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Abstract 
This paper surveys the literature on scale and scope economies in the water and 
sewerage industry. The magnitude of scale and scope economies determines the cost 
efficient configuration of any industry. In the case of a regulated sector, reliable 
estimates of these economies are relevant to inform reform proposals that promote 
vertical (un)bundling and mergers. The empirical evidence allows some general 
conclusions. First, there is considerable evidence for the existence of vertical scope 
economies between upstream water production and distribution.  Second, there is only 
mixed evidence on the existence of (dis)economies of scope between water and 
sewerage activities. Third, economies of scale exist up to certain output level, and 
diseconomies of scale arise if the company increases its size beyond this level. 
However, the optimal scale of utilities also appears to vary considerably between 
countries. Finally, we briefly consider the implications of our findings for water 
pricing and point to several directions for necessary future empirical research on the 
measurement of these economies, and explaining their cross country variation. 
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1. Introduction 
 
 The water industry has experienced substantial changes in many countries over the 

past several decades. But, unlike other network industries (e.g. telecommunications and 

electricity), where vertical unbundling aimed at facilitating competition has been the norm, in 

the water industry there has been no common restructuring paradigm. Hence, there exist 

different industry configurations across countries and also within countries.  

In some countries, water supply is vertically integrated with sewerage services (e.g. 

the UK), while in others (e.g. Japan, Germany, United States) these services are often owned 

and/or operated by separate entities. In Portugal one observes both vertically separated and 

integrated water and sewerage operations.  In Australia where water services are publicly 

owned, Sydney Water Corporation supplies water and wastewater services in the Sydney 

region but it does not manage its own bulk water supplies but instead buys bulk water from 

the Sydney Catchment Authority (SCA) which manages Sydney’s drinking water storage and 

catchments. In Melbourne bulk water and wastewater disposal services are provided by 

Melbourne Water to three regional retail monopolies, which are responsible for local 

distribution and retailing services to their respective areas (IPART, 2007). In Japan and 

Germany, it is common for municipally owned integrated retail and distribution companies to 

obtain their water from an upstream bulk water supply company, which is often, but not 

always,  jointly owned by the downstream distribution companies it serves. In some countries 

we observe a convergence in the operation of water, gas and electricity utilities (e.g. 

Germany, Switzerland, Italy, and some publicly owned systems in the United States such as 

in Los Angeles).  

France like most continental European countries and Japan, has many small water 

utilities, with boundaries and often ownership linked to municipal or other government 

jurisdictions. However, the operation of French utilities in general differs from the European 
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norm. Whereas assets remain in public ownership, in most cases their operation is contracted 

out to large private water companies. In contrast, in the Netherland and the United Kingdom, 

amalgamation of publicly owned water utilities has resulted in firms that are very large by 

international standards.   

In addition to these contrasting industry structures, there are also contrasting reform 

proposals in different countries. For example, in Japan public authorities intend to consolidate 

the industry by promoting mergers between companies across municipalities, and there is a 

policy debate with regard to the potential benefits of vertically integrating upstream and 

downstream water companies (Urakami and Parker, 2011). By contrast, in the UK, the 

current policy debate in England and Wales focuses on the feasibility of further unbundling  

the industry, so as to facilitate the potential introduction of upstream competition in areas 

such as water abstraction, and sludge disposal and on allowing mergers between water 

companies (Cave, 2009). Thus far, the water regulator has enacted a mandatory accounting 

separation regime, requiring companies to provide cost information for different activities 

(Ofwat, 2009), and has advanced hypothetical future industry structures, some of which are 

designed to impose stronger separation aimed at facilitating competitive entry (Ofwat, 2010).  

 Policy makers should base their reform proposals on an assessment of the respective 

costs and benefits.  In particular, the efficient configuration of the water and sewerage 

industry  should be driven by the industry’s underlying economies of scale and scope,  as 

these indicate the relative cost advantages  from  horizontal and vertical integration. Thus, 

robust estimates for economies of scale and scope are important for the proper evaluation of 

any reform proposals.  

 The objective of this study is to provide a critical review of the empirical literature on 

economies of scale and scope in the light of so as to inform policy makers considering reform 

in the water industry. We also identify several methodological issues in the empirical 
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methods that have been employed, thereby identifying the challenges that future empirical 

research will need to address to provide improved estimates of scale and scope economies.  

The paper unfolds as follows. Section 2 gives a brief summary of the theory of 

economies of scale and scope. Section 3 then provides a critical review of numerous 

empirical studies that have examined economies of scale and scope in water and sewerage 

industries. Section 4 next considers the policy implications of scale and scope economies in 

the water industry.  Finally, Section 5 points out potential improvements for future empirical 

research on the influence of vertical and horizontal integration on water industry costs.  

 

2. Methodological aspects in the estimation of scale and scope economies 

In this section we review the theoretical definitions of  the measures of economies of scale 

and scope applied in the empirical  literature, and discuss the characteristics of cost functions 

that underlie the empirical estimation of these measures.  Our discussion largely follows the 

seminal work of Baumol et al (1982).  

2.1 Measures of scale and scope economies 

The degree of scale economies defined over the entire output set of N outputs,   is 

given by  
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of product i. There are said to be increasing, constant or decreasing returns at y if SN (y) is 

greater than, equal to, or less than unity, respectively.  Therefore, if increasing returns to scale 

are present, (SN > 1), a proportional increase of all products induces a less than proportional 
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increase in costs. Since the firm would gain from increased production, it is said to be 

operating with economies of scale. Conversely, if (SN < 1) then at y the potential proportional 

change in cost would exceed the proportional change in output and thus, the firm operates 

with diseconomies of scale.  

The provision of water and/or sewerage services implies the production of more than 

one product or service. Hence, in addition to scale economies production is also characterized 

by economies of scope,  that is there also exists the possibility of obtaining cost savings from 

the joint production of a bundle of products in a single company, in contrast to their separate 

production in specialized firms. Economies of scope relate to the increment of costs resulting 

from splitting up the output set into two product lines T and N-T, where the output vectors of 

specialized firms are restricted to be orthogonal to one another, such that, yi⋅yj = 0, i ≠ j.  

Economies of scope exist if the following condition holds: 

( ) ( ) ( )T N T NC y C y C y−+ >  [2] 

and diseconomies of scope occur if the inequality is reversed.  

The degree of scope economies at y relative to T is defined as 
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Fragmenting the production into these two subsets increases, decreases or leaves 

unaltered the total cost when SCT (y) is greater than, less than or equal to zero, respectively. In 

other words, if SCT (y) >0 it is cheaper to jointly produce all of the N products in vector y than 

to separately produce the output vectors yT and yN-T.  

A firm’s scope of operation may vary vertically and/or horizontally. Vertical scope 

refers to upstream and downstream stages. For example, an upstream water abstraction and 

treatment company would increase its vertical scope if it entered the distribution business. In 
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contrast, a change in the firm’s horizontal scope would refer to a change in the degree of 

product diversification. For example, a water retailer could add gas or electricity retailing.   

Given the distinction between vertical and horizontal scope, if T denotes the subset of 

upstream products, and N-T the subset of downstream products, then equation [3] measures 

the degree of vertical scope economies.  

A related concept to scope economies is the presence of cost complementarities. Cost 

complementarities exist when the marginal cost of producing one output decreases as the 

output of another product increases, e.g. 
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 Baumol et al (1982) show that the presence of cost complementarities is a sufficient 

condition for the existence of scope economies. This theoretical finding is highly relevant, as 

it allows a basic test for the presence of scope economies even in empirical applications 

where only integrated firms are observed. 

Panzar and Willig (1981) state that economies of scope arise from the presence of 

sharable inputs among different outputs and production processes. They arise, for example, if 

a given input is indivisible, so that the production of a small set of products would leave 

excess capacity in the utilization of that input. This is often the case of certain physical assets. 

Alternatively, an input may have some properties of a public good so that when it is 

employed in one production process it becomes freely available for another. This property is 

characteristic of intangible resources and skills (e.g. managerial expertise, knowhow, etc.).  

