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Abstract. This paper investigates the online inventory problem with interrelated prices in

which a decision of when and how much to replenish must be made in an online fashion even

without concrete knowledge of future prices. Four new online models with different price corre-

lations are proposed in this paper, which are the linear-decrease model, the log-decrease model,

the logarithmic model and the exponential model. For the first two models, the online algo-

rithms are developed, and as the performance measure of online algorithm, the upper and lower

bounds of competitive ratios of the algorithms are derived respectively. For the exponential and

logarithmic models, the online algorithms are proposed by the solution of linear programming

and the corresponding competitive ratios are analyzed, respectively. Additionally, the algorithm

designed for the exponential model is optimal, and the algorithm for the logarithmic model is

optimal only under some certain conditions. Moreover, some numerical examples illustrate that

the algorithms based on the dprice-conservative strategy are more suitable when the purchase

price fluctuates relatively flat.

§1 Introduction

The development of inventory problem depends much on the economic order quantity (EOQ)

model. The research of inventory problem has ample academic achievements and has formed

a system of study [13] and [6]. Prices are generally assumed to be a probability distribution

or constant in the classical inventory problem. Serel [12] studied the optimal ordering and

pricing problem based on the interrelated demand and price in the rapid response system

which has twice orders. Banerjee and Sharma [2] studied the inventory model with seasonal

demand in two potentially replaceable markets. Sana [11] generalized the EOQ model to the
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case of perishable products with sensitive demand to price. Lin and Ho [8] studied the optimal

ordering and pricing problem of the joint inventory model with sensitive demand for price based

on the quantity discount. Studies mentioned above generally assumed that the parameters are

determined. In fact, some parameters possess uncertainty and the research for the uncertain

parameters is mainly divided into two categories, fuzzy and random. Webster and Weng [15]

studied the ordering and pricing problem of the fashion product’s supply chain which consisted

of producer and seller, and random demand is sensitive to price in the supply chain. Tajbakhsh,

Lee and Zolfaghari [14] studied the inventory model in which the time points of price discount

are from the Poisson distribution and the discount price is a discrete random variable. Abouee-

Mehrizi et al. [1] studied inventory problem of joint production with demand which is from the

Poisson distribution in two levels of inventory system.

In the classical inventory problem, the optimal solution changes as the parameter distribu-

tion changes. But in fact, there is no clear law of change or distribution in the prices, with

only part of the price information to be obtained. In the international commodity markets, the

precise distributions of the prices of oil, iron ore and gold have not been well defined. Within

the volatility of the oil price, a country has to make a decision of when and how to complete the

oil reserve, which is of particularly strategic importance. Therefore, it is essential to develop

some new methods to solve such online inventory problem [7], which does not depend on any

specific parameter distribution.

The online inventory problem with price is challenging where the decision maker, the retailer,

must make a decision of when and how much to purchase without future prices. The online

inventory problem with price considered also has some applications in the stock fund market.

In the establishing stage of fund, the fund manager’s task is to determine what stocks to buy

and how much to buy, based on stock price volatility in a certain period. And the goal of the

fund manager is to purchase a certain number of shares at the least cost.

The online inventory problem with price can be seen as an extension of the time series

search problem and the financial one-way trading problem [5], [4], [3] and [17]. Some papers

considered the online inventory problem. Larsen and Wøhlk [7] considered a real-time version

of the inventory problem with continuous deterministic demand and involved the fixed order

cost, the inventory cost per item unit per time unit but obtained algorithmic upper and lower

bounds of the competitive ratio whereas the gap grows with the complexity of the modes. The

inventory problem considered in [9] is a demand online inventory problem where the decision

maker only knows the upper bound and lower bound of the daily demand and decides how

many products should be prepared everyday. Ma and Pan [10] considered the online inventory

problem with the assumption that the decision maker has the knowledge of the same upper and

lower bounds of all prices.

This paper focuses on the price and analyzes the impact of price and the price-related

patterns to the algorithms and results. And the bounds considered in the extant reference are

difficult to be obtained if not impossible. In China stock market, the stock prices of the day

vary in the interval from 90% to 110% of the previous day’s closing price. We assume that the
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variation range of each price is interrelated with its preceding price. The problems considered

in this paper become more practical and quite different from the problems in [7] and [10].

Four kinds of price interrelation: linear-decrease, log-decrease, exponential and logarithmic

interrelation are considered in this paper, the first two interrelations and the third interrelation

originate from [17], respectively, and the fourth interrelation is presented based on inspirations

of the second model. The time series search problem and the financial one-way trading problem

are searching for the maximum price and convert more currency in the large price to maximize

the profits. And the price online inventory problem considered possible purchases more items

in the low price to minimize the cost. So the methods and the conclusions of [5], [4], [3] and [17]

can not be directly applied to the online inventory problem with price, which should be modified

according the new models.

