
1 INTRODUCTION

One of the most important considerations when de-
signing an engineering system or process is reliabil-
ity. The techniques available to perform a reliability
assessment of a system/process can be divided into
two main categories, analytical and simulation tech-
niques. The analytical reliability modelling tech-
niques include various approaches from which an
analyst is able to choose the most suitable technique
for their given problem. The techniques for failure
analysis consist of combinatorial models, including
Reliability Block Diagrams (RBDs), Fault Trees
(FTs) and Binary Decision Diagrams (BDDs), state-
space models, including the subcategory of Markov
approaches, and hierarchical models generated by
the combination of combinatorial and state-space
models, which are able to simplify the model and
ease further analysis (Lanus et al. 2003). With the
current development in engineering technologies, the
complexity of these engineering systems/processes is
ever increasing and proportionally so potentially do
the risks and hazards. The aforementioned analytical

models contain certain limitations when they are ap-
plied to complex structures. More specifically, the
combinatorial models are limited in their ability to
model dynamic characteristics, such as dependent
events and spares, whereas the Markov models,
which can cope with dynamic features, suffer the
state-space explosion as the number of states in-
creases. Therefore, large complex scenarios are dif-
ficult to be modelled and controlled using Markov
approaches, as the final diagram can be cumber-
some, error-prone and computationally costly.

However, alternative simulation approaches have
been developed, such as the encoding of the state-
space model in a Petri Net (PN) that can cope with
all the aforementioned limitations (Zille et al. 2010).
PN models are powerful, flexible structures that can
be applied to complex cases without suffering the
state-space explosion limitation. Additionally, the
computer simulation, a ubiquitous and flexible mod-
elling technique widely used in industrial cases for
the behavioural analysis of complex models can rep-
resent the system/process in an efficient way and
hence enables informed decisions to be made due to
its reusability.

Automated generation of a Petri Net model: application to an end of life
manufacturing process

C. Latsou, S.J. Dunnett & L.M. Jackson
Loughborough University, Loughborough, UK

ABSTRACT: As the complexity of engineering systems and processes increases, determining their optimal
performance also becomes increasingly complex. There are various reliability techniques available to model
performance, for example fault trees, simulation etc., but generating the models can become a significant task
that is cumbersome, error-prone and tedious. This can result in significant resources being devoted to the gen-
eration of the models and there is much room for error. Hence over the years work has been undertaken into
automatically generating reliability models. Such an approach enables the detection of the most critical com-
ponents and design errors at an early design stage, supporting alternative designs and systems. The aim of the
research described in this paper is the automatic generation of a Petri Net model for a given system or process.
The Petri Net approach enables complex systems and processes to be modelled using a modular approach.
The methodology of the automated Petri Net generation outlined in this work is to extract the information re-
quired for the model from the system description in a form used by industry, such as a UML Activity Dia-
gram, into a database using XML transformations. An algorithm is then applied to generate the Petri Net inci-
dence matrices of the necessary nets, which is the mathematical representation of the model. The algorithm
builds the nets up in a modular fashion enabling changes to be made to the overall net in a cost effective way
hence allowing various designs to be easily assessed. In this work the procedure will be demonstrated by its
application to an end of life manufacturing process.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288367804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Therefore, the need to overcome the limitations of
existing reliability models and address the challeng-
ing requirement to detect the most critical compo-
nents and design errors at an early stage of the de-
sign has led to the research outlined in this paper
where an algorithm to automatically generate a PN
model from a system/process description is de-
scribed and demonstrated.

The research focus of this paper is the develop-
ment of an algorithm, applicable to complex cases,
that accepts as an input the description diagram of a
system/process and generates automatically the cor-
responding PN model, demonstrated by application
to an IT asset recycling process.

