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Abstract 

Friction-induced vibration is a common phenomenon in nature and thus has attracted many 

researchers’ attention. Many of the mathematical models that have been proposed on the basis 

of mode coupling principle, however, cannot be utilized directly to analyse the generation of 

friction-induced vibration that occurs between two bodies because of a difficulty relating 

model parameters to definite physical meaning for real friction pairs. In this paper, a brake 

squeal experiment is firstly carried out by using a simple beam-on-disc laboratory apparatus. 

Experimental results show that brake squeal correlates with the bending mode of the beam 

and the nodal diameter out-of-plane mode of the disc as well as the cantilever length of the 

beam. Then, a specific three degree-of-freedom dynamic model is developed of the beam-

on-disc system and the vibration behaviour is simulated by using the complex eigenvalue 

analysis method and a transient response analysis. Numerical simulation shows that the 

bending mode frequency of the beam a little greater than the frequency of the nodal diameter 

out-of-plane mode and a specific incline angle of the leading area to the normal line of the 

disc as well as a certain friction coefficient, are necessary conditions for the mode coupling 

of a frictional system. Results also show that when the frictional system is transited from a 

steady state to an unstable state for the variation of parameters, its kinetic and potential 

energy increase with time due to continuous feed-in energy from the friction force while the 

dynamic responses of the system change from the beating oscillation to the divergent, which 

leads to the friction-induced vibration and squeal noise. 
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1. Introduction 

Friction-induced vibration due to sliding contact between two objects is a common 

phenomenon in nature. Examples of this are a violin sound, a cricket chirp, wheel/rail noise, 

brake squeal, machining chatter, earthquake motion, etc. Utilizing or preventing friction-

induced vibration in different occasions is of great significance for society and industry [1]. 

Much research has been conducted on this issue, especially the brake squeal from the aspects 

of generation mechanism, influence factors, numerical simulation, experimental analysis and 

elimination countermeasures. Among these, the generation mechanism is still a concern of 

research because of its fundamental role [23]. 

Bowden thought that the variation in the friction coefficient with sliding velocity was 

the cause of stick–slip vibration [4]. Not only the difference between the static and kinetic 

coefficient of friction but also the negative slope of the friction–velocity curve could lead to 

a stick–slip behaviour and produce self-excited vibration [5, 6]. 

Spurr proposed a sprag-slip model to explain the generation mechanism of brake squeal [7]. 

As a rigid articulated bar in friction contact with a rigid moving surface at an inclined angle 

that equals the friction angle, the bar could be spragged or self-locked and then followed by 

a slip due to a displacement of its flexibly supported end. This is known as geometrically 

induced or kinematic constraint instability, which occurs even though the coefficient of 

friction is constant [8]. 

Tlusty firstly presented a mode coupling principle to study the formation of machining 

chatter by using a two degree-of-freedom (DOF) dynamic model [9]. North built an 8-DOF 

lumped-parameter model for disc brake squeal considering the translation and rotation 

motions of the disc, pads and calliper. He proposed a “binary flutter mechanism” by using a 

simplified 2-DOF model referred from an airfoil flutter theory. The dynamical system of a 

brake may be unstable if two modes of the disc under the action of friction. The theoretica l 

solution can be obtained by deducing the eigenvalues of dynamical equations [10-12]. Earles 

built a 2-DOF model and a 4-DOF model with two masses based on a beam-on-disc system 

to investigate the problem of brake squeal [13, 14] while Hamabe built a single-mass and 2-

DOF model [15]. But no contact stiffness between contact surfaces was considered in these 

models. Hoffmann proposed a concise 2-DOF mass-spring-belt model by introducing the 

contact stiffness between the mass and the belt. In this model, both normal force and the 

frictional force are assumed to be functions of the contact stiffness and the normal 

displacement of the mass. Therefore, the non-conservative frictional force leads to an 

asymmetric stiffness matrix and an eigenvalue solution of the resulting problem may be 

utilized to analyse the frictional instability. This model not only illustrated the role of contact 

stiffness but also provided a clear explanation of the mode coupling principle of friction -

induced vibration [16, 17], and therefore has been referred widely in the works of other 

scholars. In addition, Millner built a 6-DOF lumped-parameter model including the 

translation and rotation motions of the disc, pad and calliper [18]. Ahamed proposed a 10-

