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ABSTRACT 

Energy demand reduction has become a global issue involving all countries, 

including China. As major energy consumers in today’s society, the need for 

buildings to be built and operated more energy efficiently is well recognized. In 1995, 

the national standard on building energy efficiency in China (JGJ 26-95) was refined 

and updated to become the new residential Buildings standard (JGJ 26-2010) 

published in 2010. In the new version, many changes have been made to support 

the construction of more energy efficient buildings in China. For example, in the new 

standard, all buildings are highly recommended to install personal control on the 

heating system, such as by Thermostatic Radiator Valves (TRVs), together with ‘pay 

for what you use’ tariffs. Previous practice comprised uncontrolled heating with 

payment based on floor area. In order to reduce building energy consumption, 

Chinese government has revised the Chinese building design standard. In the new 

guide the use of individual room temperature control is highly recommended for new 

and refurbishment buildings. However, evidence to quantify the extent to which this 

improvement impact upon on the building energy consumption is currently lacking.             

This thesis evaluates the impact of updated building design standards on thermal 

conditions and energy consumption in Chinese residential buildings. In order to 

evaluate the impact on the building energy consumption, two types of residential 

buildings have been chosen, one complying with the old Chinese building design 

standard, while the other complies with the new standard. The study was carried out 

in seven apartments in each type of building, a total of fourteen apartments and 

comprised with a longitudinal monitoring of indoor air temperature, outdoor air 

temperature, window position and energy consumption of each apartment. The 

impact of the new design standard has been evaluated in relation to a number of 

aspects, that include building construction, indoor thermal environment, occupant 

behaviour, thermal comfort and building energy consumption. It is concluded that 

updating the building design standard has had a positive influence on the building 

conditions and energy consumption. Furthermore, a thermal comfort survey was 

carried out in both new and old apartments according to updated standards. The 
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results show that the Predicted Mean Vote (PMV) model has a efficiently adequate 

predictor of occupants’ thermal comfort in both type of apartments. Thereby allowing 

confirmation that the new control refine did not compromise on thermal comfort. The 

percentage of acceptable of occupants is higher in new apartments compared with 

the old apartments. 
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1  Introduction  

1.1 Background 
Global warming is the most important issue of environmental challenge all over the 

world. The top priority is to minimize climate change by reducing greenhouse gas 

emissions. In addition, there is an increasing awareness on the importance of 

reducing carbon emissions in the world. Around 30-40% of all primary energy is used 

in buildings all over the world. Therefore, reducing energy consumption in buildings 

can help reduce carbon emissions significantly (UNEP, 2007).        

China is the second largest country in the aspect of both energy production and 

consumption. The building sector accounts for nearly 20% of the total energy 

consumption in China. In the past 20 years, building energy consumption in China 

has increased at a rate of more than 10% every year (Siwei & Yu, 1993; GB50178-

93, 1993; Lang, 2004; Li, 2008). It is important to improve the energy efficiency and 

to promote energy-saving technologies of buildings (Yang, et al., 2014; Chen, et al., 

2008). Residential energy consumption is the second largest energy use in China. 

Additionally, residential building areas increase by two billion square meters every 

year. The residential energy consumption depends significantly on the climate of the 

regions in China (GB 50178-93, 1993; Jiang & Hu, 2006; Zhou, et al., 2010). There 

are rapid increase and continuous growth in the residential energy consumption, so 

that it is reasonable to separate China into several climatic zones (Yuan, et al., 2013; 

Zhang, 2004). Based on the national standard named “Standard of Climatic 

Regionalization”, generally, China is separated into five climatic zones (see Figure 

1.1) (GB50178-93, 1993): 

1. Severe Cold Zone  

2. Cold Zone  

3. Hot Summer and Cold Winter Zone  

4. Hot summer and Warm Winter Zone  

5. Mild Zone 
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Figure 1.1 Five climatic zones of China 

 

Table 1.1 Characteristics of climatic zones in China 

Climatic Zone 
Number of 
days ≤5°C 

Number of 
days ≥25°C 

HVAC for 
Winter 

HVAC for 
Summer 

Severe cold ≥145Days -- Central Heating Air-conditioning 

Cold 145~90Days ≤80Days Central Heating Air-conditioning 

Hot summer and 

cold winter 90~0Days 40~110Days N/A Air-conditioning 

Hot summer and 

warm winter -- 100~200Days N/A Air-conditioning 

Mild 90~0Days -- N/A Air- conditioning 

 

Table 1.1 presents the characteristics and different requirements of HVAC systems 

for each climatic zone. In severe cold zone and cold zone, central heating in winter 



19 
 
 

and air-conditioning in summer is required. In hot summer and cold winter zone, air 

conditioning in summer is required (central heating is not required). In hot summer 

and warm winter zone, the major requirement is air conditioning, and few residential 

buildings are equipped with individual heating system (Lang, 2004).  

The severe cold and cold zones (also regarded as Central Heating Zones) are 

defined as “where the average daily outdoor temperature for any five successive 

days is lower than or equal to 5°C, for more than 90 days in a year” (Siwei & Yu, 

1993). The central heating zones account for approximately 70% of total national 

territory and account for approximately 45% of the total national energy consumption 

(Zhong, et al., 2009; Jiang & Yang, 2006). According to the official statistics from the 

Chinese Ministry of Construction, 45% of occupants living in urban areas have been 

provided with winter space heating (GB 50178-93, 1993; Jiang & Hu, 2006; Zhou, et 

al., 2010). Approximately two-thirds of urban residential buildings in the central 

heating zones are installed with centralized, hot-water radiator heating systems, 

however, residential hot water is not provided. The central heating system comprises 

constant water flow rate with the water temperature controlled by a heating 

substation (Document of World Bank, 2014; Yao, et al., 2005). 

Analysis of urban residential energy use in central heating zone showed high levels 

of waste caused by space heating. The central heating systems run 24h per day 

continuously, and there are no individual heating control systems thus occupants can 

only open their windows/doors to adjust indoor thermal conditions (Xu, et al., 2009; 

Chen, et al., 2011). The central heating system consists of radiators that are 

traditional vertical single-pipe systems therefore it is hard to install the occupants’ 

control systems and metering within the buildings (Document of World Bank, 2014). 

In the past, the heating costs in Chinese residential buildings were based on a flat 

payment rate per square meter of floor area of houses. Taking all this into 

consideration, in order to reduce energy consumption, the Chinese government 

adopted a new method of charging citizens for the heating service and payments. 

The newly-built residential buildings are required to have a variable-flow, two-pipe 

design and incorporate manual valves (i.e. Thermostatic Radiator Valves) and heat 

meters in radiator systems (Document of World Bank, 2014; Xu, et al., 2009).  
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In 1995, the Chinese government announced an energy conservation design 

standard JGJ26-95 in heating system for new residential buildings. According this 

standard, for a majority of residential buildings built before 1995 the heat transfer 

coefficients of external walls and windows are more than 1.6W/m2K and 5.0W/m2K, 

respectively (Yang, et al., 2012). These have since been improved due to the 

introduction of the 1995 standard by the government. In China, the most common 

heating system in old residential buildings is central heating systems without private 

control. In the 1995 design standard, heating control systems have been encouraged 

to be used in the central heating systems in new residential buildings. 

In 1995, the national standard on building energy efficiency in China (JGJ 26-95) 

was updated with the new residential buildings standard (JGJ 26-2010) published in 

2010. The new standard highly recommended that all new residential buildings install 

personal control of the heating system, such as Thermostatic Radiator Valves 

(TRVs), together with implementation of ‘pay for what you use’ tariffs. Additionally, 

the heat transfer coefficient of external walls was limited to 0.78W/m2K and 2.70 

W/m2K for windows. As a consequence, improvements have been made in the 

building fabric insulation levels to help the construction of more energy efficient 

buildings. 

It is thus very important to explore the influence of the upgraded standards on the 

heating energy consumption during winter periods in central heating zones in China. 

Thus in this research, Xi’an is chosen to be a representative city which has a typical 

cold and dry climate in winter. Based on the different standards, two types of space 

heating systems were defined: central heating without personal control systems and 

central heating with personal control and heat meter systems. In this research 

project, fourteen apartments using each type of heating system were monitored, and 

energy consumption and thermal comfort were evaluated. Moreover, it is important 

to evaluate the impact of different building design standards on the thermal and 

energy performance of buildings, through a comparison of various aspects (building 

construction, indoor thermal environment, occupant behaviour, thermal comfort and 

building energy consumption) of two types of residential buildings developed under 

different standards.  
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1.2 Aim and Objectives 

Aim: For multi-storey residential buildings, to investigate the effect on heating 

consumption of moving to a ‘pay for what you use’ policy (capable of occupant 

control) compared to the existing flat rate payment based on floor area only (no 

occupant control). 

The follow five objectives were identified to achieve the above aim.  

Objectives: 

1. To identify two sets of typical Chinese residential buildings; one set having an 

unmetered and uncontrolled heating system whilst the other set having control 

systems and heat meter devices as part of the heating system. To measure the 

indoor thermal conditions, heating energy consumption, occupant behaviour and 

thermal comfort in each set of residential buildings. 

2. To identify the effect of the new control systems and payment methods on energy 

consumption in multi-storey residential buildings, and to compare the indoor 

thermal conditions, heating energy consumption, occupant behaviour and thermal 

comfort in each set of residential buildings.  

3. Validate the simulated energy consumption using the real monitored energy use, 

and improving the modelling techniques using real measured variables 

4. Through thermal modelling of stock, to estimate the saving in energy to be 

expected from a larger number of dwellings, together with issues of cost 

comparison(i.e. cost of metering and controls versus value of energy savings) 

5. To make policy recommendations, based on the findings above.  
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1.3 Thesis Structure  

This thesis has been divided into the following seven chapters:  

• Chapter 1. Introduction: background of this thesis, aims and objectives of 

the project. 

• Chapter 2. Literature Review: thorough review of relevant literature, the 

aspects of energy consumption all over the world and residential buildings in 

China. Furthermore, discussion of the reform and implementation of heating 

and bill system in newly built residential buildings. Review of standards and 

regulations is conducted of how they affect the heating energy use during 

heating periods. Additionally, existing heating control systems related to 

occupant behaviour and thermal comfort is presented.  

• Chapter 3. Methodology: the experimental and simulation methods used to 

investigate the effects of the new building standard on heating energy 

consumption are explained and justified. Additionally, the method of analysis 

for behaviour and thermal comfort is also presented.  

• Chapter 4. Results: Comparisons and analysis of indoor thermal 

environment, occupant behaviour, heating cost and heating energy 

consumption results for both new and old residential buildings. 

• Chapter 5. Results: The modelling technique and simulation results are 

verified with monitored data. 

• Chapter 6. Results: Comparison of thermal comfort in new and old 

apartments is presented and further evaluation is explored   

• Chapter 7. Conclusions: Conclusion of the entire project is discussed, 

contribution of knowledge is highlighted and recommendations of future work 

are presented. 

Figure 1.2 provides the breakdown of thesis into chapters and states their 

corresponding objectives.  
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2 Literature review 

2.1 Introduction 
This chapter presents a review of relevant academic research to this thesis. It 

reviews the current situation of building energy consumption all over the world, 

energy used in Chinese residential buildings, Chinese government policy, occupant 

behaviour and thermal comfort in Chinese residential buildings. The role of 

occupants in the energy consumption for the residential building will be discussed. 

The influence of potential factors on occupants’ heating behaviour will be identified. 

In addition, thermal comfort related to research area of this thesis were reviewed. 

The aim of this chapter is to describe the reform and implementation of heating and 

bill system has been recommended into new built residential buildings in Central 

Heating Zone. So that it is important to identify how the new standard might affect 

the energy consumption, occupant behaviour and thermal comfort in Chinese 

residential buildings. Meanwhile, to evaluate the new residential building standards 

and regulations how affect the heating energy use during heating periods. Further, 

is to identify the existing heating control systems related to occupant behaviour.  

 

2.2 Building energy consumption  

2.2.1 Worldwide building energy consumption  
Energy consumption has become the one of largest issue in the modern society. 

Buildings play an important role on energy consumption in the world, accounting for 

40% of total end use of global energy consumption (Ibn-Mohammed, et al., 2013). 

Figure 2.1 shows that the total end use of energy consumption consists of five parts: 

industry, residential, commercial, transport and other sectors. Residential and 

commercial sectors account for more than 35.9% of final energy use all over the 

world. Furthermore, the residential sector is one of major global energy consumer, 

which is globally accounting for 27.1% of the total energy use (Laustsen, 2008).  
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Figure 2.1  Energy consumption in different sectors in the world 

 (Laustsen, 2008) 

A large part of energy consumption in residential sector account for more than 35% 

in developing countries, it is clearly shown in Figure 2.2 and it illustrates that the 

percentage of building energy consumption and building sectors in different countries 

in the world. China is one of largest developing countries in the world. The 

percentage of energy consumption in residential sector in developed countries, 

representing 20% of total consumption (Nejat, et al., 2015; Yau & Hasbi, 2013).  

 

Figure 2.2 Percentage of global energy consumption in both residential and 
commercial buildings 

 (Yau & Hasbi, 2013) 



27 
 
 

Energy used in services sectors can be divided into four main parts: space and water 

heating, lighting, cooking, and appliances (Xing, et al., 2011). As show in Figure 2.3, 

space heating is accountable for the greatest fraction of total energy use in 

residential buildings. There is a clear trend that fraction of energy consumption in 

residential buildings in individual countries, it also shows that the issues on 

comparison and normalisation (Laustsen, 2008).  

 

Figure 2.3 Energy consumption in the residential buildings in select IEA countries 

 (Laustsen, 2008) 

 

In 2010, the global energy use in residential sector represents 2074Mtoe, since 2000 

the energy consumption has increased by 14%. Related to this, the two main energy 

resources used in residential buildings are fossil fuels and renewables. As show in 

Figure 2.4 electricity used in residential buildings increased by 4%, while biomass 

has fallen to 39.7 % between 2000 and 2010. It is illustrates that traditional biomass 
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is main sources of energy use in residential buildings and is mostly use in developing 

and developed countries (Nejat, et al., 2015). 

 

Figure 2.4 Different energy resources used in the residential buildings in 2000 and 
2010 in the world 

 (Nejat, et al., 2015) 

Climate change is anticipated to have significant effect on building energy 

requirement. In particular, future energy demand of buildings has remarkable effect 

on global warming. Thus, building plays an important role on global warming (Yau & 

Hasbi, 2013). In 2011, residential buildings account for the fourth largest section of 

global CO2 emissions, it directly account for 6% and indirectly account for 11% of 

CO2 emissions sector in the world (Nejat, et al., 2015). 

 

2.2.2 Energy consumption by building sector in China 
China is second-largest global energy market in the world. The total end use of 

energy consumption in China can be divided into five parts: industry, transport, 

residential, commercial, other sectors. In 2011, the energy use in residential sector in 

China represents more than 350Mtoe, since 2000 the energy consumption has 

increased by approximately 20%. The electricity used in China increased rapidly, 

while biomass has increased to more than 270Mtoe of total final energy use between 

period 2000 and 2010. It is estimated that the urbanization rate is predicted to 

increase to 55% in 2020 and 58% in 2030 (Nejat, et al., 2015; Tonooka, et al., 2005).  

More than two billion m2 of buildings are constructed each year in China. CO2
 

emissions in building sector account for 18% of total emissions in China. Relate to 
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this, buildings have become a significantly growing energy consumption sector. The 

Ministry of Housing and Urban-Rural Development of China (MOHURD) stated that 

in 2012, building energy consumption in China account for 27.5% of total energy 

consumption (Zhang, et al., 2015). Building sector in China is one of largest growing 

part of energy use both in construction stage and in the operation stage lead to large 

scale environmental pollution (Du, et al., 2004).  

 

As shown in Figure 2.5, the significant increase of energy consumption in building 

materials production correlation with enormous increase of floor areas of buildings 

under construction.  Table 2.1 lists general energy use in building sector in China in 

2004. Energy use in buildings in central heating zone represents 92.86Mtoe of coal 

per year (Li, 2008).   

 

 
 

Figure 2.5 Energy for building materials production from 2001 to 2013 in China  

(Zhang, et al., 2015) 
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Table 2.1 Overview of energy use in building sector in China 

 
Sources: (Jiang, 2007),’Current status of energy use in buildings in China’, in 2007 Annual 

report on China building energy efficiency, Tsinghua University, China Energy Statistical 

Yearbook 2004. 

 

2.2.3 Energy consumption by residential building sector in China 

2.2.3.1 Building classification in China  

According to the statistics provided by MOHURD, existing buildings in urban 

areas of China can be classified as six different types, is clearly given in Figure 

2.6 and a great number of them are residential buildings, which account for a 

proportion of 53.8% (Siwei & Yu, 1993).  
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Figure 2.6 Amount of existing urban floor area in the Central Heating Zone divided 
into building sectors 

Source: The Ministry of Housing and Urban–Rural Development (Siwei & Yu, 1993) 
 

2.2.3.2 The overview of residential building sector in China 

In addition, the Chinese residential buildings can be further separated into four 

main categories (GB 50093, 2003): Low-rise buildings (1-3 stories), multi-story 

buildings (4-6 stories), middle to high-rise buildings (7-9 stories) and high-rise 

buildings have greater than 10 stories. In these categories, the most of existing 

common buildings are multi-story buildings in urban areas (Siwei & Yu, 1993). 

However, the residential buildings in rural areas is different, the rural villa is self-

built (one or two stories houses in rural area regarded as old traditional 

buildings).   

Currently, there is a great number of residential buildings will be built newly 1.6 to 2 

billion m2 every year. There are huge amount of new residential buildings have been 

built within past 10 years, it account for around 60% of all residential buildings. 

Additionally, there are also about 35% residential buildings are aged between 10-30 

years and there are about 5% buildings are older than 30 years (see Fig 2.7) (Siwei 

& Yu, 1993; F.X.Tu & A.X.Li, 1991) 
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Figure 2.7 The percentage of age of built residential building in China 

(Siwei & Yu, 1993) 

 

2.2.3.3 The energy use in residential building sector in China 

Heating account for largest section of energy use in residential buildings in China, it 

directly accounts for 59%, and residential appliances account for 21%. Lighting 

account for 9% and cooking account for 7%. The lowest energy use is other uses, 

account for 4% (Zhou, et al., 2010) (see Fig 2.8).  

 

Figure 2.8 Residential energy consumption by end use in China 

 (Zhou, et al., 2010) 
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As mentioned above, the most existing buildings in China are residential buildings 

accounting 53.8%. Meanwhile, most of existing common residential buildings are 

multi-stories. The multi-stores residential buildings account for a great large number 

of heating energy consumption in China. The energy use in the household sector in 

Chinese residential building includes space and water heating, cooling, lighting, 

cooking and the use of appliances. It is important to emphasize that the space 

heating is the biggest source of energy consumption, which account for 59% of 

residential energy consumption (Fig 2.8). Energy demand in residential buildings has 

become an important factor affecting economic development in urbanization. With 

the rapid development of standards of living, energy consumption in Chinese 

residential sector will increase greatly (Li, 2008; Chen, et al., 2008).  

Chen et al indicated that the dwelling size and number of occupants are two key 

contributors to rise in the energy demand for heating in residential buildings (Chen, 

et al., 2013; IEA, 2008). A review study conducted by Chen et al. of field study in 

Shanghai of China showed that how the various potential variables result in 

difference of annual energy consumptions characteristics between old and new 

residential buildings. They analysed the factors that affect the energy consumption 

between old and new dwellings. The results indicated that the average annual 

energy consumption quantities in old buildings are always higher than that in new 

ones. However, there are not significate differences of the building envelop between 

old and new dwellings. It also can be explained by different climatic zone and 

different building design standards (Chen, et al., 2009).  

Therefore, it is important to evaluate the old and new residential energy consumption 

in multi-story residential buildings in China. Furthermore, the energy uses relating to 

residential buildings have been required considerable reduction. And the government 

have pay more attention on reduce the residential energy use in China and 

consequently this work focus on the energy consumption in both new and old multi-

stores residential buildings in CHZ.  
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2.3 Building energy codes in China  

2.3.1 Overview of building energy codes in China 
Several standards, incentive policies and building codes were issued, in order to 

promote energy efficiency in Chinese buildings. Building code development pays 

more attention on residential buildings than public buildings (Shui, et al., 2009). In 

1998, the Chinese government established the Energy Conservation Law (ECL), 

aiming to encourage energy conservation activities and improve energy efficiency. In 

addition, ECL is aiming to protect the environment and achieve sustainable 

development. In the ECL, the use of renewable energy in real applications is 

emphasised (ECL, 1997). In order to improve energy conservation, appropriate 

energy conservation standards for buildings were issued and implemented by 

Chinese government (Fig 2.9). It shows that the overall building standards for design 

and acceptance of codes in three main climate zones. 

 

Figure 2.9 Overview frame of building energy codes in the built environment 

 (Yao, et al., 2005) 

Source: Wu Y. ‘Chinese building energy conservation: existing situation, problems and policy’, 

presentation on the International Conference on Sustainable Development in Building and 

Environment, Chongqing, China 24th–27th 2003. 
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In order to improve building energy efficiency, MOHURD set up several goals and 

building energy standards. A Green Building Evaluation Standard in China was first 

introduced from MOHURD, which proposed the target of energy saving of throughout 

the life cycle of residential and public buildings. This standard relevant to land 

savings and outdoor environment, energy saving, water saving, material saving, 

indoor environmental quality, operations and managements. 

 

2.3.2 Energy conservation standards for residential building in China 
According to extensive geographic zones and climatic conditions in China, heating 

energy consumption has improved more and more in Chinese residential buildings. 

The purpose of energy saving is to set fundamental standards to control energy 

consumption from energy source. Therefore, energy conservation should be 

considered as a focus of China’s energy policies, and relevant industrial standards, 

rules and regulations related to energy conservation should constantly be developed 

and improved (Yang, et al., 2014). In order to reduce the energy use and promote 

energy efficiency in China, Chinese government has started to concern the energy 

efficiency of buildings in China in early 1980s. With the support of the Ministry of 

Construction (MOC), an energy efficiency code for residential buildings in the China 

was first introduced in 1986, which proposed the target of 30% energy saving. This is 

first publication of the Energy Conservation Standards for Heated Residential 

Buildings in CHZ in China (revised in 1995, implemented in 1996) (Lee & Chen, 

2008; Lang, 2004; Shui & Li, 2012; Glicksman, et al., 2001). However, in this 

regulation, the heating of residential buildings was not commonly considered.  

Heating energy consumption needs to be reduced for the CHZ area during the winter 

season. Inappropriate design and deficient policy in centralized heating systems 

result in heat losses in buildings. The heating system without personal control in 

residential buildings and people only can open window or door when the room 

overheated during heating period. Overheating in rooms generally result in 

occupants to open the window (Li, 2008). Thus, in July 1996, “Energy conservation 

design standard for new heating residential buildings, JGJ26-95” started to be 

implemented. The benchmark of this standard is based on the heating energy 
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consumption in typical residential buildings in beginning of 80’s, which requires that 

the new residential buildings should save 50% heating energy consumption (30% 

from insulation and 20% from boiler & pipeline) compared with old ones (Jiao & 

Wang, 2007). The national standard on building energy efficiency in China (JGJ26-

95) was updated with the new residential buildings standard (JGJ26-2010) published 

in 2010. The new standard highly recommended that all new residential buildings 

install personal control of the heating system, such as Thermostatic Radiator Valves 

(TRVs), together with implementation of ‘pay for what you use’ tariffs. As a 

consequence, improvements have been made in the building fabric insulation levels 

to help the construction of more energy efficient buildings. The details of two 

standards for residential buildings in CHZ area in China show as follow:  

 

The standard “Energy conservation design for new residential buildings” (JGJ26-95, 

1996)  

• Concerned with relevant effective measure in order to reduce the energy 

consumption and improve the thermal environment in residential buildings. 

Since 1996 the newly built residential buildings operated by central heating 

system and relevant procedures have been issued strictly by standards and 

codes in China.  

• In the new standard, the heating control systems have been encouraged into 

design pattern in the new residential buildings.  

• A majority of residential buildings built before 1995 the heat transfer 

coefficients of external walls and windows are more than 1.6W/m2K and 

5.0W/m2K, respectively. However, compared with the western industrialised 

countries building insulation is still not effective and there is room for 

improvement in Chinese residential buildings. 

• In this standard, recommend the index of heat consumption range from 20-

22.7W/m2 of floor area. Meanwhile, the index of coal consumption for heating 

residential buildings range from 8.7–29.4 kg/m. The building shape coefficient 

and ratio of window to wall have been issued and target value presented as 

well in the standard (Yao, et al., 2005)  
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“Design Standard for Energy Efficiency of Residential Buildings in Sever Cold and 

Cold Zones” (JGJ26-2010, 2010)  

• Mandatory requirement of the heating system pattern, it should implement 

household-based heat metering and install the Thermostatic Radiator Valves 

(TRVs) in each radiators.  

• The new standard is beneficial to energy saving and implementation. 

• Furthermore according to the new standard for energy efficiency of residential 

constructions applied in 2010, the heat transfer coefficient of external walls is 

0.78W/m2K and 2.70 W/m2K for windows. 

The standard (JGJ129-2000, 2001) of technical specification for energy conservation 

renovation of existing heating in residential buildings developed by Beijing Zhongjian 

Institute of Building Design under the Ministry of Construction in October 2000. JGJ 

129–2000 indicated the renovation of existing residential buildings with central 

heating systems which are located in CHZ. Meanwhile, the specification indicated 

that energy refurbishment rule of the existing residential building envelop with 

different heating systems are issued as well (Siwei & Yu, 1993; Yao, et al., 2005).  

 

2.4 Heating energy consumption in Chinese residential 

buildings 
Residential buildings in the CHZ are result from a large percentage of heating energy 

use. In 2005, central heating account for 18% of total energy used by residential 

buildings, while 3% of total energy used by commercial buildings (Eom, et al., 2012; 

Chang, et al., 2013). In addition, from 2004 to 2024, the residential building in CHZ is 

predicted to grow from 4 billion m2 to 11 billion m2. According to the official statistics 

from the Ministry of Construction of China, more than 250million occupants live in 

urban areas with district heating during the winter season. Approximately 45% of 

buildings heated by central heating plants that fuelled by coal in CHZ areas (Li, et al., 

2009). The major heat source systems include coal-fires boiler, combines heat and 

power generation (Zhang, et al., 2015). Furthermore, coal use is most common in 

space heating and it increasing fast. As show in Figure 2.10 (Zhou, et al., 2010), coal 
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is a largest fuel use in residential buildings affecting final energy consumption. Thus, 

space heating is key contributor to immense energy waste and serious problem with 

air pollution during heating season in winter in China (Meyer & Kalkum, 2008). 

Heating energy consumption increasing rapidly correlated to growth of household 

energy end use. The energy consumption of space heating has drawn increasing 

attention from Chinese government. The mandatory building codes (JGJ26-95, 1996; 

JGJ26-2010, 2010) for space heating energy efficiency in residential building play an 

important role to improving the efficiency of heating needs (IEA, 2008). 

 

 

Figure 2.10 Energy consumption in residential buildings by fuel in China 

 (Zhou, et al., 2010) 

 

2.4.1 Existing Heating Systems in Chinese residential buildings  
Nowadays, in typical residential buildings, most common heating system is equipped 

by the centralized, hot-water radiator heating systems in CHZ. In addition, there are 

two-thirds of urban residential buildings in CHZ that are heated by centralized 

systems. First, central heating system is common heat supply system in Chinese 

cities. The principle of centralized heating is urban heating network, district heating 

networks. In the central heating system, hot water is generated by a boiler or 

cogeneration plant, meanwhile, all cogeneration plants burn coal and water flow 
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through to radiators in the living spaces through a network (Siwei & Yu, 1993). As 

show in Figure 2.11, the sample of central heating system is water flow through with 

constant speed via pipe network. The traditional vertical single heating pipe with 

radiators are sequentially connected from top floor to bottom floor ( World Bank, 

2004). The changes of water temperature are operated by heat source or substation, 

in accordance with outdoor temperature is too high. The occupants cannot adjust 

their heating, and indoor temperatures are often too high leading to people opening 

their windows, resulting in additional heat waste. Compared to western developed 

countries, the systems do not have any of the energy control equipment such as 

thermostats (ERI, 2004; MOC, 2008).  

 
Figure 2.11 Single pipe with radiators of central heating system 

 

Second heating system is household gas-boiler heating has been partly developed 

and used in new residential buildings, the gas boiler is main component and is 

normally install in kitchen or balcony. The heating time can be set by occupants and 

each room temperature can be adjusted within a range. However, it is not popular in 

most residential buildings in Central Heating Zone. Another heating system is home 

central air-conditioning system operated by thermostat. This system interaction with 

high quality and high comfort, and the temperature can be adjusted by occupants. 

However, this system is commonly used in Villa which has higher operating costs. 

Finally, another development of heating system is the underfloor heating system. The 

underfloor heating systems has been used in some newly buildings. It is heats 

room’s floor structure which is in turn warms room itself. Compared with other 

heating system, floor heating system is more energy efficient.  
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2.4.2 Reform of heating payment system in China 

2.4.2.1 Existing heat billing and pricing systems 

The centralization heating is commonly used in residential buildings in China and it 

comprised uncontrolled heating system with payment based on floor areas of 

occupants home. Space heating catalysed tremendous energy wastes in residential 

buildings. In order to improve the heating energy efficiency in new residential 

buildings according to new standard, the individual heating control systems were 

installed and payments of heating are relied on metered consumption in each 

apartment. It is important to provide incentives to occupants to use heat efficiently 

and to control their heat consumption during heating season in winter. The new 

technical adjustments are required to install so as to achieve occupants have ability 

to adjust the flow of hot water in each radiator. In addition, the water flow rate 

passing through each radiator is controlled by a thermostatic valve. Occupants via 

adjust thermostatic radiator in order to control heat consumption and achieve to 

comfort indoor condition. Therefore, an energy-saving and comfortable environment 

could be created  (Xu, et al., 2009). These policy changes should greatly enhance 

consumer awareness of the cost of heating energy and the value of energy savings 

and promote energy efficiency in buildings as well as strengthening the Chinese 

economy ( World Bank, 2004; Meyer & Kalkum, 2008; Yao, et al., 2005).  

