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production acreage, and observed precipitation from the 
month preceding each season (to characterize antecedent 
wetness conditions) (predictors). Model fits improve when 
including agricultural land cover and antecedent precipita-
tion as predictors, as opposed to just precipitation. Using 
the dynamically-updated relationship between predictand 
and predictors every year, forecasts are computed from 1 to 
10 months ahead of every season based on annual row crop 
acreage from the previous year (persistence forecast) and 
the monthly precipitation forecasts from eight GCMs of 
the North American Multi-Model Ensemble (NMME). The 
skill of our forecast streamflow is assessed in determinis-
tic and probabilistic terms for all initialization months, flow 
quantiles, and seasons. Overall, the system produces rela-
tively skillful streamflow forecasts from low to high flows, 
but the skill does not decrease uniformly with initialization 
time, suggesting that improvements can be gained by using 
different predictors for specific seasons and flow quantiles.

Keywords  Seasonal forecasting · Probabilistic forecast · 
Streamflow forecasts · North-American Multi Model 
ensemble (NMME)

Abstract  The state of Iowa in the US Midwest is regularly 
affected by major floods and has seen a notable increase in 
agricultural land cover over the twentieth century. We pre-
sent a novel statistical-dynamical approach for probabilis-
tic seasonal streamflow forecasting using land cover and 
General Circulation Model (GCM) precipitation forecasts. 
Low to high flows are modelled and forecast for the Rac-
coon River at Van Meter, a 8900 km2 catchment located in 
central-western Iowa. Statistical model fits for each stream-
flow quantile (from seasonal minimum to maximum; pre-
dictands) are based on observed basin-averaged total sea-
sonal precipitation, annual row crop (corn and soybean) 
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1  Introduction

Multi-model ensemble forecasting systems are increasingly 
popular for improving climate forecast consistency and 
reliability by leveraging the uncorrelated components of 
random and structural errors from a range of models (e.g., 
Hagedorn et  al. 2005). The North American Multi-Model 
Ensemble (NMME) is a collaborative project in which 
participating North-American modeling centers contribute 
intra-seasonal to inter-annual forecasts of different climate 
quantities, including precipitation and temperature. The 
forecasts are made publicly available as a global, 1° lati-
tude by 1° longitude grid, and with lead times ranging from 
0.5 to 11.5  months (Kirtman et  al. 2014). The participat-
ing modeling centers contribute both their hindcasts dating 
back to the early 1980s, as well as their current real-time 
forecasts, to an online repository (Table 1).

Existing analyses of the NMME have largely focused 
on evaluating the predictive skill of participating models 
for precipitation, temperature, or climatological extremes 
in different parts of the world, including China (Ma et al. 
2015a, b), the Southwestern USA (Barnston and Lyon 
2016) the Southeastern USA (Infanti and Kirtman 2014), 
the continental USA (Wang 2014; Slater et al. 2017), and 
at the global scale (Mo and Lyon 2015; Becker et al. 2014), 
over a range of lead times. Studies have also observed 
NMME skill in terms of large scale climate indices, show-
ing improvements in predictive skill in regions with El 
Niño-Southern Oscillation (ENSO) teleconnections (Mo 
and Lyon 2015; Roundy et  al. 2015), using NMME data 
to forecast the Pacific Meridional Mode precursor (Lar-
son and Kirtman 2014), the Atlantic Warm Pool and its 
teleconnections (Misra and Li 2014) or to improve ENSO 
predictability (Barnston et  al. 2015; Ham and Kug 2015; 
Larson and Kirtman 2014; Lopez and Kirtman 2014).

A growing number of studies are now examining the 
practical applications of the NMME for driving physically-
based hydrologic forecasting systems. NMME outputs are 
used to force the variable infiltration capacity (VIC) hydro-
logic model (e.g., Liang et al. 1994, 1996; Mo et al. 2012; 
Yuan et al. 2013, 2015; Mo and Lettenmaier 2014; Shrestha 
et al. 2015; Sikder et al. 2015), or the mesoscale hydrologic 
model (mHM) (Thober et  al. 2015). The hydrologic fore-
casts resulting from these models are typically assessed 
against those obtained from the ensemble streamflow pre-
diction (ESP) method, which uses meteorological forcings 
resampled from the historical distribution as well as initial 
land condition persistence (Twedt et al. 1977; Day 1985). 
Encouragingly, results show that the limited accuracy of 
raw NMME precipitation forecasts tends to improve when 
they are used inside a flow forecasting framework (Wood 
et  al. 2016). However, physically-based NMME forecasts 
of streamflow, soil moisture or runoff consistently indicate 

that the potential forecast skill depends on both the anteced-
ent hydrologic conditions and the forecast climate condi-
tions. The most skillful forecasts tend to be obtained in dry 
or subfreezing regions, when runoff is strongly influenced 
by initial hydrologic conditions (e.g., during southern US 
summers, or northern Great Plain winters). In contrast, the 
least skillful forecasts are obtained in wet conditions when 
there is a strong coupling between rainfall and runoff, and 
a more limited influence of initial soil moisture conditions 
on streamflow (e.g., the US West Coast) (Mo et al. 2012; 
Yuan et  al. 2013; Mo and Lettenmaier 2014; Wood et  al. 
2016). To varying degrees by location and season, flow 
forecast skill depends on both initial hydrologic conditions 
and climate model forecast skills. Additionally, the skill of 
NMME-driven forecasting systems depends on the influ-
ence of large-scale climate drivers, such as teleconnections 
from the El Niño-Southern Oscillation (ENSO) phenom-
enon (Shrestha et al. 2015), and on the temporal resolution 
of the forecast target, with seasonally-aggregated forecasts 
producing better results than those focusing on higher-fre-
quency data in major river basins (Yuan et al. 2015; Sikder 
et al. 2015).