DOF model for a fixed calliper disc brake considering both translation and rotation motions 

of the disc, pads and pistons [19]. Papinniemi extended a 4-DOF model from Hoffman’s 2-

DOF model plus the disc motions in normal and tangential directions [20]. Oura proposed a 

3-DOF model for a pad-on-disc system including the rotation and translation motions of the 

pad as well as the translation motion of the disc [21, 22]. These models mentioned above 



revealed that even when the friction coefficient is constant, the systems may be unstable if 

the friction force couples related degrees-of-freedom together [23]. However, it is difficult 

to attribute definite physical meaning to the parameters of these models and thus they cannot 

be applied directly to analyse the instability problem of real friction pairs. 

Hoffmann and his colleagues also performed a lot of work on the experiment and modelling 

of a beam-on-disc system. Tuchinda built a continuum mathematical model of a disc and a 

beam to simulate the mode lock-in behaviour. Although in this model the beam axis is 

inclined along the disc rotation, numerical simulation showed that the friction system would 

be unstable only when the incline angle of the axis is taken as a negative value, i.e., the beam 

inclination is opposite to the disc rotation [24]. To solve this contradiction, Tuchinda thought 

the contact point should be the corner of the contact surface of the beam. However, finite 

element analysis showed that there exists a small discrepancy between theoretical predictions 

and measurements when the beam is inclined at 4° [25]. Based on a specially designed beam-

on-disc test apparatus, Allgaier found that when the cantilever length of an aluminium beam 

equals 156.7 mm and the incline angle of the beam axis against the aluminium disc is 4°, the 

third nodal diameter out-of-plane mode will be coupled with the second bending mode of the 

beam, which leads to friction-induced squeal. A finite element model was built to analyse the 

effects of the rotation speed of the disc and the applied normal load on friction-induced 

vibration [26]. 

Akay et al. carried out a lot on experiments and finite element simulations based on 

different beam-on-disc test rigs [27-30], and summarized the research results in Ref. [31]. 

Because of the contact effect of a brake pad, the nodal diameter out-of-plane mode will split 

into two modes which have the same mode shapes but different phases and frequencies [27-

29]. When the frequency of a split mode at higher frequency is close to the bending mode 

frequency of the pad, both modes will be coupled. By adjusting the beam length, added mass, 

different system modes may be coupled to generate squeal noise at different frequencies. 

Experimental results showed that when the beam length equals 180 mm, several disc modes 

are coupled with several beam modes simultaneously, i.e., a squeal noise occurs at a mixed 

frequency [30, 31]. 

With the development of computation technology, the mode coupling-based finite 

element (FE) method has established itself as the most common numerical method used for 

predicting the instability of real friction pairs [32-34]. However, much research showed that 

brake squeal is actually influenced by many factors such as component geometry, material 

property, friction coefficient, contact interface, applied load and thermal effect. Because most 

of the influence factors are time-varying and difficult to model accurately, application of FE 

method is still far from satisfactory and results often suffer from over-prediction or under-

prediction [35, 36]. 

Therefore, the generation mechanism and reduction countermeasures of friction-induced 

squeal for real brakes still need further investigation. Experiment research based on beam-

on-disc or pin-on-disc systems is an effective way to investigate the essential of friction-

induced squeal. Because a single-mass model cannot incorporate the main motions of a real 

frictional pair while those models with many degree-of-freedoms are actually difficult to 

obtain the corresponding parameters, the lumped-parameter models mentioned above may be 

used to explain the mode coupling principle but is still not suitable for investigating the 

problem of friction-induced vibration occurs between two bodies. In addition, the rotation 



degree-of-freedom of a frictional part such as a pad, a beam or a pin that  also proposed in 

some models may not represent the real motion. 

