl[l] = pattern[ROW][l]i 

for (1 = ••• ) /~ 
--Iaye~l] = SIGMOID(MuI_mac vec( weight! ,Iayerl,n 1 ,1) + bias2); 

for (1 = ••• ) ~ 
Iayer3[1] = SIGMOID(MiiI_macvec(weight2,Iayer2,n2,1) + bias3); 

} 

Fiq. 5.8: PROCESSO holds the 'for loop' 

During analysis, NEUCOMP2 groups the variable usage 
into 5 groups namely groupO, groupl, group2, group3 and 

group4. The variable usage in each group have the 
following characteristics :-

(1) The groupO contains a variable written in the form:-

x += •••• 

where X is read and written by a single statement. 

(2) The groupl contains a variable written in the form:-
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· .. = x 

x = ... 

where x is read first and then written in other 

statement. 

(3) The group2 contains a variable written in the form:-

(4) 

(5) 

· .. = x 

where x is read only. 

The group3 contains a variable written in the form:-

x = ... 

where x is written only. 

The group4 contains a variable written in the form:-

x '" 
· .. = x 

where x is written first and then read in other 

statement. 

From the group classification, NEUCOMP2 can then 

classify which type of data dependencies that may occur. 

NEUCOMP2 assumes scalar variables may cause data 

dependencies but not a vector or matrix variable. They 

are operated independently within the loop iteration 

where each element is referenced by only one loop 

iteration. The scalars that exist in groupo are of type 

reduction variables. The scalars that exist in group! and 

group3 are of type locked shared variables because they 

are written many times when running in parallel. The 

scalars that exist in group2 are independent shared 

variables because they are read only. The dependent 

variables can be removed by a transformation process 
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which contains parallel mechanisms to transform its part 

to run correctly in parallel (section 5.4.2.4). The 

scalars that are in group4 are local because they are 

initialised on every iteration. 

other cases that the parallelising routine in 

NEUCOMP2 does not consider are :-

(1) The statements FOR and WHILE loop provided by the 

NEUCOMP/NEUCOMP2 language. since the main purpose of 

using the NEUCOMP/NEUCOMP2 program, is to make use 

of matrix/vector assignments, the use of FOR and 

WHILE statements is not common. If used it is 

assumed that the number of loops used is very small. 

(2) A shared ordered variable. 

(3) When the size of the loop is less than 5. 

For cases (2) and (3), NEUCOMP2 will then consider the 

next inner loop. 

5.4.2.4 Transformation Processes 

Transformation processes involve the translation of the 

. sequential part into its parallel version after 

information about variable usage is done. It uses the 

parallel library routines provided by SEQUENT Balance 

(section 5.3.2) for handling data dependencies, etc. 

All variables in a loop iteration declared as global 

are redeclared as shared variables. The calling procedure 

created by NEUCOMP2 as discussed earlier, Le. PROCESSO 

is then forked by the routine m~ork. The use of parallel 

routines such as m-KeCnumprocs and m-KeCmyid are also 

included. The following example shows the transformation 

of the program from figure 5.8. 
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shared float *layer1i 1* global variable *1 

void training() 
void PROCESSO()i 

{ ... 
m_fork(PROCESSO,ROW)i 

} 

void PROCESSO(ROW) 

int ROWi 
{ int NPROCS,Ii 

NPROCS = m_get_numprocs()i 

} 

for (I = m_get_myid()i I<nli I+=NPROCS) 
layerl[I) = pattern [ROW) [I)i 

... 

where ROW has a value needed in the loop iteration and 
therefore it is passed through the argument list of 

PROCESSO. 

Transforming a Reduction variable 

For a reduction scalar variable that exists in groupO, 
NEUCOMP2 performs two types of translations. The first 

type of translation is that if the reduction scalar 

variable is declared by the user as global. The following 
example shows the transformation of the loop iteration 
which contains the reduction scalar variable, sumerror. 
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· .. 
shared float *error, sumerror; 

· .. 
void training () 
{ 

m_fork(PROCESSO); 

· .. 
} 

void PROCESSO () 

{ float SCALARO; 
int NPROCS,I; 

} 

NPROCS = m_get_numprocs(); 
SCALARO = sumerror; 
for (I = m_get_myid(); I<nl; I+=NPROCS) 

SCALARO += error[I]; 
m_lock() ; 

sumerror += SCALARO; 
m_unlock() ; 

where sum error is originally declared as a global variable. 
Its type is then declared as shared. In the PROCESSO, it 
is replaced with a local variable, Le. SCALARO. The 
variable SCALARO is a system variable (reserved word) 
which is initially set to sumerror. There can also be more 
unique SCALARs such as SCALAR1 and SCALAR2, when more 

reduction variables are found. The routines m_lock and 
m_unlock ensure that the shared lock variable sumerror does 
the addition in each processor one at a time. 

The second type of translation is that if the 
reduction scalar variable is originally declared as local 
in the procedure where it is used. The following example 
shows how the reduction scalar variable, sum error declared 
as local, is transformed. 
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... 
shared float PSCALARO; 

... 
void training () 
{ 

} 

void PROCESSO(); 
float sumerror; 

m_fork(PROCESso,sumerror); 

sumerror = PSCALARO; 

... 

void PROCESSO(sumerror) 

float sumerror; 
{ int NPROCS,I; 

} 

PSCALARO = 0.; 
NPROCS = m_get_numprocs(); 
for (I = m_get_myid(); I<nl; I+=NPROCS) 

sumerror += error[I]; 

m lockO; 
PSCALARO += sumerror; 

m_unlockO; 

In this case, the reduction variable, sumerror is an 
argument to the function mJork which passes its initial 
value to PROCESSO. The system variable, Le. PSCALARO, 

declared as shared, is used in handling the data 
dependencies. There can be more unique PSCALARs, i. e. 
PSCALARI and PSCALAR2, when more reduction variables are 

found in the loop iteration. 
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Transforming a Locked variable 

If a scalar exists in group1 or group3, then this variable 

is a locked variable. As an example, figure 5.7 contains 

two locked scalar variables, ROW and SCALARO. Variable 

SCALARO is in group1 since it is read in the 'if 

condition' then written within it. Variable ROW is in 

group3 since it is written in the loop iteration. The loop 

iteration to be executed in parallel in this case is the 

'while loop'. 

Figure 5.9 shows the transformation code of the 

'while loop' of figure 5.7. The shared locked variables, 

SCALARO and ROW, are declared as local by NEUCOMP2 when 

the program is translated into the sequential version. In 

order to overcome the data dependencies for both 

variables, they need to be declared globally as shared. 

Alternatively NEUCOMP2 replaces the global variables 

declared with shared variables namely PSCALARO and PROW. 

They then take initial values from these local variables 

via parameter passing. The final results of these shared 

variables are then assigned to their respective local 

variables. The parallel loop from this example is 

different from the 'for loop' . discussed earlier. This 

parallel loop follows a dynamic scheduling technique 

[Osterhaug (1989)] specifically generated when NEUCOMP2 

locates the 'while loop'. This loop is only applied to an 

assignment statement that uses the symbol '>' or '<' 
(section 5.4.2.1). The function m_next belongs to DYNIX 

library function, the increment global counter which is 

automatically set to one when first called. The second 

call returns to two, and so on. 
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... 
shared float PSCALARO; 

shared int PROW; 

void training() 
{ float SCALARO; 

int ROW, I; 

} 

I = 0; 
SCALARO = Mul_mat_vec(weight,layer1,n1,I); 

ROW = 0; 
m_fork(PROCESSO,ROW,SCALARO); 

ROW = PROW; 

SCALARO = PSCALARO; 
. . . 

void PROCESSO(ROW,SCALARO) 

float SCALARO; 

int ROW; 

{ 

} 

int I,J,K; 
PSCALARO = SCALARO; 

PROW = ROW; 

while ( (K = m next(» < n2) { 

J = K + 1; 

} 

for (I = K; I<J; 1++) { 

} 

layer2[I) = Mul_mat_vec(weight,layer1,n1,I); 

m_lock() ; 
if ( layer2[I) > PSCALARO) { 

PSCALARO = layer2[I); 

PROW = I; 
} m_unlock(); 

Fig. 5.9: The transformation code for the 'while loop' 
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Synchronisation points 

synchronisation needs to be introduced when parallel 

results from one execution is required by the next 

operation otherwise an incorrect result will occur. For 

example, figure 5.8 requires m_sync to be included between 

the loop iterations as shown below :-

... 
void training () 

void PROCESSO() 

... 
{ ... 

m_fork(PROCESSO,ROW); 

} 

void PROCESSO(ROW) 

int ROW; 

{ int I,NPROCS; 

} 

NPROCS = m_get_numprocs(); 

for (1= m_get_myid(); I <nl; I += NPROCS ) 

layerl[l] = pattern [ROW] [I]; 

m_sync() ; 
for (I = m_get_myid(); I <n2; I += NPROCS ) 

layer2[I] = SIGMOID(MuCmacvec(weightl,layerl,nl,I) + bias2); 

m_sync() ; 

for (I = m_get_myid(); I <n3; I += NPROCS ) 

layer3[I] = SIGMOID(Mul_macvec(weight2,layer2,n2,I) + bias3); 

where the first m_sync is introduced because layer1 which 

is being written from the first parallel execution will 

be read by the next parallel execution. The final m_sync 
is not needed because at the end of the routine, 

synchronisation is done automatically. 
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5.5 EXPERIMENTAL RESULTS 

Experiments similar to those in Sanossian (1992), were 

carried out to study the performance of a parallel NN 

simulation program generated by NEUCOMP2 and those 

produced by the Neural Network Simulator (NNS). NNS was 

designed specifically for the backpropagation network. 

The results of the two programs were then compared. 

NNS is an interactive NN simulation developed by 

Sanossian (1992) using Parallel Pascal running on the 

Balance machine at PARCo Its data structure is a linked 

list of a one-dimensional array. A number is assigned to 

each node in the network. Each node has a linked list 

that holds all the node numbers connected to it and the 

connection weights. A one-dimensional array is used for 

the state of the nodes. Parallelism on the NNS was 

implemented using two methods Le., the 'On-line' and 

'Batch' methods. In the 'On-line' method, starting from 

the first layer, the network is partitioned according to 

the number of nodes onto each processor. The weights were 

updated for every training pattern. In the 'Batch' 

method, all input patterns are divided equally among 

processors. The weights were updated after all training 

patterns have been processed. 

For the simulation program generated by NEUCOMP2, 

parallelising the loop on every matrix-vector statement 

is considered as the 'On-line' method. This is because 

the elements of the matrix/vector variables are 

partitioned among the processors. The 'Batch' method for 

NEUCOMP2 does not implement parallelism on the training 

patterns but in the loops of the matrix/vector 

statements. 

In measuring the performance, the execution time is 

taken as the difference between the time at the beginning 

of calling the training procedure and the time at the 

completion of the procedure. The speedup is measured as:-

speedup = timet 
timep 

166 



where time, is the execution time for one processor and 

time p is the execution time for p processors. 

There are two sets of experiments. The first set was 

done using the 'On-line' method and the second one using 

the 'Batch' method. Both sets of experiments were run for 

10 iterations. The effect of increasing the number of 

nodes in a network or the number of training pattern on 

the speedup of the parallel simulation program was 

tested. 

5.5.1 The On-line results 

The results for the 'On-line' method generated by 

NEUCOMP2 were compared with NNS. These are shown in 

tables 5.1, 5.2 and 5.3. The execution times were 

measured for different numbers of processors and 

different sizes of network (i. e. 5x5x5, 10x10x10, 

40x40x40) with fixed training patterns (L e. 50) • The 

training patterns contain a set of input and target 

patterns or vector pairs. 

Graphs of speedup vs. number of processors for both 

the NNS and NEUCOMP2 (figures 5.10, 5.11 and 5.12) were 

plotted after each table to show graphically the 

different speedups. Both programs showed a linearly 

increase of speedup as the number of processors 

increases. It also showed that the parallel program 

generated by NEUCOMP2 is slightly better. This difference 

is probably due to the way the programs were implemented. 

The NEUCOMP2 program was implemented using an array while 

the NNS was implemented using a one-dimensional array of 

a linked-list. An array data structure has the advantage 

of getting the value by referring its subscript, but to 

get the value from an 

to travel along the 

reached. 

array of lists, a 

linked-list until 

167 

pointer is used 

the address is 



NNS NEUCOMP2 

Number of Execution Speedup Execution Speedup 

Processors time (sec.) time (sec.) 

1 14.4 1.00 13.3 1.00 

2 9.23 1.56 8.47 1.58 

3 7.75 1.85 6.17 2.16 

4 7.28 1.97 6.13 2.17 

5 6.05 2.37 4.03 3.30 

6 6.22 2.31 4.05 3.28 

7 6.76 2.12 4.10 3.24 

8 7.07 2.03 4.20 3.17 

9 7.40 1.94 4.32 3.08 

10 7.12 2.02 4.44 3.00 

Table 5.1: The execution times and speedups of a network 
of 5x5x5 nodes using the 'On-line' method 
produced by NNS and NEUCOMP2 
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NNS NEUCOMP2 

Number of Execution Speedup Execution Speedup 

Processors time (sec.) time (sec.) 

1 44.5 1.00 43.5 1.00 

2 24.3 1.83 22.7 1.92 

3 18.7 2.38 18.3 2.38 

4 15.1 2.95 14.4 3.03 

5 12.9 3.44 10.4 4.18 

6 13.0 3.43 lO.2 4.27 

7 11.9 3.73 10.5 4.14 

8 12.2 3.66 10.2 4.27 

9 12.4 3.60 10.2 4.27 

lO 10.5 4.24 6.61 6.58 

Table 5.2: The execution times and speedups of a network 

of lOxlOxlO nodes using the 'On-line' method 

produced by NNS and NEUCOMP2 
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Fig. 5.11: comparison of speedups vs. no. of 

processors for both NNS and NEUCOMP2 
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NNS NEUCOMP2 

Number of Execution Speedup Execution Speedup 
Processors time x 10' s time x 10' s 

1 59.1 1.00 58.7 1.00 
2 31.2 1.89 30.0 1.96 

3 21.2 2.79 20.8 2.82 

4 15.7 3.78 15.0 3.91 

5 12.8 4.62 12.2 4.81 

6 11.1 5.31 10.6 5.54 

7 9.62 6.15 9.22 6.37 

8 8.18 7.23 7.73 7.59 

9 7.73 7.65 7.58 7.74 

10 6.79 8.70 6.39 9.19 

Table 5.3: The execution times and speedups of a network 
of 40x40x40 nodes using the 'On-line' method 
produced by NNS and NEUCOMP2 
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Fig. 5.12: Comparison of speedups vs. no. of 
processors for both NNS and NEUCOMP2 
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----------------------------------------------------------------.--. 

5.5.2 The Batch results 

There were two sets of experiments in the 'Batch' method 

generated by NEUCOMP2. The first experiment (experiment1) 

was implemented using parallelism amongst the training 

patterns and the second experiment (experiment2) was 

implemented using parallelism on all the loop iterations 

that involve the matrix/vector operations. Results for 

experiment1 were compared with the NNS also using the 

'Batch' method; tables 5.4 to 5.8 show the comparison. In 

tables 5.4 and 5.6, the execution times were measured for 

different number of processors and a network of different 

number of nodes, i.e. 5x5x5, 20x20x20 and 40x40x40 nodes, 

with fixed vector pairs i.e. 50. In tables 5.7 and 5.8, 

the execution times were measured for different numbers 

of processors as well as different numbers of vector 

pairs, Le. 80 and 100, with a fixed size of network 

(Le. 10x10x10 nodes). There are also comparisons made 

between experiment1 and experiment2 of the execution 

times and speedups obtained. These are shown in tables 

5.9 to 5.11. Table 5.9 contains the differences of 

execution times and speedups for a network of size 

40x40x40 nodes with 50 vector pairs. Tables 5.10 and 5.11 

contain the differences of execution time and speedup for 

a network of size 10x10x10 nodes and different sizes of 

vector pairs, i.e. 80 and 100. 

Graphs of comparison of speedup vs. number of 

processors for experiment1 and NNS are shown in figures 

5.13 to 5.17. There is a great difference in terms of the 

speedup for the NEUCOMP2 simulation that execute the 

training patterns in parallel as compared to the NNS that 

use the 'Batch' method. This is because in the program of 

experiment1, the only loop that executed in parallel was 

amongst the training patterns whereas within this loop, 

there exists many loop iterations that operate on the 

matrix/vector operations. such loops are the vector 

operations for calculating the activation function of the 

hidden layer and the output layer, calculating the sum of 
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errors for the output nodes and the hidden nodes, matrix 

operations on the weight derivatives, etc. This factor 

affects the execution time of the processors. However, 

experiment2 gave better results when all the loop 

iterations within the training patterns were executed in 

parallel. 