 

As mention above, heat bills are calculated based on prices per square meter of 

heated areas in old buildings and it lead to enormous energy waste. Heat tariff is set 

by local government in each province for many years. During the winter, the heating 

price range from 5.0yuan/m2 to 5.8yuan/m2 in city of Xi’an of Shaanxi provinces in 

Central Heating Zone. In addition, the average heating period range from 120 to 160 

days during winter season in CHZ (XASRLGS, 2012). For instance, in an old 

residential building without control system, the floor areas of apartment is 100m2, 

annual heating payment is 2320yuan per household in city of Xi’an, occupant pays 

once at beginning of heating season.  

 

In contrast, heat metering bill are calculated based on measurement of heat meter in 

each household according to actual energy use. So that new heat bill payment 
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system allow occupants control their energy use and provide incentives for them to 

use heat efficiently. The effect of improvement can be evaluated by new heat 

metering bill system compared with old one. The reform of heat price with 

measurement of heat meter is 0.16yuan/kWh. The reform of tariffs can be divided 

into two parts: basic heat payment bill and actual metered energy use bill. The 

equation show as follow  (XASRLGS, 2012): 

Total energy price=basic energy price [1.74yuan (5.8yuan/m2 permonth×30%) × floor 

areas×4] + actual metered energy use bill [(0.16yuan/kwh × 70% × total metered of 

kWh)] 

As a consequence, the reform of heating bill system might lead to different occupant 

behaviour which have significant effect on economic effectiveness and energy 

saving. The implications of cost of heating bill reform were discussed in following 

analysis chapters.  

2.4.2.2 Promoting insulation level in Chinese residential buildings  

It is important to enhance building envelope’s energy performance by means of 

surface insulation, the application of innovative materials, design optimisation and 

enhanced natural ventilation, as well as the behaviour control of inhabitants and end 

users (Li & Shui, 2015). Thermal insulation of buildings defined as functions by 

slowing the rate of heat transfer from warm room air to cold outside air during heating 

season (Susan & Mary, 1992). Most of old residential buildings are not insulated in 

both CHZ and other zones in China. Well-insulated building not only can improve 

occupants’ environmental comfort, but also reduce heating energy consumption 

related to greenhouse gas emissions. Therefore building standards mandatory 

require improving the insulation in residential buildings in recent year. The insulation 

levels are classified as different requirement in different climatic zone in China (Liu & 

Liu, 2011). The existing studies in residential sector in China largely focused on 

measures to improve building energy efficiency by fabric insulation (Cai, et al., 2009; 

Li & Colombier, 2009; Liang, et al., 2007; Ouyang, et al., 2011; Liu & Liu, 2011). 

Yoshino et al. investigated the indoor thermal environment of residential buildings in 

nine cities during summer and winter, in order to evaluated the thermal comfort and 

predict the residential energy consumption for space heating and cooling, it also 
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notes that the thermal insulation and airtightness are important factors impact on the 

energy consumption for residential building in Beijing (Yoshino, et al., 2006). Liu 

opines that the effectiveness of insulation level for residential and commercial 

buildings, in addition, the better insulated in new buildings lead to the more energy 

saving and could save money (Liu & Liu, 2011).  

Meanwhile, further studies in other countries have suggested the insulation levels 

impact on heating energy consumption. The study of Schuler (Schuler, et al., 2000) 

described how insulation standards might be considered as an important 

determination in demand of space heating for household. The work described in the 

paper of Haas et al, confirmed that the impact of residential house insulation on the 

energy demand for space heating (Haas, et al., 1998). As a previous study(Leth-

Petersen & Togeby, 2001) using technical characteristics method in space heating 

energy consumption of Danish apartment blocks has been analysed, and it indicated 

that the dwelling insulation relevant for the energy efficiency of space heating. The 

simulation model was calibrated by using the measured data. However, the one of 

most important challenges is unpredicted human behaviour. For instance, the 

database schedules of occupancies and activities were inserted into energy 

simulation models to emulate the internal loads, however, the actual usage of 

building changes on a daily basis (Maile, et al., 2007). Therefore, it is worth to take 

into account the importance of occupant behaviour in residential buildings, shows 

following section 2.5.  

 

2.5 Occupant behaviour  

2.5.1 Occupants’ behaviour related to heating energy consumption  
Through review of previous studies, there is a definite possibility that the occupant 

behaviour have a significant impact on the energy consumption and the indoor 

environment. The occupants interactions with building controls can be regard as 

opening of windows, adjustments of heating set-points, turning lights on or off, using 

solar shading and turning air conditioning on or off. Occupants use building controls 

in order to offer comfortable indoor conditions which may affect the energy 

consumption. Consider that the various in buildings’ control system could influence 
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on the different energy performance of the buildings. It seems that the occupants’ 

different behaviours have large effect on the heating energy consumption (Fabi, et 

al., 2012).  

Several studies have used questionnaire surveys and measurements to investigate 

the determinants for energy consumption for heating during winter season. Park and 

Kim carried out a field questionnaire survey of occupants’ behaviour and 

measurements of energy consumption in 139 apartments in Seoul in 2007, and they 

found that total heating energy consumption was affected strongly by indoor air 

quality correlation with occupants’ ventilation behaviour. In their survey, the indoor 

air temperature can be controlled by thermostat in each apartment (Park & Kim, 

2012).  

Al-Mumin et al investigated the occupant behaviour and activity pattern which affect 

the energy consumption in 30 households of Kuwaiti and found that occupants prefer 

cooler indoor temperature by adjusting thermostat, whilst the lifestyle of occupant 

impact on annual energy consumption (Al-Mumin, et al., 2003). Indeed, many 

pervious research have found that the high correlation between energy consumption 

and occupant behaviour in buildings. 

 

The significant influence of occupant behaviour on quantitates of heating energy use 

in house in Netherlands has been identified by Santin et al. In this study, results 

show that dwelling with higher heating energy use largely affected by higher heating 

set point by occupants (Santin, et al., 2009). In Austria, Haas et al performed a field 

study in 400 households and monitored energy demand of space heating. It 

indicated that strong relationship between heating energy demand and indoor air 

temperature due to occupants’ actual demand. Consequently, the effects of occupant 

behaviour play an important role on improving energy efficiency in dwellings (Haas, 

et al., 1998).  

 

The type and size of dwelling, the use of air conditioning system or control of heating 

systems for set point indoor temperature, the age of occupant, family size, household 

income and ownership of dwellings affect energy use for heating. The heating energy 

end use caused by the household in order to alter and achieve the heat comfort. 
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These findings were also suggested by Sardianou conducted study in Greek houses 

in 2003. It is implying that the socioeconomic status has effect on behaviour pattern. 

The above results of these studies indicated that the occupants’ different behaviours 

have significant impact on the energy consumption of buildings (Santin, et al., 2009; 

Andersen, 2009; Sardianou, 2008).  

 

Emery and Kippenhan carried out a longitudinal field measurement of space heating 

energy use and investigation of occupant behaviour during winter in new and old 

residential homes in USA. In their survey, the thermostat setting, the window/door 

operations and energy consumption were monitored in both types of houses. The 

high correlations between less heating energy use and better insulated new house 

employ with new code. In addition, they also observed that energy use in occupied 

old house is higher than that in unoccupied old one (Emery & Kippenhan, 2006). 

 

2.5.1.1 Determinant factors for residential occupant behaviour  

Consider that many studies have identified that a high correlation between the 

motivation of the building control and the occupant behaviour, it seems that the 

occupants’ different behaviours have effect largely on energy performance in 

residential buildings. As well as the variations of individual resident behaviour may 

result in significant variations in energy consumption of buildings. Previous studies 

suggested that occupant behaviour can be caused by both internal factors and 

external factors. For the field of social area, human behaviour is relative to the 

internal or individual factors noticed by Schweiker, for example preference, attitudes, 

cultural background etc. In contrast, external factors include such as the air 

temperature, wind speed and building patterns for instance the ownership, available 

heating devices (Andersen, et al., 2009; Schweiker, 2010). Meanwhile numbers of 

studies concerning external factors have increased in the last years Nicol, 2001) 

(Haldi & Robinson, 2009; Andersen, et al., 2009; Nicol, 2001). 

 

Several studies have used questionnaire surveys to investigate the determinants for 

residential energy use behaviour. It is no doubt that the many determinants impact 

on residential energy use behaviour. Sun and Feng have investigated a survey 1376 
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residents was carried out in Dalian, a coastal city in the northeast of China based on 

this method and found that variables such as the size of family, age of the resident, 

psychological, family and contextual factors impact on residential energy use 

behaviour. Furthermore, the results show that residential energy behaviour, attitudes 

or concerns towards energy problems are considered to be the most significant 

influencing factor. In addition, it have been suggested that it is important to consider 

the residents’ attitude towards energy problems by improving education and publicity. 

As a consequence, it is worth to improve the awareness and action of occupant by 

using an economic instrument (Sun & Feng, 2011). Based on a field study and 

measurement for winter carried out by Schweiker and Shukuya in Japan 

determined that the residents use heating system are influenced by the individual 

experience and attitude more than that influencing by external conditions 

(Schweiker & Shukuya, 2009).  

Stephenson et al pointed out the personal criterion of psychological variables can be 

considered as an important factor impact on residential energy behaviour 

(Stephenson, et al., 2010). As study conducted by Ameli and Brandt, they pointed 

that residents’ habit to invest in clean energy technologies mainly depend on the 

home ownership, income, social context and households’ information. It has been 

advised that ownership and income play relevant role in technology adoption (Ameli 

& Brandt, 2014). Furthermore, in respective of some other studies have 

demonstrated some social contextual or socio-demographics variables influence on 

the residential energy use behaviour. It is important to combine the individual and 

contractual factors into energy use behaviour. Personal factors can be regarded as 

attitudes, values, norms and habits. It interacted to contextual factors, can be 

regarded as physical infrastructure, technical facilities, availability of products, 

special product characteristics, income and material growth (Steg, 2008). 

 

In Canada, Parker et al carried out an analysis of occupant behaviour for residential 

energy use can be related to variations of household characteristics. The study was 

investigated from 432 households from September 2000 to August 2001. It was 

found that higher income households consumed more energy than lower income 

households, in particular, family with children present more action to adjust heating 
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thermostat than other type of family without children (Parker, et al., 2005). Following 

this study performed by Abrahamse and Steg investigated that family with higher 

income and more members tended to consume more energy. In this study, 189 

Dutch households were monitored between October 2002 and March 2003. The 

importance of socio-demographic variables and psychological variables correlation 

with residential energy use and energy saving were identified, as in the studies 

introduced above (Abrahamse & Steg, 2009).  

2.5.1.2 Real and Simulated occupant behaviour 

The occupants’ behaviour has effect on the building energy use, and it leads to 

significant discrepancy between real and predicted energy performance of buildings 

(Fabi, et al., 2012). Many studies have identified that discrepancies between real and 

predicted energy consumption can be affected by the use of the building control 

systems operated by occupants in different kinds of buildings (Branco, et al., 2004; 

Marchio & Rabl, 1991; Norford, et al., 1994). Zhun et al developed that the method 

for identifying and improving behaviour of building occupants in order to evaluate the 

energy-saving potential of building. The results suggested that occupant behaviour 

modification lead to achieve the aim of reducing building energy, and that help 

improve modelling of occupant behaviour in numerical simulation (Zhun (Jerry), et al., 

2011). Leth Petersen and Togeby have concluded from their simulation studies that 

the difference heating systems have effect on the energy efficiency of heating in 

buildings. It implied that heating systems combustion with oil in buildings have higher 

energy consumption than that buildings with district heating (Leth-Petersen & 

Togeby, 2001). As the study from Bishop and Frey, the results indicated that the 

significant discrepancy between the real occupant behaviour from the behaviour 

used in the predictions (Bishop & Frey, 1985).  

 

2.5.2 Occupant behaviour influencing on energy consumption in China 
The unique history of China, especially the rapid economic development in the last 

decades, and the population growth, might relate to distinctive occupant behaviour 

patterns. Moreover, in China, more than 80% of urban families live in apartment 

buildings (Chen, et al., 2013). It is widely recognized that residential energy 
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consumption is not only influenced by building envelope and insulation level but also 

influenced by household characteristics, occupant behaviour (Haas, et al., 1998; 

Olivia Guerra Santin, 2010).  

The building characteristics factors likely have effect on energy consumption in China. 

Other factors such as occupant characteristics and behaviour could thus have a 

more noticeable impact on energy consumption. As can be seen from some previous 

researches have attempted to investigate the potential occupant variables have 

impact on the energy consumption in Chinese residential buildings. A study 

conducted by Ouyang and Hokao carried out a longitudinal study monitoring 

occupant behaviour and energy use were recorded once a month in 124 Chinese 

households from March 2007 to July 2008. The aim of this study is to identify the 

relationship between energy use and occupant lifestyle, to improve awareness of 

occupant toward energy efficiency. The occupants are separated into two groups and 

different behaviours were required. Comparisons analysis results indicated that 

effective promotion of energy behaviour can reduce household electricity 

consumption by more than 10%. Additionally, the significant influence of household 

lifestyle on energy use has also been identified in this study (Ouyang & Hokao, 2009). 

Cao et al. have shown that individual heating system with control system and old 

central heating system without control system result in different human thermal 

sensations can be explained by individual control mode. Therefore, the two types of 

heating systems have impact on occupant’s thermal sensation and behaviours due to 

different heating set-point. However, this study lack of further analysis about the 

insulation level and energy consumption (Cao, et al., 2014).  

A survey and field observations conducted by Xu et al in China and investigated that 

the central heating system with TRVs adjusted by occupants in new residential 

buildings together with new heating payment, it also indicated that momentous 

difference in the frequency of occupant adjusted the TRVs set-point result in energy 

saving compared with old traditional heating payment (Xu, et al., 2009). However, in 

this study, there are not comparisons between old and new residential buildings on 

further deep research, such as analyses of influence factors (indoor thermal 

environment, insulation level, thermal sensations, occupants’ window behaviours and 

so on).  
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2.5.3 Window opening behaviour in buildings 
Occupants’ behaviour of window opening and heating set-point behaviour of 

occupants play an important role in determining the energy consumption and 

indoor environment of a household (Andersen, 2009). It is important to notice that 

window opening behaviour is not only potential useful for energy saving but also 

provide an advantageous connect with outdoor conditions (Raijal, et al., 2007). Many 

previous studies have found significant relationship between window opening 

behaviour and performance of buildings.  

2.5.3.1 Window opening behaviour in residential buildings 

Work relating to residential buildings has been reviewed for evidence about which 

factors affect window operation. Through the previous studies of occupant window 

opening behaviour in residential dwellings, environmental conditions(indoor and 

outdoor environment), time of day, type of building, room characteristics have been 

regarded as the main parameters, which influencing occupant behaviour related to 

window opening and closing (Dubrul, 1988).  

 

Influence of environmental conditions 

Many works have identified that outdoor condition as an important explanatory 

variable determining on window operation in residential buildings. Johnson and Long 

monitored occupants’ window behaviour in residential buildings between October 

2001 to March 2003 and this pilot study was conducted in North Carolina, USA. They 

observed at least six parameters and found that outdoor temperature, outdoor 

relative humidity, wind direction and speed significantly impact on operation of 

windows. However, it was found that there were no correlations between 

precipitation and window opening behaviour (Johnson & Long, 2005). 

In 1977, Brundrett carried out a study of window opening behaviour of families in 123 

houses in three seasons. From study, it was found that weather and personal 

characteristics can be regarded as two important variables influencing the 

occupant’s opening of windows. They reported the strong correlations between 

outdoor conditions and number of open window in winter and summer times. 

Additionally, it was found that large sizes of family were more likely open windows 

than small size of family (Brundrett, 1977).  
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Fabi et al carried out a study on occupants’ window opening behaviour in 15 

dwellings from January to August, in 2008, Demark. In the survey the outdoor and 

indoor environmental parameters were measured. Based on monitored data, the 

impact of outdoor temperature on occupants opening and closing windows behaviour 

were identified. Furthermore, correlations between occupants’ window behaviour and 

solar radiation were established in this study (Fabi, et al., 2012a). 

In residential buildings, indoor environment also influencing on occupants’ window 

behaviour and previous studies have identified this impact. According to Schweiker 

et al conducted survey in dwellings in Japan and Switzerland. The measurement of 

occupants’ opening and closing window behaviour was carried out in two dwellings 

in Switzerland and one student dormitory in Japan. In this study, the correlations 

between occupants’ window behaviour and indoor air temperature were identified 

(Schweiker, et al., 2012). 

Additionally, the statistical analysis carried out from measurement in residential 

buildings conducted by Antretter et al shown that indoor temperature as a significant 

variable influencing on window opening behaviour, furthermore, outdoor temperature, 

outdoor humidity, time of the day and wind speed were regarded as significant 

variables impacting on window opening by the user in residential buildings (Antretter, 

et al., 2011). 

Fabi et al monitored occupants’ window opening and closing behaviour in 15 

residential buildings in Denmark, and investigated the correlations between 

environmental conditions and window opening behaviour. They suggested that the 

indoor temperature and the indoor CO2 concentration were regarded as important 

parameters influencing on the probability of window opening behaviour. It also can 

found that outdoor temperature is one of the most important proportions of 

determining the probability of opening and closing a window (Fabi, et al., 2012b). 

From study conducted in Japan by Nakaya et al indicated that indoor air 

temperature is found to be an important influencing factor on occupants’ window 

behaviour in residential buildings (Nakaya, et al., 2008).  

 

Influence of dwelling type 

The type of dwelling has effect on the duration time of opening windows and also 

influence on how wide windows are left open (Fabi, et al., 2012; Dubrul, 1988). A 
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pilot study conducted by Johnson and Long in North Carolina, USA, between 

October 2001 and March 2003. In this study, the comparison of window opening 

behaviour in houses and apartments were conducted. It was observed that windows 

in living rooms and kitchens were open for shorter periods in houses compared with 

these in apartments. It was also found that the type of the dwelling (detached one-

story residence) have impact on the residential openness (Johnson & Long, 2005; 

Fabi, et al., 2012).  

 

Influence of room characteristics 

An extensive study of IEA Annex VIII project (Dubrul, 1988), the state of window 

opening were measured directly. It is suggested that the type of room have effect on 

probability of window opening behaviour in dwellings, the most percentages of 

window opened are in bedrooms. In addition, according to study of IEA Annex VIII 

project (Dubrul, 1988) found that the orientation of rooms is important as well. From 

this project, it was observed that when the sunny day, south facing living rooms and 

bedrooms were more likely to be ventilated for longer periods than similar rooms 

orientated in other directions.  

Erhorn carried out a longitudinal study monitoring occupants’ window behaviour in 24 

flats in the winter periods of 1st January to 31st December, in 1983, Germany. In the 

survey, the operations of window and door leaves were recorded by devices. From 

the results for the different type of room influencing on window opening behaviour, it 

was found that bedrooms were ventilated more frequently than all type of the rooms 

on average and the windows opening time in bedrooms exceeded the average for all 

rooms by some 50% during the entire measuring period (Erhorn, 1988). 

In addtion, the behavioural study carried out in 123 British dwellings in 1977 

conducted by Brundrett shown that the window in bedroom was mostly opened than 

other type rooms (Brundrett, 1977). These conclusions were confirmed by other 

researchers in studies (Antretter, et al., 2011; Fabi, et al., 2012b).    

 

Influence of time of day 

From findings of study conducted by Johnson and Long determined the probability of 

window opening and closing during time of the day. In general, the maximum of 
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window openings occur in the morning. During cooking time of early afternoon, the 

number of open windows is relatively high (Johnson & Long, 2005).  

Erhorn carried out a longitudinal study monitoring occupants’ window behaviour in 24 

flats during winter season in Germany. In the survey, the operations of window were 

recorded by device. It was found that the higher probability of window opening during 

daytime compared with that during nigh time (Erhorn, 1988).  

Fabi et al monitored occupants’ window opening and closing behaviour in 15 

residential buildings in Denmark. It was suggested that the number of windows 

were most opened during morning time when people wake up (Fabi, et al., 2012b). 

This conclusion was also identified by other researcher (Antretter, et al., 2011).  

 

Influence of other factors 

Many investigations have found that other important factors relate to the window 

opening behaviour. The window opening behaviour related to aging factors have 

been investigated by Guerra Santin and Itard. The study conducted in Netherlands in 

autumn in 2008, it was found that behaviour of elderly people significantly difference 

from that of younger people. Furthermore, it was also observed that windows in 

house with children were more opened than those in house without children (Guerra-

Santin & Itard, 2010). Meanwhile, results of IEA Annex VIII investigated that the 

window position was affected by the presence of children. It was also observed that 

the orientation of window have impact on window operation in residential buildings 

(Dubrul, 1988). Erhorn have improved little based on the study of Andersen et al and 

it was observed that the seasonal variations related to the window opening 

behaviour. It was reflected by results of windows were open longest in summer and 

shortest in winter (Erhorn, 1988). Andersen et al identified that occupant’s gender 

had a statistical impact on the window opening behaviour (Andersen, et al., 2009). 

The studies mentioned above show that environmental conditions (indoor and 

outdoor), dwelling type, room characteristics and time of day have considerable 

effect on occupants opening and closing window behaviour in residential buildings. 

Moreover, each parameter has significant effect on occupants’ window behaviour 

has been confirmed by many previous studies. As a consequence, the influence of 

different window opening behaviour can potentially lead to different energy 

consumptions in residential buildings.   
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2.5.3.2 Predict window behaviour  

It is important to understand window opening behaviour effect on prediction of 

operational energy use in buildings. A model for simulation of office building was 

applied by Rijal et al, based on this, they use data collected from field surveys to 

predict the effect of window opening behaviour on energy use. They used logistic 

regression method when predicting state of window and also they established two 

window behaviour models that combine both indoor global temperature and outdoor 

air temperature (Rijal, et al., 2007). Wang and Greenberg reported a study of window 

operation have effect on indoor environment and building energy consumption. They 

established simulation model to identify the impact of window operations on building 

performance for three different types of ventilation systems (Wang & Greenberg, 

2015). Nicol reported probability algorithms to predict the state of windows. A 

statistic approach applied by Nicol was based on some probability algorithms relating 

occupant behaviour to outdoor temperature. In this study, the window opening 

behaviour was observed to be correlated with outdoor temperature in three different 

climates (Nicol, 2001).  

 

2.5.4 Factors influencing occupant heating operation behaviour 
Through review of previous studies, there is a definite possibility that the space 

heating operation have a significant impact on the energy consumption in winter 

in residential buildings. The occupant interactions with heating controls can be 

regard as adjustments of heating set-points (using TRVs or Thermostat). Occupants 

use heating controls in order to offer comfortable indoor conditions which may affect 

the energy consumption. The factors impacting on occupants’ heating behaviour has 

been summarised by Wei et al, it can be classified as four main factors: occupant 

related factors, dwelling and system related factors, environmental factors, other 

factors (Wei, et al., 2014). Different factors that influencing occupants’ space-heating 

behaviour in residential buildings are reviewed in following section 2.5.3.1 to 2.5.3.4. 

2.5.4.1 Occupant related factors 

Gender: The pervious study of Karjalainen was carried out in Finland, presented that 

the momentous differences between males and females in thermal comfort, 
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temperature performance and use of thermostats. It was found that male occupants 

adjust the thermostats more often than female occupants. Additionally, Females 

were less satisfied with room temperature and prefer higher room temperature than 

males (Karjalainen, 2007 ).  

Age: Based on previous researchers, age plays an important role on use of heating 

interacting with energy use. From study conducted in Netherlands by Guerra-Santin 

and Itard indicated that age is an important proportion of determining energy use, 

the performance of elderly people in household prefers more hours and higher 

temperature setting. Furthermore, It seems that the use of heating is unaffected by 

the children (Guerra-Santin & Itard, 2010). Liao and Chang reported that the elderly 

residents tend to use more natural gas and oil for space heating than younger 

residents. The water heating energy consumption decreases as aged becomes older 

(Liao & Chang, 2002). Age is one of an important determination influencing the 

demand for space heating (Sardianou, 2008).  

Education level: Based on the investigation of Guerra-Santin and Itard showed that 

the correlations between education level and the use of heating. It has found that the 

higher the education the person has, the greater the number of hours used with the 

heating and changed highest set-point on heating pattern (Guerra-Santin & Itard, 

2010).   

Ownership: A study of survey conducted by Linden et al revealed the occupants 

who own the houses tend to consume less energy use than occupants who rent 

houses did (Linden, et al., 2006). Rehdanz have performed the study through use 

investigation of 12,000 households in Germany in 1998 and 2003. The results 

revealed that rented-occupied households tend to spend more on heating. However, 

house-owners consume less energy (Rehdanz, 2007). The findings have been 

proven by Andersen conducted a study in of Danish dwellings, it was suggested that 

dwelling ownership conditions affect the use of heating (Andersen, et al., 2009).  

Household size: In a study based on the surveys from households in the Greek, 

Sardinaou investigated the household size have strong correlation with the 

household energy demand. The results presented that the fuel consumption for 

heating decreased as consequence of amount of family members increased. In other 
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words, the fewer amount of family members the more energy use for space heating, 

oppositely, the larger amount of householders, the less energy use for space heating 

(Sardianou, 2008). Household size having a crucial effect on the space heating has 

been estimated by Schuler et al used two approaches by simulation models and 

empirical surveys. The household size is a substantial factor influencing the demand 

for space heating estimated from data analysis results (Schuler, et al., 2000). 

However, Guerra-Santin and Itard identified that the household size have no effect 

on use of space heating (Guerra-Santin & Itard, 2010). Supported by Isaacs et al, it 

found that there was no relationship between thermostat setting and household size 

during winter period (Isaacs, et al., 2006). 

Family income: Based on study reported by Capper and Scott developed model 

conducted by Scott (Scott, 1980). There have evidence revealed that household 

income connected to fuel consumption for space heating in house (Capper & Scott, 

1982). Sardinaou have produced a survey of 586 households in Greece. In this study, 

income was evaluated as significant factor influencing in space heating behaviour 

and energy use. It revealed that the mean of income increased by 1% lead to the 

mean of energy consumption increased by 0.04% for space heating (Sardianou, 

2008). A substantial correlation between residential energy consumption and income 

have been demonstrated by Nesbakken in Netherlands, it was found that the higher 

income in relation with more energy consumption for heating (Nesbakken, 1999 ). As 

same approach applied in a discrete-continuous choice model of households in 

Norway produced Nesbakken. The results indicate that the average income 

increased by 1% in correlative with average energy consumption increased by 0.06% 

for space heating (Nesbakken, 2001).  

2.5.4.2 Dwelling and heating system related factors 

Dwelling type: Santin et al found that the dwelling type has substantial effect on 

the energy use. The results of statistical analysis determined that more energy 

used for space heating in individual houses compared to that used in other types of 

dwellings. In addition, the mean for flats have lowest energy use for space heating 

compared with other types of dwellings (Santin, et al., 2009). The paper by 

Sonderegger found that, different house types influencing on the energy 

consumption from space heating and larger houses have more impact on the 
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consumption than smaller houses (Sonderegger, 1977/78). The correlation between 

both the type and the age of the building is particularly relevant at choosing 

utilization of heating has been reported by empirical study of Vaage conducted a 

survey in Norway, it has been found that households living in the dwellings tend to 

use electric heating than that living in the apartment (Vaage, 2000). As a model 

study of households in Norway produced Nesbakken results indicated that the house 

type have effect on the appliance of heating choice, furthermore, households in 

detached houses tend to use the heating combination of electricity and wood. It 

implied that energy demand for heating in apartment or houses are less than those 

in detached houses (Nesbakken, 2001). Shipworth also suggested that thermostat 

setting is strongly correlated on dwelling type in UK. The empirical investigation 

indicated that heating operation were significant difference between detached and 

mid terrace houses (Shipworth, et al., 2010). A survey of 600 households in Sweden 

provided by Linden et al described that the households living in detached houses 

have wider acceptable to lower indoor temperature than that households living in 

apartments. Additionally, it suggested that the lower indoor temperature interaction 

with energy use decrease (Linden, et al., 2006). 

Dwelling age: Leth-Petersen and Togeby analysed the relationship between policy 

and energy consumption from 1984 to 1995 in Denmark. They found that the 

correlations between ages of dwellings and use of energy on heating (Hunt & 

Gidman, 1982). Conclusion that the lower energy consumption in newer dwellings 

due to new building regulations (Leth-Petersen & Togeby, 2001). Nesbakken carried 

out a field study of total energy consumption for Norway, the empirical results 

exposed that dwelling age have a meaningful effect on energy consumption for 

space heating, conclusion that higher energy use of space heating in older houses, 

the reason for this may be due to better insulation in newer houses than in older 

houses (Nesbakken, 2001). Santin et al conducted a model predicting energy use 

for space heating in Dutch dwellings. They found that the age of the dwelling have 

an important effect on predicting energy use of heating, conclusion that newer 

dwellings use less energy (Santin, et al., 2009). 