This paper is organised as follows. In section 2
the main automated reliability modelling methods
are reviewed, as identified in the literature, and their
limitations are discussed. Section 3 introduces the
Petri Net model. Section 4 provides an overview of
the methodology steps for the automated PN genera-
tion introducing the techniques and tools used for its
implementation. In section 4, the automated PN is
generated for an IT recycling process. Some general
conclusions are drawn in Section 5.

2 AUTOMATED RELIABILITY MODELLING
METHODS REVIEW

Early attempts at developing automated reliability
models were documented in the 1970’s when two
major techniques, decision table methods (Salem et
al. 1977) and digraph methods (Lapp & Powers
1977), were introduced for Fault Tree automation.
Since then, several techniques have been proposed
for the formalisation of Fault Trees and other relia-
bility models, such as Failure Mode and Effect
Analysis (FMEA) (Papadopoulos & Grante 2003),
Hazard and Operability Study (HAZOP) (Zhao et al.
2005), PNs (Bernardi et al. 2002, Stockwell & Dun-
nett 2013) etc. Some of these techniques, such as the
component model based methods, are alternatives to
the decision table and digraph methods. Additional-
ly, as the complexity of the engineering systems/
processes increased due to complex structures such
as loops and electric circuits, higher level formalisa-
tion methods were developed with the help of pro-
gramming languages such as Java, C/C++, AltaRica
(Rauzy 2002) and others. The automated reliability
modelling methods identified are as follows: Deci-
sion Table Methods; Digraph methods; Component
model based methods (Taylor 1982); Expert system
methods (Xie et al. 1993); and AltaRica Data-Flow
Language.

There are several methods for the automatic mod-
el generation in the literature that either use the
methods discussed above or their combinations or
introduce alternative concepts with novel character-

istics (Majdara & Wakabayashi 2009, Li & Li 2014,
Roth et al. 2015).

However, the main deficiencies for the automated
generation of reliability models identified in the lit-
erature are briefly discussed as follows:

• The range and domain that the approach tar-
gets. There are approaches that use libraries
and focus on specific domains such as mech-
atronics, without providing a general meth-
odology applicable to complex engineering
systems/ processes.

• The degree of automation. Some efforts result
in semi-automated reliability model genera-
tion, since the analyst should compose the
code for a specific simulation environment or
the data is not derived automatically from the
description diagram, but it is imported manu-
ally by the user.

• The level of the system’s/ process’s complex-
ity. Although most methods argue that they
are applicable in complex cases, only a lim-
ited number of them prove the automated
model generation of complex engineering
systems/ processes including dynamic char-
acteristics.

The proposed methodology in this paper contrib-
utes to the automated area by addressing the defi-
ciencies in current automated modelling methods
and develops a generic automated model generation
methodology for complex cases.

3 PETRI NET MODEL

Petri Nets, first introduced in the thesis of C.A. Petri
(Petri 1962), are a powerful, visual tool that provide
a rigorous and precise analysis, modelling the sys-
tem/process behaviour. A Petri Net is a bipartite di-
rected graph, consisting of two types of nodes, plac-
es and transitions. The nodes are connected together
with directed arcs. The basic elements for the con-
struction of PN graphs can be presented as follows:

• Places (circles, denoted pi, marked with to-
kens).

• Transitions (squares or bars, denoted tj, de-
scribe time delay (D), or probabilities, of the
output).

The movement of the tokens between places de-
scribes the dynamic behaviour of the model. The
marking of the PN after the rth transition, Mr, can be
found by Equation 1.

1.0 TAMM T
r += (1)

where M0 is a column vector of size (n, 1), where n
is the number of places, showing the initial marking
of the net; T1 is a column vector of size (m, 1) where
m is the number of transitions, showing the number
of times each transition has fired in the r transitions;
A is the incidence matrix (m, n) where each element

aij corresponds to the effect that transition i has on
place j. Using Equation 1, the marking of a net can
be tracked at any time.

