
"-

-

LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY

AUTHOR/FILING TITLE I
__________ ~~_'=&_'_!:1..tl-_c,:I __ ~--~!-~- "-- __________ J

-----------------~-------------- --- -------------J
ACCESSION/COPY NO. i

CS\t-tII O"!'ti I ----------------- ---- --- ------------------ -- --- ---
VOL. NO. CLASS MARK

12 HAI? 1997

- 6 Ww 13::;7

1~~

1111111 1111111 11111

.'

THE DESIGN OF A NEURAL NETWORK COMPILER

by

MD. NASm SULAIMAN

B.Sc. Ed. (Hons.), M.Sc. (Computing)

A Doctoral Thesis

Submitted in partial fulfIlment of the requirements

for the award of Doctor of Philosophy

of the Loughborough University of Technology

October, 1994

Supervisor

PROFESSOR D. J. EV ANS, Ph.D., D.Sc.

Parallel Algorithms Research Centre

Department of Computer Studies

© by Md. Nasir Sulaiman, 1994

LoughborouGh University
of 1,·,,', ... ;(,\:;/ library

!r--"··· . , ... '. .,", ~ '

JOate __ I~~.?': ..
Class

1\00. 0'1-0 10 '1 '-1-1 f No.

ACKNOWLEDGEMENTS

I would like to express my thanks and gratitude to my

supervisor, Professor D. J. Evans for his invaluable

help, guidance, supervision and support throughout my

research.

I also would like to thank the Public service Department,

Malaysia for providing me with financial support during

my research for the last three years.

I also would like to thank Universiti Pertanian Malaysia

for giving me study leave and providi~g my family with

financial support.

I also would like to thank friends who have helped me in

one way or another and wish to extend my sincere

appreciation and best wishes.

Finally, I would like to thank my wife, children and

family for their constant love, devotion and patience.

iii

ABSTRACT

computer simulation is a flexible and economical way for

rapid prototyping and concept evaluation with Neural

Network (NN) models. Increasing research on NNs has led

to the development of several simulation programs. Not

all simulations have the same scope. Some simulations

allow only a fixed network model and some are more

general. Designing a simulation program for general

purpose NN models has become a current trend nowadays

because of its flexibility and efficiency. A proper

programming language specifically for NN models is

preferred since the existing high-level languages such as

C are for NN designers from a strong computer background.

The program translations for NN languages come from

combinations which are either interpreter and/or

compiler. There are also various styles of programming

languages such as a procedural, functional, descriptive

and object-oriented.

The main focus of this thesis is to study the

feasibility of using a compiler method for the

development of a general-purpose simulator - NEUCOMP that

compiles the program written as a list of mathematical

specifications of the particular NN model and translates

it into a chosen target program~ The language supported

by NEUCOMP is based on a procedural style. Information

regarding the list of mathematical statements required by

the NN models are written in the program. The

mathematical statements used are represented by scalar,

vector and matrix assignments. NEUCOMP translates these

expressions into actual program loops.

NEUCOMP enables compilation of a simUlation program

written in the NEUCOMP language for any NN model,

contains graphical facilities such as portraying the NN

architecture and displaying a graph of the result during

training and finally to have a program that can run on a

parallel shared memory multi-processor system.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

CHAPTER 1: lNTRODUCTION ... 1

1.1 THE ROLE OF NEURAL NETWORK MODELS 3

1.2 THE ROLE OF NEURAL NETWORK SIMULATION TOOLS 6

1.3 OBJECTIVE OF NEURAL NETWORK COMPILER - NEUCOMP 9

1.4 ORGANIZATION OF THE THESIS .. 9

CHAPTER 2: A SURVEY OF NEURAL NETWORK MODELS AND
SlMULA TION TOOLS .. 11

2.1 TAXONOMY OF THE NEURAL NETWORK MODELS 13

2.1.1 Architecture of Neural Networks .. 13

2.1.1.1 Multilayer feedforward networks 14

2.1.L2 Single layer networks .. 14

2.1.1.3 Topological networks .. 15

2.1.1.4 Two layer feedforwardlfeedback networks 15

2.1.1.5 Multilayer competitive networks 16

2.1.1.6 Cascading the networks ... 16

2.1.1.7 Network with local feedback. 16

2.1.2 Node characteristics .. 17

2.1.3 Learning rules ... 21

2.1.3.1 Supervised learning rule .. 21

2.1.3.2 Unsupervised learning rule 22

2.2 EXAMPLES OF THE NEURAL NETWORK MODELS 24

2.2.1 The backpropagation network. .. 24

2.2.2 The Hopfield network ... 25

2.2.3 The Kohonen network ... 28

2.2.4 Adaptive Resonance Theory (ART) .. 30

2.2.5 The Counterpropagation network .. 32

v

2.3 CURRENT NEURAL NETWORK SIMULATORS 34

2.3.1 Procedural language for Neural Network 34

2.3.2 Declarative language for Neural Network 37

2.3.3 Object-oriented language for Neural Network 38

CHAPTER 3: BASIC COMPILER CONCEPTS 39

3.1 COMPILER .. 41

3.2 INTERPRETER VERSUS COMPILER .. 42

3.3 THE PROCESSES OF COMPILATION ... 44

3.4 PROGRAMMING LANGUAGES .. 49

3.4.1 Procedural languages .. 50

3.4.2 Declarative languages ... 52

3.4.3 Object-oriented languages .. 53

3.4.4 Functional languages .. 54

3.5 COMPILER GENERATORS .. 56

3.5.1 Lex - A Lexical Analyser Generator 57

3.5.2 Yacc - Yet Another Compiler-Compiler 58

3.6 STRUCTURE OF A NEURAL NETWORK COMPILER 60

3.6.1 The General Structure ofNEUCOMP 60

3.6.2 The General Structure of the NEUCOMP language 61

CHAPTER 4: A NEURAL NETWORK COMPILER. 66

4.1 MATHEMATICAL SPECIFICATIONS ... 68

4.1.1 Vector assignment .. 69

4.1.1.1 Scalar expression .. 69

4.1.1.2 Vector expression ... 70

4.1.1.3 Matrix-Vector multiplication 70

4.1.1.4 Function expression .. 71

4.1.1.5 Vector-Matrix assignment 71

4.1.1.6 Recursive Vector assignment. 72

4.1.2 Matrix assignment .. 73

4.1.2.1 Scalar expression .. 73

4.1.2.2 Matrix expression ... 73

vi

4.1.2.3 Function expression .. 74

4.1.2.4 Outer-Product of two vectors 74

4.1.2.5 Matrix-Vector assignment 75

4.1.2.6 Recursive Matrix assignment 75

4.1.2.7 Matrix transpose ... 76

4.1.3 Vector Dot Product.. ... 76

4.2 THE DESIGN AND IMPLEMENTATION OF COMPILER
MODULES ... 77

4.2.1 DefIning Fonnal Grammar ... 77

4.2.2 DefIning the Symbol Table ... 79

4.2.3 Implementing the Lexical Analyser .. 81

4.2.3.1 Lex - A Tool for Building the Lexical Analyser 82

4.2.3.2 Lex DefInitions section ... 82

4.2.3.3 Lex Rules section .. 83

4.2.3.4 Lex User-support routines 84

4.2.4 Implementing the Syntax Analyser ... 85

4.2.4.1 Yacc - A Toolfor Building the Syntax Analyser 85

4.2.4.2 Yacc DefInitions section ... 85

4.2.4.3 Yacc Rules section .. 87

4.2.4.4 Yacc User-support routines 89

4.2.5 Implementing the Semantic Analyser ... : 90

4.2.5.1 Implementing Semantic checking 90

Checking that an identifIer is declared once 91

Checking that an identifIer used has been
declared ... : 95

Checking that a variable and value are
compatible .. 95

Checking the scope of a variable 99

4.2.5.2 Translating into the Target program 100

Translating the postfIx expression 101

Translating an assignment statement.. 105

4.2.6 Dynamic Allocation Memory ... 107

4.2.7 Implementing the Loop Optirniser .. 108

4.3 COMPILING THE C PROGRAM ... 110

vii

4.3.1 Obtaining object code for Compiler modules 110

4.3.2 Compiling the Translated code ... III

4.4 SOME NEURAL NETWORK SIMULATION PROGRAMS 112

4.4.1 The backpropagation simulation program 112

4.4.2 The Kohonen network simulation program 114

4.4.3 The ARTl network simulation program 116

4.4.4 The Counterpropagation network simulation program 117

4.5 IMPLEMENTING GRAPHICAL FEATURES 119

4.5.1 Implementing the Neural Network structure 120

4.5.2 Implementing the Xy-graph ... 126

4.5.3 Implementing other graphs ... 126

CHAPTER 5: A PARALLEL NEURAL NETWORK COMPILER 130

5.1 PARALLEL ARCHITECTURES .. 132

5.1.1 The SIMD Computer Architecture .. 132

5.1.2 The MIMD Computer Architecture .. 133

5.1.2.1 The Message-Passing Parallel System 134

5.1.2.2 The Shared-Memory Parallel System 134

5.1.3 The SEQUENT Balance 8000 .. 136

5.2 PARALLEL PROGRAMMING SySTEMS 137

5.3 PARALLEL PROGRAMMING ON THE SEQUENT BALANCE ... 138

5.3.1 The Data Partitioning method ... 139

5.3.2 Parallel Programming tools ... 140

5.3.3 Analysing Data Dependencies .. 142

5.3.3.1 Analysing Reduction variables 144

5.3.3.2 Analysing Locked variables 145

5.3.3.3 Analysing Ordered variables 145

5.3.4 Transforming into Parallel code .. 146

5.3.4.1 Transforming Reduction variables 147

5.3.4.2 Transforming Locked variables 147

5.3.4.3 Transforming Ordered variables 148

5.4 PARALLEL NEURAL NETWORK COMPILER (NEUCOMP2) 149

5.4.1 Design of Parallel Neural Network Compiler 149

viii

5.4.2 Implementing the Parallelising stage 151

5.4.2.1 Detection of the loop iteration 152

5.4.2.2 Creating new procedure for loop iteration 154

5.4.2.3 Analysing Data Dependencies 156

5.4.2.4 Transformation Processes 159

Transforming a Reduction variable 160

Transforming a Locked variable 163

Synchronisation points ... 165

5.5 EXPERIMENTAL RESULTS ... 166

5.5.1 The On-line results ... 167

5.5.2 TheBatchresults .. 17l

5.6 DISCUSSION .. 182

CHAPTER 6: NEURAL NETWORK APPLICA nONs 184

6.1 CHARACTER RECOGNITION PROBLEM 187

6.U Simulation Programs for Character Recognition 187

6.1.2 Experimental Description ... 188

6.1.2.1 Simulation results for the backpropagation network 188

6.1.2.2 Simulation results for the Kohonen network 190

6.1.2.3 Simulation results for the ART! network 190

6.1.2.4 Simulation results for the Counterpropagation network .. 193

6.1.2.5 Parallel Simulation results 194

6.1.3 Discussion of the results ... 194

6.2 INTERTWINED SPIRALS PROBLEM .. 199

6.2.1 Simulation programs for the backpropagation network 200

6.2.2 Simulation programs for the Kohonen network. 201

6.2.3 Simulation programs for the Counterpropagation network 202

6.2.4 Simulation results ... 202

6.2.5 Parallel Simulation results .. 208

6.3 TRAVELLING SALESMAN PROBLEM ... 211

6.3.1 The Hopfield-Tank model .. 211

6.3.1.1 Simulation Program for the Hopfield-Tank model .. 212

6.3.1.2 Simulation results ... 215

IX

6.3.1.3 Parallel Simulation results · 220

6.3.2 The Potts-Glass model. .. · 222

6.3.2.1 Simulation Program for the Potts-Glass modeL 224

6.3.2.2 Simulation results ... 226

6.3.2.3 Parallel Simulation results 229

6.3.3 Discussion of the results ... 231

CHAPTER 7 : SUMMARY AND CONCLUSIONS 233

REFERENCES : .. 241

APPENDIX A: BNF SPECIFICATIONS OF mE
NEUCOMP/NEUCOMP2 LANGUAGE 252

APPENDIX B: USER GUIDE ... 257

APPENDIX C: THE BACKPROPAGATION
NETWORK SIMULATION .. 279

APPENDIX D: THE KOHONEN NETWORK SIMULATION 283

APPENDIX E: mE ART! NETWORK SIMULATION 286

APPENDIX F: mE COUNTERPROPAGATION
NETWORK SIMULATION .. 289

APPENDIX G: mE HOPFIELD NETWORK SIMULATION 292

APPENDIX H: mE POTTS-GLASS MODEL SIMULATION 297

x

,----~~~------- -----
CHAPTERl

INTRODUCTION

1

Recently, usage of Neural network

rapidly in solving applications

(NN) models has ! grown
~ __ • I

involving massive,,'.,

parallelism such as image processing, pattern recognition

and combinatorial problems where the traditional

programming method is not suitable. Due to its self

organising and adaptive nature, the model potentially

offers a new parallel processing paradigm that could be

more robust [Lippman (1987), Kung (1993)].

A NN model is a structured distributed information

processing system consisting of processing elements or

nodes interconnected together with unidirectional signal

channels called connections. A connection has a strength

of type inhibitory or excitatory. This strength is called

a weight. Each node has a single output connection which

branches into as many collateral connections as desired.

It can process local information and carry out localised

information processing [Rumelhart et al. (1986), Simpson

(1990)] •

NN models are also mathematical models that can

abstract parallel information handling features of

biological systems. They are made up of many relatively

simple elements called neurons and closely related to the

physiology of the brain [Korn (1991b)]. The human brain

contains more than lOll neurons and 1014 synapses or

connection weights in the human nervous system [Forrest

et al. (1988), Manner (1989), Kung (1993)]. Each n,euron

can have from 1000 to 100000 interconnections with other

neurons. They send excitatory and inhibitory messages to

each other and update their weights on the basis of these

simple messages. In the NN models the term neurons is

represented by processing elements or nodes. The brain is

able to operate easily in parallel to solve problems such

as pattern recognition but the computer is a high-speed

serial machine which is unable to solve simple

recognition. Therefore in modelling the brain's basic

system, the problem to be solved must suit the parallel

model.

2

NN models can be implemented in various ways. These

can range from a very complex hardware VLSI design to

software simulators on a digital computer. Hardware

implementations are faster than software simulators but

they are confined to special purpose NNs. computer

simulation is more flexible and economical for rapid

prototyping and problem solving [Feldman et al. (1988),

Nijhuis et al. (1989), Almassy et al. (1990), Nelson et

al. (1991), Shumsheruddin (1992)]. Increasing research on

NNs has led to the development of several simulation

programs. All the simulation tools have a different scope

of design and implementation. Some simulations allow only

a fixed network model and some are more general.

Designing a simulation program for general purpose NN

models has become a current trend nowadays because of its

flexibility and efficiency [Shumsheruddin (1992)].

1.1 THE ROLE OF NEURAL NETWORK MODELS

NNs and their computational properties have attracted the

interest of researchers in the area of machine perception

by presenting an exciting, complementary al ternati ve to

symbolic processing paradigms. They hold with them the

promise of exceedingly fast implementations, coupled with

flexibility through self-organisation or learning rather

than computer programming.

Modelling the NN can be divided into 2 categories

[Kung (1993), Korn (1991b)] Biological-type and

Application-driven NN. For the Biological-type NN, the

model mimics biological neural systems such as

audio/vision functions like motion field, binocular

stereo and edge detection. The Application-driven NN

model is not closely tied to biological realities. For

these models, the architectures are largely influenced by

the application because of the following reasons [Kung

(1993)] :-

3

(1) Adaptiveness and self-organisation

It offers robust and adaptive processing capabilities

by adopting adaptive learning and self-organisation

rules. This allows the network to improve with

experience.

(2) Non-linear network processing

It enhances the network I s approximation,

classification and noise-immunity capabilities.

(3) Parallel processing

It usually employs a large number of processing nodes

enhanced by extensive interconnectivity - massively

parallelism which provides high speed performance.

NNs have found many successful applications in

computer vision, signal or image processing, speech or

character recognition, expert systems, remote sensing,

robotics processing, industrial inspection and scientific

exploration [Maren et al. (1990), Simpson (1990), Kung

(1993)]. The application domains of NNs can be roughly

divided into the following categories :-

(1) association

(2) classification

(3) pattern completion

(4) approximation/generalisation

(5) optimisation

Association can be of two types, namely auto

association and hetero-association. In auto-association,

a NN is required to store a set of patterns by repeatedly

presenting them to the network. The problem is to

retrieve the complete pattern

or distorted part of the

from a partial description

desired pattern. Hetero-

association involves pairing an arbitrary set of input

patterns with another arbitrary set of output" patterns.

The problem is to retrieve a corresponding pattern from a

given input pattern.

4

There are two types of classifications. The first

classification involves a fixed number of categories

alongside a set of input patterns that are repeatedly

presented to the network. When a new pattern is

presented, the network is able to identify which category

this pattern belongs to. The second classification

involves a situation where there is no prior knowledge of

the categories into which the input patterns are to be

classified. In this case a network performs adaptive

feature attraction or clustering during training.

Pattern completion is also known as information

completion, where the original pattern is recovered from

a given partial information. The process of completion

takes place for many iterations. A process reaches a

stable state when there is no change of state.

Approximation involves the following task. Suppose

that a non-linear input-output mapping is described by

the function

y = I(x)

where x is an input vector and Y is the scalar output. The

function I is assumed unknown. The requirement is to

design a NN that approximates the unknown vector x from I
after the input-output pairs (xI ,YI), (X2,Y2), ••• , (Xn,Yn)

have been repeatedly presented. A network is considered

successful if it can closely approximate the actual

values for the trained data set and can provide smooth

interpolations for the untrained data set. The objective

of generalisation is to yield a correct output response

to an input pattern for which it has not been trained

before.

optimisation applications usually involve finding a

global minimum of an energy function. Once the energy

function is defined, the determination of the

weights is relatively straightforward.

connection

In some

applications, the energy function is directly available.

In some others, the energy function must be derived from

5

the given cost criterion and special constraints. The

difficulty associated with the optimisation problem is

the large possibility of a solution converging to a local

minimum instead of the global minimum. To tackle the

problem, several statistical techniques are proposed,

such as stochastic simulated annealing and mean-field

annealing.

1.2 THE ROLE OF NEURAL NETWORK SIMULATION TOOLS

Among the many uses of computers is simulation. Modelling

the real-world phenomena to see the affect of varying the

condi tions on the behaviour of the system can be done

using the computer. If the real world is adequately

described in the computer program, the results of the

program should predict what happens in the real-world

situation [Springer et al. (1989)].
NN simulation software is a computer-aided

experimentation for NN models, typically implemented on a

computer [Korn (1991a&b)]. NN models can also be

implemented on specialised hardware. Hardware

implementations currently come in several species such as

computer emulations. They involve special boards or other

special hardware, integrated circuit chips, optical or

holographic devices.

Hardware implementations are faster than software

simulations. However, they are for special purpose NN

models, expensive and require a sUbstantial commitment to

the use of the system. Software simulations are more

attractive because they can evaluated easily and the

commitment is not as restrictive as that of the first

class. The ease of making software changes has been a

significant advantage. Redesigning chips take time and

money whereas simulation can help avoid costly mistakes.

Computer simulations are ideal for research in NNs

as they can be developed very quickly and cheaply. They

are very flexible and these makes it easy to experiment

6

~---

with alternative networks structures, activation

functions and learning algorithms. They also allow easy

collection and analysis of data on the behaviour and

performance of the networks. However, NNs are

computationally expensive because of the following

reasons :-

(1) they contain a large number of nodes and

interconnections. The number of interconnections are

directly proportional to the complexity of the model

that can be implemented.

(2) the learning algorithm involves many iterations in

order to converge or reach a stable solution.

To improve the speed of the software implementations,

several parallel simulator strategies have recently

appeared. The reasons being that the parallel computers

can offer faster execution time than the sequential

machines.
Software simulation can be obtained either from

commercially available packages (i.e. BrainMaker,

ExploreNet, NeuroShell, etc. [Turban (1993) l) or writing
a simulation program using conventional high-level

languages such as C. Due to the interdisciplinary nature

of the NN study, researchers are not always computer

software experts and thus must rely heavily on commercial

products. Many packages run on a PC. They provide good

user interfaces and debugging tools for network

simulations. Many include thoroughly tested and debugged

library routines for simulating common types of network

such as the backpropagation network, etc. Hence, packages

do not allow extensive model development without a strong

programming background. Writing a simulation program to

simulate a network allows greater flexibility and enables

simulation of arbitrary designs of networks. Specially

written programs can be optimised for a particular type

of network which may run faster than simulations

developed using packages.

7

There are two approaches when writing a NN

simulation program. The first approach is to design a

simulation program for specific NN models. This approach

has been used in practice for quite some time. The second

approach is to design a simulation tool for any NN model

[Feldman et al. (1988), Shumsheruddin (1992)]. There are

two methods of designing this approach. They can be

classified as, the user interface method [McClelland et

al. (1988), Tarr et al. (1992)] and programming language

method. The first method is still restricted to certain

NN models. For a general-purpose NN simulation, a proper

language specifically for NN model is preferred. This

language is called a special-purpose language. A special

purpose language is used to avoid using the complexity of

the existing high-level languages such as C or FORTRAN.

From the NN simulation language, the user can write

a program for any NN model or combine these models to

suit their applications. A graphical command is also

available in the program which depicts the NN

architecture and the graphs of the results.

The program translations for NN languages come from

either compiler method [Almassy et al. (1990), Panetsos

et al. (1993)] or a combination of both interpreter and

compiler methods [Korn (1989, 1991a&b)]. The compiler

method has been proved to produce a high performance

result [Bennett (1990), Ford (1990)]. However, a general

purpose simulator that allows platform portability, ease

of use and extensive model design freedom with minimal

usage training may be considered as an effective

simulation tool [Myler et al. (1992)].

The programming style based on the compiler method

is further classified as a procedural, functional,

declarative or object-oriented method [Ford (1990),

Maeder (1991)].

8

1.3 OBJECTIVE OF NEURAL NETWORK COMPILER - NEUCOMP

The main focus of this thesis is to study the feasibility

of using a compiler method for the development of a

general purpose simulation program NEUCOMP, that

compiles the procedural style of programs known as the

NEUCOMP language. The NEUCOMP language is a high level

language. It is specially designed to cater for NN models

with the complexity of the commands from the existing

high level C-like language being simplified. This idea is

based on Korn's work (Le. DESIRE/NEUNET) [Korn (1989,

1991a&b)]. The translated program is based on a

combination of interpreter and compiler methods. However,

NEUCOMP is designed using the compiler method. A NEUCOMP

program is written as a list of mathematical

specifications of the particular NN model. The

mathematical statements can be written as scalar, vector

or matrix assignment required by the NN mOdels.

NEUCOMP enables the compilation of a simulation

program written in the NEUCOMP language for any NN model.
,

It contains graphical facilities such as portraying the

~ architecture and displaying a graph of the results

during training. Finally a parallel version of the i

compiler (NEUCOMP2) generates a program that can run on a

parallel shared-memory multi-processor system.

1.4 ORGANISATION OF THE THESIS

The research presented in this thesis covers the design

of a general-purpose simulation tool. Specifically, its

main focus is to study the feasibility of using a

compiler method for the development of a general purpose

simulation program. It includes a detailed study of the

design of the NN compiler known as NEUCOMP and its

language called the NEUCOMP language. They are

implemented on a UNIX machine. A design of a parallel NN

compiler (NEUCOMP2) is also introduced. NEUCOMP2 is

implemented on a shared-memory parallel machine, SEQUENT

Balance machine at the PARC (Parallel Algorithms Research

9

Centre, Loughborough University of Technology). Basic

graphical facilities such as displaying NN architectures

and various kinds of XY-graphs that depend on the type of

applications are also included. Since the machine that

supports NEUCOMP does not support graphical facilities,

all graphical displays are done on a PC using

'Mathematica' [Wolfram (1991)]. This kind of graphical

activities can give a flexible design to the user.

The thesis is organised as follows. Chapter 2 gives

a brief discussion on the taxonomy of the NNs, some

examples of popular NN models and a survey of a general

purpose simulation tool. In chapter 3, a brief discussion

of the compiler design and programming technique are

presented. Various programming methods for the high-level

programming languages and the compiler-construction tools

such as 'Lex' and 'Yacc' are explained. Chapter 4 gives a

detailed design of NEUCOMP and its language, the NEUCOMP

language. In that chapter the design of graphical

displays on PC using 'Mathematica' is also discussed. Its

purpose is to display graphical results computed by a NN

program. Chapter 5 discusses briefly the concepts of

parallel computer architectures and parallel programming

and gives a detailed design of the parallel NN compiler

(NEUCOMP2) and its language. Comparisons of the speedup

on selected NN models running using NEUCOMP2 are shown.

Chapter 6 contains an application using selected NN

models for solving three different problems such as

character recognition, intertwined spirals and travelling

salesman problems. Sequential and parallel results are

presented and their execution times and speedups are

measured. Various graphical results are also shown which

depend on the type of applications and type of graph to

be shown. Finally chapter 7 summarises and gives

conclusions on the topics discussed throughout the

thesis. Discussions on further research work conclude the

final chapter of the thesis.

10

CHAPTER 2

A SURVEY OF NEURAL NETWORK MODELS
AND SIMULATION TOOLS

11

This chapter covers the discussion of NN models which

include the taxonomy of NNs, examples of some popular NN

models based on their taxonomy and a survey of some

currently general-purpose NN simulation tools.

The taxonomy of the NN models are identified by

their network architectures, node characteristics and

training or learning rules. A network architecture

contains the nodes that are grouped in terms of layers

such as the input layer, hidden layer (if mul tilayer

network) and output layer. The node characteristics

include the type of a node and the use of Gl. transfer

function for the activation node. The training or

learning rules are based on supervised or unsupervised

learning algorithms. These rules specify an initial set

of weights which should be adapted during training.

Examples of NN models which represent different

classes of the network are discussed. The backpropagation

network is a multilayer feedforward network. The

counterpropagation is a multilayer network in which one

of the layers is the competitive layer network. The

Kohonen Self-organising network is a topological network.

The Adaptive Resonance Theory (ART) network is a two

layer network with feedforward and feedback connections.

The Hopfield network is a single layer network with

feedback connection. The backpropagation and

Counterpropagation networks use supervised learning

algorithms whilst the Kohonen, ART and Hopfield networks

use unsupervised learning.

Some current general-purpose NN simulation tools are

presented in the last section of this chapter. They cover

the programming style of defining and simulating the NNs

[DasGupta et al. (1990), Korn (1989, 1991a&b), Hu

(1991)). These programming languages are known as

special-purpose

[Nijhuis et al.

al. (1992»), an

languages. In the non-specific languages

(1989), Koopman et al. (1990), Myler et

existing high-level language such as C is

used to support the tools. The built-in functions such as

NN structures and their learning algorithms are called

12

interactively

this approach

using a graphical user-interface. However

is not flexible enough to allow the

designer to try several NN models. In order to run the

new NN structures or learning algorithms, a high-level

programming language like C-program code and its function

calls are defined. These routines are then compiled and

linked with the simulation tools.

2.1 TAXONOMY OF THE NEURAL NETWORK MODELS

since the beginning of the 1980's the interest in NNs has

greatly increased and a large range of models have been

developed for different purposes [Dayhoff (1990), Maren

et al. (1990), Simpson (1990), Kung (1993), Haykin

(1994)]. However they can be specifically based on the

following characteristics:-

,
(1) network architectures

(2) node characteristics, and

(3) training or learning rules

Their details are now explained in this section.

2.1.1 Architecture of Neural Networks

NN architectures or topologies are

nodes into layers and linking

interconnections. The following

describe the NN architectures are :-

formed by organising

them wi th weighted

characteristics to

(1) The number of layers in a network such as a single

layer, two layers or multilayer.

(2) The type of connections are 'feedforward', 'feedback'

and 'lateral'. Feedforward means data from nodes of a

lower layer propagate forward to nodes of an upper

layer via feed forward connection network. Feedback

allows data from nodes of an upper layerto,befed back

13

to a lower layer via feedback connections. For

lateral, there are connections between nodes in the

same layer of nodes or local feedback to themselves.

(3) The connection maybe fully or locally connected.

(4) The connections can be excitatory (positive weights)

or inhibitory (negative weights).

Based on the above distinctions, six different

architectures related to the classes of networks can be

identified, as shown in figure 2.1.

2.1.1.1 Multilayer feedforward networks

The mu1ti1ayer feedforward networks as shown in figure

2.1a, propagate data from the previous layer to the next

layer. They range from simple two-layer perceptron to

feedforward networks with multiple hidden layers. with

suitable supervised training algorithms, i.e. the

backpropagation [Rumelhart et al. (1986)], such networks

map input patterns on to desirable output patterns. The

feedforward networks of one or more hidden layers are

capable of doing generalisation and pattern recognition.

2.1.1.2 Single layer networks

The fully connected or laterally connected single layer

networks or Hopfie1d-type networks have only one layer as

shown in figure 2.1b. A one layer network can only

activate one pattern at a time. The lateral or recurrent

connections cause different patterns to appear in the

single layer with each iteration of operation. Laterally

connected networks are typically used for pattern

autoassociation. Autoassociative networks can store many

patterns, but can only manifest one at a time. They are

good for generating clean versions of patterns they have

learned when given a noisy or incomplete pattern as a

starting point.

14

The Hopfield network [Aleksander et al. (1990),

Beale et al. (1990), Lippmann (1987») and Brain-State-in

a-Box [Maren et al. (1990), Simpson (1990») are examples

of a single layer network.

2.1.1.3 Topological networks

The topological networks are two layer networks. The

second layer is based on topological-ordered vectors

where the nodes are laterally connected, fiqure 2.10.

This layer acts as a competi ti ve layer, f ires selective

output nodes (i.e. winner node) if an input pattern

minimises or maximises corresponding functions. -During

learning, a measure of the vector distance between the

different vector nodes is used to adjust their relative

position in the vector. The use of topological-ordered

vectors is to cluster different classes of input

patterns.

This class of network includes the Learning Vector

Quantisation and Kohonen Self-organising networks [Beale

et al. (1990), Dayhoff (1990»).

2.1.1.4 Two layer feedforwardlfeedback networks

The two layer feedforward and feedback networks function

like a Hopfield-type network with symmetrical

connections. They can be seen as a two layer non-linear

feedforward/feedback network, as shown in figure 2.ld.

Patterns sweep from one node layer to the next, and then

back again, slowly relaxing into a stable state that

represents the network's association of the two patterns.

This type of network structure is particularly good for

associating a pattern in the first layer with another

pattern in the second

heteroassociation. They

classification.

layer, which is called pattern

can also be used for pattern

15

The two most popular two-layer feedforward and

feedback networks are the Adaptive Resonance Theory (ART)

[Beale et al. (1990)] and Bidirectional Associative

Memory (BAM) type of network [simpson (1990), Wasserman

(1989)].

2.1.1.5 Multilayer competitive networks

The multilayer network that contain one- layer with

lateral connections are specifically designed for

competitive learning purposes (figure 2.1e). These

connections contain excitatory (positive) connections and

inhibitory (negative) connections which balance each

other in a certain way. The output of the network is

determined by the combination of the connection weights

between the output layer and the winner node of the

competitive layers.

The Counterpropagation network

of networks [Hecht-Nielsen (1987,

(1990)].

2.1.1.6 Cascading the networks

belongs to these type

1988, 1989), Dayhoff

The possibility of cascading different structures, figure

2.1f, open up a sixth type of network structure known as

'hybrid network' [Maren et al. (1990)] or 'sequential

network' [Korn (1991b)]. The basic variables are not

individual node activations, but the input and output

patterns of node layers or subnetworks. Feedforward and

feedback connections relating such vector variables can

form an interesting and powerful vector state machines.

2.1.1.7 Network with local feedback

The network with local feedback is also known as 'dynamic

neural network' [Korn (1991b), Hush et al. (1993)] or

16

'temporal model' [Kung (1993)]. The network structures

discussed earlier known as static network [Korn (1991b),

Hush et al. (1993), Kung (1993)]. static network are

categorised by node equations that are memoryless. That

is, their output is a function only of the current input,

not of past or future inputs or outputs.

Dynamic networks, on the other hand, are systems

with memory. They are more suitable for temporal pattern

recognitions. Their node equations are typically

described by differential or difference equations. They

can be categorised into three different groups namely

networks with feedforward dynamics, networks with output

feedback and networks with state feedback.

However, the models of cascading the networks and

dynamic networks are not discussed in this thesis.

2.1.2 Node characteristics

All NNs have a set of processing nodes which represent

the neurons or nodes. These nodes operate in parallel,

ei ther synchronously, as in the case of most computer

simulated networks, or asynchronously, like biological

NNs. Each node, receive$ input.} from one or more of its

neighbours, computes an output value (it's activation

state), and sends it to one or more of its neighbours.

Input nodes receive signals from the environment and

output nodes send signals to the environment.

The input from the environment may be analogue or

digital. If the selected network design is optimised for

bi-state nodes, some preprocessing will be necessary to

represent the input data in binary format. The output to

the environment requires the activation of one or more

nodes, either for a single iteration operation or for

several iterations. This output may be interpreted as a

pattern classification, pattern associated with the

17

input, completed or noise-cleaned version of the input

pattern.

(a) Multilayer
feedforward network

(d) Two layer feedforwardl
feedback network

(b) Single layer
network

(c) Topological
network

competitve
layer

(e) Multilayer
competitive network

the network

Fig. 2.1: six NN structures

18

The activation state of - a node, varies with time.

Different networks allow different sets of activation

values for their nodes. The activation level may be

discrete or continuous, bounded or unbounded. Many

networks employ a binary node having 0 and 1 as the only

two possible levels of activation. other networks allow

integer-valued or real-valued activation levels.

Activated nodes can be the sum of the products of

its inputs and the weights of their connections or rely

on some defined threshold function known as the transfer

function or activation function (figure 2.2) This value

may change for every iteration until a stable pattern or

convergence state has been reached. Although a single

node may send out only one signal value from its end, the

values which are received by the connected nodes may

differ. This is because the strength of the signal which

is sent out by a node is modified by the weights.

The nodes of the network are connected together by a

set of links called connections. The connections are

usually unidirectional, as in the case of biological

systems, but may be bi-directional. Weights are the

connection strengths between the node and its neighbours.

They can have a positive value or negative value. The

negative value connection is known as an inhibitory

connection and the positive value connection is known as

an excitatory connection.

Figure 2.3 is a simple example of a node with the

following information :-

(1) ao, aJ> ... , an-l are the activation values of nodes 0,1, ... ,n-1

and the input values to node i,

(2) neti is the sum of products of weights between node i

and output nodes of its neighbours,

(3) wij is the connection weight from node j to node i,

(4) ai is the activation value or output value of node i,
(5) f is one of the functions as shown in figure 2.2.

19

y
11-_

o

y
11-_

o

-1

(a) Threshold-logic
function

1 Y
y

o

(b) Hard-limit (c) Sigmoid function
function

Fig. 2.2: Threshold-function

node.
I

Fig. 2.3: A Simple ith. node

20

1 Y

o

(d) Radial Basis
function

2.1.3 Learning rules

A neural network model has to be trained before it can be

useful for various applications. The learning rules

specify how the weights of the connections in the network

are to be adjusted during the learning process or

training. During learning, the weights are usually

adjusted in a large number of small steps.

Learning denotes changes in the NNs that are

adaptive in the sense that the NNs can do the same tasks

drawn from the same population more efficiently next

time.

Many learning algorithms have been introduced with

the objective to allow the network to produce the correct

output at a specific period of time. Figure 2.4 shows the

NNs commonly categorised in terms of their corresponding

learning algorithms - supervised network and unsupervised

network [Wasserman (1989), Beale (1990)].

Neural Networks

I

Unsupervised Supervised
- Hopfield network - Multilayer network
- Kohonen Self-organizing network - Counterpropagation network
- ART network

Fig. 2.4: Neural Network's learning algorithms

2.1.3.1 Supervised learning rule

Supervised learning requires the training data to be

consist of a pairs of input patterns with a target

patterns representing the desired output. These training

patterns are called vector-pairs. The weights are adjusted

21

during training until the input patterns approach the

output patterns. Therefore, the learning will benefit

from the existence of a teacher. As an example, figure

2.5 illustrates how the weight vectors, i. e. w,
represented by the linear hyperplanes are gradually

adjusted to separate one class of patterns from another.

These weights can be adjusted by using the following

update rule :-

where the amount of adjustment is proportional to the

difference between the teacher response and the actual

value.

t=0
100

f 50 +
t=2

w2
+

0 0
00 0

0
00

t=70
-50

-50 0 50 100

w 1 --<··
Fig. 2.5: Classification of two groups of

patterns during training

2.1.3.2 Unsupervised learning rule

For an unsupervised learning, the training set consists

of an input training pattern only. Therefore, the network

is trained without the benefit of any target value. The

22

network learns to adapt based on

collected through the previous training

examples are the Hebbian learning

the experiences

patterns. Typical

rule and the

competitive learning rule. A simple version of Hebbian

learning is that when nodes i and j are simultaneously

excited, the strength of the connection between them

increases in proportion to the product of their

activations.
In competi ti ve learning, a node learns by shifting

connection weights from its inactive to active input

nodes. If a node does not respond to a particular input

vector, no learning takes place in that node. If a

particular node wins the competition, then each input to

that node gives up some proportion of its weights and

these weights are equally distributed among the active

inputs of the node. Figure 2.6a illustrates three natural

groupings or clusters of the input patterns and a

possible initial state of the weights that may exist

before training. Figure 2.6b illustrates a typical final

state of the weights that results from the use of the

competi ti ve learning rule. In particular, each of the

output node has discovered a cluster of inputs by moving

its connection weight vectors to the centre of gravity of

the discovered cluster.

(a) before training (b) after training

Fig. 2.6: Geometrical interpretation of the input

vectors (dots) and weight vectors (crosses)

before and after training

23

2.2 EXAMPLES OF THE NEURAL NETWORK MODELS

-In the -following section some important NN models are

presented. They are the backpropagation, Hopfield,

Kohonen, Adaptive Resonance Theory (ART) and

Counterpropagation networks.

2.2.1 The back propagation network

The backpropagation network is _ a multilayer network. It

has an input layer, one or more hidden layers and an

output layer. Its network architecture is shown in figure
2. la. This network is used to solve problems such as

pattern recognition and function approximation.

The backpropagation learning algorithm is a

systematic method for training a multilayer network since

a two layer network fail~ to solve

[RUmelhart et al. (1986)] . In

supervised learning algorithm.

hard-learning problems

addition, it is a

An extended version of the backpropagation method

called Gradient Range-Based Heuristic (GRBH) [Sanossian

et al. (1991)] for accelerating the learning is used. The

weights are adjusted during training using the following

formula :-

where

Wij is the weight from node j to node j,

p

Opj = f'j (net pj) ~WjkOPk'

dW,j(t) = Wy (t)-wif(t -1),

for the hidden node,

f3 is the momentum factor

24

i)E(w)
and a., (k=l, ••• , n), depend on • A small

ilwij

value of a. is chosen when
i)E(w)

ilwij
is large and

large a. for small
i)E(w)

ilwv

The algorithm aims to minimise the error function E
by adjusting the weights in the network so that they

correspond to those at which the error surface is the

lowest. The error function is

The variable ~i is the target value for output node i and

input pattern p,
(

n-I)
and Opt = f ~ wijopj +biast •

J:O

error is calculated as E = I.E
p

•

p

2.2.2 The Hopfleld network

The global

The Hopfield network is a single layer unsupervised

network. Each node is connected to every other node as

shown in figure 2.1b. All of these nodes are input nodes

as well as output nodes. Their connections are symmetric,

that is, wij = Wjt and wi/ = 0 •

The Hopfield network was introduced by Hopfield

(1982) based on the physical models of materials with

magnetic properties. Hopfield used this network as an

associative memory with binary input and output vectors.

Later this network [Hopfield et al. (1985)] was improved

25

to accept continuous input values and used to solve the

combinatorial optimisation problem.

This section discusses only the Continuous Hopfield

network. A larger range of information can be stored

using analogue nodes. These nodes use a Sigmoid function

rather than a Hard-limit (figure 2.2). Hopfield applied

such" network to the • TSP , (Travelling S/.ilesman Prob_lem).