Dwelling size: Santin et al conducted an investigation for space and water heating 

in Dutch dwellings. They found that the important correlation between single-family 



56 
 
 

houses and higher temperature, further, household in single-family house tend to 

use more hours radiators on (Santin, et al., 2009). Dwelling size as a contextual 

parameter having effect on the space heating has been estimated by Sardinaou in a 

model study of Greek household (Sardianou, 2008). The results presented that 

dwelling size have substantial impact on the fuel consumption for heating. Wu et al 

who analysed the household demand for space heating based on household 

survey collected from three countries. It was found that households living in houses 

with more rooms have higher use of energy for space heating (Capper & Scott, 

1982; Wu, et al., 2004). 

Insulation levels: As a field study conducted by Santin et al in Dutch residential 

stock and they found that in better insulated house use much lower energy than that 

in less insulated house. In their investigation, different levels of insulation have 

significant effect on energy use in different types of dwellings (Santin, et al., 2009). 

Schuler et al described how insulation standards might be considered as an 

important determination in demand of space heating for household (Schuler, et al., 

2000). The work described in the paper of Haas et al, confirmed that the impact of 

residential house insulation on the energy demand for space heating (Haas, et al., 

1998).  

 

Type of temperature control: The survey of Guerra-Santin and Itard investigated 

that the type of building temperature control as a factor of determining the heating 

behaviour. It implied that the occupants living in house using programmable 

thermostat more often than that manual thermostat. For another study by Guerra-

Santin et al, it was found that the presence of thermostat significantly impact on 

occupant behaviour (Guerra-Santin & Itard, 2010; Santin, et al., 2009). Shipworth et 

al monitored temperatures in living rooms of English dwellings, and investigated 

themostat settings reported by participants, together with building, technical and 

behavioural data. They suggested that the mean temperature setting in dwellings 

with a thermostat is slightly lower than that in dwellings without a thermostat. It also 

can found that households with a programmable thermostat use heating system 

more often than households with manual thermostats (Shipworth, et al., 2010). 

Nevius and Pigg performed a study of 299 households equipped with thermostats 
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in Wisconsin in 1999. The result of regression analysis indicated that energy use 

for space-heating marginally in correlation to dwellings operated with 

programmable thermostats. Furthermore it was found that thermostat-setting 

behaviour has an indirect effect on heating energy consumption (Nevius & Pigg, 

2000). A survey and field observations conducted by Xu et al (Xu, et al., 2009) in 

China and investigated that the heating system with thermostatic radiator 

valves(TRVs) adjusted by occupants. The results indicated that momentous 

difference in the frequency of occupant adjusted the TRVs set-point depended on 

the results of different habits among occupants.  

Type of heating system: Through the literature there are several studies have 

focused on the types of HVAC system present in the domestic dwelling have effect 

on the use of heating systems. A survey of occupant behaviour was carried out by 

Andersen et al in Danish dwellings. They suggested that the great correlation 

between type of heating system and energy consumption of heating in dwellings. It 

also found that the heating combination with wood burning influence strongly on the 

control of heating (Andersen, et al., 2009). The findings supported by Guerra Santin 

and Itard have developed a questionnaire in Dutch households and found that the 

type of heating system and ventilation system have impact on the occupants’ 

behaviour (Guerra-Santin & Itard, 2010).  

2.5.4.3 Outdoor conditions 

A survey of occupant behaviour was carried out by Andersen et al in Danish 

dwellings. It found that the use of thermostatic radiator valves set-point space 

heating have strong correlations with outdoor temperature (i.e. outdoor relative 

humidity and the wind speed) (Andersen, et al., 2009). As study of Knudsen 

mentioned that the heating behaviour of domestic dwellings was related to the 

outdoor temperature. The heating behaviour influenced by factors of the outdoor 

temperature, wind speed, solar radiation and outdoor relative humidity ( Larsen, 

et al., 2010).   

2.5.4.4 Other factors 

Energy price: Scott estimated that a 1% increase in price, fuel consumption for 

space heating decrease by about 0.4% (Scott, 1980). The correlation between 
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energy consumption for space heating and energy price has been confirmed by 

empirical study of Vaage conducted a survey in Norway to investigate the role of 

energy price impact on energy demand directly (Vaage, 2000). Nesbakken focus on 

Norwegian household energy demand for space heating, It has shown that increase 

in the average price of energy used in the chosen heating technology is estimated to 

reduce energy consumption (Nesbakken, 2001). 

The above review provides guidance on influencing factors for identify in this project 

heating occupants’ behaviour in residential buildings. It can be used in further 

comparison analysis of occupants’ heating behaviour related to the energy-saving 

potential in newer residential building. 

 

2.6 Thermal comfort 
Thermal comfort has a significant impact on occupants’ productivity and health, and 

it plays an important role when evaluating the performance of buildings. Thermal 

comfort has been defined as “that condition of mind which expresses satisfaction 

with the thermal environment” (Fanger, 1970).  

2.6.1 Concept of thermal comfort  

2.6.1.1 Thermal comfort variables 

Fanger stated that the factors influence the condition of thermal comfort can be 

divided into two main parts: four environmental factors and two personal factors 

(Fanger, 1970).  

Environmental factors:  

1. Air temperature 

2. Mean radiant temperature 

3. Relative humidity 

4. Air velocity 

Personal factors: 

1. Clothing insulation 
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2. Metabolic heat production (activity level) 

It is important to take account to the other personal physiological factors, such as 

age, gender, body proportion, menstruation cycle, food and draught. However, 

according to Fanger these personal physiological factors do not define thermal 

comfort significant (Sugini, 2016). Thermal comfort can be achieved by many 

different combinations of above variations and the details of these are described 

following. 

Air temperature is defined as “the temperature of the air surrounding occupant” 

(ASHRAE55, 2004), and which is most important environmental variable, measured 

by dry bulb temperature.  

Mean radiant temperature (MRT) defined as “the uniform temperature of an 

imaginary enclosure in which radiant heat transfer from the human body is equal to 

the radiant heat transfer in the actual non-uniform enclosure” (ASHRAE55, 2004). In 

addition, MRT calculated many ways, which is a dominant element in the thermal 

comfort equation (Robert Bean, 2013). However, mean radiant temperature cannot 

be measured directly and it can be approximated by globe temperature (tg) 

measurements by using a 150 mm diameter globe thermometer. A value for mean 

radiant temperature can be calculated by tg, air temperature and air velocity for the 

environment using the following equation 1 (British Standard, 2001): 

𝒕̅𝒕𝝉𝝉 = ��𝒕𝒕𝒈𝒈 + 𝟐𝟐𝟐𝟐𝟐𝟐�𝟒𝟒 + 𝟎𝟎.𝟐𝟐𝟐𝟐×𝟏𝟏𝟏𝟏𝟖𝟖

𝜺𝜺𝒈𝒈
��𝒕𝒕𝒈𝒈−𝒕𝒕𝒂𝒂�

𝑫𝑫
�
𝟏𝟏 𝟒𝟒⁄

× �𝒕𝒕𝒈𝒈 − 𝒕𝒕𝒂𝒂��
𝟏𝟏 𝟒𝟒⁄

− 𝟐𝟐𝟐𝟐𝟐𝟐                                            (1)   

Where 

t𝜏𝜏 = Mean radiant temperature (°C) 

𝑡𝑡𝑎𝑎 = Air temperature (°C) 

𝑡𝑡𝑔𝑔 = Globe temperature (°C) 

𝜀𝜀𝑔𝑔 = Emissivity of the globe (-) 

𝐷𝐷 = Diameter of the globe (mm) 
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Relative humidity is a measure of the amount of water vapour in the air related to the 

maximum amount that it can contained at a given temperature (British Standard, 

2001). 

Air velocity can be determined by air movement around the body, and which is a 

quantity defined by its magnitude and direction. Air velocity can be considered as 

determining heat transfer by convection and evaporation at the position of a person 

(British Standard, 2001).  

Clothing is an important factor influencing the occupants’ thermal sensation. It is 

named clo, which is played a role on insulating cover between the human body and 

surrounding environment. In experimental survey, using garment clo values in ISO 

7730 the subjects. 

Metabolic heat production (activity level) is one of important personal factor include 

the metabolic rate. It is maybe affected by food and drink, as well as the state of 

acclimatization (Auliciems & Szokolay, 2007). An appropriate metabolic rate was 

assumed for the subjects can use table given in ISO 7730. 

Operative temperature (OT) is a measure that combines the air temperature and the 

mean radiant temperature into a single value to express their joint effect. Nicol et al 

states the definition of OT as “It is a weighted average of two, the weighted 

depending on the heat transfer coefficients by convection (hc) and by radiation (hr) at 

the clothed surface of occupant”. Operative temperature cannot strictly be measured 

directly but in practice it is not very different from air temperature. It defined by using 

the following equation 2 (Nicol, et al., 2012): 

𝒕𝒕𝒐𝒐 = (𝒉𝒉𝒄𝒄∗𝒕𝒕𝒂𝒂)+(𝒉𝒉𝒓𝒓∗𝒕𝒕𝒓𝒓)
𝒉𝒉𝒄𝒄+𝒉𝒉𝒓𝒓

                                                                                                           (2) 

Where  

𝑡𝑡𝑜𝑜  = Operative temperature, °C 

𝑡𝑡𝑎𝑎 = Air temperature, °C 

𝑡𝑡𝑟𝑟 = Mean radiant temperature, °C 

ℎ𝑟𝑟  = Heat transfer coefficient by radiation, W/ (m2•K) 
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ℎ𝑐𝑐 = Heat transfer coefficient by convection, W/ (m2•K) 

2.6.1.2 Thermal comfort standards 

To determine appropriate thermal conditions, a number of national organizations 

whose standards have international influence make a significant contribution to 

creation knowledge of thermal comfort. The international standards concerned with 

thermal comfort (i.e. ASHRAE and ISO standards) are mostly based on theoretical 

analyses of human heat exchange performed in mid-latitude climatic regions in North 

America and northern Europe (Olesen & Parsons, 2002; Djongyang, et al., 2010; 

ISO7730, 2006). The most important thermal comfort standard is ISO 7730, which is 

based on Fanger’s Predicted Mean Vote (PMV) and Predicted Percentage 

Dissatisfied (PPD) index (Fanger, 1970).  

2.6.1.3 PMV model 

In the past 40 years, the Predicted Mean Vote (PMV) model developed by Fanger 

has been considered as the most important landmark, and it has been adopted by 

many building design standards, such as ASHRAE 55 and ISO 7730 to evaluate 

thermal comfort conditions in buildings. PMV is base of theoretical of comfort 

equation developed by Fanger and which is relation with four environmental factors 

and two personal factors (Fanger, 1970). In addition, Fanger indicated the equation 

gives information on how to combine the variables in order to provide optimal 

thermal comfort (Sugini, 2016). It was therefore possible to predict level of thermal 

comfort by using six variables. Fanger’s heat balance equation that described as 

follow:  

𝑯𝑯−𝑬𝑬𝑬𝑬 − 𝑬𝑬𝒔𝒔𝒔𝒔 − 𝑬𝑬𝒓𝒓𝒓𝒓𝒓𝒓 − 𝑳𝑳 = 𝑲𝑲 = 𝑹𝑹 + 𝑪𝑪                                                                               (3)   

Where 

𝐻𝐻 = the internal heat production; 

𝐸𝐸𝐸𝐸 = the heat loss by water vapour diffusion through the skin; 

𝐸𝐸𝑠𝑠𝑠𝑠 = the heat loss by evaporation of sweat from the surface of the skin; 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = the latent respiration heat loss; 
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𝐿𝐿 = the dry respiration heat loss; 

𝐾𝐾 = the heat transfer from the skin to the outer surface of the clothed body; 

𝑅𝑅 = the heat transfer by radiation from clothing surface; 

𝐶𝐶 = heat transfer by convection from clothing surface 

Fanger’s model is based on combination of heat balance and physiology of 

thermoregulation in order to determine a range of comfort temperatures (Djongyang, 

et al., 2010). Commonly use seven point Psycho-physical scale as a measure for the 

thermal sensation (ISO7730, 2006): 

+3                                      𝐻𝐻𝐻𝐻𝐻𝐻 

+2                                 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 

+1               𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 

  0                             𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

−1                   𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

−2                                    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

−3                                    𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

However, PMV equation is too complex and it is hard to calculate manually, it is 

therefore possible to use computer software to calculate the value of PMV (Fanger, 

1970).  

2.6.1.4 Adaptive model 

Thermal adaptation essentially dynamic and which can be divided into three modes 

of adaptation: behavioural adjustment, physiological acclimatization and 

psychological habituation or expectation (Brager & de Dear, 1998). In detailed, 

behavioural adjustment contains three parts: 1) Personal adjustments (i.e. adjust 

clothing or activity and eat or drink hot/cold food etc.); 2) Physiological adjustment 
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(i.e. open/close windows, adjust HVAC controls etc.); 3) Cultural adjustments (i.e. 

scheduling activities, siestas and so on). Psychological acclimatization can be 

separated to two parts: 1) Genetic adaptation; 2) Acclimatization. Psychological 

habituation or expectation is thermal perceptions depended on occupants’ past 

experiences and expectations of indoor climate (de Dear, et al., 1997). 

Work relating to adaptive model has been reviewed in studies, as study conducted 

by Hoof and Hense optioned that adaptive model have effect on energy use in air 

conditioning building during summertime, furthermore, it could lead to 10% decrease 

in energy consumption (Hoof & Hensen, 2007). From review conducted by Halawa 

and Hoof indicated those adaptive model applications in naturally ventilated building 

reflect better thermal sensation of occupants than those PMV model applications 

(Halawa & Hoof, 2012). Nicol and Humphrey developed adaptive approach and they 

mentioned that the adaptive behaviour correlation to outdoor temperature in naturally 

ventilated building.  

 

2.6.2 Thermal comfort in buildings  

2.6.2.1 Field studies of thermal comfort in buildings 

People spend majority of the time occupancy in buildings. Therefore it is essential to 

evaluate the thermal sensation of occupants in buildings and understanding how 

people have feeling to their thermal environment and useful to ensure the thermal 

comfort responses to efficient energy use in future work.  

Works have been carried out in office are reviewed. Koranteng monitored 

temperature and relative humidity in 15 office buildings in Ghana. It was found that 

uncomfortable indoor environmental conditions caused by high relative humidity 

values (Koranteng, 2011). In Malaysia, Tail et al carried out thermal comfort study in 

a 21 storey high-rise office building, aiming to assessing thermal comfort and users’ 

perception of landscape garden. In the survey, four environmental parameters were 

measured concurrently by proper sensors and occupants’ thermal sensation and use 

of garden and landscape preference were evaluated by questionnaires survey. The 

results show that the significant differences in four thermal parameters in three 
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different types of gardens (Taib, et al., 2010). Simons et al also carried out a study of 

assessing thermal comfort in multi-story office building in Ghana. In this survey, 195 

participants were recruited and asked to report their thermal sensation by using 

questionnaires. During the survey period, four environmental parameters and 

outdoor climatic data were monitored by instruments. They found that PMV model 

predicts thermal comfort in mechanical ventilated buildings better than that in 

naturally ventilated buildings (Simons, et al., 2014). Following the above study 

performed by de Dear and Fountain carried out a replication of ASHRAE sponsored 

San Francisco filed study (RP- 462). The study was undertaken in 12 air conditioned 

office building in Australia, there were 836 participants were asked to provide their 

thermal sensation and clothes insulation levels were assumed. It found that the 

guideline in ASHRAE 55 and ISO 7730 maybe not suitable for hot and humid 

climatic zone. They also reported that there are slightly difference of thermal 

sensation between male and female (de Dear & Fountain, 1994). In Germany, 

Kuchen and Fisch carried out an analysis of thermal comfort in 25 office buildings 

during winter season. During the survey, the environmental parameters were 

measured by proper instruments and simultaneous questionnaires were collected 

from office users. Results show that high correlation between PMV model and AMV 

model (Kuchen & Fisch, 2009).  

Numerous studies in both thermal environment and thermal responses have been 

investigated in residential buildings as well (Han, et al., 2009; Wang, 2006; Cao, et 

al., 2014; Luo, et al., 2014; Hong, et al., 2009; Oseland, 1994). Hong et al. focused 

on thermal comfort of occupants on domestic conditions in England in winter, results 

showed that better insulation and energy efficient heating system lead to better 

thermal comfort and related to energy demand (Hong, et al., 2009). Becker and 

Paciuk used the Fanger’s model as standard and conducted field study in 189 

dwellings in winter, the results from survey showed the actual mean votes(AMV) 

were significantly higher predicted mean votes(PMV) and gender, age of occupants 

have no obviously effect on thermal responses (Becker & Paciuk, 2009). In the study 

carried out in Libya, Ealiwa et al undertook survey of thermal comfort in 27 new air-

conditioned and 24 old naturally ventilated residential buildings during summer 

seasons in 1997 and 1998. In the survey, 237 residents were asked to report their 
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thermal sensation. From the survey it was found that the measurement of PMV 

model can be use in new dwellings to predict the occupants of actual thermal 

sensations (AMV) according to ISO 7730. Furthermore, occupants in old dwellings 

provide more satisfied and thermal neutral than that in new air-conditioned buildings. 

Dick and Thomas (1951) reported that 70% of the observed variance of open vents 

and casements could be accounted for by the outdoor air temperature, based on 

field measurements carried out in 15 houses during 26 winter weeks. Additionally, 

they suggested that another 10% of the observed variance was contributed by the 

wind speed. In their study, the wind speed and direction, the inside and outside air 

temperatures were measured and recorded automatically using particular devices, 

and the state of windows was recorded manually. Moreover, previous researchers 

report about thermal comfort on winter conditions related to energy consumption in 

residential buildings. Seligman et al conducted survey in 500 homes at Twin Rivers 

in the eastern USA and they observed that homeowners’ summer electricity 

consumption could be predicted by comfort and health concerns (Seligman, et al., 

1977/78). It also found that the greater the importance of personal comfort and 

‘health’ to the household, the higher the consumption for air-conditioning. 

2.6.2.2 Thermal comfort studies in Chinese residential buildings 

Through the reviews, limited numbers of thermal comfort studies have been 

conducted in residential buildings in China. Field study of Cao et al. in Chinese 

residential buildings showed that the mean indoor temperature individual boiler 

heating system compared to that in district heating system exceeded 1.6°C (Cao, et 

al., 2014). Field study of the thermal comfort conditions in residential buildings were 

conducted in two zone of China, Yang et al. found that 68% of occupants feel slightly 

cool in winter and neutral temperature were much higher than indoor air temperature 

(Yang, et al., 2013). Cao et al. have shown that new individual heating system and 

old central heating system result in different human thermal sensations can be 

explained by individual control mode. Therefore, the two types of heating systems 

have impact on occupant’s thermal sensation due to different heating set-point and 

they found that the dwellings operated by new individual boiler heating system have 

more acceptable for thermal environments. However, there has not been any further 

analysed about the insulation level and energy consumption (Cao, et al., 2014). As a 
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consequence, the investigation of thermal comfort in old and new residential 

buildings is need to be developed, especially focus on different building standards 

employ with different heating and bill systems.      

2.7 Summary 
This chapter has provided a thorough review of current scene on energy 

consumption in buildings and especially in residential sector. In section 2.2 reviewing 

energy consumption of building sector in the world and also the current status of the 

Chinese residential building sector. Section 2.3 present currently available legislation 

and code on buildings in China, furthermore reviewed current status of energy 

conservation for residential building. Through section 2.4, a review has been worked 

out on the existing heating system and reform of heating payment in Chinese 

residential buildings. In section 2.5, occupant behaviour is one of important factor 

impact on energy consumption, furthermore, occupant behaviour related to heating 

energy consumption and an attention is also given on potential factors that influence 

on occupant window behaviour and heating behaviour. Concept of thermal comfort 

and thermal comfort in building related to energy consumption were described in 

section 2.6.1 to 2.6.2. The main aim was to explore the effect of recent Chinese 

government policy on heating behaviour and energy consumption in Chinese 

residential buildings. From review, previous studies focus on energy consumption in 

residential buildings in China. The findings of literature review show that the few 

researchers focus on this area. There are three main factors related to energy 

consumption can be discussed, insulation level, occupant behaviour and thermal 

comfort. The typical samples of residential building stock in China were reviewed. 

The potential factors impact on occupant behaviour in window operation and heating 

usage were reviewed. Related to this, the influences of new heating and control 

system on window operation and heating behaviour in previous studies have not 

been estimated. The each potential factor will be explored by using new and old 

case study residential buildings. It is necessary to compare measured data from old 

and new apartments stocks. Moreover the measured data will be use to validate a 

simulated model.  
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3 Methodology 

3.1 Introduction  
This chapter introduces the experimental methods and simulation methods that were 

applied in this study to achieve aim and objectives. Two typical multi-stories 

residential building were chosen as case study buildings. Experimental methods 

provide an investigation of the data collection, measures, equipment and site 

monitoring. The indoor thermal environments, window operation, heating energy 

consumption and thermal comfort in both new and old case study buildings were 

investigated. Questionnaire methods were used to assess the thermal sensation of 

occupants and to identify the occupant heating behaviour. In addition, simulation 

methods describe the detailed procedures that were selected to validate the thermal 

modelling.    

 

3.2 Design of Case studies and research method 

3.2.1 Overview 

The chapter of literature review explore how potential factors impact on energy 

consumption in other studies and confounding factors need to be considered in the 

analysis. Thus the appropriate longitudinal measurements were designed in this 

chapter. An early introduction of the residential building sector in China was 

presented in section 2.2.3. Recalling the findings, the majority of existing common 

residential buildings are multi stories buildings. In numbers, heating account for 59%, 

and it is most of residential building energy use. There are huge amount of new 

residential buildings have been built within past 10 years in China, it account for 

around 60% of all residential buildings. There are also about 35% residential 

buildings are aged between 10-30 years. Therefore, selected case buildings for 

investigation can to be suitable as typical type of residential building.  

The study concentres on typical new and old residential buildings that has multi-

stores, seven new apartments and seven old apartments in different floors in each 
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building, and a mix of female and male occupants. Each apartment has one living 

room, two bedrooms, one kitchen and one bathroom. The indoor and outdoor 

thermal environment will be monitored continually and each household characteristic 

were carried out by using questionnaires survey and energy consumption will be 

compared as well. Moreover, the field study of thermal comfort was designed in two 

buildings. The impact of the new design standard has been evaluated in relation to a 

number of aspects, that include building construction, indoor thermal environment, 

occupant behaviour, thermal comfort and building energy consumption. Therefore, 

the study focus on comparing energy simulation and thermal performance results 

based on different building design standards. Before monitoring of thermal 

environments, a risk assessment of measuring was completed. Additionally all 

experimental devices had been tested carefully by electricity technicians in the 

Laboratory. Figure 3.1 describes a timeline of exactly when all measurements and 

data collection occurred during whole investigation period.  

 

 

        

 

 

 

 

   

 

Figure 3.1 The timeline of overview on-site measurement  

 

The beginning 
of experiment 

The ending of 
experiment 

The beginning of Ta 

measurement  
The beginning of 

window 
operation in 

living and main 
bedroom 

measurement 

Day 1: 15th February 2014 Day 28: 15th March 2014 

Day 2: Spot 
measurement of 
thermal comfort 

Day 27: Spot 
measurement of 
thermal comfort 

 The ending of Ta 

measurement 
The ending of 

Window 
operation in 

living and main 
bedroom 

measurement 

Heat meter measured heating energy used in all 
apartments during whole measurement period 

One week: 
Questionnaires 
investigation of 

occupants’ 
adjustment on 
TRVs in new 
apartments 
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3.2.2 Concept of occupant behaviour models  

The window state was monitored every one minute by a pair of window contactors 

and the change of window states (either from open to close, or from close to open) 

was instantly recorded by appropriate devices. As mentioned in experimental data 

collection section 3.3, it was recorded in binary form (i.e. open is 1; closed is 0). As 

mentioned in reviews of window opening behaviour in residential buildings (section 

2.5.3). Previous studies has been reviewed for evidence about which factors affect 

window operation, there are environmental conditions (indoor and outdoor 

environment), time of day, type of building, room characteristics). When analysing 

the window opening data, it could be treated as a stochastic process. Furthermore, 

time of day, type of building, room characteristics will be analysed in further section. 

Logistic regression models were used to predict the state of windows and it was 

established by Nicol at the beginning (Nicol, 2001). Logistic regression model was 

used to prediction of probability of state of windows with respect to the 

indoor/outdoor air temperature as explanatory variables. It was reported by Nicol and 

Humphreys. They established two window behaviour models that combine both 

indoor global temperature and outdoor air temperature (Nicol & Humphreys, 2004). 

Nicol collected data about window open or closed and presented probability 

algorithms relate to occupant behaviour and outdoor temperature. Probit analysis 

assumes that the probability of an event happening increase as the stimulus 

increases. Probit analysis was used in his study and results conclude that the 

probability of window is opened increases relating to outdoor temperature increases. 

Logit model defined the probability 𝑝𝑝 of an event having happened and this method 

used in his study  (Nicol, 2001): 

𝐥𝐥𝐥𝐥𝐥𝐥 � 𝒑𝒑
𝟏𝟏−𝒑𝒑

� = 𝒂𝒂 + 𝒃𝒃𝒃𝒃                                                                                                       (4)       

Where a is constants, b is constants, 𝑥𝑥 is a variables.  

Rijal et al developed a window prediction approach and the relationship is relies on 

logit relationship, the equation 5 and 6 as follow (Rijal, et al., 2007): 

𝐥𝐥𝐥𝐥𝐥𝐥(𝒑𝒑) = 𝐥𝐥𝐥𝐥𝐥𝐥 � 𝒑𝒑
𝟏𝟏−𝒑𝒑

� = 𝒃𝒃𝒃𝒃 + 𝒄𝒄                                                                                    (5)  
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Whence 

𝒑𝒑 = 𝒆𝒆(𝒃𝒃𝒃𝒃+𝒄𝒄)

𝟏𝟏+𝒆𝒆(𝒃𝒃𝒃𝒃+𝒄𝒄)                                                                                                                  (6) 

Where 

𝑝𝑝 is the probability that the window is open 

T is the outdoor or indoor temperature  

𝑏𝑏 is the regression coefficient for T  

𝑐𝑐 is the constant in the regression equation 

Logistic regression models are used to model the probability of specific event 

happening (i.e. state of window opening or closing, state of dwelling control). In 

logistic regression analysis, the study of Andersen reported the effects of the 

explanatory variables as odds ratio and the definition of odds is the probability of 

window opening separated by the probability of window closing (Andersen, 2009).  

 

3.2.3 Building description 
The investigated buildings are located in the City of Xi’an, Xi’an city is located at 

latitude 34°16´N, longitude 108°56´E, is typical city in cold zone in the northwest of 

China, and belongs to the Shaanxi province. The two types of buildings are both 

multi-stories residential buildings. The new residential building (as shown in Figure 3. 

2a) was built in the past 5 years and the old building (as shown in Figure 3.2b) was 

built late 1990s.  

Table 3.1 lists information of investigated households for both old and new buildings. 

Seven households in new building and seven households in old building were 

selected to investigation during heating period. The areas of old apartments are 

between 76.3m2 to 98.3m2, overall 671.3m2 and the locations of floors are between 

second floors to fifth floors. Additional, the areas of new apartments are between 

79.5m2 to 104.2m2, overall 581.7m2 and the locations of floors are between second 

floors to six floors. 
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Figure 3.2(a) the typical investigested new building; (b) the typical investigated old 
building 

 

Table 3.1 Individual information of new and old apartments 

 

No Floor Areas 
Number of 
occupants Ownership The location of floors 

 1 79.5 m2 2 owner-occupied Third floor 

 

2 104.2 m2 2 owner-occupied Sixth floor 

 

3 83.3 m2 2 owner-occupied Third floor 

New apartment 4 83.3 m2 2 owner-occupied Fifth floor 

 
5 104.2 m2 2 owner-occupied Fifth floor 

 
6 83.3 m2 2 renter-occupied  Fourth floor 

 
7 79.5 m2 2 owner-occupied Second floor 

 
1 76.3 m2 2 owner-occupied Second floor 

 
2 76.3 m2 2 owner-occupied Fourth floor 

 
3 84.8 m2 2 owner-occupied Fourth floor 

Old apartment 4 84.8 m2 2 owner-occupied Fifth floor 

 
5 76.3 m2 2 owner-occupied Third floor 

 
6 84.8 m2 2 owner-occupied Second floor 

 

7 98.3 m2 2 owner-occupied Fifth floor 

 

The new residential building operated by district heating system with TRVs in each 

radiator, the room temperature can be adjusted within a range based on the 
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requirement of the building occupants. The typical radiators of hydraulic heating 

system in new apartment can be seen in Figure 3.3(a). 

The old residential building supplied by district heating is equipped by water flow 

through with constant speed via pipe network. Each old apartment is heated by a 

district heating system with constant water flow. The changes of water temperature 

are operated by heat source or substation, in accordance with the changes in 

outdoor temperatures and have no direct control for occupants and thus they can 

only open the window or door to adjust their thermal environment. The Figure 3.3(b) 

presented the selected radiators of hydraulic heating system of old apartment for 

investigation. No hot water system is installed in both new and old apartments. 

    
(a)                                                                           (b) 

Figure 3.3 (a) district heating system with TRVs in typical new apartment; (b) district 
heating system without TRVs in typical old apartment 

 

3.2.4 Comparison of building envelope conditions 
The two monitored buildings have different types of walls. The old building was built 

with solid brick walls with a thickness of 240mm, and the metered new buildings built 

with cavity filled with air walls with a thickness of 240mm. Table 3.2 lists important 

definitions of building construction for both old and new buildings, information of 

investigated households.  
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Table 3.2 General information of constructions and materials of old and new building 

 

3.3 Experimental data collection methods 

3.3.1 Indoor environmental measurement  
In the study, seven apartments from each building were monitored longitudinally 

between 15 February and 14 March, 2014. Table 3.3 gives the location and 

information of measurement devices during investigation period. Figure 3.4 

illustrates the measurement devices and the detailed technical specifications are 

listed in table 3.4.  