Graphs of the comparison between experiment! and 

experiment2 are shown in fiqures 5.18 to 5.20. This is 

done to show graphically, that executing the loop 

iterations on the matrix/vector operation proved to 

produce faster execution times. Another advantage is that 

the execution time for the I Batch I method that execute 

the loop iteration in parallel generated by NEUCOMP2 are 

two times faster than the NNS that were executed in the 

'On-line' method. These differences are graphically shown 

in fiqures 5.21 and 5.22. 

The graph of speedup vs. number of processors did 

not show a linear increase due to load imbalance where 

some of processors are still busy while others remain 

idle. 
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NNS NEUCOMP2 

(experimentl) 

Number of Execution Speedup Execution Speedup 

Processors time x lOos time x 10° s 

1 9.19 1.00 7.38 1.00 

2 5.00 1.84 3.91 1.89 

3 3.82 2.41 3.25 2.27 

4 3.20 2.87 3.06 2.41 

5 2.67 3.44 2.79 2.65 

6 2.66 3.46 2.76 2.67 

7 2.61 3.52 2.77 2.66 

8 2.64 3.48 2.86 2.58 

9 2.61 3.52 2.87 2.57 

10 2.37 3.88 2.91 2.54 

Table 5.4: The execution times and speedups of a network 

of 5x5x5 nodes using the 'Batch' method 

produced by NNS and NEUCOMP2 

Fiq. 5.13: Comparison of speedups vs. no. of 

processors for both NNS and 

NEUCOMP2 using the 'Batch' method 
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NNS NEUCOMP2 

(experimentl ) 

Number of Execution Speedup Execution Speedup 

Processors time x lO's time x 10' s 

1 9.62 1.00 7.38 1.00 

2 4.84 1.99 4.42 1.67 

3 3.37 2.86 3.38 2.18 

4 2.54 3.79 3.18 2.32 

5 2.01 4.78 3.00 2.46 

6 1.83 5.26 2.94 2.51 

7 1.62 5.95 2.92 2.53 

8 1.44 6.68 2.86 2.58 

9 1.33 7.23 2.87 2.56 

10 1.14 8.45 2.88 2.57 

Table 5.5: The execution times and speedups of a network 

of 20x20x20 nodes using the 'Batch' method 

produced by NNS and NEUCOMP2 
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Fig. 5.14: comparison of speedups vs. no. of 

processors for both NNS and 

NEUCOMP2 using the 'Batch' method 
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--------------------------------- -

NNS NEUCOMP2 

(experiment!) 

Number of Execution Speedup Execution Speedup 

Processors time x 101S time x 101 s 

1 35.5 1.00 27.2 1.00 

2 18.1 1.97 15.8 1.72 

3 12.2 2.90 12.9 2.11 

4 9.37 3.79 12.0 2.27 

5 7.35 4.83 11.5 2.37 

6 6.57 5.40 11.1 2.45 

7 5.76 6.16 11.0 2.49 

8 5.01 7.08 11.0 2.48 

9 4.46 7.96 10.8 2.51 

10 3.72 9.53 10.8 2.51 

Table 5.6: The execution times and speedups of a network 

of 40x40x40 nodes using the 'Batch' method 

produced by NNS and NEUCOMP2 
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Fig. 5.15: Compar ison of speedups vs. no. of 

processors for both NNS and 

NEUCOMP2 using the 'Batch' method 
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NNS NEUCOMP2 

(experiment1) 

Number of Execution Speedup Execution Speedup 

Processors timex lOos time x 10° s 

1 44.7 1.00 34.5 1.00 

2 22.7 1.97 18.3 1.89 

3 16.2 2.77 14.6 2.37 

4 11.9 3.75 13.5 2.56 

5 9.87 4.53 13.0 2.66 

6 9.23 4.85 12.5 2.76 

7 7.88 5.68 12.6 2.74 

8 7.28 6.14 12.5 2.76 

9 7.04 6.35 12.5 2.76 

10 6.07 7.37 12.5 2.76 

Table 5.7: The execution times and speedups of a network 
trained on 80 vector pairs using the 'Batch' 
method produced by NNS and NEUCOMP2 
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Fiq. 5.16: comparison of speedups vs. no. of 
processors for. both NNS and 

NEUCOMP2 using the 'Batch' method 
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NNS NEUCOMP2 
(experiment}) 

Number of Execution Speedup Execution Speedup 

Processors timex lOos time x 10° s 

1 55.9 1.00 43.2 1.00 

2 28.5 1.96 22.8 1.88 

3 19.8 2.82 18.1 2.37 

4 14.8 3.79 16.8 2.57 

5 12.2 4.60 15.9 2.70 

6 11.0 5.07 15.6 2.76 

7 9.57 5.80 15.5 2.78 

8 8.95 6.24 15.4 2.80 

9 8.65 6.46 15.3 2.82 

10 7.25 7.71 15.4 2.80 

Table 5.8: The execution times and speedups of a network 
trained on 100 vector pairs using the 'Batch' 
method produced by NNS and NEUCOMP2 
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Fig. 5.17: comparison of speedups Vs. no. of 

processors for both NNS and 
NEUCOMP2 using the 'Batch' method 
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NEUCOMP2 NEUCOMP2 

(experiment 1) ( experiment2) 

Number of Execution Speedup Execution Speedup 

Processors time x 10·s time x to· s 

1 27.2 1.00 28.0 1.00 

2 15.8 1.72 14.1 1.98 

3 12.9 2.11 9.86 2.84 

4 12.0 2.27 7.14 3.92 

5 11.5 2.37 5.81 4.83 

6 11.1 2.45 5.12 5.48 

7 11.0 2.49 4.41 6.36 

8 11.0 2.48 3.76 7.45 

9 10.8 2.51 3.76 7.45 

10 10.8 2.51 3.09 9.08 

Table 5.9: The execution times and speedups of 40x40x40 

nodes using the 'Batch' method on the first 

and second experiments of the NEUCOMP2 

programs 
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Fig. 5.18: Comparison of speedups vs. no. of 

processors for both experimentl and 

experiment2 using the 'Batch' method 
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NEUCOMP2 NEUCOMP2 

(experiment 1 ) ( experiment2) 

Number of Execution Speedup Execution Speedup 

Processors timex lOos time x 10° s 

1 34.5 1.00 35.6 1.00 

2 18.3 1.89 18.6 1.92 

3 14.6 2.37 15.3 2.33 

4 13.5 2.56 12.0 2.98 

5 13.0 2.66 8.51 4.18 

6 12.5 2.76 8.76 4.07 

7 12.6 2.74 8.75 4.07 

8 12.5 2.76 8.74 4.07 

9 12.5 2.76 8.60 4.14 

10 12.5 2.76 6.04 5.90 

Table 5.10: The execution times and speedups of a network 

trained on 80 vector pairs for the first and 

second experiments of the NEUCOMP2 programs 
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Fiq. 5.19: comparison of speedups vs. no. of 

processors for both experimentl and 

experiment2 using the 'Batch' method 
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NEUCOMP2 NEUCOMP2 

(experiment 1) ( experiment2) 

Number of Execution Speedup Execution Speedup 

Processors timex lOos time x 10° s 

1 43.0 1.00 44.4 1.00 

2 22.8 1.88 23.1 1.92 

3 18.1 2.37 19.2 2.31 

4 16.8 2.57 14.7 3.03 

S IS.9 2.70 10.7 4.1S 

6 IS.6 2.76 10.7 4.1S 

7 IS.S 2.78 10.6 4.18 

8 IS.4 2.80 10.7 4.1S 

9 IS.3 2.82 10.6 4.18 

10 IS.4 2.80 7.10 6.2S 

Table 5.11: The execution times and speedups of a network 
trained on 100 vector pairs for the first and 
second experiment of the NEUCOMP2 programs 
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Fig. 5.20: comparison of speedups vs. no. of 
processors for both experiment1 and 

experiment2 using the 'Batch' method 
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Fig. 5.21: 
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Fig. 5.22: comparison of execution times vs. no. of 
processors for 40x40x40 nodes from the NNS 

using the 'On-line' and the experiment2. 
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5.6 DISCUSSION 

The Parallel Neural Network compiler called NEUCOMP2 was 

designed for the SEQUENT Balance computer at PARCo The 

main objective of NEUCOMP2 

simulation program to be 

is to generate a 

executed on the 

parallel 

parallel 

machine. The work is an extension of the work carried out 

on NEUCOMP. The only change to the NEUCOMP language from 

the old version is placing the statement PARALLEL in 

front of the procedure call in order to run that 

procedure in parallel. The NEUCOMP2 program is then 

compiled by NEUCOMP2 to generate the parallel C-code that 

runs on the parallel machine. 

The main characteristics of NEUCOMP2 is the 

parallelising phase (figure 5.1) which can be changed to 

suit any parallel machine of different architectures, 

i. e. Transputer network, Intel Hypercube, etc., wi thout 

changing the whole process of the compilation technique. 

The parallelising phase that has been implemented so far 

is for the Shared-Memory parallel machine, i.e. the 

SEQUENT Balance. The design of the parallelising phase 

was based on the strategies used in the automatic 

parallelisation of programs or parallelising compiler. 

NEUCOMP2 allows the loop iteration to be executed in 

parallel on the matrix/vector operations. Therefore the 

'On-line' and 'Batch' methods in the backpropagation 

algorithm are actually parallelising the loops of the 

program which is suitable for parallelism. 

It has been shown that parallelising the loops of 

the program generated by NEUCOMP2 gives a better 

performance in terms of execution time and speedup 

whereas parallelisation by partitioning the training 

patterns in the NEUCOMP2 did not perform so well. It has 

also been shown that parallelising the loop iteration 

using the 'Batch' method generated by NEUCOMP2 is twice 

faster than the NNS specifically designed for the 

backpropagation algorithm which uses the one-dimensional 

array of the linked-list. It has also been shown that the 
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'On-line' method used by the NEUCOMP2 program gives a 
slightly better performance than the 'On-line' method of 

the NNS. 
To confirm the correctness of the parallel programs, 

results were compared and checked satisfactorily with the 
sequential versions generated by NEUCOMP. 
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CHAPTER 6 

NEURAL NETWORK APPLICATIONS 
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This chapter discusses the different types of application 

problems solved using some popular NN models. They are 

implemented on the parallel computer at PARC using the 
NEUCOMP/NEUCOMP2 language. These programs are called the 

NN simulation programs. 

There are three types of problems considered to be 

solvable by NN simulations. 

categories :-

These belong to the 

(1) the classification problem 

(2) the approximation/classification problem 

(3) the optimisation problem 

The character recognition problem belongs to the 

classification category. The spiral problem belongs to 

the approximation/classification category and the 

travelling salesman problem (TSP) belongs to the 

optimisation category. 

The chosen network models for 

problem are the 

Counterpropagation 

backpropagation 

(CPN) and ART1 

the classification 

(BP) , Kohonen, 

networks. In the 

classification problem, the output nodes for the 

backpropagation and Counterpropagation networks are 

arranged in binary form so that when the first node is 

one and the rest are zeros, it belongs to the first 

class, and when the second output node is one and the 

rest are zero it belongs to the second class, and so on. 

In the Kohonen network the output layer known as map, 

cluster the patterns into the different classes. The 

input to the networks are all binary numbers. 

The chosen models for the approximation/ 

classification problem are the backpropagation, Kohonen 

and Counterpropagation networks. Solving the spiral 

problem using backpropagation is considered as an 

approximation, since the output node is one and its 

content is the Sigmoid function which lies between 0 and 

L When the output value approximates to 1, the spiral 

belongs to the first class and when the output value 
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approximates to 0, it is the second type of spiral. The 

spiral problem using the Kohonen and counterpropagation 

networks are said to. be a classification problem since 

both networks cluster the input data into different 

classes of· spirals. The input to and output from the 

networks are real numbers. 

The chosen models for the optimisation problem are 

the Hopfield-type networks. The Hopfield-type networks 

considered are the Hopfield-Tank and Potts-Glass models. 

The input to and output from the networks are again real 

numbers. 

The simulation results for the above problems are 

shown graphically using the 'Mathematica' programs which 

are included as NEUCOMP/NEUCOMP2 library functions. The 

parallel simulation programs are also implemented using 

NEUCOMP2 for all the problems. Their execution times and 

speedups are then compared. 

186 



6.1 CHARACTER RECOGNITION PROBLEM 

A template-matching technique for the identification of 

the alphabetic characters, A ••• Z, has been successful 

by running the simulation programs on the chosen NN 

models. The respective models are the backpropagation, 

Counterpropagation, Kohonen and ART 1 networks. The 

backpropagation and Counterpropagation networks are 

trained using supervised learning. The Kohonen and ARTl 

networks are trained using unsupervised 

results of the simulation are shown as 

learning. The 

the time in 

seconds taken for training and the output of the 

successfully recognised input patterns. 

6.1.1 Simulation Programs for Character Recognition 

The simulation programs using the NEUCOMP language for 

recognising the character set, A ••• Z, are implemented 

on the four respective NN models - the backpropagation, 

Kohonen, ARTl and Counterpropagation networks. 

The input layer consists of 100 nodes and the output 

layer is organised depending on the type of model used. 

For the backpropagation, Counterpropagation and ART 1 

networks, the output layer is defined as 26 nodes. 

However, the output layer for the backpropagation and 

counterpropagation networks corresponds to one of the 

characters, i.e., for the character A, the first node is 

one and the rest are zero, and so on. The output node for 

ARTl represents the winner node when the respected input 

character is assigned to the network. This winner node 

combines with the feedback connection for the output 

result. For the Kohonen network, the output is in the 

form of a map of a two-dimensional array to display 

regions controlled by each character. 

The simulation programs for the backpropagation, 

Kohonen, 

presented 

ARTl and Counterpropagation 

in sections 4.4.1 to 4.4.4. 

networks 

A three 

were 

layer 

network is used for the backpropagation network and its 
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hidden layer is set to 20 nodes. For the Kohonen network, 

the size of the map is 30x30 while for the 

counterpropagation network, the size of the competitive 

layer is set to 100. 

In the backpropagation network, the weights are 

updated after presenting all the vector pairs (i.e., set 

of input and target patterns). This is known as the 

'Batch-method'. The weights for the remaining NN models 

such as the Kohonen, counterpropagation and ART 1 

networks, are adjusted for every training pattern. 

6.1.2 Experimental Description 

Experiments have been carried out to train the 26 

characters, A •• Z, using the respective networks. Every 

character is written as an array of 10x10 binary numbers 

to represent an image of that character and are kept in 

an input file. To test the trained networks, two sets of 

data are presented. The first set contains the original 

data and the second set contains the noisy image. 

An example of the original and noisy characters for 

A is shown in fiqure 6.1 where a black box represents "1" 

and a white box represents "0". 

6.1.2.1 Simulation results/or the back propagation network 

The connection weights and biases for all the nodes in 

the hidden layer and the output layer are initially set 

randomly in the interval (-1.0,1.0). The weights and the 

biases are assigned with different seeds used for 

starting the random number generator, which are 10, 100, 

1000, and 5000 respectively. The beta value is set to 0.5. 

When using the GRBH method (section 4.4.1), the values of 

alpha are 10, 0.5, 0.1 respectively according to the range 
set to 1.0x10-4 and 1.0x10-2 • The training cycle is 

terminated when enormsqr<O.l • 
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Fiq. 6.1: The oriqinal and noisy characters for A 

The number of iterations required to train the 26 

characters is 388 which took 4.05xl03 seconds. The output 
nodes hold the following results when all the characters 
were recalled. 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 for character A 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.000.000.000.000.000.000.000.950.01 for character B 

0.99·0.000.000.000.01 0.000.000.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 for character Z 

An example of a noisy character for A when presented 
to the network, shows the output nodes to have the 
following values :-

0.000.000.000.000.01 0.000.000.000.000.000.000.000.000.160.000.000.01 

0.00 0.22 0.00 0.03 0.00 0.00 0.00 0.00 0.38 
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The result shows that the output node on the right holds 

the maximum value for a noisy character A. 

6.1.2.2 Simulation results for the Kohonen network. 

The initial learning rate, neighbourhood size and random 

number seed were set to 0.5, 15 and 1000 respectively. 