[Hopfield et al. (1985)]. This is a difficult

optimisation problem that belongs to the NP-complete

class of problems. The task of the salesman is to visit

all the N cities on his list once and only once,

returning to his starting point after travelling the

minimum possible distance.

Hopfield and Tank [Hopfield et al. (1985)] map the

N-city TSP onto a network with NxNmatrix. The element of

the matrix (node) is written as nia. The row i,

corresponds to the city number and column a, corresponds

to the station of the tour in which this city is visited.

A valid tour is characterised by an activation pattern

wi th exactly N nodes active and N(N-J) nodes inactive. There

must be exactly one entry of one in each row and column

of the matrix, n.
The task of the TSP is to find the tour which has

the shortest total length among the valid tours. To allow

the network to compute a solution to the problem,

Hopfield and Tank represents the following energy

function to be minimised,

EO is the total length of a tour and the other terms are

intended to ensure constraint satisfaction, the constant

An being Lagrange parameters [Muller et al. (1990)]. The

total length of a tour is written as follows :-

26

where dij denotes the distance between the cities i and j.

The matrix dij is the Euclidean distance in a two

dimensional plane which is written as :-

The first additional terms of the energy function,

1 a_ P

E\ =2~ ~>ia niP
J a, fJ

is chosen such that it vanish if each row corresponding

to a city contains a single one with all the other values

being zero. The second additional term,

is zero if each column corresponding to a position in the

tour contains a single one. The last constraint,

is used to enforce the presence of N entries of magnitude

one such that they will be zero only when the total
number of one I s in the network is N, the number of

cities.

The approach to a solution of minimal energy E[n] can

be described by a differential equation in time t [Muller

et al. (1990)] as shown below :-

27

where

uia is the local field of node nia ,

1
T is the temperature which nia= 2/' l+e- Uia T

determines the slope of the Sigmoid function, and

T representing the typical time constant of the nodes.

The differential equation of uia has to be solved

numerically.

differential

The Euler' s method is used to

quotient by the quotient

differences. It gives the following results,

2.2.3 The Kohonen network

replace this

of forward

The Kohonen network is a two layer feedforward network as

shown in figure 2.1c. The first layer is an input layer

and the second layer is a grid or map arranged in a one

or two dimensional array. These layers are fully

interconnected, as all input nodes connect to all nodes

in the second layer. The network is trained by

unsupervised learning.

The second layer is known as a competitive layer.

Incoming patterns are classified by the nodes that they

activate in the competitive layer. Similarities among

patterns are mapped into closeness relationships on the

competitive layer. After training is complete, the

pattern relationships and groupings are observed from the

competitive layer.

28

The first step in operating a Kohonen network is to

compute a matching value for each unit in the competitive

layer by using the following equation,

n-l
dj = I,<xrWij)2

j=O

where di is the distance between the input pattern and the

competitive node i, Xj is an input value for node j and wij
is the weight between the input node j and the competitive

node i.

The closest matching unit to a training input is

computed as the minimum distance of di which is given by

where c is the winner node.

After the winning node is identified, the next step

is to identify the neighbourhood consisting of those

nodes that are close to the winner in the competitive

layer. The neighbourhood consist of the units that are

within a square centred on the winning node c.
The weights are updated for all nodes that are in

the neighbourhood and the winning node c based on the

following equation :-

where a is the learning rate and i is the competitive

node in the neighbourhood. The learning rate, a, begins

initially at a relatively large value. During the

learning process, a is decreased over the span of many

iterations. The suggested rate [Dayhoff (1990)] is:-

29

where aD is the initial value set by choice, i.e. 0.2 -

0.5. T is the total number of training iterations and t is

the current iteration.

The size of the neighbourhood is also adjusted

according to

where nO is initially the neighbourhood size chosen either

one-half or one-third of the width of the competitive
layer. The neighbourhood is for all (x,y) such that,

c-n<x<c+n and c-n<y<c+n. sometimes this calculated

neighbourhood goes outside the grid of units in the

competitive layer; in this case the actual neighbourhood

is cut off at the edge of the grid.

2.2.4 Adaptive Resonance Theory (ART)

The ART is an unsupervised, competitive

algorithm. It is a two layer network arranged in

learning

feedback

and feedforward connections as shown in figure 2.1d. The

layers have different functions unlike the

backpropagation or Kohonen networks. The first layer can

be an input layer or a comparison layer and the second

layer can be an output layer or a recognition layer. Both

are interchangeable during training.

There are three models of ART called ART1, ART2 and

ART3 [Beale et al. (1990) 1. The ART1 is for a binary

input value and ART2 is for real value. Both have similar

architectures. ART 3 uses equations that model the

dynamics of chemical neurotransmitters. This section

discusses only the ART1 network.

The major feature of ART1 is the ability to switch

modes between plastic (the learning state where the

internal parameters of the network can be modified) and

stable (a fixed classification set), without detriment to

any previous learning. The network also displays many

behavioural type properties, such as sensitivity to

30

context, that enables the network to discriminate

irrelevant information or information that is repeatedly

shown to the network.

An input vector is presented to the input layer and

passed to the second layer using the following equation

n-l

Sj = LWijXj
j=O

where si is the output of node i in the competitive layer,

wij is the feedforward weight between the input node j and

the output node i and Xj is an input value for node j. The

second layer is now in recognition mode where the best

matching exemplar is calculated as :-

where c is the winner node to represent one class of

pattern.

At the comparison stage - when a new pattern is

presented to the first layer, this pattern is compared

with the already learned pattern against a vigilance

threshold, p. The vigilance parameter controls the

resolution of the classification process. A low choice of

threshold (p < 0.4) will produce a low resolution

classification process, creating fewer type. A high

vigilance threshold (p = 1) will produce a very fine

resolution classification.

When

n-l

LVcj(t)Xj
j=O
~':"'n-_71--> p, where Vcj

LXj
j=O

is the feedback weight

between the input node j and the competitive node c, then

the classification is complete. All weights are then

refined as follows :-

31

(1) vcj(t+l)=vcj(t)Xj, for the feedback weight.

(2)
Vcj(t) Xj

wq (t+l)= n-l ' for the feedforward weight.

When

0.5+ ~>Cj(t)Xj

n-l
LVCj(t)Xj

j=O

"'j=_O"--..,--__ < p, the next best-template matching node of
n-l

LXj
j=O

the recognition layer is considered using the equation

se = max(si) •

The learning time for this network is much faster

than the i terati ve convergence procedures proposed for

most other NNs such as the backpropagation method. This

is because the weights are set to the optimum values in

very few learning cycles.

2.2.5 The Counter propagation network

The Counterpropagation network is a combination of two

well-known networks: the Self-organising map of Kohonen

and the Grossberg networks [Hecht-Nielsen (1987, 1988,

1989), Dayhoff (1990)]. The basic architecture of the

network is shown in figure 2.1e.
The first layer is an input layer and the third

layer is an output layer. In between these layers is the

competitive layer. The competitive layer performs a

competitive classification to group the patterns. The

learning algorithm at the Kohonen layer is based on

unsupervised learning and the learning algorithm at the

Grossberg layer is based on supervised learning.

When the input vector is presented to the network,

the competitive layer then performs the weighted sum,

32

n- 1

Si = I,W(JOXj

j=O

Both X and ware normalised first so that their vector

lies on a unit radius. wij is the weight between the input

node j and the competitive node i. The node, c with the

highest sum calculated as :-

is considered as the winner node at the competitive

layer.

Only the weights of the interconnections that go to

the winning node c are adjusted using

where a is the learning rate. The network output values

are then compared to the target pattern, and the output

layer of weights is updated as

where Vjc is the feedforward weight between the

competitive node c and the output node j, 1 is the target

value of output node j and f3 is the learning rate for the

output layer.

33

2.3 CURRENT NEURAL NETWORK SIMULATORS

In order to define any of the NN simulation programs, a

computer programming language is the most suitable.

Through the language, the designer has the freedom to

explore various simulation programs.

There are several methods to define networks by a

computer program. One is to use an already existing high

level programming language such C or Pascal but many NN

researchers do not come from a strong computer

background. However,

exist. specifically for

,many programming_lang\lag~s

the NN models [Paik et al.

(1987), Almassy et al.

(1991), Korn (1989,

Vellacott (1991),

(1990), DasGupta

1991a&b),

Panetsos et

Zell

al.

et al. (1990), Hu

et al. (1991) ,

(1993)]. These

programming languages are known as the special-purpose

languages. They cover many methods of programming styles

such as declarative (descriptive), procedural and object

oriented.

The main objective of providing various styles

of programming languages is that they are easy to use.

Discussion of how these programming styles have been

implemented in a high-level language are explained in the

next chapter. A brief view of some NN languages are now

given in this section.

2.3.1 Procedural language for Neural Network

The procedural language approach follows the algorithmic

step of computation (section 3.4.1).

The DESIRE/NEUNET is a new environment for

interactive experiments with NNs developed by Korn (1989,

1991a&b). It is for personal computers run under the PC

DOS/MS-DOS operating system. Special versions of

DESIRE/NEUNET can generate ANSI C source code and then

can be inserted in other user programs, including

embedded-computer applications. The DESIRE/NEUNET

34

language is a high-level language specifically designed

for general-purpose NN models. Its program is based on a

simple vector/matrix notation for NN models. One

dimensional arrays represent vectors such as node

activations and signal patterns, and two-dimensional

arrays represent matrices which holds connection

strengths or weights.

The structure of the DESIRE/NEUNET language is

divided into two parts. The first part is called the

interpreter program segment namely 'experiment protocol'

and the second part is called compiled program segment

namely 'simulation run'. Hence, the translation of the

DESIRE/NEUNET program thus involves two separate tasks of

interpretation and compilation.

The experiment protocol initially sets all array

definitions to zero or can fill any desired array by

using data/read assignments. It also involves program

loops, modify model variables, simple assignment, setting

scales and scalar parameters for graphical display, and

then calls a simulation run or runs. A statement to call

this simulation run is drone The compiled code or

simulation run does 'exercise' the simulation model

through a sequence of time steps or trial. It can also

manipulate complete arrays and solves difference

equations to produce time histories, node activations,

performance measures and display or list such results in

a variety of ways. This program segment is written under

a program named, DDVAkfIC. The DYNAMIC program segment is

separated from the interpreter program by the DDVAkfIC

statement, which must be the only statement on its line.

An example of a DESIRE/NEUNET program is shown in

figure 2.7. It shows that successive. rows of the INPUT

and TARGET pattern matrices serve as input and target

vectors for training. A simple least-mean-squares

algorithm or Widrow-Hoff LMS algorithm minimises the

error measure. Further details, examples and user-manual

can be found in Korn (1991b).

35

N = 3
ARRAY layer1[4], layer2[2], bias[4],weight[2,4]

ARRAY INPUT[N,4], TARGET[N,2]

DATA 1,2,3,4;0,0,1,1;-1,0,-1,0 I read INPUT

DATA 10,20;50,60;0,0 I read TARGET
gain = 0.2

min = 0 I max = 1
NN = 30

t = 1 I TMAX = NN - 1 I drun I stop

DYNAMIC

iROW = t
VECTOR layer1 = INPUT# + bias
VECTOR layer2 = weight*layer1; min,max

VECTOR error = layer2 - TARGET#

LEARN weight = gain*error*layer1 + moment*weight

DOT enormsqr = error*error

Fig. 2.7: A simulation program for two-layer network

36

2.3.2 Declarative language/or Neural Network

A declarative language

language) for NN is a

(also known as descriptive

non-procedural language which

allows the user to describe the network topologies and

lets the computer undergo algorithmic steps of

computation by itself (section 3.4.2). A brief discussion

of a declarative language for NNs based on Leighton et

al. (1992) is now presented.

Aspirin/MIGRAINES (version 6.0) is a NN environment

developed by the MITRE corporation. The Aspirin/MIGRAINES

system is written for a UNIX environment. Aspirin is a

high-level declarative language used to describe

arbitrarily complex NNs and their learning algorithms. It

includes the definition of the type of network, the size

and top'ology of the network and descriptions of the

network's input and output. It may also include items

such as user defined function and the user manual for the

MIGRAINES system. Aspirin supports the backpropagation

learning techniques and topological variations.

The Aspirin program is then compiled by its code

generator and generates a C program to simulate the

network. It is further compiled using a standard compiler

and linked either to the MIGRAINES interface or used with

other application-specific systems. MIGRAINES is a

terminal-based interactive interface that allows the user

to export data from the NN simulation program to

graphical packages such as 'Mathematica' [Wolfram (1991)]

via UNIX pipes. MIGRAINES was intentionally kept separate

from Aspirin so that the limitations of MIGRAINES do

not restrict the performance of Aspirin.

Aspirin is organised around the concept of a 'black

box' description of NN. A black box NN is an abstract

unit which receives external input and produces some

output. A complete NN is one example of a black box. A

black box can also be a subnetwork of a larger, complex

NN system.

37

2.3.3 Object-oriented language for Neural Network

Object-oriented concepts will be discussed in section

3.4.3 of the following chapter. A brief example of an

object-oriented language for NN based on Hu (1991) is now

presented. Hu gave an informal overview of a general

purpose NN simulation language called an Object-Oriented

Neural Network Language (OONNL). OONNL follows many

characteristics of object-oriented methodology and

embodies the features of NN models. The compiler for

OONNL was implemented on a SUN3 workstation.

The structure of OONNL is divided into two parts.

The first part is the description of the NN model and the

second part

amongst the

is the description of information flowing

processing units (nodes or neurons) and

information processing in the units.

The description of the NN model involves defining

the NN topology such as specifying the processing units

and connections as well as the specification of the value

of units such as activation function and connection

strength. OONNL defines a processing unit as an object

which includes the unit name, class name, its connection

with other units and their 'weights, and name of

procedures such as learning rule and activation function.

OONNL implements inheritance by class. A class is an

abstract of objects. units can be classified as input,

hidden and output units and share common attributes such

as activation function. OONNL provides a set of

statements to define a class that includes a number of

units sharing common attributes.

Data flow and control flow as well

oriented methodology in OONNL is realised

processes of information flowing and

as object

through the

information

processing in the unit. Data flow involves processes such

as get data from the outside, world, feed data forwards or

backwards, and control flow involves processes such as

how to stop iterations when the desired learning is

satisfied.

38

CHAPTER 3

BASIC COMPILER CONCEPTS

39

This chapter covers the basic concepts of compiler design

which comprises its definition and comparison with an

interpreter; .the process of compilations; high-level

programming methods; a brief discussion of some popular

compiler-construction tools or compiler generators; and

the general structure of a NN compiler called NEUCOMP and

its language (the NEUCOMP language) • A high-level

programming language is a computer language that a human

can understand whereas a low-level language is the

machine language.

An interpreter is another technique of translating a

high-level programming language. The comparisons of the

compiler approach over an interpreter and its advantages

in terms of execution speed will be discussed briefly.

The third section of discussion is about the process

of compilation. It shows the technique of how the design

of a compiler is broken down into many phases or modules.

From the understanding of this technique, we can then

understand how a NN compiler (NEUCOMP) can be developed.

Its explanation can be found in the next chapter.

The fourth section of discussion explains how high

level programming languages are designed into various

methods such as procedural, declarative, object-oriented

and functional programming methods. A brief discussion of

each is given in this section.

which programming method is

convenient to use leads to a

language method for NEUCOMP.

A clear understanding of

easier to program and

preferred choice of a

Since designing a compiler is a complicated task,

which may involve frequent changing of program syntax,

the use of compiler-construction tools or compiler

generators are recommended. Popular tools such as 'Lex'

and 'Yacc' are available under the UNIX operating system

can help the designer to reduce programming maintenance.

These are explained in the fifth section.

In the last section, the· structure of NEUCOMP and

the NEUCOMP language are introduced.

40

3.1 COMPILER

A compiler is a program which translates a program

written in one language, the source language, to an

equivalent program in a second language, the target

language [Aho et al. (1986), Bennett (1990)]. During

this translation process, the compiler reports the

presence of errors in the source program together with

diagnostic information about the source program being

compiled. A target language can be another programming

language or the machine language that already exists in

the computer being used.

Figure 3.1 shows the general structure of the

compiler. Typically the source language will be in a

high-level programming language such as FORTRAN or

Pascal, and the target language will be the machine code

for the computer being used or an assembly language.

~I Compiler I~

Fiq. 3.1: Overall structure of a Compiler

41

3.2 INTERPRETER VERSUS COMPILER

Translation of the source language into the target

language can be done by two approaches, namely, as the

compiler and the interpreter [Aho et al. (1986), Bennett

(1990), Ford (1990)j.

The compiler reads the source code program and

converts it into the target code program. This means that

the entire program code is translated once and resaved as

its target code. All errors of syntax or grammar found by

the compiler during the translation process will be

displayed together with the diagnostic information. This

includes the type of errors that have occurred and the

type of corrections that should be done. Recompilation is

then required to the corrected source program. If there

is no error after the end of translation, the translated

code is then executed. The possibility of finding any

errors of syntax during this execution process does not

happen. There is no need to recompile the program once

compiled when we want to execute the code program

repeatedly.

An interpreter reads the program's statements one at

a time. Each single statement is translated and if an

error is found, the translation process is stopped. The

user can then correct it immediately and if there is no

error, the translated code is then executed. The process

is then continued for the next statement. This means that

the translation and execution phases occur together and

not separately as in the case of the compiler. ., Doing

the translation and execution at the same time has given

a slight advantage to the interpreter. When error occurs

we can immediately pinpoint its source from the original

high-level language program. This is often a, great help

when developing and debugging programs. However,

interpreters suffer from poorer execution speeds than

their compiler competitors, particularly involving large

scale repetition of code in loops. This· is because the

source code must be translated each time it is executed,

42

and then the repeated translation of the same code within

a loop is clearly wasted. Ford (1990), has shown a

comparison of Borland's Turbo BASIC which offers a

compiled BASIC which is compatible with several

interpreted versions based on the same hardware

configuration. The result shows that the execution speed

of a compiled version is two times faster than an

interpreted version.

The choice of whether to compile or interpret is to

a large extent influenced by the nature of the high-level

language and the environment in which it is used [Bennett

(1990), Ford (1990), Wilson et al. (1993)]. For example,

FORTRAN is relatively simple and designed for translation

to machine code. It is often used for solving big

numerical problems on mainframe computers, where the

speed of execution is essential. It is thus invariably

compiled. BASIC, on the other hand, is mainly used on

personal microcomputers where clearly error handling is

important. The lack of processing power and memory could

make compilation very difficult. However modern

interpreters such as for the LISP language often use both

interpretation and compilation •. Programs are interpreted

during program development to avoid time-consuming

compilations each time the program is changed and to give

clear error handling. When development is complete,

compilation can begin.

Most language translation use a combination of

compilation of high-level language into an intermediate

low-level language which is then interpreted into a

machine code [Bennett (1990}].· For example, the UCSD

Pascal compiler, , generates an intermediate code,

PCODE, for interpretation. This is because compilation of

high-level language into machine code is time consuming.

If an error happens during execution it is difficult to

relate the machine code that caused the error to its

equivalent high-level code. It is easy to compile a high

level language into an intermediate language, i.e. an

assembly language which is not too time consuming and

43

efficient to execute. When an error occurs during

execution the intermediate code is easier to relate to

the source language.

3.3 THE PROCESSES OF COMPILATION

The process of compilation is broken down into two main

parts - analysis and synthesis [Aho et al. (1986)]. The

analysis part breaks up the source program into

constituent pieces and creates

representation of the source program.

constructs the desired target

an intermediate

The synthesis part

program from the

intermediate representation. synthesis requires more

specialised techniques. The analysis is broken down into

three phases lexical analysis, syntax analysis and

semantic analysis. The synthesis is also broken down into

three phases - the intermediate code generation, code

optimisation and code generation. Each phase transforms

the source program from one representation to another.

The process of compilation as shown in figure 3.2 has

become the standard routine in the development of the

compiler [Aho et al. (1986), Bennett (1990)]. However in

practice, some of the phases maybe grouped together and

the intermediate representations between the group phases

need not be so explicitly constructed.

Often, the phases are collected into a front-end and

back-end [Aho et al. (1986), Bennett (1990)]. The front

end consists of phases that depend primarily on the

source language and are largely independent of the target

machine. These normally include lexical and syntax

analysis, the creation of the symbol-table, semantic

analysis, and the generation of intermediate code. The

front-end also includes the error handling that goes

along with each of these phases. The back-end includes

those portions of the compiler that depends on the target

machine. Generally, these portions do not depend on the

source language, just the intermediate language. The

44

back-end takes the intermediate. language representation

as input. It undergoes the code optimisation phase, the

code generation along with the necessary error handling

and symbol-table operations.

symbol-table
manager

semantic
analyser

error
handler

r
front end

'---~;::,==~---J intenmediate code L-_--=='/,ir---'
generator

1
back end

1

Fig. 3.2: Phases of compilation

Distinguishing the front-end with the back-end can

help to produce compiler portability. For example, to

produce the same language running on different machines,

its associated back-end needs to be modified. To compile

several different languages into the same intermediate

45

language, a common back-end running on the same machine

can be used.

Discussions on phases of figure 3.2 are now

explained. The lexical analysis is the first stage in the

process of compiling the source program. The stream of

characters making up the source program is read from

left-to-right and grouped into tokens. A token is a

sequence of characters having collective meaning. The . .:!=_erminal

as complete entities,

such as integer or variable names of complete keywords

rather than the individual characters. The program that

carries . out this analysis is called a lexical analyser or
, ----_ ..

scanner.

The syntax analysis phase groups the stream of

tokens from the lexical analyser to form a valid sentence

or grammatical phrases. Usually, the grammatical phrases

of the source program are represented by a parse tree.

The program that undergoes this analysis is called a

syntax analyser or parser.

The semantic analysis phase checks the parse tree

generated by the syntax analyser for semantic errors. It

determines which variables are to hold integers, and

which are to hold floating point numbers. It also checks

that the size of all arrays are defined.

After the syntax and semantic analyses, the parse

tree produced is converted into an intermediate

representation. This representation can be the three

address code for a general-purpose assembly language

which is still not dependent on the target machine. It

serves as an interface between the front-end and back

end. The three-address code consists of a sequence of

instructions, each of which has at most three operands.

When generating these instructions, the compiler has to

decide on the order in which the operations are to be

done such as the mUltiplication precedes the addition

operation in the source program.

The code optimisation phase attempts to improve the

intermediate code into a more efficient equivalent, so

46

that when translated into a target code it runs faster.

Basically the tasks in the code optimisation are to

minimise the number of operations carried out in the
source program by giving an alternative solution. It also
minimise the number of memory accesses. The meaning of a

program does not change. A significant fraction of time

of the compiler is spent on this phase.

The final phase of the compiler is the generation of

the target code, consisting of assembly code or machine

code. Memory locations are selected for each of the

identifiers used by the program. Intermediate

instructions are then translated into a target assembly

statements or a sequence of machine instructions that

perform the same task.

Two other activities, symbol-table management and

error handling, as shown in figure 3.2, interact with

those six phases. The programs involved are called

symbol-table manager and the error handler.

Symbol-table management is an essential module in a

compiler. It builds up information about the identifiers

used in the source program and collects information about

various attributes of each identifier. These attributes

may provide information about the storage allocated for

an identifier and its types. In the case of procedure

names, it provides information such as the number and

types of its arguments, the method of parameter passing

and the type returned. A 'symbol table' is a data

structure containing a record for each identifier, with

fields for the attributes of the identifier. The data

structure allows us to find the record for each

identifier quickly and to store or retrieve data from

that record quickly. For example, in the lexical analysis

it may only hold the text of an identifier's name. During

the syntax and semantic analyses, information about the

identifier's type and scope will be added. When doing the

semantic analysis and intermediate code generation, we

need to know what the types of identifiers are, so that

the source program uses them in a valid way and the

47

proper operations can be generated on them. During code

generation we may wish to associate an address with an
identifier.

The error handling involves detecting the error and

reporting the type of error undergoing diagnosis. Every

phase in the compiling process can encounter errors.

However, after detecting an error, the phase must somehow

deal with that error, so that compilation can proceed,

allowing further errors in the source program to be

detected. The lexical phase can detect errors where the

characters remaining in the input do not form any token

of the language. The syntax and semantic analyses phases

usually handle a large fraction of the errors detectable

by the compiler. The errors where the token stream

violates the grammar rules of the language are determined

by the syntax analysis· phase. During semantic analysis

the compiler tries to detect constructs that have the

right syntactic structure but no meaning to the operation

involved. This can be operations such as to add two

identifiers, one of which is the name of an array and the

other the name of a procedure. The intermediate code

generator may detect an operator whose operands have

incompatible types. The code optimiser, doing control

flow analysis, may detect that certain statements can

never be reached. The code generator may find a compiler

created constant that is too large to fit in a word of

the target language.

These are all important considerations in order to

obtain the true compilation.

48

3.4 PROGRAMMING LANGUAGES

A computer is a tool that solves problems by means of a

programming language. Computers obey instructions which

are issued to them. In order for the instructions to be

understood both by the person who issues them and by the

computer which obeys them, they must be issued in a

particular form. The set of instructions and the rules by

which they are to be issued and acted upon, forms the

basis of the computer language. A computer program is a

series of instructions which are executed in an

appropriate order to perform a particular task [Ford

(1990), Wilson et al. (1993)].

Programming languages are

programming languages and

classified into low-level

high-level programming

languages. A low-level language is one which is close to

the machine's own language, and is therefore usually

harder for humans to use. Such languages are assembly

language and machine codes. Machine code languages are a

series of computer instruction written in binary. An

assembly language follows a series of machine codes'

instructions but they are written using mnemonic codes

[Ford (1990), wilson et al. (1993)]. Programming at low

level is a very difficult task. It requires a long job

for a specialist computer expert who might take many

hours to find any error. Because of this a high level

language is designed to be easy for humans to learn and

use. These languages are sometimes known as human

oriented languages.

All languages except machine code itself, need to be

translated before they may be executed by the computer's

processor. Assembly language is translated using an

assembler. An assembler is a program written in machine

code which is able to translate the assembly language

instructions into the machine code which they represent.

High level languages are translated using a compiler or

an interpreter (section 3.2).

49

Nowadays there are many high level languages. Their

existence has an objective at a higher level than others.

These will be the languages which make a particular

attempt to provide ease of programming for human beings

[FOrd (1990)]. However they can be grouped into a variety

of styles. The most commonly identified programming

styles are procedural, declarative, object-oriented and

functional programming [Maeder (1991)]. The existence of

the many programming styles are normally suited to

specific applications. For example, FORTRAN is designed

to suit numerical and scientific computation, COBOL is

for business-data processing and PROLOG is suitable for

logic programming such as an expert system and natural

languages processing [Ford (1990), Wilson et al. (1993)].

3.4.1 Procedurallanguages

conventional programming languages such as C, Pascal and

FORTRAN support the procedural style. It involves

frequent use of assignment statements to change the state

of the computation and solve problem algorithmically

[Springer et al. (1989)].

The following steps describe how to solve a problem

algorithmically :-

(1) An understanding of the problem.

(2) A solution to the problem is designed and this

solution is broken down into a series of distinct

tasks of development of the algorithm.

(3) The tasks required are then translated into a

suitable series of programming statements.

The advantage in designing an algorithm is that the

programmer has a free choice of choosing the best method

for efficient execution [Ford (1990)].

A brief description of some procedural languages are

then explained. BASIC - Beginners I All-purpose Symbolic

50

Instruction Code, was motivated by the desire to have

available a programming language which would be simpler

to learn than FORTRAN. It is an interpretative language.

It has become particularly commonly used for programming
smaller microcomputer systems.

FORTRAN, FORmula TRANslation, was based on the

original purpose of the language - to solve numerical

computations. It was the first high-level language

introduced, in 1950. At that time the majority of

programming was being undertaken by programmers working

in assembly language or machine code. FORTRAN became

popular because it served a realistic and desirable

alternative to low-level language programming for
mathematical and scientific applications.

Pascal is commonly taught in courses on programming.

Pascal is usually preferred to BASIC as the introductory

language for specialist computer science students because

it is well structured. This helps to make a program more

readable.

COBOL which is an acronym for COmmon Business

oriented Language is suitable for use in writing programs

which could handle efficiently large amounts of data in

file processing applications.

The C language has become popular recently for a

wide variety of programming applications. C may be

distinguished from other languages by its chief design

goal to be a tool for working programmers. It is

flexible, convenient, powerful, portable and efficient.

It is designed by programmers for programmers, and has

become one of the most popular and widely used

programming languages for the development of

applications. Amongst facilities provided are compact

codes such as the actual statements which need to be

written in order to perform a given operation in Care

significantly shorter than the corresponding instructions

in many other languages. C provides both high-level as

well as low-level language support such as assembly

language which is required by a system programming

51

environment. It is widely available on a variety of

different computers including UNIX operating system.

3.4.2 Declarative languages

A declarative language provides an efficient

programming in logic. It is mainly used in the

artificial intelligence.

way for

field of

An advantage of the use of a declarative language is

that much of the work in writing a program is undertaken

by the computer whereas the procedural approach involves

human decision processes in designing the suitable

algorithm. When a declarative language is used to solve a

problem, the programmer is relieved from the

responsibility to define the method to be used, which is

instead selected by the language [Ford (1990»).

The steps in writing a program in a declarative

language are :-

(1) understand the problem. The programmer's tasks are

restricted to reaching a clear understanding of the

problem.

(2) code as a program that describes the problem to the

computer using suitable language statements.

Naturally the language cannot be expressed to

display the same intuition which the programmer might

display. Therefore, the efficiency of writing the actual

program which is often far faster in a declarative

language but not efficient in the execution of the

result.

Declarative languages are suitable in the

development of expert systems and other database

programs. They involve logical decision-making programs

many of which are particularly difficult to write in a

procedural language. An example of logic programming is

PROLOG - PROgramming in LOGic.

52

3.4.3 Object-oriented languages

A recent advance in programming languages has been the

ado!,tion of the object-oriented style of

programming. This style is particularly suitable for

simulating objects in the 'real world' and for

structuring large systems in ways that allow recurrent

patterns of computation to be shared by similar objects

[Springer et al. (1989), Ford (1990) and Wilson et al.

(1993)].

In this style of programming, certain objects are

defined that respond to messages passed to them. We can

think of an object as a computer dedicated to solving a

particular type of problem. The input is the message

passed to the object, the object does the computation,

and the output is the value returned by the object.

Objects provide a way of combining characteristics and

operations to give a level. of abstraction beyond that

offered by records and procedures. Objec~aredescribed as

some local data together with a set of procedures that

operate on that data. All calculations are performed by

sending messages to objects, and problems are solved by

identifying real-world objects and modelling them by

object-oriented programming.

Object-oriented languages support data abstraction

and information hiding. An object has a hidden local

state and exports operations that can act on this state.

Meanwhile an object-oriented program consists of a set of

objects that communicate with one another through calls

of these exported operations. It also supports the

concept of inheritance and dynamic binding. A central

feature of object-oriented programming is that new

classes are not created from scratch, but by inheriting

information from existing classes which they can then

modify or extend. The new class is said to be a subclass

of the class from which it was derived, a superclass.

Software reuse is central to the object-oriented

approach. Object-oriented systems typically have a large

53

number of predefined classes from which new classes may

be created.

An object of a subclass can always be used when an

object of its superclass is expected. When an operation

originally defined in a superclass is redefined in a

subclass, the decision as to which operation is

applicable in a given situation can be delayed until run

time, that is, we have dynamic binding. Dynamic binding,

where the decision about which version of an operation is

to be used is delayed until run time, is then examined.

Obj ects send messages to one another. On receipt of a

message at run time, an object decides which method it

will use in response.

Some examples of object-oriented

Smalltalk and c++. Smalltalk was designed

languages are

to be used with

powerful personal computers complete with windows, pop-up

menus, icons and mouse pointing device, which has led the

way in providing a user-friendly interface for both the

expert and

traditional

language.

non-expert user. c++
imperative language

is a hybrid between a

and an object-oriented

3.4.4 Functionallanguages
-:-A, :funct[onaC language is mainly characterised by the

.,,::

relalacement

functions.

of .~-ssignment

It involves

statements by

the evaluation
calling

of an

expression through a calling function instead of changing

the value of variables through an assignment [Ford

(1990), Wilson et al. (1993)]. It is closer in spirit to

mathematics. Procedural languages use a sequence of

commands to carry out the derived operation whereas in a

functional language they are recursi vely executed. The

problem with an assignment statement is that when it used

in conjunction with reference parameters or non-local

variables in subprograms it can lead to side effect and

aliasing [Wilson et al. (1993)].

54

Functional language behaves like a mathematical

function. Its program usually consists of a series of

function definitions followed by an expression that

involves the application of the function. It represents

symbolic expressions and other information in the form of

list structures in computer memory. Problem solving using

a functional language involves symbolic manipulation that

requires dealing with mathematical functions and formal

mathematical reasoning such as Lambda calculus.

The functional language approach arose mainly

because the designers were mainly mathematicians. They

were particularly interested in applying computing to

artificial intelligence problems such as game playing,

theorem proving and natural language processing, and

developing a mathematical theory of computation.

LISP which is a List Processing

example of a functional language. It

language,

was the

is an

first

functional language

during the period

(l993)].

to be widely used. It was implemented

from 1959 1962 [Wilson et al.

55

3.5 COMPILER GENERATORS

Designing a compiler is not an easy task. It involves a

very large, complex programming project. Therefore the

use of compiler-building tools can be a significant help

to the compiler writer. Compiler generators are the

software-development tools used to generate various

phases of a compiler [Aho et al. (1986), Bennett (1990),

Lemone (1992)]. Such tools are also referred to as

'compiler-compilers', or 'translator-writing systems'.

Figure 3.3 shows how the compiler generators generate a

compiler based on rules to be defined by a compiler

writer. Although this figure implies that an entire

compiler can be created by a compiler generator, in fact,

compiler generators cannot yet generate entire compilers

automatically [Lemone (1992)].

Compiler
Generator

Compiler

Fig. 3.3: An Overview of a Compiler Generator

Existing compiler generators are implemented in

various phases [Aho et al. (1986), Lemone (1992)]. For

the front-end of a compiler, the phases are often termed

a lexical analyser generator, syntax analyser generator

and semantic analyser generator. Generator phases for the

back-end of compilers are still very much a research

56

topic although work has been done on code generator

generators [Aho et al. (1986), Lemone (1992)].

The best-known compiler tool is 'Yacc - Yet Another

compiler-Compiler', written by steve Johnson (1978). Yacc

runs on the UNIX operating system and is associated with

another tool called 'Lex - A Lexical Analyser Generator',

written by Lesk et al. (1975) which generates a scanner.

3.5.1 Lex - A Lexical Analyser Generator

Lex is a scanner generator written in C. It takes a

description of a set of sentences that make up the

grammar for token to generate a scanner program called

yy./ex.c [Lesk et al. (1975), Aho et al. (1986), Bennett

(1990), Lemone (1992)]. It can be compiled and linked

with other compiler modules. The program yy.lex.c contains

an integer-valued function called, yy/exO which returns

the next token from the source program. An example of

such tokens is a sentence "1", "0", "0", which represent a

token for number 100.

The syntax of token is described in the form of a

regular expression. The regular expressions and actions

to be carried out are specified by the user in the Lex

program. A Lex program contains a format that allows the

user to define a type of string representing token and

action code written in a C program to be carried out. For

example, a list of characters that represent an

identifier, a C routine mknameO is called to save an

identifier name in the symbol table and return the token

IDENTIFIER from this routine. Similarly, for a list of

digi ts that represent number, a routine mkva/O converts

this string of digits into a numeric value and return the

token NUMBER. The routine mknameO and mkva/O are

specified by a user in the Lex program. Figure 3.4 shows

how a Lex generates the scanner program written in C,

yy.lex.c. It is then compiled to produce an object code

57

known as scanner. The output of scanner is the list of

tokens.

@ ~I Lex ~~ program

8 ~I C compiler ·8
} __ -I~~I scanner

Fig. 3.4: An Overview of Lex

3.5.2 Yacc - Yet Another Compiler-Compiler

Yacc is a parser generator written in c program. It takes

a specification of a programming language grammar and

semantic actions, and generates LALR(l) parsing tables

and a shift-reduce pars er called y.tab.c [Johnson (1978),

Aho et al. (1986), Bennett (1990), Lemone (1992)]. It can

be compiled and linked with other compiler modules such

as the scanner generated by Lex as shown in figure 3.5.

The program y.tab.c contains a routine called yyparseO which

is called to carry out parsing. The function yyparseO in

term uses yylexO from program yy.lex.c, for the next token

from the source program. y.tab.c is also compiled to

produce an object code known as parser. Its input is the

list of tokens produced by scanner and its output is the

parsed tree.

The Yacc program contains a format that allows the

user to define valid sentence or grammar rules for the

58

source language. For example a sentence if (expression) then
statement is a grammar rule for I if statement I. The string if
and then, the symbol I (' and I) 1 are tokens produced by the

scanner while expression and statement are other grammar

rules. Further details of grammar rules, and the use of

Yacc and Lex are discussed in chapter 4 when designing

and implementing NEUCOMP.

C compiler

,...---'--.., token
scanner parser

'--___ -' get next
token

Fig. 3.5: Lex with Yacc

59

3.6 STRUCTURE OF A NEURAL NETWORK COMPILER

The general structure of a NN compiler called NEUCOMP and

its language (the NEUCOMP language) are now explained in

this section.

3.6.1 The General Structure o/NEUCOMP

The compilation of a programming language naturally

breaks down into a number of logical phases (section

3.3). These phases may run simultaneously, or they may

run consecutively.

Compilation of a high-level program has been proved

to produce a high performance result [Bennett (1990),

Ford (1990)]. However, to develop a true compiler is a

difficult task. It involves a large, complex programming

project [Aho et al. (1986), Lemone (1992)]. NEUCOMP takes

a simpler approach as the objective here is to study the

suitability of the NEUCOMP language to perform general

implementations of NN models. The simplified phases of

compilation are shown in figure 3.6. The reason is to

provide an ad hoc and workable compiler at an early stage

so that when it is successful a true compiler can be

later developed. The C language is chosen as the target

language because it is portable to any machine under the

UNIX platform. It has a ::./ > structured data type, is

machine independent and has more mathematical library

routines provided by the UNIX operating system.

The semantic analysis for NEUCOMP is done during the

syntax analysis. The output after the semantic analysis

is the target program which is in C. The code

optimisation and code generation (section 3.3) are not

carried out on the C program because the C compiler has

its own code optimiser. However, for the execution of an

assignment statement involving a matrix/vector

manipulation there may be repeated loops of the same

matrix/vector size. This may affect the performance of

the program. The loop optimiser is responsible for

60

combining the same vector or matrix loop of every
matrix/vector assignment from the target program in order
to remove the repeated loops.

Lexical Analysis
Syntax Analysis

Semantic Analysis

loop
Optimiser

Fig. 3.6: Phases of compilation

3.6.2 The General Structure o/the NEUCOMP language

Many of the properties of the NN models described are
governed by the mathematics of linear algebra [Rumelhart
et al. (1986)]. vector and matrix analysis are a useful

way to describe a pattern of numbers. In a NN model, many
quantities are best represented by vectors and matrices.
For example, activations of a node can be written as,

61

y = fCW*x+b)

where y is a vector of a current node, x is a vector of

the previous node impinging on the current node, W is a

matrix which represents the connection strengths between

nodes x and nodes y, b is a vector which represents a bias

to node y, and! is an activation function, i.e. sigmoid

function.

The NEUCOMP language is a procedural high level

language which is designed for a user to write a

simulation program specifically for any NN model. It

contains information regarding the list of mathematical

specifications required by the NN models as well as

standard high-level programming statements such as

if.. then .. else and while .. do statements. The mathematical

specifications used are represented by either a scalar,

vector or matrix manipulation. The NEUCOMP will translate

these expressions into the actual loop expressions.

The idea which brought about the development of the

NEUCOMP language came from the mathematical

representation of the DESIRE/NEUNET language (section

2.3.1). The DESIRE/NEUNET program is translated using a

combination of both an interpreter and compiler whereas a

is translated by a compiler. NEUCOMP program

DESIRE/NEUNET uses an interpreter on a program segment

which contains variables definition, simple assignments

and loop initialisation on matrix/vector variables. Ford

(1990) has shown experimentally that interpreters suffer

from poor execution speed particularly those involving

large scale repetition of code in loops (section 3.2).