Table 3.3 The location and information of measurement sensors  

Sensors Location of sensor The Height of sensor Duration times 
Air temperature 
sensor 

Living room and main 
bedroom 1.0m 

Interval of ten 
minutes 

Window state 
sensor 

Living room and main 
bedroom 1.0m on the windowsill 

Interval of one 
minutes 

 

The indoor air temperature of each apartment was measured and recorded at an 

interval of 10 minutes by a Hobo data Logger Hobo UA-001 temperature sensor (Fig 

3.4a), in both living room and main bedroom. Based on the BSRIA guideline, internal 

temperature sensors at a height of 1.0m above floor were considered to be adequate 

level of sensor positions (BSRIA, 1998a). Therefore the temperature sensors placed 

in the middle of living room and bedroom in each apartment, the height is around 1.0 

 

External wall Window Roof/Ceiling 
  

 

Material of envelops 

 

High of 

floor 

Apartment 

layout 

Built 

year 

New 
building 

240mm cavity bricks, 

EPS insulation, 

plastering mortar 

inside and outside 

Double- 

glazing 

Concrete, 

Roof 

Bricks, 

Chalk 2.8m 

One living 

room, two 

bedrooms 

Late 

2010s 

Old 
building 

240mm solid bricks, 

plastering mortar 

inside and outside 

Single-

glazing 

Concrete, 

Roof 

Bricks, 

Asphalt 2.8m 

One living 

room, two 

bedrooms 

Late 

1990s 
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m. Furthermore, in order to ensure the realistic accurate result of measurements, the 

sensors location was positioned away from local heat sources, direct sunshine, 

window, and door. Outdoor temperature was also monitored with HOBO data logger 

at an internal of 10 minutes during whole measurement period. Detailed specification 

of this device is presented in table 3.4. The window operation sensors were placed 

at window in living room and main bedroom in each apartment. The window state 

was monitored every one minute by a pair of window contactors and the change of 

window states (either from open to close, or from close to open) was instantly 

recorded by HOBO U9-001 loggers (‘1’ for open; ‘0’ for closed) it shown in Figure 

3.4c.  

                
(a) Indoor Air Temperature;  (b) Window operation monitoring;    (c) Hobo data logger of window state; 

Figure 3.4 Measurement devices 

 

Table 3.4 Specifications of measurement devices 

 HOBO Pendant Loggers 
(UA-001-08) 

HOBO State Data Logger 
(U9-001) 

Measurement 
Range 

–20°C to +70°C 

 

External contact input: Passive relay 

switch or contact closure - minimum 

duration 1 second  

Measurement 
Accuracy 

 ±0.53°C from 0 to 50°C N/A 

Response time 10 minutes N/A 

Time accuracy ±1 minute per month at 25°C 
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3.3.2 Energy consumption  
The new apartments are heated by central heating system with TRVs on each 

radiator and heat meters. The heating energy consumption was measured by in-situ 

measurement of the recording by the residential heat meter in each apartment. The 

typical heat meter in new apartment was presented in Figure 3.5a. The old 

apartments are heated by central heating system without any control and heat 

meters. Therefore, the heating energy used in each apartment in old building must 

be measured manually. The hydraulic flow rate for the heating pipes in each 

apartment was spot measured by a Portaflow 330 flow meter, the flow measurement 

accuracy from ±0.5% to ±2% of flow reading for flow rate >0.2m/s, given in Figure 

3.5b (Micronics, 2014). Additionally, the water temperature of supply and return 

heating pipes in each apartment logged for one hour interval. Based on the 

measured flow rate and flow water temperatures, the heat consumed by each 

apartment can be calculated. The methods of calculated energy consumption were 

based on the theory of heat meter in new apartments. The principle of heat 

measurement for the theory of heat meter can be described as follow approach. The 

approach can be described using the following equation (Ye, et al., 2005): 

𝑸𝑸 = ∫ 𝒌𝒌𝑽𝑽𝑽𝑽
𝑽𝑽𝑽𝑽 𝜟𝜟𝜟𝜟𝜟𝜟𝜟𝜟                                                                                                                    (7)  

Where  

Q is the quantity of the heat (W),  

V is the volume of the liquid passed through the flow sensor (kg/s),  

k is the heat coefficient of the heat-conveying liquid at specific temperature and 

pressure W/(m2°C),  

∆T is the temperature difference of the heat-conveying liquid at the flow and return 

terminal (°C).  

Equation (7) is apply to water as the heat conveying liquid, with the flow temperature 

between 50-95°C and the return flow temperature between 5-94°C, respectively. 

Thus, the calculation of energy use in heating system in old apartments can be seen 

from equation 8, as following: 
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𝑸𝑸 = 𝑪𝑪𝒑𝒑 × 𝒎𝒎 × �𝑻𝑻𝒊𝒊𝒊𝒊−𝒑𝒑 − 𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐−𝒑𝒑�                                                                               (8) 

 

Where 

Q         Quantity of the heat (W) 

m         Mass flow rate of water in pipes (Kilograms) 

Tin-p        Temperature from input pipe (°C) 

Tout-p       Temperature of output pipe (°C) 

Cp        Specific heat of water (approximate 4.2J/kg °C)    

     

                             (a)                                                                              (b) 

Figure 3.5 (a) Typical heat meter installed on input water pipe of heating system in 
new residential buildings; (b) Site monitoring of water flow rate of heating by 

Portaflow 330 instrument  

(Micronics, 2014) 

 

3.3.3 Thermal comfort of on-site measurements and instruments  
The field study of thermal comfort in each apartment was carried out in-site 

measurements. It can be divided into two main parts: objective experimental 

measurements and subjective questionnaires survey. During the whole experimental 

investigation periods and site surveys from each apartment were collected by 
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observer at the beginning day of whole experimental periods and also collected at 

the end day. The clothes insulation and thermal sensation were carried out from the 

interviewed survey and the simultaneous measurement of environmental parameters 

of air temperature, mean radiant temperature (MRT), air velocity and relative 

humidity. 

The subjective surveys were based on the thermal sensation reported by occupants. 

In addition, the gender should be considered into the evaluation of thermal comfort in 

all apartments. Gender differences on thermal comfort were investigated in Chinese 

building during winter period by Lan et al. It was found that females prefer warmer 

conditions than males (Lan, et al., 2008). As a consequence, equilibrium between 

males and females has also been considered during the selection of occupants. In 

this study, there are two occupants that will participate in each apartment that one 

male and one female. Moreover, the ages of occupants range from 18 to 65. 

Detailed of subjective occupants in each apartment are presented in further section 

3.4.3 and details of subjective survey are described in section 3.4.4.  

A HOBO data logger was used to measure the indoor air temperature in living room 

and main bedroom in each apartment. For measuring the relative humidity (Figure 

3.6a), the range is from 5% to 95% RH. Furthermore, mean radiant temperature was 

estimated from globe temperature measured by using about 38mm black ball global 

temperature thermometer. This method has been confirmed by other researchers 

(Humphreys, 1977). The indoor global temperature was measured by HOBO TMC1-

MD temperature sensor with a 38mm diameter black table-tennis ball and measured 

by HOBO U12 data loggers (Figure 3.6b) In order to make sure the measurement 

accuracy, the 38mm black table-tennis ball thermometer had been calibrated in 

chamber. Indoor air velocities were measured by hot-wire anemometer (Figure 3.6c) 

at 0.1m, 0.6m and 1.1m height during interview survey. The range of the hot-wire 

anemometer for air velocity is from 0 to 15m/s with an accuracy of ±0.05 the 

equipment accuracies correspond to ISO7726 (ISO 7726, 2001). In addition, detailed 

specifications of experimental devices are presented in table 3.5. 
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Table 3.5 Specifications of experimental instruments 

 HOBO Temp/RH/Light External Data Logger 
(U12-012) 

Hot-wire 
anemometer 

 RH Temperature  

Measurement 
Range 

5% to 95% RH -20°C to 70°C 0-15 meters 

per second 

Measurement 
Accuracy 

±2.5% from 10 to 90% 

RH 

±0.35°C from 0 to 50°C 0.05 

Response time 1 minute, typical to 90% 6 minutes, typical to 90% 5 second 

Time accuracy 1 minute per month at 25°C 

 

 

                             

                   (a)RH;                  (b) Global Temperature measurement;               (c) Air velocity;  

Figure 3.6 Experimental devices in thermal comfort studies 
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3.4 Occupants’ interview survey 

3.4.1 Questionnaires of occupants’ window behaviour  
For measuring the occupants’ window behaviour, window opening /closing were 

measured in every one minutes in all old and new apartments. The further 

questionnaires of reasons for opening windows were conducted in each apartment. 

In questionnaires(see in Appendix A), the suitable reasons were investigated, the 

personal reasons of opening windows is three scales of yes or no, following with 

question: “The window were opened to ventilate because, too hot, air smelled bad 

for fresh air, remove moisture due to condensation on windows ?”. In section 4.3, 

further evidence to support the reasons for window opened will be discussed.  

 

3.4.2 Occupants’ adjust TRVs in new apartments 
According to the new standard of heat metering and controlling system for central 

heating system, the design of indoor temperature for TRVs is 18°C≤ Tmax ≤ 25°C and 

5°C≤ Tmin ≤ 12°C (MOC, 2009). In this study, the questionnaires (see in Appendix B) 

were conducted to 7 households in the new residential buildings with TRVs and heat 

metering devices. In order to assess occupants’ heating behaviour in the new 

apartments, a further questionnaire was distributed to each household (living and 

main bedroom), asking them to self-record their heating behaviour (i.e. adjustment of 

the TRV settings) over a whole week period. The occupants were asked for filling out 

the self-questionnaires, as for instance, when they turn off/turn on the TRVs need to 

mark in questionnaire. The detailed of questionnaire is given in Appendix B. 

Moreover, when they adjust the TRVs of radiators need to write down the range of 

scale values of TRVs on questionnaire. Therefore, according to the questionnaires, 

the occupants’ behaviours in TRVs regulation can be identified. It could be related to 

the fluctuation of indoor air temperature and variation of flow rate for heating. In next 

section further evidence to support the relations between them will be discussed.   

3.4.3 Subjective survey of thermal comfort 
The thermal sensation of occupants was investigated by observer using 

questionnaires. There have 14 household in total for two types group of buildings, 
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the each occupant of investigated worked in same city. The questionnaire was 

developed based on the standard of ISO 10551 (ISO 10551, 2001) and used in each 

apartments. In order to make sure the participants can clearly understand each 

question and to ensure valid and accurate results, before the survey the 

questionnaire was translated into Chinese (Liu & Qin, 2006). A consent form (see in 

Appendix B) was issued and the actual mean votes (AMV) form was explained to 

them. There are three main questionnaires: first is application form to take part in the 

thermal experiments that questions about the participants’ age, physical conditions, 

the culture background, education level, income level and normal lifestyle of each 

participant. Second is the main thermal sensation of participants and how they feel 

about the thermal environments. It includes the 7-point ASHRAE sensation scale, 

ranging from -3(cold) to +3(hot) and 0(neutral). Each scale were explained and 

translated to Chinese. Additionally, the three thermal performance scales were 

provided by warmer, no change, cooler. And the personal acceptability of indoor 

thermal environment is two scales of yes or no, following with question: “Would you 

accept this indoor thermal environment?”. The third one is used to identify the 

clothing insulation values for females and males and it divided into two parts, one is 

participants identifying the clothing insulation values and given a total figure for it, 

another one is observed by observer from distance. The details of questionnaires 

can be seen in Appendix B.  

The subjective measurement was aimed to collect their thermal sensation in their 

living space. In the study, each apartment had one male and one female participant, 

aged between 22 and 57 years. Before the survey, the details of the experiment 

were described to all participants. Meanwhile, a consent form was issued and how to 

fill out the thermal sensation questionnaire administrated to real participant was 

explained. During the survey, the occupants were asked to sit in the living room, and 

then were asked to report their thermal sensation at the end of the survey. 

Meanwhile, air temperature, mean radiant temperature, air speed and relative 

humidity were measured according to the ISO standard (ISO 7726, 2001). In this 

study the insulation of the chair is assumed to be 0.35clo as all participants were 

sitting on a fabric sofa during the survey (McCullough, et al., 1994).  
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The spot measurement of thermal comfort survey was conducted on individual 

occupants who were seated watching TV in living room in each apartment. All 

occupants were kept seated for 45mins and they were asked to fill AMV form after 

30mins and 45mins. The survey involved 28 subjects in total, 14 females and 14 

males. Averagely, there were two times questionnaires survey were conducted 

during interviews, one was presented at begin day of whole experiment periods, and 

another one was presented at the final day of whole experiment periods. Therefore, 

valid questionnaires are 112 in total and there were 56 questionnaires from new 

apartments, and 56 questionnaires from old apartments, respectively. 

                                                                        

3.4.4 Household information in new and old apartments 
A background survey were also conducted in both new and old apartments, the 

questionnaires collected information about occupant themselves. Two occupants in 

each apartments were found in the survey; females (14), males (14). Table 3.6 

describe that the number of apartments and individual social background in each 

apartments. The household size of each apartment includes two people in this study. 

From the table, the employments of each household are presented. The individual 

occupant income and education level are given as well. The age of oldest occupant 

in new building is 53 and the youngest one is 22. In contrast, the age of oldest 

occupant in old building is 57 and the youngest one is 26. The most of household are 

buying their apartments in both new and old building. A mentioned before in Table 

3.1 lists information of investigated households. Only one household in new building 

is rented apartment. The most common apartments located in floors are between 

two to six floors that are in the middle of buildings. 
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Table 3.6 Individual background in new and old apartments 

 

No 
Age of 

occupants 

Income 
range(RMB/per 

Year) Education level 
 

  

Woman Man 

 

Woman Man 

 

1 38 39 60,000 -- 70,000 College Degree College Degree 

 

2 45 46 100,000 --150,000 College Degree Bachelor 

New  3 26 26 60,000 -- 70,000 Bachelor Bachelor 

Apartments 4 25 28 60,000 -- 80,000 College Degree Bachelor 

 
5 51 53 200,000 -- 300,000 High School High School 

 
6 27 27 50,000 -- 70,000 Master Bachelor 

 
7 22 23 30,000 -- 40,000 College Degree Bachelor 

       

 1 55 57 50,000 -- 70,000 College Degree College Degree 

 
2 53 56 60,000 -- 80,000 Bachelor College 

 
3 52 54 80,000 -- 100,000 Bachelor College 

Old  4 26 27 60,000 -- 80,010 College Degree Bachelor 

Apartments 5 35 38 Up to 300,000 Bachelor Master 

 

6 33 37 60,000 -- 80,000 Bachelor Bachelor 

 

7 28 28 50,000 -- 70,000 Bachelor Bachelor 

 

3.5 Model simulation method 

3.5.1 Overall simulated methods 
In consideration of the new building standard and new heating systems applied in 

residential buildings in China, the actual energy consumption of new and old building 

can be validated by using thermal modelling methods. The field measured data and 

all parameters of building performance are application to EnergyPlus by using 

interface Designbuilder. This method have been recommended by Mohammad et al 

for validating the measurement data and computational fluid dynamics results, they 

confirmed that DesignBuilder can predict simulated results with good accuracy 

(Mohammad , et al., 2013). The structure of case study building was modelled based 

on the actual structure and detailed information. Individual apartments were 

simulated by using individual modelling blocks. The weather file of hourly outdoor 
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temperature, and relative humidity values generated with real actual measured by 

data logger that was input into simulation models. The construct of building, doors 

and windows are input into each models based on actual size and structure of all 

apartments. In order to evaluate the experimental validation and make sure good 

accuracy simulation results. The orientation of rooms and type of windows were 

considered into all simulation models.  

 

3.5.2 Input parameters for building model 

3.5.2.1 Simulation model development 

The actual structure of case study buildings drawings were imported to simulation 

tool. In model designed, the new and old buildings were divided into each new and 

old apartment model blocks. The sample of model block is shown in Figure 3.7a and 

sample of simulated 3-D case study building in simulation tool is shown in Figure 

3.7b. 

 

Figure 3.7 (a)Sample of Model Block; (b) The case study building 3D view of design 
model 

The sample of layout of imported floor plan is given in Figure 3.8. It contains five 

different zones: One Living room, two bedrooms, one kitchen and one toilet. As 

stated above, the building construction and envelops based on design standards for 
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new and old building, heating set-point, window operation are acquired from real 

measured data, and they are applied in model block. Further detailed of information 

will be introduced in next section.   

 

Figure 3.8 layout of floor plan 

3.5.2.2 Envelop and constructions  

In order to determine the thermal transmittances (U-value) of new and old 

apartments, the construction material properties were given from actual construction 

specifications for apartments. The details of procedure for working out U-value are 

given in Appendix E. Table 3.7 summaries that the insulation level as input for both 

old and new model blocks, based on the building design standards (JGJ26-2010, 

2010; GB50176-93, 1993). It shows that the new model block offers much better 

insulation than the old one. In old apartments, single glazing were used for windows 

and in new apartments, double glazing were used for windows.  

Table 3.7 Thermal transmittances (U-value) of old and new model blocks 

 Old Model Block(W/m2°C) New Model Block(W/m2°C) 
External Wall 1.69 0.7 

Window 5.8 3.6 

Floor 2.48 2.28 

Roof 2.48 2.28 
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The construction design requirement of R-value and insulation materials of both new 

and old models were comply with Chinese standards shown in table 3.8 and table 

3.9. Therefore the real detailed information about new and old apartment 

construction and insulation levels used as input in both old and new model blocks. 

Table 3.8 Construction design and U-value of external wall for old and new model 
blocks 

 

Construct 
Materials 

Thickness 
(mm) 

Thermal Conductivity 
(W/m °C) R-value 

 

Brick 240 0.65 0.37 

Old Model Blocks 

Plastering 

mortar 20 0.5 0.04 

 
Rsi N/A N/A 0.123 

 

Rse N/A N/A 0.06 

 

 ∑R N/A N/A 0.59 

 

U-value 
 

1.69 

 
     

 

Brick 240 0.65 0.37 

 

Air 15 0.024 0.625 

 

EPS 10 0.046 0.21 

New Model Blocks 
Plastering 

mortar 10 0.47 0.002 

 

Rsi N/A N/A 0.123 

 

Rse N/A N/A 0.06 

 

∑R N/A N/A 1.40 

 

U-value 
 

0.7 

  

U-value of Roof for old and new model blocks. It is seen that the construction 

materials of the roof consist of two kinds of material, concrete and roof brick, and 

concrete covers 80% of the total area. The windows used in old apartments is single 

glazing with a U-value of 6.0W/m2°C and that in new apartments is 3.6W/m2°C. 
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Table 3.9 Construction design and U-value of roof for old and new model blocks 

 

Construct 
Materials 

Thickness 
(mm) 

Thermal 
Conductivity 

(W/m °C) R-value 

 

Concrete 75 0.4 0.19 

 

Asphalt 20 0.75 0.02 

Old Model Blocks Plastering mortar 20 0.5 0.004 

 

Rsi N/A N/A 0.123 

 

Rse N/A N/A 0.06 

 

∑R N/A N/A 0.4 

 

U-value 
 

2.48 

 

     

 

Concrete 75 0.4 0.19 

 

Plastering mortar 20 0.5 0.004 

 

Polyester 20 0.05 0.04 

New Model Blocks Asphalt 20 0.75 0.027 

 

Rsi N/A N/A 0.123 

 

Rse N/A N/A 0.06 

 

∑R N/A N/A 0.44 

 

U-value 
 

2.28 

  

3.5.2.3 Weather data    

In this study, before the simulation, the hourly weather data and Relative Humidity 

have been monitored by appropriate data logger. Hourly Relative Humidity and 

hourly solar radiation of whole experimental periods are given in Figure D-01(in 

Appendix D) and Figure 3.11 respectively and it input into simulation model. New 

case study building and old case study building are located in same city, different 

districts. To make sure the outdoor air temperature have no significant different 

between two regions, the Tout around new building and old building were measured 

separately. Figure 3.9 depicts the linear regression correlations between Tout around 

new building and Tout around old building, R value is 0.998, which means there is no 

significant difference of outdoor air temperature between two regions. Therefore, in 

this study, in order to achieve accurate value of the outdoor temperatures were 
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chosen by mean of two location measurements. Figure 3.10 depicts measured 

hourly mean outdoor temperature of whole experimental periods and it applied to 

simulation model.  

 

Figure 3.9 Correlation between measured outdoor air temperatures around old 
building and measured outdoor air temperatures around new building 

 

15th February 2014 to 15th March 2014 

Figure 3.10 Hourly mean outdoor temperature plot for period 15th February 2014 to 
15th March 2014 

y = 1.0022x + 0.0009 
R² = 0.9982 
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15th February 2014 to 15th March 2014 

Figure 3.11 Hourly Solar Radiation plot for period 15th February 2014 to 15th March 
2014 

 

Figure 3.11 depicts measured hourly solar radiation of whole experimental periods 

and it applied to simulation model. In order to run actual measured outdoor 

temperature data in EnergyPlus, the file of actual EPW are required, therefore, the 

progress are given in Figure 3.12 and further procedure is given in Figure 3.13 

following. Figure 3.12 presents the detailed of original file of outdoor temperature 

convert to appropriate EPW file into simulation models. Figure 3.13 describes the 

actual measured date were chosen to apply in model data before simulation.  
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Figure 3.12 Procedure of convert an EPW file 

   

Figure 3.13 Procedure input file of weather data set up in simulation model 
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3.5.2.4 Window state and occupants activities  

Modelling occupant window behaviour, the state of window opening is defined as a 

binary, 1 for open and 0 for closed. It is good for using statistical method that is 

logistic regression. The detailed information about monitoring window state in all 

apartments is provided in section 3.3. To achieve the most accurate analysis, the 

window behaviour simulation is based on monitored data of window opening/closing. 

Figure 3.14 depicts a sample of how the window opening/closing schedule input into 

simulation model. It gives a sample of window opening/closing time in living room 

based on actual measured data of whole experimental period. The air change rate is 

assumed as 0.6ac/h, according to building standard were considered into simulation.   

 

Figure 3.14 Sample input of window opening/closing schedule in living room based 
on actual measured data 

For occupant daily presence, the input of activity schedule was based in 

questionnaire survey from field study and it was designed on an hourly basis. There 
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are two occupants per each apartments, typical occupancy pattern are listed in table 

3.10.  

Table 3.10 Input of typical occupancy pattern into simulation models 

 
Occupancy Hours 

Room Weekdays Weekends 

Living room 5:00pm - 11:00pm 08:00am - 11:00pm 

Bedroom 8:00pm - 07:00am 08:00pm - 11:00pm 

Kitchen 7:00-9:00am & 17:00-19:00pm 7:00-9:00am & 17:00-19:00pm 

 

3.5.2.5 HVAC system and other parameters input to simulation model 

The simulation input of heating set-point temperatures based on measured mean 

indoor temperature in both new and old building. Based on design standard (JG/T-

195, 2007), the room temperature set-point of Thermostatic radiator valves(TRVs) 

indicate that the maximum opening temperature value is 18°C≤Tmax≤25°C while the 

minimum opening value is 5°C≤Tmin≤12°C. Therefore, for the heating operated with 

control system in each apartment of new building, the heating set-point in model 

blocks use the mean experimental indoor temperature. Table 3.11 show that the 

setting of heating set-point temperatures in living room and main bedroom in model 

block. However, set-point temperature of the kitchen and bathroom are normalized 

by Chinese building standards (GB 50093, 2003).  

Table 3.11 Mean indoor temperature input in both old and new model blocks 

 

Mean Indoor Temperature(°C) 

Room Old model block New model block 
Living room  22.5 20.7 

Bedroom 21.5 19.6 

Bathroom 18 18 

Kitchen 15 15 

 

For HVAC zone data model, the collected experimental data is inserted. “Hot water 

radiator heating, nat vent” were inserted in appropriate HVAC template. In addition, 

hot water system was not supplied in model. In another set of simulation, natural 
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ventilation was turned on, and time of window operation inputs were replaced with 

schedule of real monitored window states. The default inputs of occupant densities 

and occupancy schedules from the DesignBuilder database replace with the 

investigated occupant densities and occupancy schedules. It was given in section 

3.5.2.4. And the computers, office equipment were turned off. Furthermore, the most 

appropriate DesignBuilder template was chosen in each zone (i.e. for the main 

bedroom zone, the DesignBuilder “Domestic bed room: an area primarily used for 

sleep” was used).  

 

3.5.3 Four simulation scenarios  
The study focus on evaluating different building design standards have effect on the 

thermal and energy performance of buildings, through a comparison of various 

potential main parameters (insulation level and construction, heating set-point, 

occupant window behaviour) of two types of residential buildings. Compare with old 

case study building comply with old building standard. For the new case study 

building comply with new building standard, the change of the construction 

(insulation level) had been improved, heating system operated with individual control 

system and new heat reform payment system had been changed. Measured data of 

each parameter were used for calibrating the simulation model. The influence of new 

building standard on energy consumption should be examined by simulation. 

Therefore to predict and identify how each parameters effect on energy consumption, 

old case study building applied with new standard in simulation procedure. To predict 

the energy saving potential of each parameter on the heating energy consumption, 

the energy consumption was simulated with EnergyPlus. Four simulation scenarios 

were studied:  

1) Scenario 1 

Old apartment model block applied with input of U-value and construction according 

to old building standard. Therefore U-value and construction materials of new 

apartments was set up into old apartment model block, no changes have been made 

to HVAC system, window operation schedule and other input parameters. 
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2) Scenario 2 

Old apartment model block applied with input of heating set-point according to 

measured indoor climates in old apartments. The simulation input of heating set-

point temperatures based on measured mean indoor temperature in new apartments. 

Therefore it was set up into old apartment model block. No changes have been 

made to U-value and construction materials, window operation schedule and other 

input parameters.   

3) Scenario 3 

Old apartment model block applied with input of window operation according to 

measured data in old apartments. Therefore window operation schedule measured 

in new apartments was set up into old apartment model block, no changes have 

been made to HVAC system, U-value and construction materials and other input 

parameters. 

4) Scenario 4 

Old apartment model block combine all three interventions: window operation, 

heating set-point and insulation level.  

The four scenarios were simulated for old model block through the 15th February to 

15th March 2014 period. The comparison of each scenario of energy saving have 

been worked out in further results chapter five. 

 

3.5.4 Heat loss assessment  

3.5.4.1 Fabric heat loss 

Heat loss can occur through the building envelop, and according to second law of 

the thermodynamics, heat from warm areas flows out through the fabric of buildings 

to cold areas. Theoretical losses include transmission losses and ventilation losses. 

Heat loss is estimated in steady state conditions and it is obvious to state that steady 

state condition is an idealized situation when indoor and outdoor temperatures are 

constant (Bishop, 2008). Heat is lost from a dwelling can be divided into two ways. 
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Fabric heat loss is caused by heat through all floors, walls, roofs, windows and doors. 

And then all elements added together to give total fabric heat loss all.  

Basic heat loss through any given surface can be calculated using the following 

equation: 

 
𝑸𝑸𝒇𝒇 = 𝑼𝑼 × 𝑨𝑨 × (𝑻𝑻𝒊𝒊𝒊𝒊 − 𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐)                                                                                                    (9)                  

Where Qf = Fabric heat loss, Watts 

            U = Thermal transmittance (U-value) of building elements, W/m2 °C 

            A = Area of surface of building, m2  

            Tin = Internal temperature of building, °C  

 Tout = external temperature of building, °C 

 

Then, overall heat loss through fabric of the any building can be calculated using 

following equation: 

Qf-total = ∑�𝑈𝑈 × 𝐴𝐴 × (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑈𝑈 × 𝐴𝐴 × (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑈𝑈 × 𝐴𝐴 ×

(𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑈𝑈 × 𝐴𝐴 × (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑈𝑈 × 𝐴𝐴 × (𝑇𝑇𝑖𝑖𝑖𝑖 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 

 

3.5.4.2 Ventilation heat loss 

Ventilation heat loss can be calculated from the volume of the residential buildings 

and an assumed value for the number of air change per hour (ac/h). In Chinese 

residential buildings, the standard offer a value of 0.6 ach of air change rate value. 

When window closed, the air exchange between internal and external is achieved by 

crevices called infiltration in buildings. Furthermore, windows openings lead to 

uncontrolled air changes in buildings (CIBSE, 1999).  

Basic heat loss through any given surface can be calculated using the following 

equation: 

 
Qv = 0.33N× V× (𝑻𝑻𝒊𝒊𝒊𝒊 − 𝑻𝑻𝒐𝒐𝒐𝒐𝒐𝒐)                                                                                              (10)                         

Where Qv = Ventilation heat loss, Watts 

            N = Number of fresh air change per hour of the building, ac/h 
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 V = Volume of the inside space of the building, m3 

            Tin = Internal temperature of building, °C  

 Tout = external temperature of building, °C 

Thus, 

 

Total building heat loss is then can be described using following equation: 
Qtotal = Qf + Qv                                                                                                                    (11)         

 

In practices, the ventilation losses due to infiltration can be omitted because it is hard 

to estimate the air entering the building through the ventilation openings (Koene, 

2011). The window openings can often be controlled by occupants and then impact 

on air exchange rate in buildings (Marr, et al., 2012). CIBSE guide gives air 

infiltration rates for various buildings and the maximum average air change rate are 

given in table 3.12 (CIBSE, 1999). Johnson carried out a study in houses and 

measured air exchange rate with windows. From study it was suggested that 

geometric mean to change from 0.76h-1 for no openings to 1.51 h-1 for one opening, 

2.30 h- 1 for two openings and 2.75h-1 for three or more openings (JOHNSON, et al., 

2004). Therefore, the air change values can be corrected under reasonable 

conditions in practice range from 0.60-2.30 ac/h.  