The random weights were set between 0 and 1. After 60 

cycles, all 26 characters were well distributed in the 

map with size 30x30. The result is shown in figure 6.2 

where the "o"s represent inactive nodes and each 

displayed character represents the winner node for that 

respective character. 

The results shows that characters which are not 

closely related are set well apart on the map, e.g. 

character S, J, and Z but characters that are closely 

related are near to each other, e. g. G, 0, D. The time 

taken after 60 cycles is 16.8x103 seconds. 

When the original characters are presented one at a 

time to the trained network, the winner node is marked 

with "*", showing that the character has been 

successfully recognised and when a noisy character is 

presented the winner node also marked with "*" appeared 

very close to its original character. An example of a 

noisy character for A after being presented to the 

network is shown in figure 6.3. 

6.1.2.3 Simulation results for the ART1 network 

This network does not require any iterations when it is 

trained since its feedforward and feedback weights are 

not updated. The feed forward weight is adjusted using the 

formula given earlier (section 4.4.3) when a new 

character is presented to the network and the feedback 

weight is adjusted with binary values equivalent to the 

input character. These binary values will be produced as 

output when the winner node is identified for that 

pattern. 
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ooooooooYooooooX0600000AoooooB 
Tooooooooooooooooooooooooooooo 
000000000000000000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 
ooooooooooooooooooooooooooooRo 
ooooooIooooooooooooEoooooooooo 
000000000000000000000000000000 
000000000000000000000000000000 
SoooooooooooZooooooooooooooooP 
000000000000000000000000000000 
000000000000000000000000000000 
ooooooooooooooooooooLooooooOOO 
ooooooooooooooooooooooooooFooo 
000000000000000000000000000000 
000000000000000000000000000000 

JOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 
000000000000000000000000000000 
oooooooCoooooooooooooooooooooo 
ooooooooooooooooKooooooooooooo 
oooooooooooooooooooooooNoooooH 
000000000000000000000000000000 
Gooooooooooooooooooooooooooooo 
oooooOoooDoooooooooooooooooooo 
000000000000000000000000000000 
000000000000000000000000000000 
000000000000000000000000000000 
ooooooooooooooooooooooooooooMo 

QoooooooUoooooVooooooWOOOOOOOO 

Fiq. 6.2: Final map of characters after 60 iterations 
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ooooooooYooooooXoooooooAoooooB 
Tooooooooooooooooooooooooooooo 
00000000000000000000000*000000 4~~---
000000000000000000000000000000 

000000000000000000000000000000 
000000000000000000000000000000 

ooooooooooooooooooooooooooooRo 
ooooooIooooooooooooEoooooooooo 
000000000000000000000000000000 
000000000000000000000000000000 

SoooooooooooZooooooooooooooooP 
000000000000000000000000000000 

000000000000000000000000000000 

ooooooooooooooooooooLooooooooo 
ooooooooooooooooooooooooooFooo 
000000000000000000000000000000 

000000000000000000000000000000 

Jooooooooooooooooooooooooooooo 
000000000000000000000000000000 
oooooooCoooooooooooooooooooooo 
ooooooooooooooooKooooooooooooo 
oooooooooooooooooooooooNoooooH 
000000000000000000000000000000 

Gooooooooooooooooooooooooooooo 
oooooOoooDoooooooooooooooooooo 
000000000000000000000000000000 

000000000000000000000000000000 
000000000000000000000000000000 
ooooooooooooooooooooooooooooMo 

QoooooooUoooooVooooooWoooooooo 

Fig. 6.3: The winning node for noisy A is marked 

with '*' close to A as indicated 
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The time taken to train all 26 characters is 22 
seconds. All the characters were successfully recalled. 
The noisy characters were also correctly identified. The 
output characters are displayed similar to their inputs. 
As an example, for the original and noisy character for 
A, the output is shown in figure 6.4 as pattern A. 

6.1.2.4 Simulation results for the Counterpropagation network 

since there are two different layers to be trained on 
this network, both weights are updated at the same time 
per cycle. The number of iterations is 60. This number of 

cycles is required to allow the 26 characters to self
organise in the competitive layer. At the same time, the 

weights between the winner node and the output layer are 
then updated according to the target output presented to 
this layer. 

The initial learning rates to update the first and 

second weights are 0.5 and I respectively. The first 
weights are initially assigned with a random number from 
the interval (0,1) with the seed equal to 1000. The 
second weights are initially set to zero. Since the 

output is a binary value, the final value for the second 
weight is equal to the target value. 

The time taken for 60 training cycles is 2. 05x103 

seconds. All the characters were successfully recalled. 
The noisy characters, were also correctly identified. The 
output nodes hold the following binary values when the 

original and noisy characters were presented. 

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 represents A 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 represents B 

. . . . 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 represents Z 
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Fiq. 6.4: The output of pattern A 

6.1.2.5 Parallel Simulation results 

To generate a parallel program, the NEUCOMP programs for 

the four NN models studied previously were added with the 

parallel statements stated earlier. These were then 

compiled and executed using NEUCOMP2. The performance of 

the parallel execution ranging from one processor to many 

processors were measured. The speedup are calculated 

based in section 5.5. 

The performance results for the backpropagation 

network are shown in table 6.1. The performance results 

for the Kohonen network are shown in table 6.2. The 

performance results for the Counterpropagation network 

are shown in table 6.3. The performance results for the 

ARTl network are shown in table 6.4. 

The graphs of speedup versus number of processors 

for all the above results are shown in fiqure 6.5. The 

graph of the execution times for the results are shown in 

fiqure 6.6. 

6.1.3 Discussion o/the results 

For the first simulation in the character recognition 

problem, the ARTl network performed the fastest learning 

194 



time which is approximately 22 seconds. This is because 

in the ART1, training the network is not through updating 

the weights for every iteration. Instead its feedforward 

weights are adjusted by a formula so that when a similar 

pattern is presented, these weights guarantee to give the 

maximum value. The node that is connected to those 

weights is the winner node. The Counterpropagation 

network took about 2. 05xl03 seconds for 60 cycles, the 

backpropagation network took about 4.05X103 for 388 

cycles and the Kohonen network took 16.8xl03 seconds for 

60 cycles. The Kohonen network training took the longest 

because with the size of its competitive layer, i.e. 

30x30, updating the weights of the neighbourhood affect 

the execution time. 

A thorough comparison amongst the networks in 

response to different levels of noise was not carried out 

because the purpose of the experiment was to prove that 

the NEUCOMP language is capable of developing a 

simulation program for any NN model. 

When all the network were executed in parallel, the 

execution times became less as the number of processors 

increased. They are shown in figure 6.6. The graphs show 

that the execution time for the Kohonen network is the 

slowest and the execution time for the ARTl network is 

the fastest. The speedup for the Kohonen network almost 

reached the ideal speedup whereas for the ART1, the 

speedup indicates poor performance. For the 

backpropagation network, load imbalancing among the 

processors occurred. The reason that can be deduced is, 

the Kohonen network is a two layer network of size 

100x{30x30). Thus partitioning the nodes among the 

processors were evenly distributed. This could not happen 

to the backpropagation network as the nodes are varying 

in size, i.e. lOox20x26. The ARTl network has a small 

size, i.e. lOox26 and the size of the Counterpropagation 

network is lOOxlOOx26. 
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No. of 

Processors 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 6.1: 

No. of 

Processors 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Execution time Speedup 

x 103sec. 

4.06 1.00 

2.05 1.98 

1.44 2.82 

1.05 3.87 

0.88 4.61 

0.84 4.83 

0.66 6.15 

0.65 6.25 

0.62 6.55 

0.47 8.64 

The execution time and speedup 

for the BP network 

Execution time Speedup 

x 103sec. 

16.9 1.00 

8.67 1.95 

5.85 2.89 

4.42 3.82 

3.57 4.73 

3.03 5.58 

2.54 6.65 

2.22 7.61 

1.98 8.54 

1.79 9.44 

Table 6.2: The execution time and speedup 
for the Kohonen network 
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No. of Execution time Speedup 

Processors x 103sec. 

1 2.10 1.00 

2 1.07 1.96 

3 0.73 2.88 

4 0.56 3.75 

5 0.46 4.57 

6 0.40 5.25 

7 0.35 6.00 

8 0.31 6.77 

9 0.28 7.50 

10 0.26 8.08 

Table 6.3: The execution time and speedup 
for the CPN 

No. of Execution time Speedup 

Processors x 101sec. 

1 2.21 1.00 

2 1.13 1.96 

3 0.80 2.76 

4 0.63 3.51 

5 0.53 4.17 

6 0.48 4.60 

7 0.43 5.14 

8 0.41 5.39 

9 0.38 5.82 

10 0.36 6.14 

Table 6.4: The execution time and 
speedup for the ART1 network 
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6.2 INTERTWINED SPIRALS PROBLEM 

To distinguish between two intertwined spirals is an 
example of a difficult pattern recognition problem. The 
data in this example are the X and y co-ordinates of two 
spirals as shown in figure 6.7. A set of points (1. e. 
input vectors) is trained to distinguish between the two 

spirals. The goal of this example is to train the network 

to map X and y co-ordinates into the proper spiral. 

Fig. 6.7: The two intertwined spiral 

The training set, Le. X and y co-ordinates are 
generated by using the following formula :-

where 

and 

x=rsinO 

y= rcosO 

r=6.S(J04-i) 
104 ' 

l} • 11: 
u =1-

16 ' 

i = 0,1, ... , k-l. 

199 



The x and y co-ordinates for the second spiral are 

calculated as follow :-

x = -rsin8 
y=-rcos8 

This will generate 2k co-ordinates for the training set. 

The value of k can be changed to give different training 

set sizes. 
The spiral problem was originally conceived by Lang 

et al. (1988) using the backpropagation network. Later it 

became a benchmark for many researchers in the area of 

the backpropagation learning algorithms [Leighton et al. 

(1992), Sannosian (1992)]. 

A study to solve this problem has been carried out 

using the NEUCOMP language which also includes other 

network models. They are the Counterpropagation and 

Kohonen networks. In the backpropagation, the learning 

algorithm is based on the GRBH method and the weights are 

updated using the 'Batch' method. The parallel simulation 

programs for these three networks are also carried out 

using the NEUCOMP2 language. 

6.2.1 Simulation programs for the back propagation network 

The NN architecture for the backpropagation network 

follows Lang et al. (1988). It has two input nodes, three 

hidden layers 

each hidden 

and one output node. The number of nodes in 

layer is set to seven. Each layer is 

connected to all the layers, which gives a short cut 

connection between the layers. The output can have only 

two states where each indicates one of the spirals. So if 

the point x,y lies on the first spiral then the output is 

o. Otherwise the output is 1 and the point x,y lies on the 

second spiral. The number of training patterns are 200 

(Le. k = 100). 

The simulation program written in the NEUCOMP 

language is similar to section 4.4.1. However, the 
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variables which represent the additional hidden layers 

and weights need to be defined. The 'Batch' method with 

the GRBH algorithms was implemented with a shown in table 

6.5 and {J=0.95. 

R = I:!I a 

R ~ 10-6 10 

R < 10-5 5 

R < 10-4 0.1 

R S; 10-3 0.05 

R >10-3 0.01 

Table 6.5: The chosen value of a with respect to R 

The print format to display the results contains the 

input and output data. These wiil give three-dimensional 

co-ordinates. They can then be plotted graphically using 

the Mathematica program called 'xyzplot'. To display a 

graph of the error versus number of iterations, a program 

called 'xygraph' is used. 

6.2.2 Simulation programs for the Kohonen network 

The simulation program for the Kohonen network is similar 

to section 4.4.2. The size of the input node is two and 

the size of the grid is set to 30x30. The number of 

training patterns are 200 (i.e. k = 100), the learning 

rate is set to 0.5 and the neighbourhood size is set to 

15. The initial weight is set to a random number between 

o and 1 with the seed as 1000. 

The print format to display how the Kohonen network 

self-organises the input pattern 

of the connection weights. 

dimensional co-ordinates. They 

contains the two values 

These will gi ve two

can then be plotted 

graphically using the Mathematica program called 
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'xyspiral'. The information contained in the weights 

determines the input data that is a close approximate. 

6.2.3 Simulation programs for the Counter propagation network 

The simulation program for the counterpropagation network 

is similar to section 4.4.4. The size of the input node 

is two, the size of the second layer is set to 1000 and 

the size of the output node is one. The output node may 

contain 0 when the co-ordinate lies on the first spiral 

and 1 for the second. The number of training patterns are 

200 (i.e. k = lOO) and the learning rate is set to 0.5. 
The initial weight is set to a random number between 0 

and 1 with the seed starting at 1000. 
To display the simulation result, a similar print 

format of the backpropagation is used. 

6.2.4 Simulation results 

Figures 6.8 to 6.10 are the simulation results for the 
backpropagation network. Figures 6.11 to 6.14 are the 

simulation results for the Kohonen network using NEUCOMP. 

Figures 6.15 to 6.16 are the simulation results for the 

counterpropagation network. 

Figure 6.8 shows the spiral points are scattered 

around the axes before training. Figure 6.9 shows the 
points that belong to each spiral correctly displayed to 
their respective spiral after 29184 iterations and 

enormsqr was found to be 0.08. The training process was 

terminated when all the activation values of the output 
node were less than 0.4 of the target values. Figure 6.10 

displays the progression of the GRBH learning algorithm 

based on the 'Batch' method. The x-axis of the graph 

represents the number of iterations required to obtain 
the solution and the y-axis represents the number of 
vector pairs in error. 
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Figure 6.11 shows the distribution of the patterns 

for the Kohonen network before training. The pattern 

vectors were randomly distributed within the spirals. 

Figure 6.12 shows the patterns distribution after 200 

iterations. Although all the patterns have been correctly 

separated, 

patterns. 

after 500 

that were 

shows the 

some patterns stayed close to their original 

Figure 6.13 shows the pattern distribution 

iterations and there were still 

not on their original patterns. 

patterns distribution after 1000 

some points 

Figure 6.14 

iterations. 

All the patterns from both spirals were in their correct 

position. 

For the Counterpropagation network, figure 6.15 

shows the input and output vectors are randomly 

distributed before training. Figure 6.16 shows the .. 
pattern vectors were correctly distributed after 200 

iterations. 

• •• recalled first patterns 
o 0 0 recalled second patterns 
.. _._._._...... original patterns 

Fig. 6.8: The input and output vectors from 

the BP simulation before training 
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0.75 

o. 

0.25 

• 

o 

••• recalled first patterns 
o 0 0 recalled second patterns 

.... original patterns 

Fig. 6.9: The input and output vectors from 
the BP simulation after training 

errors 

20 

17 

15 

12 

10 

Fig. 6.10: 

no. of errors vs. iteration 

5000 10000 15000 30000 
iterations 

Graph of the number of errors 
versus number of iterations 
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••• recalled first patterns 
o 0 0 recalled second pattern 
..... _ .... _..... original patterns 

Fiq. 6.11: The patterns distribution from the 

Kohonen network before training 

••• recalled first patterns 
o 0 0 recalled second pattern 

... original patterns 

Fiq. 6.12: The patterns distribution for 

two spirals from the Kohonen 

network after 200 iterations 
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••• recalled first patterns 
o 0 0 recalled second pattern 
............... original patterns 

Fig. 6.13: The patterns distribution for 

two spirals from the Kohonen 

network after 500 iterations 

••• recalled first patterns 
o 0 0 recalled second patterns 
.............. original patterns 

Fig. 6.14: The patterns distribution for 

two spirals from the Kohonen 

network after 1000 iterations 
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0.7 

o. 

0.2 

0.75 

0.5 

0.25 

o 

• •• recalled first patterns 
o 0 0 recalled second patterns 
_________ original patterns 

Fig. 6.15: The input and output vectors 
from the CPNbefore training 

••• recalled first patterns 
o 0 0 recalled second patterns 
___ ............. _ original patterns 

o~~ __________ ~ ____________ ~ 
-5 0 5 

Fig. 6.16: The input and output vectors from 

the CPN after 200 iterations 
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6.2.5 Parallel Simulation results 

The NEUCOMP2 programs for the backpropagation, Kohonen 

and Counterpropagation networks are similar to those 

discussed in section 6.1.2.5. However, the generated 
parallel programs for these networks are different from 

the previous simulations. There are some loops in the 

NEUCOMP2 programs for classifying two spirals that are 

not executed in parallel. Those loops are the input 

layers for all networks which have only two nodes. The 

output layers for the backpropagation and 

Counterpropagation have only one node. NEUCOMP2 does not 

consider loop iterations which are less than 5 (section 

5.4.2.3) • 

To study the parallel performance of the 

backpropagation, Kohonen and Counterpropagation networks, 

similar experiments to section 6.1.2.5 were carried out. 