Also as explained in section 3.2, an interpreter is

useful for program development because it avoids time-

consuming operations during compilation each

source program is changed. Furthermore, most

translations use a combination of compilation

level language into an intermediate low-level

which is then interpreted into a machine code.

62

time the

language

of high

language

The Procedural approach is chosen because

traditionally this approach has been established since

the evolvement of the FORTRAN language. Furthermore, the

procedural approach allows a list of mathematical

specifications to be easily organised or written

algori thmically. Other approaches as mentioned earlier

which are declarative (descriptive), functional and

object-oriented are not suitable for writing a series of

mathematical specifications. An example of the

declarative approach is Nessila [Korb et al. (1989)].

This language performs poorly because it is hard to

implement and takes too long to generate a large NN.

However, its new version, Nessus, which is based on the

procedural approach is more efficient [Zell et al.

(1991)]. To my knowledge, there has been no

implementation of a NN language based on the functional

approach. Even though a functional language such as LISP

has been established for AI. research however for NN

research,

implement

it is more difficult

[Myler et al. (1992)].

to understand and

The object-oriented

approach is a new field for a NN language. Hence, only

those people with a good background in computing prefer

to use an object-oriented language.

The NEUCOMP language structure (figure 3.7) follows

the general structure of the C-Ianguage [Kernighan et al.

(1980)]. It shows that program_name under NEURALNET is the

name that must be given as a program heading for a

simulation program. The identifier-declarations is a section

where one or more variables for scalar, vector or matrix

operations are declared either as global or local. All

variables must be of type real, integer, string or file.

The content within MAIN PROGRAM ... END is the body of a

program or main program where one or more statements or

statement-list can be written to carry out the simUlation. The

statement-list such as I assignment-statement I, I if-statement I ,

and calling I subprogram I are parts of NEUCOMP language

statements.

63

The sub program_declarations are declarations of one or

more subprograms of types procedure or function. The

structure of a subprogram (figure 3.8) follows the same

structure of the main program. A subprogram allows the

reference by a name to a collection of statements which

perform a clearly defined purpose. The procedure

statement serves like a function in C of type void and the

function statement serves like a function in C which

returns a value. However the type of a return value is

based on a type of a variable after statement RETURN.

Provision of procedure and function can make the program

well structured and help to improve program readability.

The argument in a subprogram contains one or more

variables depending on the argument of its calling

subprogram. The argument in the calling subprogram acts

as a passing parameter to the declared subprogram.

The capital letter words such as NEURALNET,

MAINPROGRAM, END, PROC, FUNC and RETURN as shown in

figure 3.7 and figure-3.8, are the reserved words.

64

NEURALNET program_name
identifier declarations (global use)

MAINPROGRAM
identifier declarations (local use)
statement list
END;

subprogram_declarations

Fig. 3.7: structure of the NEUCOMP language

PROC procedure_name argument

identifier declarations (local use)

statement list

END;

FUNC function_name argument
identifier_declarations (local use)
statement list
RETURN variable;

Fig. 3.8: structure of subprograms

65

CHAPTER 4

A NEURAL NETWORK COMPILER

66

This chapter discusses the design and implementation

of a NN compiler called NEUCOMP which includes the

mathematical specifications on scalar, vector and matrix

operations; designing and implementing the compiler;

compilation of the compiler modules; some NNs simulation

programs; and developing the required graphical displays.

The design and implementation of NEUCOMP includes

the definition of the NEUCOMP language which is based on

grammar rules or productions and the process of

compilation which involves the lexical analysis, syntax

analysis, semantic analysis and optimising the loops or

loop improvement. The lexical and syntax analyses phases

are implemented using the compiler tools, Lex and Yacc

(section 3.5) which both generate the C program modules.

The semantic analysis is implemented in conjunction with

the syntax analysis. These compiler modules are compiled

with other C program modules, 1. e. user-support routines

and loop optimiser. The executable compiler program is

called NEUCOMP.

The NN simulation programs for some NN models are

developed and compiled by NEUCOMP. The chosen models are

the backpropagation, Kohonen, ART! and Counterpropagation

networks. They are chosen based on the differences of

their structures and learning algorithms (section 2.2).

The graphical features are used for viewing and

analysing the simulation results. However, the NEUCOMP

language does not provide a statement to display the

results. An existing graphical software is recommended

for such purposes. It provides facilities to allow us to

wri te the graphical program easily. The graphical

features that are explained' in this chapter are the

programs to display the NN structure, XY-graph and

plotting points for data clustering. The simulation

results from the NEUCOMP program can then be transferred

to a graphical software package.

67

4.1 MATHEMATICAL SPECIFICATIONS

An assignment statement is presented as follows:-

variable assigntype expression (4.1)

where variable can be a scalar, vector or matrix variable,

assigntype is a mathematical operator of types '=',' +=' ,

'-=', '*=' or ' /=' and expression can be a variable or

variables in a mathematical expression. A scalar variable

holds a single value. A vector variable is a one

dimensional array and matrix variable is a two

dimensional array.

For example, a mathematical specification for the

activation function (4.2) and the modification weights

during training (4.3) in the backpropagation algorithm

are expressed in the matrix-vector forms as follows:-

layer2 = /(weight*layer1 + bias2) (4.2)

weight += alpha*dweight + beta*cweight (4.3)

where alpha and beta are scalar variables, layer] and layer2
are vectors which represent the nodes in the first and

second layers, bias2 is a vector variable which represents

'bias' on the second layer, cweight is a matrix which

contains the change of weight, weight is the connection

strength between the first and second layers, dweight is

the matrix derivative of weight and f is the activation

function such as the sigmoid function (figure 2.20). The

operator '+=' is equivalent to

weight = weight + ...

The compiler translates (4.2) and (4. 3)

following algorithms :-

68

into the

for (i = 0, m-1) {

}

n-l
layer2[i] = f(L,(weight[i][k] * layer1[k])+ bias2[i]);

k=O
for (j = O,n-1)

weight[i][j] + = alpha * dweight[i][j]+ beta * cweight[i][j];

where weight[i] [k] means the connection weight from node k
to node i.

An assignment statement is divided into 3 types. The
first is a scalar assignment, second is a vector
assignment and third is a matrix assignment. In a scalar

assignment, the left hand-side (4.1) is a scalar variable
and its right-hand side must give a scalar result.

In the following section, vector and matrix
assignments will be discussed. The vector and matrix
variables are named as, vector and matrix, and a scalar
variable is named as scalar.

4.1.1 Vector assignment

In a vector assignment, the left hand-side of (4.1) is a
vector variable and its right hand-side must contain the
following expressions :-

4.1.1.1 Scalar expression

Scalar expression can be a number, a scalar variable or
mathematical expression that gives a scalar result. For
example :-

vector = scalar + 3

69

This means that the calculated scalar

assigned to all vector components.

translated statement is as follows :-

for (i = 0, m-i)

expression is

The equivalent

vector[i] = scalar + 3;

4.1.1.2 Vector expression

A vector expression can be a vector variable or

mathematical expression that gives a vector result. The

size of the vector must be equal to the vector size of

the left hand-side of (4.1). For example:-

vector = vectorl + vector2

vector = scalarl*vectorl - scalar2

Each component of a vector expression is assigned to each

component of a vector variable. The equivalent translated

statement is as follows:-

for (i = 0, m-i) {

}

vector[i] = vectorl[i] + vector2[i];

vector[i] = scalarl*vectorl[i] - scalar2;

4.1.1.3 Matrix-Vector multiplication

Matrix-vector multiplication is a product between a

matrix and vector variables. The column size of a matrix

must be equal to the size of the vector variable. The

result is a vector of size equal to the row size of the

matrix and the vector size of the left-hand side of

(4.1). For example:-

vector = matrix * vectorl + vector2;

70

Each component of the multiplication results is assigned
to each component of the vector variable. The equivalent
translated algorithm is as follows :-

for (i = 0, m-1)

n-l
vector [i] = I.(matrix[i][k] *vector1[kj) + vector2[i];

k=O

4.1.1.4 Function expression

A function expression can be a built-in function or a
user-defined function. The function type depends on its
argument. If the argument is of scalar type, the function
type is a scalar. If its argument is a vector, the
function type is a vector with size must be the same as

its left-hand side of (4.1). For example:-

vector = SIGMOID(matrix*vector1+vector2)i
vector = SQR(scalar) i

where SIGMOID and SQR are built-in functions. The
equivalent translated algorithm is as follows:-

for (i = 0, m-1) {

}

n-l
vector[i] = SIGMOID(I.(matrix[i][k] *vector1[kj) + vector2[i]);

k=O
vector[i] = SQR(scalar)i

4.1.1.5 Vector-Matrix assignment

A vector-matrix assignment is involved when an expression

contains a matrix variable. There are two ways of
representing this matrix variable as a vector type. These
are :-

71

(1) to get all values of a matrix on a specified row, the

following statement is used :-

vector = matrix@;

(2) to get all values of a matrix on a specified column,

the following statement is used :-

vector = matrix#;

The specified row or column depends on the status of a
reserved word ROW. Its use will be explained later.

4.1.1.6 Recursive Vector assignment

The operator used in the previous assignment is only '='.
However, other operators def ined under assigntype of (4. 1)
can be applied. They serve as a recursive assignment for
a vector variable on the left-hand side of (4.1). For
example, the update operator is written as follows :-

vector += vector_expression

It is equivalent to the following statement,

vector = vector + vector_expression

The equivalent translated algorithm is as follows:-

for (i = 0, m-1)
vector[i] += vector_expression;

The operator '+=' and other recursive operators are also

valid operators for C language.

72

4.1.2 Matrix assignment

In a matrix assignment, the left hand-side of (4.1) is a

matrix variable and its right hand-side must contain the

following expressions :-

4.1.2.1 Scalar expression

A scalar expression can be a number, a scalar variable or

a mathematical expression that gives a scalar result. For

example :-

matrix = scalar + 3;

This means that the calculated scalar expression is

assigned to all matrix components. The equivalent

translated statement is as follows :-

for (i = 0, m-1)

for (j = O,n-1)

matrix[i][j] = scalar + 3;

4.1.2.2 Matrix expression

A matrix expression can be a matrix variable or

mathematical expression that gives a matrix result. The

row and column size of this matrix must be equal to the

size of the matrix variable of the left hand-side of

(4.1). For example :-

matrix = matrix1 + matrix2;

matrix = scalar1*matrix1 - scalar2;

Each component of a matrix expression is assigned to each

component of a matrix variable. The equivalent translated

statement is as follows :-

73

for (i = 0, m-1)
for (j = 0, n-1) {

}

matrix[i)[j) = matrix1[i)[j) + matrix2[i) [j)i

matrix[i)[j) = scalar1*matrix1[i)[j) - scalar2i

4.1.2.3 Function expression

A function expression can be a built-in function or a
user-defined function. The function type depends on its
argument. If the argument is of scalar type, the function
type is a scalar. If its argument is a matrix, the

function type is a matrix with size must be the same as
the left-hand side of (4.1). For example :-

matrix = SQRT(matrix1)i

where SQRT is a built-in function. The equivalent

translated statement is as follows :-

for (i = 0, m-1)
for (j = 0, n-1)

matrix[i)[j) = SQRT(matrix[i)[j))i

4.1.2.4 Outer-Product o/two vectors

The outer-product of two vector yields a matrix with its
row size equal to the size of the first vector and its
column size is equal to the size of the second vector.

For example :-

matrix = vector1~vector2i

The equivalent translated statement is as follows :-

74

for (i = 0, m-1)
for (j = 0, n-1)

matrix[i)[j) = vector1[i)*vector2[j);

4.1.2.5 Matrix-Vector assignment

A matrix-vector assignment follows a similar concept to
that of vector-matrix assignment. However, an expression
contains a vector expression and a matrix variable of the
left-hand side of (4.1) acts as a vector type. There are
two types that represent a vector for a matrix variable.
These are :-

(1) to get all values of a matrix on a specified row is
written as follows :-

matrix@ = vector;

(2) to get all values of a matrix on a specified column

is written as follows :-

matrix# = vector;

The specified row or column depends on the status of a
reserved word ROW. Its uses will be explained later.

4.1.2.6 Recursive Matrix assignment

A recursive matrix assignment follows the same concept as
a recursive vector assignment. For example, the update
operator is written as follows :-

matrix += matrix expression

It is equivalent to the following statement,

matrix = matrix + matrix_expression

75

The equivalent translated algorithm is as follows:-

for (i = 0, m-1)
for (i = 0, n-1)

matrix[i][j] += matrix_expression;

4.1.2.7 Matrix transpose

The matrix transpose is written as matrix&.

4.1.3 Vector Dot Product

The dot product symbol is

operator *. A dot-product
vectors of the same size.

For example :-

, .' to distinguish it from

is a multiplication of two

It produces a scalar value.

scalar = vector 1. vector 2

The equivalent translated algorithm is as follows :-

,

n-\
scalar = L(vectorl [k] *vector2 [k])

k=O

76

4.2 THE DESIGN AND IMPLEMENTATION OF COMPILER MODULES

This section contains a detailed discussion of how the NN

compiler (NEUCOMP) is designed and implemented. It begins

with the design of its language (NEUCOMP language). The

NEUCOMP language is the high-level programming language

specifically designed for any NN simulation.

4.2.1 Defining Formal Grammar

Formal grammars are used to define the syntax of a

language [Aho et al. (1986), Bennett (1990)]. This syntax

is specified in a top-down fashion. Grammar rules or

productions are used to def ine each component of the

language from a simpler component, i.e. individual

characters, into a sentence.

The general form of a production used in the

definition of a programming language is :-

where entity A is made up of the string of simpler B1B2B3

... Bn which could be a character or a string defined

elsewhere. It .means that A will be replaced with B1B2B3 ... Bn

when we find A anywhere in the definition of the program.

When a string cannot be expanded further, it is called a

. sentence. Hence, syntactically correct programs are

sentences derived using the formal grammar defining the

syntax of the programming language.

A typical example of a production of defining the

'if-statement' for the NEUCOMP language is as follows :-

if statement ::= IF '(' logical_expression ')'

statement list ENDIF

where it means that if_statement consists of a reserved word

IF followed by a symbol '(', followed by /ogicaCexpression,

77

followed by a symbol ')', followed by statemenClist and a

reserved word ENDIF.
The syntax of the NEUCOMP language begins with a

single entity from which all syntactically correct
programs are derived. It is written as follows :-

program ::= program_heading
identifier declarations

main_declaration
subprogram_declarations

where program is known as the ' sentence symbol' which
contains a production of program_heading, identifier_declarations,
main_declaration and sub program_declarations •

There is more than one type of production that can

be written. These are :-

(1) Alternative definition which is written as :-

A : : = B1B2B3 ... Bn
A : : = C1C2C3 ... Cm

which can be written as follows '-•

(2) Self-referential or recursive definition which is

written as follows :-

A ::= Ax I y

(3) The null symbol is written as follows :-

A ::= e I B

where e is a null symbol which means A is either null

or made up of B.

78

Some examples of the NEueOMP grammar rules are as

follows:-

(1) subprogram_heading ::= PROe

(2) identifier list ::= identifier

FUNe

identifier list ',' identifier

(3) identifier declarations ::= e
declarations list

where production (1) shows two alternatives in the

def ini tion of a symbol sub program_heading , production (2)

illustrates recursion on a symbol identifier_list, and

production (3) makes use of the null symbol, e which

means there is no declaration or declarations defined in

the form of symbol declarations_list.
The use of all types of productions when specifying

the syntax of the programming languages is known as the

'Backus-Naur form' or more commonly BNF after its

inventors [Aho et al. (1986), Bennett (1990)]. The

complete BNF specification of the NEueOMP language is

shown in Appendix A.

4.2.2 Defining the Symbol Table

A symbol table plays an important role throughout the

compilation process because it provides information about

the names used in the source program. The usage of the

symbol table is explained. The lexical analyser looks up

for a name in the symbol table. If it does not exist then

its name is inserted in the table. The syntax analyser

looks up for the name and adds information such as the

type of variable in the symbol table. The semantic

analyser looks up the name in the symbol table that has

the. type used in accordance to its role in the program,

i.e. the procedure name cannot be used as an expression.

79

Hence, the symbol table contains information about

the names and their type that are used in the program.

Their declaration are as follow :-

struct symb {

char *name;

int type;

union {

char *diml, *dim2;

int status;

} ;

char *rval;

int intoRreal; /* integer or real */

int scope; /* local or global */

} val;

where name is a string that holds a variable name, rype is

used to specify a variable type which could be a file,

string, function or procedure, scalar, vector or matrix,

union is the C code used to allow a variable type to

contain additional information such as a scalar can have

field types intORreal, rval and scope, a vector or matrix can

have field types dim], dim2, status, scope and intORreal, and a

variable of type file does not require any additional

information: The field types dim] and dim2 are used to

hold the size of an array in the form of a variable name

or number. The field type status is used by a vector/matrix

variable to represent the current status of this

variable, Le. a matrix variable is used as a vector

variable (section 4.1).. The variable rval is used by a

scalar variable to hold an integer or a real constant.

The field type intORreal is used to show that the variable

is of type integer or real. The field type scope signifies

whether a variable is global or local.

NEUCOMP uses an open hash table for efficient look

ups of names in the symbol table. For example, in

checking if the name of a variable used in an assignment

statement has been declared. A linear search is not

80

efficient [Bennett (1990)]. In an open hash table,
variable names with the same hash index are linked in the
same list. Therefore, the data structure of an open hash
table follows the following convention :-

#defirie HASHSIZE 999

struct symb {

struct symb *next;

} ;

struct symb *symbtab[HASHSIZE];

where HASH SIZE is the size of the symbol table and symbtab

is an array of size HASH SIZE , each pointing to struct symb.

Discussions on designing and implementing compiler

modules, references to each field in the symbol table are
based on the following definitions :-

#define MN symb.name

#define MT symb.type

#define MR symb.val.rval

#define ML1 symb.va1.dim1

#define ML2 symb. val. dim2

#define IR symb.val.intORreal

#define se symb.val.scope

#define MLT symb.val.status

4.2.3 Implementing the Lexical Analyser

The lexical analyser can be designed by hand. However, to
achieve better program maintenance, using a compiler
generator is recommended. A tool called Lex (section

3.5.1) is used to generate a lexical analyser.

81

4.2.3.1 Lex - A Toolfor Building the Lexical Analyser

Lex is a lexical analyser generator available under the
UNIX operating system [Lesk et al. (1975)]. It generates

a stream of tokens useful for syntax analysis. A token is

a group of individual characters of the source language.

Lex uses regular expression [Aho et al. (1986) ,

Bennett (1990) , Lemone (1992)] instead of the BNF
grammars to describe the syntax of each token. Regular
expressions make use of the following basic operations :-

concatenation

Alternation

Arbitrary repetition

xy

x I y

x followed by y

either x or y

string x repeated zero

or more times

For example, to represent a number the regular expression

can be written as below :-

means a digit, or a digit followed by one or more digits.

The structure of the Lex language is as given

be1ow:-

Lex definitions section

%%
Lex rules section

%%

User-support routines written in C

4.2.3.2 Lex Definitions section

The strings that will be used in the rules section are

defined in the definitions section. The definition is

written as a name being defined on the left and its

definition on the right. For example :-

82

comment

1c letter

digit

identifier

"//".*
[a - z]

[0 - 9]

{lc_1etter} {{lc_1etter} I {digit}) *

where comment consists of a symbol / / (must be quoted)

followed by an arbitrary number of characters before

reaching end of line, lcjetter consists of any lower-case

alphabet, digit consists of any number between 0 and 9, and

identifier consists of the first character which must be

lc_letter then followed by none or more combinations of

lcletter or digit.
The definitions section may contain a variable

definition written in C code enclosed within %{ and %}.

This declared variable will be used in Lex rules (C code

section) or user-support routine.

4.2.3.3 Lex Rules section

The rules section contains the name of a token on the

left and the right contains some C program code within {

and } to obey if that match succeeds. For a token name

enclosed with { and } means its definition is available

in the Lex definitions section. An example of the Lex

rules section for the NEUCOMP language are as follows :-

{identifier}

NEURALNET

{ mkname{)i return IDENTIFIERi }

{ return NEURALNETi }

where identifier is the name of the token defined in the Lex

definitions section. It is written within { and }. If the

input that represents this token is an identifier, Lex

calls the function mkname{) and returns an integer

variable, IDENTIFIER to represent the token identifier.

The name NEURALNET is a token to represent NEUCOMP' s

reserved word.

83

Every token is assigned with a different integer
value when the 'Yacc program' (section 4.2.4) is executed
with -d option. They are defined in a header file, y.tab.h

which is produced by the Yacc program. This header file
is included in the Lex definitions.

4.2.3.4 Lex User-support routines

The Lex User-support routines are required when we want to
include a subroutine to support the Lex program. It is
written in the C language. An example of the Lex user

support routines are mkname () and mkval (). These C-code
routines are defined by the user. When the Lex analyser
recognises that a token is an identifier a routine
mkname() is called. It will look up this identifier in a
symbol table using function lookup 0 which is declared as
an external variable in the Lex definitions. .If an
identifier is not found in a symbol table, its name is

inserted in a symbol table using the function insertO. It is also
declared as external variable in the Lex definitions.
Functions lookupo and insertO are defined in other C
files. The reason these functions are put separate from the
Lex program is that these functions are also required by
other compiler modules such as during syntax and semantic

analysis. The function mkval () converts a number
previously defined as a string into a number.

A Lex program is executed using the Lex command
code. The output is a file called lex.yy.e written as a C
program. It contains an integer-valued function called
yylex() • When this function is called by the syntax

analyser, it returns the next token from the input

language (NEUCOMP program). The file, lex.yy.e will be
compiled with other compiler modules in order to produce
an executable compiler program.

84

4.2.4 Implementing the Syntax Analyser

There are many methods of designing a syntax analyser or
parser. Most of them are table driven [Aho et al. (1986),

Bennett (1990)]. This is a tedious process when done by
hand. However, such tables can be generated automatically

by using a software tool. A popular tool called Yacc is

used to generate a syntax analyser (section 3.5.2).

4.2.4.1 Yacc - A Tool for Building the Syntax Analyser

Yacc (stands for Yet Another compiler-Compiler) is a

parser generator which is widely available under UNIX.
A YACC program takes a specification of a NEUCOMP

grammar and its semantic actions, and produces LALR(l)
parsing tables and a shift-reduce pars er [Aho et al.

(1986), Bennett (1990), Lemone (1992)]. The source
program (NEUCOMP program) is read as a stream of tokens

provided by a separate compiler module called the lexical
analyser. The output is the c-program and kept in a file,
y.tab.c. It contains a routine called yyparse() that is

responsible for carrying out

The general form of
follows:-

the parsing.

the Yacc language

Yacc definitions section
%%
Yacc rules section

%%
User-support routines

4.2.4.2 Yacc Definitions section

is as

The list of tokens for the NEUCOMP language is presented
in the Yacc definitions section. These tokens are

returned by the lexical analyser.

85

All tokens are represented by a name which is

written as :-

%token <name>

For example, the tokens for the NEUCOMP language are

specified below :-

%token NEURALNET

%token IDENTIFIER

where NEURALNET is a token for program heading and

IDENTIFIER is a token for a variable.

When the Yacc program that contains the above

specifications is executed with -d option, a header file

called y.tab.c is produced. It contains the list of an

internal representation represented by a small integer,

starting from 257 (numbers up to 255 are used for the

single ASCII characters, 256 is used as an error token).

Examples of the above tokens are written in the header

file as :-

#define NEURALNET 287

#define IDENTIFIER 290

These representation are useful for the lexical analyser

to return internal representations of tokens when they

are recognised. Therefore, before we can run the Lex

program, we have to run the Yacc program with -d option.

In the Yacc definitions section, any ambiguity that

may occur in an arithmetic expression for operators '+',
'-', , * , and '/ ' can be overcome by specifying their

precedences as below :-

%left

%left

86

'+' ._.

'*' III

where operators that have the
the same declaration. The

same precedence appear in
arrangement of higher

precedences is based on the given order.
The sentence symbol (section 4.2.1) for the NEUCOMP

language can also be defined in the Yacc definitions
section as :-

%start program

The Yacc definitions section may contain more than

one variable definition written in C code for the support

routine. It is written within %{ and }%.

4.2.4.3 Yacc Rules section

The Yacc rules section defines the grammar rules and

semantic actions of the NEUCOMP language. A grammar rule
or production in Yacc has the following form :-

non-terminal: right hand side { actions };

where non-terminal is a string that has its definition on

the right. Terminal is another word for token. Typical
rules for the NEUCOMP language are as follows :-

expression: expression PLUS term

;

{ $$ = build_tree("+",T_OP,$l,$3); }
expression MINUS term
{ $$ = build_tree("-",T_OP,$l,$3); }
term {$$ = $1; }

The right-hand side may include terminals (tokens) such

as PLUS and MINUS, and non-terminals which are expression
and term. The non-terminal for expression is defined
recursively and term is defined elsewhere. The vertical
line 'I' means alt~rnative definition (section 4.2.1).

87

The actions contain C codes which are required to

perform semantic actions. Each production is given

semantic rules which describe how to compute the

attribute value associated with each variable (terminal

or non-terminal) in the production. This attribute value

is passed up the parse tree to be used by other

productions. The variable associated with the attribute

value has attribute type to describe type of variable.

This type can be an integer, a character or structure

type. The attribute value has the form $n or $$ where $n

is the attribute value associated with the nth. item in

the right-hand side production. From the example given,

the $1 is an attribute value associated with an

expression

associated

or term and $3 is an

with a term (first and second

attribute value

production). The

$$ is the attribute being synthesised or a synthesised

attribute. It associates with the non-terminal of the

left-hand side of the production being derived from the

attribute values on the right-hand side. For example, $$=

build_tree("+", T_OP, $1,$3) defined from the previous production

means an expression tree is built from a function buildJree
and the result is returned to an expression which is in

the left-hand side of the production. If there is no

action to be specified, the default is written as $$=$1.

The attribute type that is associated with the

variables must be of the same type. Their types must be

declared in the Yacc definitions section as follows :-

%type <expr_tree> expression

%type <expr_tree> term

The type of token can also be defined if we want to do

semantic action on this token. For example, if we want to

store or retrieve any information about an identifier in

the symbol table, the type definition for token

IDENTIFIER is as follows :-

%token <symb> IDENTIFIER

88

The type for ex pr_tree and symb must be specified by
the user as a C union of all the types that attributes
may have in the Yacc program. Examples of attribute types
used by NEUCOMP are written as :-

union
{

}

struct symb *symbj
struct tree node *expr_treej
char *chrj

The first and second fields are data structures to build
up the symbol table and an expression tree respectively.

When run under Yacc with -d option the above
definition will appear in y.tab.h as shown below :-

typedef union {
struct symb *symbj

struct treenode *expr treej
char *chrj

} YYSTYPE

Any associated attribute is passed back using the global
variable yylval. This has the type ITSTYPE so that the
appropriate member of the union must be used.

4.2.4.4 Yacc User-support routines

C code is placed in the user-support routines to support

the semantic actions defined in the rules section. An
example of a C code written in Yacc rules taken from the
previous production (section 4.2.4.3) is the function
build_tree("+", T_OP, $1,$3) • It is defined as follows:-

89

struct treenode *build_tree(operand,
op_type,left_tree,right_tree)

char *operand;
int op_type;
struct treenode *left_tree,*right_tree;

{

}

struct treenode *tree;
tree = gettree();
tree ->MN = operand;
tree -> left = left_tree;
tree -> right = right_tree;
tree -> MT = op_type;
return tree;

4.2.5 Implementing the Semantic Analyser

The semantic analyser for NEUCOMP
analysis during syntax analysis. When

performs

the syntax
semantic
analyser

recognises the NEUCOMP program construct (production) it

calls a semantic routine which takes the construct and
checks for semantic correctness.

The semantic analyser also translates the NEUCOMP
program into an equivalent C program. This is done after
the checking for semantic correctness.

4.2.5.1 Implementing Semantic checking

The NEUCOMP's semantic analyser implements four types of
semantic checking which are :-

(1) checking that an identifier is declared once.
(2) checking that an identifier used has been declared.
(3) checking that a variable and value are compatible.
(4) checking the scope of a variable.

90

The semantic checking is performed on a variable. A

variable written by the programmer is called an

identifier. A variable written in capital letters is a

reserved word, i.e. CYCLE and NPATTERN serve as a

specific

The

purpose (section 4.4) •

following section shows how the semantic

checking for NEUCOMP are implemented. While undergoing

semantic analysis, the identifier in the symbol table is

changed accordingly.

Checking that an identifier is declared once

All identifiers used in a NEUCOMp program are declared in

the declaration section. Each identifier is declared only

once.

The production rule for an identifier-declarations

is defined as follows :-

identifier_declarations: type identifier_list 'i'

where the type supported by NEUCOMP is a simple type

which is an integer, a real, string or file. The

structure type like record or pointer is not implemented.

The production rule for identifier _list is further defined as:-

identifier-list : identifier

lidentifier_list ',' identifier

where identifier can be a scalar or an array' variable. The

one-dimensional array variable is known as a vector

variable and the two-dimensional array variable is known

as a matrix variable.

The production rule for a scalar variable is defined

as follows :-

identifier IDENTIFIER I IDENTIFIER '=' NUMBER

91

where the alternative production allows a variable to be

declared with an initial value.
The production rule for a vector variable is defined

as follows :-

identifier: IDENTIFIER '[' numORid '1'

and the production rule for a matrix variable is defined

as follows :-

identifier: IDENTIFIER '[' numORid ',' numORid '1'

where numORid can be an integer constant or an identifier
of type integer. This identifier need not be declared
because the compiler will declare that identifier with
type scalar integer and insert it in the symbol table.

To implement declaration checking, the field rype in

the symbol table declared earlier (section 4.2.2) is used
to determine the type of the identifier. A small integer

is represented by a variable type as shown below :-

#define T UNDEF
#define T SCALAR
#define T VECTOR
#define T MATRIX
#define TINT

#define T REAL
#define T STRING
#define T FILE
#define T FUNC

o 1* undefined type *1
1 1* scalar type *1
2 1* vector type *1
3 1* matrix type *1
4 1* integer type *1
5 1* real type *1
6 1* string type *1
7 1* file type *1
8 1* function type *1

The name of an identifier would have been entered into
the symbol table by the lexical analyser, wi th type T

UNDEF using the function mknameo (section 4.2.3). The

function lookupO takes a name and yields a pointer to its
symbol table entry, in which we can set the type field.

An algorithm to implement the declaration checking
on a scalar is written as :-

92

identifier : IDENTIFIER

I

{ if ($l->MT == T UNDEF) {

}

}

if (type is T STRING or T FILE)

$l->MT = type;

else { 1* scalar type *1
$l->MT = T_SCALAR;
$l->IR = type;

}

else error (" identif ier declared
more than once");

IDENTIFIER I = I NUMBER

{

}

if

}

($l->MT == T UNDEF) {

if (type is TINT or T_REAL) {

$l->MT = T_SCALAR;

$l->MR = $3;
$l->IR = type; 1* int or real

}

else error("not an integer or
a real type");

else error ("identifier declared
more than once");

*1

where T_UNDEF means an identifier is not given any type.
If the type has been given, the first if-statement will
not allow the same identifier to be declared more than
once. An identifier of type string or file, its field
type in the symbol table, $l->MT is assigned to T STRING

or T FILE. An identifier of type integer or real, its
field type, $l->MT is assigned to T SCALAR and its second
field type, $l->lR is assigned to type T_INT or T_REAL. An
identifier can be given a value and this is reflected in
the symbol table as $l->MR. This is shown in the above

alternative production.

93

An algorithm to implement declaration checking on a

vector variable and its array size is written as :-

identifier: IDENTIFIER '[' numORid 'l'
{ if ($l->MT == T_UNDEF) {

}

}

$l->MT = T_VECTORj
$l->IR = typej/*integer or real*/
if ($3 is an integer constant)

$l->MLl = $3j

else
if ($3 is an identifier

}

and $3->MT == T_UNDEF) {

$3->MT = T_SCALARj
$3->IR = T_INTj

else
error ("integer is expected")j

else error ("identifier declared
more than once")j

similar to scalar type declaration, the field type, $1->A1T
is assigned to T_VECTOR and $1->IR is assigned to T_INT or
T_REAL. Any information regarding numORid is also kept in
the symbol table using the field, $1->A1LI depending on how

numORid is defined. It represents an array
integer constant or an identifier. If

size of type
it is an

identifier, no declaration is
compiler will change its type

necessary because the

in the symbol table to

integer scalar. Its size will be determined at run-time.

This characterises a dynamic-like structure.
An algorithm to implement declaration checking on a

matrix variable is similar to vector declaration provided
that an . array variable declaration has two numORids

representing two-dimensional sizes. The field type in the
symbol table, $1->A1L2 is used to store the second

dimensional size.

94

Checking that an identifier used has been declared

All identifiers used in the NEUCOMP program must be

declared before they can be used in the program's body.

In order to know that an identifier has been declared,

the field type in the symbol table for that identifier

must not be T_UNDEF. This value should have been changed

when that identifier was declared.
There are three types of functions that return TRUE

or FALSE. These are used to check an identifier type,

namely, exisCid, existJile and existJunc. The function exisCid
returns TRUE when the type of the identifier is either

integer or real, otherwise it will return FALSE.

Similarly for the other functions, provided that existJile
is used to check an identifier of type file and existJunc
is used to check an identifier of type function or

procedure. An error message showing that an identifier is

not declared will be displayed.
The following shows an algorithm for the semantic

checking on a production such as 'openfile-statement' and

'for-statement' :-

openfile_statement: OPENREAD '(' IDENTIFIER ','

{ if (exist file($3) == TRUE)

{ 1* do other routine *1 }
else error("undeclared file name");

}

for statement FOR IDENTIFIER '=' ...
{ if (exist id($2) == TRUE)

{ 1* do other routine *1 }
else error("undeclared identifier");

}

Checking that a variable and value are compatible

A variable refers to either a reserved word or declared·

variable (which is an identifier). The value for the

95

NEUCOMP language refers to an integer, a real or string

constant.

The type rules involved are :-

(1) if a variable is of type file, it is only used in a

statement such as open file, read from file, write

into file and close file. The string constant is

assigned to this variable to indicate the file name.

(2) if a variable is of type string, it accepts a string

constant written within " " or assigned the string

constant using a read statement.

(3) if a variable is of type procedure/function, it is

used in the name of subprogram-heading, calling

procedure or function.

(4) if a variable is of type integer or real, it is used

in the assignment statement and other statements such

as 'print-statement', 'read-statement', etc. This

variable is declared as a scalar, vector or matrix

variable.

The algorithms to implement semantic checking on (1) to

(3) which use the functions such as exist...file and existJunc
are considered as straight forward. However, the rule (4)

is not really straight forward.

This section focuses on how semantic checking is

implemented in the assignment statement. The production

rule for an assignment statement is defined as follows :-

assignment_statement : variable assigntype expression

where assignrype is the symbol '=', '+=', '*=' or '/=', and

expression can be a single item such as a variable, number

or function, or consists of the following form :-

operand1 operator operand2

In order to do the semantic checking, the expression

itself must have- a type. For a single item such as a

96

variable, the expression type is based on the variable
type. For a function, the expression type follows the
type of function argument. If its argument is a scalar
then the expression type is a scalar. If its argument is
a vector/matrix then the expression type is a

vector/matrix including its size.
If the expression is not a single item then the

following shows an algorithm to assign a type to it :-

(1) assign either real or integer type :-

if (operand1->IR == TINT && operand2->IR -- T_INT)

expression->IR = T_INT;

else
expression->IR = T_REAL;

(2) assign the type scalar, vector or matrix :-

if (operand1->MT == T_SCALAR &&

}

else

operand2->MT == T_SCALAR/T_NUM) {
expression->MT = T_SCALAR;

/* do translate expression */

if (operand1->MT == T_VECTOR/T_MATRIX &&

operand2->MT == T_VECTOR/T_MATRIX) {

if (matrix/vector size are equal) {
expression->MT = T_VECTOR/T_MATRIX;
expression->ML1 = operand1->ML1;

expression->ML2 = operand1->ML2; /*for matrix*/
/* do translate expression */

}

else

}

else

error("incompatible size");

if (operand1->MT == T_MATRIX/T_VECTOR
AND operand2->MT -- T SCALAR) {

97

}

else

expression->MT = T_VECTOR/T_MATRIXi
expression->ML1 = operand1->ML1;
expression->ML2 = operand1->ML2i /*for matrix*/

/* do translate expression */

if (operand1->MT == T SCALAR

}

AND operand2->MT == T_MATRIX/T_VECTOR) {

expression->MT = T_MATRIX/T_VECTOR;
expression->ML1 = operand2->ML1;
expression->ML2 = operand2->ML2; /*for matrix*/

/* do translate expression */

The routine to perform do translate expression will be
explained in section 4.2.5.2.

After the expression is given a type, the next step
is to perform semantic checking on an assignment. The

algorithm is as follows :-

(1) If the variable is of type integer then the
expression must be an integer. For a variable of type
real, the expression can be real or integer.

The following algorithm shows how to perform this

rule :-

assignment_statement : variable assigntype expression

{

}

if (($l->IR == T_INT && $3->IR == T_INT)
I I ($l->IR == T_REAL && ($3->IR == T_INT

else

I I $3->IR== T REAL)))
{ goto 2 }

error("variable and expression
have different types");

98

(2) If the variable is a scalar then the expression must

be a scalar. For a variable of type vector, the

expression must be a scalar or vector with size equal

to the size of vector variable. For a variable of

type matrix,

matrix with

variable.

the expression must be a scalar or

size equal to the size of matrix

The algorithm to perform this rule is as follows :-

if ($l->MT == T_SCALAR/T_VECTOR/T_MATRIX &&

$3->IR == T_SCALAR)

{ 1* do translate assignment *1 }
else

if ($l->IR == T_VECTOR && $3->IR == T_VECTOR) {

if ($l->MLl == $3->ML1) 1* check sizes *1

else

}

else

{ 1* do translate assignment *1 }

error("incompatible vector size ll);

if ($l->IR == T_MATRIX && $3->IR == T_MATRIX) {

if ($l->MLl == $3->MLl && $1->ML2 == $3->ML2)

{ 1* do translate assignment *1 }
else

error (" incompatible matrix size");

}

The routine to perform do translate assignment will also be

explained.

Checking the scope of a variable

All variables used in a NEUCOMP program can be declared

either as local or global. The variables which are

reserved words, are declared as global by the compiler. A

variable declared by the programmer in the declaration

section, above the main program is called a global

99

variable. A variable declared in the declaration section

within main/subprogram (called block) is a local

variable. Its use is within the block in which it is

declared.

The semantic checking for the scope of a variable is

based on the following simple approaches which are :-

(1) NEUCOMP does not allow a global variable to be

declared as local. An error message will be displayed

specifying the same variable is declared more than

once. The algorithm follows the semantic checking for

a variable declared once as described previously.

(2) In the symbol table, the field scope is used to keep

an integer value type, namely GLOBAL and LOCAL. All

global variables will have their field scope in the

symbol table are set to GLOBAL. The field scope for

the local variables are set to LOCAL. However, at the

end of the block where they are declared, they are

removed from the symbol table. This is done by

searching for all the names with field LOCAL and

deleting them. In this way, a variable declared in

two different subprograms, represents two different

entities which are not related.

4.2.5.2 Translating into the Target program

A NEUCOMP program is translated into an equivalent C

program after semantic checking. This section focuses on

the process of translation that involves a vector/matrix

variable such as in an assignment statement. statements

such as 'for-statement', 'if-statement', 'repeat

statement' and 'while-statement ' involve only a scalar

variable. Translation on a scalar variable is a straight

forward process, however,

requires more effort.

a vector/matrix variable

There are three stages involved in the process of

translating an assignment statement which are :-

100

(1) After the parsing of the expression, an expression

tree is built. An expression tree is a binary tree

data structure [Wirth (1976)] in which its root is an

operator and its left and right children are an

operand.

