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Influence of input reflectance values on climate-based daylight metrics using sensitivity analysis

E. Brembilla ∗, C.J. Hopfe and J. Mardaljevic

School of Civil and Building Engineering, Loughborough University, Loughborough LE11 3TU, UK

(Received 12 April 2017; accepted 12 July 2017 )

The insertion of climate-based daylight metrics as a requirement in several design guidelines calls for a better understanding
of their effectiveness. This paper draws attention to the sensitivity of annual daylight metrics to changes in input reflectance
values. The uncertainties related to the choice of guidelines and of simulation techniques were also considered. Total Annual
Illumination (TAI) showed the most consistent correlation and the highest sensitivity to variations in reflectance (up to
± 60% from the benchmark), independently of the geometrical characteristics of the space. Other annual metrics were less
sensitive, or showed a poorer correlation. The deviations among different simulation techniques varied with the chosen
metric too (NRMSD ≤ 15% for TAI), but all techniques were equally affected by variations in reflectance. The results
highlighted the importance of selecting appropriate metrics for annual climate-based daylight evaluations.

Keywords: Climate-based daylight modelling; sensitivity analysis; surface reflectance; annual daylight metrics; daylight in
schools; radiance

1. Introduction
In daylighting practice the use of appropriate surface fin-
ishes and geometry to bring daylight deeper into the spaces
is a well known and effective strategy to increase dif-
fuse light penetration and brighten up deep plan spaces.
The daylight standards currently employed have long since
recognised the importance of inter-reflected light. One of
the commonly used ‘rule of thumb’ methods is the equation
to predict the average daylight factor in a space (Reinhart
and LoVerso 2010). First proposed by Lynes (1979), the
equation was revised by Crisp and Littlefair (1984) fol-
lowing validation tests using scale models . The revised
equation is

DF = TWθM
A(1 − R2)

or DF ∝ 1
1 − R2 . (1)

Here T is the effective transmittance of the window(s);
W is the net area of side window(s); θ is the angle in
degrees subtended in vertical plane by sky visible from
the centre of a window; M is the maintenance factor; A
is the total area of bounding surfaces of an interior: Floor
+ ceiling + walls, including window(s); R is the area-
weighted mean reflectance of interior bounding surfaces.
Thus, for any given space geometry, there is strong depen-
dance of the estimated average daylight factor value on
the reflectance of the building surfaces. The average day-
light factor equation was, of course, formulated and then
calibrated to be applicable for standard overcast sky condi-
tions, and a notional external reflectance value since there

*Corresponding author. Email: E.Brembilla@lboro.ac.uk

is no option to vary this quantity. Illuminance gradients
occurring in and around a space under realistic conditions
with sun and non-overcast sky luminance patterns will
invariably be significantly greater than those experienced
under overcast skies (CIE standard or otherwise).

Correct specification of realistic optical properties for
opaque and transparent building surfaces in daylighting
simulation has always been an important, if largely aca-
demic, consideration. However, the increasing role placed
on achieving compliance targets at the design stage has
cast a greater emphasis on both the correct assignment of
optical properties, and on the understanding of the key
sensitivities in the outputs to variations in these proper-
ties. Since many compliance criteria are in terms of single
threshold values, a small change in, say, wall reflectance,
could result in the difference between pass and fail.

Obtaining the correct properties of clear glazing sys-
tems is usually a straightforward matter as the data are
readily available from manufacturers. All the other sur-
faces in an ordinary room are likely to be opaque, either
diffuse or specular. For realistic renderings and impres-
sions of the building design, as well as for glare analyses,
the correct assignment of all optical properties (i.e. colour,
reflectance, specularity and roughness when using Radi-
ance) can make a significant difference in the appearance
and in the evaluation of the simulated scenes. For this kind
of purposes, it is usually suggested to take exact measure-
ments of the desired materials when possible (Brembilla
et al. 2016), or to use databases that reports the measured

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
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properties of a number of different surface types, organised
in libraries (Jakubiec 2016).

For quantitative evaluations all the materials can
be considered as perfect diffusers, i.e. Lambertian, and
the specular component therefore ignored (SLL and
NPL 2001; CIBSE 2015), with the exception of purely
mirroring surfaces of considerable size. The problem is
reduced to the assignment of reflectance values for all the
elements of the design project, but even so the physical
uncertainty related to this practice remains high for a num-
ber of reasons; e.g. the finishes might be unknown, they
might change later on, the furniture or the fixtures are not
part of the modelled geometry, the cleanliness or mainte-
nance factor cannot be told a priori. Several guidelines on
the calculation of metrics for daylighting, traditional and
annual, report indications of this kind:

Use actual surface reflectance values for walls, floors,
ceilings, and furniture. If actual reflectance values are
not known, use the following default reflectance values.
(Illuminating Engineering Society 2012)

Some of the suggested values are reported in Table 1,
with the indication of the guideline they were sourced
from: the Illuminating Engineering Society (IES) LM-83-
12 (Illuminating Engineering Society 2012), used as refer-
ence for LEED v4 (US Green Building Council USGBC);
CIBSE Application Manual 11 on Building Performance
Modelling (CIBSE 2015); two CIBSE Lighting Guides,
LG5 Lighting for Education (CIBSE/SLL 2011) and LG7
Offices (CIBSE/SLL 2005); and the requirements for the
Priority Schools Building Programme (PSBP) promoted
by the UK EFA (Education Funding Agency 2014). In
other codes, such as the Illuminating Engineering Society
of North America Handbook (IESNA 2000) and the British
Standard 8206 Part 2 (BSI 2008), a list of reflectance
values relative to several construction materials is given
instead of standard values.

In 2013 the UK Education Funding Agency (EFA)
made climate-based daylight modelling (CBDM) a manda-
tory requirement for the evaluation of designs submitted
for the PSBP. School designs submitted to the PSBP
must achieve certain ‘target’ criteria for the useful day-
light illuminance metric. This is believed to be the first
major upgrade to mandatory daylight requirements since
the introduction of the daylight factor more than half a
century ago. In the US, a climate-based daylight metric

approved by the IESNA has appeared in the latest version
of LEED. These moves have placed the practical applica-
tion of CBDM in the spotlight. In particular, issues related
to quality assurance and the assumptions often employed
to set key input parameters such as reflectance since,
crucially, pass/fail outcomes can depend on the values
chosen.