The number of 

results for 

iterations was set to 10. 

the backpropagation, 

The performance 

Kohonen and 

Counterpropagation networks are shown in table 6.6, 6.7 
and table 6.8 respectively. The graphs of speedup versus 

number of processors for all the above results are shown 

in figure 6.17. It shows that for the Kohonen and 

Counterpropagation networks, the speedup increases 

steadily whilst for the backpropagation network, the 

speedup increases until 7 processors. Load imbalance 

occurred when 5 or 6 processors were used. These is 

because the size of the backpropagation network for 

spiral problem is small, i.e. 2x7x7x7xl. The speedup for 

the Counterpropagation network performed better because 

its competitive layer (i.e. 1000) is greater than the 

Kohonen (i.e. 30x30). However, the speedups of similar 

simulations (section 6.1.2.5) have better performance 

since all loops were executed in parallel. 
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No. of Execution time Speedup 

Processors x 1Ol sec. 

1 11.4 1.00 

2 7.09 1.61 

3 5.59 2.04 

4 4.32 2.64 

5 4.30 2.65 

6 4.17 2.73 

7 3.10 3.68 

8 3.11 3.67 

9 3.12 3.65 

10 3.16 3.61 

Table 6.6: The execution time and 

speedup for the BP network 

No. of Execution time Speedup 

Processors x 102sec. 

1 11.48 1.00 

2 6.25 1.84 

3 4.47 2.57 

4 3.57 3.21 

5 3.05 3.76 

6 2.71 4.24 

7 2.46 4.67 

8 2.28 5.04 

9 2.14 5.37 

10 2.02 5.68 

Table 6.7: The execution time and speedup 
for the Kohonen network 
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No. of Execution time Speedup 

Processors x 102sec. 

1 11.96 1.00 

2 6.08 1.97 

3 4.11 2.91 

4 3.14 3.81 

5 2.55 4.69 

6 2.17 5.51 

7 1.89 6.33 

8 1.69 7.08 

9 1.53 7.82 

10 1.42 8.42 

Table 6.8: The execution time and 
speedup for the CPN 

10 
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8 --+-KOHONEN 

--e--CPN 
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---.-BP 
Q. 6 

" al 5 ., 
Q. 
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1 
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0 1 2 3 4 5 6 7 8 9 10 

no. of processors 

Fig. 6.17: The speedups versus no. of processors 
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6.3 TRAVELLING SALESMAN PROBLEM 

The Travelling Salesman problem (TSP) is a well known 

combinatorial optimisation problem [Aarts (1989), 

Freisleben et al. (1991), Karp (1977), Platt (1988), 

Wacholder et al. (1989), Wilson et al. (1988)]. This is a 

difficult optimisation problem that belongs to the NP

complete class of problems. A set of N cities, a, b, c, d, ... 

have distances of separation dab, dao ... , dbo dbd ....• The aim 

of the TSP is to find a valid tour which visits each city 

once, returns to the starting city, and has the shortest 

total path length. As N increases, the computational work 

of the problems increases exponentially. 

Two Hopfield-type models are considered for the TSP. 

They are the Continuous Hopfield model and the Potts

Glass model. The continuous Hopfield model or Hopfield

Tank model [Hopfield et al. (1985)] is chosen because of 

its original contribution to the TSP. The Potts-Glass 

model is chosen because 

better solution. The 

it is an alternative to find a 

objective is to study the 

implementation of the models using the NEUCOMP language 

to solve the TSP. 

The simulation starts with a small value of N, then 

the size of the problems is doubled until restricted to 

computational resources. The TSP is easy to solve for 

small N but as the number of possible solutions increases 

exponentially with N, it becomes impossible to find the 

best solution and a good approximation is an acceptable 

solution. 

6.3.1 The Hopfield-Tank model 

The details of the Hopfield-Tank model for TSP has been 

explained in section 2.2.2.2. This section discusses the 

Hopfield-Tank simulation program written in the NEUCOMP 

language for the TSP, the experimental results for the NN 

simulation and the parallel simulation results. 
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6.3.1.1 Simulation Program for the Hopfleld-Tank model 

The algorithm for the TSP simulation program is based on 
Muller et al. (1990). The data structure is as follows :-

INT seed; 

REAL 

xcity[ncity], ycity[ncity], dist[ncity,ncity], 
node[ncity,ncity], u[ncity,ncity], 
deltat, lambda1, lambda2, lambda3, tau, temp, 
energy, energyo, energy1, energy2, energy3; 

where seed is used to generate a different starting number 

generator, ncity is the size of the cities, xcity and ycity 

the co-ordinate of the city on a two-dimensional axes, 
dist is the Euclidean distance between the cities, node is 
the activation node, U is the local field, deltat is the 
time increment At, lambda1 , lambda2 and lambda3 are the 

A's, tau is the time constant f, temp is the temperature of 
the sigmoid function, and energy to energy3 represent 

E,EO, .... ,E3 of the energy function. The symbols u, At, A, 

f and E, EO, .... ,E3 can be referred in section 2.2.2.2. 

The algorithm for the TSP simulation program and the 
NEUCOMP program codes are as follows :-

(1) calculate the initial local field, u and activation 
node, node which are written as :-

u = -0.5*temp*LOG(ncity)*(1 + 0.1*RAND1(seed»; 
node = SIGMOID(2*u/temp) 

The initial value u, is set to some noise level, i.e. 
with random value generated by function RAND] between 
-1 

fully 
1. This is to avoid starting at a 

symmetric state and allows 
nondeterministic operation of the program. 
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(2) calculate the value of (2.2.nia -N) which is written 
i a 

as :-

e3 = SUMALL(node) - ncity; 

The built-in function SUA/ALL calculates all the 

elements in the matrix node and returns a scalar 

constant. 

(3) calculate the u which is written as :-

U += deltat*(-l/tau*u - sumO(eO&,I,J) 

- lambdal*(suml(el&,I) - node) 

- lambda2*sum2(e2&,I,J) 

- lambda3*e3); 

where sumO, sum I and sum2 are the user-defined 

functions. The first function is to calculate the EO, 
the rest are for the E] and E2. Their argument lists, 

eO, el, e2 followed by , &' means that a value is 

returned from those functions. The arguments I and J 
are the reserved words which represent the current 

row and column of the matrix. They are used when a 

scalar operation requires an element of the matrix. 

This scalar operation is defined by the user as a 

function. For example, sumO is written as shown in 

figure 6.18. 

The argument list of the function sumO need not be 

declared because their types are based on its 

function call. The two ' if-statements' are used to 

impose a closed tour cyclic boundary, i.e. whenj+l is 

equal to ncity then set j to zero and when j-I is less 

than zero then set j to ncity-l. 

213 



FUNC sumO(eO,i,j) 

INT k,add,minus; 
eO = 0.; 
FOR (k =o,ncity) 

IF (j + 1 EQ ncity ) add = 0 
ELSE add = j + 1 

ENDIF; 
IF (j - 1 LT 0 ) minus = ncity - 1 

ELSE minus = j - 1 

ENDIF; 
eO += dist[i,k)*(node[k,add)+node[k,minus) 

ENDFOR RETURN eO; 

Fiq. 6.18: A function defined by user for EO 

3) calculate energyO, energy1, energy2, energy3 and energy 

which are written as :-

energyO += eO*SUMALL(node); 
energyl += (el - node)*SUMALL(node); 
energy2 += e2*SUMALL(node); 
energyO *= 0.5; 
energyl *= 0.5; 
energy2 *= 0.5; 

energy3 = 0.5*e3*e3; 
energy = energyO + lambdal*energyl 

+ lambda2*energy2 
+ lambda3*energy3; 

(4) calculate the activation node, node which is written 
as :-

node = SIGMOID(2*u/temp); 

(5) repeat (2) until the following condition is met :-

saturation = SUMALL(node*node)/ncity; 
IF ( saturation GT .95 ) BREAK ENDIF 
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The variable saturation approaches one if a valid 

solution is reached. However, the final result does 

not guarantee that a valid tour is found. The 

following test is then used to find a valid tour. 

FOR (a = O,n - 1) 

FOR (k = a + 1,n) 

IF (city[a] EQ city[k]) 

PRINT (" invalid tour on city %d\n",city[a])i 

BREAK 

ENDIF 

END FOR 

ENDFORi 

where city[a] and city[k] contain an integer value which 

represent a city being visited at position a and k 

respectively. 

The complete program is shown in Appendix G. 

6.3.1.2 Simulation results 

The initial parameters for the experiments are chosen as 

follow :-

'! = 1., Al = .1, A2 = .1, A3 = .1 and I::J = 0.0005 

The values of the A'S are allowed to vary during the 

iterations as based on wilson et al. (1988) in order to 

improve the chances of the original Hopfield network on 

finding the valid tour and shortest path otherwise it is 

difficult to get a valid tour. The number of cities 

tested was 20, 30 and 40 cities. A further increase on 

the size of the cities cannot be carried out due to the 

memory limitation. The number of iterations allowed for 

the network to reach a stable state is 1000. A further 

increase of this number will not change the final result. 
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A valid tour is easy to get but the shortest path 

cannot be guaranteed. To do this, a number of experiments 

was carried out with different initial random numbers 

(seeds) and temperatures. The temperature is used to 

determine the slope of the Sigmoid function. 

Figure 6.19 shows a tour for 20 cities with a seed 

set to 200 and temperature of 0.03. The result shows that 

it is a valid tour but not the shortest. The distance 

calculated is 8.86. Figure 6.20 illustrates a tour for 20 

cities with a seed set to 400 and temperature of 0.03. 

The result shows that it is the shortest recorded so far. 

The distance calculated is 7.48. 

Figure 6.21 shows a tour for 30 cities with a seed 

set to 1100 and temperature of 0.05. The result shows 

that it is a valid tour but not the shortest. The 

distance calculated is 11. 04. Figure 6.22 shows a tour 

for 30 cities with a seed set to 600 and temperature of 

0.05. The result shows that it is the shortest recorded 

so far. The distance calculated is 10.02. 

Figure 6.23 illustrates a tour for 40 cities with a 

seed set to 50 and temperature of 0.05. The result shows 

that it is a valid tour but not the shortest. The 

distance calculated is 13.45. Figure 6.24 illustrates a 

tour for 40 cities with a seed set to 2600 and 

temperature of 0.03. The result shows that it is the 

shortest recorded so far. The distance calculated is 

13.31. 

The summary of the above results are shown in table 

6.9. 

N seed temperature Distance 

20 200 0.03 8.86 

400 0.03 7.48 

30 1100 0.05 11. 04 

600 0.05 10.02 

40 50 0.05 13.45 

2600 0.03 13.31 

Table 6.9: The total path for 20, 30 and 40 cities 
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Number of cities : 20 

distance = 8.86 

Fig. 6.19: Valid cities but not the shortest 

Number of cities 20 

distance = 7.48 

Fig. 6.20: Shortest path so far for 20 cities 
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Number of cities 30 

distance = 11.04 

Fig. 6.21: Valid cities but not the shortest 

Number of cities : 30 

distance = 10.02 

Fig. 6.22: Shortest path so far for 30 cities 
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Number of cities 40 

distance = 13.45 

Fig. 6.23: Valid cities but not the shortest 

Number of cities : 40 

distance = 13.31 

Fig. 6.24: Shortest path so far for 40 cities 
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6.3.1.3 Parallel Simulation results 

Experiments similar to section 6.1.2.5 have been carried 

out to study the performance of a parallel NN simulation 

program generated by NEUCOMP2 for solving the TSP. Table 

6.10 shows the execution times and speedups for three 

numbers of cities, Le. 20, 30 and 40 cities with 300 

iterations. Figure 6.25 gives the graph of speedup versus 

the number of processors for the above experiments. The 

graph shows that for a small size problem, load imbalance 

among the processors occurred resulting in a lost of 

efficiency. As the city size increases, the load 

imbalance characteristic almost disappears. Hence, for a 

network of size 40, the speedup almost reaches to an 

ideal state. However, due to memory limitation further 

results cannot be completed. 
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20 cities 30 cities 40 cities 

no. of Execution speedup Execution speedup Execution speedup 

processors. time time· time 

1 

2 

3 
4 

5 

6 

7 

8 

9 

10 

x103sec. x103sec. x103sec. 

2.29 1.00 4.24 1.00 7.07 

1.16 1.97 2.14 1.98 3.57 

0.83 2.76 1.49 2.85 2.48 

0.63 3.64 1.16 3.66 1.79 

0.49 4.67 0.96 4.42 1.46 

0.49 4.67 0.79 5.37 1.27 

0.37 6.19 0.75 5.65 1.08 

0.38 6.03 0.60 6.95 0.95 

0.38 6.03 0.61 6.98 0.86 

0.27 8.48 0.47 9.01 0.76 

Table 6.10: The execution times and speedups 

for 20, 30 and 40 cities. 
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no. of processors 

Fiq. 6.25: The speedups versus no. of processors 
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6.3.2 The Potts-Glass model 

Previous results for solving the TSP using the Hopfield

Tank model have not always located the shortest path. A 

valid tour is sometime difficult to get for the size of 

30 and more cities. Discussions on the reasons for this 

can be obtained from Wilson et al. (1988). The next model 

to be considered in this section is the Potts-Glass model 

suggested by Peterson et al. (1989). 
The problem of not achieving the solutions in the 

Hopfield model is because the tour is chosen by a set of 

N2 independent node variables nia = 0 or 1 where i, a = 1, 

••• , N2. This lead to a situation whereby nia can be 

active (i.e. one) on more than one a (i.e. cities). Thus 

instead of allowing the node to be active and inactive 

independently, the nodes are set to satisfy the following 

constraint 

a 

pottsl 
where s is known as aAspin variable. This guarantees that 

a city is visited exactly once. In what follows, the 

encoding scheme is denoted as 'graded neurons'. 

Muller et al. (1990) outlines the Potts-Glass model 

for the TSP as follows :-

(1) The energy function is written as 

+ ~Lq>ia _1)2 
a , 

The objective is to find a global minimum when the 

spin variables take on values representing a valid 

tour with minimum length and then to search for the 

ground state of the spin system. 

(2) In the search for the ground state of the spin 

variable or at least a state with energy as low as 
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possible, 
Potts-Glass 

the 'mean-field approximation' of the 
model is used. Thus the mean-field 

equations are expressed as follows :-

(6.1) 

(6.2) 

where 

Now equations 6.1 and 6.2 will be iterated at a 
constant temperature until a stable solution is 
reached. 
reduced 

The next iteration 
temperature. This 

will be performed at a 
strategy follows the 

simulated annealing method to avoid getting stuck at 
the local minimum [Kirkpatrick et al. (1983)]. 

(3) The initial spin variable is set as 

Via =~(1+0.1RAND 1) 
N 

as was done in the Hopfield-Tank model. 
(4) The stopping criteria depends on one of the following 

conditions :-

(a) The accumulated change of the spin values in the 
updating procedure, 

J.slv?ew _ v?ld I <is N£.J la la 

is smaller than a predetermined constant, i.e. 
0=0.1. 
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Cb) the saturation of the solution 

17 = ~ '" v~ N~ la 
la 

approaches one as in the case of the Hopfield

Tank. 

The following sections discuss the NEUCOMP program 

codes for the Potts-Glass simulation, the results when 

the size of the problems is increased and the performance 

of the parallel simulation. 

6.3.2.1 Simulation Program for the Potts-Glass model 

The algorithm for the Potts-Glass simulation is based on 

Muller et al. (1990). The data structure is as follows :-

INT seed; 
REAL 

xcity[ncity],ycity[ncity], dist[ncity,ncity], 
v[ncity,ncity], u[ncity,ncity], 
temp, anneal, delta, aconst, bconst; 

where seed, ncity, xcity, ycity and dist serve similar purposes 
as defined in section 6.3.1.1, v represents spin variable 
(equation 6.1), u is the variable of equation 6.2, delta 
represents (j, temp is the temperature, i.e. T, aconst and 
bconst are the constraint parameters for the A and B of 
equation 6.2. 