Additionally, Teece (1980) discusses how the economies of scope and the boundaries 

of the firm may be affected by the presence of transaction costs, market failures and other 

institutional considerations. Following the theoretical analysis by Williamson (1975), Teece  

points out that the joint production by an integrated or diversified firm is efficient only when 
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the transaction costs of separate firms trading in the marketplace (e.g. due to costs of 

contracting, information asymmetries and opportunism) can be reduced through internal 

organization. On the other hand, since the internalization of transactions also entails costs, the 

relative efficiency of integrated production is not just driven by the technological 

determinants of scope economies, but also by whether the costs of internal organization are 

lower than the transactions costs of using the market by separate specialized firms. Hence, as 

Panzar and Willig (1981:272) note, “when the multiproduct cost function summarizes both 

the production and organizational costs of operating the firm, economies of scope is the 

precise condition required for the emergence of multiproduct firms in a competitive 

environment”. 

2.2 Empirical estimation strategies.   

Estimation of scale and scope economies, as well as cost complementarity requires the 

econometric estimation of either a cost function or a cost frontier. The difference between the 

two approaches is that the former assumes firms’ cost-minimizing behaviour. This 

assumption results in an average response econometric approach and therefore does not 

control for the presence of inefficiency. By contrast, under frontier techniques scale and 

scope economies are determined based on the efficient cost frontier, thereby reflecting these 

relationships based on an estimate of the best practice technology. 

While there are a number of papers that employ non-parametric frontier techniques 

based on linear programming models, e.g. Data Envelopment Analysis (DEA) and Free 

Disposal Hull (FDH),1 as we discuss in Section 3 most previous studies in the water industry 

estimate parametric econometric cost models.2 To that end, it is necessary to decide (i) on the 

                                                 
1 Unlike parametric frontier econometric approaches (e.g. Stochastic Frontier Analysis, SFA), non-parametric 
frontier techniques do not require the assumption of specific functional form for the underlying technology.  
2 The literature on cost functions estimation for the water industry goes back to the pioneering works by Ford 
and Warford (1969),  Hines (1969) and Andrews (1971). 
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functional form for the cost function; (ii) whether the function is a variable or a total cost 

function, and (iii) on the estimation technique. 

The functional form must meet certain requirements to be consistent with economic 

theory and with reasonable behavioural assumptions. These include (a) regularity conditions; 

(b) flexibility; and (c) handling zero values. We therefore briefly consider each of these 

requirements in turn. 

Firstly, the functional form needs to meet a number of generic  conditions to ensure 

that it is a regular cost function, i.e. it must be consistent with the idea of producing each 

level of output at the minimum cost given input prices. Hence, it is required that the cost 

function must be linearly homogenous and concave in input prices, and non-decreasing in 

factor prices and outputs (provided that free disposability is assumed). 

Secondly, the choice of functional form should not a priori constrain the measures of interest. 

For instance, the popular Cobb-Douglas form constrains economies of scale to be constant 

across firms and it precludes the existence of cost complementarities. . In other words, the 

functional form needs to be flexible and provide a good local approximation to any arbitrary 

twice differentiable function. That is it must not impose a priori restrictions on the value of 

the first and second partial derivatives, thereby imposing results with regard to scale and 

scope economies.  

Thirdly, to estimate scope economies, the function must allow for zero outputs, as is 

the case with quadratic and composite cost functions, but is not case with the popular translog 

function which violates this condition3. This limitation implies that the translog function does 

not allow the direct estimation of the degree of economies of scope,4 unless sufficient 

observations of integrated and non-integrated firms are available to allow separate translog 

                                                 
3 Griffin et al (1987) provides a good review of the properties of these and other functional forms employed in 
production and cost function analysis.   
4 This limitation is partially surmounted by applying a Box-Cox transformation, albeit sometimes inducing fairly 
unstable estimates.   
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estimation for upstream only, downstream only, and integrated producers of water, as for 

example demonstrated by Garcia, et al (2007) and Urakami (2007). While such diverse 

samples are not generally available in most countries,  even when samples are limited to 

integrated firms only, the translog model does allow estimation of cost complementarities 

which, as discussed above, is a sufficient condition for the existence of economies of scope. 

Thus, while the translog functional form cannot estimate the actual cost benefits associated 

with scope economies, it still remains a potentially powerful tool for detecting the presence of 

scope economies when only integrated firms are observed. Table 1 shows that the quadratic 

and translog cost functions are the two most widely used functional forms in empirical 

studies in the water industry with the translog being by far the most prevalent modelling 

approach.  

We next consider the implications of specifying a total cost or a variable cost 

function. The estimation of a total cost function assumes that all outputs are exogenous, all 

inputs are endogenous, and that firms employ cost-minimizing input levels for given levels of 

output and input prices.  

( )ZwYfCT ,,=  [5] 

where CT is total cost, Y is the set of outputs, w is the vector of input prices, and Z is a  vector 

of technical or environmental characteristics or cost shifters. 

The assumption that the output of water utilities is exogenous is reasonable since 

utilities must satisfy consumers’ demands. However, if some inputs are invariable, that is 

firms cannot quickly adjust them to meet changes in output, quality, or input prices, 

estimating a total cost function would be inappropriate because at least some inputs are fixed 

or quasi-fixed. In this case, a cost minimizing firm would minimize variable costs for given 

levels of output, input prices, and the level of its fixed inputs 

( )ZKwYCC v
V ,,,=  [6] 
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where CV is variable cost, Y is the set of outputs, wv is the vector of variable input prices, K is 

the set of fixed inputs, and Z is the vector of technical or environmental characteristics or 

shifters. Then, the firm is considered to minimize the variable costs under the condition of 

having fixed input factors. However, in practice researchers who employ such quasi-fixed 

capital variable cost models, generally consider only the scope economies or cost 

complementarities between variable inputs. Thus, in empirical practice, the long run cost 

function approach allows a fuller estimation that includes the impact of capital as well as 

variable inputs on scope economies.  The policy implications of these modelling differences 

are significant.  For example, we would argue that conclusions with regard to the appropriate 

vertical configuration of an industry should in principle be based on a long run perspective of 

the relationship between costs and industry structure, rather than a short run perspective 

where capital costs are considered to be fixed.  Thus the long run cost relationships captured 

in an economic model of total costs should capture not only the current operating costs for 

water distribution and treatment, but also the long run capital costs associated with 

developing new water supply sources and extending networks.  Moreover, when considering 

efficient  water pricing regimes, it is normally the long run marginal cost of water supply, and 

hence a long run total cost modelling perspective,  and not short run marginal costs that 

should be considered (Olmstead, 2010). 

 Finally, regarding econometric estimation procedures, two general approaches are 

identified in the literature: the estimation of traditional cost function and stochastic frontier 

analysis (SFA) approaches. Regarding the traditional non-frontier approach, some studies use 

single-equation econometric estimation methods, such as ordinary least squares (OLS), while 

others use multi-equation methods, such as seemingly unrelated regressions (SUR), and 

estimate the cost function together with factor demands, factor expenditures or factor shares 

(e.g. by applying Shephard’s lemma), with the latter approach potentially allowing one to 
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obtain more efficient estimates. The stochastic frontier approach allows for firm level 

inefficiency and thereby estimates the best practice frontier, rather than the average response 

function provided by traditional econometric approaches. 

3. Empirical Evidence on Scope and Scale Economies in the Water and Sewerage 

Industry 

3.1 Economies of Scope 

The relatively limited empirical literature on scope economies in the water industry 

has focused on the analysis of the potential cost savings derived from the vertical integration 

of different water supply activities, as well as from the horizontal diversification of water 

utilities into other non-water activities. Figure 1 depicts the vertical supply chain of the water 

and sewerage industry and several potential alternatives of integration. 

[Insert Figure 1 about here] 

We classify previous studies into three categories: (i) those that analyze economies of 

scope between the water and sewerage businesses, e.g. between the W and S blocks in Figure 

1; (ii) those that investigate scope economies between vertical stages of water businesses 

only, e.g. between upstream water production (collection & treatment) and water delivery 

(downstream distribution and customer service activities) in Figure 1; and (iii) those that 

analyze the integration economies existing from the joint provision of water with other 

services, e.g. gas and electricity in Figure 1.5 Table 1 provides a review of empirical studies 

organized around this classification. The last column in Table 1 shows the main findings on 

integration economies and cost complementarities reported in each study, generally measured 

as in expressions [3] and [4]. 

                                                 
5 Additionally, a few studies analyze the effect of integrating other activities, such as water delivery and waste-
water activities, and different stages of sewerage activities (Stone & Webster Consultants, 2004); and water and 
sewerage services with environmental services (e.g. Hunt and Lynk, 1995; Lynk, 1993). These are also 
discussed further below. 
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[Insert Table 1 about here] 

(i) Economies of Scope between water and sewerage activities 

 As Table 1 shows, the number of studies that investigate scope economies in the 

water industry is not particularly large. Moreover, these studies employ different econometric 

techniques to estimate variable and  total cost  functions using different functional forms, and 

a wide variety of output definitions.    