In this paper, a thorough analysis of the sensitivity
of CBDM evaluations to reflectance values assignment is
taken as illustrative case to analyse in detail the use of
annual metrics for uncertainty and parametric studies. To
account for the variability in some input factors, that is,
inevitably present when performing building performance
simulations, it is now common to perform uncertainty
and sensitivity analyses through widely applied statisti-
cal methods (Hopfe 2009). In daylighting, the literature
offers less examples in which the same concept has been
applied; a previous work by Tregenza (2016) touched
on the subject, but keeping the error propagation analy-
sis restricted to analytical models to calculate Daylight
Coefficients, rather than using computer simulation for a
full climate-based daylight modelling (CBDM) evaluation.
On the other hand, parametric and optimisation analyses
that use annual daylight metrics are becoming widespread.
They usually employ metrics required by current guide-
lines, without considering the actual sensitivity of those
metrics to the analysed parameters.

2. Methodology
To tackle the problem of the sensitivity of CBDM to sur-
face reflectance values, several types of uncertainty in the
input factors were considered, and each of them was anal-
ysed with an appropriate methodology. The main factors
taken into account were:

• The uncertainty deriving from different guideline
requirements. A brute-force approach was applied
in this case, comparing the values suggested in the
literature.

• The uncertainty related to a specific scenario. Four
case study classrooms with different designs were
used throughout the study, to understand which con-
siderations can be generalised to a broader suite of
spaces and which cannot.

Table 1. Standard values suggested in the literature for the reflectance of the model’s main elements.

Floor Walls Ceiling Sill and frames External ground
External

obstructions

IES LM-83-12 0.2 0.5 0.7 0.5 0.1 0.3
CIBSE AM11 0.05–0.3 0.4–0.7 0.7–0.85 n.a. 0.05–0.3 n.a.
CIBSE LG5 0.2–0.4 0.5–0.8 0.7–0.9 n.a. n.a. n.a.
CIBSE LG7 0.2–0.4 0.3–0.7 > 0.6 n.a. n.a. n.a.
PSBP 0.2 0.5 0.7 n.a. n.a. n.a.
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• The physical uncertainty of the reflectance measured
or assumed for the single elements in the rooms,
i.e. walls, floor, ceiling, external ground and window
frames. The influence of each of these surfaces and
their relationship with the final results was investi-
gated thanks to a Sensitivity Analysis (SA) run with
the Method of Morris.

• The modelling uncertainty related to the choice of
simulation method. Five Radiance-based methods
were used to evaluate all four classrooms and an
inter-model comparison was carried out.

These four types of uncertainty – i.e. those related to
guidelines, scenario, physical and modelling choices – are
likely to be encountered by a designer at the initial stages of
a luminous performance evaluation. For this reason, they
were all considered in the analysis, to give a comprehen-
sive evaluation of how CBDM might be affected by the
assignment of optical properties. CBDM typically gener-
ates a time-series of illuminance values at every ‘sensor’
point. The most straightforward way to evaluate provi-
sion over the year is to determine at each sensor point
the number of hours for which an illuminance level, say
300 lux, is achieved. This is known as ‘daylight autonomy’
(DA) and the evaluation period is typically the working
day. The DA gives an indication of the time of the year
for which, in principle, artificial lighting can be avoided
because the design-level illuminance (e.g. 300 lux) is being
provided by daylight. Another climate-based metric simi-
lar to daylight autonomy is ‘useful daylight illuminance’
or UDI. The key difference is that UDI predicts the occur-
rence of illuminance within ranges, and the occurrence of
illuminances outside those ranges. Another metric is the
cumulative daylight illuminance received at a point (or
across an area) for the entire year. This measure is often
used in conservation studies to describe the exposure of,
say, artworks to potentially damaging daylight exposure.
A single number for entire space under evaluation can
be derived by computing, say, the space averaged value
for a particular metric. Usually, this is the space average
taken across the sensor grid at desk height. For compli-
ance purposes, a single number ‘target’ is often given since
that simplifies the specification (and subsequent checking)
to a straightforward pass/fail criterion. To have the great-
est relevance to existing guidelines, a range of metrics –
described below – were employed for the sensitivity study.

All the results deriving from the analyses were
expressed with the following annual daylight metrics:

• Total Annual Illumination (TAI): the sum of the illu-
minance recorded at every sensor point, for every
occupied hour. The results are then averaged over
the working plane.

• Useful Daylight Illuminance (UDI): percentage of
occupied hours where the illuminance level falls
into certain ranges. It is calculated at each sensor

point and then averaged over the working plane.
The sum of all UDI results has to add up to 100%
for the same space. The ranges used for this analy-
sis are [0–100 lx] (UDI-n, for non-sufficient), [100–
300 lx] (UDI-s, for supplementary), [300–3000 lx]
(UDI-a, for autonomous) and over 3000 lx (UDI-
x, for exceeded). PSBP guidelines use the range
[100–3000 lx], so-called UDI-c for combined.

• Daylight Autonomy (DA): percentage of occupied
hours where the illuminance level is higher than a
certain threshold (300 lx here) for each of the sen-
sor points. The final value is the average between all
sensor points.

• Daylit Area (DA300[50%]): portion of the work-
ing plane that complies with DA requirements for
more than 50% of the occupied time (Reinhart
et al. 2014). The concept is similar to that of Spatial
Daylight Autonomy (sDA), but without considering
any model for the operation of dynamic shadings,
e.g. as the model inserted in IES LM-83-12.

These metrics were compared with each other, reveal-
ing their sensitivity to the factors previously mentioned.
Daylight Factor (DF) values were also reported for com-
parison against traditional guidelines. Annual Sunlight
Exposure (ASE) was not used, although is currently
employed in IES LM-83-12 and LEED v4 recommen-
dations, because it is a metric based on direct sunlight
illuminance alone, and therefore not affected by changes
in reflectance values. The Daylit Area metric was pre-
ferred to the sDA (also recommended IES LM-83-12) as
the intention of this study was to understand the intrinsic
performance of the space.