The algorithm for the TSP simulation program and the 
NEUCOMP program codes is as follows :-

(1) calculate the initial variable for spin which is 
written as :-

v = (1. + 0.1*RAND1{seed) )/ncity; 
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(2) calculate the u which is written as :-

U=EXP«-sumO(I,J) + aconst*v 
- bconst*suml(v,J»/temp )i 

where sumO and sum} are user-defined functions. The 
first function has a similar program code to fiqure 

6.18. The second function is used to calculate all 
the elements of the variable v with respect to the 
current column of the matrix, i.e. J. 

(3) calculate the change of v values and the saturation 
level as written below:-

ov = Vi 
v = u/sum2(u,I)i 
change=l/ncity*SUMALL(ABS(ov - V»i 
saturation = l/ncity*SUMALL(V*V)i 

The variable ov is used to hold the old value of v. 
The function sum2 is defined by the user. It is used 
to calculate all the elements of the variable u with 
respect to the current row of the matrix where I is 
the reserved word. The built-in function SUA/ALL 

calculates all the eI'ements in the matrix v and 
returns a scalar constant. 

(4) repeat (2) for an iteration at constant temperature 
until the following condition is met :-

IF ( change LT delta) BREAK ENDIFi 

(5) reduce the temperature by the factor anneal written as 
follows :-

temp = temp*anneali 

(6) repeat (2) for different temperatures until the 
following condition is fulfilled 

IF ( saturation GT .9 ) BREAK ENDIF; 
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A valid tour follows the same method as the Hopfield

Tank simulation program. 

The complete program is shown in Appendix H. 

6.3.2.2 Simulation results 

The same size of problems are tested using the simulation 

program for the Potts-Glass model. The initial parameters 

for the experiments are as follows :-

(1) 0 = 0.01-

(2) Cycle for annealing = 20 

(3) cycle for iteration at constant T = 40 

(4) T = 0.4 

A number of experiments to find the shortest path 

for increasing sizes was carried out by changing the 

seed. For 20 and 30 cities, the shortest paths were 

easily found. Figures 6.26 and 6.27 show the graphs of 

the routes with no intersection. This means an optimal 

solution. The shortest distance recorded for 20 cities is 

4.54. The shortest distance recorded for 30 cities is 

5.89. However, for 40 cities, different results were 

obtained. Figure 6.28 gives a path which is not the 

shortest because there are still line crossing occurring. 

The seed setting was 1000 and the distance found was 

6.44. Figures 6.29 shows the path obtained is the optimum 

since there is no line intersection. The seed is set to 

2000 and the distance recorded is 6.27. 
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Number of cities 20 

distance = 4.54 

Fiq. 6.26: Shortest path so far for 20 cities 

Number of cities : 30 

distance = 5.89 

Fiq. 6.27: Shortest path so far for 30 cities 
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Number of cities 40 

distance = 6.44 

Fig. 6.28: Non-optimum solution for 40 cities 

Number of cities 40 

distance = 6.27 

Fig. 6.29: Shortest path so far for 40 cities 
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6.3.2.3 Parallel Simulation results 

Experiments similar to section 6.1.2.5 have been carried 

out to study the performance of a parallel NN simulation 

program generated by NEUCOMP2 for solving the TSP using 

the Potts-Glass model. The same parameters of section 

6.3.2.2 was used. At first the same number of cities of 

the parallel simulation using the Hopfield-Tank was 

carried out, unfortunately the performance result was 

very poor. The size of the problem was further increased 

with the hope that the simulation would perform better. 

The maximum size permitted is 80 but there was no 

corresponding improvement in results. The execution times 

and speedups of 20, 40 and 80 cities are tabulated in 

table 6.11. Figure 6.30 shows the graph of speedup versus 

the number of processors for the above experiments. The 

graph shows that as the size of the problem increases, 

the speedup increases only slightly. 

The reasons for this are now given. The 

matrix/vector operations in step 2 and 3 of section 

6.3.2.1 are involved within the training loop. They use 

the same outer loop (their row size are the same). This 

loop is chosen by NEUCOMP2 for parallel loop execution. 

The mathematical operation on variable u in step 2 

requires the old value of v to be calculated in function 

suml. If the loop is executed in parallel, there are new 

values of v calculated in step 3 which are also involved 

in the loop iteration. Thus incorrect operation of the 

simulator has occurred. In order to maintain correctness, 

NEUCOMP2 omits this loop and considers the next inner 

loop. However, the next inner loop, has a similar 

structure as in figure 6.18. The column of the matrix 

contains ordered-shared dependencies which are also 

omitted by NEUCOMP2. Thus, not many inner loops can be 

considered for parallelism within the training iteration. 
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20 cities 40 cities 80 cities 

no. of Execution speedup Execution speedup Execution 

processors time time time 

xl03sec. xl03sec. xl03sec. 

1 0.37 1.00 2.16 1.00 14.1 

2 0.37 1.00 2.06 1.05 13.0 

3 0.35 1.06 2.00 1.08 12.8 

4 0.35 1.06 1.98 1.09 12.7 

5 0.35 1.06 1.97 1.10 12.6 

6 0.35 1.06 1.96 1.11 12.6 

7 0.35 1.06 1.95 1.11 12.6 

8 0.35 1.06 1.95 1.11 12.6 

9 0.35 1.06 1.94 1.11 12.6 

10 0.34 1.09 1.93 1.12 12.5 

Table 6.11: The execution times and speedups 

for 20, 40 and 80 cities using 

the Potts-Glass model. 
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Fig. 6.30: The speedups versus no. of processors 
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6.3.3 Discussion a/the results 

The Hopfield-Tank simulation results obtained from the 

NEUCOMP simulation program have not given the optimum 

solutions for the size of problem of 20 cities and more. 

Many experiments failed to find a valid tour. However, 

its parallel simulation program generated by the NEUCOMP2 

performed well where the slope of the graph of speedup 

versus number of processors nearly reaches the ideal 

state when the size of the problem increased. 

The optimum solution for the Potts-Glass simulation 

was easy to find for the small size problem. As the size 

of the problem increased, finding the optimum solution is 

not easy. Many trials had to be made by changing the 

initial random numbers in order to find the shortest 

path. The optimum solution is found when the graph of the 

route has no line crossing (figures 6.26, 6.27 and 6.29). 

As another example, figures 6.31 and 6.32 show two 

different distances for 80 cities. The first figure is 

not the optimum solution because 

crossings. The second figure is 

value. Both have seed settings 

there are many line 

near to the optimum 

for 2000 and 3200 

respectively. Hence, an accurate result cannot be 

guaranteed because no network of polynomial size in N can 

exist that will solve the TSP for N cities to a desired 

accuracy [Muller et al. (1990)]. 

The summary of the comparison for the shortest 

distance found using the Hopfield-Tank and Potts-Glass 

models are shown in table 6.12. 

Although the Potts-Glass simulation program written 

in the NEUCOMP has succeeded in solving the problem, 

unfortunately its parallel version did not perform well 

owing to data dependencies on both the outer and inner 

loops. 
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Number of cities : 80 

distance = 9.69 

Fig. 6.31: Non-optimum solution for 80 cities 

Number of cities : 80 

distance = 9.16 

Fig. 6.32: The shortest so far for 80 cities 

Number of cities Hopfield-Tank Potts-Glass 
simulation simulation 

20 7.46 4.54 

30 10.02 5.89 

40 13.31 6.27 

Table 6.12: The total path for 20, 30 and 40 cities 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 
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Neural network (NN) models have grown rapidly in solving 

applications involving massively parallelism such as 

pattern recognition where the traditional programming 

methods are not viable. This is because NNs are designed 

to mimic the human brain which is able to operate easily 

in parallel to solve problems such as pattern 

recognition. Although the computer is a high-speed serial 

machine, it is unable to solve quite simple recognition 

problems. NNs and their computational properties have 

attracted the interest of researchers in the area of 

machine perception by 

complementary alternative 

paradigms. They hold with them 

presenting an exciting, 

to symbolic processing 

the promise of exceedingly 

coupled with flexibility through fast implementations 

self-organisation or learning. 

NN models can be implemented in various ways. These 

can range from a very complex hardware VLSI design to 

software simulators on a digital computer. Hardware 

implementations are faster than software simulators but 

they are confined to special purpose NNs. Computer 

simulation is more flexible and economical for rapid 

prototyping and problem solving 

A general-purpose NN simulation tool has become a 

current trend because it is more flexible. The user can 

easily simulate any NN model or combine these models to 

suit their applications. To implement this simulator, a 

proper programming language specifically for NN model is 

preferred. The existing high-level languages such as C or 

FORTRAN are not suitable because most of the NN designers 

do not originate from a computer programming background. 

The program translations for NN languages come from 

either compiler method [Almassy et al. (1990), Leighton 

et al. (1992), Panetsos et al. (1993) J or a combination 

of both interpreter and compiler methods [Korn (1989, 

1991a&b) J. There exists many programming languages 

specifically for the NN models [Almassy et al. (1990), 

DasGupta et al. (1990), Hu (1991), Korn (1989, 1991a&b), 

Zell et al. (1991), Vellacott (1991), Leighton et al. 
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(1992), Panetsos et al. (1993»). These NN languages cover 

many methods of programming style such as descriptive 

(declarative), procedural and object-oriented. The 

purpose is to provide a free style of writing a 

simulation program for any of the NN models. 

NEUCOMP is a NN compiler used to compile the 

procedural style of programs known as the NEUCOMP 

language. It is a high-level language specially designed 

to cater for any NN model with the complexity of the 

existing high-level languages such as C being simplified. 

It also contains graphical facilities such as portraying 

the NN architecture and displaying a graph of the result, 

and finally it can run on a parallel shared memory multi

processor system. A NEUCOMP program is written as a list 

of mathematical specifications of the particular NN 

model. The mathematical statements can be written as 

scalar, vector or matrix assignments as required by the 

NN models. This idea is based on Korn's work [Korn (1989, 

1991a&b) ). The DESIRE/NEUNET program is translated by a 

combination of both an interpreter and a compiler whereas 

NEUCOMP is based only on compiler. 

It is well known that the compilation of high-level 

programs has been proved to produce a high performance 

result [Bennett (1990),Ford (1990»). However, to develop 

a true compiler is a difficult task. NEUCOMP takes a 

simpler approach as the objective here is to study the 

suitability of the NEUCOMP language to perform general 

implementations of NN models. The reason is to provide an 

ad hoc and workable compiler at an early stage so that 

when it is successful a true compiler can be later 

developed. The C language is chosen as the target 

language because it is portable to any machine under the 

UNIX platform. 

The procedural approach is chosen because 

traditionally this approach has been established since 

the evolvement of the FORTRAN language. Furthermore, a 

procedural language 

specifications to be 

allows 

easily 
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algorithmically. Other approaches as mentioned earlier 

which are declarative (descriptive), functional and 

object-oriented are not suitable for writing a series of 

mathematical specifications. 

NEUCOMP has been implemented on the 5EQUENT Balance 

machine at PARCo It is used to generate a sequential 

program. It can be used on any UNIX based machine. 

NEUCOMP2 has been implemented on the same machine and 

used to generate a parallel program for a shared memory 

parallel computer system. NEUCOMP2 is different from 

NEUCOMP in that its compiler phases contains a parallel 

routine called the parallelising stage. It analyses the 

existence of parallelism in the target program which is 

written in sequential form and transforms it into an 

equivalent parallel program. The target machine is the 

shared-memory parallel processor. Program correctness is 

based on both sequential and parallel results being 

compared. Experiments were carried out in parallel 

because of better execution times and speedups that can 

he attained. 

The NEUCOMP/NEUCOMP2 language has proved to be 

capable of designing a simulation program for any NN 

model. 50 far, 5 models of different structure and 

training algorithms, and solving 3 NN applications of 

different problems have been successfully compiled and 

executed. The results of the simUlation programs were 

very encouraging. 

The chosen NN models which represent different 

classes of the networks were the backpropagation, 

Kohonen, counterpropagation, ART 1 and Hopfield-type 

networks. The backpropagation network is a multi layer 

feedforward network. The Kohonen network is a self

organising topOlogical network. The Counterpropagation 

network is a three layer network in which the hidden 

layer is the competitive layer network. The ARTl network 

is a two layer network with feed forward and feedback 

connections. The Hopfield-type network is a single layer 

with feedback connection. The learning algorithms for the 
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backpropagation and Counterpropagation networks are based 

on supervised learning whilst the Kohonen, ARTl and 

Hopfield-type networks use unsupervised learning. 

The NN simulators generated by NEUCOMP/NEUCOMP2 for 
the above mentioned models were used to solve three 

categories of problems, i.e. the classification, 

approximation and optimisation. Character recognition 

belongs to the classification category. It was solved by 

the backpropagation, Kohonen, ARTl and Counterpropagation 

simulators. The intertwined spirals problem belongs to 

the approximation/ classif ication category. The 

backpropagation simulator was used to approximate the 

spiral type from two sets of input co-ordinates. The 
Kohonen simulator classified the intertwined spirals into 

two clusters which were shown on the map. The 

counterpropagation simulator did the clustering of the 

intertwined spiral on its competitive layer and then 

classified the clusters to belong to which spiral. The 

Hopfield-type networks considered were the Hopfield-Tank 

and Potts-Glass models. They were used in the 

optimisation category 

problem. 

to solve the travelling salesman 

The simulation results for all 

mentioned above have been successfully 

the categories 

recorded. They 

were shown graphically using the 'Mathematica' 

which were included as NEUCOMP/NEUCOMP2 

programs 

library 

character functions. The parallel simulation for 

recognition and spiral problems have shown increasing 

speedup as the number of processors increases except that 

the backpropagation simulator for solving the spiral 

problem has a speedup that reached a maximum for 7 

processors. This is because its network size is 

2x7x7x7xl. For the travelling salesman problem, the 

parallel simulation for the Hopfield-Tank has shown good 

performance but the Potts-Glass· model was disappointing 

because its loop segment contained data dependencies 

which obstructed the parallelism. 
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Although 
,NEUCOMP2i 

NEUCOMP/ l\ has explored different NN 

applications, these problems are not new. However, this 

research is to study the feasibility of implementing a 

general-purpose simulator based on the compiler method. 

It is challenging to tackle certain problem and NN model 

in depth within a limited period of time whereas the 

characteristic of the general-purpose model has to be 

achieved. Another difficulty encountered was to find 

problems with realistic data to be implemented owing to 

industrial secrecy. The model examples given in the books 

or papers are often too simple and straight forward. For 

the more advanced examples, insufficient details are 

given. 

However, 

advantages:-

NEUCOMP/NEUCOMP2 has the following 

(1) Flexibility the user has a free style of 

developing his own simulation program. A fixed NN or 

more general NN simulator can be designed. 

(2) Efficiency - the program can be run in parallel. 

(3) Readability the statements are English-like 

commands. An algorithm is easy to follow which is 

based on structured programming technique. 

(4) Dynamic-like structure - the use of dynamic memory 

allocation allows a simulation program on a model 

that can be used for any size of the network. The 

size can be assigned at run time without 

recompilation. 

(5) Simple and straightforward language the 

mathematical form written in matrix/vector notation 

are easily included. This allows the designer to 

avoid the use of the loop on matrix/vector 

operations. However, If the matrix/vector operation 

cannot be used then the loop written as in other 

high-level language can be used. 

(6) Portability - the target program written in C can be 

used on any UNIX machine. However, the parallel 
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target program can only be run on a shared-memory parallel 

machine. 

(7) The target program can be used as a source code when 

more facilities of the C language are required to 

enhance the complexity of the software. 

The development of NEUCOMP/NEUCOMP2 is just the 

initial stage. Due to lack of man power, equipment and 

time, many other NN models and application could not be 

explored. The related topics for the development of 

NEUCOMP/NEUCOMP2 are the compiler design, NN models, NN 

simulators, parallel compiler and NN applications. There 

are many topics that are not covered such as :-

(1) Error handling and recovery routines when a syntax 

error is found. This is because the compiler 

generator, Yacc stops execution when an error is 

located. 

(2) Enhancement of the NN applications such as invariant 

character recognition or pattern completion, using 

various learning rate strategies to improve learning 

on the backpropagation network and using other NN 

models to improve and increase the problem size of 

the TSP. 

(3) Graphical display on network characteristics during 

iteration such as node activation and the three

dimensional display of the change of weights. 

However, there is a limitation of displaying the NN 

architecture. Only a small size network can be 

displayed because of memory limitation and the 

Mathematica program is slow to display the network 

architecture. 

(4) Combining NN simulation with other disciplines such 

as control engineering and information processing. 

