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a b s t r a c t 

A crystal-plasticity model is developed to account for temperature-dependent mechanical behaviour of

magnesium in this paper. The constitutive description of plastic deformation accounts for crystalline slip

and twining as well as their interactions. The temperature dependence is incorporated into the constitu- 

tive equations for both slip and twin modes based on experimental observations. A bottom-up computa- 

tional modelling framework is proposed to validate the developed constitutive model. First, the crystal- 

plasticity model is calibrated with experimental results for plane compression at micro-scale. At meso- 

scale, a three-dimensional representative element volume was adopted to represent the microstructure of

polycrystalline magnesium. In the combination with the proposed constitutive theory, the effects of tem- 

perature on mechanical response and evolution of twins and texture in polycrystalline magnesium were

predicted. Comprehensive experimental validations at meso-scale were performed to consolidate further

the developed crystal-plasticity model incorporating temperature dependence in terms of stress-strain

curves, the Hall-Petch relationship and texture evolution. This work provides a useful modelling tool for

understanding temperature-dependent behaviour of magnesium, which could be used to improve the

formability of this family of materials.
© 2017 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/) 
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1. Introduction

With increasing demands for improved fuel efficiency in trans-

portation, there is a strong drive to reduce the weight of vehicles

without compromising their structural resilience. Therefore, mag-

nesium (Mg) and its alloys have attracted significant attention in

recent years thanks for their high specific strength ( Wei et al.,

2015; Zhou et al., 2016 ). However, the widespread structural appli-

cations of Mg have been substantially restricted by material’s poor

ductility and formability. This drawback is primarily due to the un-

derlying hexagonal close-packed (HCP) structure of Mg, which pro-

vides a limited number of slip systems for plastic deformation at

room temperature ( Mirzadeh, 2014 ). Additional slip systems may

be activated at elevated temperatures; consequently, hot process-

ing is advised to overcome the poor formability of Mg ( Figueiredo

et al., 2016; Mirzadeh, 2014 ). This needs to be performed with cau-

tion, as high temperatures may alter the material’s microstructure

with a concomitant change in an in-service mechanical response of
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 component ( Yuan et al., 2016 ). Thus, a thorough understanding of

ot deformation behaviour of Mg is necessary. 

In Mg and its alloys, micro-scale deformation mechanisms in-

lude both crystalline slip and deformation twinning. In addi-

ion, a significant transition of the dominant deformation mode

s observed with a temperature variation. In recent years, crystal-

lasticity-based approaches that can explicitly implement differ-

nt deformation modes have been widely used for fundamental

nvestigations on deformation mechanism of various metallic ma-

erials, including Mg, further providing guidelines for design of

ovel materials ( Zhang et al., 2016 ) and formability improvements

 Liu et al., 2016a, c ). 

Based on the modelling philosophy adopted in crystal plastic-

ty, the respective modelling technique can be categorised into top-

own and bottom-up approaches ( Zhang and Joshi, 2012 ). The top-

own approach is well-suited to model polycrystalline behaviour

t macro-scale, from which single-crystal parameters are inferred.

he commonly used top-down approaches can be classified into

sostrain ( Taylor, 1938 ), isostress ( Sachs, 1928 ) and self-consistent

 Eshelby, 1957 ) schemes. There are some successful examples for

hese different top-down approaches, for instance, the isotrain-

ype ( Ardeljan et al., 2016; Knezevic et al., 2009 ), isostress-type

 Toth et al., 1990 ) and visco-plastic self-consistent (VPSC) models
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D e + W e = F e F , D p + W p = L + L + L . (6)
 Beyerlein and Tomé, 2008; Kabirian et al., 2015 ). The top-down

pproach is relatively easy to implement numerically and can re-

uce computational cost by incorporating a coarse finite-element

FE) mesh. However, this approach suffers from a high computa-

ional time cost at element-level simulation, which impedes paral-

el computation in FE analysis. Thus, the top-down approach may

ssentially decrease computational efficiency. Its another drawback

s the fact that the choice of a homogenization scheme affects sig-

ificantly the estimation of single-crystal parameters ( Ardeljan et

l., 2016 ). By contrast, the bottom-up approach involves the use

f a calibrated (based on experiments) small-scale single-crystal-

lasticity (SCP) model, incorporating typical deformation modes

uch as slip, twinning or both. To predict a response of polycrys-

alline component, individual crystal grains and orientations are

epresented via the SCP model, which is then employed to as-

ess a stress-strain response and texture evolution during the de-

ormation process. Here, the intra-grain interaction is modelled in

 physically representative manner (in contrast to the use of ho-

ogenization). Successful implementations of the bottom-up ap-

roach were developed for a variety of crystalline materials, FCC

 Cyr et al., 2015 ), BCC ( Lim et al., 2015 ) and HCP metals ( Abdolvand

nd Daymond, 2013; Cheng and Ghosh, 2015 ) and references there

n. Compared to the top-down approach, the bottom-up approach

as a higher demand on computational resources, but such an ap-

roach is amenable for parallelisation in an FE solver. 