Two pioneering studies on economies of scope between water and sewerage services 

are Lynk (1993) and Hunt and Lynk (1995). The former employed a long-run stochastic cost 

frontier model to assess the efficiency of Water only Companies (WoCs) and Water and 

Sewerage Companies (WaSCs) in England and Wales for the pre-privatization period, while 

the latter used a multi-product total cost function for WaSCs. Both studies used volumes of 

water supply, trade effluent, and environmental services as outputs. Environmental services 

were defined as turnover and included components such as water quality regulation, pollution 

alleviation, recreation and amenity, navigation, fisheries and charges for environmental 

services. The results find  cost complementarities between water supply and sewerage 

services, as well as between water supply and environmental services.  

Martins et al (2006) estimated a cubic variable cost function using data on 282 water 

and wastewater utilities in Portugal in 2002. Volumes of potable water delivered and 

wastewater collected were employed as outputs, whereas capital was treated as a quasi-fixed 

input. The authors controlled for customer density, number of wastewater connections related 

to wastewater service and ownership.  However, no input prices were included  due to limited 

data availability. They found evidence of economies of scope for the joint production of 

water supply and wastewater collection for the average utility and the smaller firms, and 

diseconomies of scope for larger utilities.  
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Two papers employed a translog variable cost specification to examine economies of 

scope for utilities that provide both water and wastewater services in Brazil, Moldova and 

Romania (Nauges and Van den Berg, 2008), and Sweden (Malmsten and Lekkas (2010).  The 

outputs were volumes of water delivered and wastewater collected. While Nauges and Van 

den Berg (2008) assert that integration economies between water and sewerage services are 

present in these countries, the paper does not provide the underlying cost complementary 

estimates supporting this conclusion. Malmsten and Lekkas (2010) concluded that on average 

there were economies of scope between water and wastewater in the Swedish industry due to 

the cost complementarity between both activities.  

Saal and Parker (2000) used residential customers for water supply and sewerage as 

outputs to estimate a translog total cost function model for the UK water and sewerage sector. 

Thus, while this study always finds statistically insignificant estimates for cost 

complementarities, it finds diseconomies of scope between water and sewerage services, 

when quality is ignored, but economies of scope when quality is controlled for. The authors 

suggested that there might be “quality-driven” economies of scope meaning that an 

improvement in the quality of one output might reduce the cost of producing another. For 

instance improved sewerage treatment quality might reduce the costs of treating drinking 

water, and vice versa.  

The report by Stone & Webster Consultants (2004), which was commissioned and 

published by the UK water regulator, the  Office of Water Services (Ofwat), is arguably the 

most comprehensive study on economies of scope between water and sewerage services in 

England and Wales. Two water and two sewerage outputs were employed in the cost 

modelling. Volumes of water (non-potable and potable) delivered and water connected 

properties capture water production and water distribution respectively, and sewerage 

connected properties and equivalent population served capture sewerage (wastewater) 
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collection and sludge treatment & disposal (wastewater production) respectively. The authors 

estimate translog and quadratic (variable and total) cost models. The translog variable cost 

model and its quadratic total cost model found overall diseconomies of scope between water 

and sewerage services, while the total translog cost model found evidence of small but 

statistically insignificant economies of scope.  

Finally, De Witte and Marques (2011) is the only study using non-parametric frontier 

techniques. They use a Free Disposal Hull (FDH) approach to estimate a total cost model for 

a sample  of the 63 largest drinking water utilities in Portugal in 2005. The outputs were 

defined as volumes of water delivered, number of water and sewerage customers. No 

evidence of economies of scope between water and sewerage activities was found.6  

 From the above we conclude that the empirical evidence is mixed for economies of 

scope between water and sewerage activities. Whereas some studies found evidence of 

economies of scope between water and sewerage activities, and therefore a single utility 

should be more cost efficient in providing both services, other studies show inconclusive 

evidence or diseconomies of scope.  

(ii)  Vertical integration economies between water production and distribution 

While the evidence with regard to scope economies between water and sewerage 

services is mixed, Table 1 indicates that there is, in contrast, more considerable empirical 

evidence for the existence of economies of scope between water production and water 

distribution activities (e.g. labeled as WP and WD in Figure 1).  

For the US, Hayes (1987) estimated a generalized quadratic cost function on a sample 

of 475 US utilities for the years 1960, 1970 and 1976.  He found that integration between 

                                                 
6 We note that Sauer (2004) suggested that there was no evidence of economies of integration between water 
and sewerage services between utilities in East and West Germany using data from a survey in 2002/03. The 
author estimated a generalised McFadden variable cost specification to test the cost structure in water utilities by 
including volumes of water delivered as the single output and four fixed factors, equity, number of supplied 
connections, network length and share of groundwater intake, whereas costs included labour, operational, 
chemicals and energy costs. However, the evidence with regard to scope economies provided by this paper is 
based solely on the inclusion of a dummy variable for those observations that also engage in sewerage activities.    
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retail and wholesale water supply is cost advantageous especially for small firms, and that the 

degree of economies of scope tends to fall over time for the largest firms and increase for 

smaller firms. A similar conclusion emerges from Torres and Morrison-Paul (2006), who 

estimated a variable generalized Leontief cost specification after controlling for customer 

density and size of service area, to account for the fact that US water utilities supply water to 

small populations across large service areas. Their results indicated that economies of vertical 

integration between the production of water for retail and wholesale customers are higher and 

significant for small utilities (75% reductions in costs), than for average utilities (45% 

reductions in costs) and large utilities (57% reductions in costs). 

Kim and Clark (1988) and Kim (1995) estimated a translog total cost function on a 

sample of US 60 water utilities where outputs were volumes of water delivered to households 

and non-households. Both studies indicate the presence of cost advantages from the joint 

production of water supplied to residential and non-residential customers by reporting 

statistically significant evidence of cost complementarity between both outputs for the 

average firm. 

Garcia et al (2007) employed panel data econometric techniques to estimate variable 

translog cost functions for a sample of 171 US water utilities in the state of Wisconsin. They 

have sufficient data to  estimate three separate cost functions for non-vertically integrated 

water utilities that provide only production services (NVI-P), non-vertically integrated 

utilities that provide only distribution services (NVI-D), and vertically integrated water 

utilities that provide water production and distribution services (VI-P&D). This study finds 

economies of vertical integration for small water utilities (for utilities that supply water to 

final customers) and for utilities that charge high water prices. For a given water price, the 

lower is the water output supplied to final users, the greater are the economies of vertical 

integration. The authors point out that the production process is quite simple and therefore, 
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the sharing of inputs across production and distribution stages was more cost advantageous 

for small utilities than for large ones, which means that a vertically integrated structure was 

more effective in this case. Moreover, for a given level of water output supplied to final 

users, the higher is the water price, the greater are economies of vertical integration. One 

explanation is that a high water price suggests a high mark-up on the upstream market 

(production) which creates significant distortions regarding input allocation at the 

downstream stage (distribution) and therefore, a vertically integrated structure is more cost 

effective in this case.   

Urakami (2007) and Urakami and Tanaka (2009) examined similar issues in the 

context of the reorganisation of the Japanese water supply industry. Urakami (2007) 

estimated a translog total cost function for vertically integrated water utilities (water intake 

and purification and water delivery) and non-vertically integrated water utilities using 2003 

data.  The results suggest that economies of vertical integration exist between upstream water 

production activities and water delivery, meaning that water supply systems can achieve cost-

efficiency from vertically integration, and this is particularly true for firms with a low 

purchased water ratio (e.g.  the ratio of purchased water relative to water delivered). Water 

utilities that obtain 100% water from their own water resources could receive a 72.6% cost-

saving benefit from vertical integration, whereas utilities that purchase 80%-90% of purified 

water from other large utilities could receive a 41.1% cost-saving benefit from vertical 

integration.  

