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� PEM fuel cell internal behaviour during the lifetime is investigated.
� PEM fuel cell future performance is predicted using internal behaviour evolution.
� Multiple particle filters are used to predict PEM fuel cell performance.
� Prognostic analysis can give reliable prediction especially at dynamic condition.
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a b s t r a c t

This paper investigates the polymer electrolyte membrane (PEM) fuel cell internal behaviour variation at
different operating condition, with characterization test data taken at predefined inspection times, and
uses the determined internal behaviour evolution to predict the future PEM fuel cell performance. For
this purpose, a PEM fuel cell behaviour model is used, which can be related to various fuel cell losses. By
matching the model to the collected polarization curves from the PEM fuel cell system, the variation of
fuel cell internal behaviour can be obtained through the determined model parameters. From the results,
the source of PEM fuel cell degradation during its lifetime at different conditions can be better under-
stood. Moreover, with determined fuel cell internal behaviour, the future fuel cell performance can be
obtained by predicting the future model parameters. By comparing with prognostic results using
adaptive neuro fuzzy inference system (ANFIS), the proposed prognostic analysis can provide better
predictions for PEM fuel cell performance at dynamic condition, and with the understanding of variation
in PEM fuel cell internal behaviour, mitigation strategies can be designed to extend the fuel cell
performance.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the last few decades, many efforts have been devoted to the
innovative energy generation sources to reduce the emissions.
Among these sources, hydrogen and fuel cells, especially the
polymer electrolyte membrane (PEM) fuel cells, have received
much attention, since they are the zero emission energy conversion
and power generation devices. As the results, PEM fuel cells have
already been equipped in real applications including stationary
power station, automotive and consumer devices.

However, the reliability and durability of PEM fuel cells are still
ier B.V. This is an open access artic
two major barriers for the further commercialization, where many
practical fuel cell systems, especially those at dynamic loading
conditions like in automotive application, cannot reach the
designed requirement of useful life. As a possible solution, a series
of research has been devoted to the fault detection and isolation of
fuel cells in the last few decades [1e12], which can be used to
evaluate the operating status of fuel cell system, thus mitigation
strategies can be carried to recover the fuel cell performance in case
of fuel cell faults. The techniques involved in these studies can be
loosely divided into two groups, including model-based and data-
driven approaches. Regarding the model-based methodologies,
the model representing fuel cell behaviour should be developed, by
comparing the residuals between model outputs and actual mea-
surements, fuel cell faults can be detected, and the faults can also be
isolated by minimizing the residuals with updated model
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Range of PEM fuel cell parameters during the test [29].

PEM fuel cell parameter Range

Cooling temperature (�C) 20e80
Cooling flow (l/min) 0e10
Gas temperature (�C) 20e80
Gas humidification (%) 0e100
Air flow (l/min) 0e100
Hydrogen flow (l/min) 0e30
Gas pressure (bar) 0e2
Fuel cell current (A) 0e300

Table 2
PEM fuel cell parameters in the steady state condition test [29].

PEM fuel cell parameter Value

Fuel cell current (A) 70
Anode inlet temperature (�C) 28
Cathode inlet temperature(�C) 42
Anode inlet flow rate (l/min) 4.8
Cathode inlet flow rate (l/min) 23
Cooling flow (l/min) 2
Gas inlet hygrometry (%) 50
Anode inlet pressure (mbar) 1300
Cathode inlet pressure (mbar) 1300

Table 3
PEM fuel cell characteristics.

Parameter Value

Membrane thickness 25 mm
Active area 100 cm � 100 cm
Platinum loading 0.2 mg/cm2

Gas diffusion thickness 415 mm
Flow channel 7-fold serpentine
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parameters [1e6]. While in the data-driven approaches, the mea-
surements from fuel cell system will be analyzed, features indi-
cating fuel cell performance are extracted, and the system state can
be determined by applying pattern recognition algorithms to the
extracted features [7e12].