In Mg and its alloys, much of the modelling effort involves

he use of top-down approach. For example, VPSC models were

mployed to provide an insightful understanding activity of slip

nd twin mode at different temperatures in AZ31 alloy ( Kabirian

t al., 2015; Zhang et al., 2016 ). In the works, the so-called pre-

ominant twin reorientation (PTR) scheme proposed by Tomé et

l. (1991) was widely adopted to determine the twin-phase for-

ation. In the PTR scheme, only one twin phase with a high-

st contribution to total volume fraction was activated in a grain.

n these VPSC-based approaches, a critical resolved shear stress

CRSS) needs to be calibrated at different temperatures, which is

heir primary drawback. Recently, Ardeljan et al. (2016) proposed

 Taylor-type modelling scheme, in which the temperature depen-

ence was incorporated into constitutive laws, thus addressing its

ffect with introduction of appropriate parameters. 

For bottom-up approaches, several SCP-based models were de-

eloped recently, with their parameters identified through single-

rystal experiments ( Becker and Lloyd, 2016; Gan et al., 2016;

hang and Joshi, 2012 ). Additionally, these models were also

mployed to characterise polycrystals at meso-scale ( Chang and

ochmann, 2015; Zhang and Joshi, 2012 ). However, these studies

ere limited to investigations at room temperature. To date, only

ome limited attempts were made to capture temperature depen-

ence with different sets of model parameters were used for differ-

nt temperature conditions ( Hidalgo-Manrique et al., 2015 ). Thus,

t is imperative to incorporate temperature dependence into con-

titutive laws for bottom-up approaches, which will allow for mod-

lling across a wider temperature range exploiting a broader de-

ign space. 

The aim of this paper is to develop a SCP model to account

or the temperature dependence of Mg, henceforth, referred to

s T-SCP (temperature-dependent single-crystal plasticity) model.

his model was incorporated into a bottom-up modelling frame-

ork to investigate the effects of temperature on the mechani-

al response and texture evolution of single-crystal and polycrys-

alline Mg. This paper is organized as follows: in Section 2 , a self-

ontained description of the governing relations of the proposed

-SCP model was presented. Section 3 presents a modelling strat-

gy of the bottom-up approach based on a commercial FE software

ackage ABAQUS. In Sections 4 and 5 , simulation results and exper-

mental validations are presented and discussed for single-crystal
nd polycrystalline case at meso-scale, respectively. We end with

ome concluding remarks in Section 6 . 

. Constitutive formulas

In this section, a phenomenological T-SCP model is presented to

ccount for the temperature-dependence of single Mg crystals (or

rains). In the T-SCP model, four slip and two twin systems were

onsidered for the Mg crystal as listed in Table 1 . Here, four slip

lanes are considered: basal, prismatic, pyramidal 〈 a 〉 and pyrami-

al 〈 c + a 〉 and two twin planes: tensile twin (TT) and compressive

win (CT) (see Fig. 1 ). Standard notation is adopted here: scalars

re in italics, vectors and tensors are indicated with lower-case and

pper-case bold letters. 

.1. Kinematics 

Following a classical crystal plasticity (CP) theory, the defor-

ation gradient F can be decomposed into the elastic and plastic

arts, as, 

 = F e F p , (1) 

here the subscripts ‘e’ and ‘p’ denote the elastic and plastic pa-

ameters, respectively. The velocity gradient L is introduced follow-

ng its definition L = 

˙ F F −1 , as, 

 = ̇

 F e F 
−1 
e + F e ( ̇ F p F 

−1 
p ) F 

−1 
e = L e + L p . (2) 

For Mg crystal, the plastic deformation is assumed to arise from

oth crystalline slip and twinning due to its HCP structure with a

arge aspect ratio. Consequently, the plastic velocity gradient, L p ,

ncorporates contributions from the slip and twin modes as 

 p = L sl 
p + L tw 

p + L sl−tw 

p . (3)

Here L sl 
p , L tw 

p and L sl−tw 

p represent the plastic velocity gradient

nduced by the slip in the untwined region (or parent phase), de-

ormation twinning in the untwinned region and secondary slip in

he twinned region (or child phases), respectively ( Kalidindi, 1998 ).