This result was later confirmed by Urakami and Tanaka (2009) where the authors 

estimated a composite cost function to examine economies of integration between vertically 

integrated water utilities and non-vertically integrated water utilities in Japan over the period 

2001-2006. The results once again indicated that economies of scope existed between water 

delivery and water purification meaning that Japanese water utilities could achieve cost 
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savings from vertical integration. Similarly, the study by Stone & Webster (2004) of the 

English and Welsh industry referred to above, reports strong cost complementarities between 

water production and distribution activities in the total cost model, while showing 

inconclusive evidence for the variable cost specification.  

Garcia and Thomas (2001) specified a translog variable cost model for a sample of 55 

water utilities in the French region of Bordeaux. Outputs were defined as the volume of water 

sold to final customers and water network losses, which was the difference between volumes 

distributed and volumes sold to final customers. The model allowed for the fact that water 

utilities cannot produce and sell water to final customers (a desirable output) without 

“producing” lost water in the form of water network losses an (undesirable output). Labour 

and energy were employed as inputs, and a set of environmental characteristics captured by 

the number of customers, network length, the number of local communities serviced by the 

water utility and proxies for production, stocking and pumping capacity were also included as 

determinants of costs. The results indicated that the joint production of a desirable and an 

undesirable output was more profitable than increasing efficiency in the production of the 

desirable output.  More specifically, this result emphasizes that a possible source of vertical 

integration economies between upstream water production and downstream distribution 

activities, results from the ability of a vertically integrated firm to internalize decision making  

with regard to the relative costs of water  treatment and network quality, thereby reducing the 

overall cost of providing water services. 

Following the same idea, Martins et al (2008) and Corton (2011) also employ 

volumes of water delivered and water losses as outputs in their analysis of the water industry 

in  Portugal and Peru, respectively. They concluded that there were economies of integration 

from the joint production of water supply and water losses, thereby supporting the result of 
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Garcia and Thomas with regard to the internalization of cost trade-offs between water 

treatment and water distribution system maintenance costs in a vertically integrated system.     

 

(iii) Economies of scope for multi-utilities 

Finally, there is a small group of studies providing evidence on economies of scope  

for the joint provision of water, natural gas and electricity, i.e. the so-called multi-utilities. 

Fraquelli et al (2004) and Piacenza and Vannoni (2004) employed several cost function 

specifications such as the composite, translog, and separable quadratic total cost functions to 

test for economies of scope between utilities that provide gas, water and electricity in Italy for 

total costs but without including any exogenous factors. Both studies show that the composite 

cost function performs better than the other models and small multi-utilities benefit from cost 

savings in the range of 13% to 33% with respect to specialised utilities. The authors report 

that the degree of economies of scope for the pairing gas-water was higher (14%-30%) than 

the other pairwise output combinations (gas-electricity and water-electricity), which are in the 

range of 5% to 21%.  

Farsi et al (2008) and Farsi and Filippini (2009) employed several cost function 

specification such as a quadratic total cost function with random effects and random 

coefficients, translog random effects with time variant and time varying efficiency and a 

“true” random effects model to examine the cost efficiency and economies of scope between 

utilities that provide gas, water and electricity in Switzerland.  Both studies indicated that 

more than 60% of the utilities in their sample exhibit economies of scope. Cost savings from 

joint production are in the range of 20% to 30% of total costs for small multi-utilities, and in 

the range of 4% to 15% for median multi-utilities. 
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3.2 Economies of Scale  

The presence of economies of scale in the water industry is  a topic that has been 

relatively more investigated than scope economies. In this review we have primarily focused 

on those studies in which it is possible to identify estimates of the degree of economies of 

scale for particular utility sizes.7 Thus, Table 2 shows the degree of scale economies 

corresponding to the sample mean of each study, generally measured as in expression [1] 

above. A cursory look at Table 2 reveals that, with few exceptions, most studies found that 

long-run economies of scale prevail for the average size (S(y)>1).  Broadly, the degree of 

economies of scale also seems to be larger for the smaller average sizes, suggesting that 

smaller water utilities may be able to reduce their average costs by increasing  output. This 

general relationship between average scale and estimated scale economies for the average 

firm in a sample is also illustrated in Figure 2, which graphically summarizes the scale 

estimates reported in Table 2. However, the range of company scale  differs widely across 

countries and hence across the studies. Thus, the largest company in one country may be the 

smallest size in a different sample from another country.  Moreover, conclusions with regard 

to optimal scale, when made, vary considerably.  Thus,  Mizutani & Urakami (2001) found 

that economies of scale in Japanese water utilities are exhausted when population served 

reaches 766,000, while Fraquelli and Moiso (2005) reported that economies of scale are 

present up to a scale of 90,000 megalitres (Ml), or equivalently a population served of 1 

million, in Italy.  

Table 3 summarizes variation within the results of studies reporting scale estimates 

for different size categories, according to the volume of water delivered. This gives an 

alternative insight on the behaviour of average costs within each sample. For most studies, 

the last column in Table 3 indicates that the degree of economies of scale tends to decrease as 

                                                 
7 See Abbot and Cohen (2009) for a review of papers on scale economies not discussed here. 
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the size of operation increases.8 Thus, Table 3 suggests that within each country study, while 

there are economies of scale for small firms, these economies of scale are exhausted at 

relatively modest firm sizes, as also noted by Abbott and Cohen (2009) in their previous 

literature review. Further, in several cases, diseconomies of scale arise for the largest utilities. 

This holds both for water only and water and sewerage companies. Notable exceptions are 

the studies by Torres and Morrison (2006) and Mizutani and Urakami (2001).  Therefore, in 

most countries (ray) average cost estimates for water supply seems to be U-shaped, indicating 

that economies of scale exist up to a certain level, and diseconomies of scale exist if 

companies become too large, as first noted by Kim (1987) and confirmed by Saal and Parker 

(2000), Ashton (2003), Stone & Webster Consultants (2004) and Bottaso and Conti (2009).  

 [Insert Tables 2 and 3, and Figure 2 about here] 

There are few studies specifically focused on the analysis of cost functions and scale 

economies in the sewerage industry. The early paper by Knapp (1978) on a sample of 

sewerage works in England and Wales found significant economies of scale in the operation 

of sewerage purification and treatment works in the lower region of the observed output 

range (up to 16,600 thousands cubic meters annually of sewage flow) but few economies 

thereafter. Fraas and Munley (1984) found that marginal costs markedly decline with 

increases in  the size of the waste flow suggesting the importance of scale economies in 

wastewater treatment on a sample of 178 US sewage treatment plants, albeit they do not 

provide any estimate of the degree of scale economies. Renzetti (1999) finds that scale 

economies are prevalent in a sample  of water and sewerage treatment utilities in Canada, but 

that they also decline with the size of the utility. He estimates the degree of scale economies S 

= 1.364 for the sample mean, but he does not report the scale of the average firm.   

                                                 
8 This conclusion is also found in studies that analyze the impact of size on unit costs (e.g. Boisvert and Schmit, 
1997; Shih et al, 2004). 
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These results suggest that the need for mergers or fragmentation in the water and 

sewerage sector depends on the degree of fragmentation present in the industry in each 

country as well as the dispersion of the population (Gomez and Garcia-Rubio, 2008). For 

instance, for Portugal, Martins et al (2006) suggested that water and sewerage utilities should 

be merged with neighbouring utilities but care should still be taken so that the merged 

companies should not become too large as diseconomies of scale may arise. By contrast, Saal 

et al (2007) suggests that given the very high scale of English and Welsh WaSCs, 

productivity growth rates over the 1985-2000 period were negatively affected by increases in 

scale, thereby suggesting that WaSC mergers were detrimental to industry performance. 

From our cross-country comparison we cannot derive precise findings on what would 

be the optimal utility size. The optimal scale varies not only across countries but also across 

firm types within the same country. Thus, Fraquelli and Giadrone (2003) for example, 

reported that economies of scale in the Italian water and sewerage industry are present up to a 

scale of 15,000 megalitres or equivalently 100,000 connections; while for water only 

companies Fraquelli and Moiso (2005) reported that economies of scale are present up to a 

scale of 90,000 megalitres, or equivalently a population served of 1 million.  