In order to clearly illustrate the generation of friction-induced vibration due to sliding 

contact between two objects, a 3-DOF dynamic model incorporating the main motions of a 

frictional pair and the contact stiffness between frictional interfaces is proposed and analysed 

in this paper. In Sect. 2, a simple beam-on-disc brake squeal experimental apparatus is 

introduced. The relationship between the brake squeal frequency and the mode frequencies 

of the beam and disc as well as the cantilever length of the beam is extracted from experiment 

results. In Sect. 3, a specific 3-DOF lumped-parameter model of friction-induced vibration 

is therefore developed of the beam-on-disc system. In Sect. 4, with the identified and 

estimated parameters of the experimental apparatus, the instability of a frictional system as 

well as the influence factors is simulated by using the complex eigenvalue analysis method 

and a transient response analysis. The relationship among mode coupling, system instability, 

oscillating behaviour, energy feed-in and brake squeal is analysed and discussed. Finally, 

some concluding remarks are presented in Sect. 5. 

2. Brake Squeal Experiments of a Beam-on-Disc System 

2.1. Beam-on-Disc Experimental Apparatus 

For the reason of complication of real brake system on vehicles, it is still difficult to 

deal with the problem of disc brake squeal. Thus, a beam-on-disc brake squeal apparatus 

having a simple structure is designed for the experiments in this study. An automobile brake 

disc (Cast iron) is installed on the lathe machine together with a metal beam (aluminium 

alloy, φ 28 mm). The schematic layout of the experimental apparatus is shown in Fig. 1a. The 

disc is driven by a motor and through a transmission. The contact end of the beam to the disc 

is pasted by a piece of friction material while the other end is held by the cutter carrier. The 

cantilever length of the beam is denoted by the symbol L. By using the carriage handle, the 

axial force P is thus applied on the beam to make it move into contact with the surface of the 

rotating disc and produce brake squeal. The sound pressure of brake squeal is measured by a 

microphone and output to a data acquisition system for further analysis.  A photograph of the 

beam-on-disc brake squeal apparatus is shown in Fig. 1b. 
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Fig. 1.  Beam-on-disc brake squeal apparatus: (a) schematic layout and (b) photograph. 



2.2. Brake Squeal Experimental Method and Results 

Firstly, the cantilever length of the aluminium alloy beam is adjusted to 90 mm by 

changing its installation position, and then the disc is rotated at a speed of about 18  rpm. 

Brake squeal due to friction-induced vibration is triggered intermittently. The sound of disc 

brake squeal produced during the whole process from start to finish is measured and analysed 

as shown in Fig. 2. Because of the influence of disc surface run-out (SRO), the sound signal 

is repeated in each disc rotation. It can be seen that similar brake squeal generated in the 

range between 2.9 and 6.2 s is repeated again between 6.2 and 9.5 s. The FFT analysis shows 

that the frequencies of brake squeal noise are 1637 Hz and its harmonics. The dominant 

frequency is near the second frequency of the nodal diameter out-of-plane mode of the 

constrained disc (1529 Hz) and the first frequency of the bending mode of the constrained 

beam (1563 Hz). Both mode frequencies of the disc and the beam are extracted from 

experimental hammer impact tests. 
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Fig. 2.  Signal characteristics of beam-on-disc brake squeal: (a) time history and (b) frequency spectrum. 

 

Similar brake squeal experiments are repeated except that the cantilever length  L of the 

beam is adjusted gradually. When the cantilever beam is adjusted at the length from 50 to 

300 mm, it is found that the dominant frequency of brake squeal changes with the cantilever 

length, as shown in Fig. 3. However, when the cantilever length is less than 50 mm, greater 

than 290 mm, or in the range from 110 to 155 mm, no squeal noise is observed in the 



experiment. In Fig. 3, the cantilever length of the beam is shown along the x-axis while the 

frequency of brake squeal is shown along the y-axis. Results show that the frequency of brake 

squeal decreases as the cantilever length increases from 50 to 110 mm. The brake squeal 

appears again at L = 155 mm and then decreases in frequency from 3704 to 1306 Hz as the 

cantilever length increases from 155 to 290 mm. Unlike the squeal noise of a real disc brake 

occurs indefinitely because of many uncertain influence factors, the friction-induced squeal 

of the beam-on-disc system at different frequencies always appears and therefore can be 

repeated when the cantilever beam is adjusted to the same length. 
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Fig. 3.  Brake squeal frequency vs. cantilever length (L=50mm to 300mm). 