Compared to the fuel cell fault diagnostic studies, only few re-
searches have been performed to predict the fuel cell future per-
formance and determine its remaining useful life (RUL) [13e22].
Due to the difficulty of developing an accurate fuel cell model
incorporating complete failure mode effects, most studies in fuel
cell prognostics are based on black-box models. The general idea in
black-box model based prognostics is to derive input-output rela-
tionship of the fuel cell system with the training process, and then
predict the future fuel cell performance based on the trained
model. However, one drawback of these prognostic techniques is
that the prognostic performance relies heavily on the quality and
quantity of training data, i.e. if the PEM fuel cell system experiences
faults in the operation, the trained model cannot provide reliable
predictions before re-training the model with the new dataset
including the fault information. Moreover, prognostic results from
the black-box models cannot provide the understanding of PEM
fuel cell internal behaviour, thus it is difficult to design mainte-
nance strategies to extend the PEM fuel cell lifetime based on the
prognostic results. On this basis, it is necessary to study the varia-
tion of the PEM fuel cell internal behaviour during its lifetime, and
predict the future PEM fuel cell performance using the evolution of
fuel cell internal behaviour.

In this paper, the internal behaviour of PEM fuel cell system
during its lifetime is studied using the PEM fuel cell behaviour
model, which can be related to various PEM fuel cell losses. By
matching the model parameters to the collected polarization
curves with certain interval, the variation of fuel cell internal
behaviour can be obtained, which can be used to analyse the source
for the PEM fuel cell degradation at both steady state and dynamic
conditions. Moreover, with the determined model parameter evo-
lution, the future model parameters are predicted using particle
filtering approach, and the future PEM fuel cell performance can
then be determined. Furthermore, the prognostic results are
compared with those using ANFIS at both steady state and dynamic
conditions, results demonstrate that the proposed prognostic
analysis can provide better predictions at PEM fuel cell dynamic
condition.

2. Description of PEM fuel cell durability tests

The durability tests of PEM fuel cell system described in Ref. [29]
are used in this analysis, which includes PEM fuel cell performance
at different conditions, including both the steady state and dynamic
conditions.

The test bench with electrical power up to 1 kW is used to test
the PEM fuel cell performance during its lifetime. In order to control
the fuel cell operating conditions more accurately, several param-
eters related to PEM fuel cells are measured and controlled, which
are listed in Table 1, while Table 2 lists the control parameters used
in the steady state condition.

The PEM fuel cell stack used in the durability tests contains
5 cells with open cathode, and each cell has active area of 100 cm2.
It should be mentioned that the PEM fuel cell is comprised of a
commercial Nafion membrane, platinum nanoparticle catalyst,
carbon diffusion materials, silicone sealing gaskets, composite flow
field plates having channels for water coolant circuit. The main
characteristics of theMEA are listed in Table 3.

The nominal current density of the PEM fuel cell is 0.70A=cm2

(determined based on the PEM fuel cell output power and its life-
time), and maximum current density is 1 A=cm2. Fig. 1(a) depicts
the schematic diagram of the PEM fuel cell test and current den-
sities for different conditions, while Fig. 1(b) shows the current
densities applied to the PEM fuel cell stack at steady state and
dynamic conditions, respectively.

It can be seen from Fig. 1(b) that the 1st test studies the dura-
bility of the fuel cell stack in steady state regime, where the PEM
fuel cell stack is operated at nominal current density. While the fuel
cell stack durability under dynamic condition is tested in the 2nd
test, and current density with high-frequency current ripples is
applied to simulate the dynamic condition. The reason of using
0.7 A=cm2 with high-frequency current ripples is to let the dynamic
current density comparable to the nominal current density used in
the 1st durability test, thus the results from these tests can provide
the clear understanding about the performance variation at
different operating conditions.
3. Investigation of PEM fuel cell internal behaviour

In the above described PEM fuel cell durability tests, the polar-
ization curve test is carried out once a week (with about 160 h
interval), and the collected polarization curves at the two durability
tests are depicted in Fig. 2. It should be noted that themean fuel cell
voltage is used in this analysis, so that the internal behaviour within
single cell can be investigated instead of the fuel cell stack. More-
over, for better illustration purpose, only some polarization curves
are depicted in Fig. 2 to better demonstrate the PEM fuel cell per-
formance change during the tests.

It can be found from Fig. 2 that during the long term operations
(about 1000 h herein), the PEM fuel cell performance will decay



Fig. 1. PEM fuel cell durability test.