PNs have been widely used in industry in several
fields such as data communication processes, com-
puter networks, workflows and manufacturing plants
(Wang 2007). They are a useful modelling tool, able
to simulate and analyse a system/process by predict-
ing its performance. Hence, the PNs provide both
numerical and graphical modelling analysis. Hence,
the PNs provide both numerical and graphical mod-
elling analysis, using software tools, such as Java/
C++, Matlab/ Simulink, PN Toolbox

4 METHODOLOGY STEPS & MODELLING
METHODS

The novelty of this work is the automated PN gener-
ation taking as an input a UML diagram, a represen-
tation commonly used in industry, manipulating the
diagram’s information into a database modelling
software and creating the PN mathematical represen-
tation, the transpose of the incidence matrix.

This section describes the steps followed for the
automated PN generation and also introduces the
modelling methods and techniques used in the meth-
odology. Figure 1 presents a diagram outlining the
methodology steps followed for the automated PN
generation. Step 1 (Process Modelling) takes the de-
scription of the system/process from a UML Activity
Diagram (AD) and exports it into an Extensible
Markup Language (XML) Metadata Interchange
(XMI) format to retrieve the structural and behavior-
al aspects of the system/process. Step 2 (Model
Transformation using XSLT) develops Extensible
Stylesheet Language Transformation (XSLT) files in
order to transform the XMI file, developed in step 1,
into an XML file, suitably formed to be imported in-
to MySQL Workbench. Step 3 (Database Modelling
using MySQL- PN Model) loads the XML file into
MySQL Workbench and generates and Structured
Query Language (SQL) code that transforms the
XML data into a PN representation in the form of
the transpose of the incidence matrix.

The methodology steps are explained in detail in
the following sections.

Figure 1. Methodology steps for the automated PN generation.

4.1 Step 1 – Process Modelling (PM)
The PM methods focus on the comprehension of the
graphical representation of a system/process and the
retrieval of information for further analysis. The de-
velopment of the process model is either created by
the software engineer or provided by industry.

There are various PM methods used in industry
such as Unified Modelling Language (UML)/System
Modelling Language (SysML) Diagrams, Business
Process Modelling Notation (BPMN), Computer
Aided Design (CAD), Graphic User Interface (GUI),
Piping and Instrumentations Diagrams (P&IDs), all
able to map the structural and behavioural aspects of
components/ activities in systems/ processes.

UML is a visual/graphical modelling language for
engineering systems that was developed by the Ob-
ject Management Group (OMG), International
Council on Systems Engineering (INCOSE) and the
Application Protocol 233 (AP233 consortium). UML
diagrams can model the structure, behaviour and ar-
chitecture of a system/process supporting the busi-
ness process and data structure modelling. Addition-
ally, UML can cope with model and data interchange
via XMI and the evolving AP233.
In this paper, the UML (AD) has been chosen due to
its high expressiveness, simplicity and directness. It
is widely used in industry and facilitates the repre-
sentation of the flow and the sequence from one ac-
tivity to another capturing the dynamic behaviour of
the engineering scenarios. The AD is created using
Eclipse software, version 4.5 Mars, which is an open
source Integrated Development Environment (IDE).
Once the AD is validated successfully, using the
‘Validate’ option available in Eclipse, it is exported
in XMI format, using the ‘Export’ option available
in the Eclipse software, for further manipulation in
step 2.

The XMI file includes the two elements which are
necessary for the generation of the incidence matrix:
the nodes and edges. The nodes correspond to the
PN places, whereas the edges to the PN transitions.
The XMI nodes are derived either from the AD ini-
tial/ final nodes or from the AD opaque action nodes
(blocks in the Eclipse software). Similarly, the XMI
edges are derived from the AD control flow edges
(arcs in the Eclipse software).