Despite the growing interest in using NMME data to 
force physical hydrologic models, no study has yet devel-
oped a dynamical streamflow forecasting system (using 
GCM forecasts) based on statistical models. Statistical 
models can be viewed as a complementary approach to 
physically-based hydrologic models, with considerable 
advantages arising from their simplicity, limited computa-
tional costs and flexibility. In this study we explore the skill 
of statistical models in forecasting seasonal streamflow 
(from low to high flows) at the Raccoon River at Van Meter 
(USGS ID 05484500), located in central-western Iowa. 
Our rationale for choosing this location is the frequency 
of hydrologic extremes in the region. Catastrophic weather 
events are regularly responsible for billion-dollar economic 
and social losses in Iowa (Smith and Matthews 2015). In 
2013 alone, the State witnessed widespread flooding dur-
ing the spring and drought conditions during the summer. 
While little can be done to prevent such events, we can 
improve preparedness by enabling Iowans to make more 
informed water management decisions.

A second novelty of this work is the use of agricultural 
land cover as a predictor in the statistical–dynamical frame-
work. The influence of changing catchment land cover on 
flow distributions is still poorly understood (Rogger et  al. 
2017), and Iowan watersheds are a good place to test this 
influence as many have witnessed extensive change over 
the past century. Across much of the US Midwest, the 
conversion of perennial grasslands and forests to agricul-
tural row crops (e.g., Frans et al. 2013) is believed to have 
amplified the influence of precipitation on groundwater 
recharge and soil water storage (Zhang and Schilling 2006; 
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Schilling et al. 2008; Gupta et al. 2015), thus increasing the 
low flows in dry seasons, and the high flows during heavy 
rainfall events (Villarini and Strong 2014). These effects 
are also amplified by the role of artificial drainage, which 
accelerates water residence time in depressions of water 
fields (Schottler et  al. 2014). In watersheds like the Rac-
coon River basin, the fraction of the land surface cultivated 
as corn or soybean has grown from approximately one-
third to over three quarters of the watershed (Fig. 1). There-
fore, if land cover has a demonstrable impact on streamflow 
distributions, taking a fraction of the land out of agricul-
tural production may potentially be used as a viable strat-
egy to attenuate risks arising from hydrological extremes. 
The availability of seasonal streamflow forecasts in this 
region could be of considerable societal and economic use 
for water resources management, disaster forecasting and 
prevention, energy, finance and insurance, food security, 
policy-making and public authorities, transportation (e.g., 
Harrison et al. 2007), and for crop management decisions 
(e.g., Asseng et  al. 2016). Thus, in this work, we address 
the following research questions:

•	 How well can seasonal variations in streamflow be 
described with a simple statistical model using just pre-
cipitation and agricultural acreage as predictors for all 
flow quantiles?

•	 How well can we forecast seasonal streamflow across 
a wide range of quantiles (from low to high flow), and 
how does the skill change as a function of lead time 
(i.e., initialization month) and season?

2 � Data and methods

Our forecasting framework can be summarized as follows, 
with details provided in subsequent sections. We begin by 
fitting three statistical streamflow models from 1927 to 
2016 using the observed streamflow quantiles, basin-aver-
aged precipitation, and total agricultural row crop acreage. 
The three models are assessed against the observed stream-
flow quantiles in terms of their goodness-of-fit. We then 
use these models to forecast streamflow quantiles for the 
years 2001–2016. The models are both statistical (based on 
gamma regression models) and dynamical (using precipi-
tation forecasts from eight NMME GCMs and agricultural 
acreage as inputs).

2.1 � Data for historical model fits

As reference streamflow data, we use daily observa-
tions from the Raccoon River at Van Meter (USGS sta-
tion number 05484500; Fig. 1), which has a drainage area 
of 3441  mi2 (8912  km2). For every season, we compute 
streamflow quantiles ranging from Q0.00 (minimum daily 
streamflow) to Q1.00 (maximum daily streamflow) with a 
step of 0.05. These quantile time series are used to fit the 
models from low to high flows at the seasonal time scale. 
All of our observed time series begin in 1927 because that 
is the year from which the harvested corn and soybean data 
are available. We focus on four seasons: winter (Decem-
ber–January–February; DJF), spring (March–April–May; 
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Fig. 1   Evolution of corn and soybean cultivation within the Raccoon 
River basin from 1927 to 2014. The three maps on the left indicate 
land cover for the years 1927, 1970 and 2014 and show the progres-
sion of corn and soybean cultivation within the basin, as a fraction of 
each county. The Raccoon River at Van Meter stream gage is indi-

cated as a red circle at the outlet of the basin. The inset map in the 
2014 panel shows the location of the watershed within the US Mid-
west. The time series on the right indicates the change in the fraction 
of the total watershed that is cultivated as corn and soybean, from 
1927 to 2014
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MAM), summer (June–July–August; JJA), and fall (Sep-
tember–October–November; SON).