n this paper, the assumption of pseudo slip is adopted for twin-

ing, and its effectiveness has been demonstrated in prior work

 Ardeljan et al., 2016; Gan et al., 2016; Kalidindi, 1998 ). For the

ake of clarity, the superscript α is used to represent the slip sys-

em in the parent phase, β for the twin system in the parent phase

nd ˜ α for the secondary slip system in the child phase. The three

erms in Eq. (3) can be further expressed as 

L sl 
p = 

(
1 −

N tw ∑ 

β

f β

)
N s ∑ 

α=1

˙ γ (α) s α � m 

α

L tw 

p = 

N tw ∑ 

β=1

˙ γ βs β � m 

β

L sl−tw 

p = 

N tw ∑ 

β=1

f β
N s ∑ 

˜ α=1

˙ γ ˜ αs ˜ α � m 

˜ α (4) 

here ˙ γ α is the shear slip rate on the slip system α, f β is the vol-

me fraction of child phase β , and ˙ γ β is the shear strain rate aris-

ng from deformation twinning. N s and N tw 

are the total numbers

f slip and twin systems, respectively. The unit vector s represents

he direction of slip/twin and m is the unit vector normal to the

orresponding slip/twin plane. Furthermore, the velocity gradient

an be expressed in terms of a symmetric rate of stretching D and

n antisymmetric rate of spin W : 

L = D + W = ( D e + W e ) + ( D p + W p ) . (5) 

From Eqs. (2) ∼(5) , we obtain 

˙ −1 sl tw sl−tw 
e p p p 
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Fig. 1. Schematic diagrams of slip and twin systems in Mg crystal. 

Table 1 

Slip and twin systems considered for Mg. 

Slip/twin plane Slip/twinning direction Number of modes 

Basal {0 0 01} < 11 ̄2 0 > 3 

Prismatic { 10 ̄1 0 } < 11 ̄2 0 > 3 

Pyramidal < a > { 10 ̄1 1 } < 11 ̄2 0 > 6 

Pyramidal < c + a > { 11 ̄2 2 } < 11 ̄2 3 > 6 

Tensile twin (TT) { 10 ̄1 2 } < 10 ̄1 1 > 6 

Compressive twin (CT) { 10 ̄1 1 } < 10 ̄1 ̄2 > 6 

 

 

 

 

 

 

 

 

 

 

 

C  

 

 

 

 

 

 

 

 

 

i  

r  

K

 

S  

l  

 

w

i  

d

r  

e  

1  

s  

t  

γ  

 

χ

γ

 

w

 

v  

(  

w  

P  

(  

c  
2.2. Constitutive laws 

Average Cauchy stress σ̄ is evaluated at each material point, by

accounting the contributions from both parent and child phases: 

σ̄ = 

( 

1 −
N tw ∑ 

β

f β

) 

σm 

+ 

N tw ∑ 

β

f βσtw (β) , (7)

where σm 

and σtw ( β) denote the Cauchy stress in the parent and

child ( β) phases. In each phase, following the work of Huang

(1991) , the constitutive law is expressed as the relationship be-

tween the elastic part of the symmetric rate of stretching, D e , and

the Jaumann rate of Cauchy stress, 
∇ 

σ , i.e. 

∇ 

σ + σ(I : D e ) = C : (D −D p ) , (8)

where, I is the second-order unit tensor, C is the fourth-order, pos-

sibly anisotropic, elastic stiffness tensor. The Jaumann stress rate is

expressed as ( Liu et al., 2016b ) 

∇ 

σ = 

˙ σ−W e σ + σW e . (9)

The temperature dependence of elastic tensor C can be ex-

pressed as ( Olsson, 2015 ): 

 i jkl = C 0 i jkl −
s i jkl 

exp ( t i jkl /T ) − 1 

, (10)

where T is temperature (in Kelvin), s ijkl and t ijkl are material con-

stants with the same symmetry as the elastic tensor, C ijkl , and C 0 
i jkl 

corresponds to the elastic tensor in the limit of zero temperature. 

With the framework of the classical CP theory, the shear strain

rate on each slip system, ˙ γ α(or ˙ γ ˜ α) is related to the resolved

shear stress τα(or τ ˜ α) via a well-known power law proposed by

Hutchinson ( Hutchinson, 1976 ): 

˙ γ α = ˙ γ0 

∣∣∣τα

τα
c 

∣∣∣n 

sgn ( τα) . (11)

Here, ˙ γ0 is the reference shear rate, τα
c is the slip resistance

and n is the rate-sensitivity parameter. On each slip system, the

resolved shear stress, τα , is expressed by the Schmid law 

τα = s α � m 

α : σ. (12)

A  
Here, we take pause and observe that determining yield surface

n single crystals especially HCP metals is not a trivial matter. We

efer the reader to the seminal work of Tomé and Kocks ( Tomé and

ocks, 1985 ) and Ritz and co-workers ( Ritz et al., 2010 ). 

Next, assuming twinning to be essentially pseudo slip, the

chmid law is also adopted for twin systems, with a power-law re-

ation employed to describe evolution of the twin volume fraction,
˙ f β , i.e. 