This paper is organized as follows. We define the problem and present four models in

Section 2. In Section 3, we present an online strategy and its upper and lower bounds for the

linear-decrease model. In Section 4, we provide the competitive analysis of the log-decrease

model and compare the competitive ratios for the linear-decrease and log-decrease models. In

Section 5, we present an optimal online algorithm for the exponential model. In Section 6, we

discuss the competitive analysis of the logarithmic model. In Section 7 we demonstrate some

numerical examples for our consequences. Section 8 summarizes our conclusions and indicates

some directions for future work.

§2 Problem statement

This paper considers an online inventory problem that the decision maker, the retailer,

should decide when and how much to purchase every day without knowing future prices during

the purchasing process. The storage capacity, U (without loss of generality, we assume the

storage capacity U is 1), must be reached when the game is over. Additionally, the initial

inventory level is zero. The objective of the decision maker is to minimize the total cost. In

order to be more general, we introduce some different variation ranges of price. That is, the price

has its own variation range and the range is variable. Let n denote the number of purchasing

days. Denoted by p and pi the current purchase price and the price of the ith day, respectively.

The online inventory problem with price is unlikely to find the optimal offline solution,

because it does not have enough price information to determine. Thus, the competitive ratio is

introduced to evaluate the performance of algorithm which solves the online inventory problem

with price. An arbitrary online algorithm, ALG, is referred to as c-competitive, if for an

arbitrary input price instance I has ALG(I) ≤ c · OPT (I), where ALG(I) denotes the cost of

the online algorithm ALG, and OPT (I) is the cost of the optimal offline algorithm OPT . The

competitive ratio of algorithm ALG is defined as the minimum c, which satisfies the inequality.

The competitive ratio, c∗, of the optimal online algorithm is the lower bound of the price online

inventory problem, defined as

c∗ = inf
ALG

cALG,
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where cALG is the competitive ratio of algorithm ALG.

Let θ, θ1 and θ2 denote the known parameters, where θ > 0 and 0 < θ1 ≤ θ2. The four price

interrelation models are depicted below.

• The linear-decrease model: pi ∈ [pi−1 − θ, pi−1 + θ], 2 ≤ i ≤ n.

• The log-decrease model: p1 ∈ [p− θ, p+ θ], pi ∈ [p− θ ln i, p+ θ ln i], 2 ≤ i ≤ n.

• The exponential model: pi+1 ∈ [θ1pi, θ2pi], 1 ≤ i ≤ n− 1.

• The logarithmic model: pi ∈ [θ1p1 ln i, θ2p1 ln i], 2 ≤ i ≤ n.

§3 Competitive analysis of the linear-decrease model

For this model, we present a dprice-conservative (DPC) strategy [7] which is described as

follows. Let c be competitive ratio that can be achieved by an algorithm.

• DPC-l: At the end of the game, ensure that the inventory capacity is reached.

• DPC-2: Purchase items only at the lowest price of the day.

• DPC-3: When the price reaches a new lowest, purchase enough to ensure that the com-

petitive ratio c can be obtained even if purchase the remaining items at the highest price

of the day.

Lemma 3.1. If ALG is a c-competitive DPC strategy, then the daily purchasing quantity is

s1 =
p+ θ

2θ
− c(p− θ)

2θ
, (1)

si =
c

2i
+

Di−1

2i
, (i = 2, 3, · · · , n). (2)

Proof. When i = 1, by DPC-3, we must have

(p− θ)s1 + (1− s1)(p+ θ)

p− θ
= c.

Here the numerator represents the cost of the DPC strategy and the denominator is the cost of

the optimal offline algorithm for such an price sequence. By simplification, we obtain Equation

1. For i �= 1, we can obtain
Vi +Di(p+ iθ)

p− iθ
= c, (3)

where Vi denotes the total cost after the ith day and Di denotes the number of items that still

need to purchase after the ith day. It is easy to get that

Vi =
i∑

j=1

pjsj and Di = Di−1 − si.

Substituting Vi = Vi−1 + (p− iθ)si into Equation 3, we obtain

Vi−1 + si(p− iθ) +Di−1(p+ iθ)− si(p+ iθ)

p− iθ
= c. (4)
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From Equation 3 with i− 1, we have

Vi−1 +Di−1[p+ (i − 1)θ] = c[p− (i− 1)θ]. (5)

Combining Equations 4 and 5, we obtain

c[p− (i − 1)θ] + si(p− iθ)− si(p+ iθ) +Di−1θ = c(p− iθ),

which implies that Equation 2 holds.