To model the seasonal streamflow quantiles, we use pre-
cipitation and agricultural harvested land cover as predic-
tors. Basin-averaged total monthly precipitation records are 
obtained from the PRISM Climate Group and aggregated 
at the seasonal scale. These data are freely available online 
from 1890 to the present (Daly et al. 2002), and represent 
the official climatological data for the US Department of 
Agriculture (USDA). The precipitation data are averaged 
over the entire catchment draining to the Van Meter stream 
gauge, providing basin-averaged monthly (aggregated to 
seasonal) precipitation time series.

Our second predictor is total harvested corn and soy-
bean acreage at the county level from the USDA’s National 
Agricultural Statistics Services (NASS) database (NASS 
and USDA 2015). Following Villarini and Strong (2014), 
we use these data to represent the effects of agricultural 
practices and land cover changes on the flow frequency 
distribution (see also Schilling et  al. (2008), among oth-
ers). We calculate the fraction of each county that is within 
the Raccoon River basin (Fig. 1) and multiply this fraction 
by the total agricultural acreage of that county. Assuming 
that the farmed area is uniformly distributed within each 
county, the total acreage within the Raccoon watershed 
is then obtained as the sum of computed values across all 
counties. We do this for every year to obtain a time series 
of total annual cultivated corn and soybean acreage, from 
1927 to 2014. Data for 2015/2016 was not yet available 
at the time of writing this paper, so we use the 2014 data 
instead, under the assumption that farmed acreage has not 
changed considerably in 2 years (e.g., Villarini and Strong 
2014). Figure 1 shows how the fraction of each county cul-
tivated as corn and soybean has changed between 1927 and 
2014. Overall, there has been a sharp increase in agricul-
tural intensity over this watershed since the 1940s, when 
perennial vegetation was replaced with seasonal row crop 
(corn and soybean). This agricultural push continued into 
the 1970s, but has levelled out since the mid-1990s, with 
about three quarters of the watershed in production (e.g., 
Zhang and Schilling 2006; Schilling et  al. 2008; Villarini 
and Strong 2014; Fig. 1).

2.2 � Statistical model formulation

Our statistical modeling builds on and improves the meth-
odology described in Villarini and Strong (2014). Let Y, 
the predictand, represent a given quantile of the seasonal 
streamflow time series ranging from minimum (Q0.00) 
to maximum (Q1.00) flow. For example, if Y is the spring 
Q0.50, we compute the median of the daily streamflow dis-
tribution for the 3-month period ranging from March until 

May (MAM), for each year, from spring 1927 to 2016. The 
resulting time series represents Y.

For each given quantile, we model Y using a gamma dis-
tribution, which has two parameters, μ and σ. Based on the 
parameterization in the Generalized Additive Models for 
Location, Scale and Shape (GAMLSS; Rigby and Stasino-
poulos 2005; Stasinopoulos et al. 2006), the expected value 
of Y is equal to μ and the variance to σ2μ2. We describe the 
variability of these two parameters over time in terms of 
covariates (predictors): xp, which indicates precipitation 
over the study area; and xa, which is the harvested corn and 
soybean acreage. All the predictors are standardized rela-
tive to the 1983–2000 period (by subtracting the mean for 
the 1983–2000 period, and dividing by the standard devia-
tion for the 1983–2000 period). We write three different 
formulations of the model, starting with Model 1 (the same 
as in Villarini and Strong 2014):

where the Greek letters within the parentheses represent 
the coefficients to estimate. The interaction term (xp ⋅ xa) 
is used to model the influence of changing agricultural 
land cover on the streamflow distribution. For instance, 
increases in agricultural land cover due to deforestation 
and forest fragmentation are expected to amplify precipita-
tion effects on low flows (Zhang and Schilling 2006; Schil-
ling et al. 2008) and high flows during the heaviest rainfall 
events (Villarini and Strong 2014), thus strengthening the 
streamflow-precipitation relationship.

Model 2 is a simplified version of Model 1, with the 
same μ but a constant σ, because Villarini and Strong 
(2014) found that the σ parameter was not significantly 
dependent on the two predictors:

Last, Model 3 includes an additional parameter, xd, 
which is the observed precipitation from the month preced-
ing each season, used as a proxy for the effects of anteced-
ent wetness:

We selected these three different model formulations 
to reflect the fact that there are multiple plausible ways 
of connecting streamflow to precipitation and agriculture, 
but recognize that there are many other potential formula-
tions, and that this paper only explores one aspect of that 

(1)
�1 = exp

(

�1 + �1 ⋅ xp + �1 ⋅ xp ⋅ xa
)

,

�1 = exp
(

�1 + �1 ⋅ xp + �1 ⋅ xp ⋅ xa
)

,

(2)
�2 = exp

(

�2 + �2 ⋅ xp + �2 ⋅ xp ⋅ xa
)

,

�2 = exp(�2).

(3)
�3 = exp

(

�3 + �3 ⋅ xp + �3 ⋅ xp ⋅ xa + �3 ⋅ xd
)

,

�3 = exp(�3).
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relationship. Other model formulations could have been 
considered, especially including non-linear dependencies. 
Here we wanted to keep the modeling simple and exam-
ine which model produces the most consistent streamflow 
forecasts based on the different streamflow-predictor rela-
tionships. To assess the extent to which the inclusion of 
xa improves model fit, we quantify the improvement in 
model fit and forecasts (see Sect.  3 and Supplementary 
Materials).