In practice, NNs cannot provide the solution working 

by themselves alone. 
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(5) other NN models such as stochastic NN models, 

dynamic NN models and cascading NN models or 

combining subnetworks into a sUbstantial NN. 

(6) A comparative study between NEUCOMP/NEUCOMP2 and 

other NN simulation languages. The performance study 

should give the real indication of its usefulness. 

(7) Implementing the parallel compiler on other parallel 

machines such as distributed parallel processors, 

i.e. Transputer, Intel Hypercube, etc. 
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program: program_heading 
identifier declarations 

main declaration 
subprogram_declarations ; 

program_heading : NEURALNET IDENTIFIER ; 
identifier_declarations : 1* none *1 I declaration list ; 
main declaration: MAINPROGRAM block statement ; 
subprogram declarations : 1* no subprogram *1 

subprogram_declarations 
subprogram_declaration ; 

subprogram_declaration: 

subprogram_head IDENTIFIER formal_parameter 

block_statement ; 
formal-parameter: 1* none *1 I '(' identifier_list ') '; 
block statement : identifier declarations 

statement list 
return statement , . , . , , 

return statement : END 1* only procedure */ 
RETURN variable; 

subprogram_head : FROC I FUNC ; 
declaration list : declaration 

I declaration_list declaration; 
declaration: type identifier_list ';' ; 
type : INT I REAL I STRING I FILES , 
identifier list: identifier 

lidentifier_list ',' identifier; 
identifier : IDENTIFIER 

IDENTIFIER '=' NUMBER 
I IDENTIFIER '[' numORident ']' 
I IDENTIFIER '[' numORident 

numORident : NUMBER I IDENTIFIER ; 
statement list : statement 

statement list 
assignment_statement statement 

while statement 
repeat_statement 
open_statement 
case statement 
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close statement 
read statement 
print_statement 
call statement 
pattern_statement 
train statement 
for statement 
if statement 
break statement ; 

break_statement : BREAK ; 
open statement OPENREAD read-parameter 

1 OPENWRITE write-parameter ; 
read_parameter: '(' IDENTIFIER ',' text_ident ')' ; 
text ident : TEXT 1 IDENTIFIER ; 

write-parameter: '(' IDENTIFIER ',' text_ident ') '; 
close statement: CLOSEFILE '(' IDENTIFIER 'I'; 
pattern statement : EPOCH statement_list END ; 
call_statement : CALL IDENTIFIER use-parameter ; 

1 PARALLEL' IDENTIFIER use_parameter ; 

use-parameter: 1* none */1 '(' expression_list ')' , 
case_statement : CASE variable OF case_list END ; 
case list : case condition 

1 case_list case_condition ; 

case condition: NUMBER ':' statement ';' ; 
for statement : 

FOR '(' variable '=' expression 
statement list 

END FOR ; 

, , , expression 'I' 

if statement IF '(' logical expression ')' 
statement_list else_statement; 

else statement ENDIF 1 ELSE statement_list ENDIF ; 
logical_expression : logical_AND_expression 

1 logical_expression OR logical_AND_expression; 
logical_AND_expression : equility_expression 

1 logical_AND_expression AND equility_expression; 

, applicable to NEUCOMP2 
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equility_expression : relational_expression 

I equility_expression EQ relational_expression; 
relational_expression : expression 

relational_expression LT expression 
relational_expression GT expression 
relational_expression LE expression 
relational_expression 
relational_expression 

GE expression 
NE 

assignment_statement : variable 

assigntype : '+=' I '*=' I '-=' 
variable ROW 

I 

J 

CLOCK 

CYCLE 
NPATTERN 
NPROCS' 

IDENTIFIER status 
IDENTIFIER '[' expression 
IDENTIFIER '[' expression 
ROW ; 

expression expression '+' term 

expression; 
assigntype expression ; 

I '/=' I '='; 

, ] , 
, , 

I expression ']' 

expression ,-, term I term ; 

term term '*' factor 

term '/' factor 

term '.' factor 
factor ; 

factor : function reference 
MINUS expression 

'(' expression ')' 
NUMBER 
variable; 

status : / * none * / I ' @ , I ' # ' I '> ' I '< ' ; 
function reference: SIGMOID '(' expression ')' 

ABS '(' expression ')' 
DISTANCE '(' expression 
EXP '(' expression ')' 

• applicable to NEUCOMP2 
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GRBH 'C' expression list ')' 
IDENTIFIER 'C' actual-parameter ')' ; 

LOG 'C' expression ')' 
RAND 'C' expression ')' 
RANDl 'C' expression ')' 
SIGMOID 'C' expression ')' ; 

SUMALL 'C' expression ')' 
SQR 'C' expression ')' 

SQRT 'C' expression ')' 
actual_parameter: 1* none *1 , expression_list ; 
expression_list : expression 

, expression_list ',' expression; 
print_statement : print ,printfile; 
print: PRINT 'C' print_items ')' ; 
print_items : TEXT , print_list; 

printfile: PRINTFILE 'C' IDENTIFIER ',' print_items ') '; 
print_list: print_id, print_list ',' print_id; 
print_id: TEXT ',' expression' expression; 
read_statement : read , readfile ; 

read: READ 'C' read_list ')' ; 
readfile: READFILE 'C' IDENTIFIER ',' read_list ')' ; 

read_list: read_id, read_list ',' read_id; 
read_id: TEXT ',' variable, variable 
while_statement: WHILE 'C' logical_expression ')' DO 

statement list ENDWHILE; 
repeat_statement: REPEAT statement list 

UNTIL 'C' logical_expression ')' ; 
train statement TRAINING statement list END; 

256 



APPENDIXB 

USER GUIDE 

257 



A brief description of how to use the NEUCOMP/NEUCOMP2 

language is now presented. NEUCOMP is a sequential 

compiler running on a UNIX operating system and NEUCOMP2 

is a parallel compiler running on a shared memory 

parallel machine, i.e. SEQUENT Balance. Explanations 

given below are applicable to both compilers unless 

stated. 

The structure of the language is as follows :-

NEURALNET program_name 

identifier declarations (global use) 

MAINPROGRAM 

identifier declarations (local use) 

statement list 

ENDi 

subprogram_declarations 

The first line is called program heading which has to be 

included. NEURALNET is the reserved word and program_name 
is a variable name that must be given. Names are made up 

of alphabets, digits or underscore ('_') but the first 

character must be alphabetic. A single alphabet is a 

valid name but a combination of characters improve 

readability. The above name must be unique which cannot 

be used in the simulation program. It must be in a lower

case letter. Capital letters are the reserved word. 

Program heading is used to give a name to the 

simulation program. Identifier _declarations (global and local 

uses) are declaration sections. MAINPROGRAM ••• END is 

the body of the program. Statement-list can be a single 

statement or more than one. If more than one statement is 

used, they are separated by a semicolon, i.e. 'i ' and the 

last statement has no semicolon. Sub program_declarations are 

declarations of one or more subprograms of types 

procedure or function. 
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DATA TYPES 

There are four data types :-

INT 
REAL 
STRING 

FILES 

CONSTANTS 

integer 
single-precision 
holding up to 

floating point 
10 characters 

useful as a file name 
file type 

A real constant contains a decimal point, i.e. 3.14. An 
integer constant has no decimal point. A string constant 
is written as any combination of characters within " ", 
Le. "inputfile". 

DECLARATIONS 

variables can be reserved words or defined by the user. 
All reserve word variables are written in capital 
letters. They are of type integer. These variables are I, 
J, ROW, CYCLE, NPATTERN and NPROCS'. Variables defined by 
the user must be declared before use. They are declared 

in the declaration section (identifier_declarations) either as 
global or local to the body of the main program or a 
subprogram. A local variable is only applicable to where 
it is declared. 

A variable is specified with a type. A type may 
contain a list of one or more variables as shown below :-

INT seed, nocycle; 

REAL dist, lrate; 
STRING filename1, filename2; 

'applicable to NBUCOMP2 which is used to specify number of processors required. 
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A variable of type integer and real can be declared as a 

scalar, vector or matrix. They are used in mathematical 

operations only. From the above example, integer and real 

variables are scalars. A scalar variable can also be 

initialised in its declaration, as shown below :-

INT seed = 1000; 

vector and matrix variables are an array of one and two

dimensional sizes respectively. The size can be an 

integer constant or a variable. For a variable, its type 

need not be declared. Its size will be assigned at run 

time. This makes it more like a dynamic data structure. 

Examples of vector and matrix declarations are 

written as :-

REAL 

layer1[n1],layer2[n2],layer3[n3], 

weight1[n2,n1],weight2[n3,n2]; 

A matrix declaration for the connection weights, i.e. the 

connections between the first and second layers, its row 

size must be the size of the second layer and its column 

must be the size of the first layer. 

ARImMETIC OPERATORS 

There are five types of arithmetic operators :-

'+' , ,-, , '*', '/' and '.' 

The first four operators are similar to any high-level 

language. The fifth operator stands for 'dot product'. It 

is used for two vector multiplications which yields a 

scalar result. In terms of precedences, it is in line 

with the operators '*' and '/'. All mathematical 
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operations involve real and integer types. For example, 

the calculation for the error measure in the 

backpropagation simulation is written as :-

error = layer3 - target; 

enormsqr = 0.5 * (error. error); 

where error, layer3 and target are vectors and enormsqr is a 

scalar. 

RELATIONAL OPERATORS AND LOGICAL OPERATORS 

The relational operators are :-

GT, LT, GE and LE 

In the C language, they stand for symbols '>', '<', ,~, 

and ':5:'. NEUCOMP/NEUCOMP2 prefers to use a word instead 

of a symbol in order to maintain readability of the 

program. 

Logical operators are written as AND and OR. They 

are represented in C as '&&' and ' 11' respectively. The 

precedences of the operators follow the C language. 

STATEMENTS 

The statements available for writing any simulation 

program are :-

assignment statements 

conditional statements 

loop statements 

break statement 

subprogram statements 

input-output statements 

261 



ASSIGNMENT STATEMENT 

An assignment statement is presented as follows :-

variable assigntype expression 

where variable 
assigntype is 

can be a scalar, vector or matrix variable, 

a mathematical operator of types '=',' +=' , 
or '/=' and expression can be a variable or '-=' , '*=' 

variables in a mathematical expression. Their data types 

must be compatible, i. e. if variable is an integer, 

expression must be of type integer. However, an integer 

variable that is in expression is automatically converted 

into real if variable is real. The use of arithmetic 

operators on symbol '=' is to compress an assignment, 

i.e. a = a + 1 and b = b*2 are compressed to a += 1 and b 

*= 2 respectively. 

An assignment statement is divided into 3 types - a 

scalar assignment, vector assignment and matrix 

assignment. In a scalar assignment, variable is a scalar 

and expression can be a digit, scalar variable or 

mathematical expression which yields a scalar result, 

i.e. dot product between two vectors. 

In a vector assignment, variable is a vector and 

expression can be one of the following rules :-

(1) Expression of type scalar. 

(2) vector variable. 

(3) Matrix-vector multiplication. The column size of the 

matrix must be equal to the size of the vector. The 

result is a vector of size equal to the row size of 

the matrix. 

(4) Function a built-in function or a user-defined 

function. Its argument can be a scalar expression or 

a mathematical expression which yields a vector 

result. The built-in functions are shown in table Bl. 
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(5) Matrix variable. The row*column of the matrix size 

must be equal to variable. An example of a valid 

assignment is :-

READ layer1[100], input[10,10]; 

layer1 = input; 

(6) Matrix variable followed by a special character as 

listed below :-

@ all elements of a matrix on a specific row 

# all elements of a matrix on a specific column 

The specified row or column depends on the status of 

a reserved word ROW. Both variables become a vector. 

An example of a valid assignment is :-

REAL layer1[10], pattern[5,10]; 

... 
EPOCH 

layer1 = pattern@; 

••• 
END; 

EPOCH END is a 

iteration is assigned 

current row of pattern. 

loop statement where each 

to ROW. ROW represents the 

(7) Mathematical expression of the above rules except 

rule (5). 
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In a matrix assignment, variable is a matrix and 

expression can be one of the following rules :-

(1) Expression of type scalar. 

(2) Matrix variable. 

(3) Function - a built-in function (tal:lle B1) or a user

defined function. Its argument can be a scalar 

expression or a mathematical expression which yields 

a matrix result. 

(4) vector variable. The size of the vector must be equal 

to the size of row*column of variable. An example of 

valid assignment is :-

REAL layer3(100), output[10,10); 

· .. 
output = layer3; 

PRINT("%f ",output); 

The print statement, PRINT, prints the output data in 

two-dimensional form. The format '%f' denotes a data 

format of type real. 

(5) outer-product of two vectors yields a matrix with its 

row size equal to the size of the first vector and 

its column size is equal to the size of the second 

vector. 

(6) Matrix transpose. It is written as matrix&. Appendix 

C has shown the use of matrix transpose. 

(7) Mathematical expression of the above rules except 

rule (4). 

Note on variable:-

(1) If variable is a vector followed by '@' or '#', it 

becomes a scalar variable and similarly, a matrix 

becomes a vector where its size depends on which 

symbol is used. For this case the above rules are 

applicable. 
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(2) If variable is a vector followed by > then expression 
must be' a vector. The index of expression where its 

element is the maximum, is assigned to ROW. Appendix 

E shows its use. 

(3) If variable is a vector followed by < then expression 
must be a vector. The index of expression where its 

element is the minimum, is assigned to ROW. 

Appendices D and F show its use. 

(4) If variable and expression are of type vector, their 

sizes must be equal. 

(5) If variable and expression are of type matrix, the sizes 

of rows and columns must be equal or vice-versa if 

the matrix is transposed. 

CONDITIONAL STATEMENTS 

There are two types of conditional statements to express 

decisions. The I if-statement I is used to test a single 

decision and I case-statement I is used to test multiple 

decisions. variables involved in these statements are of 

type scalar. The if-statement is written as :-

IF ( logical-expression ) 

statement-list 

ENDIF; . 

or 

IF ( logical-expression ) 

statement-list 

ELSE 

statement-list 

ENDIF; 

where logical-expression involves either a logical operator 

or relational operator or both. When it yields true the 

first statement-list is evaluated. If it uses I ELSE I then, 
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when logical-expression yields false, the second statement-list 
is applied. For example, termination of the error measure 
(Appendix C) is written as :-

IF (enormsqr LT 0.01) 
PRINT(IIconvergence fulfil"); 
PRINT("stop iteration") 

ENDIF; 

The case-statement is written as :-

CASE variable OF 

integer constant1 
... 

statement1; 

integer constantn_1 : statementn_1; 
integer constantn : statementn ; 

END; 

where variable is of type integer scalar. A single 

statement is allowed for each integer constant. As an 
example :-

CASE type OF 
10 a += 1; 
15 a *= 2; 
31 a /= 3; 

END; 

where rype contains any integer value. When it matches one 
of the above integer constants, the statement is 
executed. 

LOOP STATEMENTS 

There are five types of loop statements :-
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for-statement 
while-statement 
repeat-statement 
training-statement 
pattern-statement 

The for-statement is written as 

FOR (variable = expression1, expression2) 
statement-list 

ENDFORi 

where variable and expression are of scalar type integer. 
They can be reserved words or defined by the user. The 
iteration begins on expression1 and increments one until 
expression2-1. As an example, to update the weights in the 

neighbourhood of the Kohonen network (Appendix D), it is 
written as :-

FOR (i = r1,r2 + 1) 
FOR (j = c1,c2 + 1) 

ROW = i*grid+ji 
weight@ += lrate*(layer1-weight@ ) 

END FOR 

ENDFORi 

The while-statement is written as :-

WHILE (logical-expression) DO 
statement-list 

ENDWHILEi 

If logical-expression is evaluated true, statement-list is 
executed and logical-expression is re-evaluated. This cycle 
continues until the expression becomes false. However, in 
the repeat-statement, statement-list is executed first then 
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logical-expression is tested. If false, the loop continues 

until it is true. This loop is written as :-

REPEAT 

statement-list 

UNTIL (logical-expression); 

The loops mentioned above are common to any high-level 

language. However, 'train-statement' 

statement' are special loop statements. 

and 'pattern-

To train the network, it can be done by using the 

following training loop :-

TRAINING 

... 
END; 

where the statement TRAINING contains a reserved word 

variable of type integer called CYCLE which is initially 

set to 100. It means the number of iterations is 100. 

However, this value can be changed. The training 

algorithm is within the loop. 