Theorem 3.1. In the linear-decrease model, the upper and lower bounds of competitive ratio

of the DPC strategy are

cmax = 1+
ln(n+ 1)

p−θ
2θ − ln(n+1)

2
and

cmin = 1 +
ln(n+1)

2 − 1
2

p−θ
2θ − ln(n+1)

2 + 1
2

.

Proof. Because the storage capacity is reached after the last purchase, we have
n∑

i=1

si = 1. By

Equations 1 and 2, we obtain

p+ θ

2θ
− c(p− θ)

2θ
+

n∑

i=2

c

2i
+

n∑

i=2

Di−1

2i
= 1.

It follows that

c =
p−θ
2θ +

∑n
i=2

Di−1

2i
p−θ
2θ −∑n

i=2
1
2i

.

By the definition of Di, we have 0 ≤ Di−1 ≤ 1, and thus
p−θ
2θ

p−θ
2θ −∑n

i=2
1
2i

≤ c ≤
p−θ
2θ +

∑n
i=2

1
2i

p−θ
2θ −∑n

i=2
1
2i

.

That is,

cmin(n) = 1 +

∑n
i=2

1
2i

p−θ
2θ −∑n

i=2
1
2i

≤ c ≤ cmax(n) = 1 +
2
∑n

i=2
1
2i

p−θ
2θ −∑n

i=2
1
2i

. (6)

Because ln(n+ 1)− lnn = 1
ξ (n < ξ < n+ 1), we have 1

n+1 < ln(n+ 1)− lnn < 1
n . Thus,

ln(n+ 1)− 1 <

n∑

i=2

1

i
< ln(n+ 1)− 1

n+ 1
. (7)

Combining Inequalities 6 and 7, we obtain

cmax(n) < 1 +
ln(n+ 1)− 1

n+1

p−θ
2θ − ln(n+1)

2 + 1
2(n+1)

< 1 +
ln(n+ 1)

p−θ
2θ − ln(n+1)

2

= cmax, (8)

cmin(n) > 1 +
ln(n+1)

2 − 1
2

p−θ
2θ − ln(n+1)

2 + 1
2

= cmin. (9)

Note that Inequality 8 holds only if p−θ
2θ > ln(n+1)

2 . Therefore, the price volatility, 2θ, must

be small enough to satisfy this inequality for the lager n. Moreover, the rationality of DPC

strategy highly depends on the choice of the price volatility and the initial price.
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§4 Competitive analysis of the log-decrease model

For this model, we still use the dprice-conservative (DPC) strategy.

Lemma 4.1. If ALG is a c-competitive DPC strategy, then the daily purchasing quantity is

s1 =
p+ θ

2θ
− c(p− θ)

2θ
, (10)

si =
c ln i

i−1

2 ln i
+

Di−1 ln
i

i−1

2 ln i
, (i = 2, 3, · · · , n). (11)

Proof. Similarly, we can obtain Equation 10. When i �= 1, by DPC-3, we must have

Vi +Di(p+ θ ln i)

p− θ ln i
= c, (12)

where the numerator represents the cost of DPC strategy and the denominator is the cost of

the optimal offline algorithm for such an price sequence. Because Vi = Vi−1 + (p − θ ln i)si,

substituting it into Equation 12, we obtain

c =
Vi−1 + si(p− θ ln i) +Di−1(p+ θ ln i)− si(p+ θ ln i)

p− θ ln i
. (13)

Substituting i− 1 into Equation 12, we obtain

Vi−1 +Di−1[p+ θ ln(i− 1)] = c[p− θ ln(i − 1)]. (14)

Combining Equations 13 and 14 we obtain

c[p− θ ln(i− 1)] + si(p− θ ln i)− si(p+ θ ln i) +Di−1θ ln
i

i− 1
= c(p− θ ln i).

After simplification, we obtain Equation 11.

Theorem 4.1. In the log-decrease model, the upper and lower bounds of competitive ratio of

DPC strategy are

cmax = 1 +
2
∑n

i=2

[(
ln i

i−1

)
/2 ln i

]

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

]

and

cmin = 1 +

∑n
i=2

[(
ln i

i−1

)
/2 ln i

]

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

] ,

respectively.

Proof. Because the storage capacity is reached after the last purchase, we have
n∑

i=1

si = 1. From

Equations 10 and 11, we have

p+ θ

2θ
− c(p− θ)

2θ
+

n∑

i=2

c ln i
i−1

2 ln i
+

n∑

i=2

Di−1 ln
i

i−1

2 ln i
= 1.

After simplification, we obtain the competitive ratio which is

c =

p−θ
2θ +

∑n
i=2

[(
Di−1 ln

i
i−1

)
/2 ln i

]

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

] .
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Note that 0 ≤ Di−1 ≤ 1, we obtain the upper and lower bounds of c

p−θ
2θ

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

] ≤ c ≤
p−θ
2θ +

∑n
i=2

[(
ln i

i−1

)
/2 ln i

]

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

] .