For each seasonal streamflow quantile ranging from 
Q0.00 to Q1.00, we estimate the relevant parameters in 
Eqs. 1–3 using the observed streamflow, observed precipi-
tation, and agricultural acreage for the period 1927–2015. 
For each seasonal streamflow quantile, we compute the 
residuals and assess their mean, variance, coefficient of 
skewness, coefficient of kurtosis, and Filliben correlation 
coefficient (Filliben 1975), to evaluate the goodness-of-fit 
of each model from a statistical standpoint. If these models 
are able to describe the systematic variations in the stream-
flow quantiles, the residuals should be white noise (Gauss-
ian distributed with a mean of 0 and a variance of 1). We 
also retrieve the computed percentiles P5, P25, P50, P75 and 
P95 of the fitted gamma distributions (i.e., a probabilistic 
forecast is issued for every seasonal flow quantile), and plot 
them to show how each model performs. We would expect 
the fitted quantiles to be close to the observed flow distribu-
tion (e.g., the value of the P95 is exceeded by roughly 5% 
of the observations). Last, these same values are also dis-
played as time series alongside the observed data to assess 
the goodness-of-fit of each model.

2.3 � Model evaluation

Numerous statistical measures of model accuracy or per-
formance criteria exist in the literature, such as the mean 
square error, the mean/median absolute error, the root 
mean squared error, the mean/median absolute percentage 
error, the mean/median relative absolute error, the Nash-
Sutcliffe efficiency metric. Most of these measures have 
been shown to be inadequate, sensitive to outliers, or pro-
duce infinite/undefined values and misleading results (e.g., 
Hyndman and Koehler 2006). The mean absolute scaled 
error (MASE) has been proposed as a preferable measure, 
as it is less sensitive to outliers, less variable on small sam-
ples than other metrics, and easy to interpret (Hyndman 
and Koehler 2006; Franses 2016). Because of the proba-
bilistic nature of the forecasts, we measure the accuracy of 
the fitted models by comparing the computed P50 (50th per-
centile) of the fitted gamma distribution as “best estimate” 
(e.g., Villarini and Serinaldi 2012) with the observed his-
torical Q0.5, using the MASE as our chosen metric for every 
seasonal streamflow quantile.

2.4 � NMME data and streamflow forecasts (2001–2016)

We compute the forecasts over the 2001–2016 period so 
that we have enough observational data to verify the skill 
of the forecasts. Precipitation forecasts are obtained from 
eight NMME models (see Table  1 for details): CCSM3 
and CCSM4 from the National Center for Atmospheric 
Research (NCAR), the Center for Ocean-Land-Atmosphere 
Studies (COLA) and the Rosenstiel School of Marine 
and Atmospheric Science from the University of Miami 
(RSMAS); CanCM3 and CanCM4 from Environment 
Canada’s Meteorological Service of Canada - Canadian 
Meteorological Center (CMC); GFDL2.1 and FLORb01 
from the National Oceanic and Atmospheric Administra-
tion (NOAA)’s Geophysical Fluid Dynamics Laboratory 
(GFDL); GEOS5 from the National Aeronautics and Space 
Administration (NASA)’s Global Modeling and Assimila-
tion Office (GMAO); and CFSv2 from NOAA’s National 
Centers for Environmental Prediction (NCEP). Every mod-
eling center contributes the model forecasts to the NMME 
through the International Research Institute (IRI) for Cli-
mate and Society web archive. Each of the eight NMME 
models has between 6 and 24 members, but we use only the 
mean of each model’s members in this study.

Monthly precipitation forecasts are available at the 
beginning of each month with a temporal horizon of 
between 0.5 and up to 11.5  months—so for instance, the 
precipitation forecast initialized at the beginning of Octo-
ber 2013 provides monthly precipitation forecasts ranging 
from October 2013 to September 2014. We downloaded the 
data for each of the eight NMME models, and extracted the 
areal-averaged forecast issued within the boundaries of the 
Raccoon River basin for every 1 of the 94 model members 
(see Table  1). We computed the ensemble forecast as the 
mean of all the members. This approach is recognized as 
a simple but effective method for obtaining an enhanced 
multi-model forecast, wherein the skill of the means is 
often as good as or better than that of the best single ensem-
ble member (e.g., Becker et al. 2014; Slater et al. 2017; Ma 
et al. 2015a). However, more sophisticated approaches can 
also be utilized to heighten the skill of the input precipi-
tation data (e.g., Scheuerer and Büermann 2014; Wanders 
and Wood 2016; Hodyss et al. 2016; Bogner et al. 2017).

The time series were then aggregated to obtain the total 
seasonal precipitation ensemble forecast for every lead 
time. For example, the summer forecast issued in June is 
the sum of the 0.5  month lead forecast for June, the 1.5-
lead forecast for July, and the 2.5-lead forecast for August. 
Thus, a seasonal forecast can be issued up to 9.5  months 
in advance for an NMME model issuing 11.5 lead times. 
Last, the seasonal forecasts are transformed as standardized 
anomalies (by subtracting the mean and dividing by the 
standard deviation computed over the 1983–2000 period), 
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so that they are on the same scale as the observed data (Vil-
larini and Strong 2014). All anomalies are computed with 
respect to the baseline period 1983–2000, i.e., the year 
from which all NMME forecasts are available, and the last 
year of the model fit (before forecasts are issued). The raw 
NMME precipitation forecasts tend to have relatively low 
skill and are much less variable than the observed data 
(Fig. 2). There is no clear difference between the precipita-
tion forecasts issued at different lead times, in terms of var-
iability or magnitude. Overall, the summer forecast tends 
to be slightly better and more consistent than the other sea-
sons (i.e., the scatter is a little closer to the 1:1 line; Fig. 2). 
Both observed precipitation and agricultural acreage are 
also transformed as standardized anomalies so that they are 
on comparable scales for the model fitting and forecasting.