(2) An expression tree is then converted into a postfix

expression. A postfix expression

that consists of two operands

is an expression

fOllowed by an

operator. Evaluating a postfix expression is easy to

program because an operator and operand have been

arranged

postfix

based on their precedences. An

expression for the expression

written as,

root

example of a

a*b+c*d, is

null

(3) The translation is carried out involving two stages.

First, the postfix expression is translated and then

an assignment statement which involves variable,
assignrype and the translation code of the expression is

translated. These are performed under the if

condition of the semantic checking on the expression

and assignment statement as discussed previously.

Translating the poStflX expression

The process of translating the postfix expression is

based on the following operations :-

(1) find the first 3 nodes from the root of the postfix

expression that contains two operands and an

operator. The example of the above expression is :-

101

The semantic checking was implemented on both

operands and has been explained earlier.

(2) translate the expression based on the following

conditions and find its type. Both are under the

routine do translate expression.

(a) If the first and second operands are scalars then

translate directly into an infix expression, i.e.

a*b. A bracket is required if an operator is '+'
or I_I in order to maintain precedences. The type

of translated code is T SCALAR.

(b) If the first operand is a scalar and the second is

a vector then translate into an infix expression

including "[I)" on the vector variable, i. e.

a*b[I). Similarly, if the second operand is a

matrix, it is translated as a*b[I) [J). The use of I
and J (both are reserved words) will be discussed

when describing translating an assignment. The type of

translated code is T_VECTOR/T_MATRIX and the size

of an array is that of the vector/matrix size.

(c) If the first operand is a vector and the second is

a scalar then the translated code and its type are

similar to (b), Le. a[I]*b. similarly, if the

operand is a matrix then it is translated as

a [I) [J) *b.
(d) If the first and second operands are vectors then

there are three types of translation, which are :-

(dl) If the operator is '.', then this is a dot

vector product which gives a scalar type

result. The library routine for the

translated code called Dotproduct is used.

It contains the argument of these two

vectors and their array size, i.e.

Dotproduct(a,b,n) where n is the array size

of vector a.
(d2) If the variable on the left-hand side of

an assignment is a matrix, then this is an

102

outer product of two vectors which gives a

matrix type result. The translated code is

a[l]*b[J] where the size of the vector a is

the row size of the matrix and the size of

vector b is the size of its column.

(d3) If the variable on the left-hand side of

an assignment is a vector, then the

translated code is a[I] *b[I] and its type

is a vector and the array size is the size

of the vector a.

(e) If the first operand is a matrix and the second

operand is a vector and the operator is '*' then

this is the matrix-vector multiplication which

gives a vector type result. The library routine

for the translated code called MuCmaCvec is used.

It contains the arguments of these two operands,

the size of the vector variable and I, i.e.

MuCmaCvec(a,b,n'/) where n is the array size of the

vector b.
(f) If the first operand is a matrix and the second

operand is a matrix then the translated code is

i.e. a[I][J]*b[I][J] and its type is also a matrix.

(3) After translating the two operands and operator, this

translated code is then 'push' onto the stack. Stack

is the First-in-First-out data structure [Wirth

(1976)]. It contains a pointer that points to the

translated code, the type of this code, and the size

of array if the type is a vector/matrix. The type of

expression in the stack is determined at stage (2).

The following is an example of how the given expression

is translated :-

(a) From the operation (1), the three pointers that point

to two operands and operator are :-

103

root null

node1 node2 node3

(b) From the operation (2), the translated code is a*b if
both are scalars and its type is T_SCALAR.

(c) From the operation (3), the translated code and its
type are pushed onto the stack as shown below :-

ropl,~I·a'b
stack

where top is an index that shows the content of the
top of the stack. The postfix expression is adjusted
accordingly as :-

root null

All nodes contain an integer variable called INSTACK.
For the adjusted node, its INSTACK is set to TRUE
which means that the operand is the translated code
from the stack. The adjusted node is also an operand.

By repeating the same step (c), the stack now
contains the following translated codes :-

stack

and the adjusted postfix expression is now

root null

104

In this case both adjusted nodes have INSTACK value

TRUE. The operands are taken or 'popped' out twice

from the stack. They are then merged into one

translated code. Its type is obtained as in rule (3).

This translated code is then pushed back into the

stack as shown below :-

t'P~'
stack

Translating an assignment statement

The routine to translate an assignment statement is under

the name do translate assignment that was discussed in the

semantic checking of an assignment statement. An example

of an assignment statement to carry out translation is as

follows :-

x = a*b + c*di

where the expression was translated previously. Its

translated code is in the stack. The variable x is then

translated according to the following rules :-

(1) if the variable is a scalar and the type in the stack

is a scalar, then the routine do translate assignment is

given by the example below :-

x = a*b + c*di

or if a and b are vectors of size n then

x = Dot-product(a,b,n)+c*di

(2) if the variable is a vector and the type in the stack

is a scalar, then the routine do translate assignment is

given by the example below :-

105

for (I = 0; I < n; l++)
x[l] = a*b + c*d;

(3) if the variable is a matrix and the type in the stack
is a scalar, then the routine do translate assignment is

given by the example below :-

for (I = 0; I < m; l++)
for (J = 0; J < n; J++)

x[l][J] = a*b + c*d;

(4) if the variable is a vector and the type in the stack
is a vector, then the routine do translate assignment is

given by the example below :-

for (I = 0; I < n; l++)
x[l] = a[l]*b[l] + c*d;

where a and b are vectors of size n or if a is a
vector of size nand b is a matrix of size m*n then we

have :-

for (I = 0; I < m; l++)
x[l] = MU1_mat_vec(a,b,n,l) + c*d;

(5) if the variable is a matrix and the type in the stack
is a matrix, then the routine do translate assignment is

given by the example below :-

for (I = 0; I < m; l++)
for (J = 0; J < n; J++)

x[l][J] = a[l]*b[J] + c*d;

where a and b are vector variables of size m and n.

The variables c and d are considered scalar variables.

106

4.2.6 Dynamic Allocation Memory

The size of the NEUCOMP's array declaration can be

defined as static or dynamic. A static size means a

positive integer constant is allocated to an array

variable. Dynamic size means a scalar variable become the

size of an array variable where it will be later

allocated at run-time.

The size of the memory that will be allocated at

run-time is called Dynamic Allocation Memory (DAM). Its

advantage is that the size of the NN structures can be

changed at run-time for the particular NN simUlation

programs. The disadvantage of using static allocation is

that when changing the size of an array, re-compilation

and re-execution of the NN program is necessary.

The following example shows how to declare DAM :-

REAL layeri[ni], layer2[n2], weight[n2,ni];

The scalar variables nl and n2 need not be declared.

NEUCOMP will translate the above declaration into the

following C-code :-

int ni, n2;

float **weighti,*layeri,*layer2;

extern float * setup_vector{);

extern float **setup_matrix{)i

main{) {

}

printf{"Type size of ni = ")i
scanf{"%d",&ni);

printf{"Type size of n2 = ")i
scanf{"%d",&n2)i

layeri = setup vector{ni)i

layer2 = setup vector{n2)i

weighti = setup_matrix{n2,ni)i

107

The procedure setup_vector() and setup_matrixO are defined in

the NEUCOMP library routine as follows :-

float *setup_vector(size)
int sizej

{ int ij

}

float *newj
new = (float *) malloc(size*(sizeof(float»)j
return (new)j

float **setup_matrix(row,col)

int row,colj
{ int ij

}

float **newj
new=(float **)malloc(row*(sizeof(float*»)j
new[O]=(float*)malloc(row*col*(sizeof(float»)j

for (i=l;i< row; i++)

new[i] = new[O] + (col*i);
return (new)j

4.2.7 Implementing the Loop Optimiser

Improving the target program so that it can run faster or

take less memory space or both is a difficult task [Aho

et a!. (1986), Bennett (1990)]. The improvement is done
by program transformations that are traditionally called

'optimisation', although this term is a misnomer because

there is a rarely any guarantee that the resulting code
is the best possible.

Actually, optimising the target program generated by

NEUCOMP is not really necessary because the target code

is written in C and the C compiler has its own code

optimiser. The only improvement that can be done on this

target program is on the 'for loop' generated by NEUCOMP

that involves vector and matrix variables as discussed

108

earlier. There may be many repeated loops containing many
statements involving vector/matrix variables. For

example, in the backpropagation algorithm (section
2.2.1), to update the weight and bias between the input

layer and the first hidden layer we have the following

matrix/vector operations :-

weightl = alpha*dweightl + beta*cweight;

cweightl = weightl - oweightl;

bias2 = alpha*ddelta2 + beta*cbias2;

cbias2 = bias2 - obias2i

where the first two equations involve matrix variables
and the rest involve vector variables. The generated

target code is as follows :-

for (I = 0; I < n2; l++)

for (J = 0; J < nl; J++)
weightl[l) [J)= alpha*dweightl[l) [J)+beta*cweight[l) [J);

for (I = 0; I < n2; l++)

for (J = 0; J < nli J++)

cweightl[l)[J) = weightl[l)[J) - oweightl[l) [J);

for (I = 0; I < n2i l++)
bias2[l) = alpha*ddelta2[l) + beta*cbias2[l);

for (I = 0; I < n2; l++)

cbias2[l) = bias2[l) - obias2[l)i

The above program code can then be improved by removing
the repeated loops as shown below :-

for (I = 0; I < n2; l++) {

for (J = 0; J < nl; J++) {

}

}

weightl[l) [J)=alpha*dweightl[l) [J) +beta*cweight [I) [J);
cweightl[l)[J)=weightl[l)[J) _ oweightl[l) [J);

bias2[l) = alpha*ddelta2[l) + beta*cbias2[l);

cbias2[l) = bias2[l) - obias2[l);

109

-------------------------------- ------------

The loop optimiser for NEUCOMP was implemented by

searching the statements that involve the loop for (1=0; ...)
and the same array size within the program block. They

are then combined into one loop. Within the loop for (1=0;
...), there can be many repeated loops on for (J=O ...). This

can also be done using the same technique.

4.3 COMPILING THE C PROGRAM

To compile the C program from the compiler modules and

the C program from the translated code is now explained

in this section.

4.3.1 Obtaining object code for Compiler modules

The compiler program to develop NEUCOMP contains seven

files which are main.c, lex.yy.c, y.tab.c, useroutine.c, translexpr.c,

translassign.c and looptimiser.c. The file main.c is the main

routine of the compiler program. It contains the call

function, yyparse() which is a routine defined in y.tab.c and

optimiser() which is a routine in file looptimiser.c. It also

contains the functions lookup() and insert() which serve as

look up names and the insertion of new names in the

symbol table respectively. The file useroutine.c contains a

user-support routine for the Yacc program. The files

translexpr.c and translassign.c are used for translating the

expressions and assignment statements respectively.

The command to compile the compiler program is as

follows :-

cc main.c y.tab.c lex.yy.c useroutine.c translexpr.c

translassign.c optimiser.c -oNEUCOMP -lm

where -0 is used to include the name of the executable

file called NEUCOMP and -lm is used to allow the C

compiler to access the C library routine that contains

110

standard mathematical

executable file, 'make'

corrected source file.

formula. However, the UNIX

can be. used to compile just the

.Those files that involve no

correction and have been previously compiled will not be

compiled again. To achieve the above, type make after the

UNIX prompt.

Once the compilation is completed with no error, the

executable file called NEUCOMP can then be used to

compile any NEUCOMP program using the following command:-

NEUCOMP filename

where filename is the name of a file that contains a

NEUCOMP program.

4.3.2 Compiling the Translated code

When successfully compiled by NEUCOMP, the file neu.c is

generated. This file contains the translated version of a

NEUCOMP program which is written in C.

However we have to compile the neu.c program together

with the NEUCOMP's library routine defined in file

libfonc.c, in order to start a NN simulation. This library

function contains the functions to evaluate an assignment

statement such as Dot...product and MuCmaCvec (section

4.2.5.2). The command to compile these files is as

follows :-

cc neu.c libfunc.c -0 NET -lm

where NET is an executable file which can be used to

execute the simulation program written in the NEUCOMP

language. The 'make' facility is also used to compile the

above command.

In order to simulate other NN models we can have

other NEUCOMP programs for them. We can then compile and

execute this program using NEUCOMP as described earlier.

111

4.4 SOME NEURAL NETWORK SIMULATION PROGRAMS

This section contains the discussion of how to write the

NEUCOMP simulation program on the chosen NN models - the

backpropagation, Kohonen,

networks. The size of the

the simulation program

structure.

ART 1 and Counterpropagation
problem can be changed since

is based on dynamic-like

Each program has the heading name which is written

as :-

NEURALNET name

where name is the name of valid identifier which need not

be declared but its name cannot be used elsewhere.

4.4.1 The back propagation simulation program

The backpropagation is the multilayer network (section

2.2.1). A three layer fully connected feedforward network

is used to develop the backpropagation simulation. Its

network structure is declared as global variables shown

below :-

REAL layerl[nl], layer2[n2], layer3[n3],

weightl[n2,nl], weight2[n3,n2],

bias2[n2], bias3[n3], pattern[n4,nl],

target[n4,n3]i

where layerI is a vector for the input layer, layer2 is a

vector for the hidden layer, layer3 is a vector for the

output layer, weightl is a matrix for the connection

between the input layer and hidden layer, weight2 is a

matrix variable for the connection between the hidden

layer and output layer, bias2 is a threshold vector for

layer2, bias3 is a threshold vector for layer3, pattern and

target are used to hold the set of input and desired

patterns respectively. The row size of pattern and target

112

represented by n4, is used to hold the number of patterns

in the training set. Their columns hold the sizes of

input and output layers respectively. The values of nI,
n2, n3 and n4 will be assigned at run-time.

To train the network, it can be done by using the

following training loop :-

TRAINING

...
END;

where the statement TRAINING contains a reserved word

variable of type integer called CYCLE which is initially

set to 100. It means the number of iterations is 100.

However, this value can be changed by assigning a new

value to CYCLE. The training algorithm is within the

loop.

To assign an input layer with a pattern, the

following pattern loop is used :-

EPOCH

layer1 = pattern@;

...
END;

where the statement EPOCH ... END contains the loop

starting from zero to the pattern size minus one set by

an· integer variable called NPATTERN. Each iteration is

assigned to the reserved word variable called ROW. The

variable pattern wi th symbol I @' means its rowth.
represented by ROW is assigned to layer1 (section 4.1.1.5).

The loop may contain other statements. The NPATTERN is a

reserved word variable which is initially set to one. It

means only one pattern is involved in the training

operation per cycle. However, this value can be changed

by assigned a new value to NPATTERN.
The weights are updated during training. For

example, weight1 is updated as follows :-

113

oweightl = weightlj

weightl += GRBH(alpha,range,aweightl)+beta*cweightlj
cweightl = weightl-oweightlj

where the function GRBH (section 2.2.1) is a built-in
function used to determine the value of alpha when aweigthtl
is in range.

Training may be terminated when a global error is
less than the limit as defined below :-

IF (enormsqr LE limit) BREAK ENDIFj

where enormsqr is the global error and limit can be set to
any value, i.e. 0.01 and enormsqr is written as :-

error = target@ - layer3j
enormsqr += 0.5*(error.error)j

where @ on target means that all entries on a specific row
are involved in the above calculation. The value of this
row depends on the predefined scalar variable, ROUT. It is
a positive integer used as an index to the matrix row.
The operator '.' is known as dot vector product.

The complete program is shown in Appendix c.

4.4.2 The Kohonen network simulation program

The Kohonen network is a two layer network that can
organise a topological map from a random starting point

(section 2.2.3). The network combines an input layer with
a competitive layer by unsupervised learning.

The network structure declared as global variables
is shown below :-

REAL layerl[nl], layer2[n2],
weight[n2,nl], pattern[n4,nl]i

114

where layerI is a vector for the input layer, layer2 is a
competitive layer to be assigned the distance calculated
between the input vector and their connection strengths,
weight is a matrix for the connection strength between the
input layer and the competi ti ve layer, and pattern is
similar as in section 4.4.1. The values of nI, n2 and n4
will be assigned at run-time.

The training loop statement, TRAINING ... END and the
pattern loop statement, EPOCH ... END are also used in the

Kohonen training algorithm.

The winner node at the competitive layer is defined
as follows :-

layer2< = DISTANCE(layerl,weight}i

where the symbol '<' means get an index of layer2 when its
value is the minimum calculated as the distance between
all nodes in layerI and their weights connected to each

node in the competitive layer. The word DISTANCE is
NEUCOMP I s built-in function. This index is assigned to
ROW where layer2 [ROW] is the minimum. ROW itself is the
winner node in the competitive layer.

Although the competitive layer is declared as one
dimensional, it can also be used for two-dimensions.
Since ROW is the winner node in one-dimension, then the
winner node in two dimensions can be calculated as
follows :-

REPEAT

c = ROW - r*gridi
IF (c GE grid) r = r + 1 ENDIF

UNTIL (c LT grid);

where rand c is the winner node in two-dimensional layer
which represents the map, and grid is the square root of
the competitive size.

Therefore updating the weights in the neighbourhood
can be defined as :-

115

r1 = r-neighb;

r2 = r+neighb;

IF (r1 LT 0) r1 = 0 ENDIF;

IF (r2 GE grid) r2 = grid - 1 ENDIF;

cl = c-neighb;

c2 = c+neighb;

IF (cl LT 0) cl = 0 ENDIF;

IF (c2 GE grid) c2 = grid - 1 ENDIF;

FOR (i = r1,r2 + 1)

FOR (j = c1,c2 + 1)

ROW = i*grid+j;

weight@ += lrate*(layer1-weight@)

END FOR

ENDFOR;

where neighb is the size of the neighbourhood. The points

rl,el and r2,e2 are in the two-dimensions of map.

The complete program is shown in Appendix D.

4.4.3 The ART1 network simulation program

The ART1 network is used to classify the binary pattern

(section 2.2.4). It is a two layer network with the first

layer an input layer and the second layer a competi ti ve

layer. There are two network connections called

feedforward and feedback weights. The vigilance threshold

can be set between 0 and 1.

The network structure declared as global variables

is shown below :-

REAL layer1[n1), layer2[n2), weightf[n1,n2),

weightb[n1,n2), pattern[n4,n1);

where layerl is a vector for the input as well as the

comparison layer, layer2 is a vector for the output as well

as the recognition layer, weightf is a feedforward weight,

weightb is a feedback weight and pattern is similar as in

116

section 4.4.1. The values of nl, n2 and n4 will be
assigned at run-time.

Only the statement EPOCH ... END is used in the ARTl
network algorithm since the training loop statement as

mentioned in the previous simulations are not used. This
is because training in ARTl involves two stages which are
the recognition and comparison stages.

Calculating the best exemplar is done at the
recognition stage and is as shown below :-

layer2> = weightf*layerl;

where the symbol '>' means get an index of layer2 when its
value is the maximum then assign it to variable ROW to be

used by variable with sign @.
The comparison stage is done as follows :-

IF (vigilance GE .99)
weightf@ = weightb@*layerl/(O.S+weightb@.layerl);
weightb@ = weightb@*layerl

ELSE

get next best exemplar when vigilance LT 0.99;

where vigilance is used to distinguish that the new input
pattern is different from the existing pattern. For the
next best exemplar, we have to set weightj@ = 0 and then
apply '>' again as before so that the new ROW is
identified.

The complete program is shown in Appendix E.

4.4.4 The Counter propagation network simulation program

The Counterpropagation network consists of a three layer
feedforward network (section 2.2.5). The first layer is
the input layer, the second layer is the competi ti ve
layer and the third layer is the output layer.

The network structure as declared global variables is
shown below :-

117

REAL weightl[n2,nl], weight2[n3,n2],

layerl[nl], layer2[n2], layer3[n3],

pattern[n4,nl], target[n4,n3]i

where layerl is a vector variable for the input layer,

layer2 is a vector variable for the competitive layer,

layer3 is a vector variable for the output layer, weightl is

a matrix variable for the connection weight between the

input and competitive layers, and weight2 is a matrix

variable for the connection weight between the

competitive and output layers, pattern and target are similar

as in section 4.4.1. The values of nl, n2, n3 and n4 will

be assigned at run-time.

Training in the Counterpropagation network involves

two steps. The first step is to train the competitive

layer which is based on the Kohonen method. The second

step is to train the output layer which is based on the

Grossberg method. To find the winning node and update the

first weight are similar to the Kohonen network algorithm

(section 4.4.2) provided that the grid is a one

dimensional array.

After the winner node is identified, the next step

is to update the connection weight between the winner

node in the competitive layer and the output layer. since

it is a supervised learning, the output vector is then

compared to the target vector.

The weight2 is updated as follows :-

layer3 = weight2#i

error = tlayer-layer3 i

weight2# += brate*errori ,

where brate is the learning rate at the output layer and

tlayer is the target vector.

The complete program is shown in Appendix F.

Examples to solve problems are explained in chapter 6.

118

4.5 IMPLEMENTING GRAPHICAL FEATURES

The NEUCOMP program combines with the graphical package,

i.e. Mathematica software package [Wolfram (1991)] to

portray some graphical features. Through graphs, the user

can view items such as the structure of the NN being

considered and analyse simulation results during

training.

The use of an existing graphical package is

recommended as our own design will make NEUCOMP more

complicated. Choosing Mathematica does not mean that

Mathematica provides the type of graph that is needed. A

program had to be written in the Mathematica language in
order to create a graph that is required. However,

programming using Mathematica is not difficult.

Mathematica provides many graphical functions, i.e.
drawing circles, lines, etc. as well as numerical and

symbolic computation. These can be combined to provide

the appropriate graph. It is more convenient this way as

it allows user to write any graph to suit his application

if the available graph library is insufficient.

The NEUCOMP program and Mathematica program for

graphical features are two separate programs. The NEUCOMP

program cannot communicate directly with Mathematica.

This is the limitation that NEUCOMP had to face. The

original plan was for the NEUCOMP program to call the

Mathematica program. By doing this, we can analyse items

such as the way the weights and activation nodes adapt

themselves during training. This is because NEUCOMP was

implemented on the SEQUENT Balance machine at PARCo The

terminal used is an ASCII terminal. So there is no

graphical package for the Balance machine. An alternative

approach is to use the Mathematica software (version 2.0)

that is available on the PC. It is a text-based

interface. The data from the NEUCOMP program can be

transferred to Mathematica by a file.

The type of graphical features that have been

implemented so far are :-

119

(1) Displaying the NN

multilayer network.

(2) Plotting the XY-graph.

structure, i.e. single or

(3) Plotting (x,y) for data clustering and valid cities

for the travelling salesman problem.

(4) The three-dimensional plotting for the spiral

problem.

The travelling salesman and spiral problems will be

explained in chapter 6.

4.5.1 Implementing the Neural Network structure

The program to display a· NN structure was implemented

through the function called network with two arguments,

layer and link. The Mathematica command to define this

function is :-

network[layer_,link_] := •••

where ' , is the required symbol applied to a function

argument, layer stands for a variable which accepts a set

containing the number of nodes in each layer, and link is a

variable which accept~ a set containing connections

between the layers and the type of connection. For

example :-

network[{2,3,1},{{1,2,0},{2,3,0}}]

means call the function with the first set {2,3,1}

assigned to layer and the second set ·{{1,2,0},{2,3,0}}

assigned to link. The set {2, 3, I} means that layer contains

a three layer network. The first layer (input node) has 2

nodes, the second layer (hidden layer) has 3 nodes and

the third layer (output layer) has a single node. In the

set {{I, 2, O}, {2, 3, O}}, the first element, {1,2, O} means

the first layer is connected to the second layer with '0'

120

representing feedforward connection. The feedforward and
feedback connection are represented by , 1'. Similarly,
{2,3,0} means the feedforward connection from the second
layer to the third layer. We can add further connections
such as a connection from the first layer to the third

layer which is written as {1,3,0}.
By using the same function, we can display any fully

connected layer. For example, the single layer network
can be written as :-

network[{lO},{{l,l,l}}]

where the first set, {10} is one layer network containing

10 nodes and the second set, {{l,l,l}} means the first
layer is connected to the same layer with lateral
connections. The two layer network with feedforward and
feedback connections can be written as :-

network[{2,5}, {{1,2,1}}]

The network can also contain a layer node arranged in a

two-dimensional or topological map, for example :-

network[{2,{10,10}},{{1,2,0}}]

The set {10,10} within the first set is the second layer
which has nodes arranged in 10*10. Its connection is a
feed forward connection from the first layer to the second

layer.
As explained earlier, the NEUCOMP program cannot

call Mathematica directly. An alternative approach is to
save the simulation results in a file. This file is then
read by a Mathematica program. The file must be declared
first before it is used. It is declared under the
declaration section as below :-

FILES filel;

121

where FILES is the reserve word for file type and fikl is

the variable of type file. There are two types of files

that can be used which are the file for reading and the

file to be written. For the file to be written, it is

defined as follows :-

OPENWRITE(filel,filename);

where the OPE~RITE is the reserved word for open file to

be written and filename can be a strin'g constant or a

variable of type string. It is used to give the name of

the file to be written.

Let us consider fikl which is used for displaying the

backpropagation network from the simulation program of

section 4.4.1. Its filename is named as "bp. net" • The

following shows the standard command to display such a

graph :-

PRINTFILE(filel,"The backpropagation network\n");

PRINTFILE(filel,"{%d,%d,%d}\n",nl,n2,n3);

PRINTFILE(filel,"{{1,2,O},{2,3,O}}\n");

The first statement is used to display the title of the

graph. The second statement is to display, the nodes nI,
n2 and n3 in the three layer network. They can be any

integer constant because their values are assigned at run

time. The third statement is to display a feedforward

connection between the first layer and the second layer

and from the second layer to the third layer. To make a

flexible display, such as the number of layers, is quite

difficult because it depends on how the NN structure is

declared using the vector variable, i.e. layerl, layer2 and

layer3, and their connections which are the matrix

variables, i.e. weightl and weight2. If the fourth layer

wants to be used then the additional declarations are

written as :-

REAL layer4[n4), weight3[n4,n3);

122

We can then adjust the respective PRINT FILE statements to

be able to display the four layer network. Similarly for

the other networks where we just follow how the network

has been written initially.

We now can run the Mathematica program to display

the NN structure. The Mathematica program to evaluate the

NN structure is called I displaynet I. When invoked, it

prompts for the name of the file to be typed in, i.e.

bp. net • The function network is then called to display the

respective graph.

Figure 4.1 shows an example of a three layer network

with the first and second layers containing two nodes and

the third layer is a single node. Figure 4.2 shows an

example of a single layer network with 5 nodes. Figure

4.3 shows an example of a two' layer network with the
feedforward and feedback connections. The figure shows

that the input layer contains 2 nodes and the output

layer contains 5 nodes. An example of a network

containing the layer nodes arranged in a two-dimensional

map is shown in fiqure 4.4. The input layer contains 2

nodes and the output layer contains 8 x 8 nodes. The

number of nodes will be shown when the size of the node

is bigger than 6. Mathematica program cannot cope with

the situation when all the nodes wanted to be displayed.

123

The backpropagation network

input layer hidden layer output layer

Fig. 4.1: A three layer network

The Hopfield-type network

o o o o o

Fig. 4.2: A single layer network

124

The ART1 network

input layer

Fig. 4.3: A two layer network with feedforward
and feedback connections

The Kohonen network
8x8 nodes

c:::=:> c:::=:> c:::=:>.. .
.

c:::=:> c:::=:> c:::=:>... c:::=:>
c=::> c=::> c=::>... c:::=:>

c=::> c=::> c=::>... c=::>

input layer

Fig. 4.4: A Topological network

125

4.5.2 Implementing the XY-graph

The XY-graph is a two-dimensional graph to display a

curve of points (x,y). For example, displaying the result

of the number of iterations vs. error measures in the

backpropagation algorithm. We can plot a single graph or

more than one on the same axis.

The algorithm in the Mathematica program for this

purpose is written as follows :-

read the title of the graph

read the title of the x-axis

read the title of the y-axis

while (more files) do

read the file name for the graph

read the title of this graph

plot the graph using ListPlot

endwhile

Display the whole graph

An example of such a graph is shown in figure 4.5. The

graph shows the different results of solving the XOR

problem. To obtain such a graph, the parameters for

exper iment1 were set as alpha = 30 and beta = 0.9, and the

parameters of experiment2 were set as' alpha = 8 and beta =
0.5. Both experiments were set with the same seeds on

weights and biases as 1000, 2000, 3000 and 4000. It is

possible to accommodate more than two graphical results

on the same axes when further comparison between the

results is required.

4.5.3 Implementing other graphs

Another interesting graph to plot are the points for data

clustering. It is useful for classification problems

using the Kohonen network (section 2.2.3).

126

Enormsqr vs no. of iterations

Enormsqr

0.4

0.3
Exp.1

0.2

0.1

Exp.2

10 20 30 40 50 60

No. of Iterations

Fig. 4.5: Exp. 1 shows the line has not converged.
EXp. 2 shows the line has converged.

For the data clustering problem, nl and n2 are
assigned values of 2 and 64 respectively and the size of
the pattern is obtained by the random numbers generated
between 0 and 1. The initial weights of the network are

set to the value 0.5 plus a small randomised value, i.e.
within 10%. Figure 4.6a shows the plot of these initial
weights. Each unit in the competitive layer is a point on
this graph. Figure 4. 6b shows the network after 1,000
iterations and figure 4.60 shows the state of the network
after 6,000 iterations. Figure 4.6d shows the final state
of the network after 20,000 iterations. Each axis of the
square in figure 4.6 goes from 0 to 1 because this is the

range of the entries in the input patterns.

127

1

0.8

0.6

0.4

0.2

oL-------~------------------------------------~ 0.2 0.4 0.6 0.8 1

Fiq. 4.6a: Initial weights distribution

1

0.8

0.6

0.4

0.2

o~--------------------------~--------~--------
0.2 0.4 0.6 0.8 1

Fiq. 4.6b: Weights distribution after 1,000 iterations

128

1

o.

o.

o.

o.

oL---------------~------~-----------------0.2 0.4 0.6 0.8 1

Fig. 4.60: Weights distribution after 6,000 iterations

1

o.

-:J
o.

\.. "-
j / /

o.
r--

o. -
I .l..---...J

.

0
0.2 0.4 0.6 0.8 1

Fig. 4.6d: Weights distribution after 20,000 iterations

129

CHAPTER 5

A PARALLEL NEURAL NETWORK COMPILER

130

This chapter discusses the design and implementation of a

parallel NN compiler. The design of the compiler follows

the strategies of the parallelising compiler [Padua et

al. (1986), Zima et al. (1990»). However implementation

of the compiler is hardware dependent. The technology of

computer hardware has been advanced from single processor

computers to multi-processor computers. These multi

processor computers are also known as parallel computers

or supercomputers. They are capable of producing better

and faster performance as more than one processor can

work in parallel to solve different parts of a single

problem. The parallel NN compiler known as NEUCOMP2 is

developed to attain this objective.

There are many different types of parallel computers

available today [Babb (1988»). The parallel computer that

is used to develop NEUCOMP2 is the SEQUENT Balance 8000

at PARCo It is a shared-memory parallel machine. It

belongs to MIMD (Multiple Instruction Multiple Data)

architecture or also known as multi-processor systems.

A parallel computer provides the software tools and

a programming system to help a programmer to write a

parallel program in order to achieve the high performance

of the parallel computer. Parallel programming on the

Balance machine can be implemented in two ways depending

on the type of application. For executing different tasks

or processes (functions or statements) in parallel,

function partitioning is used. For executing the same

task or process (Le. matrix/vector operation) in

parallel, data partitioning is appropriate. NEUCOMP2 is

implemented based on the data partitioning method since

its program contains mostly matrix/vector operations.

Experiments are carried out to study the performance

of the NN simulations generated by the compiler in terms

of the execution time and speedup. The results are then

compared with the existing special purpose simulator that

used the same parallel machine [Sanossian (1992»). The

only NN model used for this purpose is the

backpropagation network since the available results for

131

comparison was also based on the SEQUENT Balance machine.

The backpropagation algorithm written in NEUCOMP2 program

is similar to that implemented by Sanossian. However, for

other models such as the Kohonen, Counterpropagation,

ART 1 and Hopfield-type networks,

performance results which are based on

will be discussed in the next chapter.

5.1 PARALLEL ARCIDTECTURES

their parallel

the applications

The architectures for parallel computer systems are

commonly categorised into the SIMD (Single Instruction

Multiple Data) and the MIMD (Multiple Instruction

Multiple Data) computers [Forrest et al. (1987), McBryan

(1989), Lafferty et al. (1993»). The Array and Pipelined

computers belong to the first type. Most multiprocessor

and multicomputer systems belong to the class of MIMD

computers. These machines have a set of independent and

autonomous processors and every processor is able to

execute different instructions concurrently.

The MIMD computers are classified into two further

categories, the Shared-Memory Parallel Computers and the

Message-Passing Parallel computers. This classification

is based on two different methods of communication

amongst the processors. The Shared-Memory Parallel

computers are tightly coupled multiprocessor whilst the

Message-Passing Parallel computers are loosely coupled

multiprocessors.

5.1.1 The SIMD Computer Architecture

The SIMD Computer Architecture such as array processors

consist of simple processing units (or nodes) that are

synchronised to operate in parallel. Each unit consists

of an ALU (Arithmetic Logic unit) and a number of

registers. These units are connected to a control unit

where the instructions are decoded and broadcast to all

132

the units in the system. Therefore the units execute the

same instruction simultaneously with each unit holding

different sets of data. Figure 5.1 depicts a simple Array

computer. As can be seen from the diagram the processing

uni ts, 1. e. P1 •• Pn are connected to each other via a

data routing network. The shared memory can have multiple

modules. Examples of these machines are the Active Memory

Technology Distributed Array' Processor (AMT DAP) and

Connection Machines (CM) of the Thinking Machines Corp.

[Zima et al. (1990), Lafferty et al. (1993)].

11/0 unit I
I
I

cont , Control Unit ,. __ _. ~.~."

I

rol
· ·1

\

~ P2 Pn • • •
memory memory memO!)

Interconnection network
(data routing network)

Fiq. 5.1: The structure of the SIMD Array processor

5.1.2 The M/MD Computer Architecture

The MIMD computer architecture has a set of independent

and autonomous processors. Each processor is able to

execute different instructions. The two categories of the

MIMD are the Shared-Memory Parallel Computers and

Message-Passing computers.

133

5.1.2.1 The Message-Passing Parallel System

In a Message-Passing Parallel system, each processor has

a number of input/output devices connected to it and a

local memory where most of the instructions and data are

stored. These systems are also known as Local Memory

Systems, Loosely-Coupled Systems or Distributed Memory

Systems. Communications among the processors are

performed through a message transfer system. Such systems

are efficient for tasks that require minimum interactions

between the processors. The message transfer system is

usually a routing network. Figure 5.2 depicts a simple

loosely coupled system. The transputer system is an

example of such an architecture [Almasi et al. (1989),

Hwang et al. (1984)].

5.1.2.2 The Shared-Memory Parallel System

The Shared-Memory Parallel System, sometimes called the

Tightly-Coupled System, has a set of processing units and

a pool of memory available to all processors through

which they communicate via a simple time shared bus or

interconnection network. This type of architecture is

illustrated in figure 5.3. Examples of these systems are

the SEQUENT Balance, Encore Multimax and Alliant FX/8

[McBryan (1989), Lafferty et al. (1993)]. Due to the

problem imposed by the communication through the shared

memory, they usually have a relatively small number of

PEs. For example, the SEQUENT Balance and Encore Multimax

can only have at most 12 and 20 processors respectively

for efficient operation.

134

••••••••

Message transfer system

LM is Local Memory/Private Memories
P is Processor
I/O is input/output

Fig. 5.2: The structure of the Message-Passing systems

Autonomous Processors

P1 • • •

• • • Mn

Shared Memories

Fig. 5.3: Configuration of the Shared-
Memory Parallel systems

135

5.1.3 The SEQUENT Balance 8000

SEQUENT systems are homogeneous multiprocessors, i.e.

computers that incorporate multiple identical processors

(CPus) and a single common memory [Osterhaug (1989)]. The

SEQUENT CPUs are general-purpose, 32-bit microprocessors.

The computer used throughout the work presented here

is the SEQUENT Balance 8000. It is a tightly coupled

(Bus) based MIMD machine with up to 12, 32 bit

microprocessors each capable of executing 0.7 MIPS. Each

processor consist of a CPU, a hardware floating point

accelerator and a paged virtual memory management unit. A

two level page table is used to access 16 Mbytes of

virtual memory. Each processor contains a cache memory of

8 Kbytes which holds the most recently accessed

instructions and data. When a processor updates some data

in its cache, the data in the main memory and other

caches are updated at the same time. The cache is

intended to reduce the traffic burden on the bus.

The operating system is DYNIX, which is derived from

UNIX. In particular, the scheduler in DYNIX has the

choice of anyone of the 12 processors to allocate tasks

to, so that even if no parallel program is being run, the

total work load is distributed amongst the available

processors.

136

5.2 PARALLEL PROGRAMMING SYSTEMS

In order to utilise the available processors and make use

of their parallel capabilities, s,oftware must be

provided. The development of the parallel software is

partly dependent on the hardware available. For example,

in the most general model of parallel architecture, i.e.

the MIMD system, there must exist language constructs

that allow the programmer to program the individual

processors and to define the data on which they are to

operate.

Parallelism in a computer system can be achieved

through two ways, multiprogramming (or timesharing) and

multitasking [Osterhaug (1989)]. Multiprogramming allows

several jobs (or programs) to be processed at the same

time and this will give the maximum throughput of the

computer. This is common on most computers nowadays which

allow more than one user to log on to the machines,

although they may have one processor [Brawer (1989),

Silberschatz (1991)]. The operating system in the

computer, such as UNIX, is able to handle

multiprogramming by allocating jobs in a ready queue to

the CPU as soon as it is free.

In the other

programming technique

consist of multiple

[Zimaetal. (1990)].

handled by the

Multitasking yields

individual program.

situation,

that allows a

multitasking is a

single application to

processes executing concurrently

Each one of these processes will be

different available processors.

an improved execution speed of an

137

5.3 PARALLEL PROGRAMMING ON THE SEQUENT BALANCE

The operating system for the SEQUENT Parallel Machine

namely DYNIX supports mUltiprogramming and multitasking

[Osterhaug (1989)]. It has library commands to create

processes and to synchronise them such as the 'fork',

'join' and 'lock' instructions. An illustration of the

fork and join operations is shown in figure 5.4. so, it

is left to the programmer to write a parallel program

specifying which tasks are to be executed in parallel.

In the multi tasking programming methods, there are

two methods available for the users to implement the

programs. They are data partitioning and function

parti tioning. Data partitioning involves creating

multiple, identical processes and assigning a portion of

the data to each process. This method is also called

homogeneous multitasking. Data partitioning is

appropriate for applications that perform the same

operations repeatedly on large collections of data, i.e.

vectors.

job

•••

fork
operation

tasks

join
operation

Fig. 5.4: Multitasking environment

The other method, function partitioning, involves

creating multiple unique processes and having them

simultaneously perform different operations on the shared

138

memory data set. It 'is suitable for applications that

include many unique subroutines or functions. This method

is also called heterogeneous multitasking. Applications

such as flight simulation, program compilation and

traditional process control adapt well to function

partitioning.

While some

partitioning or a

applications

combination of

require

data and

function

function

partitioning, most problems adapt more easily to data

partitioning. This last method offers some advantages

over function partitioning, such as less programming

effort is required to convert a serial program to a

parallel algorithm. Furthermore, with data partitioning,

it is easier to achieve an even load balancing among

processors and also easier to adapt the programs

automatically to the number of available processors.

In this chapter, discussion will only refer to the

data partitioning technique. This method is used to

implement a parallel NN compiler for the shared-memory

parallel computer.

5.3.1 The Data Partitioning method

The data partitioning method is suitable to execute loop

iteration in parallel [Osterhaug (1989»). The loop

iteration is chosen as the code section to be

parallelised because the parts that offer the best

opportunities

[Padua et al.

al. (1993»).

amenable to parallelism are the loops

(1986), Zima et al. (1990), Mohd-Saman et

Data partitioning involves creating multiple,

identical processes (i.e. loop iteration) and assigning a

portion of data to each process. Assigning portions of

data means each iteration can be executed simultaneously

depending on the number of available processes. Load

balancing amongst processes is achieved by a scheduling

strategy.