˙ f β = 

˙ f 0 

∣∣∣∣∣
〈
τβ

〉
τβ

c 

∣∣∣∣∣
m 

, 
〈
τβ

〉
= 

⎧ ⎨ 

⎩ 

τβ, τβ > 0& f �

(
= 

N tw ∑ 

β

f β

)
≤ f cr 

0 , otherwise 

, 

(13)

here, ˙ f 0 is the reference rate of the twin volume fraction, τβ

s the corresponding resolved shear stress, τβ
c is the resistance to

eformation twinning, m is the rate-sensitivity parameter, and f cr 

epresents the critical twin volume fraction at which lattice reori-

ntation is invoked at the corresponding material point ( Kalidindi,

998; Zhang and Joshi, 2012 ). That is assumed to be 0.9. The shear

train rate on the twin system, ˙ γ β , may be related to the rate of

he twin volume fraction, ˙ f β , via constant shear strain rate, γ tw , as

˙ β = γ tw ˙ f β . (14)

Here γ tw is determined by the aspect ratio of crystal lattice,

= c/a , i.e. 

tw = 

{
γ tw 

tt = 

√ 

3 

χ
− χ√ 

3 

( TT ) 

γ tw 

ct = 

4 χ2 − 9 

4 

√ 

3 

( CT ) , (15)

here χ = 1 . 624 for Mg crystal. 

Lattice reorientation is introduced when the accumulated twin

olume fraction over all twin systems ( f �) exceeds the critical one

 f cr ) at a material point ( Eq. (13) ). In literature, the PTR scheme is

idely used to capture grain reorientation due to twinning. The

TR scheme allows one child phase to evolve in a crystal or grain

 Gan et al., 2016; Zhang and Joshi, 2012 ). In contrast, multiple

hild phases are allowed in our approach (similar to the work of

rdeljan et al., (2016) ). Here, a child phase is introduced when
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he volume fraction of the corresponding twin system reaches a

hreshold value (we assume this to be 1%). Therefore, there can be

 maximum of 12 child phases (6 phases resulting from TT and 6

rom CT). Though, in practice activating all twin systems simulta-

eously is difficult. When a new child phase is generated from the

win β , its new orientation can be obtained by 

 = I − 2 m 

β
� m 

β

 

˜ α = Q s α, m 

˜ α = Q m 

α. (16) 

The elastic tensor (in indicial notation) of the new child phase,

 

tw (β) 
i jkl 

, is defined by rotation from that of the parent phase, C ori 
pqrs ,

hich can be formulated as: 

 

tw (β) = C 
tw (β) 

i jkl 
= C ori 

pqrs Q ip Q jq Q kr Q ls . (17)

.3. Hardening model 

Here, we present hardening laws that capture the evolution of

lip resistance (τα
c ) and twinning resistance (τβ

c ) introduced in

qs. (11) and ( 13 ), respectively, accounting also for the tempera-

ure dependence. To date, there were limited experimental studies

ith regard to temperature dependence of different slip and twin

odes in single-crystal Mg ( Chapuis and Driver, 2011; Wonsiewicz,

966 ). It was demonstrated that the basal slip system and TT were

emperature-independent, while other slip modes and CT exhibited

ignificant temperature dependence. 

.3.1. Hardening law of slip 

Slip resistance is defined as, 

α
c = τα

0 + τα
HP + τα

f , (18) 

here τα
0 

, τα
HP 

and τα
f 

represent the initial lattice resistance, re-

istance from the barrier imposed by grain or twin boundaries

nd forest dislocation interaction, respectively. The first term is ob-

ained from ( Ardeljan et al., 2016; Beyerlein and Tomé, 2008 ): 

α
0 = 

{
s α0 (basal slip) 

s α0 exp 

(
− T 

T α

)
(non − basalslip) 

, (19) 

here s α
0 

is the reference initial lattice resistance, and T α is an em-

irical parameter. 

The second term, τα
HP 

, is considered for two cases: with and

ithout child phases in the crystal ( Beyerlein and Tomé, 2008 ),

nd is presented as a unified expression similar to the classical

all-Petch effect: 

α
HP (T ) = μα(T ) H 

α
I 

√ 

b α

d α
. (20)

Here, μα and b α are the shear modulus and Burgers vector of

lip system α, respectively. H 

α
I 

is the material parameter depend-

ng on the slip mode, with the subscript I indicating three pos-

ible conditions: I = 0 — no child phases in the crystal; I = 1 —

 predominant child phase resulting from TT; I = 2 — a predom-

nant child phase resulting from CT. Depending on the choice of

 , the parameter d represents grain size ( d g ) when I = 0 , or the

ean free path between adjacent child phases ( d α
m f p 

) when I = 1

r I = 2 ( Beyerlein and Tomé, 2008 ). Clearly, the presence of child

hases in a crystal (twin boundaries) introduces an additional bar-

ier for dislocation motion on top of the presence of grain bound-

ry, which manifests in the classical Hall-Petch effect. The mean-

ree-path, d α
m f p 

, depends on the orientation between the predom-

nant child phase and the slip plane ( Ardeljan et al., 2016 ), which

s expressed as 

 

α
m f p = 

(1 − f PT S ) λd g 

sin θ
, (21) 
here f PTS is the volume fraction of the predominant twin system

PTS) in the crystal, λ represents the ratio of the twin spacing and

rain size ( λ= 0 . 2 in this paper), and θ is the angle between the

lane of PTS and the slip plane. 