To compute a streamflow forecast for a given year, 
streamflow quantile, initialization month, and season, we 
begin by training the model by fitting observed values of 
xa, xp and xd for all years preceding the forecast year. The 
corresponding values of α, β, γ, δ, �, �, and � (where rel-
evant: see Eqs.  1–3) are retrieved for the given period 
(e.g., 1927–2000 for the forecast year 2001; 1927–2001 
for the forecast year 2002), consistent with the retroactive 

validation method described in Mason and Baddour 
(2008). To compute the streamflow forecasts, we use the 
precipitation forecasts from the NMME archive (xp), and 
the harvested soybean and crop acreage from the previous 
year (xa, persistence forecast). This approach is similar to 
those described in Jain and Lall (2001), Sankarasubrama-
nian and Lall (2003), and Towler et  al. (2010). For xd, if 
we are predicting streamflow at the shortest lead time (the 
same month), we use observed precipitation from the previ-
ous month, if it is already available. If the observed pre-
cipitation is not yet available, and for all lead times beyond 
the 0.5 month lead, we retrieve the NMME forecast value 
(transformed as standardized anomaly) for the month pre-
ceding the given season.

The observed values of xa, xp and xd for all years pre-
ceding and excluding the forecast year are used to compute 
the μ and σ parameters for the forecast year. The gamlss.
dist package (Stasinopoulos et al. 2016) takes the μ and σ 
parameters as input to compute the predicted streamflow 
distribution for the given forecast quantile. For example, if 
we are predicting the Q0.50 for 2001, our probabilistic fore-
cast produces a range of probable percentiles wherein the 
forecast value may lie (we retain the percentiles P5, P25, P50, 
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Fig. 2   Scatterplots of observed basin-averaged precipitation for the 
Raccoon River watershed, versus NMME precipitation (ensemble 
mean) at different lead times, before and after standardizing the data. 
The top row indicates raw forecasted (NMME) versus raw observed 
(PRISM) data. The bias in the data is clear and varies seasonally and 
by lead time (i.e. number of months ahead of the season). The bot-

tom row indicates standardized anomalies for both observed and fore-
casted data. The values (1983–2016) are transformed by subtracting 
the mean and dividing by the standard deviation computed over the 
1983–2000 period. Different lead times of the NMME forecasts are 
shown using a color spectrum (top right inset panel)
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P75 and P95 to visualize and evaluate the forecast). We store 
the probabilistic forecast output and the μ and σ parameters 
for each model, initialization month, season, forecast year, 
and predicted quantile.

Our streamflow forecasts are verified both deterministi-
cally and probabilistically. The forecast accuracy is based 
on the comparison between the median of the forecast dis-
tribution (P50, for each initialization month) and the obser-
vations, for every seasonal streamflow quantile. The MASE 
score, a scaled error measure, is used to compare the fore-
cast against the average one-step naïve forecast, where val-
ues smaller than 1 indicate that the model performs bet-
ter, on average, than the one-step naïve forecast. We also 
compute the correlation coefficient to quantify the amount 
of variability in the observations that is explained by the 
forecasts.

3 � Results

3.1 � Model fit and diagnostics

The three models produce good fits to the observed histori-
cal data from 1927 to 2016, with correlation coefficients 

between the observed quantiles and the predicted percen-
tile P50 generally exceeding 0.6 across all streamflow quan-
tiles and seasons (Supplementary Fig. 1). Model 3, which 
includes both agricultural land cover and antecedent pre-
cipitation as predictors, tends to produce the best fits, with 
higher correlation coefficients (R > 0.7) and lower root 
mean square error, especially in the fall and summer when 
antecedent moisture may affect the relationship between 
precipitation and streamflow (Supplementary Fig. 1).

The time series indicate how closely the observed sea-
sonal streamflow quantiles (Q0.05, Q0.5 and Q1; gray circles) 
lie with respect to the modelled probabilistic distribution 
(P5–P95; colored ribbons) for the entire period (Fig. 3 and 
Supplementary Fig.  2). Model 3 reproduces the observed 
inter-annual variability relatively well for all seasons. 
Some periods like the spring/winter low flows (Q0.05) in 
the 1970s–1980s are less well fit, possibly because the 
inter-annual variability of xa is much higher and so less 
well captured by the persistence forecast. The progressive 
improvement in model fit over time is possibly related to 
the increased role of row crop acreage (Fig.  1), as this is 
the only variable that changes notably over the time period. 
The width of the fitted distributions is generally nar-
row, and the goodness of these fits is supported by high 
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Fig. 3   Time series indicating the fit of Model 3 against the observed 
values (1927–2016; see Supplementary materials for a comparison of 
the three models). For every season (rows), five percentiles of the pre-
dicted streamflow distribution are shown (P5, P25, P50, P75 and P95) 
within each plot (color ribbons), for three quantiles (columns): low 
flow (Q0.05), median flow (Q0.50), and maximum seasonal flow (Q1). 
The dark red line represents the median (P50) of the predicted distri-