A further quantitative analysis to determine the factors that explain the variation in the 

scale economies estimates across studies would require running a meta-analysis. However, 

the estimates of scale economies results from studies that are hardly comparable in terms of 

output definition and the type of density variables included in the estimation.  Further, the 

number of available studies is not sufficient to perform a statistically valid meta-analysis, 

especially given the large number of explanatory factors that should be included to address 

differences in estimates across studies. Thus, as Table 2 suggests, the basic hypothesis of 

such a meta-analysis would be that variation in the estimates arises because of differences in 

(i) variable specification (water production, water distribution, water and sewerage, choice of 
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output proxy); (ii) cost function specification (variable cost, total cost, multiproduct function, 

single product function); (iii) functional forms (Cobb-Douglas, Quadratic, Translog, 

McFadden, Cubic, Composite, Fourier); (iv) estimation technique (OLS, SUR, SFA, FDH, 

GMM); (v) measures of utility size, (vi) time span; (vii) countries (e.g. sixteen 

countries/regions); and (viii) the inclusion of additional firms’ operating characteristics (e.g. 

population density, water quality, water abstraction sources). Moreover, the quality of 

evidence generated by a meta-analysis largely depends on the quality of primary studies 

which make up the review. Even if it was the case that a meta-analysis including all the 

studies in Table 2 was statistically feasible, this would be seriously compromised by the 

quality divergences in the estimates of scale economies. Thus, apart from the fact that scale 

economies estimates in Table 2 come from both peer-reviewed and non-peer-reviewed 

studies, some studies provide statistical significance tests for their estimates, while others do 

not. Therefore, some quality assessment would be required, after which the list of primary 

studies to be included in the meta-analysis should be substantially shorter. Such limitations 

make it unfeasible to conduct a meta-analysis.  We therefore focus our conclusions on policy 

implications that can be derived from the available evidence, and suggestions to improve 

future research.   

 

4. Discussion and policy implications 

Our literature review shows that past studies come to a range of conclusions regarding 

the degree of scope and scale economies in the water industry.  These differences are likely to 

be the consequence of a variety of factors, including that: (i) data is sourced from a variety of 

countries in a variety of time periods; (ii) the studies use a variety of output measures; (iii) 

some studies include a range of extra variables related to different operation characteristics 

(density, etc.); (iv) Some studies use single-equation econometric estimation methods, such 
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as ordinary least squares (OLS), while others use multi-equation methods, such as SUR, and 

(v) a number of different functional forms are considered. 

 Nevertheless, the available empirical evidence points to some general conclusions. 

Firstly, there is considerable support for the existence of vertical scope economies between 

upstream water production and downstream distribution activities.  Secondly, the available 

evidence also suggests the existence of substantial economies of scope derived from the joint 

supply of water, gas and electricity. Thirdly, there is much more mixed evidence with regard 

to the existence of economies of scope between water and sewerage activities. Finally, while 

there is evidence that in many countries the average water company could benefit from 

economies of scale, a few cases studies have found diseconomies of scale for the average 

company. These findings on scale and scope economies have important business and policy 

implications with regard to (i) the debate on the efficient configuration of the water and 

sewerage industry; and (ii) the efficiency of water pricing practices.  

With respect to the efficient industry configuration, the appropriate vertical and 

horizontal reorganization of the water and sewerage industry will vary from country to 

country according to the current firm size and the degree of vertical integration within and 

between water and sewerage services that prevails in each country.  

The evidence on scale economies in particular  suggests size and country specific 

policy conclusions.  Thus, the policy of encouraging mergers between water utilities would 

reduce (increase) costs in countries with excessive industry fragmentation (consolidation) 

such as Germany, Japan, and Portugal (the United Kingdom and the Netherlands). Similarly, 

the policy of promoting diversified multi-utilities that bundle water and energy services 

would save costs relative to keeping separate water and energy suppliers, supporting the 

existence of such multi utilities in Germany, for example.     
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While no clear policy conclusions can be drawn from the existing literature with 

regard to the potential benefits or costs of integrating water and sewerage service provision, 

the  preponderance of available evidence clearly suggests that vertical unbundling of the 

water supply system is costly relative to providing water services with a fully integrated 

water company. Hence, reform proposals aimed at vertically separating the water industry 

(e.g. like those under debate in England and Wales) might have costly policy implications, 

while consolidation of the water industry that results in increased vertical integration (e.g. 

Japan) might lead to significant costs reductions.  

Given the evidence suggesting the presence of substantial scope economies between 

upstream water production and downstream distribution activities, improving economic 

efficiency through competition in and for water supply, is likely to be difficult to achieve if 

legal or ownership separation between water production and distribution is imposed. Further, 

the competitive benefits from the implementation of weaker forms of vertical unbundling to 

vertically integrated incumbents (i.e. accounting separation) are also likely to be limited in 

the presence of such vertical scope economies. Basically, vertically integrated water utilities 

would have an incentive to allocate any cost savings from vertical integration entirely to the 

upstream activity to forestall competitive entry into water markets. The results of our 

literature review therefore also strongly suggest that policies aimed at emulating the vertical 

separation of the electricity industry in order to facilitate competition in the water industry, 

will not only have detrimental cost effects, but are also unlikely to produce significant gains 

through introducing effective competition.   

In any case, we wish to strongly emphasize that our results clearly highlight that the 

expected benefits (costs) of either consolidation, unbundling, vertical integration, or 

horizontal diversification strategies on productive efficiency have to be compared with the 

potential offsetting costs (benefits) related to the emergence of regulatory complications and 
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the negative (positive) impact on competition. Policy makers who neglect such due diligence, 

and thereby ignore consideration of the underlying structure of water costs,  do so at the peril 

of implementing reforms that will have a substantial detrimental effect on industry costs.   

We next turn to policy implications related to water utility prices.  However, given the 

extensive literature on water pricing models, (as for example, summarized in Mohayidin, 

2009) we do not provide details of water pricing models and related policy implications, as 

this would be beyond the scope of this paper.  However, we instead offer a brief discussion of 

scale and scope economies in relation to some prevailing pricing practices in the water 

industry.   

Textbook economic theory suggests that the efficient allocation of water resources 

requires an alignment of the long run marginal cost of water provision, and the marginal 

benefits of water use.  Thus, if all costs are internalized, efficient pricing could be achieved 

by setting prices so that they align with the long run marginal cost of water provision. 

However, in practice, as argued in PRI (2004), accounting for all relevant externalities can be 

cumbersome and expensive, since they are numerous, variable in time and space, and often 

challenging to measure. Moreover, improvements in the allocation of water resources could 

potentially be achieved through competition in the supply and demand for water, which better 

reveal the underlying economic costs of water supply. However, both such pricing and 

competition  is only generally economically sustainable in the sense that economic costs are 

recovered for firms with constant or decreasing returns to scale, e.g. when marginal costs 

equal or exceed average costs.  In contrast, in the well-known issue of sustainability for 

natural monopoly firms operating with economies of scale, economic losses result from 

implementation of strict marginal cost pricing regimes in the absence of subsidies.  

Our scale economy results therefore suggest that in many cases there is the expected 

tension between the need for average cost pricing to insure that water provision is self-
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financing, and the marginal cost pricing required for efficient water usage. This tension, has 

therefore resulted in the development of second-best solutions, such as Ramsey pricing, 

increasing and decreasing block tariffs, and two part tariffs, all of which aim to improve 

welfare through pricing systems that result in a relatively more efficient allocation of water 

resources while also achieving cost recovery (GeoEconomics Associates, 2002). 

Practical rate-setting methods, as for example illustrated by the standards established 

by the American Water Works Association (AWWA, 2012), are traditionally designed to 

recover current full (operating and capital)  costs. For instance, this is the case of the two 

main rate-setting methods recommended in the AWWA guidelines, or ‘M1’ manual, e.g. the 

base-extra capacity method (BEC) and the commodity-demand method, which are based on 

the average cost of service. However, average cost is a good estimate of long rung marginal 

cost only when there are no economies of scale. In the presence of economies of scale, 

average cost deviates from marginal cost, and hence, as Renzetti (1999) previously noted, the 

AWWA pricing rules are not designed to guarantee the efficient allocation of water.   

Given this, the existence of scale economies has been a traditional justification for 

adopting declining block rate structures in the industry, in the sense that any cost savings 

resulting from increasing water usage should be reflected within the water rates (see AWWA 

report p. 105). However, the exhaustion of scale economies and the presence of diseconomies 

of scale beyond certain sizes, together with the pressure for the conservation and the efficient 

use of water resources in water-stressed regions, instead provide a justification for the 

implementation of increasing block rate structures, for some utilities.   