Fig. 2. Collected polarization curves during the tests at two different conditions.
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over time at both operating condition. However, the fuel cell shows
different performance degradation phenomenon at two operating
conditions, i.e. at steady state condition, the performance degra-
dation rate will increase at the early operation stage (from 48 h to
658 h in Fig. 2(a)), and then decrease at the end of the fuel cell
lifetime, while the PEM fuel cell performance degradation is still
clear at the end of its lifetime at dynamic current density condition
(shown in Fig. 2(b) from 666 h to 1016 h).
In order to study the evolution of PEM fuel cell internal
behaviour during its lifetime, a PEM fuel cell behaviour model is
used in this study, which is expressed with the following equation.
The reason of using the model is that it can represent several PEM
fuel cell losses during the operation, including activation loss,
ohmic loss, mass transport loss and fuel crossover loss [24e26],
thus the variation of internal fuel cell behaviour can be investigated
by studying the changes of model parameters.
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where Erev is reversible cell voltage (1.22 V is used in this study), R
is universal gas constant, T is cell temperature,f is charge transfer
coefficient, with value within the range of 0 and 1 (0.5 in this
study), F is faraday constant, ioc is exchange current density at
cathode, in is internal current density, mtrans and ntrans are mass
transport loss coefficients, Rmem is membrane resistance. It should
be noted that as the anode activation overvoltage is negligible in
comparison to the cathode overvoltage, it is ignored in the above
equation. It should be mentioned that the reason of using
mtransentrans�i to express PEM fuel cell mass transport loss is because
it has been used in the previous work for PEM fuel cell modelling,
and results show that the PEM fuel cell mass transport loss part can
be simulated accurately with the above expression [17].

The variation of model parameters (in, ioc, mtrans, ntrans, and
Rmem) can be obtained by matching Eq. (1) to the results from
characterization tests of PEM fuel cell system, in this study the
polarization curve is selected for this purpose. The reason is that
polarization curve can express fuel cell losses directly, with
different phases in polarization curve corresponding fuel cell loss
terms in Eq. (1) [27,28]. Moreover, the polarization curves can be
collected easily from the fuel cell system without extra testing
equipment, which can reduce the complexity and cost of the
monitoring process. Furthermore, with the collection of polariza-
tion curve, the fuel cell performance can be recovered effectively,
and this recovery effect becomes prominent with the fuel cell
operation, this is consistent with the fuel cell aging phenomenon,
which will be further studied below.

Fig. 3 depicts the fuel cell stack response from these two dura-
bility tests, where the fuel cell stack performance degradation
during its lifetime can be clearly observed. It should be noted that in
the durability test, characterization tests are carried out once per
week, where polarization curves are collected. As mentioned
before, the collection of the polarization curve can effectively
recover the fuel cell performance, which can be found in Fig. 2 with
circled parts in the fuel cell voltage curve, which are consistent with
the time when the polarization curve is collected. The possible
reason for the performance recovery due to collection of polariza-
tion curve is that since different current densities are used, excess
water inside the fuel cells can be better removed, thus better water
management can be obtained through the collection of polarization
curve, and performance degradation due to poor water manage-
ment can be recovered. In order to make reliable predictions, this
Fig. 3. Fuel cell stack voltage ev
recovery effect should be included in the prognostic analysis as it
can affect the future fuel cell performance and its RUL, this will be
further discussed in the following section.

Moreover, with the voltage evolution obtained from the tests,
the voltage degradation rates can be obtained as 0.025 mV/h and
0.03 mV/h at steady state condition and dynamic condition,
respectively, indicating that the dynamic loading condition can
accelerate the fuel cell degradation. It is noted that as no fuel cell
fault is observed during the tests, the degradation rate herein
represents the fuel cell aging phenomenon.

With the method described before, the fuel cell model param-
eters can be obtained by matching Eq. (1) to the collected polari-
zation curve, and results are listed in Tables 4 and 5.

Several observations can be made from the above results. Model
parameters show a monotonous trend during the PEM fuel cell
durability tests. Compared to the parameter values from 1st dura-
bility test, model parameters at 2nd durability test have larger
values, especially for in and ioc , indicating that the dynamic current
density can affect the capability of membrane for preventing ions.
Moreover, since the PEM fuel cell system requires a certain time to
reach stabilization at the beginning of the test, the model param-
eters at the starting point (0 h in above tables) may not represent
the actual fuel cell performance, thus they are not included in the
following analysis.