A daylight evaluation of a space without (simulated)
occupant(s) deploying blinds/shades, etc., discloses what
may be termed the intrinsic or asset daylighting perfor-
mance of the space. It is arguably the case that a prediction
of daylight performance which includes, say, simulated
deployment of blinds should be closer to that of the actual
building when it is in normal use. However, the uncertain-
ties in occupant behaviour are significant for individual
side-lit office spaces, and they can become overwhelm-
ing for larger open-plan spaces where the permutations for
shade deployment – and consequent impact on daylight
provision – become enormous. The most commonplace
shading fixtures tend to be some form of venetian blinds.
The optical properties, i.e. Bidirectional Scattering Distri-
bution Function (BSDF), of a venetian blind are highly
dependent on the slat-angle and slat-separation – both of
which are at the whim of users who will lower and adjust
shades to varying degrees according instantaneous condi-
tions and personal preferences. This is in addition to the
reflective properties of the slats which tend to be a com-
bination of diffuse and part-specular. Thus, the venetian
blind and its impact on the daylight entering a space can be
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enormously confounding to attempt to model accurately.
Cutting straight to an evaluation for the occupied build-
ing may result in the designer missing out on opportunities
to improve the intrinsic daylighting potential of the build-
ing since this might be masked by uncertainties present in
both the probabilistic models of occupant behaviour and
the optical properties of the blinds.

Hereafter, the four classrooms that were used as case
studies and their main geometrical characteristics are pre-
sented, followed by a description of the five simulation
methods and by an overview of the Method of Morris used
for the SA.

2.1. Description of the case studies
As noted in the Introduction, the PSBP mandatory require-
ment for CBDM is the first of its kind anywhere in the
world. Accordingly, the authors decided that the scenarios
for the evaluation of sensitivity should focus on class-
room spaces since (UK) school buildings are, arguably,
those under the greatest scrutiny for daylight modelling –
approval to proceed with a school building proposal cost-
ing several tens of millions of pounds may depend on the
outcome of a CBDM evaluation. The case studies selected
for the present work were four existing classrooms in the
UK, characterised by different period of construction, size,
orientation and window size. The rooms are part of another
research project that is relating the subjective impression
of daylight performance to objective measures of the lumi-
nous environment through long-term monitoring with High
Dynamic Range (HDR) images (Drosou et al. 2015). These
were chosen in preference to, say, idealised ‘shoe-box
models’, to include a range of classroom types where the
basic forms were founded on real-world examples. Never-
theless, for this study, the classrooms serve as exemplars of
a variety of realistic types, rather than particular examples
in unique settings/context. The window to wall area ratios
for the four classrooms ranged from 7% to 69%. And the
predicted average and median daylight factors across the
horizontal working plane for the four classrooms ranged
from 1.5% to 6.8% (average) and 0.8% to 4.6% (median).
Table 2 reports all characteristic values in more detail.

The code names assigned to the four classrooms are L3,
L7, M1 and M5. Figure 1 shows, for each classroom, an

interior rendering created with Radiance; an exterior view
of the 3D model created in SketchUp; and the floor plan
with an indication about the North direction. L3 is a side-
lit space with a glazed curtain-wall facing approximately
North-West direction; L7 is a multi-aspect room with the
major windows oriented towards North-East and others
towards South-East; M1 is a deep plan space with the
aperture on the smaller side that faces South; M5 is char-
acterised by a sloped ceiling and has apertures on opposite
sides, with the main window towards North and an addi-
tional clerestory window on the South side, where the ceil-
ing is higher. The glass properties and the shading systems
were not included in this analysis, and a transmittance of
Tvis = 0.80 was assumed for all the windows, in all rooms.
For the choice of these spaces, one of the requisites was
that ‘traditional’ taught classes were the main activity held
in them; the choice of an horizontal plane (h = 0.8 m) for
the simulated illuminance records was therefore deemed
appropriate for this type of tasks. The climate data used
for the simulation was the EPW for London Gatwick
with an hourly time step and the occupancy schedule was
considered to be from 8 am to 4 pm.

2.2. Simulation tools
The number of programs that can perform CBDM is con-
stantly growing and it is getting easier to find annual day-
lighting simulation capabilities within whole-building per-
formance software. They can either be based on radiosity
or ray-tracing engines, although the latter is still more com-
mon. Especially for research purposes, Radiance (Ward
Larson et al. 1998) is the preferred ray-tracer and pro-
vided the back-bone for CBDM development since the
late 1990s. Several Radiance-based methods to perform
annual daylight evaluations appeared since then, charac-
terised by different techniques to describe the sky vault and
the contribution of the sun.

For these reasons, in the present work it was chosen
to limit the analysis to Radiance-based methods, and to
software where the simulations could be performed via
command-line scripts or other parametric tools. As a matter
of fact, the implementation of SA techniques can be very
challenging to apply on a Graphical User Interface (GUI)
that does not offer the possibility to automate the process.

Table 2. Main geometrical characteristics of the case study classrooms.

WWR DFavg DFmed UDI-n UDI-c UDI-x DA300 sDA300,50% TAI
(%) (%) (%) (%) (%) (%) (%) (%) (klx hrs)

L3 69 4.1 3.0 13 84 3 72 100 3280
L7 48 / 30 6.8 4.6 10 76 14 80 100 6811
M1 25 1.5 0.8 32 65 3 43 43 2686
M5 23 / 7 2.3 1.7 20 79 1 59 74 2172

Note: The benchmark luminous performance values are reported too, obtained from a 4-component method
simulation, using standard reflectance values (0.2/0.5/0.7).
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Journal of Building Performance Simulation 5

Figure 1. Interior (top), exterior (middle row) and plan (bottom) views of the 3D models for the four classrooms. The code names and
the orientations of the apertures are indicated.

The methods considered for the current analysis
were:

(i) Four-Component method: It uses the Daylight
Coefficients (DC) method with a Tregenza subdivi-
sion (i.e. 145 patches) and blended CIE luminance
models for the stochastic calculation of sky light,
while sunlight is calculated deterministically from
2056 light point sources evenly distributed over the
hemisphere. An rtrace run is performed for each of
the patches.

(ii) DAYSIM: One of the most widespread back-end
tools to perform CBDM. It implements a modi-
fied version of rtrace for the light redistribution
simulation. The publicly available version use the
Tregenza patches scheme for skylight and up to 65
points over the sun path as sunlight sources, with
the sun luminance interpolated between the closest
four points to the actual sun position. The lumi-
nance distribution is derived from weather files
data using the Perez All-Weather model (Perez
et al. 1993).