To assign an input layer with a pattern, the 

following pattern loop is used :-

EPOCH 

layer1 = pattern@; 

... 
END; 

where the statement EPOCH ... END contains the loop 

starting from zero to the pattern size minus one set by 

an integer variable called NPATTERN. Each iteration is 

assigned to the reserved word variable called ROW. The 

NPATTERN is a reserved word variable which is initially 

set to one. It means only one pattern is involved in the 

training operation per cycle. However, this value can be 

changed. 
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BREAK STATEMENT 

The 'break-statement' is used to exit from the loop other 

than through logical-expression. The word BREAK is included 

in the loop if exit from the loop at an early stage is 

necessary. For example, in the backpropagation simulation 

(Appendix C), training-loop is stopped when the sum of 

error is less than 0.01, as shown below :-

TRAINING 

... 
IF (enormsqr LT 0.01) 

BREAK 

ENDIF; 

END; 

INPUT-OUTPUT STATEMENTS 

statements for input are READ and READFILE, and for 

output are PRINT and PRINTFILE. READ and PRINT are an 

input-output statement from or to the terminal. A READ 

statement allows a variable of type scalar, vector or 

matrix to be assigned a value. For example :-

READ(seed); 

where seed is a scalar variable of type integer. The value 

to be assigned must be an integer constant. A text 

written within" " can be included before that variable. 

It is written as :-

READ ("type in seed = ", seed); 

This is used to display a message before the value is 

typed. A PRINT statement allows a text or value of a 

variable to be printed on the terminal. For example :-
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PRINT("The backpropagation\n"); 
PRINT ( 11 %d 11 , seed) ; 

The first statement is to print a text. The character \n 
is to allow a newline to be printed. The second statement 
is to print a scalar variable seed of type integer. The 

argument %d is the data format for an integer constant. 
It is written within 11 11 other data formats can be 
included. For a real, the data format is written as %f 
and a string is written as %s. The width of the constant 
can be included as :-

%4d 

%4f 
%.3f 

%6.3f 

print an integer, at least 4 characters wide 

print as real, at least 4 characters wide 
print as real, at least 3 characters after 
the decimal point 
print as real, at least 6 characters wide and 
3 after the decimal point 

A text can be included in the data format to improve 
readability. For example :-

PRINT("seed = %d\n",seed); 

More variables can be printed using a single print 
statement, such as 

PRINT("seed = %d\n",seed, "learning rate =%fll,alpha); 

A vector or matrix variable can be printed by 

following the above examples. However, for a vector the 
values are printed in the same row and for a matrix, the 
values are arranged in row to column. When using '\n' as 
an example given below :-

PRINT("%f\n",weight); 
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where weight is a matrix, all its values are printed line 

by line. 
READFILE and PRINTFILE statements are used for an 

input-output from and to the specified file. A variable 

of type file must be declared using data type FILES. For 

example :-

FILES filel, file2; 

The variables file1 and file2 must be connected to a file 
name using OPENREAD or OPENWRITE statements. OPENREAD is 
used to connect a variable of type file to a file name to 
be read. OPENWRITE is used to connect a variable of type 

file to a file name to be printed. For example :-

OPENREAD{filel,"inputfile"); 
OPENWRITE (file2, "outputfile") ; 

The texts within 11 11 are the file names. The name of a 

file can be replaced by a variable of type string so that 
the file name can be typed using a read-statement. For 

example :-

FILE2 filel,file2; 
STRING inputname, outputname; 
... 
READ{"Type input file: ", inputname); 
READ{"Type output file: ", outputname); 
OPENREAD{filel,inputname); 
OPENWRITE{file2,outputname); 

To read data from or write data into a file, the 
following statements are used. 

READFILE{filel, ••• ); 

PRINTFILE{file2, ••• ); 
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The second arguments for the above statements follow READ 

and PRINT statements as discussed earlier. However, the 

statement CLOSEFILE has to be written after the file 

variable has been used. It breaks the connection between 

the file variable and the file name. It is written as 

follows :-

CLOSEFILE{filel); 

CLOSEFILE{file2); 

SUBPROGRAM STATEMENTS 

There are two types of subprograms, function and 

procedure. They are used to break a large computing task 

into smaller tasks. They are declared in the 

'subprogram_declarations'. The structure of a subprogram 

is written as 

PROC procedure_name argument 

identifier declarations (local use) 

statement list 

END; 

FUNC function_name argument 

identifier_declarations (local use) 

statement list 

RETURN variable; 

They follow the same structure as the main program. 

Procedure is invoked using a CALL statement and function 

is invoked through an expression. The type of a return 

value for this expression is based on a type of a 

variable after statement 'RETURN'. The use of argument is 

optional. Argument may contain one or more variables 

written within ( ). The argument in the subprogram acts 

as a passing parameter to the calling subprogram. The 

argument in the subprogram need not be declared because 
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the type depends on the type of argument in the calling 

subprogram. 

A function is used to return a single value via a 

RETURN statement. However, if more values are needed to 

be returned, the variable in the argument is written 

followed by &. This can also be applied to a procedure. 

Examples of using procedures can be seen in Appendices C 

to F. Examples of using functions can be seen in 

Appendices G and H. A function can allow some part of an 

expression in a matrix/vector assignment to be evaluated 

on the current row or column of a matrix/vector variable. 

Examples of such functions are sumO, sum1 and sum2, found 

in Appendices G and H. 

PARALLEL PROGRAM 

To generate a parallel program, the word CALL is replaced 

by PARALLEL and then compiled by NEUCOMP2. Only one 

procedure is allowed to be executed in parallel. Other 

additional statements to be written in the NEUCOMP2 

program are shown below :-

MAINPROGRAM 

INT timel, time2; 

REAL time; 

READ (liNo. of processors: ",NPROCS); 

timel = CLOCK; 

PARALLEL training; 

time2 = CLOCK; 

time = (time2 - timel)/lOO.O; 

PRINT("Training time = %.2f\n",time) 

END; 

The use of the CLOCK is to record the execution time on 

several processors. Its usefulness is that before running 

an application, the execution time and speedup of that NN 
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simulation can be tested on a number of processors within 
a small cycle. When a proper number of processors have 
been determined, then actual simUlation on the 
application can begin. This is because the use of many 
processors does not necessarily mean good performance. 

COMMENTS 

All characters after II are ignored by the compiler. They 
are used to make documentation on a program. comments may 
appear anywhere and are written in one line. 

COMPILATION AND EXECUTION 

The simUlation program is written using 'vi editor' and 

the file can be given any name, i.e. filename. The name 
is similar to a variable name. 

There are two steps of compilation. The first step 
is to compile the source program (i.e. the 
NEUCOMP INEUCOMP2 program). When there is no error, the 
second step is to compile the target program using the C 
compiler. The first compilation is written as 

NEUCOMP filename 
NEUCOMP2 filename 

for a sequential program 
for a parallel program, 

The second compilation is written as 

cc 
pc 

for a sequential C compiler 

for a parallel C compiler. 

Execution of the object code can be done using NET. 
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ABS(X) 
Ixl; x is a scalar, Ix;! ; is a vector; i = 0 .. m-I, or 

!xij! ; x is a matrix; i = 0 .. m-I and j = 0 .. n-I 

DIST ANCE(x,w) x is a vector;j = 0, n-I and w is a matrix; i = 0 .. m-I andj =0 .. n-1. 

n-I , (L(xrwijh 
j=O 

EXP(x) eX i x is a scalar, ei ; x is a vector; i = 0 .. m-I, or 
eij ; x is a matrix; i = 0 .. m-I andj = 0 .. n-I 

GRBH(a ,r,x) Gradient Ranged Heuristic method. x is weight or bias derivative, a of 

type vector with size n and r is the range of type vector with size n-l. 
LOG(x) loglO x; x is a scalar 

loglO xi; x is a vector; i = 0 .. m-I, or 

loglO xij; x is a matrix; i = 0 .. m-I andj = 0 .. n-I 

RAND(seed) random number between 0 .. 1. Seed is an integer. 

RAND l( seed) random number between -1 .. 1. Seed is an integer. 
SIGMOID(x) 

1 
x is a scalar, 

1 
x is a vector; i = 0 .. m-I, or ; 

1 + e- Xi 
; 

I+e- x 

1 
x is a matrix; i = 0 .. m-I andj = 0 .. n-I 

I+e- Xq 
; 

SQR(x) x 2 ; x is a scalar, 

x 2 • 
i ' 

x is a vector; i = 0 .. m-I, or 

x~; x is a matrix; i = 0 .. m-I andj = 0 .. n-I 

SQRT(x) ..Jx; x is a scalar, 

..[X;. I , x is a vector; i = 0 .. m-I, or 

~xij ; x is a matrix; i = 0 .. m-I andj = 0 .. n-I 

SUMALL(x) 
m-I m-I n-I 

LXi; if x is a vector or L LXij; if x is a matrix 
i= 0 i= 0 j= 0 

Table Bl: List of Built-in functions 
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GRAPHICAL FEATURES 

All graphical displays are shown on a PC using the 

Mathematica software. The result from the 

NEUCOMP/NEUCOMP2 simulation program are sent via file 

transfer. 

The type of graphical features that have been 

implemented so far are :-

(1) Displaying the NN structure. 

(2) Plotting the XY-graph. 

(3) Plotting (x,y) for data clustering. 

(4) Plotting (x,y) for the travelling salesman problem. 

(5) Plotting a three-dimensional graph. 

Displaying the Neural Network structure 

The function 'displaynet' is called from the Mathematica 

text-based interface. It prompts for the name of a file 

to be displayed on the respective network. The format for 

this file must contain the title, number of nodes in each 

layer and the connections. For example, a three layer 

network which contains 2 input nodes, 3 hidden nodes and 

1 output node, is written as 

The backpropagation network 

{2,3,1} 

{{1,2,O},{2,3,O}} 

In the last line, {{1,2,O},{2,3,O}}, the first set, 

{1,2,O} means the first layer is connected to the second 

layer with 

represents 

Similarly, 

the second 

'0' representing feed forward connection. '1' 

feedforward and feedback connections. 

{2,3,O} means the feed forward connection from 

layer to the third layer. We can add further 

connections such as a connection from the first layer to 

the third layer which is written as {1,3,O}. 
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as:-

Similarly, a single layer network can be written 

The Hopfield network 

{10} 

{{1,1,1}} 

Set {10} is a one layer network containing 10 nodes and 

{{1,1,1}} means the first layer is connected to the same 

layer with feedforward and feedback connections. 

A two layer network with feedforward and feedback 

connections can be written as:-

The ART network 

{2,5} 

{{1, 2, 1}} 

For a network that contains a layer node arranged in 

a two-dimensional or topological map, it can be written 

as :-

The Kohonen network 

{2,{10,10}} 

{{1,2,0}} 

Set {10,10} means the second layer has nodes arranged in 

10*10. 

Plotting the XY-graph. 

The XY-graph is a two-dimensional graph to display a 

curve of points (x,y). We can plot a single graph or more 

than one on the same axis. The function I xygraph I is 

called from the Mathematica text-based interface. It 

prompts for the title name of the graph, the name of x

axis and y-axis. One or more file names that contain the 

co-ordinates to be plotted are needed to be typed in. If 

no more graphs are required then type the space bar and 
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return key. The data file format are written as values of 

x and y. 

Plotting (x,y) for data clustering 

To display data clustering, there are two types of 

graphs, and they are 'xycluster' and 'xyspiral'. Both are 

used to display weights characteristics during training 

in the Kohonen network with 2 input nodes. The weights 

that are kept in the file are arranged in pairs, i.e. the 

first and second input nodes that are connected to the 

winner node. The first graph is used to study the weights 

distribution on random numbers between 0 and 1, and the 

second graph is for separating intertwined spirals. 

Plotting (x,y) for the travelling salesman problem 

The co-ordinates of the tour can be displayed using 

'xyplot'. The data format in-the file are arranged as a 

value of x-axis followed by y-axis. The first pair 

represents city number one, the second is for the next 

city to be visited and so on, until the last city is 

connected to the first city. 

Plotting three-dimensional graph 

A three-dimensional graph has a co-ordinate in the form 

(x,y,z). The name of a function is 'xyzplot'. It prompts 

for the name of a file to be typed in. The file format is 

arranged in ordered values of x followed by y followed by 

z. This feature has been used for displaying two 

intertwined spirals using the backpropagation and 

counterpropagation simulation programs. The first two 

values are for the spirals co-ordinates and the third one 

is the value of the output node. 
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APPENDIXC 

THE BACKPROPAGATION NETWORK SIMULATION 
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NEURALNET backpropagation 

REAL 
layerl[nl],layer2[n2],layer3[n3], 

weightl[n2,nl],weight2[n3,n2], 
oweightl[n2,nl],oweight2[n3,n2], 
cweightl[n2,nl], cweight2[n3,n2], 
dweightl[n2,nl], dweight2[n3,n2], 
bias2[n2],bias3[n3], obias2[n2], 
obias3[n3], cbias2[n2], cbias3[n3], 
delta2[n2], delta3[n3], ddelta2[n2],ddelta3[n3], 
pattern[n4,nl], target[n4,n3], error[n3], enormsqr, 

beta, limit, alpha[sizealpha], range[sizerange]; 

MAINPROGRAM 
CALL parameters; 
CALL training; 
CALL one recall 

END; 

PROC parameters 
INT seedl,seed2,seed3,seed4; 
FILES filel, 

file2; 
STRING inputf,outputf; 
READ (liNo. of cycle =II,CYCLE); 
READ (lino. training pattern = ", NPATTERN) ; 
READ(IITermination when limit = ", limit) ; 

READ ("beta =11, beta) ; 

READ("Range alpha, = ",alpha); 
READ("Range derivative, = ",range); 

",inputf); READ("Input file from = 
OPENREAD(filel,inputf); 
READ(IITarget file from = ",outputf); 

OPENREAD(file2,outputf); 
READFILE(filel,pattern) ; 
READFILE(file2,target); 

CLOSEFILE(filel); 
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CLOSEFILE(file2) ; 
READ("Seed for weight1 =",seed1); 
READ("Seed for weight2 =",seed2); 
READ("Seed for bias2 =",seed3); 
READ("Seed for bias3 =",seed4); 

weight1 = RAND1(seed1); 
weight2 = RAND1(seed2); 
bias2= RAND1(seed3); 

bias3=RAND1(seed4); 

cweight1 = 0; 

cbias2 = 0; 

cweight2 = 0; 

cbias3 = 0 

END; 

PROC training 

INT nocycle = 0; 
TRAINING II use in serial execution only 

nocycle = nocycle + 1; 
PRINT (liNo. of cycle = %d ",nocycle); 

dweight1=O; 
ddelta2 = 0; 
dweight2 = 0; 
ddelta3 = 0; 
enormsqr = 0; 

EPOCH 
layer1 = pattern@; 
layer2 = SIGMOID(weight1*layer1+bias2); 
layer3 = SIGMOID(weight2*layer2+bias3); 

error = target@-layer3; 
enormsqr += o.s*(error.error); 
delta3 = error*layer3*(1-layer3); 

dweight2 += delta3*layer2 ; 

ddelta3 += delta3; 
delta2 = weight2&*delta3* (1-layer2) *layer2; 

dweight1 += delta2*layer1; 

ddelta2 += delta2 

END; 
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PRINT (" enormsqr = %f\n ", enormsqr) ; 
IF (enormsqr LE limit) BREAK ENDIF; 

oweightl = weightl; 
weightl += GRBH(alpha,range,dweightl) + beta*cweightl; 

cweightl = weightl-oweightl; 

obias2 = bias2; 
bias2 += GRBH(alpha,range,ddelta2) + beta*cbias2; 

cbias2 = bias2-obias2; 
oweight2 = weight2; 
weight2 += GRBH (alpha, range,dweight2) + beta*cweight2; 
cweight2 = weight2-oweight2; // dw(t) = w(t)-w(t-l); 

obias3 = bias3; 
bias3 += GRBH(alpha,range,ddelta3) + beta*cbias3; 

cbias3 = bias3-obias3 // dd(t) = d(t)-d(t-l) 

END 
END; 

PRoe one recall 
INT type; 
STRING inputf; 

FILES filel; 
REPEAT 

READ("test data = ",inputf); 
OPENREAD(filel,inputf); 
READFILE(filel,layerl); 
layer2 = SIGMOID(weightl*layerl+bias2); 
layer3 = SIGMOID(weight2*layer2+bias3); 

PRINT ("%.2f ", layer3); 
READ(" continue? [l=yes/ O=no] ",type) 

