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Abstract: 

Three samples of epitaxial delafossite CuFeO2 and CuFe1-xGaxO2 films were grown using Pulsed Laser 

Deposition techniques in high vacuum. The sample thicknesses were estimated to be 21 nm, 75 nm for 

the CuFeO2 films and ~37 nm for the composite sample containing gallium. The estimated gallium 

fraction of substituted ferric atoms was x=0.25 for the composite sample.  We present the study of the 

fundamental band gap(s) for each sample via observation of their respective optical absorption 

properties in the NIR-VIS region using transmittance and diffuse reflection spectroscopy. Predominant 

absorption edges measured at 1.1eV and 2.1eV from transmittance spectra were observed for the 

CuFeO2 samples. The sample of CuFe1-xGaxO2 showed a measurable shift to 1.5eV of the lower band-

gap and a strong absorption edge located at 2.3eV attributed to direct band to band transitions. This 

study also found evidence of changes between apparent absorption edges between transmittance and 

diffuse reflectance spectroscopies of each sample and it may be resultant from absorption channels via 

surface states.  
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Introduction 

There is an increasing worldwide concern about developing new sources of energy which are not 

reliant directly on the combustion of fossil fuels [1-4]. This is due, in part, to the finite nature of oil 

reserves and its potential affect upon future energy markets. Moreover, there are the environmental 

problems associated with pollution, which are more often concentrated in areas of dense population; 

both problems arise in addition to concerns about increasing global atmospheric carbon dioxide 

concentrations (amongst other greenhouse gases). Attractive alternatives include the production of 

hydrogen from water dissociation and carbon dioxide reformation into methane, both of which also 

have the potential to use solar energy in conjunction with photo-catalytic molecular decomposition 

processes.  

Water dissociation by electrochemical photolysis was pioneered by Fujishima and Honda in 1972 [5] 

with experiments using TiO2 photoelectrodes. Other widely reported electrode materials used for 

overall watersplitting are WO3, CdS, amongst others including many varieties of multi-component 

compounds [6-7] which are broadly reviewed in [8]. However, research continues for a chemically 

stable material with a band gap greater than the water splitting potential of 1.23 eV.  Such materials 

should also display strong band to band absorption characteristics corresponding to peak solar 

irradiance, it is predicted that such materials would enhance the efficiency of the photo-catalytic 

molecular decomposition [6-9].  

A promising class of materials for these applications is the delafossite oxide. These compounds are 

characterized by the general chemical formula ABO2, where A is a monovalent cation and B is a 

trivalent metal from Al to La [10]. This oxide family also displays multi-band-gap semiconductor 

behavior, with energy gaps ranging between 1.1eV and 3.6eV, and shows band to band absorption 

characteristics in response to illumination by UV, visible and near infrared light. As with more common 
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semiconductor materials, the band gap(s) can be adjusted by changing the composition of the oxide. An 

additional advantage of these complex oxides is the relative abundance of their main composite 

materials in the form of Cu, Fe, Al, Ga, etc.   

The CuFeO2 delafossite oxide is known to be a p-type semiconductor [10], however reports of the 

fundamental energy gap vary widely. There are reports of multiple dominant absorption edges forming 

step like patterns in the optical spectra of delafossite CuFeO2, which are thought to emerge from the 

super-positioning of CuO2 and Fe2O3 absorbance properties within the composite delafossite CuFeO2 

[11]. Additionally, the breaking of dipole forbidden transition mechanisms is thought to emerge from 

Fe-3d states positioned within the forbidden regions of the crystalline structure [12].  Empirical testing 

has revealed strong absorption edges determined in the near infrared region between 1.1eV and 1.3 eV 

[13,15], the mid-visible region between 1.6eV and 2.0 eV [14-15], with higher energy band to band 

optical transitions also apparent for the blue-ultraviolet region between 3.0 and 3.4 eV [15]. There are 

also reports of direct absorption edges located at 1.6eV, with further absorption edges in the visible 

region at 2.0eV – 2.4eV with variable high energy absorption edges approaching the UV region 

typically between 3.1-3.8 eV, showing both direct and indirect characteristics from Tauc-gap analysis 

[16].    