(iii) Two-Phase method: Instead of the classic rtrace
command to simulate light behaviour, a new
rcontrib (initially called rtcontrib) command was
specifically introduced for annual simulations. The
sun luminance is assigned to the three sky patches
closest to the actual sun position and the sky sub-
division can have variable resolution. The sun and
sky contributions can therefore be accounted for
in a single run and the computational cost can

noticeably diminish. However, in order for this
method to work, the ambient interpolation has to
be switched off (i.e. -aa 0, -as 0, -ar 0), giving rise
to noisier images and requiring a higher number of
ambient divisions (-ad).

(iv) Three-Phase method: In order to simulate the
behaviour of Complex Fenestration System (CFS),
this method was introduced on top of the Two-
Phase method, using the same rcontrib command,
but splitting the ray-tracing process in two, one
run for the exterior scene and one for the interior.
The results matrix can be then multiplied to the
matrix that describes the window BSDF material.
This kind of function is generally built on a Klems
basis hemisphere and is used to spatially relate the
luminous flux coming from the exterior to the one
transmitted by the window system itself towards
the interior.

(v) Five-Phase method: To increase the accuracy of
the Three-Phase method when evaluating the per-
formance of CFSs, the direct sunlight contribu-
tion is re-simulated using 5185 point-like sources
evenly distributed over the hemisphere and apply-
ing a variable resolution Tensor-Tree BSDF mate-
rial instead of the Klems one; in this way, peaks
of light can be traced more reliably from the sun
position and then accurately accounted for at the
window transmission step.

The sky vault subdivision used in this paper for the
Two-, Three- and Five-Phase methods followed a Reinhart
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6 E. Brembilla et al.

Table 3. Radiance ambient parameters used for the simulation of the four classrooms.

-ab -ad -as -aa -ar -lw

4CM 5 (6) 2048 256 0.2 128 5e − 3
DAYSIM 5 (6) 1024 256 0.1 1024 4e − 3
2PH 5 (7) 100,000 0 0 0 1e − 5
3PH (vmx) 12 50,000 (100,000) 0 0 0 2e − 5 (1e − 5)
3PH (dmx) 2 1000 0 0 0 1e − 3
5PH (dsc) 1 5000 0 0 0 2e − 4

Note: The values reported in brackets were used for class M1, which has a deeper plan.

MF:2 scheme, equivalent to 577 sky patches and one patch
for the ground. The ambient calculation settings for each
method are reported in Table 3. The same settings were
used for all rooms but for M1, which has a deeper plan
that requires an higher number of bounces (or equivalent
change in parameters).

What is probably still considered the definitive valida-
tion study for any daylight prediction method (physical
model, analytical or simulation) was carried out in the
mid-1990s using data collected by the BRE as part of
the International Daylight Measurement Programme – the
data are sometimes referred to as the BRE-IDMP valida-
tion dataset (Mardaljevic 1995, 2001). That study showed
that illuminances predicted using the Radiance system
could be within ± 10% of measured values, i.e. within the
accuracy limits of the measuring instruments themselves.
This, quite remarkable, degree of precision needs to be
judged alongside the high level of inaccuracies (often in
excess of 100%) that were determined to be fairly typi-
cal for physical modelling (Cannon-Brookes 1997). Using
the same BRE-IDMP dataset, the Four-Component method
was shown to have comparable high accuracy to the stan-
dard Radiance calculation (Mardaljevic 2000). Accord-
ingly, the authors consider the Four-Component method to
be the benchmark CBDM formulation for this study.

2.3. SA: the method of Morris
The enhanced Morris method can be used for an initial
screening on the inputs when performing an SA on a
model. It has been previously applied to Building Perfor-
mance Simulation (BPS) models in a number of works
(Hopfe and Hensen 2011; McLeod et al. 2013; Østergård
et al. 2015) and it is considered a reliable method for
non-monotonic models with interacting input factors, even
with a low number of samples (Campolongo et al. 2007;
Tian 2013). Due to the long computational load, that is,
required by some of the considered daylight simulation
techniques, the Morris method was adopted here for the
low number of runs necessary to the analysis. All the steps
to run the SA, i.e. the sampling process to obtain the input
values and the actual analysis on the simulation results,
were performed using the SALib v0.7.1 package in Python
(Usher et al. 2016).

In a related work that preceded this paper (Brembilla
et al. 2015), the method of Morris was applied to a wide
range of reflectance values, that spanned from 0.01 to
0.99 to include all possible values and to give the same
importance to all the elements considered in the analysis.

In the present work however, relevance is given to the
variability of the results when realistic reflectance val-
ues are assigned to the model. For the majority of daylit
real-world architectural spaces, the area-weighted average
reflectance is typically in the range 40–60 % , whilst val-
ues approaching 70% are extremely rare, e.g. a entirely
bright white room (including the floor) with a small win-
dow. Real daylit spaces with an area-weighted average
reflectance exceeding 70% are highly implausible since the
effective reflectance of normal glazing is ∼ 10%. Note,
using Radiance to predict illumination levels for improb-
ably high reflectance spaces will result in considerable
under-prediction. This was noted (but not explained) in
a 2005 paper on datasets for validation of lighting pro-
grams which considered test scenes with area-weighted
average reflectance values ranging from 0% to 95% (Maa-
mari et al. 2005). The reported huge under-prediction from
Radiance for very high reflectance scenes is caused by
one of the many optimisations employed in the software
to make the modelling of real-world spaces as efficient
as possible. Specifically, the Radiance AVGREFL macro
which is preset at compilation to 0.50, i.e. it assumes an
area-weighted average reflectance of 50% for the scene.
This value determines how many rays will be traced in
deeper levels, and the preset value works effectively for the
overwhelming majority of real-world architectural spaces.
The preset value for the AVGREFL macro can be overrid-
den by recompiling Radiance, a relatively routine task. It
was deliberately not made one of the parameters which can
be adjusted by the user at execution since, for all plausi-
ble real-world architectural spaces, the potential negative
impact on computational efficiency could be enormous
(Greg Ward – private communication with John Mardal-
jevic, 22/23 February 2005). Consequently, only plausible,
real-world surface reflectance values were selected for the
SA reported in this paper.

Table 4 reports the range limits that were set for each of
the considered element; these ranges were deemed to rep-
resent variable, and at the same time realistic, conditions
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Table 4. Range of reflectance values for each of the model’s
main elements, as used in the creation of the initial samples for
the method of Morris.

External
ground Floor Walls

Sill and
frames Ceiling

Lower limit 0.05 0.05 0.20 0.20 0.50
Upper limit 0.60 0.40 0.85 0.85 0.95

that can be found in common spaces such as classrooms or
offices.