Fig. 4 depicts the evolutions of model parameters in Eq. (1) at
different loading conditions by removing their values at the start-
ing point. To provide a better comparison, the model parameters
shown in Tables 4 and 5 are normalized, so that the evolution trend
of model parameters can be compared at different fuel cell oper-
ating conditions.

It can be seen from above figure that fuel cell model parameters
follow a similar evolution trend at different operating conditions,
which paves the way of using the same state equation to represent
the model parameter evolutions for PEM fuel cell prognostics.
However, it can be seen that the dynamic operating condition can
cause faster and more dynamic PEM fuel cell degradation, as model
parameters will have larger variations at dynamic operating
conditions.

Furthermore, the effectiveness of model parameters from curve
fitting techniques is studied by comparing the polarization curves
collected from the test and simulated using model parameters.
Fig. 5 depicts the comparison of polarization curves at two oper-
ating conditions. To better illustrate the comparison results, only
two polarization curves are shown herein at each operating con-
dition. Moreover, root mean square error (RMSE) is calculated to
better evaluate the performance of developed model, which can be
calculated using Eq. (2)
olutions at durability tests.



Table 4
Determined model parameters from the 1st durability test.

Model parameter Operation time (h)

0 48 185 348 515 628 823 991

in (A=cm2) 0.00821 0.00493 0.00526 0.00627 0.00751 0.00791 0.00775 0.00775

ioc (A=cm2) 0.00025 0.00072 0.00047 0.00037 0.00035 0.00021 0.00023 0.00022
mtrans 0.3153 0.3454 0.3055 0.3042 0.2456 0.2381 0.2123 0.2345
ntrans 0.00767 0.206 0.2845 0.2919 0.3657 0.4024 0.4169 0.3588
Rmem (ohm=cm2) 0.1867 0.09694 0.09848 0.101 0.103 0.09926 0.106 0.112

Table 5
Determined model parameters from the 2nd durability test.

Model parameter Operation time (h)

0 35 182 343 515 666 830 1016

in (A=cm2) 0.00953 0.00767 0.00837 0.00857 0.00949 0.00934 0.00919 0.00946

ioc (A=cm2) 0.00048 0.00085 0.00081 0.0011 0.00085 0.00066 0.00078 0.00066
mtrans 0.1765 0.2658 0.2458 0.225 0.2135 0.1991 0.213 0.2036
ntrans 0.4924 0.4187 0.4687 0.4107 0.5843 0.596 0.622 0.645
Rmem (ohm=cm2) 0.089 0.08008 0.08364 0.08564 0.09544 0.09374 0.09717 0.09842
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RMSE ¼
Pn

i¼1ðyi � byiÞ2 (2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

s

where yt is the actual measurement at time t, and byt is the output
from the model at time t, n is the number of measurement samples.
It can be seen that the smaller RMSE indicates better prediction
accuracy from the neural networks. Tables 6 and 7 lists the RMSE of
the polarization curves collected at different times under steady
state and dynamic conditions, respectively. It can be seen that the
determined model parameters from curve fitting technique can
represent the PEM fuel cell behaviour at two different operating
conditions with good quality.

It should be noted that the membrane resistance determined in
Tables 4 and 5 are comparable to previous studies [18,19] indicating
that the ohmic resistance ranges from 0.009ohm=cm2 to
0.182ohm=cm2, which further validate the effectiveness of PEM fuel
cell model parameters extracted from the polarization curves.

Moreover, the overvoltage due to different PEM fuel cell losses
are calculated and depicted in Fig. 6. It should be mentioned that
since ioc is considered as a constant value herein, the overvoltage
due to activation loss is also a constant value.

It can be found from the above figure that in the PEM fuel cell
durability tests at steady state condition, the mass transport loss
accounts for 61% of PEM fuel cell performance degradation, and
activation loss accounts for 24% of PEM fuel cell performance
degradation, 12% PEM fuel cell degradation results from ohmic loss,
only 3% from fuel crossover loss, this is also consistent with the
results from previous study [20]. While at dynamic condition, most
PEM fuel cell performance degradation is still from mass transport
loss (53% in this case), 27% from activation loss, but fuel crossover
loss increases clearly at dynamic condition, which makes similar
contribution as ohmic loss in this case for the PEM fuel cell per-
formance degradation (10%), indicating that the dynamic condition
will reduce the PEM fuel cell capability of preventing gas reactants
from pass through the membrane.