bution, the orange region the area between P25 and P75, and the yel-
low region the area between P5 and P95. The gray circles indicate the 
observed values. To the right of the time series, seasonal color bars 
indicate the fit (as measured by the correlation coefficient R) of the 
observed versus the fitted flow quantiles (1927–2016), ranging from 
white (R < 0.05) to red (R > 0.85)
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correlation coefficients: R > 0.85 in much of fall and sum-
mer; R > 0.5 in much of spring and winter, with the best 
fits often in the high flow quantiles (Fig. 3; Supplementary 
Fig. 1). The model fit is the closest to the observed values 
in the summer months, when the flow is most variable, and 
the least well-fit in the spring low flows (suggesting that we 
may be missing important predictors reflecting antecedent 
conditions; Fig. 3 and Supplementary Fig. 1). Ideally, the 
observed values should lie close to the median of the pre-
dicted distribution (dark red line). However, since our fore-
casts are probabilistic (i.e., provide the whole probability 
distribution of flow forecasts, for each streamflow quantile) 
it is to be expected that 10% of observed values will lie 
above and below the 95th and 5th percentiles (white area), 
40% between the 5th–25th and 75th–95th percentiles (the 
yellow ribbon), and remaining 50% between the 25th and 
75th percentiles (orange ribbon).

Statistically, we assess the goodness-of-fit of the three 
gamma models to determine which model produces the 
best fit for every season and flow quantile, and to detect 
where the uncertainties lie (Figs. 4, 5). Overall, the residu-
als (observed minus predicted values) are relatively well-
distributed for all three models: the mean and coefficient of 
skewness tend to be close to zero (indicating that the errors 
have zero bias and that their distribution is symmetric), the 
variance close to one (indicating that the models are not 
over- or under-dispersed), the coefficient of kurtosis close 
to three (so they are neither leptokurtic or platykurtic), 
and the Filliben correlation coefficients close to one (sup-
porting the Gaussianity of the distribution of the residuals) 
(Fig.  4). Model 3 does tend to out-perform the other two 
models, although there are notable differences by season 
and streamflow quantile. In the spring, summer, and win-
ter, relatively little difference can be seen among models. 

Fig. 4   Summary statistics for the three model residuals (1927–2016). 
Mean, variance, coefficient of skewness, coefficient of kurtosis, and 
Filliben correlation coefficient are displayed for all of the seasonal 
forecasts, for every model. The first four metrics are displayed with 
a scale that is centered on the best fit of the indicator (white), ranging 

from smaller (blue) to higher (red) values compared to the target. The 
Filliben correlation coefficient ranges from low (turquoise) to high 
(dark green: the target is 1). The full range of forecast streamflow 
quantiles is shown on the x-axis, from zero to one
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In the fall, however, Models 1 and 2 tend to over-predict 
(the mean of residuals tends to be negative; Fig.  4), sug-
gesting that the inclusion of antecedent wetness conditions 
in Model 3, xd, plays a crucial part in the improvement of 
seasonal fits in the fall.

Despite model similarity, seasonal differences can also 
be observed across the residual diagnostics (Fig. 4). The 
summer and spring, which generally witness higher flows 
than fall and winter, have better results in terms of the 
mean, skewness, kurtosis, and Filliben coefficient, but 
also greater variability. Their coefficient of kurtosis is 
flatter than might be expected from a Gaussian distribu-
tion, with more evenly-distributed residuals in the sum-
mer months. The model residuals tend to be positively 

skewed in fall and winter, suggesting a slight tendency 
to over-predict, as can be seen with the mean. The win-
ter months have the lowest flows and the lowest variance, 
while fall tends to produce the least accurate fits of all 
seasons.

When comparing across streamflow quantiles, we find 
that the low quantiles tend to be slightly better fitted than 
the high quantiles (Fig. 4), especially in Model 3 (e.g., fall 
mean or skewness), suggesting that xd is most helpful in fit-
ting low flows. This finding is consistent with the idea that 
antecedent wetness contributes to the forecast skill in dry 
conditions (e.g., Mo and Lettenmaier 2014). However, the 
majority of models display little difference in model skill 
among streamflow quantiles, suggesting that the high flows 

Fig. 5   Probability coverage of five fitted percentiles (P5, P25, P50, P75 
and P95), for all streamflow quantiles (Q0–Q1) for the three models 
(1927–2016). The full range of streamflow quantiles are shown on 
the x-axes (Q0–Q1), and the three models on the y-axes. Colors indi-
cate the departure of the fitted distribution (P5–P95) from the observed 
streamflow quantile (obtained from the flow-frequency distribution of 

daily streamflow during the given season). Shades of white indicate 
a close fit; blue shades that the fit is beneath the observed value; red 
shades that it is above. The bins are all 0.01 quantile in width, and 
are centered so that the central quantile is white (0.045–0.055; 0.245–
0.255; 0.495–0.505; 0.745–0.755; 0.945–0.955)
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tend to be equally well predicted to the low flows, which is 
very promising.

Additionally, we evaluate the goodness-of-fit of the 
three models by assessing the distance between the pre-
dicted and observed distributions through probability cov-
erage (Fig.  5). As an example, the 50th percentile of the 
fitted probabilistic distribution (P50) tends to exceed about 
40% (under-predicting, blue shades) to 60% (over-predict-
ing, red shades) of the observed values. So in spring, the 
P50 tends to be slightly too low (i.e., on the time series, a 
majority of observed values lie above the fitted red line). 
Ideally, shades of white indicate that the predicted percen-
tiles are close to the observed streamflow quantiles. Over-
all, the majority of fitted flows tend to lie within an accept-
able range (approximately ±0.1) from the corresponding 
observed streamflow quantile. There is not one model 
that consistently outperforms the others across all sea-
sons, although Model 2 (with constant σ) performs better 
(i.e., is slightly whiter) than the others in spring and sum-
mer, and Model 3 (with xd) performs best in fall, in keep-
ing with the residual diagnostics shown in Fig. 4, and the 
time series in Supplementary Fig.  2. Surprisingly, though 
one might assume that the median of the fitted distribution 
would show the smallest errors, some of the worst fits are 
for the P50. Among the four seasons, the summer months 
tend to be the best fit, and fall the least well-fit. However, 
among streamflow quantiles, the goodness-of-fit does not 
vary notably from low to high flows.