The forest dislocation interaction, τα
f 
( ̇ ε , T ) , is obtained from 

α
f = τα

f,sl↔ sl + τα
f,tw → sl = 

N s ∑ 

α′ =1 

τα
f,α′ + 

N tw ∑ 

β=1 

τα
f,β , (22)

here τα
f,sl↔ sl 

and τα
f,tw → sl 

represent the slip resistance due to the

lip-slip and twin-slip interactions, respectively. As an example,
α
f,α′ represents the interaction between slip systems α and α′ , and
α
f,β

represents the barrier of twin system β acting on slip system

. The slip-slip system interaction incorporates the effect of active

r self-slip-slip interactions (i.e. when α = α′ ) and latent slip-slip

nteractions (i.e. when α � = α′ ). We assume that these interactions

re related by 

α
f,α′ = q α′ ατ

α′ 
f,α′ (α

′ � = α) , (23)

here q α′ α is the latent interaction coefficient that generally

anges between 1 and 2. Here, it is assumed that q α′ α = 1 . As there

re some differences between the influences of TT and CT on slip,

t is important to distinguish these interactions ( Gan et al., 2016;

hang and Joshi, 2012 ), as: 

α
f,tw → sl = τα

f,T T → sl + τα
f,CT → sl = 

N TT ∑ 

β=1 

τα
f,β+ 

N CT ∑ 

β=1 

τα
f,β , (24) 

here N TT and N CT are the number of TT and CT systems, respec-

ively. Similar to slip-slip interactions, the TT-slip interaction is for-

ulated as: 

α
f,β = q T T → ατ

β
f,T T 

( TT → slip ) . (25)

Here τβ
f,T T 

is the self-resistance to TT of the system β , and

 TT → α is the interaction factor between TT and slip systems. The

T-slip interaction is assumed to follow a Taylor-hardening type

orm depending on the total volume fraction accumulated over all

he N CT CT systems ( Zhang and Joshi, 2012 ), as: 

α
f,CT → sl ( ̇ ε , T ) = 

N CT ∑ 

β=1 

τα
f,β ( ̇ ε , T ) 

= H CT → sl ( ̇ ε , T ) 

( 

N CT ∑ 

β=1 

f 
β
CT 

/ γ tw 

CT 

) 0 . 5 

( CT → slip ) , (26) 

here H CT → sl represents the initial hardening parameter of the CT-

lip interaction. 

According to Eqs. (22) –( 26 ), the dependence of forest disloca-

ion interaction (i.e. τα
f 

in Eq. (18) ) on temperature may be ex-

ressed by τα′ 
f,α′ , τ

β
f,T T 

(TT) and H CT → sl (CT). Since basal slip and

T are temperature-independent ( Chapuis and Driver, 2011; Won-

iewicz, 1966 ), we can write the following expressions 

τα′ 
f,α′ = s α

′ 
basal (basal slip) 

τβ
f,T T 

= s 
β
T T 

( TT ) , (27) 

here s α
′ 

basal 
and s 

β
T T 

represent the reference self-resistance for

asal slip and TT, respectively. For non-basal slip and the CT-slip

nteraction, the temperature dependence is defined based on the

ork of Kocks (1976) , as: 
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a  
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ln 

( 

τα′ 
f, α′ 

s α
′ 

f 

) 

= − kT 

ξα′ μα′ ( b α′ ) 
3 

ln 

(
˙ ε 0 
˙ ε 

)
( non − basal slip ) 

ln 

(
H CT → sl 

H 

0 
CT → sl 

)
= − kT 

ξCT μCT (b CT ) 
3 

ln 

(
˙ ε 0 
˙ ε 

)
( CT → slip ) , (28)

where k is the Boltzmann constant, ˙ ε 0 is the reference strain rate

( ̇ ε 0 = 10 7 in this paper), ξα′ 
and ξ CT are the non-dimensional co-

efficients, s α
′ 

f 
is the reference self-resistance of non-basal slip, and

the constant H 

0 
CT → sl 

is the reference hardening parameter of CT-slip

interaction, respectively. 