In terms of four-component delafossite compounds, there are reports which describe the growth and 

characterization of substitutional formations, for example CuFe1-xCrxO2 [17], CuCr1-xNixO2 [18] and 

CuCr1-xMgxO2 [19]. More specific to this work, the chemical synthesis and characterization of CuGa1-x 

FexO2 delafossite has been reported previously [20], where it was shown that the substitution of Ga for 

Fe within CuGaO2 compounds led to a strong absorption edge measured at 1.5eV which was not 

observed in the host lattice material CuGaO2, This strong absorption was attributed to the activation of 

forbidden optical channels by crystal symmetry breaking within the host material rather than solely due 

to the hybridization of band-structures described by the empirical Vegard’s law.  
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In terms of photo-catalytic experiments, there are recent reports of successful photocatalytic water-

splitting using CuGaO2 electrodes, for which the CuGaO2 material has shown favorable attributes in 

terms of its ability to catalyze overall water-splitting of adsorbed H2O, meaning that its band edges are 

likely to be situated at suitable energies for satisfying the conditions for H2O redox potential. However,  

Lee et al [21] also describe reduced photocatalytic activity below UV wavelengths (hv < 3.2eV), 

despite CuGaO2 having also shown weaker absorption edges around 2.7 eV in separate studies [21]. In 

the case of pure CuFeO2, despite its lower band gap and higher absorbance through the visible 

spectrum, it is not thought to be suitable in terms of its band edge potentials for full reduction-oxidation 

of H2O [20].  From this standpoint, and with respect to the development of both CuFeO2 and CuGaO2 

delafossite materials for the purpose of photo-catalysis, B-site alloying presents a possible means of 

extending the absorption properties of a candidate delafossite electrode material into the visible 

spectrum, and provides a potential to enhance photo-catalytic efficiency of the material when operating 

within the visible spectrum close to peak solar irradiance at sea-level.  

In this work, a similar approach to [20] is undertaken but with substitution of Ga for Fe within the 

CuFeO2. We have previously published an X-ray photoelectron spectroscopy study of a CuFe1-xGaxO2  

composite thin film and reported its chemisorption properties related to CO2 gas exposure [22]. In this 

article, we extend our previous work by concentrating the analysis of optical properties of a four-

component ~37 nm thick CuFe1-xGaxO2 epitaxial thin film material grown by pulsed laser deposition 

(PLD). The optical characteristics of the sample are shown in direct comparison to those obtained from 

two other samples of epitaxial CuFeO2 thin films, of thicknesses 21nm and 75nm, also grown by PLD, 

using the same apparatus. The high quality epitaxial nature of the thin film samples is confirmed by 

XRD and Raman spectroscopies. Observations are made of comparative absorption properties using 

normalized transmittance and diffuse reflectance spectra. The energy gaps obtained were analyzed 

firstly for the variation in observed absorption edge with respect to the substitution of Ga for Fe; 
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secondly, for the variation in observed absorption edges with respect to the possible dependence on 

optical path length and surface states.  

Experimental Methods 

Sample Growth/Preparation Description 

CuFeO2 (001) films were deposited onto Al2O3 (001) substrates from a stoichiometric polycrystalline 

CuFeO2 target using pulsed laser deposition. Details of the experimental setup and procedure have been 

described elsewhere [13]. For the multilayer structure, a buffer layer of 9 monolayers (3 nm) of 

CuFeO2 was grown on top of the sapphire substrate. Then one monolayer (0.3 nm) of CuGaO2 was 

deposited on top, followed by three monolayers (1.3 nm) of CuFeO2. This CuGaO2/CuFeO2 was 

repeated 21 times (37 nm). The surface was terminated by CuFeO2. The film was grown in a vacuum 

system at 600 °C under an O2 partial pressure of 1.33 × 10
−2

 Pa. 

XRD Description 

A four-axis Rigaku X-ray diffraction (XRD) system with a Cu Kα rotating anode and Huber 

goniometers was used for structural characterization of the deposited films. CuFeO2 and CuFe2O4 

phases were identified using powder diffraction files no. 01-075-2146 and no. 00-025-0283 

respectively. 

Raman spectroscopy 

Raman spectra were obtained using a LabRam010 system from Instruments, S.A. (Horiba), featuring a 

5.5 mW He–Ne laser (632.8 nm wavelength). This instrument used an Olympus confocal optical 

microscope with a light spectrometer in a back-scattering geometry, the incident beam was linearly 

polarized and spectral detection was unpolarized. The spectra were taken at room temperature using a 

100X objective (~10 μm spot size) with an energy resolution of approximately 1 cm
-1

. 