UNTIL (type EQ 0 ); 
CLOSEFILE(filel) 

END; 
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APPENDIXD 

THE KOHONEN NETWORK SIMULATION 
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NEURALNET kohonet net 
// input as random number between 0 •• 1 
// cluster number: kohfileO, kohfile1, kohfile2, kohfile3 
REAL layer1[n1], layer2[n2], weight[n2,n1], 

output[n1], initlrate; 

INT grid,initneighb; 

MAINPROGRAM // --- like main routine 
CALL parameter; 
CALL training 

END; 

PROC parameter 
INT seed; 
FILES fp; 

OPENWRITE{fp,"kohfileO"); 
READ {"No. of cycle =",CYCLE); 
READ{"Initial learning rate = 

READ(IIInitial neighbourhood = 

" initlrate)' , , 
",initneighb); 

READ{"Size grid on map = ",grid); 

weight = 0.5 + O.l*RAND{O); // 0 and 1 
PRINTFILE{fp,"%.3f ",weight); 
CLOSEFILE{fp) 

END; 

PROC training // --- like main routine 
INT iter, i,j,r,c,r1,c1,r2,c2,neighb; 

REAL Irate; 
FILES fp1,fp2,fp3; 
OPENWRITE{fp1,"kohfile1"); 
OPENWRITE{fp2,"kohfile2"); 
OPENWRITE{fp3,"kohfile3"); 
neighb = initneighb; 
Irate = initlrate; 
TRAINING // use for serial execution only 

// train weight vector ••• kohonen layer 

iter = iter+ 1; 
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PRINT("cycle %d \n",iter); 
layer1 = RAND(O); 
II get ROW = index of layer2 with its value is minimum 

layer2< = DISTANCE(layer1,weight); 

r = 0; 
REPEAT II converting into two-dim subscribt 

c = ROW - r*grid; 
IF (c GE grid) r = r+ 1 ENDIF 

UNTIL ( c LT grid); 
II (r,c) is the winner node in two-dim 

II get neighbourhoods 
r1 = r-neighb; 
r2 = r+neighb; 
cl = c-neighb; 

c2 = c+neighb; 

IF ( r1 LT 0 ) r1 = 0 

IF ( r2 GE grid) r2 = 
IF ( cl LT 0 ) cl = 0 

IF ( c2 GE grid) c2 = 

FOR (i = r1,r2 + 1) 
FOR (j = c1,C2 + 1) 

ROW = i*grid+j; 

ENDIF; 

grid - 1 ENDIF; 

ENDIF; 

grid - 1 ENDIF; 

weight@ += lrate*(layer1-weight@ ) 

END FOR 
ENDFOR; 
neighb = initneighb*(l- iter/CYCLE); 
Irate = initlrate*(l- iter/CYCLE); 

CASE iter OF 
1000 : PRINTFILE(fp1,"%.3f ",weight); 
6000 : PRINTFILE (fp2, "%. 3f ",weight); 
20000: PRINTFILE (fp3, "%. 3f ", weight) ; 

END 
END;II end training 
CLOSEFILE(fp1); 
CLOSEFILE(fp2); 
CLOSEFILE(fp3) 

END; 
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APPENDIXE 

THE ART1 NETWORK SIMULATION 
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NEURALNET artl 

REAL layerl[nl), layer2[n2), 
weightf[n2,nl), oweight[n2,nl), 
weightb[n2,nl), pattern[n4,nl), 
data[widthpattern,widthpattern); 

STRING inputf, outputf; II string 

MAINPROGRAM II --- like main routine 

FILES filel; 

READ("read pattern from file =",inputf); 

OPENREAD(filel,inputf); 

READFILE(filel,pattern); 
READ (liNo. of patterns = ",NPATTERN); 

CALL training; 
CALL all recall 

END; 

PROC training 
REAL xnorm, znorm, compare, 

vigil=O.99; 

weightb=l; 
weightf=l; 

EPOCH 
layerl = pattern@; 
oweight = weightf; 

REPEAT 
layer2> = oweight*layerl; II get ROW 

xnorm = layerl.layerl; 
znorm = weightb@.layerl; 

compare = znorm/xnorm; 
IF (compare GT vigil) II adapt weights 

weightf@ = weightb@*layer1/(O.s+(weightb@.layerl»; 

weightb@ = weightb@*layerl 

ELSE 
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oweight@ = 0 
II initialise oweight with respects to ROW 
II so that its row will not been selected again. 

ENDIF 
UNTIL (compare GT vigil) 

END II end pattern 

END; 

PROC all recall 
FILES filel; 

READ("Recall pattern from file 

OPENREAD(filel,inputf); 

EPOCH 
READFILE(filel,layerl); 

PRINT("before\n"); 
data = layerl; 
PRINT("%.Of ",data); 
layer2> = weightf*layerl; 
PRINT("recall pattern\n"); 

data = weightb@; 

PRINT("%.Of ",data) 

END 
END; 
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THE COUNTERPROPAGATION NETWORK SIMULATION 
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NEURALNET counterpropagation 
REAL layer1[n1], layer2[n2], 

layer3[n4], tlayer[n4], error[n4], 
weight1[n2,n1], weight2[n4,n2], 
pattern[n4,n1], target[n4,n4], 
data[pattwidth,pattwidth], initlrate, brate; 

INT initneighb; 
STRING inputf,outputf; 

MAINPROGRAM // --- like main routine 

FILES fp1,fp2; 

READ("input file = ",inputf); 
READ("target file = ",outputf); 

OPENREAD(fp1,inputf); 
OPENREAD(fp2,outputf); 
READFILE(fp1,pattern); 
READFILE(fp2,target); 
READ ("Number of pattern =", NPATTERN) ; 

READ("Number of cycle =",CYCLE); 
READ("Initial learning rate =",initlrate); 
READ(IIInitial neighbourhood =",initneighb); 

READ ("brate =" , brate) ; 
READ("Seed for random number =",seed); 

weight1 = RAND(seed); 

weight2 = 0.; 
CALL training; 
CALL all recall 

END; 

PROC training 
REAL Irate, brate = 1.; 
INT patt,nocycle, neighb1, neighb2, neighb; 

Irate = initlrate; 
neighb = initneighb; 

TRAINING 
nocycle = nocycle + 1; 
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patt = 0; 
EPOCH 

patt = patt + 1; 
layer1 = pattern@; 
tlayer = target@; 
layer2< = DISTANCE(layer1,weight1); 

neighb1 = ROW-neighb; 
neighb2 = ROW+neighb; 

IF (neighb1 LT 0) neighb1 = 0 ENDIF; 
IF (neighb2 GE n2) 

neighb2 = n2 - 1 ENDIF; 
FOR (ROW=neighb1,neighb2 + 1) 

weight1@ = weight1@ + Irate*(layer1-weight1@); 
II ... grossberg layer 
layer3 = weight2#; 
error = tlayer -layer3; 
weight2# = weight2# + brate*error 

END FOR 
END; 
neighb = initneighb*(l- nocycle/CYCLE); 
Irate = initlrate*(l- nocycle/CYCLE) 

END II training 
END; 

PROC all recall 
FILES fp1; 

READ("input file as test data = ",inputf); 
OPENREAD(fp1,inputf); 

EPOCH 
READFILE(fp1,layer1); 
layer2< = DISTANCE(layer1,weight1); 
layer3 = weight2#; 
PRINT (11%. Of ", layer3) 

END 
END; 
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NEURALNET travelsales1 
// hopfield-tank on solving TSP 

REAL 
xcity[n),ycity[n), dist[n,n), 
node[n,n), u[n,n), 
deltat, lambda1, lambda2, lambda3, 
tau, temp = 0.03, 
energy, energyo, energy1, energy2, energy3; 

MAINPROGRAM 

CALL parameters; 
CALL training; 
CALL valid city 

END; 

PROC parameters 
INT i,j,seed; 

FILES file1; // input file 

STRING inputf; 
READ("Input file from = ",inputf); 
OPENREAD(file1,inputf); 
FOR (i=O,n) 

READFILE(file1,xcity[i),ycity[i); 
dist[i,i) = o. 

ENDFOR; 
CLOSEFILE(file1); 

FOR (i=O,n - 1) 
FOR (j= i + 1 , n) 

dist[i,j) = SQRT( sQR(xcity[i)-
xcity[j]) +sQR(ycity[ i) -ycity[ j]) ); 

dist[j,i) = dist[i,j) 
END FOR 

END FOR; 
READ (liNo. of cycle =II,CYCLE); 

READ("Time increment =",deltat); 
READ("Damping factor, tau =",tau); 
READ("lambda1 = ",lambda1); 
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READ("lambda2 = ",lambda2); 
READ("lambda3 = ",lambda3); 
READ("Starting seed for random generator = ",seed); 
READ(IITemperature = 11 ,temp); 
u = -0.5*temp*LOG(n)*(1 + 0.1*RAND1(seed) ); 
node = SIGMOID(2*u/temp) 

END; 

PRoe training 
INT ianneal,nocycle; 
REAL eO,e1,e2,e3, saturation; 

TRAINING 11 use in serial execution only 

nocycle = nocycle + 1 ; 
PRINT (lino. cycle = %d \n",nocycle); 
FOR (ianneal =0,10) 

e3 = SUMALL(node); 

e3 = e3 - n; 
u += deltat * 

( -l./tau*u - sumO(eO&,I,J) 
- lambda1* ( sum1(e1&,I) - node) 

- lambda2*sum2(e2&,I,J) 
- lambda3*e3); 

energyO += eO*SUMALL(node); 

energy1 += (e1 - node)*SUMALL(node); 

energy2 += e2*SUMALL(node); 

energyO *= 0.5i 

energy1 *= 0.5; 
energy2 *= 0.5; 

energy3 = 0.5*e3*e3; 
energy = energyO + lambda1*energy1 

+ lambda2*energy2 + lambda3*energy3; 

lambda1 += deltat*energy1; 

lambda2 += deltat*energy2; 
lambda3 += deltat*energy3 
node = SIGMOID(2*u/temp) 

ENDFOR; 
saturation = SUMALL ( node*node ); 
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saturation /= nj 

IF ( saturation GT .95 ) BREAK ENDIF 

END; 
PRINT (" %f" , node) 

END; 

FUNe sumO(eO,i,j) 

INT k,add,minusj 

eO = 0.; 
FOR (k =O,n) 

IF (j + 1 EQ n ) add = 0 

ELSE add = j + 1 

ENDIF; 

IF (j - 1 LT 0 ) minus = n - 1 

ELSE minus = j - 1 

ENDIFj 
eO += dist[i,k)*(node[k,add)+node[k,minus)) 

END FOR 
RETURN eOj 

FUNe suml(el,i) 
INT kj 

el = O. j 

FOR (k=O,n) 
el += node[i,k) 

END FOR 
RETURN elj 

FUNe sum2(e2,i,j) 

INT kj 

REAL sumj 

FOR ( k=O,n) 
sum += node[k,j) 

ENDFORj 
e2 = sum - node[i,j) 

RETURN e2j 
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PROC valid_city 
INT a,i,j,k,city[n); 
REAL scalar; 

II Determine the path 
FOR (a=O,n) II every location 

scalar= 0; 
FOR (i=o,n) II find valid city 

IF (node[i,a) GT scalar) 
scalar=node[i,a); city[a) = i 
II city i at location a 

ENDIF 
END FOR 

ENDFOR; 
scalar=O.; II Determine path length 

FOR (a=O, n - 1 ) 
i = city[a); 
k = city[a + 1); 
scalar += dist[i,k) 

ENDFOR; 

i = city[n - 1); 
k = city[O); 
scalar += dist[i,k); II Closed path 
FOR (a = o,n - 1) 
FOR (k = a + 1,n) 

IF (city[a) EQ city[k) 
PRINT("invalid tour: visit twice %d\n",city[a); 

BREAK 
ENDIF 

END FOR 

ENDFOR; 
·FOR (a=O,n) 

i = city[a); 
PRINT("%f ",xcity[i),"%f\n",ycity[i) 

ENDFOR; 
PRINT("\nPath length: %f ",scalar) 

END; 
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APPENDIXH 

THE POTTS-GLASS MODEL SIMULATION 
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NEURALNET travelsalesl 

1/ using Potss-Glass model 

INT seed; 
REAL 

xcity[ncity],ycity[ncity], dist[ncity,ncity], 
v[ncity,ncity], ov[ncity,ncity], 
anneal, delta, aconst, bconst, temp = 0.03; 

MAINPROGRAM 
CALL parameters; 
CALL training; 
CALL valid city 

END; 

PROC parameters 

INT i,j; 
FILES filel; II input file 

STRING inputf; 
READ("Input file from = ",inputf); 
OPENREAD(file1,inputf); 
FOR ( i= O,ncity) 

READFILE(file1,xcity[i],ycity[i]) 

ENDFOR; 
CLOSEFILE(filel); 

FOR (i=o, nci ty) 
dist[i,i] = o. 

ENDFOR; 
FOR (i=O,ncity - 1) 

FOR (j= i + 1 ,ncity) 
dist[i,j] = SQRT( SQR(xcity[i]

xcity[j])+SQR(ycity[i]-ycity[j]) ); 

dist[j,i] = dist[i,j] 

END FOR 

END FOR; 
READ("delta =II,delta); 
READ(IIConstraint A =",aconst); 
READ(IIConstraint B =",bconst); 
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READ ("Annealing factor =", anneal) ; 
READ ("temperature =11, temp) ; 
READ (liNO. of cycle =",Cl{CLE); 
READ("Starting seed for random generator = ",seed) 

END; 

PROC training 
INT stop, step,iter,nocycle; 
REAL u[ncity,ncity], saturation, change, 

sumchange, sumsatur; 
v = (1. + 0.1*RAND1(seed) ) I ncity; 

FOR ( step=1,20) 
iter = 0; 
TRAINING 11 use in serial execution only 

iter = iter + 1 ; 
PRINT("Iter:%2d\n",iter); 
u = EXP ( ( - sumO(I,J) + aconst*v 

- bconst*sum1(v,J) )/temp ); 

ov = v; 
v = u/sum2(u,I); 
sumchange = 1/ncity*SUMALL ( ABS(v - ov) ); 

sumsatur = 1/ncity*SUMALL ( v*v ); 
IF ( change LT delta) BREAK ENDIF; 
IF ( saturation GT .9 ) stop = 1; BREAK ENDIF 

END; 
temp = temp*anneal; 
IF ( stop EQ 1) BREAK ENDIF 

END FOR 

END; 

FUNC sumO(i,j) 

INT k,add,minus; 
REAL sum = 0.; 

FOR (k =O,ncity) 
IF (j + 1 EQ ncity ) add = 0 
ELSE add =, j + 1 

ENDIF; 
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IF (j - 1 LT 0 ) minus = ncity - 1 
ELSE minus = j - 1 
ENDIF; 
sum += dist[i,k)*(v[k,add)+v[k,minus) 

END FOR 

RETURN sum; 

FUNC suml (v, j) 
INT k; 
REAL sum = O. 
FOR (k=O,n) 

sum += v[k,j) 
END FOR 

RETURN sum; 

FUNC sum2 (u, i) 
INT k; 
REAL sum = 0.; 
FOR ( k=O,n) 

sum += u[i,k) 
END FOR 

RETURN sum; 

PROC valid city 
INT a,i,j,k,city[ncity); 
REAL scalar; 

II Determine the path 
FOR (a=O,ncity) II every location 

scalar= 0; 
FOR (i=O,ncity) II find valid city 

IF (v[i,a) GT scalar) 
scalar=v[i,a); city[a) = i 

II city i at location a 
ENDIF 

END FOR 

ENDFOR; 
scalar=O.; II Determine path length 
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~--------------------------------------------------------- -

FOR (a=O, ncity - 1 ) 
i = city[a]; 
k = city[a + 1]; 
scalar += dist[i,k] 

ENDFOR; 
j = city[ncity - 1]; 
k = city[O]; 
scalar += dist[j,k]; II Closed path 

FOR (a = O,ncity - 1) 
FOR (k = a + 1,ncity) 

IF (city[a] EQ city[k]) 
PRINT("invalid tour: %d\n",city[a]); 

BREAK 
ENDIF 

END FOR 
ENDFOR; 
FOR (a=O,ncity) 

i = city[a]; 
PRINT("city %d ",i,"(%f,",xcity[i],"%f)\n",ycity[i]) 

END FOR; 
PRINT("\nPath length: %f ",scalar) 

END; 
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