As the growing forest dislocation interaction further increases

resistance to slip or results in an increase of the twin volume (e.g.

the CT-slip interaction in Eq. (26) ), a hardening law is also required

for slip-slip or TT-slip interaction. The hardening rate of slip resis-

tance due to the slip-slip interaction ( τα
f,α′ ) can be expressed in

terms of s α
′ 

basal 
or s α

′ 
f 

. The basal slip system is observed to follow a

linear hardening response based on experiments ( Kelley, 1967 ) 

˙ s α
′ 

basal = h basal ˙ γ α′ 
. (29)

For a non-basal slip system, the hardening rate of s α
′ 

f 
is formu-

lated in the form proposed by Asaro (1983) : 

˙ s α
′ 

f = h 

α′ 
0 sec h 

2 

(
h 

α′ 
0 γ

s α
′ 

s − s α
′ 

0 

)
˙ γ α′ 

, γ = 

N s ∑ 

α′ =1 

t ∫ 
0 

∣∣ ˙ γ α′ ∣∣dt , (30)

where h α
′ 

0 
is the initial hardening modulus and s α

′ 
s is the saturation

stress. Similarly, the hardening rate of slip resistance due to the

TT-slip interaction ( τα
f,T T 

) can be obtained from s 
β
T T 

(reference self-

resistance of TT system) according to Eq. (27) . The hardening law

of s 
β
T T 

is discussed in the Section 2.3.2 . 

2.3.2. Hardening law of deformation twinning 

The resistance to deformation twinning in Eq. (13) can be also

expressed as the sum of three terms (similar to Eq. (18) ), as: 

τβ
c = τβ

0 
+ τβ

HP 
+ τβ

f 
. (31)

The first term is expressed as 

τβ
0 

= 

{
s 
β
0 

( TT ) 

s 
β
0 

exp ( −T / T β ) ( CT ) 
(32)

The second term, τβ
HP 

, the effect of barriers due to grain or twin

boundaries, is also expressed in the Hall-Petch-like form ( Beyerlein

and Tomé, 2008 ): 

τβ
HP 

= 

{ 

H β√ 

d g 
, f � = 0 or β = PTS 

H β√ 

d m f p 

, f � > 0 & β � = PTS 
, (33)

where H 

β is the Hall-Petch coefficient. Finally, the last term, τβ
f 

,

accounting for the contributions from twin-twin ( τβ
f,t w ↔ t w 

) and

slip-twin interactions ( τβ
f,sl→ tw 

) is written as 

τβ
f 

= τβ
f,t w ↔ t w 

+ τβ
f,sl→ tw 

= 

N tw ∑ 

β ′ =1 

τβ
f,β ′ + 

N s ∑ 

α=1 

τβ
f,α

. (34)

The resistance to the evolution of TT and CT volume fractions

may be attributed to different underlying mechanisms. For exam-

ple, CT dislocations have lower mobility due to their narrow core-

width, which impedes a CT growth. In contrast, the core-width of

TT dislocation is about 3 ∼6 times of their CT counterpart; hence,

TT dislocations are easy to nucleate and propagate ( Zhang and

Joshi, 2012 ). Consequently, the twin-twin interactions are herein
iscussed by dividing them into two cases: TT-TT and CT-CT in-

eractions: 

β
f,t w ↔ t w 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

τβ
f,T T ↔ T T 

= 

N TT ∑ 

β ′ =1 

τβ
f,β ′ ( TT ) 

τβ
f,C T ↔ C T 

= 

N CT ∑ 

β ′ =1 

τβ
f,β ′ ( CT ) 

. (35)

The resistance due to the TT-TT interaction is expressed as: 

β
f,β ′ = q T T τ

β ′ 
f,T T 

( TT ) , (36)

here q TT is the interaction factor between TT systems, and it is

aken as q T T = 1 . 0 in this paper. As discussed before, the TT-TT in-

eraction is temperature-independent with τβ
f,T T 

= s 
β
T T 

. The harden-

ng rate of s 
β
T T 

can be expressed as (similar to Eq. (30) ) 

˙ 
 

β
T T 

= h 

β
0 

sec h 

2 

(
h 

β
0 
γT T 

s 
β
s − s 

β
0 

)
˙ γ β, γT T = 

N TT ∑ 

β=1 

∫ t 

0 

∣∣ ˙ γ β
∣∣dt . (37)

Based on the work of Zhang and Joshi (2012) , to characterise

he sluggish kinetics of the CT growth at early stages, the resis-

ance to CT evolution, τβ
f,CT 

, is expressed as: 

˙ 
β
f,C T ↔ C T 

( ̇ ε , T ) = 

N CT ∑ 

β ′ =1 

˙ τβ
f,β ′ = H C T ↔ C T ( ̇ ε , T ) 

( 

N CT ∑ 

β ′ =1 

f β
′ 

) η

˙ γ β, (38)

here H CT ↔ CT and η are the empirical parameters controlling the

ardening rate of CT-CT interaction. In general, the two parameters

hould satisfy the conditions of H CT ↔ CT ∼ GPaand η << 1 in order to

apture a characteristic of the CT growth. The temperature depen-

ence of τβ
f,C T ↔ C T 

is formulated as 

n 

(
H C T ↔ C T 

H 

0 
C T ↔ C T 

)
= − kT 

ξCT μCT ( b CT ) 
3 

ln 

(
˙ ε 0 
˙ ε 

)
, (39)

here H 

0 
C T ↔ C T 

is the reference hardening parameter for CT-CT in-

eraction. 