Each XMI node element consists of the following
attributes: a “type” that corresponds to the node used
in the AD, an “id” that acts as a unique identifier, a
“name” as presented in the AD, an “incoming” that
corresponds to the edge id attribute that enters the
node, and an “outgoing” that corresponds to the edge
id attribute that leaves the node. Similarly, each XMI
edge element consists of the following attributes: a
“type” that corresponds to the edge used in the AD,
an “id” that acts as a unique identifier, a “name” as
presented in the AD, a “target” that corresponds to
the node id attribute in which the edge ends up and a

“source” that corresponds to the node id attribute
from which the edge starts.

4.2 Step 2 – Model transformation using Extensible
Stylesheet Language Transformation (XSLT)

The model transformation, conducted in this step,
transforms the XMI (source model) into an XML
(target model) file. The transformation of the XMI
file into an XML format, suitable to be manipulated
by MySQL Workbench, is carried out using XSLT
that provides the ability to transform XML data from
one format to another automatically. The XSLT,
used as a template, define the rules that should be
applied to the XMI file to generate the XML.

The nodes and edges elements from the XMI file
are selected to create a well formed XML file fol-
lowing the XSLT rules. Two XSLT files have been
developed. The first consists of two templates, ap-
plied to the XMI file, one for the XMI nodes asking
for the “incoming”, “name” and “outgoing” attrib-
utes and values, and one for the XMI edges asking
for the “id”, “name”, “target” and “source” attributes
and values. The XML file created consists of the at-
tributes retrieved from the XMI as mentioned above.
The XML attributes should be transformed into
XML elements to be imported in the MySQL Work-
bench. Therefore, once the target XML file from the
first transformation is generated, the second XSLT
file is developed. The second transformation consists
again of two templates which are applied to the
XML file generated from the first transformation.
Hence, a template is developed and applied to the
XML nodes where the XML attributes of the nodes
are transformed into XML elements. Similarly, a
second template is developed and applied to the
XML edges where the XML attributes of the edges
are transformed into XML elements. Once, the XML
transformations are completed the final XML file is
developed consisting of the XML elements retrieved
from the XML file generated form the first transfor-
mation.

The XML file is then ready to be loaded into the
MySQL Workbench to be manipulated and organ-
ised in such a way that the transpose of the PN inci-
dence matrix can be generated.

4.3 Step 3 – Database modelling using MySQL-PN
model

A relatively recent development in the field of soft-
ware engineering is the database concept that over
the last 30 years has been used widely in industry
(Connolly & Begg 2005). The main idea of the data-
base is to capture and analyse data by organising it in
a straightforward way enabling it to be accessed,
managed and updated. The structure of a database is

called ‘schema’ and acts as an abstract view of the
data, allowing the user to have only the general de-
scription of the process/ system requirements. Once
the database (schema) has been developed the user
can store into the tables the process’s/ system’s data
(values) associated with the system/process under
consideration.

The MySQL (Michael Widenius Structured Que-
ry Language) database, one of the most popular open
source relational databases, has been chosen for this
work. The MySQL Workbench is a visual database
design tool suitable for SQL development, data
modelling, server administration and data migration.
The relational databases avoid data duplication, pro-
vide consistent records and simple data manipula-
tion, maintain security and enable the user to carry
out complex queries.

The XML file, created from the XML transfor-
mations in step 2, is loaded into the MySQL Work-
bench and an SQL code is generated to manipulate
and store the XML information into a transpose in-
cidence matrix to present the PN model in a mathe-
matical form.

The transpose of the PN incidence matrix was
generated applying the following steps:

1. Create a table in MySQL named ‘node’, in-
serting for each node sub-element the text
values of “incoming”, “name” and “out-
going” elements from the final XML file,
created from the UML AD.

2. Create a second table in MySQL named
‘edge’, inserting for each edge sub-element
the text values of “id” and “target” elements
from the final XML file, created from the
UML AD.

3. The SQL finds the edge sub-elements in the
XML that have identical targets and sources
text values and replaces the ids text values of
the targets with the ids text values of the
sources, creating a new table named ‘deci-
sion’. This is performed for all the decision
nodes included in the UML AD, The ‘deci-
sion’ table consists of the “id” and “name”
columns, as derived from the ‘edge’ table
(step 2) and the edge elements from the XML
file.