Thus, on balance, the water supply industry’s structure suggests the continued need 

for economic regulation to insure its financial viability. However, such regulation will 

increasingly need to adapt so as to improve the efficiency of water use, through regulated 

consumer tariffs which encourage more efficient water use. In this sense, the Canadian Water 
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and Wastewater Association provides one of the scarce examples of water rates setting 

consistent with marginal cost pricing principles (GeoEconomics Associates , 2002). Thus, the 

CWWA adopts a two-part tariff structure so that a volumetric variable fee is set at the 

marginal cost of supply while a connection fee is set up to recover the utility’s fixed charges 

Nevertheless, this pricing scheme has regressive effects provided that the access fee is the 

same for all consumers, i.e. the smaller users pay a larger proportion of their income than 

larger users, which are typically better-off members of society (e.g. large gardens and 

swimming pool owners). In this case, as argued in GeoEconomics Associates  (2002), the 

adoption of increasing block rates may help to mitigate the regressive impacts by transferring 

equity from high volume (and higher income) water users, to lower volume (and lower 

income) users.  

When considering water pricing and efficiency considerations, vertical scope 

economies suggest that competition in water supply will be both costly and ineffective, as 

discussed above. However, this does not necessarily preclude appropriate price signals 

reflecting water scarcity. Thus, for example, regulators could reduce the environmental 

damage caused by water abstraction, through the establishment of variable abstraction 

charging based on the environmental impact of abstraction in different geographic locations. 

Vertically integrated firms could then internalize the environmental costs of different 

abstraction sources and balance these costs against the associated costs of water treatment 

and transportation. As a result, and assuming appropriate regulation incentivizing firms to  

reduce their overall costs of water provision, regulated consumer prices would more closely 

align with the overall total cost of water supply.   

Moreover, in practical terms, the presence of vertical scope economies further 

challenges the pervasive AWWA average cost pricing rules, given that these rules rely on an 

ad hoc/ accounting based separation of joint costs across different vertical segments of a 
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water utility in order to determine what proportion of fixed network costs and more variable 

volumetric costs should be allocated to different groups of customers when setting prices.  

However, as argued in CEPA’s (2011) report for the UK water regulator Ofwat, in the 

presence of scale and scope economies, there is strong potential for biased cost assessment 

with accounting separation. This is because scope economies imply the nonseparability of 

costs, thereby implying that costs for different components of a vertically integrated firm 

cannot be accurately assessed in isolation.  Thus, we believe policy makers should be aware 

that the presence of vertical scope economies may invalidate the very cost allocation 

mechanisms they employ in an effort to set appropriate water prices.  Given this important 

consideration, we suggest that further research is required to consider whether practically 

implementable water pricing regimes  can be implemented despite the potential biases in cost 

assessment in the presence of vertical scope economies.  

 

5. Concluding remarks and suggestions for further empirical research 

The more precise estimates on the magnitude of scale and scope economies in the 

water industry, the better informed regulators and policy makers are with regard to the 

potential costs and benefits of unbundling, consolidation, and merger proposals, as well as to 

the implications of alternative pricing schemes. In this sense, we believe that our review 

points out that there is a clearly need for further research and improved model specifications 

in this area. We therefore conclude by identifying several important areas of development 

that future empirical research aimed at increasing the precision of economies of scope and 

scale estimates should address. These include:   

1. Technology flexibility. Most studies assume that different firm types share the same 

technology. For instance, many UK studies model a common technology for 

WaSCs and WoC water operations to allow a greater number of observations. 
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However, Saal and Parker (2006) provided evidence against the hypothesis that 

WaSCs and WoCs operate with the same technology. We note that this includes 

the need for more sophisticated modelling of different water source and treatment 

technologies, as differences in upstream technologies (e.g. reservoirs, boreholes, 

rivers) are likely to influence the extent of vertical integration economies with 

water distribution activities.  

 

2. Production environment. Comprehensive and feasible modelling of operating 

characteristics (e.g. service area, density) which are likely to influence integration 

economies, is important. Differences in population density are likely to influence 

downstream costs and vertical integration economies. Likewise, it is desirable to 

incorporate quality measures or quality-adjusted outputs. Furthermore, largely due 

to data limitations, there is also limited use of chemicals and energy as inputs, and 

only one study directly includes the price of water as a driver for economies of 

integration (Garcia et al, 2007). As the optimal scale and scope of a water and/or 

sewerage utility will be influenced by settlement patterns, water resource 

availability and other operating characteristics, future research should aim to 

improve our understanding of how the production environment influences the 

costs, and hence the appropriate scale of a water or and/or sewerage firm.    

3. Functional form. The majority of past studies employ a translog functional form, 

which generally allows the measurement of cost complementarities only. However, 

if one wishes to quantify the overall cost implications of integration economies, it 

is  generally necessary to employ a quadratic or composite cost function approach, 

which can capture the full implications of vertical integration due to the benefits of 

shared fixed input usage as well as cost complementarity between outputs.  
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4. Modelling of the Sewerage Supply Chain. While several studies have tested for the 

existence of integration economies between overall water and sewerage activities, 

there is only one previous published study that has examined the presence of 

integration economies along the sewerage supply chain. 

5. Omission of Retail Activities. There is limited available evidence that adequately 

evaluates the cost implications of retail separation from the rest of the supply 

chain: We emphasize that no information with regard to this particular form of 

unbundling is provided by the previous US studies which merely consider 

residential and non-residential outputs, but do not otherwise allow for separation of 

retail activities from upstream activities.  

6. Multicollinearity. The multiple output specifications required to estimate scale and 

scope economies must often rely on the use of output variables that are highly 

correlated. Econometric approaches control for this effect and generally have larger 

standard errors and hence higher thresholds for statistical significance when 

multicollinearity is present. However, exploring other estimation approaches like 

non parametric methods (e.g. DEA), where results may be less sensitive to 

multicollinearity may allow improved estimation of scale and scope economies.   

7. Frontier Modelling and Efficiency. While there are a number of papers that employ 

frontier approaches (e.g. data envelopment analysis, free disposal hull, stochastic 

frontier analysis), most previous studies estimate non-frontier econometric cost 

models and therefore do not control for the presence of inefficiency. That is, a cost-

minimizing behaviour is assumed. However, scale and scope economies should 

ideally be determined based on the efficient cost frontier, thereby reflecting these 

relationships based on an estimate of the best practice technology. Otherwise, non-

frontier estimation may confound inefficiency and (dis)economies of scope and 
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scale. It  might therefore be  worthwhile to explore whether estimated scale and 

scope economies differ when estimated with frontier approaches rather than 

average response approaches. Moreover, such frontier approaches allow 

exploration of whether systematic differences in efficiency exist between vertically 

integrated and separated firms.   
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Table 1. Empirical research on economies of integration in the water industry 

 
Studies Sample   Model Cost  Outputs Input prices 

(quantities) 
Control 
variables 

Main findings 

WATER & SEWERAGE       

Lynk (1993) 10 WaSCs and 28 WoCs  
(1979/80-1987/88) UK 

SFA  TC  W1, W7, S1 
 

PL Z1, Z2,Z5,Z6,t C W1,S1 < 0     C W1,W7 < 0 

Hunt & Lynk (1995) 10 WaSCs pre privatization 
(1979/80-1987/88) UK 

Dynamic specification with 
interaction terms (OLS) 

TC  W1,  W7, S1 
 

PL Z1,Z2, Z5,Z6,t C W1,S1 < 0     C W1,W7 < 0 

Saal & Parker (2000) WaSCs (1985-1999) UK Translog (SURE) TC  W2,S2 PK, PL, PO Z4, Z5 CW2,S2 < 0 

Stone & Webster (2004) WaSCs and WoCs 
(1992/93-2002/03) UK 

Translog and Quadratic 
(SURE) 

TC & 
VC  

W=W3,W4 
S = S3 , S4 

PK, PL, PE, PO 
(K1) 
 

Z3, Z4, Z6, Z7 CV
W3,S3 > 0    CT

W3,S3 > 0  
CV

W4,S4  > 0    CT
W4,S4 > 0 

CV
W3,S4  > 0    CT

W3,S4  >0  
CV

W4,S3  > 0    CT
W4,S3 > 0 

CV
S3,S4  > 0     CT

S3,S4  > 0 
Martins et al (2006) 282 utilities Portugal  

(2002) 
Cubic (OLS) VC W3, S5 None  Z8, Z9, Z10 SC (W3,S5) = 0.455 (sample mean) 

SC (W3,S5) = - 0.113 large 
Nauges & Van den Berg 
(2008) 

26 Brazilian (1996-2004)  
38 Moldovan (2003-2004) 
23 Romanian (2000-2004) 

Translog (SURE) VC W3, S5 PL, PE, PS, PO 
(K2) 

Z11, Z12, Z13, 
Z14, Z15, Z16, 
Z17 

The authors assert (p.161) that they find 
integration economies, but do not provide 
estimates confirming this conclusion.  