As more methods and classrooms have been added
to the analysis, the number of samples here was low-
ered to reduce the computational load. Rather, here the
Morris method is applied with the use of optimal trajec-
tories (8 trajectories, 8 levels and 4 grid-jumps) so that
the final results from the SA can still be considered reli-
able (Campolongo et al. 2007; Confalonieri et al. 2010).
By using 8 trajectories the total number of samples is
48, as per Equation (2) where D is the number of input
parameters (5), k the number of trajectories and n the final
samples.

n = k(D + 1). (2)

Each input space is therefore divided into eight parts and
from each of these parts one value can be picked for the
random sampling process. Between two consecutive simu-
lation runs, only one of the input parameters is changed, as
the method of Morris applies a One-At-a-Time procedure.
The differences in results due to the input variations are
called elementary effects, as sometimes the Morris method
itself is called. The final analysis looks at the normal dis-
tribution of these elementary effects for each of the input
parameters, and gives an indication of the parameter’s
importance rank, as well as its relationship with the overall

results obtained from the simulation model, which can be
linear, monotonic or non-monotonic.

3. Results and discussion
This section presents the results obtained for each of
the analyses conducted on reflectance values in CBDM.
The first set of results (Section 3.1) derives from the
brute-force comparison made between existing guideline
recommendations. The second part (Section 3.2) focuses
on the output variation when evaluating rooms with dif-
ferent geometries, while altering reflectances. Preliminary
considerations on the use of different annual daylight met-
rics were drawn in Section 3.3. The influence of the single
elements reflectance in specific room configurations were
brought out by the Morris analysis. Last, Section 3.4
shows the outcomes from the inter-model comparison
and the SA results obtained with different modelling
methods.

3.1. Comparison between different guideline
recommendations

One of the common approach to reflectance assignment for
daylight simulation purposes is to consult existing guide-
lines and adopt the suggested values. Using the ‘standard’
reflectances specified in Table 1, the evaluation on the
four case study classrooms was performed with the Four-
Component method and the results in terms of TAI and
DA are presented in Figure 2. Where acceptable reflectance
ranges were suggested instead of a single value, both the
minimum and the maximum limits were compared.

Each room is obviously characterised by different
results, as the four geometries are noticeably different in
features that affect access and redistribution of light; there-
fore, the selected metrics (in this case TAI and DA) should

Figure 2. Comparison of the TAI (a) and DA (b) results obtained using the Four-component method, applying the standard reflectance
values suggested by the daylighting guidelines mentioned in Table 1. Where minimum and maximum allowed values were found, a
different simulation was run for each of them. The dark grey bars represent the results for the minimum reflectances and the light grey
bars for the maximum.
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8 E. Brembilla et al.

Table 5. Mean values, Standard deviations and Coefficient of Variations for TAI and DA300 results
obtained using different guideline recommandations, for each of the four classrooms.

L3 L7 M1 M5
TAI DA300 TAI DA300 TAI DA300 TAI DA300

(klx hrs) (%) (klx hrs) (%) (klx hrs) (%) (klx hrs) (%)

μ 2809 78 6750 87 2810 52 2197 67
σ 647 6 1152 3 472 10 454 7
CV [%] 23 8 17 4 17 19 21 11

correctly display a variation in daylighting performance.
However, something more can be noticed in the graph of
Figure 2. Even though the five assigned reflectance datasets
(i.e. one for each of the considered guidelines) were the
same, some rooms showed wider variations in results when
changing reflectance values than others. For each room,
Table 5 reports the mean and standard deviation of all
results obtained using different guideline recommendations
for reflectance assignment, together with their coefficient
of variation. The coefficient of variation (CV) is the ratio
between the standard deviation and the mean of a distri-
bution; it gives a non-dimensional characterisation of the
dispersion of the values, i.e. their variability in relation to
their average. Room L7 results in the highest mean TAI
value of 6750 ± 1152 klx hrs; its DA mean value shows
however the smallest dispersion, CV = 4%. On the oppo-
site hand, DA results for room M1 experience a variation
of CV = 19%. To generalise the results and to understand
in greater detail what are the causes of the variability in
annual CBDM results when changes are made to the initial
reflectance values, an SA was carried out.

3.2. SA results: geometrical variations
In the preliminary analysis, either only the minimum or
the maximum values were applied, following guidelines
suggestions for default reflectances. What if the combina-
tion of low and high values on different interior surfaces
is applied? What if the designer decides to apply real-
istic optical properties found from material suppliers or
databases? The aim of the SA was to understand how
the results change given a random combination of values
within plausible limits, and to distinguish the surfaces that
strongly affect the overall results trend from the ones that
do not. Additionally, considerations on how these changes
affect rooms with different characteristics were drawn, as
well as considerations on how some of the most commonly
used annual metrics describe these variations overall.

The sampling process carried out with the Method of
Morris identified eight values within each of the ranges
defined in relation to the five input parameters. At the top
of Figure 3, the input reflectance values are represented in
the order given from the random seeding process of the
Morris method. Each surface was assigned one out of eight
fixed reflectance values within its specified limits, and each

simulation run differed from the previous for one of these
values only. From the left to the right of the image, the
inputs and outputs of the 48 simulation runs for all the
four rooms are displayed. Even though the outputs can be
considered single instances, they are represented with lines
to highlight the trend resulting from variable reflectance
values. The first graph below the input reflectances shows
the DF results, while the successive graphs represents four
annual metrics: TAI; DA (300 lx threshold); DA300[50%]
(300 lx threshold for 50% of the time); UDI-c (illuminance
within 100 and 3000 lx); and UDI-x (illuminance over
3000 lx). For each room, five solid lines illustrate CBDM
results obtained from the five methods analysed: Two-,
Three-, Five-Phase, Four-Component and DAYSIM. The
base case scenario result for each room is also reported
with a dash-dot line; that is considered here the benchmark
value, obtained with the Four-Component method and with
the PSBP suggested reflectance values; 0.2 for floor and
external ground, 0.5 for interior walls and 0.7 for ceiling.