That is,

cmin(n) = 1 +

∑n
i=2

[(
ln i

i−1

)
/2 ln i

]

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

] ,

cmax(n) = 1 +
2
∑n

i=2

[(
ln i

i−1

)
/2 ln i

]

p−θ
2θ −∑n

i=2

[(
ln i

i−1

)
/2 ln i

] .

§5 Competitive analysis of the exponential model

For 1 ≤ i ≤ n − 1, if θ1 ≥ 1, then pi+1 ≥ θ1pi ≥ pi. That is, the price sequence is

monotonically increasing. So the minimum cost can be obtained by purchasing all on the

first day. In addition, if 0 ≤ θ2 ≤ 1, then pi+1 ≤ θ2pi ≤ pi. That is, the price sequence is

monotonically decreasing. So the minimum cost can be obtained by purchasing all on the last

day. Thus, we only need to consider the case where 0 < θ1 < 1 < θ2.

Firstly, we investigate a linear programming problem with variables {r, s1, s2, . . . , sn} as

follows.

minimize r (LP1)

such that Fi(s1, s2, . . . , sn) ≤ r, i = 1, 2, . . . , n

s1 + s2 + · · ·+ sn = 1

si ≥ 0, i = 1, 2, . . . , n

where Fi(s1, s2, . . . , sn) =
s1

θi−1
1

+ s2
θi−2
1

+ · · ·+ si−1

θ1
+ si + si+1θ2 + · · ·+ snθ

n−i
2 .

Lemma 5.1. The solution to the linear programming problem LP1 exists.

Proof. We only need to prove that there exists {r′, s′1, s′2, · · · , s′n} such that

Fi(s
′
1, s

′
2, . . . , s

′
n) ≤ r′, i = 1, 2, . . . , n (15)

s′1 + s′2 + · · ·+ s′n = 1, (16)

s′i ≥ 0, i = 1, 2, . . . , n. (17)

We construct them as following. Let s′1 = s′2 = · · · = s′n−1 = 0, s′n = 1. It is obvious

that s′i ≥ 0 for i = 1, 2, . . . , n and s′1 + s′2 + · · · + s′n = 0 + · · · + 0 + 1 = 1. That is,

{s′1, · · · , s′n−1, s
′
n} = {0, · · · , 0, 1} satisfies Equation 16 and Inequality 17. In addition, we

obtain

Fi(s
′
1, s

′
2, . . . , s

′
n) = Fi(0, 0, . . . , 1) = θn−i

2 , i = 1, 2, . . . , n.
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Because θ2 > 1, Fi(s
′
1, s

′
2, . . . , s

′
n) = Fi(0, 0, . . . , 1) is monotonically decreasing with respect to

i. That is, max
1≤i≤n

Fi(0, 0, . . . , 1) = θn−1
2 . Let r′ = θn−1

2 . It is clear that Fi(0, 0, . . . , 1) ≤ r′ for all

1 ≤ i ≤ n.

From the above results, we know that there exists {r′, s′1, s′2, · · · , s′n} = {θn−1
2 , 0, 0, · · · , 1}

which satisfies Equation 16 and Inequalities 15 and 17. Thus, the solution to the above linear

programming problem LP1 exists.

From Lemma 5.1, we know that the optimal solution to the linear programming problem

LP1 can be obtained in polynomial time. Since the online algorithm purchases items according

to the solution to the linear programming problem LP1, we denote the online algorithm by

SLP1.

Algorithm 1 :SLP1

1: Solving the linear programming problem LP1, and let {r∗, s∗1, s∗2, · · · , s∗n} be the solution.
2: Purchasing s∗i (1 ≤ i ≤ n) units at period i.

Theorem 5.1. The competitive ratio of SLP1 is r∗.

Proof. Let σ = p1, p2, . . . , pn be an arbitrary price sequence. Without loss of generality, we

assume that the lowest price in σ is pi. Apparently, OPT (σ) = pi while SLP1(σ) =
n∑

j=1

s∗jpj .

Because pj+1 ∈ [θ1pj , θ2pj ] when 1 ≤ j ≤ n− 1, we have

pj ≤ pi

θi−j
1

j = 1, 2, . . . , i,

pj ≤ θj−i
2 pi j = i+ 1, i+ 2, . . . , n.

Because SLP1(σ)
OPT (σ) =

n∑

j=1

s∗j pj

pi
, we obtain

SLP1(σ)

OPT (σ)
≤

s∗1
θi−1
1

pi +
s∗2

θi−2
1

pi + · · ·+ s∗i−1

θ1
pi + s∗i pi + s∗i+1θ2pi + · · ·+ s∗nθ

n−i
2 pi

pi
.