 
Table 3.12 Maximum average air infiltration rates in air changes per hour  

 

‘Leaky' building (ac/h) Moderately 'tight' building (ac/h) 

Dwellings - 1 story 1.15 0.40 

Dwellings - 2 stories 1.00 0.35 

Apartments - 1 to 5 stories 1.00 0.50 

Apartments - 6 to 10 stories 1.60 0.55 

 

In order to calculate the areas of each element of new and old apartments, the 

details of dimensions for the area calculation can be seen from table 3.13. The 

thermal transmittance (U-value) of new and old apartments was given in Table 3.7. 

Temperature difference between indoor and outdoor can be determined by using 

measured data. The details of procedure for working out sum of calculated areas in 
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each apartment are given in Appendix C. It can be seen from above description, total 

fabric and ventilation loss can be worked out by using equation 9, 10 and 11. 

Table 3.13 Dimensions for area calculations 

Apartment 
Type 

Dimensions 
for total 

areas (m2) 

Total 
volume of 
inside 
space of 
apartment 
(m3) Apartment Type 

Dimensions 
for total 
areas (m2) 

Total 
volume of 
inside 
space of 
apartment 
(m3) 

Old apartment 1 140.92 78.120 New apartment 1 160.50 95.564 

Old apartment 2 140.92 78.120 New apartment 2 165.76 98.784 

Old apartment 3 165.88 98.952 New apartment 3 162.68 96.824 

Old apartment 4 165.88 98.952 New apartment 4 162.68 96.824 

Old apartment 5 140.92 78.120 New apartment 5 165.76 98.784 

Old apartment 6 165.88 98.952 New apartment 6 162.68 96.824 

Old apartment 7 190.52 120.904 New apartment 7 160.50 95.564 

 

3.6 Summary 
This chapter introduce the experimental methods and simulation methods that were 

applied in this study, in order to achieve aim and objectives of research project. In 

the study, seven apartments from old and seven apartments from new building were 

monitored longitudinally between 15 February and 14 March, 2014. The 

experimental methods are used to monitor the thermal environment, occupant 

behaviour and energy consumption and each household characteristic were carried 

out by using questionnaires survey, and this is to provide input parameters set for 

analysing and discussion related to the dynamic thermal modelling methods. In 

addition, simulation methods describe the detailed procedures that were selected to 

validate the thermal modelling. Thereafter, the field study of thermal comfort was 

designed in two buildings.  
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4 Apartments measurement, results and discussion 

4.1 Introduction  
This chapter describes the results of measurements made in both new and old 

apartments. Indoor thermal environments, occupant behaviour and heating energy 

consumption for new and old apartments were compared respectively. As 

mentioned in the review chapter two, reform and implementation of the new heating 

and billing system has been incorporated into new built residential apartments. It is 

therefore important to identify the influence of each potential factor on heating 

energy use finally. In this chapter the detailed information regarding results of 

occupant window behaviour in old apartments are compared with the results of 

occupant window behaviour in new apartments.  

 

4.2 Comparison of building indoor thermal environments 
According to the monitoring, the variations of mean indoor air temperature for living 

room and bedroom in both types of buildings are summarised in Table 4.1. During 

the heating period, the mean outdoor air temperature is 8.9°C with the maximum and 

minimum outdoor temperatures being 27.7°C and -1.9°C respectively during the 

investigation.  

Table 4.1 The mean measured indoor air temperature of living room and main 
bedroom in both new and old building from 15th Feb to 15th Mar 2014 

Building 
type Old building 

  
New building 

Room 
Type Living Room Main Bedroom 

  
Living Room Main Bedroom 

Mean 22.5°C 21.5°C  
 

Mean 20.7°C 19.6°C 
SD 2.7°C 2.5°C 

 
SD 2.3°C 2.1°C 

Max 26.3°C 25.1°C 
 

Max 23.7°C 22.5°C 
Min 16.3°C 14.9°C 

 
Min 15.6°C 15.1°C 

 

Table 4.1 shows that the mean indoor temperature of the living room in all old 

apartments is 22.5°C (standard deviation 2.7°C) and the indoor air temperature in 

new ones is 20.7°C (standard deviation 2.5°C) which is respectively 1.8°C lower than 
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the value measured in old apartments. Meanwhile the mean indoor air temperature 

is 21.5°C(standard deviation 2.3°C)  in main bedroom of old traditional building and 

19.6°C (standard deviation 2.1°C) in new buildings which is respectively 1.9°C lower 

than that in old one. The value of the indoor air temperature depends on the two 

different types of apartments and operated heating control systems. From the 

comparison, it could be found that both the living room and the bedroom 

temperatures in the old apartments are higher than those in the new apartments, 

agreeing with previous field experiments study. The pervious study carried out the 

results of indoor air temperature of living room for old traditional distract heating 

residential apartments in Beijing. Cao, et al compared indoor thermal environments 

and thermal comfort in two groups of residential apartments, one group of traditional 

central heating without any control and another one group of new individual boiler 

heating with control. They measured the mean indoor air temperature of old 

apartments were 0.5-3.0°C higher than that of new apartments (Cao, et al., 2014). 

This may reflect that in the new apartments, occupants prefer a lower indoor 

temperature to reduce heating energy consumption, as indoor temperature has been 

popularly used to reflect occupants’ indoor temperature settings in winter in existing 

studies (Wei, et al., 2014).  

Occupants can adjust their thermal environment based on their own local 

requirement via convenient and effective system of control (i.e. operable windows or 

local temperature control) (Nicol & Humphreys, 2007). What follows is a discussion 

on the potential reasons for the discrepancy in these results. As mentioned before, 

occupants can adjust the TRVs of heating set-point in order to satisfy their needs for 

indoor environment in new apartments. In addition, occupants have possibility to 

reduce indoor temperature and heating energy use by adjusted TRVs in each 

radiator in new apartments. However occupants do not have any control devices of 

heating in old apartments, they only can open the window or door to adjust the 

indoor air temperature if the rooms were overheated, in addition, the indoor 

temperature in old apartments are significantly higher than that in new ones.  



101 
 
 

4.2.1 Connection of indoor and outdoor temperature in old apartments 

For heated buildings, the indoor temperature depend on outdoor temperature, it is 

different from naturally ventilated buildings (Humphreys, et al., 2010). The analysis of 

indoor temperature dependent on outdoor temperature shown in Figure 4.1 

describes the indoor temperature in living room and main bedroom changed with 

outdoor temperature in each old apartment. The correlation between indoor 

temperature and outdoor temperature have also been found by Yan et al, they found 

that the indoor temperature increased with outdoor temperature dropped when the 

outdoor temperature is below 10°C in Chinese dwellings during heating season 

period (Yan, et al., 2016). In Figure 4.1 reveals generally the indoor temperature in 

both living and bedroom in each old apartment maintain the temperature from 19-

23°C when outdoor temperature maintain the temperature from 5-15°C. Old 

apartments have no direct control for occupants and thus they can only open the 

window to adjust their thermal environment. The observations indicates that the 

trend of indoor temperature is generally changed with outdoor temperature, this is 

can be likely explained by two reasons, one is the insulation level is worse for old 

building compared with new building. Thus it more likely can be affected by outdoor 

environment. Another is the indoor temperature in old apartments is higher than that 

in new apartments, occupants prefer to open window to decrease indoor 

temperature when overheating in rooms. The correlation between window opening 

behaviour and indoor air temperature will to be discussed in following section.  
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   Old apartment 2 

 

 
Old apartment 3                 

                                                            

 
Old apartment 4 
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Old apartment 5            

                                       

  
Old apartment 6 

 

 
Old apartment 7 

Figure 4.1 Scatter-plot of indoor and outdoor air temperature in all old apartments 

10 12 14 16 18 20 22 24 26 28 30
-5

0

5

10

15

20

25

30

Indoor air temperature (°C)

O
u

td
o

o
r 

a
ir

 t
e

m
p

e
ra

tu
re

 (
°C

)

 

 
Living room
Main bedroom

0 100 200 300 400 500 600
-5

0

5

10

15

20

25

30

Hours (h)

Te
m

pe
ra

tu
re

 (°
C

)

 

 

Living room
Main bedroom
Outdoor

10 12 14 16 18 20 22 24 26 28 30
-5

0

5

10

15

20

25

30

Indoor air temperature (°C)

O
u

td
o

o
r 

a
ir

 t
e

m
p

e
ra

tu
re

 (
°C

)

 

 
Living room
Main bedroom

0 100 200 300 400 500 600
-5

0

5

10

15

20

25

30

Hours (h)

T
em

pe
ra

tu
re

 (°
C

)

 

 

Living room
Main bedroom
Outdoor

10 12 14 16 18 20 22 24 26 28 30
-5

0

5

10

15

20

25

30

Indoor air temperature (°C)

O
u

td
o

o
r 

a
ir

 t
e

m
p

e
ra

tu
re

 (
°C

)

 

 
Living room
Main bedroom

0 100 200 300 400 500 600
-5

0

5

10

15

20

25

30

Hours (h)

Te
m

pe
ra

tu
re

 (°
C

)

 

 

Living room
Main bedroom
Outdoor



104 
 
 

Figure 4.2 indicates the binned hourly indoor temperature in living room and 

bedroom for all old apartments from 08:00am to 18:00pm, and it gives a diagram of 

indoor conditions during investigated periods in this study. In order to estimate 

confidence in results, each temperature bin includes all observed days during 

heating periods. From figure 4.2, it was observed that in general, indoor temperature 

in living room and main bedroom in each old apartment. The measured results of 

indoor temperatures reflect that the around 80% in both living room and bedroom 

between 20 to 22°C. The figure 4.2(a) also reflects that there are approximately 16% 

of indoor temperatures above 22°C in living room for all old apartments. The indoor 

temperatures in main bedroom contain approximately 12% above 22°C for all old 

apartments shown in figure 4.2(b). 
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(b) 

Figure 4.2 The binned hourly indoor temperature in living room and bedroom of all old 
apartments during observation period 
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when overheating in rooms. Figure 4.3 depicts indoor air temperature in bedroom 

responds inconsistently to that in living room for apartment 3. In this example, the air 

temperature in bedroom decreases with outdoor temperature increased. The reason 

for this can be explained that when TRVs altered in bedroom to keep indoor 

temperature between 19 to 21°C. Furthermore, the correlation between window 

opening behaviour and indoor air temperature will to be discussed in following 

section. 
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New apartment 3 

 

 
New apartment 4 

 

 
New apartment 5 
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New apartment 6                                                     

 

 
New apartment 7 

Figure 4.3 Scatter-plot of indoor and outdoor air temperature in all new apartments 

 

Figure 4.4 indicates the binned hourly indoor temperature in living room and 
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confidence in results, each temperature bin includes all observed days during 

heating periods. From figure 4.4, it was found that the measured results of indoor air 

temperatures reflect that the around 60% in both living room and bedroom between 

19 to 21°C. The figure 4.4(a) also reflect that there are less proportion of indoor 

temperatures above 22°C in living room for all new apartments compared with old 

ones. The indoor temperatures in living and main bedroom for all new apartments 

contain approximately 2% above to 23°C shown in figure 4.4(b). 
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(a) 

(b) 

Figure 4.4 The binned hourly indoor temperature in living room and bedroom of all 
new apartments during observation period 
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4.3 Occupants’ window behaviour  
It is important to identify occupant window behaviour effect on operational energy 

use in residential buildings. Occupants’ window behaviour has effect on energy 

consumption (Andersen, et al., 2009). Therefore, occupants’ window behaviour in 

the two types of investigated apartments is compared in this section. Previous 

studies have carried out window opening behaviour of occupants and the influencing 

factors that influence on occupants’ control in residential buildings. The outdoor 

temperature were found to be one of most important factors related to window 

opening, additionally, season, time of day, orientation of windows and type of rooms 

are the main parameter impact on occupants’ window operation in residential 

buildings (Fabi, et al., 2012; Dubrul, 1988). As mentioned in section 3.3, the outdoor 

temperature was collected by data logger. The window state was monitored every 

one minute by a pair of window contactors and the change of window states. It was 

recorded in binary form (i.e. open is 1; closed is 0). In the study, the parameter used 

to reflect occupants’ window behaviour is the proportion of time during the monitoring 

period when the window is opened. The overall field measured data reflect that the 

windows in all old apartments were opened for 54% of the monitoring time, while 

they were opened only for 29% of the monitoring time in all new apartments. Thus 

the relationship between window opening behaviour and indoor and outdoor 

temperature in each apartment can be evaluated further as follow. 

 

4.3.1 Relationship between weather factors and window opening 

behaviour 

4.3.1.1 Indoor temperature effect on the window operation in old apartments 

Previous study represented that the indoor temperature is one of most important 

factors related to window opening in residential buildings (Fabi, et al., 2012). Thus 

the relationship between window opening behaviour and indoor temperature can be 

evaluated further as follow. Figure 4.5 describes in old apartment 1, the correlations 

between the proportions of window opening and indoor air temperature in living and 

main bedroom analysed by Probit regression model. It was found that the 

proportions of window opening increases with indoor air temperature increased in 
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both living room and main bedroom. Proportions of window opening rise 

approximately to 40% at 22°C of living room in old apartment 1. Proportions of 

window opening reach to 37% at 22°C of bedroom in old apartment 1. Figure 4.9 

show that probability of window opened in both living and bedroom account for 

around 35% when indoor temperature around at 23°C in old apartment 5.  

Overall, Figure 4.5 to 4.11 reflects that indoor temperature increased from 15 to 

20°C, the more windows opened obviously by occupants. For all old apartments, the 

proportion of windows opening strongly related to indoor temperature in both living 

room and main bedroom. Figure 4.8 reflect that the proportions of window opening 

rise from 20 to 40% when indoor temperature increased from 18 to 24°C in old 

apartment 4. The inferred probability of open window in old apartments varied as a 

function of the indoor air temperature. There was a significate increase in the 

probability as the indoor temperature increased. It suggesting that indoor 

temperature was a significant predictor.  

 

Figure 4.5 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 1 
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Figure 4.6 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 2 

 

 

Figure 4.7 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 3 
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Figure 4.8 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 4 

 

 

 

Figure 4.9 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 5 
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Figure 4.10 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 6 

 

 

Figure 4.11 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in old apartment 7 
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4.3.1.2 Indoor temperature effect on window operation in new apartments 

Previous study represented that the correlation between indoor temperature and 

occupants’ window behaviour and it is one of most important factors related to 

window opening in residential buildings (Fabi, et al., 2012; Dubrul, 1988).  Thus the 

relationship between window opening behaviour and indoor temperature in living and 

bedrooms can be evaluated further as follow.  

Figure 4.12 describes in new apartment 1, the correlations between the proportions 

of window opening and indoor air temperature in living and main bedroom analysed 

by Probit regression model. It was found that the proportions of window opening 

increases slightly with indoor air temperature increased in both living room and main 

bedroom. Proportions of window opening rise approximately to 18% at 20°C of living 

room in old apartment 1. Proportions of window opening reach to 16% at 20°C of 

bedroom in old apartment 1. For new apartment 2, the proportion of windows open is 

not very strongly related to indoor temperature in both living room and main bedroom. 

Probability of window opened in both living and bedroom account for around 8% at 

19°C in Old apartment 2(Figure 4.13). For all new apartments, the proportion of 

windows open slightly related to indoor temperature in both living room and main 

bedroom. Figure 4.17 describe that proportion of window opened in both living and 

bedroom rise from 6 to 10% when indoor temperature rise from 15 to 20°C in old 

apartment 6. 

In general, Figure 4.12 to 4.18 reflects that indoor temperature increased, the more 

windows opened slightly by occupants. The inferred probability of open window in 

new apartments varied little as a function of the indoor temperature. There was a 

slight increase in the probability as the indoor temperature increased. This is maybe 

because the occupants prefer to use heating control system to adjust indoor 

environment based on their actual habit. Further analysis in section 4.3.2, 

represented the most reasons of opening window were ventilate to fresh air into 

apartments.  
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Figure 4.12 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 1 

 

 

Figure 4.13 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 2 

 

0 10 20 30 40
0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Indoor air temperature (°C)

P
ro

po
rti

on
s 

of
 w

in
do

w
 o

pe
ni

ng
 (%

)

 

 
Estimated line-Living room
Estimated line-Bedroom
Measured point-Living room
Measured point-Bedroom

0 10 20 30 40
0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

Indoor air temperature (°C)

P
ro

po
rti

on
s 

of
 w

in
do

w
 o

pe
ni

ng
 (%

)

 

 
Estimated line-Living room
Estimated line-Bedroom
Measured point-Living room
Measured point-Bedroom



117 
 
 

 

Figure 4.14 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 3 

 

 

Figure 4.15 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 4 
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Figure 4.16 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 5 

 

 

Figure 4.17 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 6 
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Figure 4.18 Logistic regression curve for window open as a function of the indoor air 
temperature in living room and bedroom in new apartment 7 
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Figure 4.19 The binned hourly mean outdoor temperature from 08:00 to 24:00 
observation period 

Figure 4.19 indicates the binned hourly outdoor temperature from 08:00 to 24:00, 

and it gives a diagram of outdoor conditions during investigated periods in this study. 

In order to estimate confidence in results, each temperature bin includes all 

observed days during heating periods. In order to identify if the window opening 

behaviour in all new apartments is different from all old apartments have been 

explored. It is important to determine the relationship between the observed window 

opening behaviour and outdoor air temperature. Important statistical properties of 

two logistic regression models are closed (coded as 0) and open (coded as 1). The 

logistic regression analysis of window open in longitudinal monitoring of Figure 4.20 

describe the probability of open window as function of the outdoor air temperature in 

new and old apartments. As previous study found that the proportion of windows 

open strongly related to temperature. In Figure 4.20 the new apartment model with 

the observed proportions of window left open against outdoor temperature is plotted 

on the top and the old apartment model is plotted on the bottom. The scatters plotted 

with the actual response of observation window left open during whole monitored 

periods. The correlation between the predicted proportions of open window and 

outdoor temperature have also been used by Nicol and Humphreys, they found 

similar relationship in Danish dwellings (Nicol & Humphreys, 2004). There is clearly 

difference between old and new apartments. The proportions of window opening in 

new apartments are generally lower than that in the old apartments. Comparisons in 

figure 4.20, it plot that the occupants in old apartments opening windows in 
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consistent with increases outdoor temperature (Raijal, et al., 2007). This is maybe 

because outdoor temperature with higher solar radiation, the indoor temperature 

increased, the more windows opened by occupants. It is important to note that there 

are significate correlations between outdoor temperature and window opening in old 

apartments. The inferred probability of open window in new apartments varied little 

as a function of the outdoor temperature, suggesting that outdoor temperature was 

not a significant predictor. There was a slight increase in the probability as the 

outdoor temperature increased. This could be an effect of new heating control 

systems and heating payment, which is describe in sections 4.4.  

The proportions of window opening in living room and bedroom for old apartment are 

given by:  

 𝑝𝑝-Living room = exp(-3.285+0.178*Tout)/[1+exp(-3.285+0.178*Tout)]*100 

 𝑝𝑝-Bedroom = exp(-3.785+0.168*Tout)/[1+exp(-3.785+0.168*Tout)]*100 

The proportions of window opening in living room and bedroom for new apartment 

are given by:   

𝑝𝑝-Living room = exp(-4.185+0.148*Tout)/[1+exp(-4.185+0.148*Tout)]*100 

𝑝𝑝-Bedroom = exp(-4.313+0.139*Tout)/[1+exp(-4.313+0.139*Tout)]*100 

 



122 
 
 

 

 

Figure 4.20 Logistic regression curve for window open as a function of the outdoor air 
temperature in old apartments (top) and new apartments (bottom) 
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during this period of times. Phase two (T2) is from 7:00am to 9:00am during morning 

time when they wake up until left to work. Phase three (T3) is from 9:00am to 

18:00pm, because occupants start to work until finish work and come back to home 

during this period of times. Phase four (T4) is from 6:00pm to 8:00pm, normally 

occupants arrive to home after work and have dinner during this period of times. 

Phase five (T5) is after 20:00pm until midnight. Based on five time phase, the results 

for different time of day with overall figures are presented in figure 4.21 and 4.22. 

Based on the window devices monitoring, the results showed that overall, the 

majority of occupants in both types of apartments used to open the window for 

ventilating and bring in fresh air during the morning time around 7:00am to 9:00am 

when they get up. This conclusion was also identified by other researcher, from 

findings of study conducted by Johnson and Long determined the probability of 

window opening and closing during time of the day. In general, the maximum of 

window openings occur in the morning. During cooking time of early afternoon, the 

number of open windows is relatively high (Johnson & Long, 2005).   

Table 4.2 Summary of five main time phase 

T1 0:00am-7:00am 

T2 7:00am-9:00am 

T3 9:00am-18:00pm 

T4 18:00pm-20:00pm 

T5 20:00pm-24:00am 
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Figure 4.21 Time of day effect on window opening for each each new apartments 

 

 

Figure 4.22 Time of day effect on window opening for each old apartments 
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field measured data reflect that during the morning time, the windows in both old and 

new apartments were opened more compared with other phases of the overall 

monitoring time. This confirms the findings of Fabi et al suggested that the number 

of windows were most opened during morning time when people wake up (Fabi, et 

al., 2012b). Comparisons in figures, it is also need noted that the proportion of 

window opened are second highest during 18:00pm to 21:00pm, this conclusion was 

also identified by other researcher, in general, during cooking time of early afternoon, 

the number of open windows is relatively high (Johnson & Long, 2005). 

 

4.3.1.5 Orientation of rooms effect on window operation  

According to study of IEA Annex VIII project (Dubrul, 1988) found that the orientation 

of rooms is important to relate with window operation. The outdoor temperature were 

binned ranges from 10°C to 27°C, details ranges 10°C ≤Tout<15°C, 15°C ≤Tout<20°C, 

20°C ≤Tout<25°C, 25°C ≤Tout<27°C. Therefore the relationship between the 

proportions of window opened and outdoor temperature according to window 

orientation in both old and new apartments can be identified. From Figure 4.23, it 

was observed that in general, south facing rooms were more likely to be opened 

than north facing rooms in old apartments. Figure 4.23 indicates outdoor 

temperature range from 25 to 27°C there are the significate different between south 

facing rooms and north facing rooms. This is most likely because of that if the room 

have more direct solar radiation during sunny day in winter, the more window 

opened by occupants.  

The data observed from study for new apartments as shown in Figure 4.24. However, 

the differences between south facing rooms and north facing rooms, which are not 

appear obviously. Thus, in this study, the factor of window orientation can be treated 

as an influencing factor on the occupants’ window behaviour. In particular, in old 

apartments with high indoor air temperature, the room in south face can be heat up 

quickly by direct solar gain, which means occupants opened window to decrease 

indoor thermal environment due to overheating. In this study, there were not found 

significate linked, it may be explained by the fact that the different type of building 

and lifestyle of occupants. There are some evidence of the orientation of room have 
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effect on proportion of window opened in each new and old apartments individually. 

This is can be observed from Appendix F, there are slight variations between north 

facing and south facing rooms effect on window opening behaviour in new 

apartments. However, in each old apartments south facing room appear to have a 

significant impact on the window opened when outdoor temperature range from ≥ 

25°C to < 27°C.  

 

Figure 4.23 Proportion of window opened based on orientation of room for old 
apartments 

 

 

Figure 4.24 Proportion of window opened based on orientation of room for new 
apartments 

 

0

10

20

30

40

50

>=10 to <15 >=15 to <20 >=20 to <25 >=25 to <27Pr
op

ot
io

n 
of

 w
in

do
w

 o
pe

ne
d 

(%
) 

Outdoor Temperature (°C) 
South North

0

10

20

30

40

50

>=10 to <15 >=15 to <20 >=20 to <25 >=25 to <27Pr
op

ot
io

n 
of

 w
in

do
w

 o
pe

ne
d 

(%
) 

Outdoor Temperature (°C) 

South North



127 
 
 

4.3.1.6 Type of rooms effect on window opening 

In overall, for all new apartments, the results reflect that windows in bedroom were 

opened for 28.9% of the monitoring time, while they were opened for 32.7% of the 

monitoring time in living room. In overall, for all old apartments, the windows in 

bedroom were opened for 43.8% of the monitoring time, while they were opened for 

50.3% of the monitoring time in living room. Therefore, the effect of different type of 

rooms would be easier to identify from results.  

Figure 4.25 shows the probability of window opened in living room and main 

bedroom for each new apartment. The results investigated that the slightly more 

percentages of window opened are in living room for new apartments. The 

percentage of window opened in living and bed room for overall monitoring time in 

each old apartment can be observed in Figure 4.26. It may reflect that the type of 

room have slightly more obvious effect on probability of window opening behaviour 

due to type of rooms in old apartments compared with that in new apartments. In 

addition, as previous study from Dubrul, it also found that in old apartments if 

occupants tend to open the windows to ventilate air in their bedrooms frequently and 

they also tend to open windows to ventilate air in their living room at high levels. 

However, this is not appearing significantly in new apartments (Dubrul, 1988). 

 

Figure 4.25 Type of room effect on window opening in new apartments 
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Figure 4.26 Type of room effect on window opening in new apartments 
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This is may be explained by new heating control system and new heating payments 

were installed in new apartments. The correlations between window opening and the 

heating operation behaviour will be discussed further in section 4.4.  

The investigation of questionnaires are presented in Appendix A, in questionnaires, 

the personal reasons of opening windows were investigated, occupants were asked 

to respond their one or more actions based on questionnaires. Therefore, the 

proportions do not add up to 100% in total. Also the figure shows the both new and 

old apartments were that the respondents wanted more fresh air, they are 57% and 

50% respectively. It was particular in the morning time get fresh air bedroom is one 

of most reason for opening windows. In the new apartments survey 29% of the 

occupants want to remove moisture and in the old apartments survey 36% of the 

occupants want to remove moisture, respectively. It found that occupants in old 

apartments were more likely want to remove moisture. The reason related to this 

could be explained that different level of insulation, and previous study found that 

occupants living in single glazing dwellings open window more than occupants living 

in double glazing dwellings. This is partially related to occupants report removal of 

condensation on windows in single glazing dwellings (Dubrul, 1988).  

 

Figure 4.27 Agreement in the reasons for opening windows for new and old 
apartments 
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4.4 Heating behaviour in new apartments 

4.4.1 Characteristics of adjustment of TRVs 
Heating behaviour play an important role in adjusting indoor temperature. In new 

apartments, there are thermostatic radiators valves (TVRs) install in each radiator, 

the occupants can adjust it to achieve satisfied indoor environment. From the one 

week self-recording of heating behaviour and based on questionnaires, the 

occupants in new apartments adjust TRVs to change set-point behaviour can be 

concluded as three main patterns: first is only adjust TRVs once (i.e. apartment 5), 

second is adjust TRVs frequently during day (i.e. apartment 2, apartment 3 and 

apartment 6), third is TRV adjusting TRVs few times to keep long time on same set-

point (i.e. apartment 1, apartment 4, apartment 7).  

For first pattern of TRVs adjustments, in details, in apartment 2, 3 and 6, TRVs 

adjustments were very frequently compared with other apartments. Figure 4.28 

shows an example of indoor temperature variation with TRVs adjustments in 

bedroom of apartment 6 during two sample days. It can be seen from figure, the air 

temperature fluctuate according to TRV adjusted by occupant during 6:40am to 

8:35am when they wake up. At the time when they left to work after 8:35am, 

occupants turn down TRVs. However, combination of questionnaire and indoor 

climate measurement, it observed that TRVs set-point was turn up range from 1 to 4 

at 7:34pm when they come back to home after work. When the outdoor temperature 

has dropped to 6.9°C the heating set-point range was increased.  

Figure 4.29 shows an example of indoor temperature variation with TRVs 

adjustments in living room of apartment 6 during workdays. It can be seen from 

figure, the air temperature constant drop down during nigh time, between 12:00am to 

5:31pm. Occupants prefer cool environment of living room and only turn on TRVs 

set-point between 5:50pm to 8:34pm. In addition, this figure shows that TRVs were 

turned down when they go to bed during night time in living room. The indoor 

temperature decrease constantly after TRVs was turned down to range 1. 
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Figure 4.28 Two sample day plot of indoor and outdoor temperature with TRVs 
adjusted range in bedroom in apartment 6  

 

 

Figure 4.29 Two sample day plot of indoor and outdoor temperature with TRVs 
adjusted range in living room in apartment 6  
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From the comparison, it could be found that both the living room and the bedroom, 

TRVs were adjusted frequently in apartment 6. This confirms previous field 

experiments study (Xu, et al., 2009) carried out the results of occupants’ behaviour in 

TRVs regulation in distract heating system residential buildings in Tianjin. They 

found that 28% of total occupants adjust TRVs frequently and even several times 

during a day. And occupants adjust TRVs according to occupants’ schedule.  

For second pattern of TRVs adjustments, in living room of apartment 5, TRVs 

adjustments were changed once and keep same set-point on range 4-5 during whole 

observed period. There have some evidence of TRVs were never adjusted and room 

were heated constantly. This is can be observed in Figure 4.30, the indoor air 

temperature keep constantly in bedroom in apartment 5 during two sample days. At 

the time the TRVs set-point were not changed. The air temperature is only drop 

slightly around 5:00pm. It may be related to window opened by occupants.  

 

Figure 4.30 Two sample day plot of indoor and outdoor temperature with TRVs 
adjusted range in bedroom in apartment 5 

 

Figure 4.31 show that the TRVs set-point were not changed and the indoor air 

temperatures were constantly in living room in apartment 5 during two sample days. 
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The air temperature is only deceased slightly from 7:10am to 7:40am. It could be 

related to window opened by occupants. As mentioned before, the detail information 

about correlation between TRVs set-point adjustment and occupant window opening 

behaviour will be further discussed in next section.    