 

Considered the brake squeal frequency relates well with the geometric structure of the 

system, the relationships between the squeal frequency, the first four nodal diameter out -of-

plane modes of the constrained disc and the first two bending modes of the constrained beam 

are illustrated in Fig. 4a, b, respectively. Figure 4a shows that the first bending mode 

frequency of the beam plays an important role in triggering brake squeal. When the cantilever 

length is equal to 50, 70, 90 or 110 mm, the first bending mode frequency of the beam is 

close to the fourth, third, second or first frequency of the nodal diameter out -of-plane modes 

of the disc, respectively. Thus, the system generates brake squeal at an adjacent frequency to 

both the mode frequencies of the disc and the beam. Figure 4b shows that the second bending 

mode frequency of the beam is also important. When the cantilever length equals 155, 200, 

250 or 290 mm, the second bending mode frequency of the beam is close to the fourth, third, 

second or first frequency of the nodal diameter out-of-plane modes of the disc, respectively. 

Thus, it produces brake squeal at a frequency near to both mode frequencies of the disc and 

the beam. Because no squeal noise at other frequencies are produced no matter how the 

cantilever length is adjusted in the range from 110 to 155 mm, it is thought that the first four 

nodal diameter out-of-plane modes of the constrained disc and the first two bending modes 

of the constrained beam may be much easier to excite than other modes to produce squeal 

noise. 
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Fig. 4.  Relationship between brake squeal frequency (■) , the modes of the beam (dashed line) and the modes 

of the disc (solid line): (a) L=50mm to 130mm and (b) L=140mm to 300mm. 

 

Therefore, it is concluded from the experiments that the generation of brake squeal of 

the beam-on-disc system is mostly related to the frequencies of the first four nodal diameter 

out-of-plane modes of the constrained disc and the first two bending modes of the constrained 

beam. It seems that when they are close to each other, brake squeal is prone to produce at a 

coupled mode frequency. If they are separated to a certain degree, the brake squeal may 

disappear or appear at another coupled mode frequency of the next order. But the generation 

mechanism of friction-induced squeal as well as its main influence factors still needs a further 

theoretical analysis. 



3.  A 3-DOF Model of Friction-Induced Vibration 

For a rotating beam-on-disc system, the contact end of the beam usually deflects by a 

small displacement along the tangential direction of disc rotation due to the action of 

frictional force, as shown in Fig. 5. The leading area of the contact end of the beam is the 

actual contact position and creates a digging-in effect while the trailing area is out of touch 

with the disc surface in the friction process. Therefore, the line from the actual contact point 

to the installation point is inclined at a small angle to the original centreline of the beam. 

Considering the horizontal and vertical motions of the beam as well as the vertical motion of 

the disc, a 3-DOF mass-spring dynamic model is therefore developed of the beam-on-disc 

system, as shown in Fig. 6. Here, m1 is the mass of the stationary part (beam) which is 

subjected to the actions of the spring k1 at an incline angle α to the horizontal direction as 

well as the spring k2 at the same incline angle α to the vertical direction. m2 is the mass of the 

moving part (disc) which is subjected to the action of the spring k3in the vertical direction. 

There exists a normal contact stiffness kc, a normal force N and a frictional force Ff between 

m1 and m2. 
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Fig. 5.  Schematic diagram of the beam-on-disc 

system (the solid outline represents the 

deformed beam and the dashed outline 

represents the un-deformed beam). Fig. 6.  3-DOF model of the frictional system. 

 

Assume that: ①  m1 is tilted in its perpendicular directions (x1 and y1) by an 

angle α relative to the fixed points (O and O′) simultaneously; ②  the incline angle α is 

taken as a constant value to simplify the dynamics analysis process on the basis that the high-

frequency and low-amplitude vibration of m1 affects the incline angle α only negligibly; 

③ m2 moves forward continuously at an even speed v along the x2 direction and only vibrates 

in the y2 direction; ④ both m1 and m2 are subjected to the actions of the normal force N and 

the frictional force Ff during the friction process. The normal force N on the contact 

spring kc is proportional to the difference in the vertical displacement (y2 − y1) 

between m1 and m2; ⑤ and that the positive damping of the system is not considered in this 

model in order to simplify the study. It is obvious that a non-damped frictional system is 

more convenient to investigate the essence of friction-induced vibration though positive 

damping exists in actual frictional systems [37, 38]. 