Thus,

SLP1(σ)

OPT (σ)
≤ s∗1

θi−1
1

+
s∗2
θi−2
1

+ · · ·+ s∗i−1

θ1
+ s∗i + s∗i+1θ2 + · · ·+ s∗nθ

n−i
2 = Fi(s

∗
1, s

∗
2, · · · , s∗n).

Combining the optimal solution to the linear programming problem LP1, we rewrite the

above inequality in the following.

SLP1(σ)

OPT (σ)
≤ Fi(s

∗
1, s

∗
2, . . . , s

∗
n) ≤ r∗, i = 1, 2, . . . , n,

where r∗ is the minimum one that satisfies the above inequality.

Hence, r∗ is the competitive ratio of SLP1.

We show that SLP1 algorithm is optimal for the exponential model in the following.

Theorem 5.2. The competitive ratio of any online algorithm for the exponential model is not

less than r∗.
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Proof. Let ALG be an arbitrary online algorithm for the exponential model. We construct n

special sequences σ̂1, σ̂2, . . . , σ̂n, where

σ̂i =
1

θi−1
1

,
1

θi−2
1

, . . . ,
1

θ1
, 1, θ2, . . . , θ

n−i
2 .

Without loss of generality, we assume that the algorithm ALG purchases s′i (where 1 ≤ i ≤ n

and
n∑

j=1

s′j = 1) units at period i.

To obtain the desired result, we only need to prove that there exists at least one sequence

σ̂j such that
ALG(σ̂j)
OPT (σ̂j )

≥ r∗. We show it by contradiction.

Otherwise, assume that
ALG(σ̂j)
OPT (σ̂j)

< r∗ for all j (1 ≤ j ≤ n), we obtain a contradiction in the

following. Because 0 < θ1 < 1 < θ2, for every j (1 ≤ j ≤ n), we know that OPT (σ̂j) = 1,

ALG(σ̂j) =
s′1

θj−1
1

+
s′2

θj−2
1

+ · · ·+ s′j−1

θ1
+ s′j + s′j+1θ2 + · · ·+ s′nθ

n−j
2 = Fj(s

′
1, s

′
2, . . . , s

′
n).

Hence,
ALG(σ̂j)

OPT (σ̂j)
= Fj(s

′
1, s

′
2, . . . , s

′
n).

By
ALG(σ̂j)
OPT (σ̂j)

< r∗ for all j, we obtain

Fj(s
′
1, s

′
2, . . . , s

′
n) < r∗, j = 1, 2, . . . , n.

It indicates that there exists a r′ < r∗ such that Fj(s
′
1, s

′
2, . . . , s

′
n) ≤ r′ for all j(1 ≤ j ≤ n),

which contradicts the minimality of r∗.

§6 Competitive analysis of the logarithmic model

In this model, if θ1 = θ2, then pi ∈ [θ1p1 ln i, θ1p1 ln i] = θ1p1 ln i, 2 ≤ i ≤ n. That is,

pi = θ1p1 ln i (2 ≤ i ≤ n), which is monotonically increasing with respect to i. It is clear that

pn > pn−1 > · · · > p2. Then we only need to purchase all the items on the day with the price

of minp1, p2. We focus on the case where 0 < θ1 < θ2. Let

G1(s1, s2, . . . , sn) = s1 + s2θ2 ln 2 + · · ·+ snθ2 lnn (18)

Gi(s1, s2, . . . , sn) =
s1 + s2θ2 ln 2 + · · ·+ snθ2 lnn

θ1 ln i
, i = 2, 3, . . . , n. (19)

Before giving the competitive ratio, we consider a linear programming problem with variables

{r, s1, s2, . . . , sn}.

minimize r (LP2)

such that Gi(s1, s2, . . . , sn) ≤ r, i = 1, 2, . . . , n

s1 + s2 + · · ·+ sn = 1

si ≥ 0, i = 1, 2, . . . , n

Lemma 6.1. The solution to the linear programming problem LP2 exists.
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Proof. Similar to the proof of Lemma 5.1, we only need to prove that there exists {r′, s′1, s′2, · · · ,
s′n} such that

Gi(s
′
1, s

′
2, . . . , s

′
n) ≤ r′, i = 1, 2, . . . , n. (20)

s′1 + s′2 + · · ·+ s′n = 1 (21)

s′i ≥ 0, i = 1, 2, . . . , n. (22)

We construct them as following. Let s′2 = · · · = s′n = 0, s′1 = 1. It is obvious that

s′i ≥ 0 for i = 1, 2, . . . , n and s′1 + s′2 + · · ·+ s′n = 0+ · · ·+0+1 = 1. That is {s′1, s′2, · · · , s′n} =

{1, 0, · · · , 0} satisfies Equation 21 and Inequality 22. In addition, we obtain G1(s
′
1, s

′
2, . . . , s

′
n) =

G1(1, 0, . . . , 0) = 1,

Gi(s
′
1, s

′
2, . . . , s

′
n) = Gi(1, 0, . . . , 0) =

1

θ1 ln i
, i = 2, 3, . . . , n.