4. Use of model parameter evolution for PEM fuel cell
prognostics

4.1. Description of particle filtering based prognostic technique

From above section, the evolution of model parameters can be
obtained, and PEM fuel cell internal behaviour variation during the
lifetime can be determined, which can be used to analyse the
source of the fuel cell performance degradation and design effec-
tive mitigation strategies. In this section, the future variation of
model parameters will be predicted to provide the PEM fuel cell
future performance.

In this study, particle filtering approach is used to predict the
future model parameters based on the previous evolutions, as this
technique has been applied successfully for fuel cell prognostics in
previous studies [21e23].

Particle filtering approach is an effective tool for the Bayesian
tracking problem of a non-linear system with non-Gaussian noise,
which can be defined with the following equations:

xk ¼ f ðxk�1;wk; vkÞ (3)

yk ¼ gðxk;mkÞ (4)

where Eq. (3) represents the system state, and Eq. (4) is the ob-
servations from the system, wk are parameters of the system state
model, vk and mk are statistically independent identically distrib-
uted noise from the system state model and observations,
respectively.

The probability density function pðxkjy1:kÞ is calculated in order
to obtain the distribution of possible state x at time k. In the
analysis, the initial state distribution pðx0Þ should be known, and
two stages will be repeated to determine the optimal Bayesian
solution, which can be written as:

pðxkjy1:k�1Þ ¼
Z

pðxkjxk�1Þpðxk�1jyk�1Þdxk�1 (5)

pðxkjy1:kÞ ¼
pðykjxkÞpðxkjy1:kÞ

pðykjx1:k�1Þ
(6)

Theoretically, the optimal solution can be calculated using the
above equations, but in most cases the analytical solution cannot be
obtained. To address this issue, an approximation can be obtained
with the particle filtering approach using the following steps.

Step 1: generate n particles based on the initial system state
distribution;

Step 2: particle will move to the next state (from k-1 to k) using



Fig. 4. Evolution of fuel cell behaviour model parameters during the fuel cell durability tests.

Fig. 5. Comparison of polarization curves collected from 2 durability tests and simulated using model parameters.
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Table 6
RMSE of simulated polarization curve under steady state conditions.

RMSE

Time (h) 48 185 348 515 658 823 991
RMSE 2.7�10�6 2.7�10�6 2.5�10�6 2.8�10�6 2.7�10�6 2.6�10�6 2.6�10�6

Table 7
RMSE of simulated polarization curve under dynamic conditions.

RMSE

Time (h) 35 182 343 515 666 830 1016
RMSE 3.1�10�6 2.9�10�6 3.0�10�6 3.1�10�6 3.0�10�6 2.8�10�6 3.0�10�6
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the state model in Eq. (3);
Step 3: with new observation at time k, the likelihood function

pðykjxkÞ can be calculated, and particle weights can be calculated
using the following equation:

wðiÞ
k ¼ 1ffiffiffiffiffiffiffiffiffi

2pR
p e�

ðzk�z
ðiÞ
k Þ2

2R (7)

wherewðiÞ
k is the value of ith weight at time step k, R is the variance

of measurement error, zk is the actual measurement at time step k,
zðiÞk is the prediction from the ith particle at time step k.

Step 4: re-sample the particles by eliminating particles with
lower weights, and duplicating particles with higher weights;

Step 5: repeat steps 2e4 to predict the system state
continuously;

It should be noted that as the fuel cell behaviourmodel shown in
Eq. (1) contains multiple parameters corresponding to various fuel
cell losses, multiple state equations should be used to reflect the
evolution of these parameters, which requires multiple particle
filters in the prognostic analysis. With predicted model parameters
from multiple particle filters, the fuel cell voltage can be calculated
using Eq. (1).
4.2. Determination of state equations for fuel cell model parameters

As described before, state equations are required in the particle
filtering approach to predict the future performance of the system,
which should be capable of representing the evolution of fuel cell
model parameters.