Malmsten & Lekkas (2010) 25 utilities  cross section 
(2005) Sweden 

Translog (OLS) VC  W5, S5 PE, PLM 
(K2) 

Z18 CW5,S5 < 0 

De Witte & Marques (2011) 63 utilities (2005) Portugal FDH TC  W3,W6, S6  (K3, L, O) Z19, Z20, Z21 Absence of scope economies  

WATER ONLY        

Hayes (1987) 475 US utilities (1960,  
1970, 1976)  

Quadratic (OLS) TC & 
VC  

W8 , W9 None None SC (W7, W8) > 0 The degree of SC tend 
to fall over time for larger firms and 
increase for smaller firms 

Kim & Clark (1988) and 
Kim (1995) 

60 utilities, (1973) US Translog (MLE) TC & 
VC  

W10 , W11 PK, PL, PE 
 

Z22, Z23 CW10, W11 < 0  

Garcia & Thomas (2001) 55 water utilities, France 
(1995-1997) 

Translog (GMM) VC  W3 , W12 PL, PE, PO 
(K2,K4,K5,K6) 

Z11, Z24, Z25, 
Z26, Z27 

CW3,W12  < 0 
SCW3,W12 = 23.67 % at sample mean. 
Costs of network repairs and maintenance 
> costs of increasing production. 

Stone & Webster (2004) WaSCs and WoCs 
(1992/93-2002/03) UK 

Translog and Quadratic 
(SURE) 

TC & 
VC  

W=W3,W4 
S = S3 , S4 

PK, PL, PE, PO 
(K1) 

Z3, Z4, Z6, Z7 CV
W3,W4<0     CT

W3,W4<0 
 

  



 
 

Studies Sample   Model Cost  Outputs Input prices 
(quantities) 

Control 
variables 

Main findings 

WATER ONLY - Continued       
Torres & Morrison-Paul 
(2006) 

255 observation, US 1996  Generalised Leontief 
Quadratic (MLE) 

VC   W8 , W9 PL, PE, PPw 
(K5,K6) 

Z24, Z27, Z28, 
Z29,Z30 

SC (W8,W9) = 0.45 at sample mean 

Garcia et al (2007) 171 VI firms, 17 NVI 
production firms and 15 
NVI distribution firms 
(1997-2000) US 

Translog (GMM) VC  W1 , W9 PL, PE, PPw, 
PCh, PO 
(K2,K4,K5) 

Z11, Z24, 
Z25,Z26,Z31 

SC (W1,W9) = - 0.515 for the average 
firm (419,200 ML) 
SC (W1,W9)> 0 for utilities <100,000ML 
and for high intermediate water price  

Urakami (2007) 561 observations from VI 
and NVI water utilities, 
Japan (2003) 

Translog (SURE) TC  W3 , W13  PK, PL, PPw, 
PCh, PO 

Z32 SC (W3,W13) > 0 
(41.1% - 76.2% cost savings from 
vertical integration) 

Martins et al (2008) 218 utilities cross section 
(2002) Portugal 

Quadratic (MLE) VC  W1 , W12 None Z8, Z11, Z33, 
Z34, Z35 

Sample mean SC (W1, W12)  = 0.327  
Small utilities SC (W1, W12)  = 0.706 
Large utilities SC (W1, W12)  = 0.057 

Urakami & Tanaka (2009) 4,059 observations for 
consolidated and 4,268 for 
non-consolidated water 
utilities (2001-2006) Japan 

Composite (SURE) TC  W3 , W13 PK, PL,PO Z36,Z37,Z38,
Z39,Z23,Z13,
Z32 

SC(W3, W13) =0.534 for consolidated 
water utilities 
SC(W3, W13) =0.530 for non-
consolidated water utilities 

Corton  (2011) 43 water utilities, Peru 
(1996-2005) 

Translog (SFA) TC  W3 , W12 PL1, PL2, PK Z1, Z40, t CW13,W12  > 0 
 

MULTI-UTILITIES        
Fraquelli et al (2004) and 
Piacenza & Vannoni (2004)  

90 utilities providing water, 
gas and electricity (1994-
1996) Italy 

Composite, Translog, 
Generalised Translog, 
Separable Quadratic (GLS) 

TC W, G, E 
 

PK, PO None SC(W,G) higher than SC(G,E) and 
SC(W,E) for small and median utilities 
SC(W,G): 14%-30%, SC(G,E): 6.8%-
19.7%, SC(W,E): 4.5%-21% 

Farsi et al (2008) 87 utilities providing water, 
gas & electricity (1997-
2005) Switzerland 

Quadratic random effects 
and quadratic random 
coefficient (GLS) 

TC W, G, E 
 

PK, PL,PE, PG Z8 SC (W, G, E) > 0 for more than 60% of 
the utilities in their sample  
Small multi-utilities: 20% to 30% 
Median multi-utilities: 4% to 15%  

Farsi & Filippini (2009) 34 utilities providing water, 
gas and electricity (1997-
2005) Switzerland 

Translog. SFA- Random 
effects and “true” random 
effects (GLS & MLE) 

TC W, G, E 
 

PK, PL,PE, PG Z8, t CW, E < 0 
CW, G < 0 



 
 

Water outputs (W) 
W1 – Water supply quality adjusted (Ml) 
W2 – Residential water supply population (000s) 
W3 – Water delivered (Ml, m3) 
W4 – Water connected properties (000s) 
W5 – Volume of water produced (m3) 
W6 – No. of water customers 
W7 – Water environmental services (turnover) 
W8 – Wholesale water supply (Mgal) 
W9 – Retail water supply (Mgal) 
W10 – Residential water supply (Mgal) 
W11 – Non-Residential water supply (Mgal) 
W12 – Water losses (m3) 
W13 – Water purified (m3) 
 
Sewerage outputs (S) 
S1 – Trade effluent (Ml,m3) 
S2 – Equivalent sewage quality treatment population  
S3 – Sewerage connected properties (000s) 
S4 – Equivalent population served (000s) 
S5 – Waste water collected (m3) 
S6 – No. of sewerage customers 
 
Other outputs  
E – Electricity (KWh) 
G – Gas (m3)  
W – Water (m3)  
 
Input prices and quantities 
PL  – Price of labor 
PL1  – Price of direct labor 
PL2  – Price of indirect labor 
PLM  – Price of labor and materials  
PK  – Price of capital 

PE  – Price of energy 
PO  – Price of other inputs 
PPw – Price of purchased water 
PCh – Price of chemicals 
PS –  Price of contracted out services 
PG  –  Price of gas 
K1  –  Replacement cost value of assets 
K2  –  Network length 
K3  –  Capital costs (€) 
K4  –  Pumping capacity (gal/min) 
K5  –  Storage capacity (Mgals) 
K6  –  Treatment capacity (Gals) 
L  –  Labor costs (€) 
O  –  Other costs (€) 
 
Control variables (Z) 
Z1 – Regional characteristics (dummies)  
Z2 – Technical change (dummies) 
Z3 – Service quality (properties with supply 
interruptions>12 hours, at risk of sewer flooding, 
below the reference level for water pressure) 
Z4 – Water quality (%) 
Z5 – River quality (%) 
Z6 – Sewerage quality (%)  
Z7 – Operating environment (% of metered billed 
properties, of water from rivers, of sewage from trade 
effluent customers, average pumping head)  
Z8 – Customer density (water connections/km2) 
Z9 – No. of connections related to wastewater service  
Z10 – Ownership (dummy) 
Z11 – Length of water distribution network (km) 
Z12 – Average duration supply (hours/day) 
Z13 – Population coverage (population supplied/ total 
population of the area) 

Z14 – Number of connections per km of network 
Z15 – Pipe breaks 
Z16 – Water connections 
Z17 – Average share of total volume sold to 
residential users per utility 
Z18 – No. of total connections to the water 
distribution network and the sewerage  
Z19 – Monthly peak factor (monthly consumption/ 
yearly average) 
Z20 – Revenue from water and sewerage services 
Z21 – Share of the revenues of non-drinking water 
delivery services in total revenues 
Z22 – Service distance (miles) 
Z23 – Load factor of the water system (%) 
Z24 – Number of customers 
Z25 – Production capacity (m3/hour, gal/min) 
Z26 – Stock and pumping capacity (m3/h, Mgal) 
Z27 – No. of towns served 
Z28 – % of water from boreholes  
Z29 – Size of the service area (Sq. miles) 
Z30 – Expenditure on chemicals ($) 
Z31 – Water network rate of return (water injected 
into network/water sold to final users) 
Z32 – Water delivered/Water purchased (%) 
Z33 – % of raw water acquired to other utilities  
Z34 – Type of corporate management & regulation  
Z35 – Hydrographical region (dummies) 
Z36 – Population density (%, population per km) 
Z37 – Purified water ratio (%) 
Z38 – Daily supplied water per person (%) 
Z39 – Water taken from underground sources (%) 
Z40 – Firm size (dummy) 
t – Time 

 



 
 

Table 2. The empirical evidence on the degree of scale economies. 