3.2 � Model forecast skill

The time series in Fig.  6 indicate how the observed sea-
sonal streamflow values lie with respect to the historical 
fit (1980–2000, same as Fig. 3) and forecast (2001–2015) 
of Model 3, for three streamflow quantiles (Q0.05, Q0.5 and 
Q1). Both the historical fit and forecast values are shown 
on the same figure, to allow some comparison between the 
fit and forecast. Clearly, the skill of the forecast stream-
flow does not decrease uniformly with initialization time 
(i.e., number of months ahead of the forecast; Fig. 6) and 
is somewhat erratic (Supplementary Figs. 3–4). For certain 
initialization months (e.g., 0.5 months ahead of the fall sea-
son, or 1.5 months ahead of the winter season), the forecast 
(2001–2015) flow distributions perform almost as well as 
the fitted distributions (1927–2000) (Supplementary Figs. 1 
and 3), despite the uncertainty resulting from the NMME 
precipitation forecasts. In fall, we find relatively consistent 
high skill for Model 3’s fit and forecast (measured in terms 
of the correlation coefficient, R) across all streamflow 
quantiles (Figs. 3, 7). In the spring, summer, and fall, the 
high streamflow quantiles tend to be better forecast than the 
low flows at the shortest initialization times, showing great 
promise for the prediction of seasonal streamflow maxima.

To what extent does the inclusion of antecedent wet-
ness (xd) and agricultural land cover (xa) actually improve 
the model forecasts? Model 3 reveals that there is some 
improvement in model forecasts resulting from the inclu-
sion of xd (higher R and lower RMSE in Supplementary 
Figs. 3–4): this is particularly true at the longer lead times 
in summer and fall, but not consistent across initialization 
months. The inclusion of xa clearly improves the summer 
low-flow forecasts up to 4.5 months ahead of the forecast 
season (Supplementary Fig.  3). However, the spring low-
flow forecasts are actually better without the inclusion of 
xd, suggesting that forecast skill may be improved by selec-
tively retaining only certain predictors in the seasons and 
flow quantiles where they are most relevant.

We also assess the MASE score of our models, as it is a 
more robust measure of skill (Hyndman and Koehler 2006; 
Franses 2016) than other metrics, and paints a slightly dif-
ferent picture than the correlation coefficient. MASE indi-
cates that forecast accuracy is most reliable in the spring 
and summer months (low values, in red, Fig. 7 and Supple-
mentary Fig. 5), i.e., when the precipitation input forecasts 
are also most consistent. Interestingly, the MASE skill of 
the high-flow forecasts tends to increase with initialization 
time in the spring, and decreases with initialization time 
in the fall, when depleted water reserves and heightened 
evapotranspiration possibly decouple the rainfall-runoff 
relationship (Fig.  7 and Supplementary Fig.  5). The low 
flow forecasts, on the other hand, are the least skillful in the 
spring, when sub-freezing conditions trap moisture in the 
ground, and best in the summer and fall, when streamflow 
is slightly more responsive to precipitation. In other terms, 
our findings suggest that the added value of the NMME 
forecasts is most important at longer lead times in wet con-
ditions (i.e., spring), when the rainfall-runoff coupling is at 
its highest and the initial conditions have lesser impact on 
the forecast (Yuan et al. 2013), and is least important in dry 
or subfreezing conditions when rain and runoff are most 
strongly decoupled. The inclusion of antecedent wetness 
conditions in Model 3 thus improves model predictions 
in the fall, following the summer months (Supplementary 
Figs. 3 and 5).

Last, we assess whether the skill of our streamflow fore-
casts does actually improve over that of the initial input 
precipitation forecasts from the NMME multimodel ensem-
ble, as found in Wood et  al. (2016). Results indicate that 
when the initial precipitation forecast skill is high, the 
resulting streamflow forecast skill tends to remain equally 
high, with some exceptions, e.g., summer short initializa-
tion months (Fig.  7). In some cases, the streamflow fore-
casts do actually improve over the input precipitation skill, 
such as for some high-flows in the fall and spring, or some 
low flows in summer and winter. This non-uniform manner 
in which the precipitation forecast skill propagates through 
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the different streamflow quantiles allows us to identify the 
various strengths and weaknesses of our model, where fur-
ther improvements can be made to better capture specific 
processes such as the effect of snowmelt on low to median 
flows in spring. Thus, future improvements in seasonal flow 
forecasting may arise from improvements in the input pre-
cipitation forecasts and/or in model formulation.

3.3 � Visualizing probabilistic forecasts for 2016

Here we illustrate how probabilistic flow forecasts can be 
visualized and interpreted over 1  year, by comparing our 
model predictions (background blue-white-red distribu-
tion) against the observed value (dashed yellow line) and 
the observed seasonal average for 2001–2015 (horizontal 
black line).