Optical Properties 

A visible/NIR transmittance and reflectance spectroscopy system was set up to measure the  
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optical response of the samples. A schematic of the apparatus is shown in Figure 1. A 100 W tungsten 

halogen lamp provides the broadband light source. PD-2 is the photodetector used to collect transmitted 

light, PD-1 is the photodetector used to collect reflected light (angle of reflectance θ < 10°); 

transmittance is recorded at normal incidence (θ = 0°). The beam is chopped (730 Hz) before entering 

the monochromator, and the signals are measured using lock-in amplifiers. The monochromator (Triax 

180, Jobin Yvon-Horiba) is equipped with a 1200 g/mm blazed ruled grating, and set up to provide a 

1nm FWHM. All data is normalized to the bulb spectrum. 

 

Results; XRD 

Figure 2 shows results of XRD diffraction spectra for both CuFeO2 samples. The c-axis peaks 

corresponding to (003), (006), (009) and (0012) oriented planes show that high quality epitaxial 

CuFeO2 was achieved during growth. Although there was some evidence for the formation of CuFe2O4 

spinel material within the thicker CuFeO2 sample, where small peaks corresponding to known (222) 

and (333) oriented planes are visible. XRD pattern obtained for the CuFe1-xGaxO2 sample has been 

reported previously [22], with some evidence of spinel impurities were also recorded (as discussed 

above) on that pattern. The Ga content was estimated at 25% taking into account the onset of strain 

resulting from the increased lattice mismatch between CuGaO2 and the Al2O3 substrate. 

 

Results; Raman Spectroscopy  

Figure 3 shows the spectral region corresponding to expected delafossite peak Raman shift(s); these 

results show good agreement with expected Raman shift positions as reported by [23].  The CuFeO2 

samples showed a typical delafossite spectrum with three main peaks at 350, 511 and 689 cm
-1

. The 

peak located at 350 cm
-1

 was attributed to the Eg vibrational mode along the c-axis of the octahedral 

structure, the peak at 689 cm
-1

 was attributed to the A1g vibrational mode along a plane perpendicular 
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to the c-axis; the peak at 511 cm
-1

 was attributed to non-zero wave vector phonons typical of crystalline 

defects, as described in [23]. For the CuFe0.75Ga0.25O2, one can observe the same peak structure, 

however displaced by 16 cm
-1

 to a higher Raman shift. For pure CuGaO2, expected Raman peaks are 

located at the higher values of 368 and 729 cm
-1

 [24], therefore the Ga content must explain the shifting 

observed in our results. Moreover, the apparent group shift of the delafossite peaks, as opposed to line 

broadening or splitting of modes, was an indication of homogeneous hybridization of the lattice 

structure with respect to the inclusion of Ga as a fourth component of the material; at least in terms of 

the Raman channels generated by the overall crystalline thin film.  The peaks in figure 2 labeled with 

an asterisk (*), located at 415, 640 and 750 cm
-1

, correspond to those typically found for the Al2O3 

substrate material [22].  

Figure 3 also shows a broad peak emerging at 500-520cm
-1

. This peak is attributed to defect channels 

thought to emanate from combined Cu vacancies, Fe
3+

 substitution into Cu sites, and oxygen interstitial 

defects [25].  An increase in spectral peak magnitude was observed between the CuFeO2 samples, 

occurring due to the increase in film thickness and volume. By observing the blue line corresponding to 

the CuFe0.75Ga0.25O2 sample, one can view both a further increase in intensity and a relative shift in 

accordance with the main delafossite peaks; again this effect must be attributed to the Ga substitution. 

The peak found at 511cm
-1 

in CuFeO2, and found to be shifted to 527cm
-1

 for the CuFe0.75Ga0.25O2 

sample, emerges in principle due to the relaxation of selection rules, via defect states in the CuFeO2 

samples, and enhanced in the CuFe0.75Ga0.25O2 sample. This result may have occurred due to the 

combination of intrinsic defect states and by crystal symmetry breaking by the inclusion/substitution of 

Ga in the octahedral Fe-O sites. 