In this study, the curve fitting technique is used to generate the
state equations for the fuel cell behaviour model parameters based
on the determined evolution of model parameters. The criteria of
generated state equations is that these state equations should have
a simple format and can represent the model parameter evolution
accurately, which can be evaluated using R squared and RMSE
values. From the results, the following equations are proposed as
the state equations, and coefficient values from two durability tests
are listed in Table 8.

Evolution of ioc: iocðtÞ ¼ a1 � a2t (8)

Evolution of in: inðtÞ ¼ b1 þ b2t (9)

Evolution of Rmem: RmemðtÞ ¼ c1 þ c2t (10)

Evolution of mtrans: mtransðtÞ ¼ d1e
d2t (11)

Evolution of ntrans: ntransðtÞ ¼ e1e
e2t (12)
Where a1, b1 and c1 are the initial values for ioc, in and Rmem,
respectively, a2, b2 and c2 represents the PEM fuel cell degradation
rate due to activation loss, fuel crossover loss, and Ohmic loss, d1
and e1 controls the amplitude of mass transport loss, while d2 and
e2 express the PEM fuel cell degradation rate due to mass transport
loss during the operation.

It can be seen from above table that at dynamic condition, the
membrane resistance will be increase more rapidly (indicated with
higher c1 value), and higher internal current density (higher b1
listed in Table 5) indicates dynamic current density will cause loss
of membrane capability of preventing iron from passing through.
This can better explain the faster degradation and shorted fuel cell
lifetime at dynamic conditions.

Moreover, as collection of polarization curve can recover the
PEM fuel cell performance effectively, which is depicted in Fig. 2,
this effect should be considered when performing fuel cell prog-
nostics. In this study, an equation is proposed using curve fitting
technique to represent the performance recovery effect due to
polarization curve collection, which is written as the equation
below and constant to the previous study [22]. Equation co-
efficients at different fuel cell conditions are listed in Table 9.

VrecoverðtÞ ¼ aebt þ cedt (13)

It can be seen that with the fitted equations, the evolution of
recovered fuel cell voltage can provide a high quality simulation.
With the fuel cell operation, the recovery effect due to character-
ization tests is gradually reduced, but at the end of the fuel cell
system lifetime, better recovery effect can be observed. Moreover,
at the dynamic condition, less recovery effect is observed than that
under the steady state condition, this effect, together with faster
degraded fuel cell parameters (shown in Fig. 3), leads to the
reduced useful life of the fuel cell system under dynamic
conditions.
4.3. Prognostic performance using multiple particle filter based
technique

From section 2, the fuel cell behaviour model in Eq. (1) contains
5 model parameters with nearly monotonous trend in the dura-
bility tests, thus a total of 5 particle filters are used in the analysis to
predict each parameter separately. In order to apply particle filters
in the analysis, Eqs. (8)e(12) are re-organized in recursive format,
which are written below.

Evolution of ioc: iocðt þ 1Þ ¼ a2 þ iocðtÞ (14)

Evolution of in: inðt þ 1Þ ¼ b2 þ inðtÞ (15)



Table 8
Coefficient values of model parameter evolution equations from two durability tests.

Durability test a1 (A=cm2) a2 (A=cm2:h) b1 (A=cm2) b2 (A=cm2:h) c1 (ohm=cm2) c2 (ohm=cm2: h)
1 0.0061 4.79�10�6 0.0050 3.41�10�6 1.34�10�5 0.0956
Durability test d1 d2 e1 e2
1 0.3447 �0.0005 0.237 0.0002
Durability test a1 (A=cm2) a2 (A=cm2:h) b1 (A=cm2) b2 (A=cm2:h) c1 (ohm=cm2) c2 (ohm=cm2: h)
2 0.0009 2.27�10�7 0.0080 1.69�10�6 1.97�10�5 0.0805
Durability test d1 d2 e1 e2
2 0.2572 �0.0003 0.4153 0.0005

Table 9
Coefficients in the Eq. (11) for the recovered fuel cell voltage.