The predictions from Model 3 for winter 2016 (i.e., 
December 2015 through February 2016) show slightly 
above-average streamflows: the median of the predicted 
distribution (white bar centered on P45–P55) generally lies 
above the observed seasonal average for 2001–2015 (see 
the top row in Fig. 8). However, the observed value is con-
siderably higher than the seasonal average: although we 
correctly predicted wetter-than-average conditions, were 
unable to correctly predict the magnitude of flows. In the 
spring months, we correctly predicted above-average low/
median flows (Q0.05/Q0.50), and high (Q1) flows roughly 
on par with the historical average. In the summer months, 
our forecasts lay below the seasonal average; again we cor-
rectly predicted lower-than-average streamflows. In the fall 
months, however, our model incorrectly predicted much 
lower-than average streamflows.
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season), five percentiles of the predicted streamflow distribution are 
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1980–2000, even though the models have been fit to the entire period 
1927–2016, in order to highlight the detail in the models. Forecast 
values are shown for 2001–2015; the year 2016 is shown in Fig. 8
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Overall, Fig.  8 reveals that our model correctly pre-
dicted whether the winter, spring and summer flow would 
be above- or below-average, but incorrectly forecasted fall 
streamflow as below-average. Most interestingly, this vis-
ualization reveals that there is not a decrease in forecast 
accuracy with initialization time (i.e., forecasts issued fur-
ther ahead of the season do not uniformly decrease in skill), 
suggesting that one could consider the whole outlook (all 
initialization months) to gain a better overview of the sea-
sonal flow forecast.

Given the recent improvements in seasonal forecast 
skill, how likely are water managers to use such proba-
bilistic forecasts? Over a decade ago, Rayner et al. (2005) 
highlighted some of the barriers to their uptake, including 

a conservative management approach to risk, mismatch 
of forecast temporal/spatial scales with management 
needs, and barriers to implementation/interpretation. Our 
approach allows for greater spatial/temporal flexibility 
than previous methods, but is already somewhat complex, 
even when showing just three of the 21 flow quantiles 
(Fig.  8). These points raise a number of questions: how 
can we make the information more accessible and use-
able? What is the appetite for detailed flow regime quan-
tiles when they are so uncertain, and are other approaches 
more suited? Our findings suggest that there is consider-
able potential for skillful dynamical forecasting of sea-
sonal streamflow quantiles, by further improving the pre-
dictors, models, and forecast ensembling schemes.
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4 � Summary and conclusions

How good are the statistical models that we have devel-
oped in describing and forecasting seasonal streamflow 
variations for the full range of flow quantiles? Results 
indicate that the three gamma models do describe the 
inter-annual flow variability accurately when they are fit-
ted with observed precipitation and agricultural acreage. 

All three models have well-distributed residuals across all 
streamflow quantiles, especially in the summer and spring 
(the most variable seasons), suggesting that the high flows 
tend to be as well predicted as the low flows. There is not 
one model that consistently outperforms the others across 
all seasons, although Model 3 (which includes a proxy for 
antecedent wetness) produces a markedly better fit than the 
other models in the fall and for the low flows, when initial 
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comparing our forecast distribution against these two lines, we can 
determine whether above- or below-average conditions were correctly 
predicted
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conditions have the strongest effect on the flow distribution. 
These findings indicate that the relative importance of each 
predictor varies seasonally and by flow quantile, suggest-
ing that forecast skill can be improved by leveraging the 
strengths of different predictors when they are most useful.

In terms of seasonal forecasts, we find that the forecast 
flow distributions (based on NMME precipitation forecasts) 
perform similarly to the historical fitted distributions across 
flow quantiles, but for certain initialization months only. 
Most surprisingly, the forecast skill does not decrease uni-
formly with lead-time, and some of the most skillful fore-
casts are issued 1.5, 5.5, or 6.5 months (for winter, summer 
and fall respectively) ahead of the predicted season. The 
skill comes predominantly from the precipitation forecasts, 
suggesting that improvements will arise principally from 
more sophisticated combinations of the individual NMME 
members.

Overall, seasonal flow forecast accuracy is improved by 
the inclusion of antecedent precipitation, but agricultural 
land cover only has minimal effect on forecast skill. This 
lack of improvement may be related to the quality of the 
land cover forecast (agricultural data are published with a 
certain latency, so we use agricultural coverage from the 
previous year); real-time data or other land cover categories 
may allow for a more precise evaluation of changes in the 
flow distribution.

Though our probabilistic seasonal streamflow forecasts 
are generated with simple statistical models, they may have 
considerable practical applications. Real-time forecasts of 
soil moisture and streamflow based on hydrologic macro-
scale models such as NMME-VIC are already being linked 
with impact models to predict reservoir inflow, crop yield, 
and wild fire (Yuan et al. 2015). This methodology is suf-
ficiently general to be applicable across the central United 
States, where streamflow is affected by both climate and 
agricultural practices. Real-time applications of the model 
could include, for example, predicting the impacts of 
changing land cover on flow. Such outputs would enable 
legislators to envisage a potential trade-off between tak-
ing agricultural land out of production and minimizing the 
risks arising from extreme floods. More generally, real-
time forecasts would provide basic information allowing 
decision-makers to prepare for and mitigate the disruptions 
arising from these catastrophic events. Similarly, long-term 
forecasts issued over annual to decadal timeframes with 
more elaborate multi-model ensembles would also enable 
management decisions in terms of, e.g., water resources or 
crop legislation.
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