Results- Optical Spectroscopy 

Transmittance spectra were recorded for all samples. A comparative view of transmittance spectra for 

all samples is shown in Figure 4a.  For the sake of shorthand terminology, samples A and B refer to the 
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21 nm and 75 nm CuFeO2 thin films, respectively, while sample C refers to the composite ~37 nm 

CuFe1-xGaxO2 thin film. Diffuse reflectance was obtained for sample A and C and the respective spectra 

are shown in Figure 4b. Diffuse reflectance could not be measured for sample B due to the larger 

surface roughness as a result of growing a thicker film. 

Firstly, the spectra of sample C contained clearly observable step-like absorption features between 

photon energies 1.6eV-3.5eV not present in the samples of pure CuFeO2, clearly demonstrating the 

modification of the film absorbance properties in connection to the substitution of Fe for Ga.  Samples 

A and B showed relatively stronger absorption in the NIR-(Red)/VIS regions (in the range 1.0eV < hn 

< 1.5eV) when compared with sample C. Between the CuFeO2 samples the highest absorption in the 

Vis region was found for sample B (75nm), this was consistent with the variation in thickness and 

optical path of absorption. The expected step-like formations of absorption edges were clearly visible 

from the spectra of sample C (containing Ga). The multiple step feature displayed by sample C, at hn > 

1.5eV, culminated in a decrease of the fractional transmittance at higher energies (hn > 1.8eV) relative 

to the pure CuFeO2 samples. The variation seen in Figure 4a was attributed to the bulk film absorbance 

properties of the samples, as the comparative reflectance between samples, as shown in Figure 4b, did 

not display apparent step-like patterns.   

Tauc-gap analysis was performed on each spectrum in order to further relate spectral absorption edges 

with estimations of direct and indirect band to band transition energies and the band gap from which 

they emerged.  The transmittance spectra results were then treated in order to determine the band gap 

energy (Eg) of each sample using Tauc`s expression [26, 27]: 

                                                                                Equation (1) 

In Ecuation (1), h is the plank constant, ν is the frequency of the incident light, α is the absorption 

coefficient, b is a proportion constant and Eg is the band gap energy defined as the difference between 

the lowest energy level in conduction band and the highest energy level in valence band. When 
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linearity was identified within the Tauc plot, extrapolation to the x axis revealed possible optical band 

gap energies for the sample. The plotting was repeated, once using power n= ½ so as to identify direct 

gap behavior, and secondly using power n=2  to identify behavior characteristic of indirect energy gaps 

within the samples. 

Secondly, diffuse reflectance spectra were analyzed. The surface optical absorbance characteristics 

were estimated using the Kubelka-Munk function 

 

F(R) = (1-R)
2
/2R   Equation (2) 

 

 

which was then used to construct a Tauc-plot of F(R)hn vs hn, as demonstrated in [28, 29]. In this 

regime F(R) is proportional to the absorption coefficient, such that the function (F(R)hn)
2
 relates to 

direct band gaps, and (F(R)hn)
1/2

 relates to indirect band gaps, for the interest of the reader these 

methods are reviewed in [30].  Figures 5 (a) and (b) show the Tauc-plots obtained for direct transition 

(~a
2
) from the transmittance spectra for samples A and B respectively.   Figure 5 (c) shows the Tauc- 

plot from transmittance spectra of sample C.   

 

A comparative view of the relative optical densities of the samples calculated is displayed in Fig. 6. 

Relative optical densities are calculated using OD = 0.404(αl) [34], where (α) is the absorption 

coefficient and (l) is the estimated optical path length (the film thickness).  

 

Figure 7a shows the Tauc-plot for the K-M function of reflectance in the direct gap regime for sample 

A (21 nm CuFeO2 thin film) and Figure 7b shows the same for sample C (~37 nm CuFe1-xGaxO2 thin 

film).  

 

The results for recorded energy gaps (pertaining to measurable absorption edges), for all samples, from 
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both the transmittance and reflectance measurements are summarized in Table 1. 

 

Sample Transmittance Tauc-gap(s) 

(direct) 

Reflectance Tauc-gap(s) 

(direct). 