The effect of slip on deformation twinning (i.e. slip-twin

nteraction, τβ
f,sl→ tw 

) requires further studies. Capolungo et al.

2009b) studied the effect of slip on TT for Mg and demonstrated

t to be insignificant. Although there was no direct evidence of the

ffect of slip on CT in Mg, Capolungo et al. (2009a) concluded that

he onset of CT in Zr was insensitive to slip through series of me-

hanical test and multi-scale modelling. Based on these fundamen-

al studies, we assume the slip-twin interaction in Eq. (34) may be

eglected (i.e. τβ
f,α

= 0 ). 

. Scheme of bottom-up approach 

The T-SCP model proposed in Section 2 was implemented

n the commercial FE code ABAQUS/Explicit by employing the

ser subroutine VUMAT. It is necessary to point out that the

tress update algorithm was based on the Green-Naghdi stress

ate in ABAQUS/Explicit environment. Therefore, a conversion al-

orithm was required in order to evaluate a stress update in

BAQUS/Explicit based on the Jaumann stress rate defined in the

onstitutive law (e.g. Eq. (9) ); one can find more details in our pre-

ious work ( Liu et al., 2016c ). 

First, the model was used to simulate the effect of tempera-

ure on the stress-strain response and evolution of microstructure

or single-crystal Mg. The model parameters were calibrated using

he experimental data reported by Kelley (1967) and Wonsiewicz

1966) . Next, the T-SCP model was employed to predict the over-

ll mechanical properties and microstructure evolution of polycrys-

alline Mg using a three-dimensional (3D) representative volume

lement (RVE) modelling approach. 



Q. Liu et al. / Mechanics of Materials 113 (2017) 44–56 49 

Fig. 2. Schematic of FE modelling for plane compression of single-crystal Mg. 

Fig. 3. 3D RVE model of polycrytal Mg. 
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The studies for single-crystal were carried out with the FE mod-

lling strategy illustrated in Fig. 2 . At room temperature, basal slip

s the easiest one to be activated among the four slip and two

win systems considered in this paper. A channel-die experimental

est may be performed to study an individual slip or twin system

 Kelley, 1967; Wonsiewicz, 1966 ). In these experiments, plane com-

ression loading is imposed on the single crystal in pre-decided

rientations, that is, homogeneous compression loading is imposed

n a chosen surface of a parallelepiped sample, while one orthog-

nal surface is held rigid and the third is left free. Seven loading

ases were modelled using T-SCP as shown in Fig. 2 and compared

ith experimental studies. In these test cases, pyramidal < c + a >

lip was primarily activated for cases A and B, prismatic slip for

ases C and D, tensile twinning for cases E and F, and basal slip

or case G. It is obvious that such channel-die tests significantly

implify model parameter calibration, and the involved details are

resented in Section 4.1 . 

Next, based on the calibrated single-crystal model, a 3D RVE

odel was used to represent the initial microstructure of poly-

rystalline Mg as shown in Fig. 3 . Similar RVE models with such

dealized grains and meshes were also adopted in the work of

im et al. ( Lim et al., 2015, 2011 ). 200 (8 × 5 × 5) cubic grains

ere considered in the RVE model, in which each grain was

eshed with 64 C3D8 elements and assigned a random initial
rientation. A unidirectional tension test case (the loading direc-

ion was along the X axis marked in Fig. 3 ) was modelled us-

ng this 3D RVE model. The effects of temperature on the stress-

train response and microstructure (i.e. the evolution of twinning

nd texture) were predicted. In particular, the dependence of yield

tress on grain size (i.e. Hall-Petch relationship) was estimated at

ifferent tem peratures, and, hence, the effect of temperature on

he Hall-Petch relationship could be evaluated. Finally, the pre-

ented predictions were compared with the available experimental

ata ( Ono et al., 2004 ), which are used to validate effectiveness of

he T-SCP model at polycrystal meso-scale. 

. Simulation of single-crystal mg and discussions 

.1. Plane compression and unidirectional tension at room 

emperature 

First, single-crystal deformation mechanism at room tempera-

ure was characterised using the T-SCP model. The stress-strain

urves, obtained in FE simulations and experiments, are shown in

ig. 4 for the seven loading cases as illustrated in Fig. 2 . 