According to the Newton’s Second Law, the equations of motions in the x1, y1 

and y2 directions for the present model are derived as following.  



According to the Newton’s Second Law, the equations of motions in the x1, y1 and y2 directions for the 

present model are derived as following.  
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Obviously, the elements in the stiffness matrix (K+KF) become asymmetrical due to the introduction 

of the non-conservative frictional force.  

 

4.  Numerical Results and Discussion 

4.1. Complex Eigenvalue Analysis 

For a time-invariant linear system, the local stability could be analysed through the Routh 

Hurwitz criterion or the Lyapunov methods. The complex eigenvalue method based on the 

first Lyapunov method is often utilized to simplify the analysis of frictional instability. 

According to the complex modal theory, when the dynamic equations contain non-

proportional damping, asymmetrical damping or asymmetrical stiffness matrices, the ith 

eigenvalue λi is can be expressed in the form of a complex number [39]: 

2i i dij f                                       （5） 

where the imaginary part 2π fdi is the ith damped natural angular frequency of the system 

while the real part σi is the respective modal damping factor. The system becomes unstable 

if one of the real parts reaches a positive value. The ith dimensionless damping factor ζican 

be expressed in the following form: 

2
i

i

dif





   .                                   （6） 

For a dynamic system without positive damping, if the dimensionless damping factor is 

negative due to the positive real part of the complex eigenvalue, the system is in an unstable 

state which leads to a divergent oscillation. It is obvious that the greater the absolute value 

of ζi, the more unstable is the system. If ζi is zero because σi is equal to zero, the system is in 



a stable state. Therefore, both σi and ζi are often utilized as the performance index to estimate 

the instability of frictional systems. 

In the present investigation, the masses of the cantilever beam (L = 90 mm) and the disc 

are calculated or weight, respectively, m1 = 0.15 kg and m2 = 4.35 kg. Although the actual 

beam and disc may have an infinite order of modes and corresponding mode parameters, only 

the modes related to the brake squeal are considered for the following analysis. The results 

of an experimental modal test and a finite element analysis show that the first bending mode 

frequency of the constrained beam fbending = 1563 Hz, the first tensile mode frequency of the 

constrained beam ftensile = 10907 Hz, and the second nodal diameter out-of-plane mode 

frequency of the constrained disc fout = 1529 Hz. Then, the mode stiffness are computed for 

the proposed 3-DOF dynamic system according to their modal frequencies, 

thus, k1 = 1.45 × 107 N/m, k2 = 7.04 × 108 N/m and k3 = 4.01 × 108N/m. The contact stiffness 

between the beam and the disc is estimated according to the material properties and actual 

contact size of the beam [40], as kc = 1.50 × 107 N/m. When the friction coefficient μ varies 

between 0 and 0.8 and the incline angle α varies between 0° and 16°, the variation of the 

complex eigenvalue of the 3-DOF frictional system is shown in Fig. 7a, b, respectively. 
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Fig. 7.  Influence of the friction coefficient μ and the incline angle α on the real part σ of the complex eigenvalue 

and the damped natural frequency fd: (a) Influence of the friction coefficient μ while the incline angle α=2o and 

(b) Influence of the incline angle α while the friction coefficient μ=0.2. 

 

Figure 7a shows that the real part σ of the complex eigenvalue is equal to zero and the 

mode frequencies fd are separated when the friction coefficient μ is smaller than 0.05 under 

the condition of an incline angle α = 2°, which means that the frictional system is in a stable 

state. However, the real part of the complex eigenvalue becomes positive when the friction 

coefficient μ is greater than 0.05, i.e., both the modes of the disc and the beam are coupled 

to form an unstable mode, which leads the system to friction-induced vibration. 

Figure 7b shows that the real part σ of the complex eigenvalue is equal to zero and the 

mode frequencies fd are separated only when the incline angle α = 0° or α > 11.5° under the 

condition of a friction coefficient μ = 0.2, which also means the frictional system is in a stable 

state. But the real part σ of the complex eigenvalue becomes positive when α is in the range 

from 0° to 11°, i.e., both the modes of the disc and the beam are coupled to form an unstable 

mode, which also leads the system to friction-induced vibration. 