 
Studies Country Model Activities Average utility:  000s cubic meters of 

water delivered 
S(y) 

Fox & Hofler (1985) US SFA(CD) WP & WD  135.51 0.888 
Kim (1987,1995), Kim & Clark (1988) US Quadratic(MLE) WP & WD  43228 0.99 
Bhattacharyya et al (1995)  US Translog (SFA) W 60672 0.966 
Renzetti (1999)  Canada Translog (SUR) W&S  8100 1.249(1.465)* 
Fabbri & Fraquelli (2000) Italy Translog(SUR) WP & WD  18860 0.99 
Garcia & Thomas (2001) France SFA(TL) WP & WD  411 1 
Mizutani & Urakami (2001) Japan Translog(SUR) WP & WD  66620 0.92 
Antonioli & Filippini (2001) Italy SFA(CD) WP & WD  6772 0.95 
Fraquelli & Giandrone (2003) Italy Cobb-Douglas(OLS) W&S 14800 1.22 
Ashton (2003) UK Translog(SUR) WP & WD  63002 0.963 
Stone & Webster Consultants (2004) UK Translog(SUR) WP & WD  64041 1.09 
 UK Translog (SUR) W&S 373329 0.71 
Sauer (2005) Germany GMcFadden(SUR) WP & WD  1200 2.08 
Fraquelli & Moiso (2005) Italy SFA(TL) WP & WD  59202 1.12 
Aubert & Reynaud (2005) US SFA(TL) WP & WD  3122 1.073 
Vitaliano (2005) US SFA(CD) WP & WD  37.817 1.23 
Urakami (2006) Japan Translog (SUR) WP 67867 1.083 
 Japan Translog (SUR) WD 4370 1.104 
 Japan Translog (SUR) WP & WD  7267 1.108 
Torres & Morrison Paul (2006) US GLQ(SUR) WP & WD  33228 1.23 
Saal & Parker (2006) UK Translog(SFA) WP & WD  62889 0.969 
 UK Translog(SFA) W&S  373322 1.051 
Martins et al (2006) Portugal Cubic(OLS) W&S 1663 1.74 
Kirkpatrick et al (2006) Africa Translog(SUR) WP & WD  48259 1.16 
Garcia et al (2007) US Translog(GMM) WD 2620 1.19 
 US  Translog(GMM) WP & WD  1587 1.17 



 
 

 
 
 
Table 2. continued 
 

Studies Country Model Activities Average utility:  000s cubic meters of 
water delivered 

S(y) 

Bouscasse et al (2008) US Translog(GMM) WP & WD  31000 1.03 
Urakami (2007) Japan Translog (SUR) WP & WD  22058 1.045 
Nauges & Van den Berg (2008) Vietnam Translog (SUR) WP & WD  14000 1.156 
 Brazil Translog (SUR) W&S 425000 1.027 
 Moldova Translog (SUR) W&S 3000 1.213 
 Romania Translog (SUR) W&S 29000 1.048 
Filippini et al (2008) Slovenia SFA(TL) WP & WD  2299 1.088 
Martins et al (2008) Portugal Translog (GMM) WP & WD  1850 1.48 
Iimi (2008) Latin American countries Translog (SUR) W&S 26937 1.15 
De Witte & Marques (2011) Portugal FDH W&S 6457 1 
Battasso & Conti (2009) UK SFA(TL) WP & WD  67525 1.12 
 UK Translog (SUR) W&S 381425 0.91 
Tsegai et al (2009) Africa SFA(CD) WP & WD  3090 1.1769 
Urakami & Parker (2011) Japan Translog (SUR) WP & WD  9409 1.078 
Urakami & Tanaka (2009) Japan Composite (SUR) WP & WD  10126 1.02 
Baranzini & Faust  (2010) Switzerland Translog (SUR) WD  1234 1.10 
Zschille & Walter (2010) Germany Translog (TFE) WP & WD  3905 1.145 
De Witte & Dijkgraaf (2010) The Netherlands Translog  

Fourier 
WP & WD 111,000 0.935 

0.943 
 

 

*It refers to specific scale economies of residential (non-residential) water supply.



 
 

Table 3. The range of the estimates on scale economies in previous studies. 

 

Studies Country Activities Size Water delivered (000s cubic meters) S(y) 
Fox & Hofler (1985) US WP & WD Small 34 0.884 
   Average 136 0.888 
   Large 416 0.886 
Kim (1987,1995), Kim & Clark (1988) US WP & WD Small 2,272 1.330 
   Average 43,228 0.990 
   Large 214,387 0.870 
Fabbri & Fraquelli (2000) Italy WP & WD Small 350 2.380 
   Average 18,660 0.990 
   Large 393,960 0.680 
Mizutani & Urakami (2001) Japan WP & WD Small 6,408 0.856 
   Medium Small 15,246 0.921 
   Medium Large 42,131 0.881 
   Average 66,620 0.905 
   Large 355,550 0.966 
Fraquelli & Moiso (2005) Italy WP & WD Small 18,900 2.180 
   Average 59,202 1.120 
   Large 250,000 0.650 
Aubert & Reynaud (2005) US WP & WD Small 62.4 1.096 
   Average 3,122 1.073 
   Large 158,612 1.052 
Martins et al (2006) Portugal W&S Average 1,635 1.747 
   Large 41,500 0.611 
Torres & Morisson Paul (2006) US WP & WD Small 2,555 0.980 
   Medium 6,791 1.230 

   Medium Large 22,568 1.160 
   Average 33,228 1.230 

   Large 112,010 1.450 



 
 

Table 3 continued      
Studies Country Activities Size Water delivered (000s cubic meters) S(y) 
Filippini et al (2008) Slovenia WP & WD Small 107 1.311 
   Average 2,298 1.090 
   Large 25,507 0.850 
Martins et al (2008) Portugal WP & WD Small 500 3.990 
   Average 2,464 1.487 
   Large 20,000 1.060 
Nauges et al (2008) Vietnam WP & WD Low [36 ; 2,528] 1.292 
   Medium [2,657 ; 5,746] 1.141 
   High [5,925 ; 278,552] 1.011 
 Brazil W&S Low [31,000;123,000] 1.058 
   Medium [131,000;255,000] 1.027 
   High [268,000;2,600,000] 0.996 
 Moldova W&S Low [11;131] 1.364 
   Medium [136;421] 1.206 
   High [452;81,825] 1.094 
 Romania W&S Low [3,820;9,967] 1.056 
   Medium [11,182;21,142] 1.052 
    High [25,056;175,640] 1.036 
Tsegai et al (2009) Africa WP & WD Small <1,200 1.149 
   Average [1,200 ; 3.400] 1.177 
   Large >3,400 1.156 
Bottaso & Conti (2009) UK WP & WD Small 9,001 1.010 
   Average 67,525 1.120 
   Large 292,288 1.240 
Baranzini & Faust (2010) Switzerland WD Small 10% smallest (min 94) 1.15 
   Medium  1.10 
   Large 10% largest (max 70,645) 0.95 
Zschille & Walter (2010) Germany WP & WD Small 430 1.380 
   Average 3,905 1.146 
   Large 46,179 0.799 
De Witte & Dijkgraaf (2010) The Netherlands W Small 59,000 0.917 
   Medium 111,000 0.935 
   Large 236,000 0.943 



 
 

Figure 1. The vertical stages of the water and sewerage supply chain and the levels of 
industry integration 
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Figure 2. The degree of long run average economies of scale in the empirical literature 
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