4. Create a table, named ‘new-edge’, listing the
ids text values from the combination of the
‘edge’ and ‘decision’ tables, created in steps
2 and 3, storing for each id the corresponding
text value “name” as derived from the XML
file.

5. Join the ‘node’ and ‘new-edge’ tables, devel-
oped in steps 1 and 4. The “incoming” and
“outgoing” columns from the ‘node’ table in
step 1 are replaced by the names as presented
in the ‘new-edge’ table in step 4. The new
table is named ‘final’. The table created con-
sists of three columns, the “name_source”,

“name_activity” and “name_target” from
which the matrix can be created.

6. Create a matrix with the columns defined by
the activity names in the 2nd column of table
‘final’ created in step 5 and the rows defined
by the entries in the 1st column of the ‘final’.
If a “name_activity” and “name_source” are
in the same row in table ‘final’, then the val-
ue -1 should be put in the corresponding ma-
trix cell.

7. Create a second matrix with the columns de-
fined by the activity names in the 2nd column
of table ‘final’ created in step 5 and the rows
defined by the entries in the 3rd column of the
‘final’. If a “name_activity” and
“name_target” are in the same row in table
‘final’, then the value +1 should be put in the
corresponding matrix cell.

8. Create the transpose of the incidence matrix
combining tables created in steps 6 and 7.

5 CASE STUDY – PETRI NET GENERATION

A recycling IT asset process has been considered in
order to demonstrate the methodology of the auto-
mated PN generation model described above.

5.1 Step 1 – Process Modelling

5.1.1 Recycling IT asset process description &
UML AD

The recycling IT asset process focuses on the repair
of electronic devices, mainly mobiles phones. Once
the device enters in the process line, it can pass
along one of the two paths, either refurbished or
scrap. Considering the two paths, there are six dif-
ferent possible stages:

• Asset Track (AT): Device’s information is in-
troduced into the traceability system.

• Visual Inspection (VI): The physical condi-
tion of an asset is assessed.

• Functional Test (FT): A product is inspected
by testing/ checking its functionality, includ-
ing activities such as charger check, battery
test, LCD screen check and resetting, ringing,
vibration, microphone and speaker tests.

• Data Erasure (DE): Data is erased securely
using specific licensed software.

• Cleaning and De-Labelling (CD): Refur-
bished assets are cleaned, any non-essential
labels are removed from the device and a
new label is placed.

• Repair (R): the repair is conducted only if it
is considered economically viable.

• Strip and Scrap (SS): Failed devices are
checked for any parts that can be salvaged
and are then sent for secure destruction.

All stages can deal with only one device at a time
except for the Data Erasure activity. Additionally, all
the activities are carried out at the same physical lo-
cation, i.e. on the computer, apart from the repair ac-
tivity.

Figure 2. UML AD of the IT asset recycling process.

The repair takes place in the same factory, but it

is performed away from the main refurbishment pro-
cess and only takes place when there is a certain
quantity of devices needing repair. The transporta-
tion of the repaired devices and the constraint of per-
forming repair in batches create a large delay be-
tween the functional test and the repair activities.
Similarly, the data erasure stage is performed sepa-
rately and then the information is only logged in the
process at the end. Each activity has a time to com-
pletion associated with it. There are also interval
times between the activities.

Additionally, each activity has a probability of
pass or fail, according to the process. The UML AD
has been developed and validated successfully for
the representation of all the paths included in the IT
asset process, as shown in Figure 2.

5.1.2 AD to XMI format
The UML AD created in section 5.1.1 for the IT

asset process is exported in XMI format. The XMI
file consists of the nodes such as the Start, Asset
Track, Visual Inspection, End etc. as presented in
Figure 2 and the edges such as the pin, ATp, VIp,
VIf, pout etc. as presented in Figure 2. The “type”,

“id”, “name”, “incoming” and “outgoing” attributes
of the ‘Asset Track’ node element are presented in
Figure 3. Similarly the “type”, “id”, “name”,
“source” and “target” attributes of the ‘pin’ edge el-
ement are presented in Figure 4.