A) CuFeO2 21 nm  1.3 eV  and 2.2eV  1.4eV  

B) CuFeO2 75 nm  1.2 eV and 2.2eV  

C) CuFe1-xGaxO2 ~37 nm  1.5eV and 2.3eV  1.3eV  

Table 1 displays a summary of all measurable absorption edges and corresponding estimated Tauc-

gaps.  

 

CuFeO2 absorption characteristics 

The Tauc plot obtained for sample A is shown in Figure 5a. From transmittance, the first fundamental 

Tauc-gap was measured at 1.3 eV for the range between 1.0 – 2.0 eV, forming fair agreement with 

those reported in [13,14 & 15].  At higher energies, a secondary Tauc-gap was observed at 2.2 eV and 

possibly a third absorption edge pertaining to ~3 eV. Again, agreement may be established with [14,15] 

and the expected direct energy gaps cited in Refs. [11] and  [31].  Inspection of the Tauc-plot for 

indirect transitions (not shown) revealed a strong singular absorption edge initiated at 1.0eV which was 

again in agreement with [13-15].   

The Tauc-plot from transmittance for sample B (as shown in Figure 5b) indicates similar Tauc-gaps 

observed at 1.2 eV within the 1.0-2.0eV range and 2.2 eV for the hn > 2.0eV range; forming agreement 

with the same references as for sample A.  The Tauc plot of (αhn)
1/2

 for sample B (not shown),  

produced a strong absorption edge around 1.0 eV.   

The plot of the K—M function of the reflectance spectra of sample A for the direct allowed transitions 

is displayed in Figure 7(a). Sample A showed a single absorption edge across the 1.0-3.0 eV range 

found at 1.4 eV.  However, the band gap around 2 eV observed from transmittance for both samples (A 

and B) was not observed by diffused reflectance in sample A.  
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To discuss the results from both transmittance and reflectance reference is given to the theoretical work 

of Haycock et al [32]. For the CuFeO2 thin films, we have measured fundamental absorption edges in 

the region of 1.0-1.3 eV, these results can be compared and attributed to the expected 1.2-1.4 eV 

indirect L – Γ transitions forecasted in [32], with an expected Urbach tail formed from sub-gap indirect 

d-d state transitions.  Both CuFeO2 samples displayed the activation of a direct transition in the 2.0-2.2 

eV region, this absorption edge can be attributed to the activation of direct L-point transitions and 

direct Γ-point transitions calculated to be at 1.6 eV and 2.4 eV respectively [32].  It is possible that the 

absorption observed in this spectral region takes place via a super-positioning of direct transitions over 

both symmetry points. The measured band gaps from reflectance (Fig.7) show a main dependence on 

an absorption edge observed at 1.4 eV corresponding to direct transitions. There are two possible ways 

of viewing this discrepancy between reflectance and transmittance data: Firstly, the absence of the 

absorption edge at 2.1 eV could indicate that a relatively large optical path length is required in order 

for the direct L and Γ-point transitions to have a strong effect on the spectra. Secondly, because the 

lower band gap at 1.0-1.3 eV is expected to emerge from indirect transitions and the spectra shows a 

strong direct absorption edge in this region, the reflectance spectra may represent direct L and Γ-point 

transitions assisted by intra-gap states emerging from the discontinuity of the crystalline structure at the 

surface. In either case, these results suggest that relatively large optical path lengths are required to 

observe the absorption edge related to the direct fundamental gap within these samples.  

Each spectrum obtained also indicates the activation of a possible higher absorption edge located in the 

range hn > 3.1 eV, these effects are particularly prominent in the reflectance spectra.  Although such 

high band-gaps have been reported before [14,15], these absorption edges are likely to be emanating 

from valence band to second conduction band transitions; or to absorption via channels located higher 

up within the conduction bands which are known to possess relatively high optical cross-sections.  

These higher energy absorption channels are thought to form an apparent optical edge – this 
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explanation is explored in detail by Nie et al [33] and Huda et al [10].   