For both DF and TAI, the four rooms show a similar
behaviour among each other when varying the reflectance
across the 48 simulation runs. There are also similari-
ties between DF and TAI themselves, suggesting that the
relationship between reflectance values and final results is
mostly maintained when passing from static to annual anal-
yses. DA values behave differently, with highly lit rooms
showing a small variation when changing reflectance,
and darker rooms strongly responding to the varying
reflectance inputs. This could be due to the fact that dark
rooms are more dependent on inter-reflected light, but it
can be attributed to the choice of DA threshold too, equal to
300 lx. Bright spaces are characterised by a benchmark DA
of about 80%, and any increase in illuminance values due
to higher reflectances that is actually accounted for by this
metric would be for instances that passed from being lower
than 300 lx to higher than that threshold. This is bound
to happen more frequently for rooms whose performance
starts from lower DA values, such as M1 and M5, which
consequently show a higher variability in results. It is inter-
esting to notice that for these two rooms the high variability
is not present only in result ranges, but between differ-
ent simulation methods employed too. This aspect will
be investigated further on, in Section 3.4. DA300[50%] is
affected by the same problem; for rooms with a benchmark
DA300[50%] value of 100%, this metric does not respond
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Journal of Building Performance Simulation 9

Figure 3. Inputs and outputs for all 48 simulation runs. At the top the input reflectance values are shown for each element, and below the
corresponding results expressed in DF, TAI, DA300, sDA300,50%, UDI-c 100–3000 lx, and UDI-x ( > 3000 lx). The solid lines show the
results obtained using the randomised reflectances with five CBDM techniques. The dash-dot lines represent the base case performance
for each room, obtained using the Four-Component method and default reflectance values (0.2/0.5/0.7). Available in colour online.

to any additional increment in incoming light, as the whole
workplane is already identified as daylit area. When the
starting levels are very high, as for room L7, lowering
the overall reflectance does not influence the final result.

Rooms with lower benchmark values, as M1 and M5,
are subjected to wider output variations than the variation
recorded in DA values. The difference among simulation
methods is also more prominent, likely because this metric
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10 E. Brembilla et al.

takes into account the spatial distribution as well. UDI
results are not behaving in a monotonic fashion as other
annual CBDM metrics. Having both a lower and a higher
threshold, UDI-c can potentially decrease when the overall
reflectance increases, or the opposite. This is visible in the
UDI-c results graph for room L7; starting from a bench-
mark value of 80%, already lowered by the presence of
many illuminance instances higher than 3000 lx (UDI-x =
17%), any increase in reflectance values results in a higher
UDI-x and a lower UDI-c.

The analysis on the correlation between reflectance
assignment and geometrical features of the design went a
step further with the use of the Method of Morris. Once
it was understood that TAI is the annual metric that better
correlates with reflectance values, this metric was used as
an indicator for the analysis on the single input parameters,
i.e. the main surfaces in the model.

The Morris plots for TAI values are presented in
Figure 4, for rooms L3 and M1, simulated with the Four-
Component method. The results for rooms L7 and M5 are

very similar to those found for rooms L3 and M1, respec-
tively. Morris analyses can give a ranking of input param-
eters, i.e. the classrooms interior surfaces here, ordered by
their influence on the overall results, as displayed on the
left of the figures. They can also give an indication of the
parameters’ relationship with the results, based on the ratio
σ/μ∗, where σ is the standard deviation of the elementary
effects (i.e. differences in results due to input variations)
distribution, and μ∗ is the mean absolute value of the dis-
tribution. Those parameters that sits in the graph below the
line σ/μ∗ = 0.1 can be considered to have an almost lin-
ear relationship with the results; if they appear below the
lines σ/μ∗ = 0.5 and σ/μ∗ = 1 than they have respec-
tively a monotonic and an almost-monotonic behaviour;
above the line σ/μ∗ = 1, the parameters show a highly
nonlinear relationship with the final results, indicating that
there might be an interaction with other input factors.

For all the rooms, floor and frame exhibit a small influ-
ence on the overall results, independently of which metric
is used. Ceiling, walls and external ground play a more

Figure 4. Morris plots showing the ranking (left) and the relationship with results (right) of the parameters investigated, i.e. the
reflectance of the main interior surfaces in room L3 (a) and M1 (b). For rooms with large apertures, as room L3, the exterior ground
becomes the most influential parameter. Instead, for rooms with small windows, all surfaces have a similar effect on the final results. For
all rooms, the ceiling is the only element that is showing a slightly non-monotonic relationship with the final results. (a) SA for room L3
and (b) SA for room M1.
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important role, but their ranking changes slightly for vari-
ous geometries. The results for room L3, for example, are
mostly affected by variations in the outdoor ground plane,
while for room M1 the walls are the most influential factor;
the explanation of this can possibly be found in the differ-
ence of Window-to-Wall Ratio (WWR) between the two
spaces. Room L3 has a WWR of 69%, while for M1 the
WWR is equal to 25%. It can be easily inferred that the
reflectance values of the exterior environment play a big-
ger role for rooms with larger apertures, while for rooms
with smaller windows, the role of each element is more
balanced.

3.3. SA results: CBDM metrics
To understand better how the analysed metrics are dif-
ferently affected by changes in surface reflectance, their

values were normalised against the mean of the series of 48
results. Figure 5 shows the normalisation for the six met-
rics considered previously (DF, TAI, DA, sDA, UDI-c and
UDI-x), for the results obtained with the Four-Component
method. First of all, both DF and TAI show a consistent
behaviour overall, independently of the room geometry and
features; only TAI values for room L3 are slightly diver-
gent from the other rooms at the highest and lowest peaks.
There is a striking similarity between the amplitude of the
variations expressed with DF and with TAI; both metrics
reach values up to 60% higher and 30% lower than the
mean value. On the other hand, the variations registered by
DA are strongly affected by the initial amount received in
the benchmark room design. The more lit the space is, the
smaller variations in DA are recorded ( ± 7%), as for room
L7. For darker spaces, as M1, the variation is dramatically
increased (within ± 36%). This can be recognised also by

Figure 5. Results obtained from all simulation runs using the Four-Component method, expressed with different metrics: DF, TAI,
DA300, sDA300,50%, UDI-c 100–3000 lx, and UDI-x ( > 3000 lx). All values were normalised against the mean of each series, to highlight
the difference in relative variations among the considered metrics. Available in colour online.
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12 E. Brembilla et al.

Table 6. Mean values (μ), Standard deviations (σ ) and Coefficients of Variation (CV) for TAI and
DA300 results from all the 48 simulation runs performed with the 4-component method in the SA, for
each of the four classrooms.