 

Figure 4.31 Two sample day plot of indoor and outdoor temperature with TRVs 
adjusted range in living room in apartment 5 

For third pattern of TRVs adjustments, for instant, in both living room of apartment 2, 

occupants adjust TRVs once to keep long time on set-point 4-5, only turned down 

when outdoor temperature were relatively higher. In both living and bedroom of 

apartment 1, TRV were adjusted based on occupancy of occupants, it were not 

regular during workdays however it were adjusted few times in particular during 

weekend when occupants stay in home. 
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relationship between TRVs set-point adjustment as function of outdoor temperature 

and survey shows that the correlation between higher outdoor temperature and 

lower TRV set-point adjustment in new apartments. Furthermore, the investigation 

indicated that some occupants turned down the TRV set-point when opening window. 

The data demonstrates that the uses of TVRs of heating were significantly related to 

outdoor temperatures in this study. As previous study mentioned that the heating 

behaviour of domestic dwellings was related to the outdoor temperature. The 

heating behaviour influenced by factors of the outdoor temperature ( Larsen, et al., 

2010). This is confirms the findings of Andersen et al. It found that the use of 

thermostatic radiator valves set-point space heating have strong correlations with 

outdoor temperature (Andersen, et al., 2009). 

 

Figure 4.32 Logitted curve for TRVs set-point as a function of the outdoor temperature 
in new apartments  
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questionnaire of adjusting TRVs by occupants. From another perspective, we might 

be able to explain this significant phenomenon by looking at the different heating 

system and heat billing systems, hence the occupants can adjust the TRVs in 

radiators if the room is overheated or they prefer to use lower heating energy for cost 

of heat billing. 
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4.4.2.2 Occupants of personal factors  

Based on investigation of individual background questionnaire, Table 3.6 in section 

3.4.4 describes that individual social background in each apartment. From the table, 

the education level of each household are presented. The education level of 

occupants in apartment 3 and apartment 6 are relatively higher than occupants in 

other apartments. From the one week self-recording of heating behaviour and based 

on questionnaires, the occupants in apartments 3 and 6 adjust TRVs frequently to 

change set-point. This is may reflect that the correlation between occupants have 

higher education level, higher requirements they have. The data from previous study 

supports this finding. The education level was a factor influencing use of heating has 

been confirmed in previous study (Guerra-Santin & Itard, 2010). 

4.4.2.3 Dwelling age and type of rooms:  

In our study, the new case study building were built within five years and old one 

were built at late 1990s, the insulation level of each building are significant different. 

Furthermore, for the winter heating period, occupants in newer apartments achieve 

their satisfied thermal environment via using TRVs control system. Therefore it is 

assumed that the different heating behaviour could be due to different building ages. 

This is confirms the finding of correlations between ages of dwellings and use of 

energy on heating (Hunt & Gidman, 1982).  

The relationship between type of room and adjustment mode of TRVs have been 

identified in this study. Figure 4.33 shows the probability of TRVs adjustment in living 

room and main bedroom for each new apartment. The results investigated that in 

apartment 6 presents the highest frequency of TRVs adjustment of overall 

monitoring week. In addition, occupants in apartment 3 also prefer to adjust TRVs in 

both bedroom and living room of overall monitoring week. It may reflect that the 

occupants tend to adjust TRVs in their bedroom and they also tend to adjust similar 

level in the living room. However generally in all apartments, the different type of 

rooms influence TRVs adjustments is very weak.  
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Figure 4.33 The frequency of TRVs set-point adjustment in both living and bedrooms 
in all new apartments 

 

4.4.2.4 Energy price 
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This is may be due to the fact that home with different heating bills systems. 
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apartment. Therefore, occupants do not need pay more attention to heating payment 

bill and heating energy consumption. The correlation between energy consumption 

for space heating and energy price has been confirmed by empirical study, increase 

in the average price of energy used in the chosen heating technology is estimated to 
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4.4.3 The correlation between heating behaviour and window opening 
The questionnaires and measurements of TRVs set-point adjustment showed that 

the outdoor temperature have an influence on occupants’ heating behaviour. And 

0

5

10

15

20

25

30

Apartment 1 Apartment 2 Apartment 3 Apartment 4 Apartment 5 Apartment 6 Apartment 7

Fr
eq

ue
nc

y 
of

 T
RV

s 
se

t-
po

in
t 

ad
ju

st
m

en
ts

  

Apartment number 

Living room Bedroom



137 
 
 

other potential parameters were analysed in above sections, such as type of rooms, 

dwelling age and energy price. Dwelling age and energy price were found to have 

influence on occupants’ heating behaviour. In our study, according to investigation 

the occupants keep TRVs set-point at a lower setting level, occupant opened window 

less than that the occupants keep TRVs set-point at higher setting level in other 

apartments. In addition, based on all results of questionnaires and measurement of 

operation of window opening, it found a negative correlation between TRVs setting 

and window behaviour. Few previous studies have confirmed that a negative 

correlation between thermostat set-points and window opening behaviour (Dubrul, 

1988; Andersen, 2009). 

 

4.5 Energy consumption 
During the survey period, the energy consumption of seven new apartments and 

seven old apartments have been monitored and compared in this section. As 

mentioned in section 3.3, the heat meters were equipped into all household in new 

apartments. The heating energy consumption was achieved by in-situ measurement 

of the recording by the residential heat meter in each apartment. However, the 

heating energy used in each old apartment was measured manually. Based on the 

measured parameters, the heat consumed by each apartment can be calculated 

based on the theory of heat meter in new apartments. The results presented in 

Figure 4.34 indicated that the energy consumption in new and old apartments during 

whole experimental periods. Furthermore, Table 4.3 gives the energy consumption 

for new and old apartment based on areas in total. The results show that the new 

apartments total consumed 5863.2 kWh heating energy during the survey period and 

that in the old apartments total consumed 11070.7 kWh heating energy, leading to 

an energy saving of 45%. Overall from real-time measurement of different end-use 

heating energy consumption, it reflects the energy uses in old apartments are higher 

than that in new ones. Therefore, it is important to assess the correlation between 

potential factors affecting on heating energy consumption, next section 4.5.1 and 

4.5.2 summarise each potential factors.  
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Figure 4.34 Comparison of energy consumption in new and old apartments 

 

Table 4.3 Energy consumption of new and old apartments based on aeras 

 
Energy used in New apartments  Energy used in Old apartments  

1 8.48kWh/m2/month 20.42 kWh/m2/month 
2 8.49 kWh/m2/month 20.80 kWh/m2/month 
3 8.22 kWh/m2/month 18.31 kWh/m2/month 
4 11.38 kWh/m2/month 17.27 kWh/m2/month 
5 11.75 kWh/m2/month 21.46 kWh/m2/month 
6 7.57 kWh/m2/month 20.09 kWh/m2/month 
7 11.85 kWh/m2/month 15.76 kWh/m2/month 
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consumption in this study. The insulation level, occupant behaviour and household 

characteristics were analysed. Different levels of insulation have significant impact 

on energy use, in other words, better insulated dwellings use much lower energy 

than that in less insulated dwellings. Insulation level can be treated as an important 

parameter in demand of heating in dwellings (Santin, et al., 2009; Schuler, et al., 

2000; Haas, et al., 1998). Recently, in Chinese residential buildings, the building 

standards mandatory require improving the insulation in new residential buildings. 

Experience tells us and previous study confirms that well-insulated building not only 

can improve occupants’ environmental comfort, but also reduce heating energy 

consumption. In this study, as section 3.5 descript the insulation level in new 

apartments have much better insulation than the old ones based on the building 

design standards (JGJ26-2010, 2010; GB50176-93, 1993). This is one of reason for 

new apartments employ with new standards consumed less energy. Regarding the 

window structure, old apartments used single glazing and new apartments used 

double glazing. Double glazing used air inside two glasses lead to smaller heat 

transfer coefficient and it helps to save energy. Therefore, it may be reflect that the 

better insulated new residential building lead to more energy saving and save money 

(Liu & Liu, 2011). Conclusion of finding has been confirmed by previous studies that 

the lower energy consumption in newer apartments due to new building regulations, 

In addition, higher energy use of space heating in older apartments, the reason for 

this may be due to better insulation in newer apartments than in older apartments 

(Leth-Petersen & Togeby, 2001; Nesbakken, 2001).  

It is worthy to note that occupant behaviour interaction with the thermal 

environmental. The actual usage of building changes on a daily basis. Therefore, it is 

worth to take into account the importance of occupant behaviour in residential 

buildings, shows following below (Maile, et al., 2007). According to Xu et al (2009) 

investigated that the central heating system with TRVs adjusted by occupants in 

Chinese new residential buildings together with new heating payment. It was 

concluded that momentous difference in the frequency of occupant adjusted the 

TRVs set-point result in energy saving compared with old traditional heating payment. 

Essentially, by the literature, this is one of reason for new apartments consumed 

energy lower than old ones and this confirms in our study. 
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4.5.2 Households variables and energy consumption 
Previous research has shown that the household income is one of the most 

significant drivers of energy use for space heating. Each household income was 

collected during questionnaire interview. It is note that household income is likely to 

have impact on heating control system usage in new apartments. In apartment 5 the 

household income is relatively higher than household in other apartments, and this 

apartment consumed highest heating energy use. Consequently, it revealed that 

higher household income connect to higher energy consumption in apartment 5. It is 

need to mention that the floor area likely to have indirect important impact on energy 

use related to income. Because higher income families live in bigger apartments that 

then in turn impacts on energy consumption (Chen, et al., 2013). This is also 

confirms of findings from previous study revealed that the mean of income increased 

by 1% lead to the mean of energy consumption increased by 0.04% for space 

heating (Sardianou, 2008). However, in apartment 2, household income also 

relatively higher than others, there are negative relations between incomes and 

heating energy consumption was found.  

Education level was expected to affect the use of heating related to final energy 

consumption, it is worth noticing that the households in apartments 3 and 6 adjust 

TRVs frequently to change set-point related to higher education level so that higher 

requirements they have. Therefore, they may have higher awareness to reduce 

energy consumption via adjust TRVs set-point (Guerra-Santin & Itard, 2010).   

In our study, a substantial correlation between age of occupants and residential 

energy consumption have been demonstrated, it was found that the older occupants 

in apartment 5 contribute to higher energy consumption compared with younger 

occupants in other apartments. What follows is a discussion on the potential reasons 

for this phenomenon by different education level and lifestyles between older and 

younger in China.  
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4.6 Heat loss comparison in new and old apartments  

4.6.1 Fabric heat loss in new and old apartments 
In order to determine the difference heat loss between old and new apartments 

influence on energy consumption. The theoretical of heat loss need to be worked out 

by using calculation methods. Indeed, in order to maintain comfort in winter, the heat 

lost must be replaced by a heating system and insulation level provide an effective 

resistance to the flow of heat lead to decrease the energy needed for heating. While 

this saves on running cost for the building and helps the environment by reducing 

dependence on fossil fuels. It is obvious to note that it is hard to achieve a near zero 

U-value for all parts of a building fabric via physically or economically methods. 

However, it is important to note that in order to reduce heat loss from buildings, the 

simplest way to reduce fabric heat loss from building is to improve insulation level. 

The thermal transmittance (U-value) of the building fabric is the most significant 

factor that influences the heat loss from building and also lower U-value can lead to 

lower heat loss (Intelligent energy-Europe, 2011; CIBSE, 1999). In our study, U-

value of new and old apartments was given above, and it indicates much better the 

U-value in new apartments than that in old apartments. The indoor and outdoor 

temperatures were test by using data loggers, the temperature difference between 

indoor and outdoor can be worked out. As mentioned in section 3.5.4, the details of 

calculated dimensions of areas in all new and old apartments were list in table 3.11. 

To calculate the total fabric heat loss from all apartments by using appropriate 

equations involve calculate heat loss through the blockwork firstly, calculate the heat 

loss through and windows and doors secondly, however, it is normal to ignore the 

door without glazing and add into wall area in most calculations and finally calculate 

heat loss through floor and roof. Therefore, table 4.4 shows total fabric heat loss 

from all apartments calculated together with the details of dimensions for the area 

calculation. Table 4.4 shows that the heat loss through fabric in old apartments is 

much higher than that in new apartments. The results reflected that better insulation 

level lead to lower heat loss and therefore influence energy use and indoor 

temperature in this study. Lower U-values in new apartments will results in heat loss 

through fabric decreases compared with that in old apartments. The principle of 

building physics show that during cold conditions heat loss through the fabric 
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increase and high indoor temperatures will lead to greater heat loss and more 

energy use (Kane, 2013).  

Table 4.4 Total fabric heat loss for new and old apartments 

 

Total Qf in old apartments 
(Watts) 

Total Qf in new apartments 
(Watts) 

Apartment 1 2164.70 805.34 

Apartment 2 2149.89 939.34 

Apartment 3 2262.57 865.41 

Apartment 4 2227.16 948.63 

Apartment 5 2024.88 982.03 

Apartment 6 2297.99 836.80 

Apartment 7 2333.40 966.63 

*Qf is the value of fabric heat loss of buildings 

4.6.2 Ventilation heat loss in new and old apartments 
Ventilation heat loss in building brings outside cold air replaces the warm inside air. It 

is important to note that in order to reduce heat loss from buildings, lower possible 

ventilation rate lead to lower heat loss. Indeed it is necessary to comply with 

minimum ventilation rates set by government regulations have minimum amount of 

air change via ventilating to provide adequate supply of fresh air and high indoor air 

quality (Intelligent energy-Europe, 2011). In our study, as mentioned previously, the 

U-value of new and old apartments was given, the difference between indoor and 

outdoor temperature were worked out. Infiltration rate (ac/h) was determining with 

Chinese building standards provide a value of 0.6 ach of air change per hour. 

Volumes of rooms in the new and old apartments were calculated previously given in 

table 3.11. Johnson suggested that geometric mean to change from 0.76h-1 for no 

openings to 1.51 h- 1 for one opening, 2.30 h- 1 for two openings and 2.75h -1 for 

three or more openings (JOHNSON, et al., 2004). Calculate the total heat loss from 

all new and old apartments shown in table 4.5. It can been seen from below 

calculations that heat loss through fabric are higher than heat loss through 

ventilations in both new and old apartments. However, the calculations of 

assumption of air change rate for both new and old apartments offer a value of 0.6 

ach based on Chinese building standards. Obviously, in this study, the overall field 
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measured data reflect that the windows in all old apartments were opened for 54% of 

the monitoring time, while they were opened only for 29% of the monitoring time in 

all new apartments. It is therefore important to establish accurate value for air 

change rate in two different types of apartments. It was also found in Table 4.5, the 

heat loss through fabric for old apartments are significant different from new ones. 

However the heat loss from ventilation for old apartment is slightly different from new 

one. It is therefore in order to ensure defined air change rate in the different type of 

apartments, the air change values can be corrected sufficiently under reasonable 

conditions in practice assumed as 0.76, 1.51, 2.30 ac/h. 

Table 4.5 Total heat loss from all new and old apartments 

  

Old apartments 
  

New apartments 

 

∑Qf 

(Watts) 

∑Qv 

(Watts) ∑Qtotal (Watts)  

∑Qf 

(Watts) 

∑Qv 

(Watts) 

∑Qtotal 

(Watts) 

Apartment 1 2164.70 232.10 2396.80 

 

805.34 228.36 1033.71 

Apartment 2 2149.89 231.24 2381.14 

 

939.34 226.18 1165.53 

Apartment 3 2262.57 242.62 2505.20 

 

865.41 196.01 1061.43 

Apartment 4 2227.16 238.76 2465.93 

 

948.63 222.50 1171.14 

Apartment 5 2024.88 249.12 2255.01 

 

982.03 234.73 1216.76 

Apartment 6 2297.99 246.45 2544.44 

 

836.80 194.57 1031.37 

Apartment 7 2333.40 283.29 2616.70 

 

966.63 205.78 1172.42 

*Qf is the value of fabric heat loss of building; Qv is the value of ventilation heat loss of building 

The total ventilation heat loss in old apartments calculated with air change rate at 

0.6ac/h in new and old apartments are also presented in table 4.6 and different air 

change rate have significant effect on total ventilation heat loss in different type of 

apartments. The air change rate at 2.3ac/h in ventilation heat loss calculation 

obviously differs from the air change rate at 0.6ac/h in ventilation heat loss 

calculation. In old apartments, the higher air change rate at 1.51ac/h resulted in 

ventilation heat loss that was increased by 61.1% averagely than air change rate at 

0.6ac/h. In new apartments, the higher air change rate at 0.76ac/h resulted in 

ventilation heat loss that was increased by 21.1% averagely than air change rate at 

0.6ac/h. It is therefore as shown in table 4.6, the higher ventilation heat loss due to 

increase of air change rate in both new and old apartments. 
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Table 4.6 Comparison of corrected ac/h in new and old apartments  

Old 
apartments 

ac/h at 0.6 (Qv 
in Watts) 

ac/h at 0.76 
(increased %) 

ac/h at 1.51 
(increased %) 

ac/h at 2.3 
(increased %) 

1 232.10 315.99 (22.5%) 638.62 (62.5%) 914.72 (71.5%) 

2 231.24 314.91 (22.5%) 626.47 (62.1%) 921.45 (72.9%) 

3 242.62 307.32 (21.2%) 610.60 (60.3%) 930.06 (73.9%) 

4 238.76 302.43 (21.2%) 600.89 (60.3%) 915.27 (73.9%) 

5 249.12 308.16 (20.2%) 653.32 (61.9%) 960.48 (74.1%) 

6 246.45 312.17 (21.2%) 620.23 (60.3%) 944.73 (73.9%) 

7 283.29 358.83 (21.2%) 682.95 (60.3%) 985.95 (71.3%) 

     New 
apartments 

ac/h at 0.6 (Qv 
in Watts) 

ac/h at 0.76 
(increased %) 

ac/h at 1.51 
(increased %) 

ac/h at 2.3 
(increased %) 

1 228.36 268.28 (20.2%) 493.30 (60.7%) 791.39 (72.6%) 

2 226.18 286.49 (21.1%) 569.22 (60.3%) 867.03 (71.5%) 

3 196.01 260.65 (21.1%) 517.88 (62.2%) 788.83 (71.5%) 

4 222.50 281.83 (21.1%) 559.96 (60.3%) 852.92 (73.1%) 

5 234.73 297.32 (21.1%) 590.74 (60.3%) 899.80 (72.5%) 

6 194.57 246.45 (21.1%) 529.66 (60.3%) 745.85 (71.5%) 

7 205.78 289.26 (21.1%) 524.71 (62.2%) 875.39 (71.3%) 

 

In original, the calculations of air change rate of new and old apartments were 

assumed as 0.6ac/h. However, as mentioned above, the windows in all old 

apartments were opened longer than that in all new apartments of the monitoring 

time. In addition, it was found that previously the higher ventilation heat loss due to 

increase of air change rate in both new and old apartments. As a consequence, the 

reasonable air change rate corrected to 0.76ac/h in new apartments for calculation 

and corrected to 1.51ac/h in old apartments for calculation.  

Table 4.7 lists sum of heat loss in old apartments compared to sum of heat loss in 

new apartments. The air change rate was explored using 1.51 in old apartments and 

will results in higher total heat loss which increased by 14.1% compared with original 

total heat loss. Meanwhile, the air change rate was explored using 0.76 in new 

apartments and result in higher total heat loss which increased by 5.1% compared 
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with original total heat loss. As a consequence, the useful comparisons of calculated 

total heat loss in new and old apartments were presented above. After corrected the 

appropriate air change values calculation in two types of apartments, the reasonable 

air change rate can be assumed as 0.76ac/h in new apartments for simulation 

models and 1.51ach/h in old apartments for simulation in models. A summary of the 

information is presented in further section 5.2.2. 

Table 4.7 Reasonable correction of ac/h and total heat loss in new and old apartments  

 

Qf (Watts) 
Qv (Watts)  
ac/h at 1.51 

∑Qtotal 

(Watts) 

Qtotal (Watts) 
ac/h at 0.6(default 

assumed)) 
Increased 

(%) 

Old apartment 1 2164.70 618.62 2783.32 2496.80 0.141 

Old apartment 2 2149.89 626.47 2776.36 2481.14 0.145 

Old apartment 3 2262.57 610.60 2873.18 2505.20 0.146 

Old apartment 4 2227.16 600.89 2828.06 2465.93 0.146 

Old apartment 5 2024.88 653.32 2678.20 2455.01 0.147 

Old apartment 6 2297.99 620.23 2918.23 2544.44 0.146 

Old apartment 7 2333.40 712.95 3046.36 2516.70 0.146 

      

 

Qf (Watts) 
Qv (Watts)  
ac/h at 0.76 

∑Qtotal 

(Watts) 

Qtotal (Watts) 
ac/h at 0.6(default 

assumed) 
Increased 

(%) 

New apartment 1 805.34 248.28 1053.63 1133.71 0.049 

New apartment 2 939.34 286.49 1225.84 1165.53 0.051 

New apartment 3 865.41 260.65 1126.07 1061.43 0.055 

New apartment 4 948.63 281.83 1230.47 1171.14 0.050 

New apartment 5 982.03 297.32 1279.35 1216.76 0.051 

New apartment 6 836.80 246.45 1083.26 1031.37 0.051 

New apartment 7 966.63 289.26 1255.90 1172.42 0.054 

 

4.7 Comparison of heating cost in new and old apartments  
The new building standard is not only aim to reduce the existing residential buildings 

energy consumption and to improve indoor thermal comfort, but also to decrease 

heating cost. The centralization heating is commonly used in residential buildings in 
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China and it comprised uncontrolled heating system with payment based on floor 

areas of occupants’ apartments. Heating consume tremendous energy wastes in 

residential buildings during winter. New building standard installed and payments of 

heating are relied on metered consumption in each apartment and provide incentives 

to occupants to use heat efficiently and to control their heat consumption during 

heating season in winter.  

Take account of whole heating season is from November 15th to March 15th 2014 

thus total heating season is 115 days. In old apartments, heat payment bills are 

calculated based on prices per square meter of heated areas. Heat tariff is set by 

local government in each province, which keep stable for many years. During the 

winter, for the old apartments in that community, the heating price is 5.3RMB/m2 

(XASRLGS, 2012). Occupants were asked for paying heating bill at the beginning of 

heating season.  

In new apartments heat metering bill include two main portions, one portion is based 

on floor areas and another portion is based on measurement of heat meter in each 

household according to actual heating use. The reform of heating payments bill 

system is aim to improve occupants’ awareness of more efficiency on heating energy 

usage. The reform of heat price with measurement of heat meter is 0.16RMB/kWh. 

The reforms of tariffs were descried in section 2.4.2 (XASRLGS, 2012). Thus total 

energy price can be calculated as following equations: 

𝒇𝒇𝒃𝒃 = (𝟏𝟏.𝟕𝟕𝟕𝟕 × 𝒇𝒇𝒉𝒉 × 𝟑𝟑𝟑𝟑%) × 𝑨𝑨𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 × 𝟒𝟒                                                                                  (12)                                                                              

Where 

 𝑓𝑓𝑏𝑏 is basic energy price, 

𝑓𝑓ℎ is heating price per meter square per month, 

𝐴𝐴𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is floor areas of each apartment 

 

𝒇𝒇𝒎𝒎 = 𝒇𝒇𝑸𝑸 × 𝑸𝑸𝒕𝒕 × 𝟕𝟕𝟕𝟕%                                                                                                           (13)                                                                                             

Where  

𝑓𝑓𝑚𝑚 is actual metered energy use 
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𝑓𝑓𝑄𝑄 is heating price per kWh 

𝑄𝑄𝑡𝑡 is total heating energy use metered by heat meter devices  

Thus, finally total energy price of new apartment can be calculated as: 

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  = 𝑓𝑓𝑏𝑏  + 𝑓𝑓𝑚𝑚 

Table 4.8 shows that each household of annual heating cost in new and old 

apartments are compared. The implications of heating bill reform were assessed, as 

a consequence, the reform of heating bill system have significant effect on economic 

and energy saving. According to table 6.1, the mean heating energy cost in old 

apartments is 2160.2RMB and the mean heating energy cost in new apartments is 

1053.8RMB which is respectively 1106.4RMB less than the cost in old apartments. 

Table 4.8 Comparison of total heating cost paid by each household in new and old 
apartments 

 

4.8 Summary 
This chapter has analysed the results of experimental data from measurements in 

both new and old apartments. Further to this, all potential factors such as indoor 

thermal environment, occupant behaviour and thermal comfort related to heating 

energy consumption of new and old apartments were compared respectively.  

• According to the results, the indoor temperature differences between old and 

new apartments were obvious. The observations indicate that the trend of 

 
Old apartments New apartments 

Apartment No 
Total heating payment 
(RMB/per household) 

Total heating payment 
(RMB/per household) 

1 1983.8 952.1 

2 1983.8 1230.3 

3 2204.8 986.9 

4 2204.8 1005.8 

5 1983.8 1245.3 

6 2204.8 993.9 

7 2555.8 962.6 
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indoor temperature is generally changed with outdoor temperature in both 

new and old apartments. The indoor temperatures in old apartments are 

generally higher than that in new apartments.  

• The overall field measured data reflect that the windows in all old apartments 

were opened for 54% of the monitoring time, while they were opened only for 

29% of the monitoring time in all new apartments. Overall, observed results 

reflect that indoor temperature increased from 15 to 20°C, the more windows 

opened obviously by occupants in old apartments. For all old apartments, the 

proportion of windows opening strongly related to indoor temperature in both 

living room and main bedroom. However, there was a slight increase in the 

probability as the indoor temperature increased in new apartments. 

• From one week self-recording of heating behaviour and questionnaires. The 

data suggests that the use of TVRs by occupants for heating was related to 

outdoor temperatures in this study. Additionally, the finding show that age of 

dwellings, education level of occupants, energy price can be factors that 

impact the use of energy for heating. 

• The results show that the new apartments consumed lower heating energy 

than the old apartments during the survey period and lead to an energy 

saving of 45%. The mean heating energy cost in new apartments is 

respectively 1106.4RMB less than the cost in old apartments. 

• The difference heat loss between old and new apartments influence on 

energy consumption were determined. As a consequence, the reasonable air 

change rate corrected to 0.76ac/h in new apartments for calculation and 

corrected to 1.51ac/h in old apartments for calculation.  
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5 Model validation and simulation results 

5.1 Introduction 
This chapter presents the simulation results related to relevant academic research 

area of this thesis. It divided into two main categories, one is validation assessment, 

measured data of weather files, occupancy patterns and energy supplied by heating 

system were used to simulation for calibrating models. Another is the comparison of 

simulated and measured results, how each factor impact on energy consumption 

and the further assessment and results were discussed.  

 

5.2 Validation of final energy consumption in new and old 

apartments 

The aim of model validation is to make sure the simulated model operated in a 

qualitatively realistic way compared with actual performance of building (Hilliaho, et 

al., 2016). Figure 5.1 shows the comparison analysis of real measured total energy 

consumption in new apartments and old apartments, also shows the predicted total 

energy consumption in old and new model simulation blocks. The measured results 

show that in the new apartments total consumed 5863.2kWh heating energy during 

the survey period and this in the old apartments total consumed 11070.7kWh heating 

energy, leading to an energy saving of 45%. Moreover the model simulation results 

indicated that in the new model blocks total consumed 4848.2kWh heating energy 

during the survey period and in the old model blocks total consumed 10036.1kWh 

heating energy, leading to an energy saving of 48.6%.  

Energy modelling regarded as a useful design tool have been identified in two 

academic buildings located in Gainesville by Reeves et al. In their study, results 

show that energy simulations obtained by three building energy modelling were 

compared to the measured data in terms of heating, cooling, and overall energy 

usage. It was found that to assess the accuracy of simulation tool, the percentage 

differences for energy use between simulation and measurements were analysed 

and calculated as following equation: 
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Percentage Difference = [(Simulated Results – Measured Results) / Measured 

Results] x 100%.  

According to previous study, the acceptable percentage difference between 

simulation results and measured results is maximum 15% (Maamari, et al., 2006). 

Thus, the absolute values of the percentage difference were equal to or less than 

15% can be regarded as acceptable accurate results (Reeves, et al., 2012). In our 

study, the measured heating energy consumption in old apartments is 11070.7kWh 

and the simulated data is 10036.1kWh which is respectively 1034.6kWh lower than 

the measured ones. It reveals the differences between measured and simulated data 

in old apartments were within 9% range, which means a good agreement between 

the measurement and the simulation results in old apartments. However, there are 

an obvious difference between the measurement and the simulation results in new 

apartments. The discrepancy between simulation and measured results were not 

significant (within 15% different range). Figure 5.1 shows similar measured energy 

consumption and simulated energy consumption. It is hard to expect a perfect fit 

when comparing simulation results with measurements in a real building. The reason 

for explanations is too many uncertain parameters and unknown variables because 

they are not monitored. Furthermore the real system sensors are not very accurate 

(Lain, et al., 2005). This is can be related to the occupants’ heating behaviour in new 

apartments, occupants can adjust the TRVs of heating in order to satisfy their needs 

for indoor environment. Furthermore, the limitation of simulation is not able to predict 

the real occupants’ heating behaviour in new model block. Additionally, in new model 

blocks simulation, the input of TRV heating set-point replaced with measured mean 

air temperature. Thus, there are reliable discrepancies between simulation results 

and the actual measured results of real new apartments. However, occupied 

dwellings are observed to consume more energy than the models predict at design 

stage (Sutton, et al., 2012). As a consequence, there have good agreement between 

the simulation results and measurement results for new and old apartments.  
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Figure 5.1 Comparisons of total energy consumption in measured and simulation for 
old and new buildings 

 

5.2.1 Comparison results of real measured and simulate energy 

consumption in each new and old apartments 

As previous mentioned the dynamic simulation results were agreement with the 

findings of the field measured data. Figure 5.2 illustrates actual measured data and 

simulation results for each old apartment. It can be observed that for all apartments 

the measured heating energy consumption and the simulated data which are 

respectively lower than the measured ones.  