It is clear that

G2(1, 0, . . . , 0) > G3(1, 0, . . . , 0) > · · · > Gn(1, 0, . . . , 0). (23)

Let α = max{1, 1
θ1 ln 2}, and from Inequality 23, we obtain max

1≤i≤n
Gi(1, 0, . . . , 0) = α. Let r′ = α,

we have Gi(1, 0, . . . , 0) ≤ r′ for all 1 ≤ i ≤ n.

From the above results, we know that there exists {r′, s′1, s′2, · · · , s′n} = {α, 1, 0, · · · , 0}
which satisfies Equation 21 and Inequalities 20 and 22. Thus, the solution to the above linear

programming problem LP2 exists.

From Lemma 6.1, we know that the optimal solution to the linear programming problem

LP2 can be obtained in polynomial time. Since the online algorithm purchases items according

to the solution to the linear programming problem LP2, we denote the online algorithm by

SLP2.

Algorithm 2 :SLP2

1: Solving the linear programming problem LP2, and let {r̄, s̄1, s̄2, · · · , s̄n} be the solution.
2: Purchasing s̄i(1 ≤ i ≤ n) units at period i.

Theorem 6.1. The competitive ratio of SLP2 is r̄.

Proof. Let σ = p1, p2, . . . , pn denote an arbitrary price sequence. Without loss of generality, we

assume that the lowest price in σ is pi.

For i = 1, we have OPT (σ) = p1 while SLP2(σ) =
n∑

j=1

s̄jpj . Because pj ∈ [θ1p1 ln j, θ2p1 ln j]

for 2 ≤ j ≤ n, we obtain pj ≤ θ2p1 ln j, j = 2, 3, . . . , n. Thus,

SLP2(σ)

OPT (σ)
=

n∑
j=1

s̄jpj

p1
≤ s̄1p1 + s̄2θ2 ln 2p1 + · · ·+ s̄nθ2 lnnp1

p1

= s̄1 + s̄2θ2 ln 2 + · · ·+ s̄nθ2 lnn

= G1(s̄1, s̄2, · · · , s̄n).
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For 2 ≤ i ≤ n, we have OPT (σ) = pi while SLP2(σ) =
n∑

j=1

s̄jpj . By the assumption of this

model, we know that pi ≥ θ1p1 ln i, pj ≤ θ2p1 ln j, j = 2, 3, . . . , n. Thus,

SLP2(σ)

OPT (σ)
=

n∑
j=1

s̄jpj

pi
≤ s̄1p1 + s̄2θ2 ln 2p1 + · · ·+ s̄nθ2 lnnp1

θ1p1 ln i

=
s̄1 + s̄2θ2 ln 2 + · · ·+ s̄nθ2 lnn

θ1 ln i

= Gi(s̄1, s̄2, · · · , s̄n).
Combining the cases of i = 1 and 2 ≤ i ≤ n, we obtain

SLP2(σ)

OPT (σ)
≤ Gi(s̄1, s̄2, · · · , s̄n) ≤ r̄, i = 1, 2, . . . , n,

where r̄ is the minimum one that satisfies the above inequality. Hence, r̄ is the competitive

ratio of the algorithm SLP2.

Next, we prove that the algorithm SLP2 is optimal for the logarithmic model under certain

conditions.

Theorem 6.2. The competitive ratio of any online algorithm for the logarithmic model is not

less than r̄ when θ1 ln 2 ≥ 1.

Proof. By Equation 19 we obtain

G2(s1, s2, . . . , sn) > G3(s1, s2, . . . , sn) > · · · > Gn(s1, s2, . . . , sn).

When θ1ln 2 ≥1, combining Equations 18 and 19, we haveG1(s1, s2, . . . , sn)≥G2(s1, s2, . . . , sn).

Thus,

G1(s1, s2, . . . , sn) ≥ G2(s1, s2, . . . , sn) > · · · > Gn(s1, s2, . . . , sn). (24)

Let ALG be an arbitrary online algorithm for the logarithmic model. We construct a special

sequences σ̂, where σ̂ = {1, θ2 ln 2, . . . , θ2 lnn}. Without loss of generality, we assume that ALG

algorithm purchases s′i (where 1 ≤ i ≤ n and
n∑

j=1

s′j = 1) units at period i.