A b c d

Test 1 705 0.00705 0.6738 �6.023�10�5

Test 2 3.89�10�5 0.00669 0.6614 �4.497�10�4
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Evolution of Rmem: Rmemðt þ 1Þ ¼ c2 þ RmemðtÞ (16)

Evolution of mtrans: mtransðt þ 1Þ
¼ d1e

d2t �
�
ed2 � 1

�
þmtransðtÞ (17)

Evolution of ntrans: ntransðt þ 1Þ ¼ e1e
e2t � ðee2 � 1Þ þ ntransðtÞ

(18)

It should bementioned that the noise is not included in the state
equations, since these equations are proposed by matching the
collected polarization curves, which already include the measure-
ment noise effect.

As described in section 3.1, newobservations (model parameters
herein) should be added in the particle filtering approach to
calculate the particle weights, but in the analysis, the model pa-
rameters are extracted from the polarization curve, which is
collected with 1 week interval, thus in the analysis, the time step in
Eqs. (14)e(18) is set to be consistent with the time when the po-
larization curve is collected.

One issue associated with the above time step setting is that the
fuel cell voltage cannot be predicted continuously. In order to make
the particle filtering approach more suitable in practical applica-
tions, the fuel cell degradation rate is added to the particle filtering
approach to provide the fuel cell voltage prediction between two
consecutive polarization curves. The fuel cell degradation rate can
be determined using the following equation.

dV
dt

¼ � RT
2fF

dln
�

i
ioc

�
dt

� RT
2fF

dln
�

in
ioc

�
dt

� dmtrans

dt
entrans�i

�mtransentrans�idntrans
dt

� i� i� dRmem

dt
(19)

where
dln

�
i

ioc

�
dt ,

dln

�
in
ioc

�
dt , dmtrans

dt , dntrans
dt and dRmem

dt in Eq. (19) are calculated
using fitted equations in Eqs. (8)e(12).

Following the steps described in section 3.1, multiple particle
filters are used in parallel to estimate the model parameters in Eqs.
(14)e(18), Table 10 lists the set-up of the particle filters.

Fig. 7 depicts the performance of multi-particle filter based fuel
cell prognostic approach in both steady state and dynamic loading
conditions. It can be seen that with the multiple particle filter-
based prognostic technique, actual fuel cell voltage at constant
and dynamic load current conditions can be included using the
predicted range (upper and lower bound predictions in Fig. 7), and
the predicted fuel cell voltage can effectively capture the actual fuel
cell performance.
4.4. Comparison with prognostic results using ANFIS

In order to further study the effectiveness of PEM fuel cell
prognostics using predicted model parameters, it is compared with
the prognostic results using ANFIS, which has been widely used in
fuel cell prognostics [14e17].

A typical ANFIS can include five layers. Layer 1 is the fuzzifica-
tion layer which performs fuzzification to the incoming inputs. For
example, two inputs (x1,x2) and 4 membership functions
(P11, P21, P12, P22) are applied in Fig. 1, then 16 rules (24) can be
formulated (if-then rule), and the output from layer 1 can be
written as in Equation (20).

y1i ¼ mAj
i

�
x1i

�
¼ 1

1þ
�����x1

i �ci
ai

�����
2bi

(20)

where mAj
i
is the fuzzy rule associated with ith input and jth fuzzy

rule, y1i is the ith output at layer 1, ai, bi and ci are the parameters in
the membership function, which will be adjusted during the
training phase.

In layer 2, the firing strength of the fuzzy rule will be generated,
with output y2i from layer 2, which is described in Equation (21)

y2i ¼ ui ¼
Y
i

mAj
i

�
x1i

�
(21)

where ui is the firing strength of the rule.
Layer 3 is usually defined as the normalization layer, where the

neurons at this layer receive inputs from all neuros at layer 2 and
calculate the normalized firing strength, which can be expressed as
y3i in Equation (22)

y3i ¼ ui ¼ ui

,Xi

1

ui (22)

Layer 4 is called the defuzzification layer, each neuro at this layer
receives outputs from layer 3 as well as the original inputs of the
system (x1,x2) for the calculation, with output y4i calculated by
Equation (23)

y4i ¼ uif i ¼ ui

�
cj1x1 þ cj2x2 þ cj3

�
(23)

where cj1, c
j
2 and cj3 are consequent parameters of the jth fuzzy rule,

which will be updated during the training process.
With outputs from layer 4, the system output can be calculated

with Equation (24)



Table 10
Set-up of particle filters.