In old apartment 1, the measured heating energy consumption is 1558.2kWh and the 

simulated data is 1378.9kWh which is respectively 179.3kWh lower than the 

measured ones. It reveals the difference between measured and simulated data was 

within 12% range, which means acceptable percentage different. In old apartment 2, 

the measured heating energy consumption is 1586.7kWh and the simulated data is 

1419.9kWh which is respectively 166.8kWh lower than the measured ones. It reveals 

the difference between measured and simulated data was within 11% range, which 

means acceptable percentage different. In old apartment 3, the measured heating 

energy consumption is 1553.2kWh and the simulated data is 1398.5kWh which is 

respectively 154.5kWh lower than the measured ones. It reveals the difference 
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between measured and simulated data was within 10% range, which means 

acceptable percentage different. In old apartment 4, the measured heating energy 

consumption is 1559.9kWh and the simulated data is 1468.9kWh which is 

respectively 91.6kWh lower than the measured ones. It reveals the difference 

between measured and simulated data was within 6% range, which means 

acceptable percentage different. In old apartment 5, the measured heating energy 

consumption is 1598.8kWh and the simulated data is 1483.9kWh which is 

respectively 114.9kWh lower than the measured ones. It reveals the difference 

between measured and simulated data was within 7% range, which means 

acceptable percentage different. In old apartment 6, the measured heating energy 

consumption is 1565.2kWh and the simulated data is 1428.9kWh which is 

respectively 136.2kWh lower than the measured ones. It reveals the difference 

between measured and simulated data was within 9% range, which means 

acceptable percentage different. In old apartment 7, the measured heating energy 

consumption is 1548.2kWh and the simulated data is 1387.6kWh which is 

respectively 161.3kWh lower than the measured ones. It reveals the difference 

between measured and simulated data was within 10% range, which means 

acceptable percentage different. 

 

Figure 5.2 Actual and predict of energy consumption in old apartments 
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Figure 5.3 illustrates measured heating energy consumption and the simulated data 

in each new apartment and it indicate that overall simulated data are respectively 

lower than the measured ones. In new apartment 1, the measured heating energy 

consumption is 793.5kWh and the simulated data is 684.8kWh which is respectively 

108.7kWh lower than the measured ones. It reveals the percentage difference 

between measured and simulated data was 14%, which means within acceptable 

percentage different. In new apartment 2, the measured heating energy consumption 

is 883.6kWh and the simulated data is 763.9kWh which is respectively 119.6kWh 

lower than the measured ones. It reflects that the percentage difference between 

measured and simulated data was 14%, which means within acceptable percentage 

different. In new apartment 3, the measured heating energy consumption is 

636.8kWh and the simulated data is 533.4kWh which is respectively 103.5kWh lower 

than the measured ones. It reveals the percentage difference between measured 

and simulated data was 16%, which is slightly higher than acceptable percentage 

different of 15%. This is may be caused by uncertain parameters and unknown 

variables. In new apartment 4, the measured heating energy consumption is 

905.7kWh and the simulated data is 794.5kWh which is respectively 111.3kWh lower 

than the measured ones. It reveals the percentage difference between measured 

and simulated data was 12%, which means within acceptable percentage different. 

In new apartment 5, the measured heating energy consumption is 1017.5kWh and 

the simulated data is 868.6kWh which is respectively 148.9kWh lower than the 

measured ones. It reveals the percentage difference between measured and 

simulated data was 15%, which means within acceptable percentage different. In 

new apartment 6, the measured heating energy consumption is 598.6kWh and the 

simulated data is 504.9kWh which is respectively 93.8kWh lower than the measured 

ones. It reveals the percentage difference between measured and simulated data 

was 16%, which is slightly higher than acceptable percentage different of 15%. In 

new apartment 7, the measured heating energy consumption is 887.5kWh and the 

simulated data is 798.7kWh which is respectively 88.8kWh lower than the measured 

ones. It reveals the percentage difference between measured and simulated data 

was 10%, which means within acceptable percentage different.  
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Figure 5.3 Actual and predict of energy consumption in new apartments 

 

5.2.2 Validation of calculated heat loss after renovation in simulation 

models 
According to the results from section 4.6, the correction of the air change values 

under reasonable conditions in practice. The air change rate in new apartments can 

be assumed as 0.76ac/h for simulation and in old apartments 1.51ac/h can be 

assumed for simulation. To correct the presentation of simulated results, consider 

reasonable of air tightness in new and old block models is exposed in table 5.1. 

Moreover, to ensure the accurate simulation results, the correction need to be 

presented. The corrected total energy consumption in old model blocks obtained 

when changing air change rate from 0.6 to 1.51ac/h. The simulation results of 

corrected energy consumption compared with the initial energy consumption, most 

deviation do not exceed 0.08%. In addition, the corrected total energy consumption 

in new model blocks obtained when changing air change rate from 0.6 to 0.76ac/h. 

The simulation results of corrected energy consumption compared with the initial 

energy consumption, most deviation do not exceed 0.06%. Thus, to ensure the 
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accurate of simulated results of energy consumption, the reasonable infiltration rate 

regarded as input into modelling could be estimated.  

Table 5.1 Comparison between initial energy consumption and corrected energy 
consumption in new and old block models 

Old apartment 
model blocks 

Initial energy consumption 
(ventilation heat loss calculated 

based on 0.6ac/h) 

Corrected energy consumption 
 (ventilation heat loss 

calculated based on 1.51ac/h) 

1 1378.9 kWh 1387.28 kWh 

2 1419.9 kWh 1428.28 kWh 

3 1398.5 kWh 1406.87 kWh 

4 1468.3 kWh 1476.63 kWh 

5 1483.9 kWh 1492.29 kWh 

6 1398.9 kWh 1437.24 kWh 

7 1387.6 kWh 1395.91 kWh 

   

New apartment 
model blocks 

Initial energy consumption 
(ventilation heat loss calculated 

based on 0.6ac/h) 

Energy consumption  
(ventilation heat loss calculated 

based on 0.76ac/h) 

1 684.8 kWh 690.17 kWh 

2 794.9 kWh 769.33 kWh 

3 533.4 kWh 538.74 kWh 

4 794.5 kWh 799.86 kWh 

5 868.6 kWh 874.00 kWh 

6 504.9 kWh 520.24 kWh 

7 798.7 kWh 804.11 kWh 

 

According to table 5.2, we can see infiltration rate after renovation used into 

simulation, the percentage difference between simulation data and measured data 

were improved slightly. 
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Table 5.2 Correction of input into simulated energy consumption model 

Old 
apartment 
model 
block 

Percentage difference between 
simulated energy consumption 

and measured energy 
consumption (%) 

Percentage difference between 
corrected simulated energy 

consumption and measured energy 
consumption (%) 

1 11.5 11.0 

2 10.5 10.0 

3 10.0 9.4 

4 5.9 5.3 

5 7.2 6.7 

6 16.0 15.5 

7 10.0 9.4 

   New 
apartment 
model 
block 

Percentage difference between 
simulated energy consumption 

and measured energy 
consumption (%) 

Percentage difference between 
corrected simulated energy 

consumption and measured energy 
consumption (%) 

1 13.7 13.0 

2 13.5 12.9 

3 16.2 15.4 

4 12.3 11.7 

5 14.6 14.1 

6 15.7 14.8 

7 10.0 9.4 

 

In original, the air change rate at 0.6ac/h regarded as default input into dynamic 

energy simulation of old apartment model blocks. For the correction, the air change 

rate change 1.51ac/h and in old apartment model block. Therefore, the total 

corrected simulated energy consumption could be estimated. As it can be noticed by 

table 5.2, the percentage different between corrected simulated model and actual 

measured energy consumption were decreased by 0.5%-1% compared with original 

simulation results. Furthermore, in original new apartment model blocks, the air 

change rate at 0.6ac/h regarded as default input into dynamic energy simulation. For 
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the correction, the air change rate change to 0.76ac/h. It is therefore the total 

corrected simulated energy consumption could be estimated. The percentage 

different between corrected simulated model and actual measured energy 

consumption were decreased by 0.5%-1% compared with original simulation results.  

 

5.3 Analysis of new standard impact on potential energy 

saving  
The study focus on evaluating different building design standards have effect on the 

thermal and energy performance of buildings, through a comparison of various 

potential main parameters (insulation level and construction, heating set-point, 

occupant window behaviour) of two types of residential buildings. The influence of 

new building standard on energy consumption should be examined by simulation. 

Therefore it is important to identify how each parameters effect on energy 

consumption and to predict the energy saving potential of each parameter on the 

heating energy consumption. The old apartment model blocks applied with new 

standard in simulation procedure by using four simulation scenarios were described 

in section 3.5.3. So that the validation of old apartment model blocks should be 

estimated by comparing measured data and simulated data.  

 

5.3.1 Comparison of measure and simulated indoor temperature in old 

and new apartment model blocks 
In order to evaluate cumbersome analysis of values, some statistical techniques can 

be used. It is intend to find explanations and identify the capabilities and limitations 

of the information provided by statistical indexes (Roberto & Vincent, 2014). The first 

validation assessment of building model, the indoor temperature were took place. 

Figure 5.4 reports the relationship between hourly simulated indoor temperatures 

obtain from model and hourly measured indoor temperatures in all old apartments 

during 15th February to 15th March during the heating season. The measured data is 

plotted against the simulated data are presented, indicating that the simulation model 

performed well on predicting indoor temperature in old apartments and provide an 
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indication of the contribution of validation models as shown in Figure 5.4. It is 

therefore indicates that the simulation model can be a good predictor in old 

apartments. Therefore looking at the results from all simulation studies, the dynamic 

simulation results were agreement with the findings of the field measured data.  
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Figure 5.4 Correlations between measured hourly indoor temperature and simulated 
hourly indoor temperature in old apartments 

 

Figure 5.5 reports the relationship between hourly simulated indoor temperatures 

obtain from model and hourly measured indoor temperatures in all new apartments 

during 15th February to 15th March during the heating season. For new apartments, 

the measured data is plotted against the simulated data are presented, indicating 

that the simulation model performed on predicting indoor temperature and provide an 

indication of the contribution of hour by hour validation models as shown in Figure 

5.5. It is therefore indicates that the simulation model can be a predictor in new 

apartments as well. However compare with simulation model for old apartments, new 

apartments have individual heating control thus more uncertainty factor affected by 

occupants behaviour. Therefore looking at the results from all simulation studies, the 

dynamic simulation results were partly agreement with the findings of the field 

measured data.  
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Figure 5.5 Correlations between measured hourly indoor temperature and simulated 
hourly indoor temperature in new apartments 

 

5.3.2 Four simulation scenarios 
After successful validation was undertaken, the energy consumption will be 

assessed with four scenarios. Four scenarios were simulated for old model block 
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through the 15th February to 15th March 2014 period. As previous mentioned of 

findings of both measured and simulated results of energy consumption in new 

apartments are much lower than that in old ones. It can be related to the each 

parameters effect on energy consumption for both new and old apartments. Old 

apartment base on model block simulation run for four scenarios to estimate savings 

of apartments to further understand the how each parameters effect on energy 

consumption. It is therefore as mentioned in section 3.5.5. Four simulation scenarios 

were presented in table 5.3:  

Table 5.3 Four simulation scenarios  

Scenario 1 Base model + insulation level and construction employ with new standard 

Scenario 2 Base model + heating set-point employ with new standard 

Scenario 3 Base model + window operation measured in new apartments 

Scenario 4 Base model + combine all interventions measured in new apartments 

 

5.3.2.1 The simulation scenario 1 

In order to evaluate the correlations between improved insulation design level in new 

standard and the heating energy demand reduction. The single-glazing window 

change to double-glazing and add insulation materials to walls in old apartment 

model blocks. Old model block applied with input of U-value and construction 

according to old building standard. Overall, the simulation results indicate that the 

energy consumption reduced from around 10036.1kWh to 7274.4kWh, reduction of 

energy is 2761.7kWh. It can be observed that for all old apartment model blocks, 

energy consumption reduced by 28% after improve insulation level and envelop.  

The simulation results of each old apartment model block applied with new input 

parameters based on new design standard lead to significant reduction in heating 

energy consumption illustrated in Figure 5.6. In old apartment model block 1, the 

energy consumption reduced by 25% after improve insulation level.  In old apartment 

model block 2, the energy consumption reduced by 27% after improve insulation 

level.  In old apartment model block 3, the 27% energy-saving was achieved after 

improve insulation level. The simulation results from old apartment model block 4, 

the energy consumption reduced by 29% when improving insulation level. The 
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simulation results from old apartment model block 5, the energy consumption 

reduced by 27% when improving insulation level. The simulation results from old 

apartment model block 6, the energy consumption reduced by 28% when improving 

insulation level. The simulation results of old apartment model block 7 shows that 

28% of energy saving after increase insulation level. It demonstrated that different 

insulation could have obvious influence on the heating energy consumption in this 

study. Therefore simulation results exposed that the implementation of the proposed 

energy efficiency improvements in the old apartment model block would provide 

heating energy savings. Many previous studies have been confirmed that the 

insulation level has significant effect on energy demand in Chinese residential 

buildings. Previous study was found that the better insulated in new buildings lead to 

the more energy saving and could save money (Liu & Liu, 2011).  

 

 

Figure 5.6 Simulation of energy saving by using scenario 1 

 

5.3.2.2 The simulation scenario 2 

In order to evaluate the correlations between heating set-point and the heating 

energy demand reduction. Old apartment model blocks applied with new input of 
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heating set-point temperatures based on measured mean indoor temperature in new 

apartments. Overall, the simulation results indicate that the energy consumption 

reduced from around 10036.1kWh to 8848.5kWh, reduction of energy is 1187.6kWh. 

It can be observed that for all old apartment model blocks, energy consumption 

reduced by 12% after reduce heating set-point standard.  

The simulation results of each old apartment model block applied with new input 

parameters based on new design standard lead to significant reduction in heating 

energy consumption illustrated in Figure 5.7. In old apartment model block 1, the 

energy consumption reduced from around 1378.9kWh to 1223.8kWh and it lead to 

decrease by 13% after changing heating set-point.  In old apartment model block 2, 

the energy consumption reduced from around 1419.9kWh to 1236.8kWh and it lead 

to decrease by 15% after changing heating set-point. There is 11% reduction of 

energy consumption after changing heat-set point in old apartment model block 3. 

Energy consumption decreased from 1398.5kWh to 1259.5kWh. The simulation 

results from old apartment model block 4, the energy consumption reduced from 

1468.9kWh to 1301.8kWh and it lead to 13% of energy saving after changing heating 

set-point. The simulation results from old apartment model block 5, the energy 

consumption reduced from 1483.9kWh to 1305.4kWh and it lead to 14% of energy 

saving after changing heating set-point. There is 13% reduction of energy 

consumption after changing heat-set point in old apartment model block 6. Energy 

consumption decreased from 1398.9kWh to 1238.9kWh. The simulation results of 

old apartment model block 7 shows that energy consumption reduced from 

1487.7kWh to 1282.9kWh and it lead to 16% of energy saving after changing heating 

set-point. It demonstrated that old apartment model blocks use with new heating set-

point can effectively reduce the heating energy consumption by 13% averagely. 

Heating set point play an important role in adjusting indoor temperature. In new 

apartments, occupants adjust TRVs set-point to achieve satisfied indoor environment. 

In addition, the experimental results show that the heating set-point temperature in 

new apartments were lower. As previous researchers found that the different heating 

control systems have significantly effect on occupant behaviour. The results of 

previous studies found that the mean temperature setting in dwellings with a 

thermostat is slightly lower than that in dwellings without a thermostat. In addition, 
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the heating set-point has directly impact on heating energy consumption (Guerra-

Santin & Itard, 2010; Santin, et al., 2009; Shipworth, et al., 2010). This is may be 

explained that the lower heating set-point have influence on the heating energy 

consumption in our study.  

 

Figure 5.7 Simulation of energy saving by using scenario 2 

 

5.3.2.3 The simulation scenario 3 

As mentioned above, the field real measured data reflect that the windows in the 

new apartments, they were opened only for 29% of the monitoring time. Furthermore 

From the comparison of the experimental result shows that mean indoor air 

temperature in old apartments are higher than that in new apartments which is 

respectively 1.9°C. Occupants only can open windows to reduce indoor climates and 

it is therefore to estimate the window operation effect on the heating energy 

consumption. Old apartment model blocks applied with input of window operation 

measured in new apartments. Overall, the simulation results indicate that the energy 

consumption reduced from around 10036.1kWh to 8994.9kWh, reduction of energy 

is 1041.1kWh (see in Figure 5.8). It can be observed that for all old apartment model 
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blocks, energy consumption reduced by 10% after reducing window opening. The 

simulation results of old apartment model block 1 confirms less of window opening 

can decrease heating energy consumption by 10%. The energy consumption 

reduced from around 1378.93kWh to 1248.0kWh, reduction of energy is 130.9kWh. 

In old apartment model block 2, the energy consumption reduced by 10% when 

window opened less and reduction of energy is 143.5kWh. In old apartment model 

block 3, the energy consumption reduced by 11% when window opened less and 

reduction of energy is 157.5kWh. The simulation results of old apartment model 

block 4 confirms less of window opening can decrease heating energy consumption 

by 12%. The energy consumption reduced from around 1468.2kWh to 1295.4kWh. 

In old apartment model block 5, the energy consumption reduced from around 

1483.9kWh to 1335.8kWh and it lead to decrease by 10% after reduce window 

opening. The simulation results of old apartment model block 6 confirms less of 

window opening can decrease heating energy consumption by 9%. In old apartment 

model block 7, the energy consumption reduced by 11% when window opened less 

and reduction of energy is 159.8kWh.  

 

Figure 5.8 Simulation of energy saving by using scenario 3 
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5.3.2.4 The simulation scenario 4 

In order to evaluate all interventions combined in simulated models, the results 

indicated that the energy consumption reduced from around 10036.1kWh to 

5151.8kWh, reduction of energy is 4884.3kWh (given in Figure 5.9). It can be 

observed that for all old apartment model blocks, energy consumption reduced by 

48.6% when combine all interventions in old apartment models. 

 

Figure 5.9 Simulation of energy saving by using scenario 4 
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energy saving. Furthermore it reveals that each parameter (insulation level, 
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consumption reduced by 28% after improve insulation level and envelop. Energy 
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heating control system and new heat bill system can lead to obvious energy saving 

for heating in winter compared with old apartments.  

 

5.4 Summary 
This chapter presents the analysis of simulation results and it was found that the 

measured and simulated data presented acceptable level of validity. Furthermore the 

measured energy consumption and simulated energy consumption were compared. 

In particular, the analysis was focused on each factor effect on energy consumption 

and indoor thermal conditions were discussed. Generally, it was found that for all 

apartments the measured heating energy consumption and the simulated data which 

are respectively lower than the measured ones.  

After successful validation was undertaken, prioritization of insulation level effect on 

energy consumption in old apartments was assessed by simulation. To ensure the 

accurate of simulated results of energy consumption, the reasonable infiltration rate 

regarded as input into modelling were estimated. The simulation results of corrected 

energy consumption compared with the initial energy consumption, most deviation 

do not exceed 0.06%-10%.  

Generally, the simulation results obtained from this study indicated that the better 

insulation level making more substantial energy saving and energy consumption 

reduced by 28% after improve insulation level and envelop. Energy consumption 

reduced by 12% after reduce heating set-point standard. In addition, the simulation 

results confirmed less of window opening can decrease heating energy consumption 

by 10%. It can be observed that for all old apartment model blocks, energy 

consumption reduced by 48.6% when combine all interventions in old apartment 

models. 
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6 Field study of thermal comfort 

6.1.1 Introduction 
This chapter describes the results of thermal comfort measurements made in both 

new and old apartments. Four physical factors, thermal sensation for new and old 

buildings were compared respectively. As mentioned in the review chapter 2, reform 

and implementation of the new heating and billing system has been incorporated 

into new built residential buildings. It is therefore important to identify the influence 

of each potential factor on occupants’ thermal comfort. In this chapter the detailed 

information regarding results of thermal comfort in old apartments are compared 

with the results of thermal comfort in new apartments. The results of thermal 

comfort study through physical measurements and questionnaire survey are 

provided. This was done to identify the validity of the PMV model for comfort 

predictor in new and old apartments.  

 

6.1.2 Four environmental factors results 

6.1.2.1 Indoor climates in old and new apartments  

Statistical summaries of the variations of indoor environmental parameters in old and 

new apartments can be seen from table 6.1, the results show that the mean indoor 

temperature in all old apartments is 22.5°C and the indoor air temperature in new 

one is 20.7°C which is respectively 1.8°C lower than the value measured in old 

apartments. The mean radiant temperature (MRT) ranged from 22.5°C to 23.3°C in 

old apartments, whilst in new apartments, the mean value of MRT with a ranged of 

19.8°C–21.9°C. The mean Relative humidity obtained in the old apartments was 

48.3%, which is close to that 43.5% in the new apartments. The indoor air velocity in 

old apartments ranged from 0.03m/s–0.05m/s respectively in new apartments has 

value range from 0.01m/s–0.06m/s. Meanwhile, shows that the majority of air 

velocity in both new and old apartments was low, with a mean value of 0.056 m/s, 

which was not more than 0.15 m/s, which meets the winter thermal comfort standard 

(Wang, et al., 2011).  
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Table 6.1 Statistics of indoor environmental parameters in old and new apartments 

  

Old apartments New apartments 

Air temperature (°C) Mean 22.5 20.7 

 
Max 24.2 23.1 

 
Min 21.1 20.2 

 
SD 1.86 1.21 

    Relative humidity (%) Mean 48.3 43.5 

 
Max 57 51.2 

 
Min 32.4 28.9 

 
SD 8.7 7.08 

    Air velocity (m/s) Mean 0.05 0.04 

 
Max 0.06 0.05 

 
Min 0.01 0.03 

 
SD 0.04 0.02 

    Mean radiant temperature (°C) Mean 22.8 21.3 

 

Max 25.6 23.5 

 

Min 20.1 20.9 

 

SD 2.51 1.9 

 

In addition, Table 6.2 descripts the indoor air temperature for 7 new apartments and 

7 old apartments during investigation period are given below. The mean outdoor air 

temperature is 8.9°C, the maximum and minimum temperatures are 27.7°C and -

1.9°C respectively during the investigation. According to the results of questionnaires, 

in old apartments, the majority of occupants respond that the windows were opened 

because it was hot inside apartments and they prefer to have cooler indoor 

environments.  
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Table 6.2 Summaries of indoor temperature data in each new and old apartment 

Residential Building 
Types 

 
Indoor Air Temperature 

 

 

Apartment 
No. Mean Max. Min. 

 
1 22.2 23.6 16.7 

 
2 22.6 24.7 18.1 

 
3 22.4 23.5 18.2 

Old apartments 4 22.5 25.2 16.1 

 
5 22.9 24.8 17.3 

 
6 22.2 25.7 15.7 

 
7 22.7 25.1 17.2 

     
 

1 21.0 23.4 17.4 

 
2 20.9 22.4 17.5 

 
3 20.8 22.2 15.8 

New apartments 4 21.1 22.2 17.3 

 
5 21.6 22.6 16.1 

 
6 19.7 23.2 15.8 

 
7 19.6 23.4 15.9 

 

6.1.2.2 Clothing insulation  

The statistical summaries of clothing insulation values were taken from what 

occupants themselves as estimated from clothing insulation lists. Based on the chair 

insulation effect on occupants, in this study the insulation of the chair is assumed to 

be 0.35clo as all participants were sitting on a fabric sofa during the survey (de Dear 

& Brager, 1997). Clothing insulation value ranged from 0.78clo to 1.197clo with a 

mean value of 0.9clo in new apartments. In old apartments, the clothing insulation 

values varied from 0.608clo to 1.28clo with a mean value of 0.79clo. Clothing is a 

behavioural adjustment that directly affects heat balance (RP-884) and responds one 

of key thermal adaptive responses (de Dear & Brager, 1997). Figure 6.1 show that 

the relations between clothing insulation level and indoor temperature. From liner 

correlation the coefficient of determination R2 can be observed as 0.12 for old 

apartments and 0.08 for new apartments. 
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Figure 6.1 Comparison of clothing insulation between old apartments and new 
apartments 

 

6.1.3 Comparison of thermal sensation votes in new and old 

apartments 
Figure 6.2 shows that the occupants’ overall the thermal sensation voted for the 

surveyed new and old apartments. For the new apartments, majority of subjects 

voted the range from slightly cool (-1) to slight warm (+1). It can be seen that majority 

of occupants feel between neutral and slightly cool. However, the greater number of 

occupants in old apartments voted the range from slightly warm (+1) to warm (+2) 

and also have 16 percentage of occupants voted hot (+3)  that much more than none 

of subjects vote hot (+3) in new apartments. From Figure 6.2 indicated that in old 

and new apartments, majority of occupants voted within the central three categories 

against that the ASHRAE Standard 55-2004 specified that an acceptable thermal 

environment should have 80% of occupants vote for the central categories (-1,0,+1).  
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Figure 6.2 Comparison of thermal sensation vote of occupants in new and old 
apartments 

 

6.1.4 Investigating validity of PMV model 
The correlation between the calculated PMV and the reported AMV are presented in 

Figure 6.3. The correlation coefficients in new and old apartments are 0.70 and 0.73 

respectively. It indicate that the PMV model performed well on predicting occupants’ 

thermal comfort in both new and old apartments and provide an indication of the 

contribution of Fanger model. According to de Dear and Brager pointed that thermal 

adaptation can be achieved from three categories: behavioural adjustment, 

physiological acclimatization and psychological habituation (Brager & de Dear, 1998). 

Evidence reviewed in this paper indicated that thermal sensations of occupants have 

strong correlation to psychological and behavioural adjustment. Discrepancies 

observed could mean that there are psychobiological adaptations factors involved in 

thermal comfort of occupants in new apartments may have higher acceptable, result 
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environment than those in old ones. In addition, the details of heating behaviour 

were analysed in section 4.4, and results show that heating set-point behaviour 

strongly impact on energy consumption. Oppositely, occupants in old apartments 

have no opportunity to control environmental set point by control systems. Therefore, 

they respond discomfort with their indoor environments, in particular, they only can 

open window when room were overheated. It also can be consider that difference of 

the heating bill payment between new and old apartments. This is can be due to the 

occupants in new apartments can potential reduce indoor set point by using TRVs to 

save energy use related to less heating bill payment. Thus they provide better 

thermal responses. Evidence concluded in this study show that new building 

standard lead to better thermal comfort of occupants compared with old one.      

 

Figure 6.3 Regression lines of AMV versus PMV in new and old apartments 
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6.1.4.1 Predicted neutral temperature in old apartments during investigation 

periods 

As mentioned above of Figure 6.3 indicates that the PMV model performed well on 

predicting occupants’ thermal comfort in both new and old apartments and can be 

considered to be applicable in this study. In addition, hourly Indoor air temperature 

and relative humidity were measured by data logger by every ten minutes in each 

apartment. The mean radiant temperature was estimated from globe temperature 

measured by using about 38mm black ball global temperature thermometer. Table 

6.1 shows the results of each measured parameters, it was found that the slightly 

difference between indoor air temperatures and global temperatures in both type of 

apartments. Indoor air velocities were measured by hot-wire anemometer and the 

mean value is 0.05. According to interview survey in each old apartment, the mean 

clothing insulation values of 0.79clo was set to calculate PMV values. The metabolic 

rate was considered to be approximately 1.1met in each apartment in PMV model. 

Therefore the hourly PMV values can be calculated based on hourly air temperature, 

hourly global temperature and relative humidity, mean air velocity, fixed mean 

clothes insulation and metabolic rate in all old apartments during whole experimental 

period time can be worked out. 
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Figure 6.4 linear regressions of operative temperature and PMV values in all old 
apartments 

 

Figure 6.4 shows that the PMV calculated according to Fanger’s model plotted with 

operative temperature in each old apartment. The linear regression equation for 

each apartment that are  
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Old apartment 7: PMV= 0.2893Top – 6.2998, R2= 0.7624 

Where Top is operative temperature, PMV is predicted mean votes. The equations 
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and 21.8°C, respectively (when the Predicted mean vote = 0). 
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6.1.4.2 Predicted neutral temperature in new apartments during investigation 

periods 

The mean indoor air temperature in new apartments is 20.7°C and the global 

temperature is 20.94°C, the mean Relative humidity obtained range from 48.3%, to 

68.2% in the new apartments. The indoor air velocity in old apartments ranged from 

0.03m/s–0.05m/s respectively in new apartments with a mean value of 0.056 m/s. 

According to interview survey in each apartment, the mean clothes insulation was 

identified as 0.9clo in new apartments. The metabolic rate was estimated as 1.1 met 

in each apartment in PMV model. As a consequence the calculated hourly PMV 

values in all old apartments during whole experimental period time can be worked 

out. 