Now we prove that ALG(σ̂)
OPT (σ̂) ≥ r̄ by contradiction.

Otherwise, assume that ALG(σ̂)
OPT (σ̂) < r̄. For ln i is monotonically increasing and 0 < θ1 < θ2,

we obtain

θ1 ln 2 < θ2 ln 2 < θ2 ln 3 < · · · < θ2 lnn.

When θ1 ln 2 ≥ 1, we have θ2 ln 2 > 1. Hence,

1 < θ2 ln 2 < · · · < θ2 lnn.

So the lowest price in σ̂ is 1. That is,

OPT (σ̂) = 1 and ALG(σ̂) = s′1 + s′2θ2 ln 2 + · · ·+ s′nθ2 lnn,

we can implying

ALG(σ̂)

OPT (σ̂)
= s′1 + s′2θ2 ln 2 + · · ·+ s′nθ2 lnn = G1(s

′
1, s

′
2, · · · , s′n).
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Because ALG(σ̂)
OPT (σ̂) < r̄, we have G1(s

′
1, s

′
2, · · · , s′n) < r̄. From Inequality 24, we obtain

Gi(s
′
1, s

′
2, · · · , s′n) < r̄, i = 1, 2, . . . , n. It indicates that there exists a r′ < r̄ such that

Gi(s
′
1, s

′
2, . . . , s

′
n) ≤ r′ for all i (1 ≤ i ≤ n), which contradicts the minimality of r̄. That

is, ALG(σ̂)
OPT (σ̂) ≥ r̄.

§7 Numerical examples

In this section, we provide some numerical examples to illustrate our results.

Table 1: linear-decrease model, n = 100, θ = 0.5

p rmax rmin Δ

8 1.8888 1.3175 0.5713
10 1.6417 1.2350 0.4067
12 1.5021 1.1865 0.3156
14 1.4123 1.1546 0.2578
16 1.3498 1.1320 0.2178

Table 2: log-decrease model, n = 100, θ = 0.5

p rmax rmin Δ

8 1.4485 1.2243 0.2243
10 1.3381 1.1691 0.1691
12 1.2713 1.1357 0.1357
14 1.2266 1.1133 0.1133
16 1.1945 1.0973 0.0973

Here, Δ = cmax − cmin denotes the gap between the upper and lower bounds of competitive

ratio. From Table 1 and Table 2, it is clear that the increase of p will lead to the decrease of

cmax, cmin and Δ in the linear-decrease and log-decrease models when n and θ are fixed. The

online decision maker prefers to adopt the DPC strategy using the competitive analysis for a

larger p when n and θ are fixed.

Table 3: linear-decrease model, n = 100, p = 10

θ rmax rmin Δ

0.3 1.3330 1.1259 0.2071
0.4 1.4762 1.1773 0.2988
0.5 1.6417 1.2350 0.4067
0.6 1.8352 1.3000 0.5352
0.7 2.0645 1.3738 0.6907

Table 4: log-decrease model, n = 100, p = 10

θ rmax rmin Δ

0.3 1.1857 1.0929 0.0929
0.4 1.2586 1.1293 0.1293
0.5 1.3381 1.1691 0.1691
0.6 1.4254 1.2127 0.2127
0.7 1.5215 1.2607 0.2607

From Table 3 and Table 4, we can find that when n and p are constants, cmax, cmin and Δ

are the increasing function of θ. The online decision maker prefers to adopt DPC strategy using

the competitive analysis for a smaller θ when n and p are fixed. Clearly, whether the online

decision maker decides to adopt DPC strategy depends on the obtained information(p, θ, n) and

calculates the upper bound of competitive ratio.

We find that the speed of log-decrease purchase price is less than that of linearly-decrease

purchase price, which means that the log-decrease model is more suitable for the DPC strategy.

Next, we provide some numerical examples about the competitive ratios of linear-decrease model

and log-decrease model when p and θ are fixed.
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Table 5: linear-decrease model and log-decrease model, p = 10, θ = 0.5

Duration Linear Log

n rmax(n) rmin(n) rmax(n) rmin(n)

10 1.2260 1.1130 1.2432 1.1216
11 1.2379 1.1190 1.2485 1.1242
12 1.2489 1.1245 1.2531 1.1266
13 1.2592 1.1296 1.2573 1.1287
14 1.2689 1.1344 1.2611 1.1305
15 1.2779 1.1390 1.2645 1.1323
16 1.2865 1.1433 1.2677 1.1338
17 1.2946 1.1473 1.2706 1.1353
18 1.3023 1.1512 1.2732 1.1366
19 1.3097 1.1549 1.2757 1.1379
20 1.3169 1.1584 1.2781 1.1390

Figure 1: Comparison of the competitive ratios of two models

From Table 5 and Figure 1, we can get n0 = 13 when p = 10, and θ = 0.5, which means that

the competitive ratios of log-decrease model are slightly larger than that of linearly-decrease

model when n < n0 and the competitive ratios of log-decrease model are much less than that

of linearly-decrease model when n > n0. Therefore, the performance of DPC strategy is totally

different for different purchase price ranges model.