Figure 3. Node element in XMI format.

Figure 4.Edge element in XMI format.

5.2 Step 2 – Model transformation using XSLT

The two XSLT files, developed in this step, trans-
form the XMI file into an XML format that can be
loaded into the MySQL Workbench database envi-
ronment in order to facilitate the PN incidence ma-
trix generation for the IT asset recycling process.

Following the rules for the XSLT templates for
the first XML transformation, described in section
4.2, the first XML file is created and part of it pre-
sented in Figure 5 for the ‘Asset Track’ node and the
‘pin’ edge. The node XSLT template retrieves the
“incoming”, “name” and “outgoing” attributes and
values from the XMI, whereas the edge XSLT tem-
plate retrieves the “id”, “name”, “target” and
“source” attributes and values from the XMI file.

Additionally, following the rules for the devel-
opment of the XSLT templates for the final XML,
described in section 4.2, the final XML file is creat-
ed and part of it presented in Figure 6 for the ‘Asset
Track’ node and the ‘pin’ edge. The XSLT templates
for the second transformation are applied to the first
XML file. In this XSLT file the node/edge child el-
ement from the first XML file (node/edge) is trans-
formed into node/edge root element. The attributes
of the node/edge child element (“incoming”,
“name”, “id” etc.) are then transformed into sub-
elements (incoming, name, id, etc.) of the root
node/edge XML element. The final XML file, part of
which is presented in Figure 6 is loaded into the
MySQL Workbench to generate the transpose of the
PN incidence matrix for the IT asset process.

Figure 5. First XML format developed from the XMI using
XSLT.

5.3 Step 3 – MySQL database modelling

The final XML file is loaded into the MySQL
Workbench and an SQL code has been developed to

Figure 6. Final XML format developed from the first XML us-
ing XSLT.

generate the transpose of the PN incidence matrix
for the IT asset process, following the steps defined
in section 4.3. The steps were applied as follows:

1. The ‘node’ table is created, using the values

of the incoming, name and outgoing elements
from the final XML file, as presented in Fig-
ure 6 for the ‘Asset Track’.

2. The ‘edge’ table is created, using the values
of the id and target elements from the final
XML file, as presented in Figure 6 for the
‘pin’.

3. The code finds in the XML file the edge sub-
elements where the source and target values
are the same and replace the id value that
corresponds to the target with the id value
that corresponds to the source. This is con-
ducted for all the decision nodes. The ‘deci-
sion’ table then is created using the id de-
rived from the ‘edge’ table and the name
derived from the XML file.

4. The table ‘new-edge’ is created as described
in section 4.3, step 4.

5. The ‘final’ table, presented in Figure 7, is
created following step 5 as described in sec-
tion 4.3. Each row of the ‘final’ table de-
scribes a transition with its activity name in
the 3rd column, its input place in the 2nd col-
umn and its output place in the 4th column.

6. A matrix is generated listing the transitions
(3rd column from the ‘final’ table) in the 1st
row and the places (2nd column from the ‘fi-
nal’ table) in the first column. Once a transi-
tion and a place from the ‘final’ table are in
the same row, then the value -1 should be put
in the corresponding matrix cell. For exam-
ple if the Asset Track is in the same row with
the pin in the ‘final’ table, then the SQL code
add in the corresponding cell of the matrix

the value -1. The input matrix is presented in
Figure 8.

Figure 7. Final table as created from the SQL code in
step 5.

Figure 8. Input matrix for the IT asset process.

Figure 9. Overall PN incidence matrix for the IT asset
process.

7. Similarly to step 6, a second matrix with the

+1 values is generated using the 3rd and 4th
columns from the ‘final’ table created in step
5.