 

Substitution of Ga for Fe (CuFe1-xGaxO2) 

Tauc-plots of transmittance and reflectance for sample C (CuFe1-xGaxO2) are displayed in Figure 5c and 

7b respectively. For this sample, as expected due to the Ga substitution, the Tauc-gap characteristics 

were different from those of the pure CuFeO2 samples. First, the primary gap - located in the NIR 

region for CuFeO2 – was found to be close to 1.5 eV for direct transitions showing an apparent upward 

shift in energy from the 1.3 eV recorded for the pure CuFeO2 samples and may represent a change in 

optical gap brought about by the hybridization of CuFeO2 with CuGaO2. Further up the energy range, a 

strong absorption edge emerged corresponding to a Tauc-gap of approximately 2.3 eV.  Moreover, the 

gradient of this absorption edge was found to have increased compared to the absorption edges at 2.2 

eV for the pure CuFeO2 samples. In the indirect regime, the transmittance spectra displayed a step-like 

formation with three linear regions which correspond to Tauc-gaps ranging between 1.1 and 1.3eV.  

The K-M function of the reflectance spectra of sample C is shown in figure 7b. The K-M function for 

direct transitions was found to be largely similar to those gained for the CuFeO2 samples, with single 

absorption edge corresponding to a Tauc-gap of approximately 1.2 eV – shifted downwards by 0.2 eV.  

As with the CuFeO2 samples, the absorption edge located in the hn > 2.0 eV range could not be 

observed.     

 

The fundamental direct Tauc-gap measured at 1.5 eV from transmittance is comparable to the 

absorption edge reported by Lekse et al [20] for CuFe1-xGaxO2 with x = 0.85 who describe the position 

of this absorption edge as being independent of fractional Fe content.  As with the studies of Lekse et al 

[20], an expected outcome of B-site alloying of Ga and Fe is the breaking of delafossite crystal 

symmetry, which is expected to modify selection rules leading to the increased availability of transition 
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states. Moreover, Huda et al [10] also have described changes from forbidden to allowed dipole 

transitions, in relation to changes in localized strain imposed by the substitution of smaller Y for Ga 

atoms into a CuYO2 host lattice. In our case, this is evident from the substitution of the larger Ga atoms 

in to the CuFeO2 host.  

The principal differences between the transmittance spectra of CuFe1-xGaxO2 and that of the pure 

CuFeO2 samples relate to the accessibility of the direct the L and Γ point transitions located at 1.6 and 

2.4 eV respectively. This can be viewed most effectively in Figure 6 which shows the comparative 

optical densities of the samples, where for sample C one can observe the increased gradient for the 

absorption edge located at 2.3 eV.  The results presented here could be indicating an increase of optical 

cross-section for these two transition channels over a hybridized band-gap of the alloyed material.  The 

step-like activations of indirect absorption edges observed in sample C also indicate the increased 

accessibility of transition channels throughout the spectra in comparison to the pure CuFeO2 material. 

It is also probable that the spectra represent a hybridization of transition channels between CuFeO2 and 

the substituted CuGaO2 layers; as the results from the Raman spectra and XRD suggest a significant 

degree of hybridization of the thin film properties between host and substituted layers.  However, a 

clear differentiation between activated transition channels via symmetry breaking and hybridized band-

structures cannot be made from these results alone. The calculated direct band gaps over the L and Γ 

points for CuGaO2 are 1.81 eV and 2.4 eV according to Haycock et al [32], and 1.61 eV for the Γ point 

according to Nie et al [33], so an upward shift in absorption edge should also be expected due to 

hybridization within the alloy, and this is what is observed for the fundamental direct gap absorption 

edges of the sample.    

The results gained from reflectance again show a high dependence on an absorption edge located at 1.2 

eV, again providing a similar discrepancy to that described above for the CuFeO2 samples. The fact that 

the reflectance results gained for the CuFe1-xGaxO2 are similar to the CuFeO2 films can be accounted 
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for by the capping layer (~10 nm) of host material applied to the CuFe1-xGaxO2 film during growth, 

assuming a higher proportion of the reflectance spectra emanates from the first few layers of the 

sample.  

 

Discussion & Conclusions 

The optical properties of three thin film samples of CuFeO2 and CuFe1-xGaxO2 were investigated. XRD 

and Raman results demonstrated the stoichiometry and high quality of the samples. All samples 

displayed strong peak Raman shifts located at 350, 511 and 689 cm
-1

, attributed to the octahedral c-axis 

Eg vibrational modes, non-zero wave vector phonons, and c-axis A1g vibrational modes respectively; 

all of which corresponded to characteristic delafossite crystallization within the samples. These peaks 

were observed to uniformly shift in response to Ga substitution, indicating a homogeneous 

hybridization between layers throughout the thin film with respect to phonon channels within the 

crystal. The Raman shift located at 511 cm
-1

, showed an increase in allowed optical phonon channels 

within the material in response to Ga substitution which are forbidden by selection rules for ideally 

symmetric CuFeO2.   