139

The following describes the process of performing

data partitioning :-

(1) A special function is used to fork a subprogram that

contains a loop iteration into a set of child

(2)

(3)

processes and

subprogram to

This function

each process.

assigns an identical copy of the

each process for parallel execution.

creates a copy of any private data for

Each copy of the subprogram executes a segment of

the loop iteration either using static or dynamic

scheduling [Osterhaug (1989)]. The static scheduling

divides the loop iterations evenly among the

processes. In dynamic scheduling,

iterations are treated as a task queue,

the loop

and each

process removes one or more iterations from the

queue, executes those iterations, and returns for

more work. Dynamic scheduling requires communication

between processes.

If the loop being executed in

completely independent which means

dependencies (section 5.3.3), the

parallel is no~

there exi.st data

subprogram may

contain calls to a function that synchronises the

parallel processes at critical points by using locks

or barriers.

(4) When all the loop iterations have been executed,

control returns from the subprogram. The parallel

execution processes can either be terminated after

the calling subprogram, suspends their execution

until they are needed to execute another subprogram,

or left to spin in a busy wait state until they are

needed again.

5.3.2 Parallel Programming tools

Some of important DYNIX Parallel Programming tools used

to implement the parallel compiler are discussed here.

140

The DYNIX Parallel Programming Library includes three

sets of routines. These are a microtasking library, a set

of routines for general use with data partitioning

programs, and a set of routines for memory allocation in

data partitioning programs.

The microtasking library routines allows the

creation (fork) of a set of child processes, assign the

processes to execute loop iterations in parallel, and

synchronise the processes as necessary to provide a

proper data flow between loop iterations.

For example, the function mJork is used to create

new processes. A new process is called a child process

and it is a copy of the original process (called parent

process). The child process is allowed to access the main

memory and any open file. The number of processes created

can be set using the function mJe(procs. Each child

process has an ID number associated with it when it was

created. During the execution of the process it might be

necessary to require the ID number, this can be done by

calling function m...gecmyid. The· parent ID number is O.

The function m_kil1...procs is used to terminate child

processes which is written after the function mJork, the

function m-park-procs is used to suspend the execution of

the child processes while the parent process is involved

in some operation. The execution of the child processes

can be resumed using the function m_rele-procs. When many

processes running in parallel try to modify a shared

variable (section 5.3.3), they have to be synchronised.

This can be controlled by shared data structures called

'semaphores'. The simplest of all semaphores is the

function lock that allows a user to create a critical code

region that can be accessed by only one process or using

the function m_sync to check at a barrier. A barrier is a

synchronisation point where a process waits at a barrier

until other processes arrive before it can proceed.

The general-purpose data-partitioning routines

include a routine to determine the number of available

CPUs and several process synchronisation routines that

141

are more flexible than those available in the

microtasking library. For example, cpus_online returns the

numbers of the CPUs on-line and s_waicbarrier is wait at a

barrier.

The memory allocation routines allow a data

partitioning program to allocate and de-allocate shared

memory and to change the amount of shared and

memory assigned to a process. For example

allocate shared data memory.

private

shmalloc,

Figure 5.5 gives an example of using some of these

functions.

5.3.3 Analysing Data Dependencies

Before implementing data partitioning, data dependencies

in the loop have to be analysed in order to guarantee

correct results. The analysis involves finding variables

that depend on previous operations and variables that may

be executed in any order. Data dependence analyses is an

important task in parallelising a sequential program.

This analysis will give information on the inter-relation

of statements based on how the data in the program is

computed and used.

Data dependencies occur in two parts. In the first

part, data dependencies occur in the programs' statements

[Padua et al. (1986), Osterhaug (1989), Polychronopoulos

(1988)]. For example :-

sl a = b + c;

52: d = a - e;

where statement sI must be executed first since it

contains the variable a being stored data, then followed

by statement s2 in which a is being read. The second part

of data dependencies is on the loop iteration which is

the concern of this presentation. The outermost loop is

chosen as a code section to be executed in parallel.

142

#include <stdio.h>
#include <parallel/microtask.h>
#include <parallel/parallel.h>

main Cl
{

}

void subprogram(), m fork(),

m_killJ>rocs Cl ;
int nprocs;
printf("Type number of processors: ");
scanf("%d",&nprocs);
m_set_procs(nprocs);
m fork(subprogram);
m_kill_procsCl ;

void subprogram()
/*This subprogram contain loop iteration

to be executed in parallel */
{

int nprocs;
nprocs = m_get_numprocs();

}

Fig. 5.5: Example of parallel program

Before analysing the data dependencies, identifying

which data can be shared amongst parallel processes and
which data is local to each process is discussed first.
The data that is shared is called shared variables and
the data that is local is called private variables. The
private variables are initialised in each iteration. They
are usually scalar variables. Shared variables need
further attention. Data dependencies may occur when a

143

program attempts to read and write shared variables in

more than one loop iteration. These variables can

sometimes pass incorrect information between loop

iterations if the iterations are executed out of order or

two loop iterations try to write the variable

simultaneously.

If the shared variable is a read-only variable or an

array where each element is referenced by only one loop

iteration, then they are considered as independent shared

variables. However, the shared variables which are

dependent can belong to three categories [Osterhaug

(1989)] which are :-

(1) Reduction variables

(2) Locked variables

(3) Ordered variables

which distinguishes the ways the variables are used.

5.3.3.1 Analysing Reduction variables

A reduction variables can be an array or a scalar which

has the following properties :-

variable op= expression

where op is either '+','-','*' or 'I'. The following
example shows the addition of all numbers in an array

variable:-

for (i = 0; i<n; i++)
sum += a[i]

where n and a are independent shared variables because

they are read only, i is a local variable because it is

initialised on every iteration and sum is a shared

reduction variable because it involves the '+='

144

assignment. If the loop is executed in parallel sum may

contain incorrect results.

5.3.3.2 Analysing Locked variables

A locked variable can be an array or a scalar involving

read and write operations in more than one iteration. The

following example shows how the minimum value is searched

in an array variable :-

least = 999;

for (i = 0; i<n; i++) {

min = a[i];

}

if (min < least) {

least = mini

}

where n and a are independent shared variables because

they are read only, j and min are local variables because

they are initialised on every iteration, and least is

locked shared variable. Since the loop iterations will be

executed in parallel, this variable can hold any value in

each process which is not necessarily the minimum result

that is required. In order to make sure that only one

loop iteration is using this variable at a time, it has

to be locked.

5.3.3.3 Analysing Ordered variables

An ordered variable is an array variable which yields

correct result only if the operations involving the

variable are executed one iteration at a time, in

sequential order. The following example contains an

ordered variable :-

145

for (i = 0; i<n; i++) {

x[i) = xl[i) + x2[i);

y[i) = x[i+l) - X[i-l);

}

where nand y are independent shared variables because n
is a read only variable and y is an array where each

element is referenced by only one loop iteration, i is the

local variable because it is initialised on every

iteration and x is an ordered shared variable because the

expressions x[i+i) and xli-i) would contain incorrect values

if the loop iterations were executed in any order.

5.3.4 Transforming into Parallel code

Figure 5.5 has shown some functions to implement parallel

programs. In this section, the transformation of loop

iterations into parallel code is discussed.

The first task is distributing loop iterations to

processes. This is known as scheduling. The following

static scheduling is introduced in the outermost loop of

the sub program that is being forked (figure 5.5) :-

for (i = m_get_myid(); i<n; i+=nprocs) {

•••
}

where i is set to process ID produced by function

m-15ecmyid and the variable nprocs is set to the number of

processes produced by function m_seCnumprocs (figure 5.5).

The loop iterations are divided evenly among the

processes.

The next task is to impose parallel mechanisms to

protect dependent variables in order to produce correct

results. The following section describes techniques for

transforming reduction, locked and ordered type data

dependencies.

146

5.3.4.1 Transforming Reduction variables

The following example shows the handling of reduction

variables from an example of section 5.3.3.1 :-

lvar = 0;

for (i = m_get_myid(); i<n; i+=nprocs)

lvar += a[i)

m_lock() ;

sum += lvar;

m_unlock() ;

A local variable Ivar is used to hold the sum of array

variable within each loop iteration. At the end of each

loop iteration the function m_lock is called to perform

the reduction operation to combine Ivar with the shared

variable, sum and call the function m_unlock. The

functions m_lock and m_unlock are used to ensure that the

code section within it is executed by one processor at a

time.

5.3.4.2 Transforming Locked variables

A locked variable cannot be executed simultaneously, so

the functions m_lock and m_unlock are used as before. The

function m_lock call should appear on the line immediately

preceding the first reference to a locked variable, and

the function m_unlock call should appear after the last

reference of a locked variable.

The following example shows the handling of

reduction variables from an example of section 5.3.3.2 :-

147

least = 999;
for (i = m_get_myid(); i<n; i+=nprocs) {

min = a[i];

}

m_lockO;
if (min < least) {

min = a[i];
}

m unlock();

The functions m_lock and m_unlock are used within the
parallel loop to ensure that the code section is executed
by one loop iteration at a time.

5.3.4.3 Transforming Ordered variables

The code section that contains the ordered variables must

be executed in order. The following example shows the
transformation of ordered variable from an example of

section 5.3.3.3 :-

for (i = m get myid(); i<n; i+=nprocs) { - -

}

while (xguard 1= i) continue;

xCi] = x1[i] + x2[i];
y[i] = x[i+1] - x[i-1];
xguard = xguard + 1;

where xguard is a new shared integer variable. It is

declared in the main and set to the starting value of the
loop iteration. The conditional statement used before the
first reference to the order variable is to allow the
loop execute only when the loop index is equal to xguard.

This variable is then incremented at the end of the last
reference of the ordered variable to allow for the next

sequential execution.

148

5.4 PARALLEL NEURAL NETWORK COMPILER (NEUCOMP2)

A study of the NN compiler called NEUCOMP (chapter 4) to

generate~general purpose NN simulation programs have been

successfully implemented. These simulation programs were

executed sequentially.

A further study of designing the NN compiler for a

parallel machine has been carried out. This section

discusses the development of an upgradeJ version of

NEUCOMP named NEUCOMP2. NEUCOMP2 can generate a parallel

NN simulation program running on a shared-memory parallel

machine.

NEUCOMP2 contains an additional stage for detecting

the existence of parallelism in the sequential program

generated by NEUCOMP and transforms it into a parallel

version specifically for a shared-memory parallel

machine. When a different parallel machine is introduced,

this routine can be changed to suit the specification

required by that machine.

5.4.1 Design of Parallel Neural Network Compiler

Designing a parallel NN compiler basically follows the

design of a parallelising compiler. A parallelising

compiler (sometimes referred to as a supercompiler) is a

software system that compiles programs targeted for

execution on a parallel architecture system [Padua et al.

(1986), Zima et al. (1990)]. This software tool takes as

input the sequential program, detects any form of

parallelism that exists and carries out the

transformation process.

Figure 5.6, shows the process of generating a

parallel NN simulation program. The step from the source

program (NEUCOMP2 program) to generate a sequential

simulation program, follows the step compiled by NEUCOMP.

The next compilation' phase is the parallelising

stage. It .contains routines to detect parallelism and

transform into parallel codes. The design of the routine

149

is dependent on the architecture of the parallel machine.

In this section, the design and implementation of the

parallelising routine on a shared-memory parallel machine

such as the Balance machine (section 5.3) is discussed.

NEUCOMP2
program

lexical analysis
syntax analysis
semantic analysis
loop optimisation

sequential
program

parallelising

stage

parallel
program

Fig. 5.6: Process of compilation on a NEUCOMP2 program

The language for NEUCOMP2 is called the NEUCOMP2

language. The NEUCOMP2 program has an extra reserved word

called PARALLEL which must be included when a certain

procedure is to be executed in parallel. In this case the

most crucial part in NN simulation is a procedure that

involves training the network. For example, the

NEUCOMP/NEUCOMP2 program is written as :-

150

MAINPROGRAM

CALL training;
...

END;

To parallelise the procedure training, statement CALL is
replaced with PARALLEL, as shown be lows :-

MAINPROGRAM
...

PARALLEL training;

END;

without the statement PARALLEL, NEUCOMP2 treats the
program as a sequential program.

5.4.2 Implementing the Parallelising stage

The code
execution

section
is the

identified by
loop. These

NEUCOMP2 for parallel
parts offer the best

opportunities amenable to parallelism [Padua et al.

(1986), Zima et al. (1990), Mohd-Saman et al. (1993)].

The routine for parallelism will be evoked when the
word PARALLEL is included in the respective procedure.
The routine then undergoes the following stages :-

(1) Detection of the loop iteration
(2) Creating new procedure for loop iteration
(3) Analyse data dependencies

(4) Transformation process

The following sections discuss the development of the
above stages.

151

------------------------------- -- ---

5.4.2.1 Detection of the loop iteration

The loop iterations for all matrix-vector statements are
chosen as code sections to be executed in parallel. There

are two types of loops to be generated: the 'for loop'

and 'while lOop'. This follows the explanation given in

section 4.2.5.2 under 'Translating an assignment

statement' .

The matrix assignment statements are generated into

two 'for loops', Le. for (J = ...) and for (J = ...). For

example, the NEUCOMP/NEUCOMP2 program code for updating

the weights using the backpropagation algorithm (section

4.4.1) has the following form :-

weight += alpha*dweight + beta*cweight

where weight, dweight and cweight are the matrix variables

and, alpha and beta are the scalars. The translated

statements are as follows :-

for (I = ..•)

for (J = .••)

weight[1] [J] +=alpha*dweight [I] [J] +beta*cweight [I] [J]i

where J and J are the system variables (reserved words)

which are written as capital letters.

The vector assignment statements are generated into

a single 'for loop', Le. for (J = ...). For example, to

assign the training pattern into the input layer, it is

written as follows:-

layerl = pattern@i

where layerI is an input layer and pattern is a matrix

variable. The symbol '@' means all its elements at the

specific row determined by reserved word ROW are assigned

to layerI (sections 4.4.1 to 4.4.4) . The translated

statements are as follows :-

152

for (I = •••)
layerl[I) = pattern [ROW) [I);

The second type of loop statement is the 'while
loop'. The following assignment statements provided by
NEUCOMP/NEUCOMP2 will be translated into the 'while loop'

statement are :-
variable< = expression
variable> = expression

where the first symbol '< ' is used in the Kohonen and
Counterpropagation algorithms for finding the winner node
based on the minimum calculation of the expression. It is

written as :-
layer2< = DISTANCE(layerl,weightl);

and the second symbol '>'
for finding the winner

is used in the ARTl algorithm
node based on the maximum

calculation of the expression. It is written as :-

layer2> = weightf*layerl;

NEUCOMP translates the Kohonen algorithm into the

following code statements which contains the 'while loop'
statement.

I = 0;
SCALARO = DISTANCE(layerl,weightl,I,nl);

ROW = 0;
while (++1 < n2) {

}

layer2[I) = DISTANCE(layerl,weightl,I,nl);

if (layer2[I) < SCALARO) {
SCALARO = layer2[I);
ROW = I;

}

Fiq. 5.7: The Sequential code for the Kohonen algorithm

153

where I, SCALARO and ROW are the system variables, nI is

the size of layerI and n2 is the size of layer2. DISTANCE is

the built-in function. The final result of the above

translation is that ROW or the winner node contains the

index of which layer2 is the minimum and layer2 holds that

minimum value.

The translated statement for the second statement,

Le. ARTl algorithm, is similar provided that the sign

'<' is replaced by'>' and the final result is that the

ROW or winner node contains the index of which layer2 is

the maximum and layer2 holds that maximum value.

5.4.2.2 Creating new procedure for loop iteration

Once the respective loop iteration has been detected,

NEUCOMP2 extracts that loop from its position and places

it into a newly created procedure called PROCESS followed

by an integer number starting with 0 to distinguish it

from another newly created procedure, if any. It's

original place will then be replaced by this name as a

calling procedure. For example, the translated code for

the statement

layerl = pattern@i

is written as follows :-

void training ()

{

}

for (I = •••)
layerl[I] =

...
pattern [ROW] [I]i

NEUCOMP2 translates the above 'for loop' into the

following code statement :-

154

...
void training ()
void PROCESSO()

...
{

PROCESSO () ;

}

void PROCESSO ()

{

for (I = •••)
layerl[I) = pattern [ROW) [I);

...
}

PROCESSO is a unique name and written in capital letters.
If more than one loop is detected, the next new procedure

will be named as PROCESSl and so on.
If there are more loops being considered previously

arranged consecutively, they are then combined into a
single procedure. For example, calculating the activation
value for all layers in the backpropagation algorithm

written in NEUCOMP/NEUCOMP2 codes is as follows :-

PROC training

layerl
layer2
layer3

...
END;

=

=

=

pattern@;
SIGMOID(weightl*layerl + bias2);
SIGMOID(weight2*layer2 + bias3);

where layer], layer2 and layer3 are the vector variables. The
translated codes are generated in the form of sequential

codes as shown below :-

155

...
void training()

{

}

...
for (1 = •••)

layerl[l] = pattern [ROW] [l]i

for (1 = ...)
layer2[I] = SIGMOID(MuCmacvec(weightl,layerl,nl,I) + bias2);

for (1 = ...)
layer3[I] = SIGMOID(Mul_macvec(weight2,layer2,n2,I) + bias3);

where MuCmaCvec is the C function used to calculate a

matrix-vector multiplication.
NEUCOMP2 then combines the above loops into the

translated codes as can be seen in figure 5.8.

5.4.2.3 Analysing Data Dependencies

The loops to be executed in parallel are now in the newly

defined procedure. All variables usage within the loop

iterations have to be analysed in order to identify which

variable depends on previous operations. This is to

guarantee correct results when these statements are

executed simultaneously.

156

...
void training ()
void PROCESS 0 ()

{

PROCESSO()i
...

}

void PROCESSO ()
{

int li
for (1 = •••)

layerl[l] = pattern[ROW][l]i

for (1 = •••) /~
--Iaye~l] = SIGMOID(MuI_mac vec(weight! ,Iayerl,n 1 ,1) + bias2);

for (1 = •••) ~
Iayer3[1] = SIGMOID(MiiI_macvec(weight2,Iayer2,n2,1) + bias3);

}

Fiq. 5.8: PROCESSO holds the 'for loop'

During analysis, NEUCOMP2 groups the variable usage
into 5 groups namely groupO, groupl, group2, group3 and

group4. The variable usage in each group have the
following characteristics :-

(1) The groupO contains a variable written in the form:-

x += ••••

where X is read and written by a single statement.

(2) The groupl contains a variable written in the form:-

157

· .. = x

x = ...

where x is read first and then written in other

statement.

(3) The group2 contains a variable written in the form:-

(4)

(5)

· .. = x

where x is read only.

The group3 contains a variable written in the form:-

x = ...

where x is written only.

The group4 contains a variable written in the form:-

x '"
· .. = x

where x is written first and then read in other

statement.

From the group classification, NEUCOMP2 can then

classify which type of data dependencies that may occur.

NEUCOMP2 assumes scalar variables may cause data

dependencies but not a vector or matrix variable. They

are operated independently within the loop iteration

where each element is referenced by only one loop

iteration. The scalars that exist in groupo are of type

reduction variables. The scalars that exist in group! and

group3 are of type locked shared variables because they

are written many times when running in parallel. The

scalars that exist in group2 are independent shared

variables because they are read only. The dependent

variables can be removed by a transformation process

158

which contains parallel mechanisms to transform its part

to run correctly in parallel (section 5.4.2.4). The

scalars that are in group4 are local because they are

initialised on every iteration.

other cases that the parallelising routine in

NEUCOMP2 does not consider are :-

(1) The statements FOR and WHILE loop provided by the

NEUCOMP/NEUCOMP2 language. since the main purpose of

using the NEUCOMP/NEUCOMP2 program, is to make use

of matrix/vector assignments, the use of FOR and

WHILE statements is not common. If used it is

assumed that the number of loops used is very small.

(2) A shared ordered variable.

(3) When the size of the loop is less than 5.

For cases (2) and (3), NEUCOMP2 will then consider the

next inner loop.

5.4.2.4 Transformation Processes

Transformation processes involve the translation of the

. sequential part into its parallel version after

information about variable usage is done. It uses the

parallel library routines provided by SEQUENT Balance

(section 5.3.2) for handling data dependencies, etc.

All variables in a loop iteration declared as global

are redeclared as shared variables. The calling procedure

created by NEUCOMP2 as discussed earlier, Le. PROCESSO

is then forked by the routine m~ork. The use of parallel

routines such as m-KeCnumprocs and m-KeCmyid are also

included. The following example shows the transformation

of the program from figure 5.8.

159

shared float *layer1i 1* global variable *1

void training()
void PROCESSO()i

{ ...
m_fork(PROCESSO,ROW)i

}

void PROCESSO(ROW)

int ROWi
{ int NPROCS,Ii

NPROCS = m_get_numprocs()i

}

for (I = m_get_myid()i I<nli I+=NPROCS)
layerl[I) = pattern [ROW) [I)i

...

where ROW has a value needed in the loop iteration and
therefore it is passed through the argument list of

PROCESSO.

Transforming a Reduction variable

For a reduction scalar variable that exists in groupO,
NEUCOMP2 performs two types of translations. The first

type of translation is that if the reduction scalar

variable is declared by the user as global. The following
example shows the transformation of the loop iteration
which contains the reduction scalar variable, sumerror.

160

· ..
shared float *error, sumerror;

· ..
void training ()
{

m_fork(PROCESSO);

· ..
}

void PROCESSO ()

{ float SCALARO;
int NPROCS,I;

}

NPROCS = m_get_numprocs();
SCALARO = sumerror;
for (I = m_get_myid(); I<nl; I+=NPROCS)

SCALARO += error[I];
m_lock() ;

sumerror += SCALARO;
m_unlock() ;

where sum error is originally declared as a global variable.
Its type is then declared as shared. In the PROCESSO, it
is replaced with a local variable, Le. SCALARO. The
variable SCALARO is a system variable (reserved word)
which is initially set to sumerror. There can also be more
unique SCALARs such as SCALAR1 and SCALAR2, when more

reduction variables are found. The routines m_lock and
m_unlock ensure that the shared lock variable sumerror does
the addition in each processor one at a time.

The second type of translation is that if the
reduction scalar variable is originally declared as local
in the procedure where it is used. The following example
shows how the reduction scalar variable, sum error declared
as local, is transformed.

161

...
shared float PSCALARO;

...
void training ()
{

}

void PROCESSO();
float sumerror;

m_fork(PROCESso,sumerror);

sumerror = PSCALARO;

...

void PROCESSO(sumerror)

float sumerror;
{ int NPROCS,I;

}

PSCALARO = 0.;
NPROCS = m_get_numprocs();
for (I = m_get_myid(); I<nl; I+=NPROCS)

sumerror += error[I];

m lockO;
PSCALARO += sumerror;

m_unlockO;

In this case, the reduction variable, sumerror is an
argument to the function mJork which passes its initial
value to PROCESSO. The system variable, Le. PSCALARO,

declared as shared, is used in handling the data
dependencies. There can be more unique PSCALARs, i. e.
PSCALARI and PSCALAR2, when more reduction variables are

found in the loop iteration.

162

Transforming a Locked variable

If a scalar exists in group1 or group3, then this variable

is a locked variable. As an example, figure 5.7 contains

two locked scalar variables, ROW and SCALARO. Variable

SCALARO is in group1 since it is read in the 'if

condition' then written within it. Variable ROW is in

group3 since it is written in the loop iteration. The loop

iteration to be executed in parallel in this case is the

'while loop'.

Figure 5.9 shows the transformation code of the

'while loop' of figure 5.7. The shared locked variables,

SCALARO and ROW, are declared as local by NEUCOMP2 when

the program is translated into the sequential version. In

order to overcome the data dependencies for both

variables, they need to be declared globally as shared.

Alternatively NEUCOMP2 replaces the global variables

declared with shared variables namely PSCALARO and PROW.

They then take initial values from these local variables

via parameter passing. The final results of these shared

variables are then assigned to their respective local

variables. The parallel loop from this example is

different from the 'for loop' . discussed earlier. This

parallel loop follows a dynamic scheduling technique

[Osterhaug (1989)] specifically generated when NEUCOMP2

locates the 'while loop'. This loop is only applied to an

assignment statement that uses the symbol '>' or '<'
(section 5.4.2.1). The function m_next belongs to DYNIX

library function, the increment global counter which is

automatically set to one when first called. The second

call returns to two, and so on.

163

...
shared float PSCALARO;

shared int PROW;

void training()
{ float SCALARO;

int ROW, I;

}

I = 0;
SCALARO = Mul_mat_vec(weight,layer1,n1,I);

ROW = 0;
m_fork(PROCESSO,ROW,SCALARO);

ROW = PROW;

SCALARO = PSCALARO;
. . .

void PROCESSO(ROW,SCALARO)

float SCALARO;

int ROW;

{

}

int I,J,K;
PSCALARO = SCALARO;

PROW = ROW;

while ((K = m next(» < n2) {

J = K + 1;

}

for (I = K; I<J; 1++) {

}

layer2[I) = Mul_mat_vec(weight,layer1,n1,I);

m_lock() ;
if (layer2[I) > PSCALARO) {

PSCALARO = layer2[I);

PROW = I;
} m_unlock();

Fig. 5.9: The transformation code for the 'while loop'

164

Synchronisation points

synchronisation needs to be introduced when parallel

results from one execution is required by the next

operation otherwise an incorrect result will occur. For

example, figure 5.8 requires m_sync to be included between

the loop iterations as shown below :-

...
void training ()

void PROCESSO()

...
{ ...

m_fork(PROCESSO,ROW);

}

void PROCESSO(ROW)

int ROW;

{ int I,NPROCS;

}

NPROCS = m_get_numprocs();

for (1= m_get_myid(); I <nl; I += NPROCS)

layerl[l] = pattern [ROW] [I];

m_sync() ;
for (I = m_get_myid(); I <n2; I += NPROCS)

layer2[I] = SIGMOID(MuCmacvec(weightl,layerl,nl,I) + bias2);

m_sync() ;

for (I = m_get_myid(); I <n3; I += NPROCS)

layer3[I] = SIGMOID(Mul_macvec(weight2,layer2,n2,I) + bias3);

where the first m_sync is introduced because layer1 which

is being written from the first parallel execution will

be read by the next parallel execution. The final m_sync
is not needed because at the end of the routine,

synchronisation is done automatically.

165

5.5 EXPERIMENTAL RESULTS

Experiments similar to those in Sanossian (1992), were

carried out to study the performance of a parallel NN

simulation program generated by NEUCOMP2 and those

produced by the Neural Network Simulator (NNS). NNS was

designed specifically for the backpropagation network.

The results of the two programs were then compared.

NNS is an interactive NN simulation developed by

Sanossian (1992) using Parallel Pascal running on the

Balance machine at PARCo Its data structure is a linked

list of a one-dimensional array. A number is assigned to

each node in the network. Each node has a linked list

that holds all the node numbers connected to it and the

connection weights. A one-dimensional array is used for

the state of the nodes. Parallelism on the NNS was

implemented using two methods Le., the 'On-line' and

'Batch' methods. In the 'On-line' method, starting from

the first layer, the network is partitioned according to

the number of nodes onto each processor. The weights were

updated for every training pattern. In the 'Batch'

method, all input patterns are divided equally among

processors. The weights were updated after all training

patterns have been processed.

For the simulation program generated by NEUCOMP2,

parallelising the loop on every matrix-vector statement

is considered as the 'On-line' method. This is because

the elements of the matrix/vector variables are

partitioned among the processors. The 'Batch' method for

NEUCOMP2 does not implement parallelism on the training

patterns but in the loops of the matrix/vector

statements.

In measuring the performance, the execution time is

taken as the difference between the time at the beginning

of calling the training procedure and the time at the

completion of the procedure. The speedup is measured as:-

speedup = timet
timep

166

where time, is the execution time for one processor and

time p is the execution time for p processors.

There are two sets of experiments. The first set was

done using the 'On-line' method and the second one using

the 'Batch' method. Both sets of experiments were run for

10 iterations. The effect of increasing the number of

nodes in a network or the number of training pattern on

the speedup of the parallel simulation program was

tested.

5.5.1 The On-line results

The results for the 'On-line' method generated by

NEUCOMP2 were compared with NNS. These are shown in

tables 5.1, 5.2 and 5.3. The execution times were

measured for different numbers of processors and

different sizes of network (i. e. 5x5x5, 10x10x10,

40x40x40) with fixed training patterns (L e. 50) • The

training patterns contain a set of input and target

patterns or vector pairs.

Graphs of speedup vs. number of processors for both

the NNS and NEUCOMP2 (figures 5.10, 5.11 and 5.12) were

plotted after each table to show graphically the

different speedups. Both programs showed a linearly

increase of speedup as the number of processors

increases. It also showed that the parallel program

generated by NEUCOMP2 is slightly better. This difference

is probably due to the way the programs were implemented.

The NEUCOMP2 program was implemented using an array while

the NNS was implemented using a one-dimensional array of

a linked-list. An array data structure has the advantage

of getting the value by referring its subscript, but to

get the value from an

to travel along the

reached.

array of lists, a

linked-list until

167

pointer is used

the address is

NNS NEUCOMP2

Number of Execution Speedup Execution Speedup

Processors time (sec.) time (sec.)

1 14.4 1.00 13.3 1.00

2 9.23 1.56 8.47 1.58

3 7.75 1.85 6.17 2.16

4 7.28 1.97 6.13 2.17

5 6.05 2.37 4.03 3.30

6 6.22 2.31 4.05 3.28

7 6.76 2.12 4.10 3.24

8 7.07 2.03 4.20 3.17

9 7.40 1.94 4.32 3.08

10 7.12 2.02 4.44 3.00

Table 5.1: The execution times and speedups of a network
of 5x5x5 nodes using the 'On-line' method
produced by NNS and NEUCOMP2

10

9

8

c. 7

::::I 6
"C
Cl) 5
Cl)

4 C.
III

3

2

1

0

Fiq. S.10:

1

-+-NNS
__ NEUCOMP2

4 7 10

no. of processors

Comparison of speedups vs. no. of

processors for both NNS and NEUCOMP2

168

NNS NEUCOMP2

Number of Execution Speedup Execution Speedup

Processors time (sec.) time (sec.)

1 44.5 1.00 43.5 1.00

2 24.3 1.83 22.7 1.92

3 18.7 2.38 18.3 2.38

4 15.1 2.95 14.4 3.03

5 12.9 3.44 10.4 4.18

6 13.0 3.43 lO.2 4.27

7 11.9 3.73 10.5 4.14

8 12.2 3.66 10.2 4.27

9 12.4 3.60 10.2 4.27

lO 10.5 4.24 6.61 6.58

Table 5.2: The execution times and speedups of a network

of lOxlOxlO nodes using the 'On-line' method

produced by NNS and NEUCOMP2

Co

10

9

8

7

:J 6

11 5

[4
1/1 3

2

1

-+-NNS·
_NEUCOMP2

O~+-+-+-~~~~~-+-+~~~~~

1 4 7 10

no. of processors

Fig. 5.11: comparison of speedups vs. no. of

processors for both NNS and NEUCOMP2

169

NNS NEUCOMP2

Number of Execution Speedup Execution Speedup
Processors time x 10' s time x 10' s

1 59.1 1.00 58.7 1.00
2 31.2 1.89 30.0 1.96

3 21.2 2.79 20.8 2.82

4 15.7 3.78 15.0 3.91

5 12.8 4.62 12.2 4.81

6 11.1 5.31 10.6 5.54

7 9.62 6.15 9.22 6.37

8 8.18 7.23 7.73 7.59

9 7.73 7.65 7.58 7.74

10 6.79 8.70 6.39 9.19

Table 5.3: The execution times and speedups of a network
of 40x40x40 nodes using the 'On-line' method
produced by NNS and NEUCOMP2

10

9
8

Cl. 7
:::J 6
'0
Q) 5

8. 4
III 3

2

-+-NNS
_NEUCOMP2

1
o+-+-~~~~~~-+-+-+~~--~~

1 4 7 10

no. of processors

Fig. 5.12: Comparison of speedups vs. no. of
processors for both NNS and NEUCOMP2

170

--.--.

5.5.2 The Batch results

There were two sets of experiments in the 'Batch' method

generated by NEUCOMP2. The first experiment (experiment1)

was implemented using parallelism amongst the training

patterns and the second experiment (experiment2) was

implemented using parallelism on all the loop iterations

that involve the matrix/vector operations. Results for

experiment1 were compared with the NNS also using the

'Batch' method; tables 5.4 to 5.8 show the comparison. In

tables 5.4 and 5.6, the execution times were measured for

different number of processors and a network of different

number of nodes, i.e. 5x5x5, 20x20x20 and 40x40x40 nodes,

with fixed vector pairs i.e. 50. In tables 5.7 and 5.8,

the execution times were measured for different numbers

of processors as well as different numbers of vector

pairs, Le. 80 and 100, with a fixed size of network

(Le. 10x10x10 nodes). There are also comparisons made

between experiment1 and experiment2 of the execution

times and speedups obtained. These are shown in tables

5.9 to 5.11. Table 5.9 contains the differences of

execution times and speedups for a network of size

40x40x40 nodes with 50 vector pairs. Tables 5.10 and 5.11

contain the differences of execution time and speedup for

a network of size 10x10x10 nodes and different sizes of

vector pairs, i.e. 80 and 100.

Graphs of comparison of speedup vs. number of

processors for experiment1 and NNS are shown in figures

5.13 to 5.17. There is a great difference in terms of the

speedup for the NEUCOMP2 simulation that execute the

training patterns in parallel as compared to the NNS that

use the 'Batch' method. This is because in the program of

experiment1, the only loop that executed in parallel was

amongst the training patterns whereas within this loop,

there exists many loop iterations that operate on the

matrix/vector operations. such loops are the vector

operations for calculating the activation function of the

hidden layer and the output layer, calculating the sum of

171

errors for the output nodes and the hidden nodes, matrix

operations on the weight derivatives, etc. This factor

affects the execution time of the processors. However,

experiment2 gave better results when all the loop

iterations within the training patterns were executed in

parallel.

Graphs of the comparison between experiment! and

experiment2 are shown in fiqures 5.18 to 5.20. This is

done to show graphically, that executing the loop

iterations on the matrix/vector operation proved to

produce faster execution times. Another advantage is that

the execution time for the I Batch I method that execute

the loop iteration in parallel generated by NEUCOMP2 are

two times faster than the NNS that were executed in the

'On-line' method. These differences are graphically shown

in fiqures 5.21 and 5.22.

The graph of speedup vs. number of processors did

not show a linear increase due to load imbalance where

some of processors are still busy while others remain

idle.

172

NNS NEUCOMP2

(experimentl)

Number of Execution Speedup Execution Speedup

Processors time x lOos time x 10° s

1 9.19 1.00 7.38 1.00

2 5.00 1.84 3.91 1.89

3 3.82 2.41 3.25 2.27

4 3.20 2.87 3.06 2.41

5 2.67 3.44 2.79 2.65

6 2.66 3.46 2.76 2.67

7 2.61 3.52 2.77 2.66

8 2.64 3.48 2.86 2.58

9 2.61 3.52 2.87 2.57

10 2.37 3.88 2.91 2.54

Table 5.4: The execution times and speedups of a network

of 5x5x5 nodes using the 'Batch' method

produced by NNS and NEUCOMP2

Fiq. 5.13: Comparison of speedups vs. no. of

processors for both NNS and

NEUCOMP2 using the 'Batch' method

173

NNS NEUCOMP2

(experimentl)

Number of Execution Speedup Execution Speedup

Processors time x lO's time x 10' s

1 9.62 1.00 7.38 1.00

2 4.84 1.99 4.42 1.67

3 3.37 2.86 3.38 2.18

4 2.54 3.79 3.18 2.32

5 2.01 4.78 3.00 2.46

6 1.83 5.26 2.94 2.51

7 1.62 5.95 2.92 2.53

8 1.44 6.68 2.86 2.58

9 1.33 7.23 2.87 2.56

10 1.14 8.45 2.88 2.57

Table 5.5: The execution times and speedups of a network

of 20x20x20 nodes using the 'Batch' method

produced by NNS and NEUCOMP2

10
9

8 --+-NNS

'0.
7 _experiment1

::;, 6
"C
Q) 5
Q)

4 0.
III

3

2

1
0

1 4 7 10

no. of processors

Fig. 5.14: comparison of speedups vs. no. of

processors for both NNS and

NEUCOMP2 using the 'Batch' method

174

--------------------------------- -

NNS NEUCOMP2

(experiment!)

Number of Execution Speedup Execution Speedup

Processors time x 101S time x 101 s

1 35.5 1.00 27.2 1.00

2 18.1 1.97 15.8 1.72

3 12.2 2.90 12.9 2.11

4 9.37 3.79 12.0 2.27

5 7.35 4.83 11.5 2.37

6 6.57 5.40 11.1 2.45

7 5.76 6.16 11.0 2.49

8 5.01 7.08 11.0 2.48

9 4.46 7.96 10.8 2.51

10 3.72 9.53 10.8 2.51

Table 5.6: The execution times and speedups of a network

of 40x40x40 nodes using the 'Batch' method

produced by NNS and NEUCOMP2

10

9
--.-NNS

8

c. 7 _experiment1

:::l 6
'C
Cl) 5
Cl)

4 C.
III

3

2

1

0
1 4 7 10

no. of processors

Fig. 5.15: Compar ison of speedups vs. no. of

processors for both NNS and

NEUCOMP2 using the 'Batch' method

175

NNS NEUCOMP2

(experiment1)

Number of Execution Speedup Execution Speedup

Processors timex lOos time x 10° s

1 44.7 1.00 34.5 1.00

2 22.7 1.97 18.3 1.89

3 16.2 2.77 14.6 2.37

4 11.9 3.75 13.5 2.56

5 9.87 4.53 13.0 2.66

6 9.23 4.85 12.5 2.76

7 7.88 5.68 12.6 2.74

8 7.28 6.14 12.5 2.76

9 7.04 6.35 12.5 2.76

10 6.07 7.37 12.5 2.76

Table 5.7: The execution times and speedups of a network
trained on 80 vector pairs using the 'Batch'
method produced by NNS and NEUCOMP2

10
-+-NNS

9

8
__ experiment1

Co
7

::I 6
"C
Q) 5
Q)

4 Co
U)

3

2

1

0

1 4 7 10

no. of processors

Fiq. 5.16: comparison of speedups vs. no. of
processors for. both NNS and

NEUCOMP2 using the 'Batch' method

176

NNS NEUCOMP2
(experiment})

Number of Execution Speedup Execution Speedup

Processors timex lOos time x 10° s

1 55.9 1.00 43.2 1.00

2 28.5 1.96 22.8 1.88

3 19.8 2.82 18.1 2.37

4 14.8 3.79 16.8 2.57

5 12.2 4.60 15.9 2.70

6 11.0 5.07 15.6 2.76

7 9.57 5.80 15.5 2.78

8 8.95 6.24 15.4 2.80

9 8.65 6.46 15.3 2.82

10 7.25 7.71 15.4 2.80

Table 5.8: The execution times and speedups of a network
trained on 100 vector pairs using the 'Batch'
method produced by NNS and NEUCOMP2

10

9 -+-NNS

8 -11- experiment1
1

Cl.
::> 6

'lil 5
CD
Cl. 4 en

3

2

1

0
1 4 1 10

no. of processor

Fig. 5.17: comparison of speedups Vs. no. of

processors for both NNS and
NEUCOMP2 using the 'Batch' method

177

NEUCOMP2 NEUCOMP2

(experiment 1) (experiment2)

Number of Execution Speedup Execution Speedup

Processors time x 10·s time x to· s

1 27.2 1.00 28.0 1.00

2 15.8 1.72 14.1 1.98

3 12.9 2.11 9.86 2.84

4 12.0 2.27 7.14 3.92

5 11.5 2.37 5.81 4.83

6 11.1 2.45 5.12 5.48

7 11.0 2.49 4.41 6.36

8 11.0 2.48 3.76 7.45

9 10.8 2.51 3.76 7.45

10 10.8 2.51 3.09 9.08

Table 5.9: The execution times and speedups of 40x40x40

nodes using the 'Batch' method on the first

and second experiments of the NEUCOMP2

programs

10

9

8

Co 7
:::I 6

al 5

:!t 4
UI 3

2

-+-experiment1
_experiment2

1-'-.... --

o+-~~~_+-+~~~+-+_~~~_+~~

1 4 7 10

no. of processors

Fig. 5.18: Comparison of speedups vs. no. of

processors for both experimentl and

experiment2 using the 'Batch' method

178

NEUCOMP2 NEUCOMP2

(experiment 1) (experiment2)

Number of Execution Speedup Execution Speedup

Processors timex lOos time x 10° s

1 34.5 1.00 35.6 1.00

2 18.3 1.89 18.6 1.92

3 14.6 2.37 15.3 2.33

4 13.5 2.56 12.0 2.98

5 13.0 2.66 8.51 4.18

6 12.5 2.76 8.76 4.07

7 12.6 2.74 8.75 4.07

8 12.5 2.76 8.74 4.07

9 12.5 2.76 8.60 4.14

10 12.5 2.76 6.04 5.90

Table 5.10: The execution times and speedups of a network

trained on 80 vector pairs for the first and

second experiments of the NEUCOMP2 programs

10 --+-experiment1
9

8 _experiment2

c. 7

::::J 6
"C
Q) 5
Q)

4 C.
UI

3

2

1

0
1 4 7 10

no. of processors

Fiq. 5.19: comparison of speedups vs. no. of

processors for both experimentl and

experiment2 using the 'Batch' method

179

NEUCOMP2 NEUCOMP2

(experiment 1) (experiment2)

Number of Execution Speedup Execution Speedup

Processors timex lOos time x 10° s

1 43.0 1.00 44.4 1.00

2 22.8 1.88 23.1 1.92

3 18.1 2.37 19.2 2.31

4 16.8 2.57 14.7 3.03

S IS.9 2.70 10.7 4.1S

6 IS.6 2.76 10.7 4.1S

7 IS.S 2.78 10.6 4.18

8 IS.4 2.80 10.7 4.1S

9 IS.3 2.82 10.6 4.18

10 IS.4 2.80 7.10 6.2S

Table 5.11: The execution times and speedups of a network
trained on 100 vector pairs for the first and
second experiment of the NEUCOMP2 programs

10

9 --+- experiment1

8 __ experiment2

7
Cl. 6 :::I
-g 5
Cl)
Cl. 4
'" 3

2

1

0

4 7 10

no. of processor

Fig. 5.20: comparison of speedups vs. no. of
processors for both experiment1 and

experiment2 using the 'Batch' method

180

Fig. 5.21:

--+-NNS (On-line)

-a-NEUCOMP2

12
(experiment2)

1 3 5 7 9

no. of processors

comparison of execution times vs. no. of
processors for 5x5x5 nodes from the NNS

using the 'On-line' and the experiment2.