8. The transpose of the overall PN incidence
matrix for the IT asset recycling process is
created by combining the matrices developed
in steps 6 and 7, as shown in Figure 9.

5.4 PN model generation

The overall PN model for the IT asset process has
been developed manually from the transpose of the
incidence matrix values given in Figure 9 and is pre-
sented in Figure 10. The PN consists of 7 transitions
and 11 places and 6 paths through the net have been
identified for the IT asset process.

Each transition presented in the overall PN, Fig-
ure 10, consists of a sub-PN as can be seen in Figure
11. Figure 11 represents a generalised sub-PN for an
activity with a start and end place (Activity Starts
and Activity Ends), a transition time (Activity
Time), two probability transitions (pass and fail
probability transitions) and their corresponding plac-
es (pass and fail probability places), the time be-
tween two activities (interval activity pass and fail)
as well as the next activity places for the pass and
fail paths respectively. Any activity can be repre-
sented by such a net.

For the 1st transition of the overall PN the device
arrives place and immediate transition are added in
the sub-PN. In general there are four cases for the
sub-PNs as follows:

• Initial activity in which a ‘device arrives’
place and an ‘immediate’ transition should be
added.

• One probability path, if the pass probability
path is required.

• Two probability paths, if the pass and fail
probability paths are required.

• Final activity in which a ‘device leaves’ place
is added. This is the last place of all the sub-
nets.

Hence, the incidence matrices for the sub-PNs
can be developed given the above cases. Figure 12
shows the incidence matrix developed for the gener-
alised sub-PN, presented in Figure 11. Due to lack of
space the sub-PNs and their corresponding matrices
for the overall PN in Figure 10 are omitted.

Figure 10. Overall PN model for the IT asset process.

Figure 11. Generalised sub-PN model.

Figure 12. Incidence matrix for the generalized sub-PN model.

6 CONCLUSIONS

In this paper, an automated PN generation method-
ology has been proposed. The methodology has been
applied to an IT asset process where the transpose of
the PN incidence matrix has been generated auto-
matically from a UML AD. The methodology fol-
lows three main steps: the development of a UML
AD for the process description, model transfor-
mations using the XSLT and database modelling us-
ing SQL code.

Future work involves the application of the auto-
mated PN generation methodology in complex pro-
cesses to verify its applicability. Also, the automated
graphical representation of the PN is currently being
investigated. Additionally, an algorithm, written in
Java, is being developed to simulate the process us-
ing the generated incidence matrix with the aim to
identify possible limiting factors of the process and
make recommendations for the improvement of the
process’s efficiency. Currently this algorithm has
been applied to the case study and initial results ob-
tained for the average times for each transition, pre-
sented in Figure 10, have been estimated. From the
results the Repair activity (R in Figure 10) takes the
longest time, 15879.15 seconds, to be completed,
since it takes place in a different physical location
from the other activities.

7 ACKNOWLEDGEMENT

The research reported in this paper aligns to the
work being researched as part of the EPSRC grant
EP/K014137/1.

8 REFERENCES

Bernardi, S., Donatelli, S. & Merseguer, J. 2002. From UML
sequence diagrams and statecharts to analysable Petri net
models. Proceedings of the Third International Workshop
on Software and Performance (WOSP2002), Rome, Italy,
ACM (2002) 35-45.

Connolly, T.M. & Begg, C.E. 2005. Database systems: A prac-
tical approach to design, implementation, and manage-
ment. (4., [rev] ed), Harlow: Addison-Wesley.

Eclipse. 2015. http://www.eclipse.org.
Lanus, M., Yin. L. & Trivedi, K.S. 2003. Hierarchical compo-

sition and aggregation of state-based availability and per-
formability models. IEEE Transactions on Reliability,
52(1): 44-52.

Lapp, S.A. & Powers, G.J. 1977. Computer-aided Synthesis of
Fault Trees. IEEE Transactions on Reliability, 26(1): 2-13.