L3 L7 M1 M5
TAI DA300 TAI DA300 TAI DA300 TAI DA300

(klx hrs) (%) (klx hrs) (%) (klx hrs) (%) (klx hrs) (%)

μ 2929 79 6765 87 2592 48 2017 62
σ 694 5 1036 3 352 7 392 8
CV (%) 23 6 15 3 13 14 19 12

looking at the statistical distribution of TAI and DA results
reported in Table 6. The coefficients of variation (CV) for
TAI values range from 13% to 23%, and do not seem to be
related to the rooms’ luminous levels. Instead, the CV for
DA are notably different for rooms L3 and L7, compared to
rooms M1 and M5. While the latter can be compared with
the dispersion found for TAI values, the former display a
much lower variability. The higher the mean DA value is,
the lower the variation becomes.

DA300[50%] shows a peculiar behaviour, different from
both DA and TAI. The extent of the variation reaches val-
ues as wide as for TAI (up to + 61%), but only for the
rooms with a low baseline illumination (M1 and M5). For
the other rooms, some plateaus are noticeable in the graph,
corresponding to the lack of any variation whenever the
DA300[50%] = 100% cap is reached. UDI-c values are all
contained in a ± 20% range, but the rooms that receive
more light see an inversion in the relationship between
input parameters and output metric. Room L7 records vari-
ations practically specular to the ones obtained for rooms
M1 and M5. Room L3, which is the best performing one
in terms of UDI-c (91%), results in the smallest variation
range of all four classrooms (within ± 7%). This would
suggest that the performance initially assessed with this
metric on a well designed baseline case is not strongly
affected by realistic changes in surface reflectance. UDI-
x seems to be the most sensitive metrics among them all,
although for most rooms the mean of the series are too
small to provide a reliable normalisation. Only in room
L7 the benchmark UDI-x value (14%) can be considered
significant; for this room, the increase in reflectances is
almost doubling the mean UDI-x. DA and the useful day-
light achieved range can be considered to be measures
of daylight sufficiency. However, as is the case with day-
light measures based on a threshold value, the metrics are
prone to saturation to varying degrees depending of the
particular threshold values used. UDI is, on the whole,
less prone to saturation than DA because high illuminances
will reduce the occurrence of UDI achieved provided that
they are greater than the UDI exceeded threshold value
(i.e. 3000 lx). But, for cases where illuminances are rarely
greater than 3000 lx, then both DA300 and UDI supplemen-
tary will give largely similar results. For this reason, total
annual illumination – a continuous, cumulative measure –

proves to be the daylight metric that is the most responsive
to changes in reflectance values. And therefore, arguably, a
measure that should be included as an additional factor in
daylight optimisation studies using CBDM.

3.4. SA results: CBDM techniques
The relations between changes in reflectance and geomet-
rical features were assessed in the previous analyses. The
study then proceeded with the comparison between dif-
ferent CBDM techniques and how each of them behaves
when reflectance values vary. The evaluation on internal
reflectances can be considered a proxy to assess how each
of the simulation methods deal with inter-reflections.

To look at the differences due to the chosen simula-
tion method, rather than the model geometry, the results
from the Four-Component method are now presented with
those from DAYSIM and the Two-, Three- and Five-Phase
methods (Figure 6), considering only one room. Classroom
M1 was chosen as the five techniques showed the largest
differences when assessing it. Being a deep plan space,
the inter-reflections played a bigger role than in the other
rooms.

The results in Figure 6 were sorted in ascending order,
based on the area-weighted mean reflectance. This value
follows the same concept as the term R in the analytical
DF formula, but the reflectance of the external ground was
assigned to the window area instead.

It is possible to identify the group of ‘phased’ methods,
i.e. Two-, Three- and Five-Phase methods, as behaving
very similarly between each others. This was expected for
the Three- and Five-Phase methods, as they differ only for
the direct sunlight calculation, which is not affected by
changes in reflectance, while they both rely on the Three-
Phase method to calculate the diffuse and inter-reflected
parts of daylight. Less foreseeable was the strong agree-
ment that the Two-Phase method shows with them too,
which holds true for almost all cases and all rooms, except
for very few instances where there is a very high overall
reflectance.

The Four-Component method and DAYSIM tend to
record lower illuminance levels than the ‘phased’ methods,
starting from the base case results (signed with dash-dot
lines). This happens prevalently for rooms M1 and M5,
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Journal of Building Performance Simulation 13

Figure 6. Inputs and outputs for all 48 simulation runs of room M1, ordered by increasing area-weighted mean reflectance. At the top the
input area-weighted mean reflectance values are shown, with a dashed line signalling the 0.5 reflectance. Below, the corresponding results
expressed as TAI, DA, UDI-x (over 3000 lx), UDI-c (100–3000 lx) and UDI-n (0–100 lx) are reported, for each of the five CBDM methods
analysed. The base case results, obtained with default reflectance values, are reported for all methods with dash-dot lines. Available in
colour online.

while in the rooms with higher levels of daylight all the
methods reach an almost perfect agreement. For room
M1, TAI values obtained with the Three-Phase method
are about 14% higher than those obtained with the Four-
Component method, while for DA values the relative dif-
ference is 12%. From the plotted UDI results in Figure 6,
it can be seen how the main differences are recorded
for illuminance values lower than 3000 lx; both DAYSIM
and the Four-Component method shows a higher num-
ber of instances that fall into the 0–100 lx range, while
the ‘phased’ methods have a higher ratio of 100–3000 lx
instances.

Table 7 reports the Mean Bias Deviation (MBD) and
Root Mean Square Deviation (RMSD) for all simulation

techniques, compared against the benchmark 4-component
method. If expressed in terms of TAI and DA, all tech-
niques are characterised by deviations lower than 15%,
which can be considered within the limits of the typical
uncertainty for daylight evaluations (Reinhart and Ander-
sen 2006). DA300[50%] results exhibits higher deviations,
that might be related to the different spatial distribution
of illuminance values obtained by the different simulation
methods. For these three metrics, the larger difference with
the 4-component method is found for the 3-phase meth-
ods, and the smallest for DAYSIM. UDI-c shows very
small deviations for all methods, probably because of its
wide range of accepted illuminances (100–3000 lx). UDI-
x reports the biggest deviations of all metrics, but the
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14 E. Brembilla et al.

Table 7. Normalised Mean Bias Deviation (NMBD) and Root Mean Squared Deviation (NRMSD) for each
simulation technique, compared against the 4-component method.