 

 

y = 0.2726x - 5.6545 
R² = 0.7895 

-1.5

-1

-0.5

0

0.5

1

1.5

16 18 20 22 24 26PM
V 

(-)
 

Operative Temperature (°C) 

New apartment 1 

y = 0.279x - 5.7317 
R² = 0.7688 

-1.5

-1

-0.5

0

0.5

1

1.5

16 17 18 19 20 21 22 23 24 25 26PM
V 

(-)
 

Operative Temperature (°C) 

New apartment 2 



181 
 
 

 

 

 

y = 0.268x - 5.5875 
R² = 0.7603 

-1.5

-1

-0.5

0

0.5

1

16 17 18 19 20 21 22 23 24 25

PM
V 

(-)
 

Operative Temperature (°C) 

New apartment 3 

y = 0.2943x - 5.9651 
R² = 0.8754 

-1.5

-1

-0.5

0

0.5

1

15 16 17 18 19 20 21 22 23 24 25

PM
V(

-) 

Operative Temperature (°C) 

New apartment 4 

y = 0.2809x - 5.7523 
R² = 0.8555 

-1.5

-1

-0.5

0

0.5

1

16 18 20 22 24 26

PM
V 

(-)
 

Operative Temperature (°C) 

New apartment 5 



182 
 
 

 

 

Figure 6.5 linear regressions of operative temperature and PMV values in all new 
apartments 

 

Figure 6.5 shows that the PMV calculated according to Fanger’s model plotted with 

operative temperature in each new apartment. The linear regression equation for 

each apartment that are  
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New apartment 4: PMV= 0.2809Top – 5.9649, R2= 0.8555 

New apartment 5: PMV= 0.2943Top – 5.9651, R2= 0.8754 

New apartment 6: PMV= 0.2745Top – 5.7222, R2= 0.8038 

New apartment 7: PMV= 0.2469Top – 5.1128, R2= 0.7653 

Where Top is operative temperature, PMV is predicted mean votes. The neutrality 

value can be estimated by using above equations. The neutral operative temperature 

for PMV in new apartments were determined 20.7°C, 20.5°C, 20.8°C, 20.5°C, 

20.2°C 20.8°C and 20.7°C, respectively (when the Predicted mean vote = 0). PMV 

value equal to zero regarded as a comfortable thermal environment. The neutral 

operative temperature of the occupants in new apartments is around 1.16°C lower 

than that of the occupants in old apartments.  

 

6.1.5 Thermal preference   
Figure 6.6 shows the thermal preference scale from occupants’ survey, 57% 

occupants in old apartments want to change their indoor environment to be cooler, 

while 28% occupants do not want to change their environments. However, in new 

apartments, occupants provide higher acceptable of indoor environment, 42% 

occupants do not want to change their environments. One possible explanation 

being put forward was that there are control systems in new apartments, and 

occupants can control TRVs to change heating set-point in order to get their actual 

satisfied environments. However, occupants in old apartments only can open 

window when they not satisfied with their indoor climates. It is interesting to note that 

the similar findings were investigated from field study by Cao et al in Chinese 

residential buildings during winter period. It was found that the occupants in 

apartments with individual boiler heating respond higher acceptable evaluation than 

district heating without private control. This can be due to indoor environments were 

controlled by the users according to their actual demand in individual boiler heating 

apartments (Cao, et al., 2014). Behaviour adjustment likely to have strong impact on 

occupants’ thermal sensation and preference presented above.  
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Figure 6.6 Distribution of thermal preference in new and old apartments 

 

6.1.6 Indoor environment acceptability  
Indoor environment acceptability votes reflect occupants’ acceptability to the total 

environment (Wang, et al., 2011). Overall there are over 57% of satisfactions for 

thermal environment in the new apartments higher than that of 29% in old 

apartments. One possible explanation being put forward was that the indoor air 

temperature in old apartments higher than that in new ones, and occupants in old 

apartments prefer to have cooler indoor environment as well. Furthermore, it needs 

to take into account that the adaptive factors in new apartments should be 

considered into this field study. 

In addition, gender influence thermal performance of AMV model and reflect that the 

personal factors are important to be considered. Gender differences on thermal 

comfort were investigated based on objective and subjective surveys in Chinese 

building during winter period, Lan et al. of laboratory experiments showed not only 

the male skin temperature is constantly higher than that of female but also the 

female is more sensitive to air temperature. Furthermore, females prefer warmer 

conditions than males (Lan, et al., 2008). According to interview survey, overall 

female occupants were more dissatisfied with indoor thermal environment than male 

occupants in either new or old apartments. In the phases of occupants were not 
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satisfied with indoor environment, difference between females and males were more 

prominent than that in phase of satisfactions votes (Fig 6.7). From the results, overall, 

the 71% female and male occupants are satisfied to the thermal environment in old 

apartments. Generally, a comparative analysis of data collected from males and 

females in old apartments show a slightly disparity of thermal sensation between 

them. However, generally females have much higher complaint than males in both 

types of building. Comparing the female comfortable sensation, the higher numbers 

of females in old apartments feel uncomfortable than males in new ones. 

 

Figure 6.7 The percentage of satisfaction votes for male and female in old and new 
apartments 

 

6.2 Summary 
• The study investigated the correlations between PMV and AMV in both new 

and old apartments. In addition, thermal preference scales from occupants’ 

survey show that 57% occupants in old apartments wanted their indoor 

environment to be cooler. Overall 57% of occupants reported to be satisfied 

with their thermal environment in the new apartments whilst only 29% of 

occupants reported to be thermally satisfied in the old apartments 
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the Predicted mean vote = 0). PMV value equal to zero is regarded as a 

comfortable thermal environment. The neutral operative temperature of 

occupants in the new apartments is around 1.16°C lower than that of the 

occupants in old apartments. 
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7 Conclusion and future work 

7.1 Research summary 
Buildings account for 40% of total global energy consumption. Furthermore, the 

residential sector is one of the major global energy consumers (Ibn-Mohammed, et 

al., 2013; Laustsen, 2008). The building sector in China is one of the largest growing 

parts of energy use both at the construction stage and in the operational stage (Du, 

et al., 2004). Residential energy consumption is second largest energy use in China. 

The high residential energy use is due to huge waste in space heating in the 

Northern Central Heating Zone and as there are no heating control systems, the 

occupants can only open their windows to adjust indoor thermal conditions (Xu, et al., 

2009; Chen, et al., 2011). In order to reduce building energy consumption, the 

Chinese government has revised the Chinese building design standard. Therefore, in 

1995, the national standard on building energy efficiency in China (JGJ 26-95) was 

updated to become the new residential buildings standard (JGJ 26-2010) published 

in 2010. In the new standard, all residential buildings are highly recommended to 

install personal control on the heating system, such as by Thermostatic Radiator 

Valves (TRVs), together with ‘pay for what you use’ tariffs. Previous practice 

comprised of uncontrolled heating with payments based on floor area of the 

residence.  

In the new guide the use of individual room temperature control and better insulation 

are highly recommended for new buildings. However, evidence of how the new 

standard can have an impact on the building energy consumption is not clear. In this 

research, the main aim was to explore the effect of recent Chinese government 

policy on the energy consumption in Chinese residential buildings. Literature review 

show that few researchers have focused on this area. Therefore, through the reviews 

of researches there are three potential factors impact on heating energy 

consumption. A reasonable number of buildings using each type of heating system 

were monitored. Energy consumption, occupant behaviour and thermal comfort were 

evaluated. Each potential factor was evaluated by using measurements and 

simulation in new and old case study residential buildings. The monitored data was 

used to validate the simulated model. 
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The literature review provided a thorough review of current state of energy 

consumption in buildings and especially in residential sector. In section 2.1 energy 

consumption of the building sector in the world and also the current status of the 

Chinese residential building sector is presented. Section 2.2 presented current 

legislation and code for buildings and it reviewed current status of energy 

conservation for residential building in China. In section 2.3, a review has conducted 

on the existing heating systems and reform of heating payment method in Chinese 

residential buildings. Section 2.4 presented occupant behaviour is one of important 

factor impact on energy consumption, furthermore, occupant behaviour related to 

heating energy consumption. The potential factors that influence on occupant 

window behaviour and heating behaviour were presented. Concept of thermal 

comfort in buildings related to energy consumption was discussed in section 2.5.1 to 

2.5.2.  

The methodology chapter introduced the experimental and simulation methods that 

were applied in this study. Seven apartments from an old and seven apartments 

from a new building were monitored from the 15th February to 14th March, 2014. 

The experimental methods were used to monitor the thermal environment, occupant 

behaviour and energy consumption and each household characteristic were defined 

using questionnaires survey. This was done to provide input parameters for the 

dynamic thermal modelling. In addition, simulation methods describe the detailed 

procedures that were chosen to validate the thermal modelling. Thereafter, the field 

study of thermal comfort was designed in old and new apartments. 

The main findings of the experimental results from measurements in both new and 

old apartments were presented in this project. Further to this, all potential factors 

such as indoor thermal environment, occupant behaviour and thermal comfort 

related to heating energy consumption of new and old apartments were compared 

respectively.  

• According to the results, the indoor temperature differences between old and 

new apartments were obvious. The observations indicate that the trend of 

indoor temperature is generally changed with outdoor temperature in both 

new and old apartments. The indoor temperatures in old apartments are 

generally higher than that in new apartments. 
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• The overall field measured data reflect that the windows in all old apartments 

were opened for 54% of the monitoring time, while they were opened only for 

29% of the monitoring time in all new apartments. Generally, observed results 

reflect that indoor temperature increased from 15 to 20°C, the more windows 

opened obviously by occupants in old apartments. For all old apartments, the 

proportion of windows opening strongly related to indoor temperature in both 

living room and main bedroom. However, there was a slight increase in the 

probability as the indoor temperature increased in new apartments. 

• From one week self-recording of heating behaviour and questionnaires. The 

results suggest that the use of TVRs by occupants for heating was related to 

outdoor temperatures in this study. Additionally, the finding show that age of 

dwellings, education level of occupants, energy price could be factors that 

impact the use of energy for heating. 

• The results show that the new apartments consumed lower heating energy 

than the old apartments during the survey period and lead to an energy 

saving of 45%. The mean heating energy cost in new apartments is 

respectively 1106.4RMB less than the cost in old apartments. 

• The difference heat loss between old and new apartments influence on 

energy consumption were determined. As a consequence, the reasonable air 

change rate corrected to 0.76ac/h in new apartments for calculation and 

corrected to 1.51ac/h in old apartments for calculation.  

• The study investigated the correlations between PMV and AMV in both new 

and old apartments. In addition, thermal preference scales from occupants’ 

survey show that 57% occupants in old apartments wanted their indoor 

environment to be cooler. Overall 57% of occupants reported to be satisfied 

with their thermal environment in the new apartments whilst only 29% of 

occupants reported to be thermally satisfied in the old apartments 

• The mean neutral operative temperature for PMV in new apartments and old 

apartments were determined to be 20.6°C and 21.76°C, respectively (when 

the Predicted Mean Vote = 0). PMV value equal to zero is regarded as a 

comfortable thermal environment. The neutral operative temperature of 

occupants in the new apartments is around 1.16°C lower than that of the 

occupants in old apartments.  
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The measured energy consumption and simulated energy consumption were 

compared. The results show that acceptable level of validity between simulated and 

measured data. In particular, the analysis was focused on the effect of each factor 

on energy consumption and indoor thermal conditions were discussed.  

• Generally, it was found that for all the apartments investigated in this study, 

the energy consumption predicted with simulation was lower than the 

measured data. To ensure the accurate of simulated results of energy 

consumption, the reasonable infiltration rate were input into modelling blocks.  

• The simulation results indicated that better insulation levels made more 

substantial energy savings and the energy consumption was reduced by 28% 

after improved insulation level and building envelop. Energy consumption 

reduced by 12% after reduced heating set-point temperature. In addition, the 

simulation results confirmed that lower term of time of window opening can 

decrease heating energy consumption by 10%. It can be observed that for all 

old apartment model blocks, energy consumption reduced by 48.6% when 

combine all interventions in old apartment models. 

The new buildings standard can reduce heating energy consumption and decrease 

heating cost. The mean heating energy cost in new apartments was found to be half 

of the cost in old apartments. After successful validation, effects of insulation level on 

energy consumption in old apartments were assessed by simulation. Generally, the 

simulation results indicated that the implication of upgrading insulation level is 

coherent with heating energy consumption. 

 

7.2 Contribution of knowledge and guidelines 

The main contribution of this work can be broken down into six categories: 

• Previous studies do not pay much attention to evaluating the effects of new 

building standard on final energy consumption in new residential buildings 

compared with old residential buildings in China. In this study, each potential 

factors (insulation level, occupants’ behaviour and thermal comfort) impact on 
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heating energy consumption has been formally addressed and it was 

important for better understanding of new standards implementation in new 

residential buildings.  

• Previous studies have not paid attention to occupants’ thermal comfort and 

PMV model validity in different heating systems in residential buildings. 

However, in our research, this was done to identify the validity of PMV model 

in new and old apartments and the awareness of occupants regarding their 

thermal sensation. 

• Previous studies focusing on occupants’ window operation behaviour during 

wintertime in Chinese residential building are limited. In this study, the 

potential factors on window operation behaviour in new and old apartments 

are identified. The detailed results of occupant window operation behaviour in 

old apartments were compared with the results of occupant window operation 

behaviour in new apartments.  

• Field study was carried out that investigated the central heating system with 

TRVs operated by occupants in new residential buildings together with new 

heating payment tariff. It found that there exists a difference in the frequency 

of occupant’s adjustment of the TRVs set-point resulting in higher energy 

saving compared to old traditional heating strategy. However, there is a lack 

of research related to comparisons between old and new residential buildings 

in terms of influence factors such as indoor thermal environment, insulation 

level, thermal sensations, occupants’ window behaviours and so on. This 

thesis has addressed all factors and potential influence on final heating 

behaviour during winter.  

• The outcome of the study was based on data collected by monitoring of actual 

old and new residential buildings validated in simulation models. The results 

provide compelling evidence for government to adopt, refurbish and improve 

the insulation in old residential building. Our study confirmed and encouraged 

new standard implementation in new residential building to achieve the 

energy saving target.   

• Recommendation to Chinese government: As recommended by the new 

standard, the new heating system with personal control and heat meter 

devices is highly recommended for new and refurbishment of old buildings. 
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This improvement can have a positive impact on the building energy 

consumption.         

 

7.3 Limitations  

Although in this research, the effect of new building standards on energy 

consumption in Chinese dwellings had been identified. There are some limitations in 

measurements and the limitations further related to simulation process: 

• The measurement of window opening area: The equipment and devices were 

not monitored to the window opening area in all apartments due to the 

limitation of measurement.  

• Hourly energy consumption: The hourly indoor air temperatures in all new and 

old apartments were monitored. In old apartments the energy consumption 

were recorded in-situ by spot measurements, as the installation of heat meter 

on each radiator was difficult.   

• Heat loss of two buildings: air tightness and infiltration rates are important 

factors that impact the energy use of a building. During the experimental 

procedure, ventilation rate, the surface temperature of walls, heat losses of 

buildings were not recorded by monitoring in this study (see section 4.5).  

 

7.4 Future works  

• Extending the research in the investigation of window opening area in 

residential buildings. Previous studies have focused on the frequency of 

window opening in wintertime. Thus, this study can be extended in the 

investigation of window openings in summertime. The overall heat loss 

coefficient due to conductive heat losses can be investigated by using co-

heating test in two types of buildings in future work. 

• Utility companies and local government agencies can carry out activities 

aiming to educate the occupants on how to save energy (i.e. avoid 

unnecessarily high temperatures in apartment and reduce window opening in 
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order to achieve lower indoor temperature. Use heating control system (i.e. 

TRVs) to achieve lower indoor temperature and also turn down the TRVs for 

unoccupied hours in rooms.    

• A smart radiator thermostat can be considered to be installed in radiators 

which can be turned down using smart phones when no one is home and start 

to pre-heat before they arrive to home. 
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Appendix A 
 

Table A-0.1:The reasons for window opening  

Can you please fill out the form and choose the reason why you open windows 

normally? Please use “” to mark it into table. 

Apartment No: (      ) 

 

Reason 1 Reason 2 Reason 3 

Answers Get lower indoor climate Get fresh air Remove moisture 

Yes 

   No 

   I don't know 
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Appendix B 
This appendix present the questionnaires of was distributed to each household, 

asking them to self-record their heating behaviour (i.e. adjustment of the TRV 

settings) over a whole week period. The occupants were asked for filling out the self-

questionnaires, as for instance, when they turn off/turn on the TRVs need to mark in 

questionnaire. And also when they adjust TRVs set-point, the range and time need 

to be marked.  

 

Table B-0.1:Heating set-point (TRVs) adjustment questionnaires for new apartments 

Please record TRVs set-point based on adjustment.  

1) The original heating set-point of TRVs is:  

 

2) The details of questionnaire can be seen below: 

 

Day 
1 

 

Day 
2 

 

Day 
3 

 

Day 
4 

 

Day 
5 

 

Day 
6 

 

Day 
7 

 Range 

of set-

point Time 

Whether 

adjust 

(Yes/No) Time 

Whether 

adjust 

(Yes/No) Time 

Whether 

adjust 

(Yes/No) Time 

Whether 

adjust 

(Yes/No) Time 

Whether 

adjust 

(Yes/No) Time 

Whether 

adjust 

(Yes/No) Time 

Whether 

adjust 

(Yes/No) 

5 

              
               
                              4 

              
               
                              3 

              
               
                              2 

              
               
                              1 

              
               
                              (Off) 0 
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Table B-0.2:The questionnaires of thermal sensation 
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Table B-0.3:The details of questionnaires of thermal comfort study 
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TableB-0.4: The questionnaires of thermal sensation(in Chinese) 
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Table B-0.5: The form of clothes insulation level of male 
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Table B-0.6:The form of clothes insulation level for males 
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TableB-0.7: The form of clothes insulation level for females 
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Appendix C 
Old apartment 1 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 4.8 2.8 13.44 

 

Wall2 3.1 2.8 8.68 

 

Wall3(exclude window) 4.8 2.8 13.44 

 

Wall4 3.1 2.8 6.0456 

Dimension for floor area  4.8 3.1 14.88 

Dimension for roof area  4.8 3.1 14.88 

Volume of room 4.8*3.1*2.8m 41.664 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 4.2 2.8 11.76 

 

Wall2 3.1 2.8 8.68 

 

Wall3 4.2 2.8 11.76 

 

Wall4(exclude window) 3.1 2.8 6.0456 

Dimension for floor area  4.2 3.1 13.02 

Dimension for roof area  4.2 3.1 13.02 

Volume of room 4.2*3.1*2.8m 36.456 

 

Old apartment 2 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 4.8 2.8 13.44 

 

Wall2 3.1 2.8 8.68 

 

Wall3(exclude window) 4.8 2.8 10.8056 

 

Wall4 3.1 2.8 8.68 

Dimension for floor area  4.8 3.1 14.88 

Dimension for roof area  4.8 3.1 14.88 

Volume of room 4.8*3.1*2.8m 41.664 

     



220 
 
 

Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 4.2 2.8 11.76 

 

Wall2 3.1 2.8 8.68 

 

Wall3 4.2 2.8 11.76 

 

Wall4(exclude window) 3.1 2.8 6.0456 

Dimension for floor area  4.2 3.1 13.02 

Dimension for roof area  4.2 3.1 13.02 

Volume of room 4.2*3.1*2.8m 36.456 

 

Old apartment 3 

Living Room 
   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 5.1 2.8 14.28 

 

Wall2 3.4 2.8 9.52 

 

Wall3(exclude window) 5.1 2.8 11.6456 

 

Wall4 3.4 2.8 9.52 

Dimension for floor area  5.1 3.4 17.34 

Dimension for roof area  5.1 3.4 17.34 

Volume of room 5.1*3.4*2.8m 48.552 

     Bedroom 
    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 4.5 2.8 12.6 

 

Wall2 4 2.8 11.2 

 

Wall3(exclude window) 4.5 2.8 8.82 

 

Wall4 4 2.8 11.2 

Dimension for floor area  4.5 4 18 

Dimension for roof area  4.5 4 18 

Volume of room 4.5*4*2.8m 50.4 
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Old apartment 4 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 5.1 2.8 14.28 

 

Wall2 3.4 2.8 9.52 

 

Wall3(exclude window) 5.1 2.8 11.6456 

 

Wall4 3.4 2.8 9.52 

Dimension for floor area  5.1 3.4 17.34 

Dimension for roof area  5.1 3.4 17.34 

Volume of room 5.1*3.4*2.8m 48.552 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 4.5 2.8 12.6 

 

Wall2 4 2.8 11.2 

 

Wall3(exclude window) 4.5 2.8 8.82 

 

Wall4 4 2.8 11.2 

Dimension for floor area  4.5 4 18 

Dimension for roof area  4.5 4 18 

Volume of room 4.5*4*2.8m 50.4 

 

 

Old apartment 5 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 4.8 2.8 13.44 

 

Wall2 3.1 2.8 8.68 

 

Wall3(exclude window) 4.8 2.8 10.8056 

 

Wall4 3.1 2.8 8.68 

Dimension for floor area  4.8 3.1 14.88 

Dimension for roof area  4.8 3.1 14.88 

Volume of room 4.8*3.1*2.8m 41.664 
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Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 4.2 2.8 11.76 

 

Wall2 3.1 2.8 8.68 

 

Wall3 4.2 2.8 11.76 

 

Wall4(exclude window) 3.1 2.8 6.0456 

Dimension for floor area  4.2 3.1 13.02 

Dimension for roof area  4.2 3.1 13.02 

Volume of room 4.2*3.1*2.8m 36.456 

 

Old apartment 6 

Living Room 
   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 5.1 2.8 14.28 

 

Wall2 3.4 2.8 9.52 

 

Wall3(exclude window) 5.1 2.8 11.6456 

 

Wall4 3.4 2.8 9.52 

Dimension for floor area  5.1 3.4 17.34 

Dimension for roof area  5.1 3.4 17.34 

Volume of room 5.1*3.4*2.8m 48.552 

     Bedroom 
    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 4.5 2.8 12.6 

 

Wall2 4 2.8 11.2 

 

Wall3(exclude window) 4.5 2.8 8.82 

 

Wall4 4 2.8 11.2 

Dimension for floor area  4.5 4 18 

Dimension for roof area  4.5 4 18 

Volume of room 4.5*4*2.8m 50.4 
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Old apartment 7 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.78 1.48 2.6344 

Dimension for wall area  Wall1 5.2 2.8 14.56 

 

Wall2 4.5 2.8 12.6 

 

Wall3(exclude window) 5.2 2.8 11.9256 

 

Wall4 4.5 2.8 12.6 

Dimension for floor area  5.2 4.5 23.4 

Dimension for roof area  5.2 4.5 23.4 

Volume of room 5.2*4.5*2.8m 65.52 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 4.6 2.8 12.88 

 

Wall2 4.3 2.8 12.04 

 

Wall3(exclude window) 4.6 2.8 9.1 

 

Wall4 4.3 2.8 12.04 

Dimension for floor area  4.6 4.3 19.78 

Dimension for roof area  4.6 4.3 19.78 

Volume of room 4.6*4.3*2.8m 55.384 
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New apartment 1 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.2 2.8 14.56 

 

Wall2 3.6 2.8 10.08 

 

Wall3(exclude window) 5.2 2.8 10.78 

 

Wall4 3.6 2.8 10.08 

Dimension for floor area  5.2 3.6 18.72 

Dimension for roof area  5.2 3.6 18.72 

Volume of room 5.2*3.6*2.8m 53.424 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 4.3 2.8 12.04 

 

Wall2 3.5 2.8 9.8 

 

Wall3 4.3 2.8 12.04 

 

Wall4(exclude window) 3.5 2.8 7.1 

Dimension for floor area  4.3 3.5 15.05 

Dimension for roof area  4.3 3.5 15.05 

Volume of room 4.3*3.5*2.8m 42.14 

 

 

New apartment 2 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.3 2.8 14.84 

 

Wall2 3.6 2.8 10.08 

 

Wall3(exclude window) 5.3 2.8 11.06 

 

Wall4 3.6 2.8 10.08 

Dimension for floor area  5.3 3.6 19.08 

Dimension for roof area  5.3 3.6 19.08 

Volume of room 5.3*3.6*2.8m 53.424 
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Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 4.5 2.8 12.6 

 

Wall2 3.6 2.8 10.08 

 

Wall3 4.5 2.8 12.6 

 

Wall4(exclude window) 3.6 2.8 7.38 

Dimension for floor area  4.5 3.6 16.2 

Dimension for roof area  4.5 3.6 16.2 

Volume of room 4.5*3.6*2.8m 45.36 

 

New apartment 3 

Living Room 
   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.1 2.8 14.28 

 

Wall2 3.8 2.8 10.64 

 

Wall3(exclude window) 5.1 2.8 10.5 

 

Wall4 3.8 2.8 10.64 

Dimension for floor area  5.1 3.8 19.38 

Dimension for roof area  5.1 3.8 19.38 

Volume of room 5.1*3.8*2.8m 54.264 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 3.8 2.8 10.64 

 

Wall2 4 2.8 11.2 

 

Wall3 3.8 2.8 10.64 

 

Wall4(exclude window) 4 2.8 8.5 

Dimension for floor area  4 3.8 15.2 

Dimension for roof area  4 3.8 15.2 

Volume of room 4*3.8*2.8m 42.56 
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New apartment 4 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.1 2.8 14.28 

 

Wall2 3.8 2.8 10.64 

 

Wall3(exclude window) 5.1 2.8 10.5 

 

Wall4 3.8 2.8 10.64 

Dimension for floor area  5.1 3.8 19.38 

Dimension for roof area  5.1 3.8 19.38 

Volume of room 5.1*3.8*2.8m 54.264 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 3.8 2.8 10.64 

 

Wall2 4 2.8 11.2 

 

Wall3 3.8 2.8 10.64 

 

Wall4(exclude window) 4 2.8 8.5 

Dimension for floor area  4 3.8 15.2 

Dimension for roof area  4 3.8 15.2 

Volume of room 4*3.8*2.8m 42.56 

 

 

New apartment 5 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.3 2.8 14.84 

 

Wall2 3.6 2.8 10.08 

 

Wall3(exclude window) 5.3 2.8 11.06 

 

Wall4 3.6 2.8 10.08 

Dimension for floor area  5.3 3.6 19.08 

Dimension for roof area  5.3 3.6 19.08 

Volume of room 5.3*3.6*2.8m 53.424 
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Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 4.5 2.8 12.6 

 

Wall2 3.6 2.8 10.08 

 

Wall3 4.5 2.8 12.6 

 

Wall4(exclude window) 3.6 2.8 7.38 

Dimension for floor area  4.5 3.6 16.2 

Dimension for roof area  4.5 3.6 16.2 

Volume of room 4.5*3.6*2.8m 45.36 

 

 

 

New apartment 6 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.1 2.8 14.28 

 

Wall2 3.8 2.8 10.64 

 

Wall3(exclude window) 5.1 2.8 10.5 

 

Wall4 3.8 2.8 10.64 

Dimension for floor area  5.1 3.8 19.38 

Dimension for roof area  5.1 3.8 19.38 

Volume of room 5.1*3.8*2.8m 54.264 

     Bedroom 

    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 3.8 2.8 10.64 

 

Wall2 4 2.8 11.2 

 

Wall3 3.8 2.8 10.64 

 

Wall4(exclude window) 4 2.8 8.5 

Dimension for floor area  4 3.8 15.2 

Dimension for roof area  4 3.8 15.2 

Volume of room 4*3.8*2.8m 42.56 
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New apartment 7 

Living Room 

   

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 2.1 3.78 

Dimension for wall area  Wall1 5.2 2.8 14.56 

 

Wall2 3.6 2.8 10.08 

 

Wall3(exclude window) 5.2 2.8 10.78 

 

Wall4 3.6 2.8 10.08 

Dimension for floor area  5.2 3.6 18.72 

Dimension for roof area  5.2 3.6 18.72 

Volume of room 5.2*3.6*2.8m 53.424 

     Bedroom 
    

  

Height(m) Width(m) Sum areas(m2) 

Dimension for window area  1.8 1.5 2.7 

Dimension for wall area  Wall1 4.3 2.8 12.04 

 

Wall2 3.5 2.8 9.8 

 

Wall3 4.3 2.8 12.04 

 

Wall4(exclude window) 3.5 2.8 7.1 

Dimension for floor area  4.3 3.5 15.05 

Dimension for roof area  4.3 3.5 15.05 

Volume of room 4.3*3.5*2.8m 42.14 
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Appendix D 
 

15th February 2014 to 15th March 2014 

Figure D-0.1 Hourly Relative Humidity plot for period 15th February 2014 to 15th March 
2014 
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Appendix E 
To identify the U-value, firstly R-value of the layers that make up the structure must 

be worked out. The approach can be described using the following equation:  

𝐑𝐑 = 𝐝𝐝
𝛌𝛌
                                                                                                                                 (14)  

Where  

𝑑𝑑 is the thickness of the material (mm)  

𝜆𝜆 is the thermal conductivity of the material (W/m °C) 

The U-value can be determined as following equation  

𝐔𝐔 = 𝟏𝟏
∑𝐑𝐑

                                                                                                                              (15)   

Then 

∑𝐑𝐑 = 𝐑𝐑𝐬𝐬𝐬𝐬 + 𝐑𝐑𝟏𝟏 + 𝐑𝐑𝟐𝟐 +⋯+ 𝐑𝐑𝐧𝐧 + 𝐑𝐑𝐬𝐬𝐬𝐬                                                                                  (16) 

Where 

Rsi is the resistivity of a "boundary layer" of air on the inside surface. 

Rse is the resistivity of the "air boundary layer" on the outside surface of the wall. 

R1, R2,⋯, Rn is the resistivity of each component of the walls for the actual thickness 

of the component used. Therefore, U-value is equal to the inverse of the sum of the 

thermal resistances of each layer. 
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Appendix F 
As it mentioned in section 4.3.1.5, this appendix presents the orientation of room 

have impact on window opened in each new apartment 

New apartment 1 

 

New apartment 2 
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New apartment 3 

 

 

New apartment 4 
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New apartment 5 

 

New apartment 6 
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New apartment 7 

 

The following figure in this appendix present the orientation of room have impact on 

window opened in each old apartment 

Old apartment 1 
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Old apartment 2 

 

 

Old apartment 3 
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Old apartment 4 

 

Old apartment 5 
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Old apartment 6 

 

Old apartment 7
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