Li. S. & Li, X. 2014. Study on generation of fault trees from
Altarica models. Procedia Engineering, 80(1): 140-152.

Majdara, A. & Wakabayashi, T. 2009. Component-based mod-
eling of systems for automated fault tree generation. Relia-
bility Engineering and System Safety, 94(6): 1076-1086.

OMG Unified Modeling Language (OMG UML), Superstruc-
ture. 2011. OMG Systems Modeling Language (OMG
SysML), Version 2.4.1, formal/2011-08-06.

Papadopoulos, Y. & Grante, C. 2005. Evolving car designs us-
ing model-based automated safety analysis and optimisation
techniques. The Journal of Systems and Software, 76(1):
77-89.

Petri, C.A. 1962. Kommunikation with Automaten. English
Translation, 1966: Communication with Automata, Tech-
nical Report RADC-TR-65-377, Rome Air Dev. Center,
New York.

Rauzy, A. 2002. Mode automata and their compilation into
fault trees. Reliability Engineering and System Safety,
78(1): 1-12.

Roth, M., Wolf, M. & Lindemann, U. 2015. Integrated matrix-
based Fault tree generation and evaluation. Procedia Com-
puter Science, 44(1): 599-608.

Salem, S.L., Apostolakis, G.E. & Okrent, D. 1977. A new
methodology for the computer-aided construction of fault
trees. Ann. Nucl. Energy, 4(9-10): 417-433.

Stockwell, K.S. & Dunnett, S.J. 2013. Automatic construction
of a reliability model for a phased mission system. In Jack-
son, L.M., and Andrews, J.D. (eds), Proceedings of the 20th
Advances in Risk and Reliability Technology Symposium,
192-204. Loughborough University, Leicestershire.

Taylor, J.R. 1982. An algorithm for Fault Tree construction.
IEEE Transactions on Reliability, R-3(2): 137-146.

Wang, J. 2006. Petri nets dynamic event-driven system model-
ling. In Paul Fishwick (eds), Handbook of Dynamic System
Modeling: 1-17. CRC Press.

Xie, G., Xue, D. & Xi, S. 1993. Tree-Expert: A tree based ex-
pert system for fault tree construction. Reliability Engineer-
ing and System Safety, 40(1):295-309.

Zhao, C., Bhushan, M. & Venkatasubramanian, V. 2005.
PHASUITE: An automated HAZOP analysis tool for chem-
ical processes: Part I. Knowledge Engineering Framework.
Process Safety and Environmental Protection, 83(B6): 509-
532.

Zille, V., Bérenguer, C., Grall, A. & Despujols, A. 2010. Simu-
lation of maintained multicomponent systems for dependa-
bility assessment. In Faulin, Javier and Juan, Angel A. and
Martorell, Sebastian and Ramirez-Marquez, J.E. (eds), Sim-
ulation Methods for Reliability and Availability of Complex
Systems, Springer Series in Reliability Engineering,
12(1):253-272. London: Springer London.

http://www.eclipse.org/

	1 INTRODUCTION
	2 AUTOMATED RELIABILITY MODELLING METHODS REVIEW
	3 Petri Net model
	4 METHODOLOGY STEPS & MODELLING METHODS
	4.1 Step 1 – Process Modelling (PM)
	4.2 Step 2 – Model transformation using Extensible Stylesheet Language Transformation (XSLT)
	4.3 Step 3 – Database modelling using MySQL-PN model

	5 CASE STUDY – PETRI NET GENERATION
	5.1 Step 1 – Process Modelling
	5.1.1 Recycling IT asset process description & UML AD
	5.1.2 AD to XMI format

	5.2 Step 2 – Model transformation using XSLT
	5.3 Step 3 – MySQL database modelling
	5.4 PN model generation

	6 CONCLUSIONS
	7 ACKNOWLEDGEMENT
	8 REFERENCES