In order to analyse the combined influence of the friction coefficient  μ and the incline 

angle α on the system instability simultaneously, the variation of the dimensionless damping 



factor ζ with μ and α is shown in Fig. 8. It is found that only when both μ and α are in a 

particular range, does the dimensionless damping factor ζ become smaller than zero, i.e., the 

frictional system is unstable. The figure also shows that ζ does not always increase 

as μ or α increases. 
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Fig. 8.  Influence of the incline angle α and the friction coefficient μ on the dimensionless damping factor ζ. 

 

There is an interesting phenomenon for such a frictional system with these particular 

parameters. In the range of μ = 0–0.25, the damping factor ζ is equal to zero when the incline 

angle α = 0° or when α > atan (μ). For example, when μ = 0.2 and α = atan (0.2), 

i.e., α = 11.3°, and the system is in a critical stable state. However, it cannot be regarded as 

a sprag-slip phenomenon. The reason is that the frictional system proposed in this paper is a 

flexible system while that proposed by Spurr is a rigid system before the articulated bar is 

locked [7]. In fact, the solution form of a critical unstable condition may be difficult to 

express in a concise equation for such a 3-DOF dynamic model and is more complicated than 

that proposed by Spurr. 

Because the mode frequencies of a beam change with the cantilever length, friction-

induced squeal is therefore produced at different frequencies. Table 1 lists the comparison of 

experiment and analysis results. For the reasons of measurement error in experiments and 

estimation error of contact stiffness for simulation, there exists an error between the 

experiment and analysis results, but all are smaller than 5%. This means that the model 

proposed in this paper has an acceptable level of accuracy and can be applied for further 

study. 

Table 1. Comparison of experiment and analysis results of the squeal frequency at different cantilever lengths 

Length (mm) 50 70 90 110 155 200 250 290 

Exp. (Hz) 3704 2369 1637 1220 3704 2369 1637 1306 

Analysis (Hz) 3731 2367 1556 1247 3704 2376 1572 1248 

Error (%) 0.73 -0.08 -4.95 2.21 0.70 0.30 -3.97 -4.44 

 



According the analysis of the influence of incline angle α on the instability of a frictional 

system, for such a beam-on-disc system developed in Sect. 2, when the cantilever length is 

too short (<50 mm), the end surface of the beam almost completely contacts with the disc 

surface because of its high stiffness and small deflection, and the contact centre is almost the 

geometric centre of the end surface of the beam. The actual incline angle to the normal line 

of the disc is very small, and thus the frictional system is stable. When the cantilever length 

is too long (>290 mm), because the beam neutral axis deflects a lot as well as the leading 

area does, the actual incline angle is also very small or even negative so that the frictional 

system is also stable. If the cantilever length is in the range from 110 to 155 mm, the higher 

order mode frequencies of the beam and disc are difficult to excite to couple with each other. 

These may be the reasons why there is no squeal noise generated when the cantilever length 

of the beam is located in some range. 

4.2.  Transient Response Analysis 

In order to predict the tendency of disc brake squeal, Guan proposed a finite element 

analysis method of feed-in energy on the brake system [41]. The main idea is to calculate the 

total feed-in energy of all node pairs of a finite element model that is induced during one 

cycle of vibration. It was concluded that the lager the feed-in energy induced by frictional 

force during one cycle of vibration, the more unstable the system is, and the more frequently 

the squeal occurs. For the 3-DOF frictional system proposed in this paper, the kinetic energy 

of the system at any time can be expressed as following [42]: 
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Thus, the total energy 
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            (9) 

In order to analyse the onset of friction-induced vibration, the time response histories of 

the present 3-DOF model under the initial condition, [x1, y1, y2]t=0 = [0, 0, 1 × 10−5] [m], when 

the incline angle α = 2° and the friction coefficient μ = 0.2, are simulated through the 

transient response analysis, as shown in Fig. 9. The other parameter values for this simulation 

are the same as those used in Sect. 4.1. It is found that the vibration 

responses x1, y1, y2, Ff, Ek, Ep and ET all increase with time. In addition, the response of y1 is 

more complicated than the others. The FFT analysis shows that the frequency response 

of y1 consists of a large amplitude low-frequency component (1600 Hz) and a small 

amplitude high-frequency component (10800 Hz), as shown in Fig. 10. The latter frequency 

is near the vertical natural frequency of m1 (ftensile, 10907 Hz). The former frequency (1600 Hz) 

is near the horizontal natural frequency of m1 (fbending, 1563 Hz) and the vertical natural 

frequency of m2 (fout, 1529 Hz) and is close to the actual brake squeal frequency (1637 Hz). 
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Fig. 9.  Time histories of the transient response of the 