&2

"'i' 42 g .,
~ 32
t...

~ 22
;:;

12

3

-+-NNS (On·line)
__ NEUCOMP2

(experiment2)

& 7

no. of processors
9

Fig. 5.22: comparison of execution times vs. no. of
processors for 40x40x40 nodes from the NNS

using the 'On-line' and the experiment2.

181

5.6 DISCUSSION

The Parallel Neural Network compiler called NEUCOMP2 was

designed for the SEQUENT Balance computer at PARCo The

main objective of NEUCOMP2

simulation program to be

is to generate a

executed on the

parallel

parallel

machine. The work is an extension of the work carried out

on NEUCOMP. The only change to the NEUCOMP language from

the old version is placing the statement PARALLEL in

front of the procedure call in order to run that

procedure in parallel. The NEUCOMP2 program is then

compiled by NEUCOMP2 to generate the parallel C-code that

runs on the parallel machine.

The main characteristics of NEUCOMP2 is the

parallelising phase (figure 5.1) which can be changed to

suit any parallel machine of different architectures,

i. e. Transputer network, Intel Hypercube, etc., wi thout

changing the whole process of the compilation technique.

The parallelising phase that has been implemented so far

is for the Shared-Memory parallel machine, i.e. the

SEQUENT Balance. The design of the parallelising phase

was based on the strategies used in the automatic

parallelisation of programs or parallelising compiler.

NEUCOMP2 allows the loop iteration to be executed in

parallel on the matrix/vector operations. Therefore the

'On-line' and 'Batch' methods in the backpropagation

algorithm are actually parallelising the loops of the

program which is suitable for parallelism.

It has been shown that parallelising the loops of

the program generated by NEUCOMP2 gives a better

performance in terms of execution time and speedup

whereas parallelisation by partitioning the training

patterns in the NEUCOMP2 did not perform so well. It has

also been shown that parallelising the loop iteration

using the 'Batch' method generated by NEUCOMP2 is twice

faster than the NNS specifically designed for the

backpropagation algorithm which uses the one-dimensional

array of the linked-list. It has also been shown that the

182

'On-line' method used by the NEUCOMP2 program gives a
slightly better performance than the 'On-line' method of

the NNS.
To confirm the correctness of the parallel programs,

results were compared and checked satisfactorily with the
sequential versions generated by NEUCOMP.

183

CHAPTER 6

NEURAL NETWORK APPLICATIONS

184

This chapter discusses the different types of application

problems solved using some popular NN models. They are

implemented on the parallel computer at PARC using the
NEUCOMP/NEUCOMP2 language. These programs are called the

NN simulation programs.

There are three types of problems considered to be

solvable by NN simulations.

categories :-

These belong to the

(1) the classification problem

(2) the approximation/classification problem

(3) the optimisation problem

The character recognition problem belongs to the

classification category. The spiral problem belongs to

the approximation/classification category and the

travelling salesman problem (TSP) belongs to the

optimisation category.

The chosen network models for

problem are the

Counterpropagation

backpropagation

(CPN) and ART1

the classification

(BP) , Kohonen,

networks. In the

classification problem, the output nodes for the

backpropagation and Counterpropagation networks are

arranged in binary form so that when the first node is

one and the rest are zeros, it belongs to the first

class, and when the second output node is one and the

rest are zero it belongs to the second class, and so on.

In the Kohonen network the output layer known as map,

cluster the patterns into the different classes. The

input to the networks are all binary numbers.

The chosen models for the approximation/

classification problem are the backpropagation, Kohonen

and Counterpropagation networks. Solving the spiral

problem using backpropagation is considered as an

approximation, since the output node is one and its

content is the Sigmoid function which lies between 0 and

L When the output value approximates to 1, the spiral

belongs to the first class and when the output value

185

approximates to 0, it is the second type of spiral. The

spiral problem using the Kohonen and counterpropagation

networks are said to. be a classification problem since

both networks cluster the input data into different

classes of· spirals. The input to and output from the

networks are real numbers.

The chosen models for the optimisation problem are

the Hopfield-type networks. The Hopfield-type networks

considered are the Hopfield-Tank and Potts-Glass models.

The input to and output from the networks are again real

numbers.

The simulation results for the above problems are

shown graphically using the 'Mathematica' programs which

are included as NEUCOMP/NEUCOMP2 library functions. The

parallel simulation programs are also implemented using

NEUCOMP2 for all the problems. Their execution times and

speedups are then compared.

186

6.1 CHARACTER RECOGNITION PROBLEM

A template-matching technique for the identification of

the alphabetic characters, A ••• Z, has been successful

by running the simulation programs on the chosen NN

models. The respective models are the backpropagation,

Counterpropagation, Kohonen and ART 1 networks. The

backpropagation and Counterpropagation networks are

trained using supervised learning. The Kohonen and ARTl

networks are trained using unsupervised

results of the simulation are shown as

learning. The

the time in

seconds taken for training and the output of the

successfully recognised input patterns.

6.1.1 Simulation Programs for Character Recognition

The simulation programs using the NEUCOMP language for

recognising the character set, A ••• Z, are implemented

on the four respective NN models - the backpropagation,

Kohonen, ARTl and Counterpropagation networks.

The input layer consists of 100 nodes and the output

layer is organised depending on the type of model used.

For the backpropagation, Counterpropagation and ART 1

networks, the output layer is defined as 26 nodes.

However, the output layer for the backpropagation and

counterpropagation networks corresponds to one of the

characters, i.e., for the character A, the first node is

one and the rest are zero, and so on. The output node for

ARTl represents the winner node when the respected input

character is assigned to the network. This winner node

combines with the feedback connection for the output

result. For the Kohonen network, the output is in the

form of a map of a two-dimensional array to display

regions controlled by each character.

The simulation programs for the backpropagation,

Kohonen,

presented

ARTl and Counterpropagation

in sections 4.4.1 to 4.4.4.

networks

A three

were

layer

network is used for the backpropagation network and its

187

hidden layer is set to 20 nodes. For the Kohonen network,

the size of the map is 30x30 while for the

counterpropagation network, the size of the competitive

layer is set to 100.

In the backpropagation network, the weights are

updated after presenting all the vector pairs (i.e., set

of input and target patterns). This is known as the

'Batch-method'. The weights for the remaining NN models

such as the Kohonen, counterpropagation and ART 1

networks, are adjusted for every training pattern.

6.1.2 Experimental Description

Experiments have been carried out to train the 26

characters, A •• Z, using the respective networks. Every

character is written as an array of 10x10 binary numbers

to represent an image of that character and are kept in

an input file. To test the trained networks, two sets of

data are presented. The first set contains the original

data and the second set contains the noisy image.

An example of the original and noisy characters for

A is shown in fiqure 6.1 where a black box represents "1"

and a white box represents "0".

6.1.2.1 Simulation results/or the back propagation network

The connection weights and biases for all the nodes in

the hidden layer and the output layer are initially set

randomly in the interval (-1.0,1.0). The weights and the

biases are assigned with different seeds used for

starting the random number generator, which are 10, 100,

1000, and 5000 respectively. The beta value is set to 0.5.

When using the GRBH method (section 4.4.1), the values of

alpha are 10, 0.5, 0.1 respectively according to the range
set to 1.0x10-4 and 1.0x10-2 • The training cycle is

terminated when enormsqr<O.l •

188

Fiq. 6.1: The oriqinal and noisy characters for A

The number of iterations required to train the 26

characters is 388 which took 4.05xl03 seconds. The output
nodes hold the following results when all the characters
were recalled.

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.98 for character A

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.000.000.000.000.000.000.000.950.01 for character B

0.99·0.000.000.000.01 0.000.000.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 for character Z

An example of a noisy character for A when presented
to the network, shows the output nodes to have the
following values :-

0.000.000.000.000.01 0.000.000.000.000.000.000.000.000.160.000.000.01

0.00 0.22 0.00 0.03 0.00 0.00 0.00 0.00 0.38

189

The result shows that the output node on the right holds

the maximum value for a noisy character A.

6.1.2.2 Simulation results for the Kohonen network.

The initial learning rate, neighbourhood size and random

number seed were set to 0.5, 15 and 1000 respectively.

The random weights were set between 0 and 1. After 60

cycles, all 26 characters were well distributed in the

map with size 30x30. The result is shown in figure 6.2

where the "o"s represent inactive nodes and each

displayed character represents the winner node for that

respective character.

The results shows that characters which are not

closely related are set well apart on the map, e.g.

character S, J, and Z but characters that are closely

related are near to each other, e. g. G, 0, D. The time

taken after 60 cycles is 16.8x103 seconds.

When the original characters are presented one at a

time to the trained network, the winner node is marked

with "*", showing that the character has been

successfully recognised and when a noisy character is

presented the winner node also marked with "*" appeared

very close to its original character. An example of a

noisy character for A after being presented to the

network is shown in figure 6.3.

6.1.2.3 Simulation results for the ART1 network

This network does not require any iterations when it is

trained since its feedforward and feedback weights are

not updated. The feed forward weight is adjusted using the

formula given earlier (section 4.4.3) when a new

character is presented to the network and the feedback

weight is adjusted with binary values equivalent to the

input character. These binary values will be produced as

output when the winner node is identified for that

pattern.

190

ooooooooYooooooX0600000AoooooB
Tooooooooooooooooooooooooooooo
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
ooooooooooooooooooooooooooooRo
ooooooIooooooooooooEoooooooooo
000000000000000000000000000000
000000000000000000000000000000
SoooooooooooZooooooooooooooooP
000000000000000000000000000000
000000000000000000000000000000
ooooooooooooooooooooLooooooOOO
ooooooooooooooooooooooooooFooo
000000000000000000000000000000
000000000000000000000000000000

JOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
000000000000000000000000000000
oooooooCoooooooooooooooooooooo
ooooooooooooooooKooooooooooooo
oooooooooooooooooooooooNoooooH
000000000000000000000000000000
Gooooooooooooooooooooooooooooo
oooooOoooDoooooooooooooooooooo
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
ooooooooooooooooooooooooooooMo

QoooooooUoooooVooooooWOOOOOOOO

Fiq. 6.2: Final map of characters after 60 iterations

191

ooooooooYooooooXoooooooAoooooB
Tooooooooooooooooooooooooooooo
00000000000000000000000*000000 4~~---
000000000000000000000000000000

000000000000000000000000000000
000000000000000000000000000000

ooooooooooooooooooooooooooooRo
ooooooIooooooooooooEoooooooooo
000000000000000000000000000000
000000000000000000000000000000

SoooooooooooZooooooooooooooooP
000000000000000000000000000000

000000000000000000000000000000

ooooooooooooooooooooLooooooooo
ooooooooooooooooooooooooooFooo
000000000000000000000000000000

000000000000000000000000000000

Jooooooooooooooooooooooooooooo
000000000000000000000000000000
oooooooCoooooooooooooooooooooo
ooooooooooooooooKooooooooooooo
oooooooooooooooooooooooNoooooH
000000000000000000000000000000

Gooooooooooooooooooooooooooooo
oooooOoooDoooooooooooooooooooo
000000000000000000000000000000

000000000000000000000000000000
000000000000000000000000000000
ooooooooooooooooooooooooooooMo

QoooooooUoooooVooooooWoooooooo

Fig. 6.3: The winning node for noisy A is marked

with '*' close to A as indicated

192

The time taken to train all 26 characters is 22
seconds. All the characters were successfully recalled.
The noisy characters were also correctly identified. The
output characters are displayed similar to their inputs.
As an example, for the original and noisy character for
A, the output is shown in figure 6.4 as pattern A.

6.1.2.4 Simulation results for the Counterpropagation network

since there are two different layers to be trained on
this network, both weights are updated at the same time
per cycle. The number of iterations is 60. This number of

cycles is required to allow the 26 characters to self
organise in the competitive layer. At the same time, the

weights between the winner node and the output layer are
then updated according to the target output presented to
this layer.

The initial learning rates to update the first and

second weights are 0.5 and I respectively. The first
weights are initially assigned with a random number from
the interval (0,1) with the seed equal to 1000. The
second weights are initially set to zero. Since the

output is a binary value, the final value for the second
weight is equal to the target value.

The time taken for 60 training cycles is 2. 05x103

seconds. All the characters were successfully recalled.
The noisy characters, were also correctly identified. The
output nodes hold the following binary values when the

original and noisy characters were presented.

o 0 1 represents A
o 0 1 0 represents B

. . . .
1 0 represents Z

193

Fiq. 6.4: The output of pattern A

6.1.2.5 Parallel Simulation results

To generate a parallel program, the NEUCOMP programs for

the four NN models studied previously were added with the

parallel statements stated earlier. These were then

compiled and executed using NEUCOMP2. The performance of

the parallel execution ranging from one processor to many

processors were measured. The speedup are calculated

based in section 5.5.

The performance results for the backpropagation

network are shown in table 6.1. The performance results

for the Kohonen network are shown in table 6.2. The

performance results for the Counterpropagation network

are shown in table 6.3. The performance results for the

ARTl network are shown in table 6.4.

The graphs of speedup versus number of processors

for all the above results are shown in fiqure 6.5. The

graph of the execution times for the results are shown in

fiqure 6.6.

6.1.3 Discussion o/the results

For the first simulation in the character recognition

problem, the ARTl network performed the fastest learning

194

time which is approximately 22 seconds. This is because

in the ART1, training the network is not through updating

the weights for every iteration. Instead its feedforward

weights are adjusted by a formula so that when a similar

pattern is presented, these weights guarantee to give the

maximum value. The node that is connected to those

weights is the winner node. The Counterpropagation

network took about 2. 05xl03 seconds for 60 cycles, the

backpropagation network took about 4.05X103 for 388

cycles and the Kohonen network took 16.8xl03 seconds for

60 cycles. The Kohonen network training took the longest

because with the size of its competitive layer, i.e.

30x30, updating the weights of the neighbourhood affect

the execution time.

A thorough comparison amongst the networks in

response to different levels of noise was not carried out

because the purpose of the experiment was to prove that

the NEUCOMP language is capable of developing a

simulation program for any NN model.

When all the network were executed in parallel, the

execution times became less as the number of processors

increased. They are shown in figure 6.6. The graphs show

that the execution time for the Kohonen network is the

slowest and the execution time for the ARTl network is

the fastest. The speedup for the Kohonen network almost

reached the ideal speedup whereas for the ART1, the

speedup indicates poor performance. For the

backpropagation network, load imbalancing among the

processors occurred. The reason that can be deduced is,

the Kohonen network is a two layer network of size

100x{30x30). Thus partitioning the nodes among the

processors were evenly distributed. This could not happen

to the backpropagation network as the nodes are varying

in size, i.e. lOox20x26. The ARTl network has a small

size, i.e. lOox26 and the size of the Counterpropagation

network is lOOxlOOx26.

195

No. of

Processors

1

2

3

4

5

6

7

8

9

10

Table 6.1:

No. of

Processors

1

2

3

4

5

6

7

8

9

10

Execution time Speedup

x 103sec.

4.06 1.00

2.05 1.98

1.44 2.82

1.05 3.87

0.88 4.61

0.84 4.83

0.66 6.15

0.65 6.25

0.62 6.55

0.47 8.64

The execution time and speedup

for the BP network

Execution time Speedup

x 103sec.

16.9 1.00

8.67 1.95

5.85 2.89

4.42 3.82

3.57 4.73

3.03 5.58

2.54 6.65

2.22 7.61

1.98 8.54

1.79 9.44

Table 6.2: The execution time and speedup
for the Kohonen network

196

,." ")

"
'" \

~'"' '",". ,,' .
" ,

, '

"
" "".,-." , , .

"
"

. , ,

No. of Execution time Speedup

Processors x 103sec.

1 2.10 1.00

2 1.07 1.96

3 0.73 2.88

4 0.56 3.75

5 0.46 4.57

6 0.40 5.25

7 0.35 6.00

8 0.31 6.77

9 0.28 7.50

10 0.26 8.08

Table 6.3: The execution time and speedup
for the CPN

No. of Execution time Speedup

Processors x 101sec.

1 2.21 1.00

2 1.13 1.96

3 0.80 2.76

4 0.63 3.51

5 0.53 4.17

6 0.48 4.60

7 0.43 5.14

8 0.41 5.39

9 0.38 5.82

10 0.36 6.14

Table 6.4: The execution time and
speedup for the ART1 network

197

10

9 -+-ART1

8 -lll-CPN
7 --.- KOHONEN

c. 6
" "5l 5

--e--BP
Cl)
c. 4
'" 3

2

1

0
0 1 2 3 5 6 7 8 9 10

no. of processors

Fiq. 6.S: The speedups versus no. of processors

165
155
145

-+-BP 135
125 -lll-KoHONEN

115 --.-CPN
cl 105 ~ART1
Cl)

'" 95
0
0 85

>< 75
Cl) 65 E

"" 55
45
35
25
15
5

·5

2 3 4 5 6 7 8 9 10

no. of processors

Fiq. 6.6: Time in second versus no. of processors

198

6.2 INTERTWINED SPIRALS PROBLEM

To distinguish between two intertwined spirals is an
example of a difficult pattern recognition problem. The
data in this example are the X and y co-ordinates of two
spirals as shown in figure 6.7. A set of points (1. e.
input vectors) is trained to distinguish between the two

spirals. The goal of this example is to train the network

to map X and y co-ordinates into the proper spiral.

Fig. 6.7: The two intertwined spiral

The training set, Le. X and y co-ordinates are
generated by using the following formula :-

where

and

x=rsinO

y= rcosO

r=6.S(J04-i)
104 '

l} • 11:
u =1-

16 '

i = 0,1, ... , k-l.

199

The x and y co-ordinates for the second spiral are

calculated as follow :-

x = -rsin8
y=-rcos8

This will generate 2k co-ordinates for the training set.

The value of k can be changed to give different training

set sizes.
The spiral problem was originally conceived by Lang

et al. (1988) using the backpropagation network. Later it

became a benchmark for many researchers in the area of

the backpropagation learning algorithms [Leighton et al.

(1992), Sannosian (1992)].

A study to solve this problem has been carried out

using the NEUCOMP language which also includes other

network models. They are the Counterpropagation and

Kohonen networks. In the backpropagation, the learning

algorithm is based on the GRBH method and the weights are

updated using the 'Batch' method. The parallel simulation

programs for these three networks are also carried out

using the NEUCOMP2 language.

6.2.1 Simulation programs for the back propagation network

The NN architecture for the backpropagation network

follows Lang et al. (1988). It has two input nodes, three

hidden layers

each hidden

and one output node. The number of nodes in

layer is set to seven. Each layer is

connected to all the layers, which gives a short cut

connection between the layers. The output can have only

two states where each indicates one of the spirals. So if

the point x,y lies on the first spiral then the output is

o. Otherwise the output is 1 and the point x,y lies on the

second spiral. The number of training patterns are 200

(Le. k = 100).

The simulation program written in the NEUCOMP

language is similar to section 4.4.1. However, the

200

variables which represent the additional hidden layers

and weights need to be defined. The 'Batch' method with

the GRBH algorithms was implemented with a shown in table

6.5 and {J=0.95.

R = I:!I a

R ~ 10-6 10

R < 10-5 5

R < 10-4 0.1

R S; 10-3 0.05

R >10-3 0.01

Table 6.5: The chosen value of a with respect to R

The print format to display the results contains the

input and output data. These wiil give three-dimensional

co-ordinates. They can then be plotted graphically using

the Mathematica program called 'xyzplot'. To display a

graph of the error versus number of iterations, a program

called 'xygraph' is used.

6.2.2 Simulation programs for the Kohonen network

The simulation program for the Kohonen network is similar

to section 4.4.2. The size of the input node is two and

the size of the grid is set to 30x30. The number of

training patterns are 200 (i.e. k = 100), the learning

rate is set to 0.5 and the neighbourhood size is set to

15. The initial weight is set to a random number between

o and 1 with the seed as 1000.

The print format to display how the Kohonen network

self-organises the input pattern

of the connection weights.

dimensional co-ordinates. They

contains the two values

These will gi ve two

can then be plotted

graphically using the Mathematica program called

201

'xyspiral'. The information contained in the weights

determines the input data that is a close approximate.

6.2.3 Simulation programs for the Counter propagation network

The simulation program for the counterpropagation network

is similar to section 4.4.4. The size of the input node

is two, the size of the second layer is set to 1000 and

the size of the output node is one. The output node may

contain 0 when the co-ordinate lies on the first spiral

and 1 for the second. The number of training patterns are

200 (i.e. k = lOO) and the learning rate is set to 0.5.
The initial weight is set to a random number between 0

and 1 with the seed starting at 1000.
To display the simulation result, a similar print

format of the backpropagation is used.

6.2.4 Simulation results

Figures 6.8 to 6.10 are the simulation results for the
backpropagation network. Figures 6.11 to 6.14 are the

simulation results for the Kohonen network using NEUCOMP.

Figures 6.15 to 6.16 are the simulation results for the

counterpropagation network.

Figure 6.8 shows the spiral points are scattered

around the axes before training. Figure 6.9 shows the
points that belong to each spiral correctly displayed to
their respective spiral after 29184 iterations and

enormsqr was found to be 0.08. The training process was

terminated when all the activation values of the output
node were less than 0.4 of the target values. Figure 6.10

displays the progression of the GRBH learning algorithm

based on the 'Batch' method. The x-axis of the graph

represents the number of iterations required to obtain
the solution and the y-axis represents the number of
vector pairs in error.

202

Figure 6.11 shows the distribution of the patterns

for the Kohonen network before training. The pattern

vectors were randomly distributed within the spirals.

Figure 6.12 shows the patterns distribution after 200

iterations. Although all the patterns have been correctly

separated,

patterns.

after 500

that were

shows the

some patterns stayed close to their original

Figure 6.13 shows the pattern distribution

iterations and there were still

not on their original patterns.

patterns distribution after 1000

some points

Figure 6.14

iterations.

All the patterns from both spirals were in their correct

position.

For the Counterpropagation network, figure 6.15

shows the input and output vectors are randomly

distributed before training. Figure 6.16 shows the ..
pattern vectors were correctly distributed after 200

iterations.

• •• recalled first patterns
o 0 0 recalled second patterns
.. _._._._...... original patterns

Fig. 6.8: The input and output vectors from

the BP simulation before training

203

0.75

o.

0.25

•

o

••• recalled first patterns
o 0 0 recalled second patterns

.... original patterns

Fig. 6.9: The input and output vectors from
the BP simulation after training

errors

20

17

15

12

10

Fig. 6.10:

no. of errors vs. iteration

5000 10000 15000 30000
iterations

Graph of the number of errors
versus number of iterations

204

••• recalled first patterns
o 0 0 recalled second pattern
..... _ _..... original patterns

Fiq. 6.11: The patterns distribution from the

Kohonen network before training

••• recalled first patterns
o 0 0 recalled second pattern

... original patterns

Fiq. 6.12: The patterns distribution for

two spirals from the Kohonen

network after 200 iterations

205

••• recalled first patterns
o 0 0 recalled second pattern
............... original patterns

Fig. 6.13: The patterns distribution for

two spirals from the Kohonen

network after 500 iterations

••• recalled first patterns
o 0 0 recalled second patterns
.............. original patterns

Fig. 6.14: The patterns distribution for

two spirals from the Kohonen

network after 1000 iterations

206

0.7

o.

0.2

0.75

0.5

0.25

o

• •• recalled first patterns
o 0 0 recalled second patterns
_________ original patterns

Fig. 6.15: The input and output vectors
from the CPNbefore training

••• recalled first patterns
o 0 0 recalled second patterns
___ _ original patterns

o~~ __________ ~ ____________ ~
-5 0 5

Fig. 6.16: The input and output vectors from

the CPN after 200 iterations

207

6.2.5 Parallel Simulation results

The NEUCOMP2 programs for the backpropagation, Kohonen

and Counterpropagation networks are similar to those

discussed in section 6.1.2.5. However, the generated
parallel programs for these networks are different from

the previous simulations. There are some loops in the

NEUCOMP2 programs for classifying two spirals that are

not executed in parallel. Those loops are the input

layers for all networks which have only two nodes. The

output layers for the backpropagation and

Counterpropagation have only one node. NEUCOMP2 does not

consider loop iterations which are less than 5 (section

5.4.2.3) •

To study the parallel performance of the

backpropagation, Kohonen and Counterpropagation networks,

similar experiments to section 6.1.2.5 were carried out.

The number of

results for

iterations was set to 10.

the backpropagation,

The performance

Kohonen and

Counterpropagation networks are shown in table 6.6, 6.7
and table 6.8 respectively. The graphs of speedup versus

number of processors for all the above results are shown

in figure 6.17. It shows that for the Kohonen and

Counterpropagation networks, the speedup increases

steadily whilst for the backpropagation network, the

speedup increases until 7 processors. Load imbalance

occurred when 5 or 6 processors were used. These is

because the size of the backpropagation network for

spiral problem is small, i.e. 2x7x7x7xl. The speedup for

the Counterpropagation network performed better because

its competitive layer (i.e. 1000) is greater than the

Kohonen (i.e. 30x30). However, the speedups of similar

simulations (section 6.1.2.5) have better performance

since all loops were executed in parallel.

208

No. of Execution time Speedup

Processors x 1Ol sec.

1 11.4 1.00

2 7.09 1.61

3 5.59 2.04

4 4.32 2.64

5 4.30 2.65

6 4.17 2.73

7 3.10 3.68

8 3.11 3.67

9 3.12 3.65

10 3.16 3.61

Table 6.6: The execution time and

speedup for the BP network

No. of Execution time Speedup

Processors x 102sec.

1 11.48 1.00

2 6.25 1.84

3 4.47 2.57

4 3.57 3.21

5 3.05 3.76

6 2.71 4.24

7 2.46 4.67

8 2.28 5.04

9 2.14 5.37

10 2.02 5.68

Table 6.7: The execution time and speedup
for the Kohonen network

209

No. of Execution time Speedup

Processors x 102sec.

1 11.96 1.00

2 6.08 1.97

3 4.11 2.91

4 3.14 3.81

5 2.55 4.69

6 2.17 5.51

7 1.89 6.33

8 1.69 7.08

9 1.53 7.82

10 1.42 8.42

Table 6.8: The execution time and
speedup for the CPN

10

9

8 --+-KOHONEN

--e--CPN
7

---.-BP
Q. 6

" al 5 .,
Q.
en 4

3

2

1

0

0 1 2 3 4 5 6 7 8 9 10

no. of processors

Fig. 6.17: The speedups versus no. of processors

210

6.3 TRAVELLING SALESMAN PROBLEM

The Travelling Salesman problem (TSP) is a well known

combinatorial optimisation problem [Aarts (1989),

Freisleben et al. (1991), Karp (1977), Platt (1988),

Wacholder et al. (1989), Wilson et al. (1988)]. This is a

difficult optimisation problem that belongs to the NP

complete class of problems. A set of N cities, a, b, c, d, ...

have distances of separation dab, dao ... , dbo dbd• The aim

of the TSP is to find a valid tour which visits each city

once, returns to the starting city, and has the shortest

total path length. As N increases, the computational work

of the problems increases exponentially.

Two Hopfield-type models are considered for the TSP.

They are the Continuous Hopfield model and the Potts

Glass model. The continuous Hopfield model or Hopfield

Tank model [Hopfield et al. (1985)] is chosen because of

its original contribution to the TSP. The Potts-Glass

model is chosen because

better solution. The

it is an alternative to find a

objective is to study the

implementation of the models using the NEUCOMP language

to solve the TSP.

The simulation starts with a small value of N, then

the size of the problems is doubled until restricted to

computational resources. The TSP is easy to solve for

small N but as the number of possible solutions increases

exponentially with N, it becomes impossible to find the

best solution and a good approximation is an acceptable

solution.

6.3.1 The Hopfield-Tank model

The details of the Hopfield-Tank model for TSP has been

explained in section 2.2.2.2. This section discusses the

Hopfield-Tank simulation program written in the NEUCOMP

language for the TSP, the experimental results for the NN

simulation and the parallel simulation results.

211

6.3.1.1 Simulation Program for the Hopfleld-Tank model

The algorithm for the TSP simulation program is based on
Muller et al. (1990). The data structure is as follows :-

INT seed;

REAL

xcity[ncity], ycity[ncity], dist[ncity,ncity],
node[ncity,ncity], u[ncity,ncity],
deltat, lambda1, lambda2, lambda3, tau, temp,
energy, energyo, energy1, energy2, energy3;

where seed is used to generate a different starting number

generator, ncity is the size of the cities, xcity and ycity

the co-ordinate of the city on a two-dimensional axes,
dist is the Euclidean distance between the cities, node is
the activation node, U is the local field, deltat is the
time increment At, lambda1 , lambda2 and lambda3 are the

A's, tau is the time constant f, temp is the temperature of
the sigmoid function, and energy to energy3 represent

E,EO, ,E3 of the energy function. The symbols u, At, A,

f and E, EO, ,E3 can be referred in section 2.2.2.2.

The algorithm for the TSP simulation program and the
NEUCOMP program codes are as follows :-

(1) calculate the initial local field, u and activation
node, node which are written as :-

u = -0.5*temp*LOG(ncity)*(1 + 0.1*RAND1(seed»;
node = SIGMOID(2*u/temp)

The initial value u, is set to some noise level, i.e.
with random value generated by function RAND] between
-1

fully
1. This is to avoid starting at a

symmetric state and allows
nondeterministic operation of the program.

212

spurious

for a

(2) calculate the value of (2.2.nia -N) which is written
i a

as :-

e3 = SUMALL(node) - ncity;

The built-in function SUA/ALL calculates all the

elements in the matrix node and returns a scalar

constant.

(3) calculate the u which is written as :-

U += deltat*(-l/tau*u - sumO(eO&,I,J)

- lambdal*(suml(el&,I) - node)

- lambda2*sum2(e2&,I,J)

- lambda3*e3);

where sumO, sum I and sum2 are the user-defined

functions. The first function is to calculate the EO,
the rest are for the E] and E2. Their argument lists,

eO, el, e2 followed by , &' means that a value is

returned from those functions. The arguments I and J
are the reserved words which represent the current

row and column of the matrix. They are used when a

scalar operation requires an element of the matrix.

This scalar operation is defined by the user as a

function. For example, sumO is written as shown in

figure 6.18.

The argument list of the function sumO need not be

declared because their types are based on its

function call. The two ' if-statements' are used to

impose a closed tour cyclic boundary, i.e. whenj+l is

equal to ncity then set j to zero and when j-I is less

than zero then set j to ncity-l.

213

FUNC sumO(eO,i,j)

INT k,add,minus;
eO = 0.;
FOR (k =o,ncity)

IF (j + 1 EQ ncity) add = 0
ELSE add = j + 1

ENDIF;
IF (j - 1 LT 0) minus = ncity - 1

ELSE minus = j - 1

ENDIF;
eO += dist[i,k)*(node[k,add)+node[k,minus)

ENDFOR RETURN eO;

Fiq. 6.18: A function defined by user for EO

3) calculate energyO, energy1, energy2, energy3 and energy

which are written as :-

energyO += eO*SUMALL(node);
energyl += (el - node)*SUMALL(node);
energy2 += e2*SUMALL(node);
energyO *= 0.5;
energyl *= 0.5;
energy2 *= 0.5;

energy3 = 0.5*e3*e3;
energy = energyO + lambdal*energyl

+ lambda2*energy2
+ lambda3*energy3;

(4) calculate the activation node, node which is written
as :-

node = SIGMOID(2*u/temp);

(5) repeat (2) until the following condition is met :-

saturation = SUMALL(node*node)/ncity;
IF (saturation GT .95) BREAK ENDIF

214

The variable saturation approaches one if a valid

solution is reached. However, the final result does

not guarantee that a valid tour is found. The

following test is then used to find a valid tour.

FOR (a = O,n - 1)

FOR (k = a + 1,n)

IF (city[a] EQ city[k])

PRINT (" invalid tour on city %d\n",city[a])i

BREAK

ENDIF

END FOR

ENDFORi

where city[a] and city[k] contain an integer value which

represent a city being visited at position a and k

respectively.

The complete program is shown in Appendix G.

6.3.1.2 Simulation results

The initial parameters for the experiments are chosen as

follow :-

'! = 1., Al = .1, A2 = .1, A3 = .1 and I::J = 0.0005

The values of the A'S are allowed to vary during the

iterations as based on wilson et al. (1988) in order to

improve the chances of the original Hopfield network on

finding the valid tour and shortest path otherwise it is

difficult to get a valid tour. The number of cities

tested was 20, 30 and 40 cities. A further increase on

the size of the cities cannot be carried out due to the

memory limitation. The number of iterations allowed for

the network to reach a stable state is 1000. A further

increase of this number will not change the final result.

215

A valid tour is easy to get but the shortest path

cannot be guaranteed. To do this, a number of experiments

was carried out with different initial random numbers

(seeds) and temperatures. The temperature is used to

determine the slope of the Sigmoid function.

Figure 6.19 shows a tour for 20 cities with a seed

set to 200 and temperature of 0.03. The result shows that

it is a valid tour but not the shortest. The distance

calculated is 8.86. Figure 6.20 illustrates a tour for 20

cities with a seed set to 400 and temperature of 0.03.

The result shows that it is the shortest recorded so far.

The distance calculated is 7.48.

Figure 6.21 shows a tour for 30 cities with a seed

set to 1100 and temperature of 0.05. The result shows

that it is a valid tour but not the shortest. The

distance calculated is 11. 04. Figure 6.22 shows a tour

for 30 cities with a seed set to 600 and temperature of

0.05. The result shows that it is the shortest recorded

so far. The distance calculated is 10.02.

Figure 6.23 illustrates a tour for 40 cities with a

seed set to 50 and temperature of 0.05. The result shows

that it is a valid tour but not the shortest. The

distance calculated is 13.45. Figure 6.24 illustrates a

tour for 40 cities with a seed set to 2600 and

temperature of 0.03. The result shows that it is the

shortest recorded so far. The distance calculated is

13.31.

The summary of the above results are shown in table

6.9.

N seed temperature Distance

20 200 0.03 8.86

400 0.03 7.48

30 1100 0.05 11. 04

600 0.05 10.02

40 50 0.05 13.45

2600 0.03 13.31

Table 6.9: The total path for 20, 30 and 40 cities

216

Number of cities : 20

distance = 8.86

Fig. 6.19: Valid cities but not the shortest

Number of cities 20

distance = 7.48

Fig. 6.20: Shortest path so far for 20 cities

217

Number of cities 30

distance = 11.04

Fig. 6.21: Valid cities but not the shortest

Number of cities : 30

distance = 10.02

Fig. 6.22: Shortest path so far for 30 cities

218

Number of cities 40

distance = 13.45

Fig. 6.23: Valid cities but not the shortest

Number of cities : 40

distance = 13.31

Fig. 6.24: Shortest path so far for 40 cities

219

6.3.1.3 Parallel Simulation results

Experiments similar to section 6.1.2.5 have been carried

out to study the performance of a parallel NN simulation

program generated by NEUCOMP2 for solving the TSP. Table

6.10 shows the execution times and speedups for three

numbers of cities, Le. 20, 30 and 40 cities with 300

iterations. Figure 6.25 gives the graph of speedup versus

the number of processors for the above experiments. The

graph shows that for a small size problem, load imbalance

among the processors occurred resulting in a lost of

efficiency. As the city size increases, the load

imbalance characteristic almost disappears. Hence, for a

network of size 40, the speedup almost reaches to an

ideal state. However, due to memory limitation further

results cannot be completed.

220

20 cities 30 cities 40 cities

no. of Execution speedup Execution speedup Execution speedup

processors. time time· time

1

2

3
4

5

6

7

8

9

10

x103sec. x103sec. x103sec.

2.29 1.00 4.24 1.00 7.07

1.16 1.97 2.14 1.98 3.57

0.83 2.76 1.49 2.85 2.48

0.63 3.64 1.16 3.66 1.79

0.49 4.67 0.96 4.42 1.46

0.49 4.67 0.79 5.37 1.27

0.37 6.19 0.75 5.65 1.08

0.38 6.03 0.60 6.95 0.95

0.38 6.03 0.61 6.98 0.86

0.27 8.48 0.47 9.01 0.76

Table 6.10: The execution times and speedups

for 20, 30 and 40 cities.

10

9

8

7

a. 6
::::I
'C

5 Q)
Q)
a.

4 III

3

2

1

0

0 1

-+-20clfle.
_30cIH ••

-A-40clH ••

2 3 4 5 6 7 8 9 10

no. of processors

Fiq. 6.25: The speedups versus no. of processors

221

1.00

1.98

2.85

3.95

4.84

5.57

6.55

7.44

8.22

9.30

6.3.2 The Potts-Glass model

Previous results for solving the TSP using the Hopfield

Tank model have not always located the shortest path. A

valid tour is sometime difficult to get for the size of

30 and more cities. Discussions on the reasons for this

can be obtained from Wilson et al. (1988). The next model

to be considered in this section is the Potts-Glass model

suggested by Peterson et al. (1989).
The problem of not achieving the solutions in the

Hopfield model is because the tour is chosen by a set of

N2 independent node variables nia = 0 or 1 where i, a = 1,

••• , N2. This lead to a situation whereby nia can be

active (i.e. one) on more than one a (i.e. cities). Thus

instead of allowing the node to be active and inactive

independently, the nodes are set to satisfy the following

constraint

a

pottsl
where s is known as aAspin variable. This guarantees that

a city is visited exactly once. In what follows, the

encoding scheme is denoted as 'graded neurons'.