From the above results, we know whether the online decision maker decides to adopt the

DPC strategy not only depends on the obtained information(p, θ, n) but also the purchase price

ranges model. And the log-decrease model is more suitable for the DPC strategy when n > n0.

Moreover, DPC strategy can be used as one of alternative strategies to the online decision

maker. We can estimate the competitive ratio and the daily purchase quantity when n is small
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so as to guide the actual purchasing action.

Table 6: exponential model,
n = 20, θ2 = 1.05

θ1 r

0.8 2.1425
0.82 2.1064
0.84 2.0645
0.86 2.0163
0.88 1.9572
0.9 1.8845

0.92 1.7947
0.94 1.6798
0.96 1.5258
0.98 1.312

Table 7: exponential model,
n = 20, θ1 = 0.95

θ2 r

1.02 1.312
1.04 1.5257
1.06 1.6794
1.08 1.7955
1.1 1.8854

1.12 1.9564
1.14 2.0161
1.16 2.0641
1.18 2.1066
1.2 2.1409

Table 8: exponential model,
θ1 = 0.95, θ2 = 1.05

n r

12 1.317
14 1.3845
16 1.4555
18 1.5301
20 1.6086
22 1.691
24 1.7777
26 1.8688
28 1.9646
30 2.0653

Table 9: logarithmic model,
n = 20, θ2 = 2

θ1 r

0.8 1.8034
0.9 1.603
1 1.4427

1.1 1.3115
1.2 1.2022
1.3 1.1098
1.4 1.0305
1.5 1
1.6 1
1.7 1

Table 10: logarithmic model,
n = 20, θ1 = 0.8

θ2 r

0.9 1.125
1 1.25

1.1 1.375
1.2 1.5
1.3 1.625
1.4 1.75
1.5 1.8034
1.6 1.8034
1.7 1.8034
1.8 1.8034

Table 11: logarithmic model,
θ1 = 0.95, θ2 = 1.05

n r

12 1.1053
14 1.1053
16 1.1053
18 1.1053
20 1.1053
22 1.1053
24 1.1053
26 1.1053
28 1.1053
30 1.1053

From Table 6 and Table 9, we can see that the increase of θ1 will lead to the decrease of

r both in the exponential and logarithmic models when n and θ2 are fixed. In addition, r is

always equal to 1 in the logarithmic model when n and θ2 are fixed and θ1 is greater than a

certain value. By numerical experiment, we find that the value is in the vicinity of 1.443. The

online decision maker prefers to adopt the algorithms SLP1 and SLP2 using the competitive

analysis for a lager θ1 when n and θ2 are fixed.

From Table 7 and Table 10, we can find that r is proportional to θ2 both in the exponential

and logarithmic models when n and θ1 are fixed. In addition, r is a constant in the logarithmic

model when n and θ1 are fixed and θ2 is greater than a certain value. By numerical experiment,

we find that the value is in the vicinity of 1.443. The online decision maker prefers to adopt

the algorithms SLP1 and SLP2 using the competitive analysis for a small θ2 when n and θ1

are fixed.
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From Table 8, we know that the increase of n will lead to the increase of r in the exponential

model when θ1 and θ2 are fixed. From Table 11, we know that the increase of n will lead to the

same r in the logarithmic model when θ1 and θ2 are fixed. The online decision maker prefers

to adopt the algorithm SLP1 using the competitive analysis for a small n and adopt the SLP2

algorithm for arbitrary n when θ1 and θ2 are fixed.

§8 Conclusions

We investigate four models for the online inventory problem with interrelated prices. We

describe the algorithms based on the DPC strategy and derive upper and lower bounds of

competitive ratio for the linear-decrease model and the log-decrease model respectively. In

addition, we derive the competitive ratio of the SLP1 algorithm for the exponential model

and the SLP2 algorithm for the logarithmic model respectively, and prove that the SLP1

algorithm is the optimal online algorithm for the exponential model and the SLP2 algorithm

is the optimal online algorithm for the logarithmic model under certain conditions. Moreover,

we demonstrate some numerical examples for the four models. And by using some numerical

examples of competitive ratio attained by linear-decrease model and log-decrease model, we

find that the DPC strategy is more suitable to purchase when the price fluctuates smoothly.

In the future, it is interesting to consider one online inventory problem where the price

information is updated, which means that we can further minimize the cost by modifying the

initial online decision according to the updated price information.
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