Analysis of Tauc-gaps for the CuFeO2 thin films found agreement with previous reports, with 

predominant absorption edges measured at 1.1eV, 1.4eV and 2.1eV from transmittance spectra.  The 

sample of CuFe1-xGaxO2 showed a measurable shift 1.5 eV and a strong absorption edge at 2.3 eV. 

 

For the composite CuFe1-xGaxO2 thin film, changes in characteristic optical absorption edges were 

observed from Vis-NIR transmittance spectra. Moreover, the overall optical density in the region 1.75-

3.9eV followed a steeper gradient for the CuFe1-xGaxO2 thin film above its measured absorption edge at 

2.3 eV. However, a direct comparison between thin films of near equal thicknesses is yet to be made to 

show this effect more concretely. The absorption edges observed were attributed to hybridized band 
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gaps within the CuFe1-xGaxO2 material in conjunction with an increased accessibility of direct band to 

band transitions over the L and Γ symmetry points within the material. This effect has been linked to 

crystal symmetry breaking for both host lattice and substituted complexes which leads to the lifting of 

Laporte’ selections rules as described in [20, 32].  Thus, this CuFe1-xGaxO2 epitaxial thin film material 

could possess some favorable attributes for the purpose of solar driven photo-catalytic electrode 

applications. This finding has shown that b-site alloying provides scope for further investigations aimed 

towards engineering a delafossite material with a strong direct absorption edge in the region of peak 

solar irradiance, which can be changed by varying the alloy constituents and concentrations.  Although 

the results obtained from reflectance measurements are comparable with the fundamental band gaps 

obtained from transmittance at 1.2 – 1.4 eV, they also suggest that near surface transitions vary with 

respect to absorption channels through the bulk of the material and that intra-gap surface states may 

have a contribution to the available direct absorption channels close to the surface. Given that photo-

catalysis is a surface located event this may have influence on the properties of the material in terms of 

photochemical water-splitting reactions amongst other possible applications.   

Further investigations of the photo-current generation, carrier mobilities and photo-catalytic reactions 

on the sample surfaces will help determine the impact of the substituted layers and surface absorption 

channels on the generation of the electron-hole pairs required for photo-catalytic processes within the 

materials investigated. 
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Figure 1. Schematic diagram of the optical apparatus: A 100 W tungsten halogen lamp provides the 

broadband light source. PD-2 is the photodetector used to collect transmitted light recorded at 

normal incidence (θ = 0°), PD-1 is the photodetector used to collect reflected light (angle of 

reflectance θ < 10°); transmittance is. The beam is chopped (730 Hz) 

Figure 2.  XRD diffraction spectra for both CuFeO2 samples: 21 nm thick film is shown with a blue 

line; 75 nm thick film is shown with a red line.  

Figure 3.  Raman spectra of the samples: black line corresponds to the spectrum of sample A (21  nm  

CuFeO2), green line corresponds to the spectrum of sample B (75 nm CuFeO2)  and blue line 

corresponds to the spectrum to sample C  (37 nm CuFe1-xGaxO2  ). Raman peaks labeled with 

(*) correspond to the Al2O3 substrate.  

Figure 4. (a) Plot of the transmittance spectra as a function of photon energy for all samples: blue line  

corresponds to the spectrum of sample A, red line corresponds to the spectrum of sample and 

black line corresponds to the spectrum to sample C  ,  

(b) Plot of the reflectance spectra as a function of photon energy for sample A  (CuFeO2)  and 

sample C (CuFe1-xGaxO2). 

Figure 5 (a) Tauc-plot from transmittance data (n=1/2 in Eq. (1)): (a) for sample A   

(b) for sample B  (c) for  sample C   

Figure 6 Plot of the relative optical densities for each sample (sample A, B and C) for comparison. 

Figure 7 Tauc-plot for the K-M function of reflectance (F(R) replaced a in Eq. (1) 

   and using n=1/2). (a) for sample A (b) for sample C. 
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