Muller et al. (1990) outlines the Potts-Glass model

for the TSP as follows :-

(1) The energy function is written as

+ ~Lq>ia _1)2
a ,

The objective is to find a global minimum when the

spin variables take on values representing a valid

tour with minimum length and then to search for the

ground state of the spin system.

(2) In the search for the ground state of the spin

variable or at least a state with energy as low as

222

possible,
Potts-Glass

the 'mean-field approximation' of the
model is used. Thus the mean-field

equations are expressed as follows :-

(6.1)

(6.2)

where

Now equations 6.1 and 6.2 will be iterated at a
constant temperature until a stable solution is
reached.
reduced

The next iteration
temperature. This

will be performed at a
strategy follows the

simulated annealing method to avoid getting stuck at
the local minimum [Kirkpatrick et al. (1983)].

(3) The initial spin variable is set as

Via =~(1+0.1RAND 1)
N

as was done in the Hopfield-Tank model.
(4) The stopping criteria depends on one of the following

conditions :-

(a) The accumulated change of the spin values in the
updating procedure,

J.slv?ew _ v?ld I <is N£.J la la

is smaller than a predetermined constant, i.e.
0=0.1.

223

Cb) the saturation of the solution

17 = ~ '" v~ N~ la
la

approaches one as in the case of the Hopfield

Tank.

The following sections discuss the NEUCOMP program

codes for the Potts-Glass simulation, the results when

the size of the problems is increased and the performance

of the parallel simulation.

6.3.2.1 Simulation Program for the Potts-Glass model

The algorithm for the Potts-Glass simulation is based on

Muller et al. (1990). The data structure is as follows :-

INT seed;
REAL

xcity[ncity],ycity[ncity], dist[ncity,ncity],
v[ncity,ncity], u[ncity,ncity],
temp, anneal, delta, aconst, bconst;

where seed, ncity, xcity, ycity and dist serve similar purposes
as defined in section 6.3.1.1, v represents spin variable
(equation 6.1), u is the variable of equation 6.2, delta
represents (j, temp is the temperature, i.e. T, aconst and
bconst are the constraint parameters for the A and B of
equation 6.2.

The algorithm for the TSP simulation program and the
NEUCOMP program codes is as follows :-

(1) calculate the initial variable for spin which is
written as :-

v = (1. + 0.1*RAND1{seed))/ncity;

224

(2) calculate the u which is written as :-

U=EXP«-sumO(I,J) + aconst*v
- bconst*suml(v,J»/temp)i

where sumO and sum} are user-defined functions. The
first function has a similar program code to fiqure

6.18. The second function is used to calculate all
the elements of the variable v with respect to the
current column of the matrix, i.e. J.

(3) calculate the change of v values and the saturation
level as written below:-

ov = Vi
v = u/sum2(u,I)i
change=l/ncity*SUMALL(ABS(ov - V»i
saturation = l/ncity*SUMALL(V*V)i

The variable ov is used to hold the old value of v.
The function sum2 is defined by the user. It is used
to calculate all the elements of the variable u with
respect to the current row of the matrix where I is
the reserved word. The built-in function SUA/ALL

calculates all the eI'ements in the matrix v and
returns a scalar constant.

(4) repeat (2) for an iteration at constant temperature
until the following condition is met :-

IF (change LT delta) BREAK ENDIFi

(5) reduce the temperature by the factor anneal written as
follows :-

temp = temp*anneali

(6) repeat (2) for different temperatures until the
following condition is fulfilled

IF (saturation GT .9) BREAK ENDIF;

225

A valid tour follows the same method as the Hopfield

Tank simulation program.

The complete program is shown in Appendix H.

6.3.2.2 Simulation results

The same size of problems are tested using the simulation

program for the Potts-Glass model. The initial parameters

for the experiments are as follows :-

(1) 0 = 0.01-

(2) Cycle for annealing = 20

(3) cycle for iteration at constant T = 40

(4) T = 0.4

A number of experiments to find the shortest path

for increasing sizes was carried out by changing the

seed. For 20 and 30 cities, the shortest paths were

easily found. Figures 6.26 and 6.27 show the graphs of

the routes with no intersection. This means an optimal

solution. The shortest distance recorded for 20 cities is

4.54. The shortest distance recorded for 30 cities is

5.89. However, for 40 cities, different results were

obtained. Figure 6.28 gives a path which is not the

shortest because there are still line crossing occurring.

The seed setting was 1000 and the distance found was

6.44. Figures 6.29 shows the path obtained is the optimum

since there is no line intersection. The seed is set to

2000 and the distance recorded is 6.27.

226

Number of cities 20

distance = 4.54

Fiq. 6.26: Shortest path so far for 20 cities

Number of cities : 30

distance = 5.89

Fiq. 6.27: Shortest path so far for 30 cities

227

Number of cities 40

distance = 6.44

Fig. 6.28: Non-optimum solution for 40 cities

Number of cities 40

distance = 6.27

Fig. 6.29: Shortest path so far for 40 cities

228

6.3.2.3 Parallel Simulation results

Experiments similar to section 6.1.2.5 have been carried

out to study the performance of a parallel NN simulation

program generated by NEUCOMP2 for solving the TSP using

the Potts-Glass model. The same parameters of section

6.3.2.2 was used. At first the same number of cities of

the parallel simulation using the Hopfield-Tank was

carried out, unfortunately the performance result was

very poor. The size of the problem was further increased

with the hope that the simulation would perform better.

The maximum size permitted is 80 but there was no

corresponding improvement in results. The execution times

and speedups of 20, 40 and 80 cities are tabulated in

table 6.11. Figure 6.30 shows the graph of speedup versus

the number of processors for the above experiments. The

graph shows that as the size of the problem increases,

the speedup increases only slightly.

The reasons for this are now given. The

matrix/vector operations in step 2 and 3 of section

6.3.2.1 are involved within the training loop. They use

the same outer loop (their row size are the same). This

loop is chosen by NEUCOMP2 for parallel loop execution.

The mathematical operation on variable u in step 2

requires the old value of v to be calculated in function

suml. If the loop is executed in parallel, there are new

values of v calculated in step 3 which are also involved

in the loop iteration. Thus incorrect operation of the

simulator has occurred. In order to maintain correctness,

NEUCOMP2 omits this loop and considers the next inner

loop. However, the next inner loop, has a similar

structure as in figure 6.18. The column of the matrix

contains ordered-shared dependencies which are also

omitted by NEUCOMP2. Thus, not many inner loops can be

considered for parallelism within the training iteration.

229

20 cities 40 cities 80 cities

no. of Execution speedup Execution speedup Execution

processors time time time

xl03sec. xl03sec. xl03sec.

1 0.37 1.00 2.16 1.00 14.1

2 0.37 1.00 2.06 1.05 13.0

3 0.35 1.06 2.00 1.08 12.8

4 0.35 1.06 1.98 1.09 12.7

5 0.35 1.06 1.97 1.10 12.6

6 0.35 1.06 1.96 1.11 12.6

7 0.35 1.06 1.95 1.11 12.6

8 0.35 1.06 1.95 1.11 12.6

9 0.35 1.06 1.94 1.11 12.6

10 0.34 1.09 1.93 1.12 12.5

Table 6.11: The execution times and speedups

for 20, 40 and 80 cities using

the Potts-Glass model.

1.2

C. 1.1
::::I

al
Cl)
C.
III

1
-+-20 cities
_40citi ••

----...-80 citi ••

0.9 -i--t--t-+--t--t-+--t--t---l
1 2 3 4 5 6 7 8 9 10

no. of processors

Fig. 6.30: The speedups versus no. of processors

230

speedup

1.00

1.09

1.10

1.11

1.12

1.12

1.12

1.12

1.12

1.13

6.3.3 Discussion a/the results

The Hopfield-Tank simulation results obtained from the

NEUCOMP simulation program have not given the optimum

solutions for the size of problem of 20 cities and more.

Many experiments failed to find a valid tour. However,

its parallel simulation program generated by the NEUCOMP2

performed well where the slope of the graph of speedup

versus number of processors nearly reaches the ideal

state when the size of the problem increased.

The optimum solution for the Potts-Glass simulation

was easy to find for the small size problem. As the size

of the problem increased, finding the optimum solution is

not easy. Many trials had to be made by changing the

initial random numbers in order to find the shortest

path. The optimum solution is found when the graph of the

route has no line crossing (figures 6.26, 6.27 and 6.29).

As another example, figures 6.31 and 6.32 show two

different distances for 80 cities. The first figure is

not the optimum solution because

crossings. The second figure is

value. Both have seed settings

there are many line

near to the optimum

for 2000 and 3200

respectively. Hence, an accurate result cannot be

guaranteed because no network of polynomial size in N can

exist that will solve the TSP for N cities to a desired

accuracy [Muller et al. (1990)].

The summary of the comparison for the shortest

distance found using the Hopfield-Tank and Potts-Glass

models are shown in table 6.12.

Although the Potts-Glass simulation program written

in the NEUCOMP has succeeded in solving the problem,

unfortunately its parallel version did not perform well

owing to data dependencies on both the outer and inner

loops.

231

Number of cities : 80

distance = 9.69

Fig. 6.31: Non-optimum solution for 80 cities

Number of cities : 80

distance = 9.16

Fig. 6.32: The shortest so far for 80 cities

Number of cities Hopfield-Tank Potts-Glass
simulation simulation

20 7.46 4.54

30 10.02 5.89

40 13.31 6.27

Table 6.12: The total path for 20, 30 and 40 cities

232

CHAPTER 7

SUMMARY AND CONCLUSIONS

233

Neural network (NN) models have grown rapidly in solving

applications involving massively parallelism such as

pattern recognition where the traditional programming

methods are not viable. This is because NNs are designed

to mimic the human brain which is able to operate easily

in parallel to solve problems such as pattern

recognition. Although the computer is a high-speed serial

machine, it is unable to solve quite simple recognition

problems. NNs and their computational properties have

attracted the interest of researchers in the area of

machine perception by

complementary alternative

paradigms. They hold with them

presenting an exciting,

to symbolic processing

the promise of exceedingly

coupled with flexibility through fast implementations

self-organisation or learning.

NN models can be implemented in various ways. These

can range from a very complex hardware VLSI design to

software simulators on a digital computer. Hardware

implementations are faster than software simulators but

they are confined to special purpose NNs. Computer

simulation is more flexible and economical for rapid

prototyping and problem solving

A general-purpose NN simulation tool has become a

current trend because it is more flexible. The user can

easily simulate any NN model or combine these models to

suit their applications. To implement this simulator, a

proper programming language specifically for NN model is

preferred. The existing high-level languages such as C or

FORTRAN are not suitable because most of the NN designers

do not originate from a computer programming background.

The program translations for NN languages come from

either compiler method [Almassy et al. (1990), Leighton

et al. (1992), Panetsos et al. (1993) J or a combination

of both interpreter and compiler methods [Korn (1989,

1991a&b) J. There exists many programming languages

specifically for the NN models [Almassy et al. (1990),

DasGupta et al. (1990), Hu (1991), Korn (1989, 1991a&b),

Zell et al. (1991), Vellacott (1991), Leighton et al.

234

(1992), Panetsos et al. (1993»). These NN languages cover

many methods of programming style such as descriptive

(declarative), procedural and object-oriented. The

purpose is to provide a free style of writing a

simulation program for any of the NN models.

NEUCOMP is a NN compiler used to compile the

procedural style of programs known as the NEUCOMP

language. It is a high-level language specially designed

to cater for any NN model with the complexity of the

existing high-level languages such as C being simplified.

It also contains graphical facilities such as portraying

the NN architecture and displaying a graph of the result,

and finally it can run on a parallel shared memory multi

processor system. A NEUCOMP program is written as a list

of mathematical specifications of the particular NN

model. The mathematical statements can be written as

scalar, vector or matrix assignments as required by the

NN models. This idea is based on Korn's work [Korn (1989,

1991a&b)). The DESIRE/NEUNET program is translated by a

combination of both an interpreter and a compiler whereas

NEUCOMP is based only on compiler.

It is well known that the compilation of high-level

programs has been proved to produce a high performance

result [Bennett (1990),Ford (1990»). However, to develop

a true compiler is a difficult task. NEUCOMP takes a

simpler approach as the objective here is to study the

suitability of the NEUCOMP language to perform general

implementations of NN models. The reason is to provide an

ad hoc and workable compiler at an early stage so that

when it is successful a true compiler can be later

developed. The C language is chosen as the target

language because it is portable to any machine under the

UNIX platform.

The procedural approach is chosen because

traditionally this approach has been established since

the evolvement of the FORTRAN language. Furthermore, a

procedural language

specifications to be

allows

easily

235

list of mathematical

organised or written

algorithmically. Other approaches as mentioned earlier

which are declarative (descriptive), functional and

object-oriented are not suitable for writing a series of

mathematical specifications.

NEUCOMP has been implemented on the 5EQUENT Balance

machine at PARCo It is used to generate a sequential

program. It can be used on any UNIX based machine.

NEUCOMP2 has been implemented on the same machine and

used to generate a parallel program for a shared memory

parallel computer system. NEUCOMP2 is different from

NEUCOMP in that its compiler phases contains a parallel

routine called the parallelising stage. It analyses the

existence of parallelism in the target program which is

written in sequential form and transforms it into an

equivalent parallel program. The target machine is the

shared-memory parallel processor. Program correctness is

based on both sequential and parallel results being

compared. Experiments were carried out in parallel

because of better execution times and speedups that can

he attained.

The NEUCOMP/NEUCOMP2 language has proved to be

capable of designing a simulation program for any NN

model. 50 far, 5 models of different structure and

training algorithms, and solving 3 NN applications of

different problems have been successfully compiled and

executed. The results of the simUlation programs were

very encouraging.

The chosen NN models which represent different

classes of the networks were the backpropagation,

Kohonen, counterpropagation, ART 1 and Hopfield-type

networks. The backpropagation network is a multi layer

feedforward network. The Kohonen network is a self

organising topOlogical network. The Counterpropagation

network is a three layer network in which the hidden

layer is the competitive layer network. The ARTl network

is a two layer network with feed forward and feedback

connections. The Hopfield-type network is a single layer

with feedback connection. The learning algorithms for the

236

backpropagation and Counterpropagation networks are based

on supervised learning whilst the Kohonen, ARTl and

Hopfield-type networks use unsupervised learning.

The NN simulators generated by NEUCOMP/NEUCOMP2 for
the above mentioned models were used to solve three

categories of problems, i.e. the classification,

approximation and optimisation. Character recognition

belongs to the classification category. It was solved by

the backpropagation, Kohonen, ARTl and Counterpropagation

simulators. The intertwined spirals problem belongs to

the approximation/ classif ication category. The

backpropagation simulator was used to approximate the

spiral type from two sets of input co-ordinates. The
Kohonen simulator classified the intertwined spirals into

two clusters which were shown on the map. The

counterpropagation simulator did the clustering of the

intertwined spiral on its competitive layer and then

classified the clusters to belong to which spiral. The

Hopfield-type networks considered were the Hopfield-Tank

and Potts-Glass models. They were used in the

optimisation category

problem.

to solve the travelling salesman

The simulation results for all

mentioned above have been successfully

the categories

recorded. They

were shown graphically using the 'Mathematica'

which were included as NEUCOMP/NEUCOMP2

programs

library

character functions. The parallel simulation for

recognition and spiral problems have shown increasing

speedup as the number of processors increases except that

the backpropagation simulator for solving the spiral

problem has a speedup that reached a maximum for 7

processors. This is because its network size is

2x7x7x7xl. For the travelling salesman problem, the

parallel simulation for the Hopfield-Tank has shown good

performance but the Potts-Glass· model was disappointing

because its loop segment contained data dependencies

which obstructed the parallelism.

237

Although
,NEUCOMP2i

NEUCOMP/ l\ has explored different NN

applications, these problems are not new. However, this

research is to study the feasibility of implementing a

general-purpose simulator based on the compiler method.

It is challenging to tackle certain problem and NN model

in depth within a limited period of time whereas the

characteristic of the general-purpose model has to be

achieved. Another difficulty encountered was to find

problems with realistic data to be implemented owing to

industrial secrecy. The model examples given in the books

or papers are often too simple and straight forward. For

the more advanced examples, insufficient details are

given.

However,

advantages:-

NEUCOMP/NEUCOMP2 has the following

(1) Flexibility the user has a free style of

developing his own simulation program. A fixed NN or

more general NN simulator can be designed.

(2) Efficiency - the program can be run in parallel.

(3) Readability the statements are English-like

commands. An algorithm is easy to follow which is

based on structured programming technique.

(4) Dynamic-like structure - the use of dynamic memory

allocation allows a simulation program on a model

that can be used for any size of the network. The

size can be assigned at run time without

recompilation.

(5) Simple and straightforward language the

mathematical form written in matrix/vector notation

are easily included. This allows the designer to

avoid the use of the loop on matrix/vector

operations. However, If the matrix/vector operation

cannot be used then the loop written as in other

high-level language can be used.

(6) Portability - the target program written in C can be

used on any UNIX machine. However, the parallel

238

target program can only be run on a shared-memory parallel

machine.

(7) The target program can be used as a source code when

more facilities of the C language are required to

enhance the complexity of the software.

The development of NEUCOMP/NEUCOMP2 is just the

initial stage. Due to lack of man power, equipment and

time, many other NN models and application could not be

explored. The related topics for the development of

NEUCOMP/NEUCOMP2 are the compiler design, NN models, NN

simulators, parallel compiler and NN applications. There

are many topics that are not covered such as :-

(1) Error handling and recovery routines when a syntax

error is found. This is because the compiler

generator, Yacc stops execution when an error is

located.

(2) Enhancement of the NN applications such as invariant

character recognition or pattern completion, using

various learning rate strategies to improve learning

on the backpropagation network and using other NN

models to improve and increase the problem size of

the TSP.

(3) Graphical display on network characteristics during

iteration such as node activation and the three

dimensional display of the change of weights.

However, there is a limitation of displaying the NN

architecture. Only a small size network can be

displayed because of memory limitation and the

Mathematica program is slow to display the network

architecture.

(4) Combining NN simulation with other disciplines such

as control engineering and information processing.

In practice, NNs cannot provide the solution working

by themselves alone.

239

(5) other NN models such as stochastic NN models,

dynamic NN models and cascading NN models or

combining subnetworks into a sUbstantial NN.

(6) A comparative study between NEUCOMP/NEUCOMP2 and

other NN simulation languages. The performance study

should give the real indication of its usefulness.

(7) Implementing the parallel compiler on other parallel

machines such as distributed parallel processors,

i.e. Transputer, Intel Hypercube, etc.

240

REFERENCES

241

[Aarts (1989)] Aarts, E. H. L., Boltzmann machines for

travelling salesman problems, European Journal of

Operational Research 39, 1989, pp: 79-95

[Aho et al. (1986)] Aho, A. V., Sethi R. and Ullman, J.

D., Compilers: Principles, Techniques and Tools, Addison-

Wesley, 1986

[Aleksander et al. (1990)] Aleksander, I. and Morton, H.,

An Introduction to Neural Computing, Chapman and Hall, 1990

[Almasi et al. (1989)] Almasi, S. A. and Gottlieb, A.,

Highly Parallel Computing, The Benj aminl Cummings Pub!.

Co., 1989

[Almassy et al. (1990)], Almassy, N., Kohle, K. and

Schonbauer, Concepts in Implementation of the Neural

Network Language Condela-3, InfoJapan '90 : Information

Technology Harmonizing with Society, North-Holland,

Amsterdam, Netherlands, Vol. 1, 1990, pp: 241-6

[Baase (1988)] Baase, s., Computer Algorithms: Introduction to
Design and Analysis, 2nd. Ed., Addison-Wesley, July 1988

[Babb (1988)] Babb, R. G. (editor), Programming Parallel
Processors, Addison-Wesley, 1988

[Beale et al. (1990)] Beale, R. and Jackson, T., Neural
Computing, An Introduction, Adam Hi 1ger, 1990

[Bennett (1990)] Bennett, J. P., Introduction to Compiling
Techniques: A First Course using ANSI C, LEX and YACC, McGRAW

HILL, 1990

[Bornat (1979)] Bornat R., Understanding and Writing Compilers,
MacMillan, 1979

242

[Brause (1989)] Brause, R., Neural Network Simulation

using INES, Tools for AI Architectures, Languages and Algorithms,

IEEE Workshop, 1989, pp: 556-61

[BraWer (1989)] Brawer, s., Introduction to Parallel Programming,

Academic Press, Inc., 1989

[Carpenter et al. (1988)] Carpenter, G. A. and Grossberg,

S., The ART of adaptive Pattern Recognition, IEEE

Computer, Vol. 21, No. 3, Mar. 1988

[DaSGUpta et al. (1990)] DasGupta, S. and Roy, K.,

Description Language for a Neural Network

Archi tecture, Intelligent Autonomous Systems, 2nd. International

Conference, Vol. I, 1990, pp: 294-304

[Dayhoff (1990)] Dayhoff, J. E., Neural Network Architecture: An

Introduction, Van Nostrand Reinhold, N. Y, 1990

[Feldman et al. (1988)] Feldman, J. A., Fanty, M. A. and

Goddard, N. H, Computing with Structured Neural

Networks, IEEE Computers, 21, Mar 1988

[Ford (1990)] Ford, N. J., Computer Programming Languages : A

Comparative Introduction, ELLI S HORWOOD, 1990 •

[Forrest et al. (1987)] Forrest, B. M., Roweth, D.,

stroud, N., Wallance, D. J. and Wilson, G. V.,

Implementing Neural Network Models on Parallel

computers, The Computer Journal, Vol. 30, No. 5, 1987,

pp: 413-419

[Forrest et al. (1988)] Forrest, B. M., Roweth, D.,

Stroud, N., Wallace, D. J. and Wilson, G. V., Neural

Network models, Parallel Computing 8, iNorth-Holland,

1988, pp: 71-83

243

[Freisleben et al. (1991») Freisleben, B. and Schilte,

M., A Combined Clustering and Parallel optimization

Approach to the Travelling Salesman Problem,

International Conference on Parallel Processing, vol. 3 , 1991,

pp: 310 - 311

[Fujimoto (1992») Fujimoto, Y., Massively Parallel

Architectures for Large Scale Neural Network

Simulations, IEEE Transactions on Neural Networks, vol. 3 ,

No.6, Nov.1992

[Haykin (1994») Haykin, s., Neural Networks: A Comprehensive
Foundation, Macmillan Publ. co., 1994

[Hecht-Nielsen (1987») Hecht-Nielsen, R., Counterpro

pagation networks, Applied Optics, Vol. 26, Dec. 1987,

pp: 4979-4984

[Hecht-Nielsen (1988») Hecht-Nielsen, R., Applications of

Counterpropagation Networks, Neural Networks, Vol. 1,

1988, pp: 131-139

[Hecht-Nielsen (1989») Hecht-Nielsen, R., Neurocomputing,

Addison-Wesley, 1989

[Hopfield (1982») Hopfield, J. J., Neural networks and

physical systems with emergent collective

computational abilities, Proc. Natl. Acad. Sci., USA,

Biophysics, 1982, pp: 2554 - 2558

[Hopfield et al. (1985») Hopfield, J. J. and Tank, D. W.,

"Neural" Computation of Decisions in Optimization

problems, Biological Cybernetics, Vol. 52, spring-Verlag,

1985, pp: 141-152

[Horowitz (1985») Horowitz, E., Programming Languages: A
Grand Tour, 2nd. Ed., Computer Science Press, 1985

244

[Hu (1991)] HU, D. s., An object-oriented Neural Network

Language, IEEE International Joint Conference on Neural

Networks, Vol. 2, IEEE, NY, USA, 1991, pp: 1606-11

[Hush et al. (1993)] Hush, D. R. and Horne, B. G.,

Progress in Supervised Neural Networks: What's New

Since Lip, IEEE Signal Processing Magazine, Jan. 1993

[Hwang et al. (1984)] Hwang, K. and Briggs, F. A.,

Computer Architecture and Parallel Processing, McGraw-Hill,

1984

[Johnson (1978)] Johnson S. C., Yacc: Yet Another Compiler-

Compiler, Bell Laboratories, Murray Hill, New

Jersey, July 1978

[Jones et al. (1992)] Jones, W. T., Vachha, R. K. and

Kulshrestha, A. P., DENDRITE: A System for Visual

Interpretation of Neural Network Data, IEEE

SOUTllEASTCON, Vol. 2, 1992, pp: 638-641

[Karp (1977)] Karp, R. M., Probabilistic analysis of

partitioning algorithms for the travelling-salesman

problem in the plane, Mathematics of operations research,
Vol.2, No. 3, Aug. 1977

[Kernighan et al. (1980)] Kernighan B. W. and Ritchie D.

M. , The C programming language, 2nd. Ed., Bell

Laboratories, Murray Hill, New Jersey, Prentice

Hall, 1980

[Kirkpatrick et al. (1983)] Kirkpatrick, S., Gelatt, J.

R. and Vecchi, M. P., optimization by Simulated

Annealing, Science, Vol. 220, No. 4598, May 1983, pp:

671 - 679

245

[Kohonen (1982)] Kohonen, T., Self-organized formation of

topologically correct feature maps, Biological

Cybernetics, 43, 1982, pp: 59-69

[Koopman et al. (1990)] Koopman, P. W. M., Rutten, L. M.

W. J., van Eekelen, M. C. J. D. and Plasmeijer, M.

J., Functional Descriptions of Neural Networks,

International Neural Networks Conference, Vol. 2, 1990, pp:

701- 704

[Korb et al. (1989)] Korb, T. and Zell, A., A Declarative

Neural Network Description Language, Microprocessing and

Microprogramming, Vol. 27, North-Holland, 1989, pp:

181-188

[Korn (1989)] Korn G. A., A

Interactive Neural Network

New Environment for

Experiments, Neural
plc, 1989, pp: 229-Networks, Vol. 2, Pergamon Press

237

[Korn (1991a)] Korn G. A., Design of function-

generating mapping networks by iteractive neural

network simulation, Mathematics and Computers in Simulation,

vol. 33, North-Holland, 1991, pp: 23-31

[Korn (1991b)] Korn , G. A., Neural Network Experiments on
Personal Computers and Workstations, A Bradford Book, The

MIT Press, 1991

[Kung (1993)] Kung, S. Y., Digital Neural Networks, PTR

Prentice Hall, Eaglewood Cliffs, New Jersey, 1993

[Lafferty et al. (1993)] Lafferty, E. L., Prelle, M. J.,

Michaud, M. C. and Goethert, J. B., Parallel Computing:

An Introduction, NDC, New Jersey, USA, 1993

[Lang et al. (1988)] Lang, K. J. and Witbrock,M. J.,

Learning to Tell TWo spirals Apart, Proceedings of the

246

Connectionist Models, Summer School, Morgan-Kaufman,

1988, pp: 52 - 59

[Leighton et al. (1992)] Leighton, R. and Wieland

AspirinlMIGRANES software Tools User's Manual,
Corporation, Washington, 1992

A., The

MITRE

[Lemone (1992)] Lemone, K. A., Design of Compilers : Technique of

Programming Language Translation, CRC Press, 1992

[Lesk et al. (1975)] Lesk, M. E. and Schmidt, E., Lex - A

Lexical Analyser Generator, Bell

Hill, New Jersey, July 1975

Laboratories, Murray

[Lippmann (1987)] Lippmann, R. P, An Introduction to

Computing with Neural Nets, IEEE ASSP Magazine, Apr.

1987, pp: 4 - 22

[Maeder (1991)] Maeder, R. E., Programming in Mathematica,

2nd. Ed., Addison-Wesley, 1991

[Manner et al. (1989)] Manner R., Horner, H., Hauser, R.

and Genthner, A. , Multiprocessor Simulation of

Neural Networks with NERV, SUPERCOMPUTING 89, ACM

CONF, 1989, pp: 457 - 465

[Maren et al. (1990)] Maren, A. J., Harston, C. T. and

Pap, R.M., Handbook of Neural Computing Applications,

Academic Press, San Diego, California, 1990

[McBryan (1989)] McBryan, O. A., Overview of Current

Developments in Parallel Archi tectures, In Parallel

Supercomputing: Methods, Algorithms and Applications, Edited by

Corey, G. F., John Wiley, 1989

[McClelland et al. (1988) 1 McClelland, J. L. and

Rumelhart, D. E., Exploration in Parallel Distributed Processing

247

A Handbook of Models, Programs and Exercise, The MIT Press,

1988

[Mohd-Saman et al. (1993») Mohd-Saman, M. Y. and Evans,

D. J., Investigation of a

the Detection of Loop

Computing 19, 1993, pp: 197

Set of Bernstein Test for

Parallelization,

- 207

Parallel

[Miiller et al. (1990») Miiller, B. and Reinhardt, J.,

Neural Network An Introduction, Physics of Neural Network,

Springer-Verlag, 1990

[Myler et al. (1992») Myler,

R. K. and Hall, G.

H. R., Weeks, A. R., Gillis,

W., Object-oriented neural

simUlation tools for a hypercube parallel machine,

Neurocomputing, Vol. 4, Part 5, 1992, pp: 235-248

[Nelson et al. (1991») Nelson, M. M. and Illingworth, W.

T., A Practical Guide to Neural Nets, Addison-Wesley, 1991

[Nijhuis et al. (1989») Nijhuis J., Spaanenburg, L. and

Warkowski, F., Structure and Application of NNSIM: a

general-purpose Neural Network SIMulator,

Microprocessing and Microprogramming, Vol. 27 , North

Holland, 1989, pp:189-194

[Osterhaug (1989») Osterhaug, A. , Guide to Parallel
programming, 2nd. Edition, Sequent computer Systems,

Inc., 1989

[Padua et al. (1986») Padua, D. A. and Wolfe, M. J.,

Advanced Compiler Optimizations for Supercomputers,

Communications of the ACM, Vol. 29, No. 12, 1986, pp:

1184 - 1202

[Paik et al. (1987») Paik, E., Gungner, D. and Skrzypek,

J. , UCLA SFINX: A Neural Network Simulation

248

Environment, IEEE First International Conference on Neural
Nenvor~, vol. 3, 1987, pp: 367 - 375

[Panetsos et al. (1993)] Panetsos, F., Alonso, J., Barja,

E., Isasi, P. and Olmedo, V., NSL: A language for

neural network simulation, Microprocessing and

Microprogramming, Vol. 36, 1993, pp: 127-139

[Perkel (1976)] Perkel, D. H., A computer Program for

Simulating· a Network of Interacting Neurons,

Computers and Biomedical Research, Vol. 9, 1976, pp: 31-43

[Peterson et al. (1989)] Peterson, C. and Soderberg, B.,

A New Method for Mapping Optimization problems onto

Neural Networks, International Journal 0/ Neural Systems, Vol.

1, No. 1, World Scientific Publishing Co., 1989, pp:

3 - 22

[Polychronopoulos (1988)] Polychronopoulos, C. D., Parallel

programming and Compilers, Kluwer Academics Publ., 1988

[Platt (1988)] Platt, J. C., Constrained Differential

Optimization, American Institute o/Physics, 1988

[Recce et al. (1992)] Recce, M. L., Rocha, P. V. and

Treleaven, P. C., Neural Network Programming

Environments, In Artificial Neural Nenvor~, Vol. 2 , Edited

by Aleksander, I. and Taylor, J., Elsevier Science

Publishers B. V., 1992

[Rumelhart et al. (1986)] Rumelhart, D. E., Hinton, G. E.

and Williams, R.J., Parallel Distributed Processing:
Explorations in the Microstructure 0/ Cognition, Vol. I, MIT

Press, 1986

[Sadja et al. (1992)] Sadja, P., Sakai, K. and Finkel, L.

H., NEXUS: A Tool for Simulating large-scale Hybrid

249

Neural Networks, Summer Computer Simulation Conference,
1992, pp: 72-76

[Sanossian et al. (1991)] Sanossian, H. Y. Y. and Evans,

D. J., An Acceleration method for the backpropaga

tion Learning Algorithmn, Proceeding of the Neuro-Nimes,

Forth International Conference on Neural Networks and their
Applications, Nimes-France, 1991, pp: 377-385

[Sanossian (1992)] Sanossian, H. Y. Y., The study of Artificial
Neural Networks and their learning strategies, Ph.D. thesis,

Loughborough University of Technology, 1992

[Shumsheruddin (1992)] Shumsheruddin, D., The Neural

Network Paradigm, In Advanced Topics in Computer Series,
Advances in Parallel Algorithms, Edited by Kronsjo, L. and

Shumsheruddin, D., Blackwell Scientific Publication,

1992, pp: 66 - 84

[Siberschatz (1991)] Siberschatz, A., Operating System
Concepcr, Addison-Wesley, 1991

[Simpson (1990)] simpson, P. K., Artificial Neural

Systems, Foundation, Paradigms, Applications and

Implementations, Neural Networks: Research and Applications,
Pergamon Press, 1990

[Springer et al. (1989)] Springer, G. and Friedman, D.

P., Scheme and The Art of Programming,. The MIT Press, 1989

[Tarr et al. (1992)] Tarr, G., Priddy, K. and Rogers, S.,

NeuralGraphics: A general purpose environment for

neural network simulation, Proceeding of the SPIE,
Applications of Artifical Neural Networks Ill, vol. 1709, Part 2,

1992, pp: 1047-1056

[Tucker (1986)] Tucker, A. B., Programming Languages, 2nd.

Ed., McGraw-Hill, 1986

250

[Turban (1993)] Turban, E., Decision Support and Expert Systems:
Management Support Systems, MacMillan Publ. co., 1993

[Vellacott (1991)] Vellacott O. R., ANNECS: A Neural

Network Compiler and Simulation, IEEE Neural Networks -

International Joint Conference, Vol. 2, 1991

[Wacholder et

Mann, R.

Multiple

Cybernetics,

al. (1989)] Wacholder, E., Han, J. and

c., A Neural Network Algorithm for the

Travelling Salesmen Problem, Biological

Vol. 61, Springer-Verlag, 1989, pp: 11-19

[Wasserman (1989)] Wasserman, P. D., Neural Computing: Theory

and Practice, Van Nostrand Reinhold, New York, 1989

[Wilson et al. (1988)] Wilson, G. V. and Pawley, G. S.,

On the Stability of the Travelling Salesman Problem

Algorithm of Hopfield and Tank, Biological Cybernetics,
Vol. 58, 1988, pp: 63-70

[Wilson et al. (1993)] Wilson, L. B. and

Comparative Programming Languages, 2nd.

Wesley, 1993

Clark, R. G.,

Ed. , Addison-

[Wirth (1976)] Wirth, N., Algorithms + Data Structures =

Programs, Prentice-Hall, Inc., 1976

[Wolfram (1991)] Wolfram, s., Mathematica: A System for Doing

Mathematics by Computer, 2nd. Ed., Addison-Wesley, 1991

[Zell et al. (1991)] Zell, A., Mache, N., Sommer, T. and

Korb, T., Recent Developments of the SNNS Neural

Network Simulator, SPIE PROC, Applications of Artificial Neural

Networks 11, Vol. 1469, Part 1, 1991, pp: 708-718

[Zima et al. (1990)] Zima, H. and Chapman, B.,

Supercompilers for Parallel and Vectors Computers, ACM Press,

Addison-Wesley, 1990

251

APPENDIX A

BNF SPECIFICATIONS
OF

THE NEUCOMPlNEUCOMP2 LANGUAGE

252

program: program_heading
identifier declarations

main declaration
subprogram_declarations ;

program_heading : NEURALNET IDENTIFIER ;
identifier_declarations : 1* none *1 I declaration list ;
main declaration: MAINPROGRAM block statement ;
subprogram declarations : 1* no subprogram *1

subprogram_declarations
subprogram_declaration ;

subprogram_declaration:

subprogram_head IDENTIFIER formal_parameter

block_statement ;
formal-parameter: 1* none *1 I '(' identifier_list ') ';
block statement : identifier declarations

statement list
return statement , . , . , ,

return statement : END 1* only procedure */
RETURN variable;

subprogram_head : FROC I FUNC ;
declaration list : declaration

I declaration_list declaration;
declaration: type identifier_list ';' ;
type : INT I REAL I STRING I FILES ,
identifier list: identifier

lidentifier_list ',' identifier;
identifier : IDENTIFIER

IDENTIFIER '=' NUMBER
I IDENTIFIER '[' numORident ']'
I IDENTIFIER '[' numORident

numORident : NUMBER I IDENTIFIER ;
statement list : statement

statement list
assignment_statement statement

while statement
repeat_statement
open_statement
case statement

253

, , ,

, . , ,

numORident ']';

statement ;

close statement
read statement
print_statement
call statement
pattern_statement
train statement
for statement
if statement
break statement ;

break_statement : BREAK ;
open statement OPENREAD read-parameter

1 OPENWRITE write-parameter ;
read_parameter: '(' IDENTIFIER ',' text_ident ')' ;
text ident : TEXT 1 IDENTIFIER ;

write-parameter: '(' IDENTIFIER ',' text_ident ') ';
close statement: CLOSEFILE '(' IDENTIFIER 'I';
pattern statement : EPOCH statement_list END ;
call_statement : CALL IDENTIFIER use-parameter ;

1 PARALLEL' IDENTIFIER use_parameter ;

use-parameter: 1* none */1 '(' expression_list ')' ,
case_statement : CASE variable OF case_list END ;
case list : case condition

1 case_list case_condition ;

case condition: NUMBER ':' statement ';' ;
for statement :

FOR '(' variable '=' expression
statement list

END FOR ;

, , , expression 'I'

if statement IF '(' logical expression ')'
statement_list else_statement;

else statement ENDIF 1 ELSE statement_list ENDIF ;
logical_expression : logical_AND_expression

1 logical_expression OR logical_AND_expression;
logical_AND_expression : equility_expression

1 logical_AND_expression AND equility_expression;

, applicable to NEUCOMP2

254

equility_expression : relational_expression

I equility_expression EQ relational_expression;
relational_expression : expression

relational_expression LT expression
relational_expression GT expression
relational_expression LE expression
relational_expression
relational_expression

GE expression
NE

assignment_statement : variable

assigntype : '+=' I '*=' I '-='
variable ROW

I

J

CLOCK

CYCLE
NPATTERN
NPROCS'

IDENTIFIER status
IDENTIFIER '[' expression
IDENTIFIER '[' expression
ROW ;

expression expression '+' term

expression;
assigntype expression ;

I '/=' I '=';

,] ,
, ,

I expression ']'

expression ,-, term I term ;

term term '*' factor

term '/' factor

term '.' factor
factor ;

factor : function reference
MINUS expression

'(' expression ')'
NUMBER
variable;

status : / * none * / I ' @ , I ' # ' I '> ' I '< ' ;
function reference: SIGMOID '(' expression ')'

ABS '(' expression ')'
DISTANCE '(' expression
EXP '(' expression ')'

• applicable to NEUCOMP2

255

, , , expression ')'

GRBH 'C' expression list ')'
IDENTIFIER 'C' actual-parameter ')' ;

LOG 'C' expression ')'
RAND 'C' expression ')'
RANDl 'C' expression ')'
SIGMOID 'C' expression ')' ;

SUMALL 'C' expression ')'
SQR 'C' expression ')'

SQRT 'C' expression ')'
actual_parameter: 1* none *1 , expression_list ;
expression_list : expression

, expression_list ',' expression;
print_statement : print ,printfile;
print: PRINT 'C' print_items ')' ;
print_items : TEXT , print_list;

printfile: PRINTFILE 'C' IDENTIFIER ',' print_items ') ';
print_list: print_id, print_list ',' print_id;
print_id: TEXT ',' expression' expression;
read_statement : read , readfile ;

read: READ 'C' read_list ')' ;
readfile: READFILE 'C' IDENTIFIER ',' read_list ')' ;

read_list: read_id, read_list ',' read_id;
read_id: TEXT ',' variable, variable
while_statement: WHILE 'C' logical_expression ')' DO

statement list ENDWHILE;
repeat_statement: REPEAT statement list

UNTIL 'C' logical_expression ')' ;
train statement TRAINING statement list END;

256

APPENDIXB

USER GUIDE

257

A brief description of how to use the NEUCOMP/NEUCOMP2

language is now presented. NEUCOMP is a sequential

compiler running on a UNIX operating system and NEUCOMP2

is a parallel compiler running on a shared memory

parallel machine, i.e. SEQUENT Balance. Explanations

given below are applicable to both compilers unless

stated.