3-DOF system when the incline angle α=2o and the 

friction coefficient μ=0.2: (a, b and c) displacement of 

the masses m1 and m2 along the x1, y1 and y2 directions, 

respectively; (d) friction force between the masses m1 

and m2 and (e) energy of the system (thin solid line 

represents the kinetic energy Ek of the system; thin 

dashed line represents the potential energy Ep of the 

system; thick solid line represents the total energy ET of 

the system). 
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Fig. 10.  Frequency spectrum of the displacement of 

the mass m1 in the y1 direction. 

 

It could be seen in Fig. 9 that at the beginning of the process of friction-induced 

vibration, m1 moves forwards (x1) and downwards (y1) while m2 also moves downwards (y2) 

(digging-in phase) under the action of normal force. When the frictional force Ff is gradually 

decreased to zero, m1 also decreases its forward speed until it reaches zero, and then starts to 

move backwards and forwards followed by the motion change of y2 (release phase), thus the 

frictional force Ff becomes negative. Because of the interaction of the frictional force, the 



horizontal and vertical movements of m1 and the vertical movement of m2, both the kinetic 

and potential energy, Ek and Ep, of the system increase with time due to the continuous feed-

in energy ET from the non-conservative frictional force, which not only keeps the digging-in 

and release motions of m1 in process but also leads to increasing vibration levels 

of m1 and m2 with time and then produces a squeal noise at a coupled system frequency. 

Figure 9 also shows that the friction-induced vibration simulated in this paper is different 

from the sprag-slip behaviour [7]. 

When the incline angle α is taken as 20° while friction coefficient μ is still equal to 0.2, 

the time response histories are simulated and shown in Fig. 11. At the beginning of the 

process, the motions (x1 and y1) of m1 are very similar to those in Fig. 9, and the vibration 

amplitudes increase with time. However, the vibration amplitude of y2 decreases with time 

because of the effect of phase lagging, which leads to the decreasing of normal force and 

frictional force. The total energy ET of this system is therefore decreased. In the whole 

process, there appears a phenomenon of beating for all the variables x1, y1, y2 and Ff of this 3-

DOF system. Because the beat frequency is much smaller than the vibration frequency, the 

beating vibration might consist of two components having similar frequencies near 1600 Hz. 

The beating vibrations of x1 and y1 are in opposite phase to those of y2 and Ff. In every cycle 

of beating vibration, the total feed-in energy ET from the frictional force to the system is 

equal to the output energy from the system. No divergent vibration leading to squeal noise is 

generated because there only exists a small amount of kinetic and potential energy, Ek and Ep, 

in the system. It is worth to note that Hoffmann also found the phenomenon of the beating 

oscillation occurred in a 2-DOF frictional system with closely neighbouring natural 

frequencies. He thought that both parameters of friction coefficient and contact stiffness have 

a significant influence on the energy budget of beating states [16, 43]. 
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Fig. 11.  Time histories of the transient response of the 

3-DOF system when the incline angle α=20o and the 

friction coefficient μ=0.2: (a, b and c) displacement of the 

masses m1 and m2 along the x1, y1 and y2 directions, 

respectively; (d) friction force between the masses m1 and 

m2 and (e) energy of the system (thin solid line represents 

the kinetic energy Ek of the system; thin dashed line 

represents the potential energy Ep of the system; thick 

solid line represents the total energy ET of the system). 

 

4.3.  Influence of the Natural Frequencies on the System Instability 

Take the values of the stiffness coefficients k1 and k3 in a specific range with other 

parameters unaltered, and then convert the k1 and k3into the corresponding natural 

frequencies f1 and f3 according to the following equations. 