TAI (%) DA300 (%) sDA300,50% (%) UDI-c (%) UDI-x (%) UDI-n (%)

2PH NMBD 13.5 12.7 27.2 6.7 49.2 − 26.1
NRMSD 13.5 12.8 27.7 6.9 50 26.3

3PH NMBD 14.7 13.3 28.7 6.4 57.8 − 26.8
NRMSD 14.8 13.5 29.6 6.5 59.3 27.2

5PH NMBD 11.9 13 28.9 8.5 23.9 − 26.7
NRMSD 12 13.3 29.7 8.6 24.6 27

DAY NMBD 7.2 5.4 18.2 4.1 37.6 − 17.1
NRMSD 7.3 5.8 18.4 4.1 38.3 17.3

Note: These values refer to room M1, whereas the deviations found for the other rooms were all lower.

absolute values for room M1 were all lower than 7.7%, and
the significance of the deviation is therefore reduced.

All techniques show a consistent behaviour across the
48 simulation runs and the corresponding reflectance vari-
ations. This is confirmed by the similarities between MBD
and RMSD, which indicates a ‘systematic’ bias through-
out the simulations series. This overall agreement is proved
even further when looking at the results from the SA. The
Morris plots displayed in Figure 7 help examining the sim-
ilarities of three CBDM techniques among the five under
analysis. The Five-Phase method is not represented here as
it held exactly the same results as the Three-Phase method,
while the Four-Component method was already pictured in
Figure 4. The influence that each element within the room
has on the final TAI values is extremely similar among
the different techniques. The type of relation between input
and output is also the same for all the elements, mainly
characterised by monotonic behaviour. These similarities
are present also when comparing these three techniques
with the benchmark method, i.e. the Four-Component
method.

4. Conclusions
This paper presented a thorough analysis of the influence
that input reflectance values in CBDM have on annual day-
light metrics. The simulations were run on four case study
classrooms with different geometrical features and using
five different CBDM techniques: the Four-Component
method (used as benchmark); DAYSIM; the Two-Phase;
Three-Phase; and Five-Phase methods.

The analysis focused on four main sources of uncer-
tainty related to the assignment of reflectance values: (i)
the use of different guidelines; (ii) the influence of different
geometrical and physical characteristics; (iii) the expres-
sion of results with different annual CBDM metrics; and
(iv) the employment of different simulation techniques.

4.1. Sensitivity to chosen guideline
The existence of various guidelines with differing sug-
gestions about the standard reflectance values to apply at

design stage is likely to lead to the assignment of differ-
ent reflectances to the main surfaces in the model. The
authors believe that the most successful daylight designs
depend on the building fixed form, and little can be done
a posteriori to amend bad designs through adjustments
in materials and finishes. At concept stage, especially for
design competitions, it would be fairer to apply common
standard reflectances to all proposed designs, so that the
performance comparison focusses on the shape itself. Fur-
thermore, guidelines would need to be complete; too often
the values and detail to assign to the external environment
is not included. Results from the SA carried out in this
paper showed that even the reflectance assigned to a sim-
ple plane representing the external ground can significantly
affect the final annual results. The effect that an accurate
exterior environment has on the simulation results is a
rather complex matter, that was not investigated in detail
here, but has been attempted in other studies (Sadeghi
Nahrkhalaji 2017).

4.2. Sensitivity to physical and scenario uncertainties
Assuming that annual daylight metrics correctly describe
the long-term luminous performance of a space, an indica-
tion of how this performance might change, in case that the
actual reflectance characteristics differ from the intended
ones, is given to designers. The results are particularly rele-
vant for educational environments, where alterations of the
surface optical properties can be frequent, due to redec-
oration or to the use of the walls for teaching purposes.
From the SA conducted with the Method of Morris, it was
found that walls reflectance can account to up to 25% of
the variation in TAI in a classroom.

4.3. Sensitivity of the metric
The difference in sensitivity found among the analysed
annual daylight metrics is deemed of particular impor-
tance for further studies on CBDM. TAI was found to
correlate better than all the other metrics with changes in
surface reflectance. Further work is needed to understand
whether this is valid for other input parameters, e.g. the
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Journal of Building Performance Simulation 15

Figure 7. Morris plots showing the ranking (left) and relationship (right) between input parameters and TAI results for room M1,
obtained with three different CBDM methods. All three methods agree very well with each other, and behave in the same way when the
reflectance values are varying. (a) Results from the Two-Phase method, (b) Results from the Three-Phase method and (c) Results from
DAYSIM.

reference climate conditions, or if each metric is sensitive
to a specific subset of simulation inputs. Nevertheless, it is
believed that any parametric- or optimisation-based design
should be preceded by an SA to assess the significance
of the investigated parameters in relation to the metrics
used to express the results. For example, the use of ASE
or DA300[50%] to investigate the optimum surface finishes

might lead to erroneous conclusions, even though some of
the current guidelines require those two metrics only.

4.4. Sensitivity to chosen simulation technique
The simulation techniques analysed in this work were
found largely in agreement, with MBD and RMSD for
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16 E. Brembilla et al.

TAI, UDI-c and DA smaller than 15% for all methods
and rooms. Given that the surface reflectance governs the
behaviour of inter-reflected light, and all analysed methods
are based on similar, if not identical, ray-tracing tech-
niques, this agreement is perfectly justifiable. It would be
interesting to compare the behaviour of simulation soft-
ware based on different simulation engines, such as radios-
ity or photon-mapping, to understand whether the different
treatment of inter-reflected light might affect annual results
in a dissimilar manner.

However, DA300[50%] (calculated without the imple-
mentation of automated dynamic shading) led to larger
deviations (RMSD up to 32%), which might be due to dif-
ferences in spatial distribution of the illuminance levels
obtained from different techniques. The largest discrep-
ancies were found between the 4-component and the 3-
phase methods. Disagreements between techniques were
accentuated when analysing the two rooms that receive
less direct light, because of a deep plan geometry (M1)
or because of North-oriented apertures (M5). The Four-
Component method and DAYSIM generally resulted in
lower illuminance records, compared with the ‘phased’
methods. Without a comparison with real data, it is how-
ever impossible to state whether some of the methods are
under-predicting the luminous level in those spaces, or the
other methods are over-predicting them. Correlations with
monitoring data in the case study rooms are planned for
future work, and will likely help determining the overall
accuracy of the investigated CBDM techniques.
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