Particle number 500

Initial state Uniform distribution cantered on the initial parameter value with a range of ± 1% percentage around the value
Re-sampling method Sequential importance resampling

Fig. 6. Overvoltage due to different PEM fuel cell losses in durability tests.

Fig. 7. Prediction results from particle filtering approach for two durability tests.
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y5i ¼
X
i

uif i (24)

It should be noted that the input layer of ANFIS contains 3 in-
puts, which are the three selected sensor measurements using
sensitivity analysis technique proposed in Ref. [17], while the
output is the fuel cell voltage. In this study, a single output Sugeno-
type fuzzy inference system is used. With a trial and error method,
the membership functions for input and output are selected as
generalized bell function and linear function, respectively, while
the training algorithm uses mixed least squares and
backpropagation.

In the study, the test data is divided into two parts, the first 2/
3rd of the stack voltages is used to train the ANFIS model, while the
last 1/3rd of the test data is employed to validate the performance
of the trained ANFIS. Fig. 8 depicts the prediction results at steady
state and dynamic loading conditions.

It can be found from Fig. 7(a) and (c) that at steady state con-
dition, the ANFIS can give the reliable fuel cell voltage predictions
after the training process, except the two voltage valleys at around
800 h and 900 h, the reason is that these voltage drops are due to
the stop of fuel cell system in the test, where the fuel cell system
operating condition is changed. This indicates that ANFIS may not
learn and predict the reasonable fuel cell performance under
operating condition variation, this can be better illustrated in the
prediction results at dynamic loading condition depicted in
Fig. 7(b) and (d), misleading fuel cell voltagewill appear after 400 h,
this is due to the lack of capability of ANFIS in learning and pre-
dicting the fuel cell behaviour with varying current.

Furthermore, the prognostic performance using multiple parti-
cle filtering approach and ANFIS is compared in terms of compu-
tational time and prediction accuracy, where the prediction
accuracy is determined using the average value between the pre-
diction and the actual value, the results are listed in Table 11. It can
be found that compared to ANFIS, multiple particle filtering
approach can provide better prediction at dynamic condition, since
it can capture the evolution of fuel cell parameters during the
system operation effectively. However, it should be mentioned that
as less computation time is used, ANFIS can be selected for PEM fuel
cell prognostics in the steady state regime, as fuel cell performance
will decay monotonously and can be learned effectively using
ANFIS.

5. Conclusion

In this paper, the variation of PEM fuel cell internal behaviour



Fig. 8. Performance of ANFIS in training and predicting fuel cell stack voltage (vertical dashed line separates the training and test data) for two durability tests.

Table 11
Comparison of fuel cell prognostic approaches (where states 1 and 2 represent the steady state and dynamic loading condition, respectively).

Prognostic technique Computational time (min) Prediction error (V)

ANFIS 1 1.8 2.71�10�4

2 2.9 0.04
Particle filtering 1 8.5 0.0053

2 14.5 0.0068
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during its lifetime is investigated using collected polarization
curves. For this purpose, a PEM fuel cell behaviour model is used,
with its model parameters corresponding to different fuel cell
losses. Both fuel cell model parameter variations at steady state and
dynamic condition are studied, and results show that ohmic loss
provides the dominant contribution for the PEM fuel cell degra-
dation in this study, and model parameters show larger variation at
dynamic condition, leading to the shorter lifetime of PEM fuel cell
system at dynamic conditions.

With obtained model parameter evolution, particle filtering
approach is used to predict the future values of model parameters
and thus the PEM fuel cell future performance. From the results,
reliable fuel cell performance can be predicted at both steady state
and dynamic conditions. Moreover, compared with prognostic re-
sults from ANFIS, prediction of model parameters using particle
filtering approach can provide better prediction at dynamic con-
ditions, indicating that the proposed method can capture the PEM
fuel cell internal behaviour with good quality. From the results, the
maintenance strategies can be designed to guarantee the reliable
operation of PEM fuel cells, i.e., the fuel cells should be replaced if
the predicted voltage/power is below the threshold value, which is
defined to indicate the output voltage/power cannot meet the re-
quirements for normal operation.
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