1
1

1

1

2

k
f

m
  and 

3
3

2

1

2

k
f

m
                             (10) 

For different values of f1 and f3, the instability of the frictional system Eq. (1) can be 

analysed by calculating the real part σ of the complex eigenvalue or the dimensionless 

damping factor ζ. The relationship between the natural frequencies (f1 and f3) and the system 

instability is shown in Fig. 12. 
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Fig. 12.  Stability region of the system instability with respect to the natural frequencies f1 and f3. 

 

Only when the nature frequencies f1 and f3 are located in the middle belt region, does the 

real part of the system complex eigenvalue become greater than zero, thus the frictional 

system is in an unstable state. But when the frequency f1 or f3 is increased to a certain value, 

i.e., they are located in the upper left or the lower right corner, the real part of the complex 

eigenvalue is equal to zero, and thus the system is in a stable condition. Because the contact 

stiffness kc has an effect on increasing the value of the stiffness k3 more than that of k1, it is 



found that when the bending mode frequency f1 of the beam is a little greater than the nodal 

diameter out-of-plane mode frequency f3 of the disc, both modes of the beam and the disc are 

coupled to generate friction-induced vibration leading to brake squeal at a coupled frequency. 

When both mode frequencies are separated to a certain extent, the frictional system will 

transfer from the unstable state to a stable state, and the brake squeal at this coupled system 

frequency will disappear. The analysis agrees well with the experimental result as given in 

Sect. 2. According to the numerical simulation in Sects. 4.1 and 4.2, the mode coupling of 

the system is also influenced by the incline angle of the beam and the coefficient of friction.  

5.  Conclusions 

For the simple beam-on-disc frictional apparatus developed in this paper, when the 

cantilever length is adjusted in a specific range, it is prone to produce squeal noise at 

corresponding frequencies. The frequency of squeal is near the frequencies of the first two-

order bending modes of the beam and the first four-order nodal diameter out-of-plane 

modes of the disc. It will not produce squeal if the cantilever length is too short or too long. 

When the cantilever length is too short, the end surface of the beam almost completely 

contacts with the disc because of its high stiffness and small deflection, and the contact centre 

is near the geometric centre of the beam. The actual incline angle is very small, and thus the 

frictional system is stable. When the cantilever length is too long, because the beam axis 

deflects a lot as well as the leading area does, the actual incline angle is also very small or 

even negative so that the frictional system is also stable. Experimental results also show that 

the lower order modes of the beam and disc may be easier to excite than the higher order 

modes to produce squeal noise, which is instructive for the reduction design of disc brake 

squeal. 

Considering the bending and tensile modes of the beam and the nodal diameter out -of-

plane mode of the disc, the incline angle of the leading area to the normal line of the disc, 

and the contact stiffness between the beam and the disc, a 3-DOF lumped-parameter model 

is proposed to investigate the generation mechanism of friction-induced vibration that occurs 

between two bodies. Compared to other lumped-parameter models, the proposed 3-DOF 

model has a definite physical meaning and can be in application to the investigation of 

friction-induced vibration that occurs in frictional pairs as well as the parameters can be 

easily identified or estimated. 

Numerical simulation shows that because of the effect of the contact stiffness on the 

beam different from that of the disc, only when the bending mode frequency of the beam is 

a little greater than the frequency of the nodal diameter out-of-plane of the disc, both modes 

will couple with each other and lead to friction-induced vibration. It is also found that when 

the frictional system is transited from a steady state to an unstable state for the variation of 

the incline angle, its kinetic and potential energy increase with time due to continuous feed-

in energy from the friction force while the dynamic responses of the system change from the 

beating oscillation to the divergent, which results in the friction-induced vibration and squeal 

noise. When the incline angle is too big or too small, because of the phase changing of each 

degree-of-freedom, the total feed-in energy from the frictional force to the system is equal to 

the output energy from the system in every cycle of beating vibration. Because there only 

exists a small amount of kinetic and potential energy in the system, no divergent vibration is 

generated. 



Therefore, the bending mode frequency of the beam a little greater than the frequency 

of the nodal diameter out-of-plane mode and a specific incline angle of the leading area to 

the normal line of the disc as well as a certain friction coefficient are necessary conditions 

for the mode coupling of a frictional system. 
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