The structure of the language is as follows :-

NEURALNET program_name

identifier declarations (global use)

MAINPROGRAM

identifier declarations (local use)

statement list

ENDi

subprogram_declarations

The first line is called program heading which has to be

included. NEURALNET is the reserved word and program_name
is a variable name that must be given. Names are made up

of alphabets, digits or underscore ('_') but the first

character must be alphabetic. A single alphabet is a

valid name but a combination of characters improve

readability. The above name must be unique which cannot

be used in the simulation program. It must be in a lower

case letter. Capital letters are the reserved word.

Program heading is used to give a name to the

simulation program. Identifier _declarations (global and local

uses) are declaration sections. MAINPROGRAM ••• END is

the body of the program. Statement-list can be a single

statement or more than one. If more than one statement is

used, they are separated by a semicolon, i.e. 'i ' and the

last statement has no semicolon. Sub program_declarations are

declarations of one or more subprograms of types

procedure or function.

258

DATA TYPES

There are four data types :-

INT
REAL
STRING

FILES

CONSTANTS

integer
single-precision
holding up to

floating point
10 characters

useful as a file name
file type

A real constant contains a decimal point, i.e. 3.14. An
integer constant has no decimal point. A string constant
is written as any combination of characters within " ",
Le. "inputfile".

DECLARATIONS

variables can be reserved words or defined by the user.
All reserve word variables are written in capital
letters. They are of type integer. These variables are I,
J, ROW, CYCLE, NPATTERN and NPROCS'. Variables defined by
the user must be declared before use. They are declared

in the declaration section (identifier_declarations) either as
global or local to the body of the main program or a
subprogram. A local variable is only applicable to where
it is declared.

A variable is specified with a type. A type may
contain a list of one or more variables as shown below :-

INT seed, nocycle;

REAL dist, lrate;
STRING filename1, filename2;

'applicable to NBUCOMP2 which is used to specify number of processors required.

259

A variable of type integer and real can be declared as a

scalar, vector or matrix. They are used in mathematical

operations only. From the above example, integer and real

variables are scalars. A scalar variable can also be

initialised in its declaration, as shown below :-

INT seed = 1000;

vector and matrix variables are an array of one and two

dimensional sizes respectively. The size can be an

integer constant or a variable. For a variable, its type

need not be declared. Its size will be assigned at run

time. This makes it more like a dynamic data structure.

Examples of vector and matrix declarations are

written as :-

REAL

layer1[n1],layer2[n2],layer3[n3],

weight1[n2,n1],weight2[n3,n2];

A matrix declaration for the connection weights, i.e. the

connections between the first and second layers, its row

size must be the size of the second layer and its column

must be the size of the first layer.

ARImMETIC OPERATORS

There are five types of arithmetic operators :-

'+' , ,-, , '*', '/' and '.'

The first four operators are similar to any high-level

language. The fifth operator stands for 'dot product'. It

is used for two vector multiplications which yields a

scalar result. In terms of precedences, it is in line

with the operators '*' and '/'. All mathematical

260

operations involve real and integer types. For example,

the calculation for the error measure in the

backpropagation simulation is written as :-

error = layer3 - target;

enormsqr = 0.5 * (error. error);

where error, layer3 and target are vectors and enormsqr is a

scalar.

RELATIONAL OPERATORS AND LOGICAL OPERATORS

The relational operators are :-

GT, LT, GE and LE

In the C language, they stand for symbols '>', '<', ,~,

and ':5:'. NEUCOMP/NEUCOMP2 prefers to use a word instead

of a symbol in order to maintain readability of the

program.

Logical operators are written as AND and OR. They

are represented in C as '&&' and ' 11' respectively. The

precedences of the operators follow the C language.

STATEMENTS

The statements available for writing any simulation

program are :-

assignment statements

conditional statements

loop statements

break statement

subprogram statements

input-output statements

261

ASSIGNMENT STATEMENT

An assignment statement is presented as follows :-

variable assigntype expression

where variable
assigntype is

can be a scalar, vector or matrix variable,

a mathematical operator of types '=',' +=' ,
or '/=' and expression can be a variable or '-=' , '*='

variables in a mathematical expression. Their data types

must be compatible, i. e. if variable is an integer,

expression must be of type integer. However, an integer

variable that is in expression is automatically converted

into real if variable is real. The use of arithmetic

operators on symbol '=' is to compress an assignment,

i.e. a = a + 1 and b = b*2 are compressed to a += 1 and b

*= 2 respectively.

An assignment statement is divided into 3 types - a

scalar assignment, vector assignment and matrix

assignment. In a scalar assignment, variable is a scalar

and expression can be a digit, scalar variable or

mathematical expression which yields a scalar result,

i.e. dot product between two vectors.

In a vector assignment, variable is a vector and

expression can be one of the following rules :-

(1) Expression of type scalar.

(2) vector variable.

(3) Matrix-vector multiplication. The column size of the

matrix must be equal to the size of the vector. The

result is a vector of size equal to the row size of

the matrix.

(4) Function a built-in function or a user-defined

function. Its argument can be a scalar expression or

a mathematical expression which yields a vector

result. The built-in functions are shown in table Bl.

262

(5) Matrix variable. The row*column of the matrix size

must be equal to variable. An example of a valid

assignment is :-

READ layer1[100], input[10,10];

layer1 = input;

(6) Matrix variable followed by a special character as

listed below :-

@ all elements of a matrix on a specific row

all elements of a matrix on a specific column

The specified row or column depends on the status of

a reserved word ROW. Both variables become a vector.

An example of a valid assignment is :-

REAL layer1[10], pattern[5,10];

...
EPOCH

layer1 = pattern@;

•••
END;

EPOCH END is a

iteration is assigned

current row of pattern.

loop statement where each

to ROW. ROW represents the

(7) Mathematical expression of the above rules except

rule (5).

263

In a matrix assignment, variable is a matrix and

expression can be one of the following rules :-

(1) Expression of type scalar.

(2) Matrix variable.

(3) Function - a built-in function (tal:lle B1) or a user

defined function. Its argument can be a scalar

expression or a mathematical expression which yields

a matrix result.

(4) vector variable. The size of the vector must be equal

to the size of row*column of variable. An example of

valid assignment is :-

REAL layer3(100), output[10,10);

· ..
output = layer3;

PRINT("%f ",output);

The print statement, PRINT, prints the output data in

two-dimensional form. The format '%f' denotes a data

format of type real.

(5) outer-product of two vectors yields a matrix with its

row size equal to the size of the first vector and

its column size is equal to the size of the second

vector.

(6) Matrix transpose. It is written as matrix&. Appendix

C has shown the use of matrix transpose.

(7) Mathematical expression of the above rules except

rule (4).

Note on variable:-

(1) If variable is a vector followed by '@' or '#', it

becomes a scalar variable and similarly, a matrix

becomes a vector where its size depends on which

symbol is used. For this case the above rules are

applicable.

264

(2) If variable is a vector followed by > then expression
must be' a vector. The index of expression where its

element is the maximum, is assigned to ROW. Appendix

E shows its use.

(3) If variable is a vector followed by < then expression
must be a vector. The index of expression where its

element is the minimum, is assigned to ROW.

Appendices D and F show its use.

(4) If variable and expression are of type vector, their

sizes must be equal.

(5) If variable and expression are of type matrix, the sizes

of rows and columns must be equal or vice-versa if

the matrix is transposed.

CONDITIONAL STATEMENTS

There are two types of conditional statements to express

decisions. The I if-statement I is used to test a single

decision and I case-statement I is used to test multiple

decisions. variables involved in these statements are of

type scalar. The if-statement is written as :-

IF (logical-expression)

statement-list

ENDIF; .

or

IF (logical-expression)

statement-list

ELSE

statement-list

ENDIF;

where logical-expression involves either a logical operator

or relational operator or both. When it yields true the

first statement-list is evaluated. If it uses I ELSE I then,

265

when logical-expression yields false, the second statement-list
is applied. For example, termination of the error measure
(Appendix C) is written as :-

IF (enormsqr LT 0.01)
PRINT(IIconvergence fulfil");
PRINT("stop iteration")

ENDIF;

The case-statement is written as :-

CASE variable OF

integer constant1
...

statement1;

integer constantn_1 : statementn_1;
integer constantn : statementn ;

END;

where variable is of type integer scalar. A single

statement is allowed for each integer constant. As an
example :-

CASE type OF
10 a += 1;
15 a *= 2;
31 a /= 3;

END;

where rype contains any integer value. When it matches one
of the above integer constants, the statement is
executed.

LOOP STATEMENTS

There are five types of loop statements :-

266

for-statement
while-statement
repeat-statement
training-statement
pattern-statement

The for-statement is written as

FOR (variable = expression1, expression2)
statement-list

ENDFORi

where variable and expression are of scalar type integer.
They can be reserved words or defined by the user. The
iteration begins on expression1 and increments one until
expression2-1. As an example, to update the weights in the

neighbourhood of the Kohonen network (Appendix D), it is
written as :-

FOR (i = r1,r2 + 1)
FOR (j = c1,c2 + 1)

ROW = i*grid+ji
weight@ += lrate*(layer1-weight@)

END FOR

ENDFORi

The while-statement is written as :-

WHILE (logical-expression) DO
statement-list

ENDWHILEi

If logical-expression is evaluated true, statement-list is
executed and logical-expression is re-evaluated. This cycle
continues until the expression becomes false. However, in
the repeat-statement, statement-list is executed first then

267

logical-expression is tested. If false, the loop continues

until it is true. This loop is written as :-

REPEAT

statement-list

UNTIL (logical-expression);

The loops mentioned above are common to any high-level

language. However, 'train-statement'

statement' are special loop statements.

and 'pattern-

To train the network, it can be done by using the

following training loop :-

TRAINING

...
END;

where the statement TRAINING contains a reserved word

variable of type integer called CYCLE which is initially

set to 100. It means the number of iterations is 100.

However, this value can be changed. The training

algorithm is within the loop.

To assign an input layer with a pattern, the

following pattern loop is used :-

EPOCH

layer1 = pattern@;

...
END;

where the statement EPOCH ... END contains the loop

starting from zero to the pattern size minus one set by

an integer variable called NPATTERN. Each iteration is

assigned to the reserved word variable called ROW. The

NPATTERN is a reserved word variable which is initially

set to one. It means only one pattern is involved in the

training operation per cycle. However, this value can be

changed.

268

BREAK STATEMENT

The 'break-statement' is used to exit from the loop other

than through logical-expression. The word BREAK is included

in the loop if exit from the loop at an early stage is

necessary. For example, in the backpropagation simulation

(Appendix C), training-loop is stopped when the sum of

error is less than 0.01, as shown below :-

TRAINING

...
IF (enormsqr LT 0.01)

BREAK

ENDIF;

END;

INPUT-OUTPUT STATEMENTS

statements for input are READ and READFILE, and for

output are PRINT and PRINTFILE. READ and PRINT are an

input-output statement from or to the terminal. A READ

statement allows a variable of type scalar, vector or

matrix to be assigned a value. For example :-

READ(seed);

where seed is a scalar variable of type integer. The value

to be assigned must be an integer constant. A text

written within" " can be included before that variable.

It is written as :-

READ ("type in seed = ", seed);

This is used to display a message before the value is

typed. A PRINT statement allows a text or value of a

variable to be printed on the terminal. For example :-

269

PRINT("The backpropagation\n");
PRINT (11 %d 11 , seed) ;

The first statement is to print a text. The character \n
is to allow a newline to be printed. The second statement
is to print a scalar variable seed of type integer. The

argument %d is the data format for an integer constant.
It is written within 11 11 other data formats can be
included. For a real, the data format is written as %f
and a string is written as %s. The width of the constant
can be included as :-

%4d

%4f
%.3f

%6.3f

print an integer, at least 4 characters wide

print as real, at least 4 characters wide
print as real, at least 3 characters after
the decimal point
print as real, at least 6 characters wide and
3 after the decimal point

A text can be included in the data format to improve
readability. For example :-

PRINT("seed = %d\n",seed);

More variables can be printed using a single print
statement, such as

PRINT("seed = %d\n",seed, "learning rate =%fll,alpha);

A vector or matrix variable can be printed by

following the above examples. However, for a vector the
values are printed in the same row and for a matrix, the
values are arranged in row to column. When using '\n' as
an example given below :-

PRINT("%f\n",weight);

270

where weight is a matrix, all its values are printed line

by line.
READFILE and PRINTFILE statements are used for an

input-output from and to the specified file. A variable

of type file must be declared using data type FILES. For

example :-

FILES filel, file2;

The variables file1 and file2 must be connected to a file
name using OPENREAD or OPENWRITE statements. OPENREAD is
used to connect a variable of type file to a file name to
be read. OPENWRITE is used to connect a variable of type

file to a file name to be printed. For example :-

OPENREAD{filel,"inputfile");
OPENWRITE (file2, "outputfile") ;

The texts within 11 11 are the file names. The name of a

file can be replaced by a variable of type string so that
the file name can be typed using a read-statement. For

example :-

FILE2 filel,file2;
STRING inputname, outputname;
...
READ{"Type input file: ", inputname);
READ{"Type output file: ", outputname);
OPENREAD{filel,inputname);
OPENWRITE{file2,outputname);

To read data from or write data into a file, the
following statements are used.

READFILE{filel, •••);

PRINTFILE{file2, •••);

271

The second arguments for the above statements follow READ

and PRINT statements as discussed earlier. However, the

statement CLOSEFILE has to be written after the file

variable has been used. It breaks the connection between

the file variable and the file name. It is written as

follows :-

CLOSEFILE{filel);

CLOSEFILE{file2);

SUBPROGRAM STATEMENTS

There are two types of subprograms, function and

procedure. They are used to break a large computing task

into smaller tasks. They are declared in the

'subprogram_declarations'. The structure of a subprogram

is written as

PROC procedure_name argument

identifier declarations (local use)

statement list

END;

FUNC function_name argument

identifier_declarations (local use)

statement list

RETURN variable;

They follow the same structure as the main program.

Procedure is invoked using a CALL statement and function

is invoked through an expression. The type of a return

value for this expression is based on a type of a

variable after statement 'RETURN'. The use of argument is

optional. Argument may contain one or more variables

written within (). The argument in the subprogram acts

as a passing parameter to the calling subprogram. The

argument in the subprogram need not be declared because

272

the type depends on the type of argument in the calling

subprogram.

A function is used to return a single value via a

RETURN statement. However, if more values are needed to

be returned, the variable in the argument is written

followed by &. This can also be applied to a procedure.

Examples of using procedures can be seen in Appendices C

to F. Examples of using functions can be seen in

Appendices G and H. A function can allow some part of an

expression in a matrix/vector assignment to be evaluated

on the current row or column of a matrix/vector variable.

Examples of such functions are sumO, sum1 and sum2, found

in Appendices G and H.

PARALLEL PROGRAM

To generate a parallel program, the word CALL is replaced

by PARALLEL and then compiled by NEUCOMP2. Only one

procedure is allowed to be executed in parallel. Other

additional statements to be written in the NEUCOMP2

program are shown below :-

MAINPROGRAM

INT timel, time2;

REAL time;

READ (liNo. of processors: ",NPROCS);

timel = CLOCK;

PARALLEL training;

time2 = CLOCK;

time = (time2 - timel)/lOO.O;

PRINT("Training time = %.2f\n",time)

END;

The use of the CLOCK is to record the execution time on

several processors. Its usefulness is that before running

an application, the execution time and speedup of that NN

273

simulation can be tested on a number of processors within
a small cycle. When a proper number of processors have
been determined, then actual simUlation on the
application can begin. This is because the use of many
processors does not necessarily mean good performance.

COMMENTS

All characters after II are ignored by the compiler. They
are used to make documentation on a program. comments may
appear anywhere and are written in one line.

COMPILATION AND EXECUTION

The simUlation program is written using 'vi editor' and

the file can be given any name, i.e. filename. The name
is similar to a variable name.

There are two steps of compilation. The first step
is to compile the source program (i.e. the
NEUCOMP INEUCOMP2 program). When there is no error, the
second step is to compile the target program using the C
compiler. The first compilation is written as

NEUCOMP filename
NEUCOMP2 filename

for a sequential program
for a parallel program,

The second compilation is written as

cc
pc

for a sequential C compiler

for a parallel C compiler.

Execution of the object code can be done using NET.

274

ABS(X)
Ixl; x is a scalar, Ix;! ; is a vector; i = 0 .. m-I, or

!xij! ; x is a matrix; i = 0 .. m-I and j = 0 .. n-I

DIST ANCE(x,w) x is a vector;j = 0, n-I and w is a matrix; i = 0 .. m-I andj =0 .. n-1.

n-I , (L(xrwijh
j=O

EXP(x) eX i x is a scalar, ei ; x is a vector; i = 0 .. m-I, or
eij ; x is a matrix; i = 0 .. m-I andj = 0 .. n-I

GRBH(a ,r,x) Gradient Ranged Heuristic method. x is weight or bias derivative, a of

type vector with size n and r is the range of type vector with size n-l.
LOG(x) loglO x; x is a scalar

loglO xi; x is a vector; i = 0 .. m-I, or

loglO xij; x is a matrix; i = 0 .. m-I andj = 0 .. n-I

RAND(seed) random number between 0 .. 1. Seed is an integer.

RAND l(seed) random number between -1 .. 1. Seed is an integer.
SIGMOID(x)

1
x is a scalar,

1
x is a vector; i = 0 .. m-I, or ;

1 + e- Xi
;

I+e- x

1
x is a matrix; i = 0 .. m-I andj = 0 .. n-I

I+e- Xq
;

SQR(x) x 2 ; x is a scalar,

x 2 •
i '

x is a vector; i = 0 .. m-I, or

x~; x is a matrix; i = 0 .. m-I andj = 0 .. n-I

SQRT(x) ..Jx; x is a scalar,

..[X;. I , x is a vector; i = 0 .. m-I, or

~xij ; x is a matrix; i = 0 .. m-I andj = 0 .. n-I

SUMALL(x)
m-I m-I n-I

LXi; if x is a vector or L LXij; if x is a matrix
i= 0 i= 0 j= 0

Table Bl: List of Built-in functions

275

GRAPHICAL FEATURES

All graphical displays are shown on a PC using the

Mathematica software. The result from the

NEUCOMP/NEUCOMP2 simulation program are sent via file

transfer.

The type of graphical features that have been

implemented so far are :-

(1) Displaying the NN structure.

(2) Plotting the XY-graph.

(3) Plotting (x,y) for data clustering.

(4) Plotting (x,y) for the travelling salesman problem.

(5) Plotting a three-dimensional graph.

Displaying the Neural Network structure

The function 'displaynet' is called from the Mathematica

text-based interface. It prompts for the name of a file

to be displayed on the respective network. The format for

this file must contain the title, number of nodes in each

layer and the connections. For example, a three layer

network which contains 2 input nodes, 3 hidden nodes and

1 output node, is written as

The backpropagation network

{2,3,1}

{{1,2,O},{2,3,O}}

In the last line, {{1,2,O},{2,3,O}}, the first set,

{1,2,O} means the first layer is connected to the second

layer with

represents

Similarly,

the second

'0' representing feed forward connection. '1'

feedforward and feedback connections.

{2,3,O} means the feed forward connection from

layer to the third layer. We can add further

connections such as a connection from the first layer to

the third layer which is written as {1,3,O}.

276

as:-

Similarly, a single layer network can be written

The Hopfield network

{10}

{{1,1,1}}

Set {10} is a one layer network containing 10 nodes and

{{1,1,1}} means the first layer is connected to the same

layer with feedforward and feedback connections.

A two layer network with feedforward and feedback

connections can be written as:-

The ART network

{2,5}

{{1, 2, 1}}

For a network that contains a layer node arranged in

a two-dimensional or topological map, it can be written

as :-

The Kohonen network

{2,{10,10}}

{{1,2,0}}

Set {10,10} means the second layer has nodes arranged in

10*10.

Plotting the XY-graph.

The XY-graph is a two-dimensional graph to display a

curve of points (x,y). We can plot a single graph or more

than one on the same axis. The function I xygraph I is

called from the Mathematica text-based interface. It

prompts for the title name of the graph, the name of x

axis and y-axis. One or more file names that contain the

co-ordinates to be plotted are needed to be typed in. If

no more graphs are required then type the space bar and

277

return key. The data file format are written as values of

x and y.

Plotting (x,y) for data clustering

To display data clustering, there are two types of

graphs, and they are 'xycluster' and 'xyspiral'. Both are

used to display weights characteristics during training

in the Kohonen network with 2 input nodes. The weights

that are kept in the file are arranged in pairs, i.e. the

first and second input nodes that are connected to the

winner node. The first graph is used to study the weights

distribution on random numbers between 0 and 1, and the

second graph is for separating intertwined spirals.

Plotting (x,y) for the travelling salesman problem

The co-ordinates of the tour can be displayed using

'xyplot'. The data format in-the file are arranged as a

value of x-axis followed by y-axis. The first pair

represents city number one, the second is for the next

city to be visited and so on, until the last city is

connected to the first city.

Plotting three-dimensional graph

A three-dimensional graph has a co-ordinate in the form

(x,y,z). The name of a function is 'xyzplot'. It prompts

for the name of a file to be typed in. The file format is

arranged in ordered values of x followed by y followed by

z. This feature has been used for displaying two

intertwined spirals using the backpropagation and

counterpropagation simulation programs. The first two

values are for the spirals co-ordinates and the third one

is the value of the output node.

278

APPENDIXC

THE BACKPROPAGATION NETWORK SIMULATION

279

NEURALNET backpropagation

REAL
layerl[nl],layer2[n2],layer3[n3],

weightl[n2,nl],weight2[n3,n2],
oweightl[n2,nl],oweight2[n3,n2],
cweightl[n2,nl], cweight2[n3,n2],
dweightl[n2,nl], dweight2[n3,n2],
bias2[n2],bias3[n3], obias2[n2],
obias3[n3], cbias2[n2], cbias3[n3],
delta2[n2], delta3[n3], ddelta2[n2],ddelta3[n3],
pattern[n4,nl], target[n4,n3], error[n3], enormsqr,

beta, limit, alpha[sizealpha], range[sizerange];

MAINPROGRAM
CALL parameters;
CALL training;
CALL one recall

END;

PROC parameters
INT seedl,seed2,seed3,seed4;
FILES filel,

file2;
STRING inputf,outputf;
READ (liNo. of cycle =II,CYCLE);
READ (lino. training pattern = ", NPATTERN) ;
READ(IITermination when limit = ", limit) ;

READ ("beta =11, beta) ;

READ("Range alpha, = ",alpha);
READ("Range derivative, = ",range);

",inputf); READ("Input file from =
OPENREAD(filel,inputf);
READ(IITarget file from = ",outputf);

OPENREAD(file2,outputf);
READFILE(filel,pattern) ;
READFILE(file2,target);

CLOSEFILE(filel);

280

CLOSEFILE(file2) ;
READ("Seed for weight1 =",seed1);
READ("Seed for weight2 =",seed2);
READ("Seed for bias2 =",seed3);
READ("Seed for bias3 =",seed4);

weight1 = RAND1(seed1);
weight2 = RAND1(seed2);
bias2= RAND1(seed3);

bias3=RAND1(seed4);

cweight1 = 0;

cbias2 = 0;

cweight2 = 0;

cbias3 = 0

END;

PROC training

INT nocycle = 0;
TRAINING II use in serial execution only

nocycle = nocycle + 1;
PRINT (liNo. of cycle = %d ",nocycle);

dweight1=O;
ddelta2 = 0;
dweight2 = 0;
ddelta3 = 0;
enormsqr = 0;

EPOCH
layer1 = pattern@;
layer2 = SIGMOID(weight1*layer1+bias2);
layer3 = SIGMOID(weight2*layer2+bias3);

error = target@-layer3;
enormsqr += o.s*(error.error);
delta3 = error*layer3*(1-layer3);

dweight2 += delta3*layer2 ;

ddelta3 += delta3;
delta2 = weight2&*delta3* (1-layer2) *layer2;

dweight1 += delta2*layer1;

ddelta2 += delta2

END;

281

PRINT (" enormsqr = %f\n ", enormsqr) ;
IF (enormsqr LE limit) BREAK ENDIF;

oweightl = weightl;
weightl += GRBH(alpha,range,dweightl) + beta*cweightl;

cweightl = weightl-oweightl;

obias2 = bias2;
bias2 += GRBH(alpha,range,ddelta2) + beta*cbias2;

cbias2 = bias2-obias2;
oweight2 = weight2;
weight2 += GRBH (alpha, range,dweight2) + beta*cweight2;
cweight2 = weight2-oweight2; // dw(t) = w(t)-w(t-l);

obias3 = bias3;
bias3 += GRBH(alpha,range,ddelta3) + beta*cbias3;

cbias3 = bias3-obias3 // dd(t) = d(t)-d(t-l)

END
END;

PRoe one recall
INT type;
STRING inputf;

FILES filel;
REPEAT

READ("test data = ",inputf);
OPENREAD(filel,inputf);
READFILE(filel,layerl);
layer2 = SIGMOID(weightl*layerl+bias2);
layer3 = SIGMOID(weight2*layer2+bias3);

PRINT ("%.2f ", layer3);
READ(" continue? [l=yes/ O=no] ",type)

UNTIL (type EQ 0);
CLOSEFILE(filel)

END;

282

APPENDIXD

THE KOHONEN NETWORK SIMULATION

283

NEURALNET kohonet net
// input as random number between 0 •• 1
// cluster number: kohfileO, kohfile1, kohfile2, kohfile3
REAL layer1[n1], layer2[n2], weight[n2,n1],

output[n1], initlrate;

INT grid,initneighb;

MAINPROGRAM // --- like main routine
CALL parameter;
CALL training

END;

PROC parameter
INT seed;
FILES fp;

OPENWRITE{fp,"kohfileO");
READ {"No. of cycle =",CYCLE);
READ{"Initial learning rate =

READ(IIInitial neighbourhood =

" initlrate)' , ,
",initneighb);

READ{"Size grid on map = ",grid);

weight = 0.5 + O.l*RAND{O); // 0 and 1
PRINTFILE{fp,"%.3f ",weight);
CLOSEFILE{fp)

END;

PROC training // --- like main routine
INT iter, i,j,r,c,r1,c1,r2,c2,neighb;

REAL Irate;
FILES fp1,fp2,fp3;
OPENWRITE{fp1,"kohfile1");
OPENWRITE{fp2,"kohfile2");
OPENWRITE{fp3,"kohfile3");
neighb = initneighb;
Irate = initlrate;
TRAINING // use for serial execution only

// train weight vector ••• kohonen layer

iter = iter+ 1;

284

PRINT("cycle %d \n",iter);
layer1 = RAND(O);
II get ROW = index of layer2 with its value is minimum

layer2< = DISTANCE(layer1,weight);

r = 0;
REPEAT II converting into two-dim subscribt

c = ROW - r*grid;
IF (c GE grid) r = r+ 1 ENDIF

UNTIL (c LT grid);
II (r,c) is the winner node in two-dim

II get neighbourhoods
r1 = r-neighb;
r2 = r+neighb;
cl = c-neighb;

c2 = c+neighb;

IF (r1 LT 0) r1 = 0

IF (r2 GE grid) r2 =
IF (cl LT 0) cl = 0

IF (c2 GE grid) c2 =

FOR (i = r1,r2 + 1)
FOR (j = c1,C2 + 1)

ROW = i*grid+j;

ENDIF;

grid - 1 ENDIF;

ENDIF;

grid - 1 ENDIF;

weight@ += lrate*(layer1-weight@)

END FOR
ENDFOR;
neighb = initneighb*(l- iter/CYCLE);
Irate = initlrate*(l- iter/CYCLE);

CASE iter OF
1000 : PRINTFILE(fp1,"%.3f ",weight);
6000 : PRINTFILE (fp2, "%. 3f ",weight);
20000: PRINTFILE (fp3, "%. 3f ", weight) ;

END
END;II end training
CLOSEFILE(fp1);
CLOSEFILE(fp2);
CLOSEFILE(fp3)

END;

285

APPENDIXE

THE ART1 NETWORK SIMULATION

286

NEURALNET artl

REAL layerl[nl), layer2[n2),
weightf[n2,nl), oweight[n2,nl),
weightb[n2,nl), pattern[n4,nl),
data[widthpattern,widthpattern);

STRING inputf, outputf; II string

MAINPROGRAM II --- like main routine

FILES filel;

READ("read pattern from file =",inputf);

OPENREAD(filel,inputf);

READFILE(filel,pattern);
READ (liNo. of patterns = ",NPATTERN);

CALL training;
CALL all recall

END;

PROC training
REAL xnorm, znorm, compare,

vigil=O.99;

weightb=l;
weightf=l;

EPOCH
layerl = pattern@;
oweight = weightf;

REPEAT
layer2> = oweight*layerl; II get ROW

xnorm = layerl.layerl;
znorm = weightb@.layerl;

compare = znorm/xnorm;
IF (compare GT vigil) II adapt weights

weightf@ = weightb@*layer1/(O.s+(weightb@.layerl»;

weightb@ = weightb@*layerl

ELSE

287

oweight@ = 0
II initialise oweight with respects to ROW
II so that its row will not been selected again.

ENDIF
UNTIL (compare GT vigil)

END II end pattern

END;

PROC all recall
FILES filel;

READ("Recall pattern from file

OPENREAD(filel,inputf);

EPOCH
READFILE(filel,layerl);

PRINT("before\n");
data = layerl;
PRINT("%.Of ",data);
layer2> = weightf*layerl;
PRINT("recall pattern\n");

data = weightb@;

PRINT("%.Of ",data)

END
END;

288

",inputf);

APPENDIXF

THE COUNTERPROPAGATION NETWORK SIMULATION

289

NEURALNET counterpropagation
REAL layer1[n1], layer2[n2],

layer3[n4], tlayer[n4], error[n4],
weight1[n2,n1], weight2[n4,n2],
pattern[n4,n1], target[n4,n4],
data[pattwidth,pattwidth], initlrate, brate;

INT initneighb;
STRING inputf,outputf;

MAINPROGRAM // --- like main routine

FILES fp1,fp2;

READ("input file = ",inputf);
READ("target file = ",outputf);

OPENREAD(fp1,inputf);
OPENREAD(fp2,outputf);
READFILE(fp1,pattern);
READFILE(fp2,target);
READ ("Number of pattern =", NPATTERN) ;

READ("Number of cycle =",CYCLE);
READ("Initial learning rate =",initlrate);
READ(IIInitial neighbourhood =",initneighb);

READ ("brate =" , brate) ;
READ("Seed for random number =",seed);

weight1 = RAND(seed);

weight2 = 0.;
CALL training;
CALL all recall

END;

PROC training
REAL Irate, brate = 1.;
INT patt,nocycle, neighb1, neighb2, neighb;

Irate = initlrate;
neighb = initneighb;

TRAINING
nocycle = nocycle + 1;

290

patt = 0;
EPOCH

patt = patt + 1;
layer1 = pattern@;
tlayer = target@;
layer2< = DISTANCE(layer1,weight1);

neighb1 = ROW-neighb;
neighb2 = ROW+neighb;

IF (neighb1 LT 0) neighb1 = 0 ENDIF;
IF (neighb2 GE n2)

neighb2 = n2 - 1 ENDIF;
FOR (ROW=neighb1,neighb2 + 1)

weight1@ = weight1@ + Irate*(layer1-weight1@);
II ... grossberg layer
layer3 = weight2#;
error = tlayer -layer3;
weight2# = weight2# + brate*error

END FOR
END;
neighb = initneighb*(l- nocycle/CYCLE);
Irate = initlrate*(l- nocycle/CYCLE)

END II training
END;

PROC all recall
FILES fp1;

READ("input file as test data = ",inputf);
OPENREAD(fp1,inputf);

EPOCH
READFILE(fp1,layer1);
layer2< = DISTANCE(layer1,weight1);
layer3 = weight2#;
PRINT (11%. Of ", layer3)

END
END;

291

APPENDIXG

THE HOPFIELD NETWORK SIMULATION

292

NEURALNET travelsales1
// hopfield-tank on solving TSP

REAL
xcity[n),ycity[n), dist[n,n),
node[n,n), u[n,n),
deltat, lambda1, lambda2, lambda3,
tau, temp = 0.03,
energy, energyo, energy1, energy2, energy3;

MAINPROGRAM

CALL parameters;
CALL training;
CALL valid city

END;

PROC parameters
INT i,j,seed;

FILES file1; // input file

STRING inputf;
READ("Input file from = ",inputf);
OPENREAD(file1,inputf);
FOR (i=O,n)

READFILE(file1,xcity[i),ycity[i);
dist[i,i) = o.

ENDFOR;
CLOSEFILE(file1);

FOR (i=O,n - 1)
FOR (j= i + 1 , n)

dist[i,j) = SQRT(sQR(xcity[i)-
xcity[j]) +sQR(ycity[i) -ycity[j]));

dist[j,i) = dist[i,j)
END FOR

END FOR;
READ (liNo. of cycle =II,CYCLE);

READ("Time increment =",deltat);
READ("Damping factor, tau =",tau);
READ("lambda1 = ",lambda1);

293

READ("lambda2 = ",lambda2);
READ("lambda3 = ",lambda3);
READ("Starting seed for random generator = ",seed);
READ(IITemperature = 11 ,temp);
u = -0.5*temp*LOG(n)*(1 + 0.1*RAND1(seed));
node = SIGMOID(2*u/temp)

END;

PRoe training
INT ianneal,nocycle;
REAL eO,e1,e2,e3, saturation;

TRAINING 11 use in serial execution only

nocycle = nocycle + 1 ;
PRINT (lino. cycle = %d \n",nocycle);
FOR (ianneal =0,10)

e3 = SUMALL(node);

e3 = e3 - n;
u += deltat *

(-l./tau*u - sumO(eO&,I,J)
- lambda1* (sum1(e1&,I) - node)

- lambda2*sum2(e2&,I,J)
- lambda3*e3);

energyO += eO*SUMALL(node);

energy1 += (e1 - node)*SUMALL(node);

energy2 += e2*SUMALL(node);

energyO *= 0.5i

energy1 *= 0.5;
energy2 *= 0.5;

energy3 = 0.5*e3*e3;
energy = energyO + lambda1*energy1

+ lambda2*energy2 + lambda3*energy3;

lambda1 += deltat*energy1;

lambda2 += deltat*energy2;
lambda3 += deltat*energy3
node = SIGMOID(2*u/temp)

ENDFOR;
saturation = SUMALL (node*node);

294

saturation /= nj

IF (saturation GT .95) BREAK ENDIF

END;
PRINT (" %f" , node)

END;

FUNe sumO(eO,i,j)

INT k,add,minusj

eO = 0.;
FOR (k =O,n)

IF (j + 1 EQ n) add = 0

ELSE add = j + 1

ENDIF;

IF (j - 1 LT 0) minus = n - 1

ELSE minus = j - 1

ENDIFj
eO += dist[i,k)*(node[k,add)+node[k,minus))

END FOR
RETURN eOj

FUNe suml(el,i)
INT kj

el = O. j

FOR (k=O,n)
el += node[i,k)

END FOR
RETURN elj

FUNe sum2(e2,i,j)

INT kj

REAL sumj

FOR (k=O,n)
sum += node[k,j)

ENDFORj
e2 = sum - node[i,j)

RETURN e2j

295

PROC valid_city
INT a,i,j,k,city[n);
REAL scalar;

II Determine the path
FOR (a=O,n) II every location

scalar= 0;
FOR (i=o,n) II find valid city

IF (node[i,a) GT scalar)
scalar=node[i,a); city[a) = i
II city i at location a

ENDIF
END FOR

ENDFOR;
scalar=O.; II Determine path length

FOR (a=O, n - 1)
i = city[a);
k = city[a + 1);
scalar += dist[i,k)

ENDFOR;

i = city[n - 1);
k = city[O);
scalar += dist[i,k); II Closed path
FOR (a = o,n - 1)
FOR (k = a + 1,n)

IF (city[a) EQ city[k)
PRINT("invalid tour: visit twice %d\n",city[a);

BREAK
ENDIF

END FOR

ENDFOR;
·FOR (a=O,n)

i = city[a);
PRINT("%f ",xcity[i),"%f\n",ycity[i)

ENDFOR;
PRINT("\nPath length: %f ",scalar)

END;

296

APPENDIXH

THE POTTS-GLASS MODEL SIMULATION

297

NEURALNET travelsalesl

1/ using Potss-Glass model

INT seed;
REAL

xcity[ncity],ycity[ncity], dist[ncity,ncity],
v[ncity,ncity], ov[ncity,ncity],
anneal, delta, aconst, bconst, temp = 0.03;

MAINPROGRAM
CALL parameters;
CALL training;
CALL valid city

END;

PROC parameters

INT i,j;
FILES filel; II input file

STRING inputf;
READ("Input file from = ",inputf);
OPENREAD(file1,inputf);
FOR (i= O,ncity)

READFILE(file1,xcity[i],ycity[i])

ENDFOR;
CLOSEFILE(filel);

FOR (i=o, nci ty)
dist[i,i] = o.

ENDFOR;
FOR (i=O,ncity - 1)

FOR (j= i + 1 ,ncity)
dist[i,j] = SQRT(SQR(xcity[i]

xcity[j])+SQR(ycity[i]-ycity[j]));

dist[j,i] = dist[i,j]

END FOR

END FOR;
READ("delta =II,delta);
READ(IIConstraint A =",aconst);
READ(IIConstraint B =",bconst);

298

READ ("Annealing factor =", anneal) ;
READ ("temperature =11, temp) ;
READ (liNO. of cycle =",Cl{CLE);
READ("Starting seed for random generator = ",seed)

END;

PROC training
INT stop, step,iter,nocycle;
REAL u[ncity,ncity], saturation, change,

sumchange, sumsatur;
v = (1. + 0.1*RAND1(seed)) I ncity;

FOR (step=1,20)
iter = 0;
TRAINING 11 use in serial execution only

iter = iter + 1 ;
PRINT("Iter:%2d\n",iter);
u = EXP ((- sumO(I,J) + aconst*v

- bconst*sum1(v,J))/temp);

ov = v;
v = u/sum2(u,I);
sumchange = 1/ncity*SUMALL (ABS(v - ov));

sumsatur = 1/ncity*SUMALL (v*v);
IF (change LT delta) BREAK ENDIF;
IF (saturation GT .9) stop = 1; BREAK ENDIF

END;
temp = temp*anneal;
IF (stop EQ 1) BREAK ENDIF

END FOR

END;

FUNC sumO(i,j)

INT k,add,minus;
REAL sum = 0.;

FOR (k =O,ncity)
IF (j + 1 EQ ncity) add = 0
ELSE add =, j + 1

ENDIF;

299

IF (j - 1 LT 0) minus = ncity - 1
ELSE minus = j - 1
ENDIF;
sum += dist[i,k)*(v[k,add)+v[k,minus)

END FOR

RETURN sum;

FUNC suml (v, j)
INT k;
REAL sum = O.
FOR (k=O,n)

sum += v[k,j)
END FOR

RETURN sum;

FUNC sum2 (u, i)
INT k;
REAL sum = 0.;
FOR (k=O,n)

sum += u[i,k)
END FOR

RETURN sum;

PROC valid city
INT a,i,j,k,city[ncity);
REAL scalar;

II Determine the path
FOR (a=O,ncity) II every location

scalar= 0;
FOR (i=O,ncity) II find valid city

IF (v[i,a) GT scalar)
scalar=v[i,a); city[a) = i

II city i at location a
ENDIF

END FOR

ENDFOR;
scalar=O.; II Determine path length

300

~--- -

FOR (a=O, ncity - 1)
i = city[a];
k = city[a + 1];
scalar += dist[i,k]

ENDFOR;
j = city[ncity - 1];
k = city[O];
scalar += dist[j,k]; II Closed path

FOR (a = O,ncity - 1)
FOR (k = a + 1,ncity)

IF (city[a] EQ city[k])
PRINT("invalid tour: %d\n",city[a]);

BREAK
ENDIF

END FOR
ENDFOR;
FOR (a=O,ncity)

i = city[a];
PRINT("city %d ",i,"(%f,",xcity[i],"%f)\n",ycity[i])

END FOR;
PRINT("\nPath length: %f ",scalar)

END;

301