Fig. 4 (a) shows the stress-strain curves corresponding to the

oading cases with crystal slip dominated. Pyramidal 〈 c + a 〉 slip

as predominant in loading cases A and B with partial activation
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Fig. 4. Comparison of stress-strain curves of single-crystal Mg at room temperature for simulations (denoted by ‘Simu’) and experiments (denoted by ‘Exp’) for various 

loading cases: (a) A ∼D and G; (b) E and F (as illustrated in Fig. 2 ). 

Fig. 5. Predicted reorientation of single-crystal Mg under loading cases E (a) and F (b). 
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of CT. A similar observation was made in the study of Gan and co-

workers ( Gan et al., 2016 ). The stress level in loading case B was

higher than that of A. This may be understood by analysing Schmid

factor, which affects the magnitude of resolved shear stress. Under

plane compression, contributions to the Schmid factor come from

both the loading direction as well the specific direction in which

the constraints are imposed. In loading cases A and B, the load-

ing direction was identical; however, the effects due to constraints

lead to a Schmid factor of 0 for loading case A and −0.11 for load-

ing case B ( Zhang and Joshi, 2012 ). This implies that a higher level

of compressive stress is required to activate slip in loading case B.

Prismatic slip was the easiest to activate in loading cases C and

D similar to the conclusions drawn in literature ( Gan et al., 2016;

Zhang and Joshi, 2012 ). In contrast to cases A and B, the stress-

strain curves are nearly the same for cases C and D due to the

identical boundary constraint conditions. For loading case G, plas-

tic deformation was mainly accommodated by basal slip. As shown

in Fig. 4 (a), compared to other types of slip systems, basal slip had
he lowest slip resistance and the hardening rate is also relatively

ow. 

Fig. 4 (b) shows the stress-strain curves of loading cases E and F

here TT dominated at the initial stage. For both cases, it is clear

hat the initial yield stress was low due to the low resistance of TT.

t the initial stage, the stress level in case F was higher than that

f case E due to a difference in constraint boundary conditions.

owever, a noticeably large difference occurred after TT-induced

eorientation. In loading case E, stress increased rapidly after re-

rientation, and the strain-hardening phenomenon was significant

uring the whole loading process. In contrast, for loading case F,

tress value saturated after a rapid increase due to TT-induced re-

rientation. 

Reorientation of single-crystal Mg after macro-plane compres-

ion is depicted via pole figures in Fig. 5 . Here, the critical twin

olume fraction was as assumed to be f cr = 0 . 9 ; thus, orientation

ith relative low intensity represents the parent phase (or initial

rientation) in Fig. 5 . As shown in Fig. 5 (a), the c-axis is rotated
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Fig. 6. Predictions for single-crystal Mg under unidirectional tension: (a) schematic of FE modelling; (b) stress-strain curves; (c) reorientation. 

Fig. 7. Comparison of simulations and experimental data for stress-strain curves of single-crystal Mg at different temperatures for loading cases A (a) and C (b) as illustrated 

in Fig. 2 . 

Table 2 

Parameters of temperature- 

dependence of elastic constants 

based on data ( Olsson, 2015 ) (in 

MPa). 

C 0 
i jkl 

s ijkl t ijkl 

C 1111 63.4 3.577 192.6 

C 1122 25.9 0.661 339.6 

C 1133 21.7 0.857 458.4 

C 3333 66.4 4.282 190.2 

C 2323 18.4 2.125 219.9 

b  
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Fig. 8. Comparison of stress-strain curves predicted with FE simulations and exper- 

imental data for polycrystalline Mg with average grain size of 47 μm. 

p  

c  

t  

v  

s  

h  

l  

t  
y nearly 90 ° through TT-induced reorientation in loading case E,

hus, aligning the c-axis parallel to the loading direction. Conse-

uently, subsequent plastic deformation was primarily governed by

yramidal 〈 c + a 〉 slip and partially by CT, similar to that for load-

ng case A. For loading case F, as shown in Fig. 5 (b), the c-axis

as rotated by about 60 ° under macro-plane compression. There-

ore, prismatic and pyramidal 〈 a 〉 slip dominated plastic deforma-

ion after TT-induced reorientation occurs. In summary, our studies

learly demonstrate different mechanisms involved in TT-induced

eorientation, which resulted in significantly different stress-strain

esponses for loading cases E and F. 

Next, the stress-strain response and microstructural evolution

nder unidirectional tension were studied using T-SCP model for

g crystal, and the predicted results are shown in Fig. 6 . The load-

ng schematic is demonstrated in Fig. 6 (a), with two representa-

ive loading directions considered: tension case 1 ©: loading par-

llel to c-axis, i.e. along < 0 0 01 > and tension case 2 ©: loading
erpendicular to c-axis, i.e. along < 10 ̄1 0 > . Similar to loading

ases E and F in plane compression, TT was initially activated in

ension case 1 ©, followed by a rapid stress increase after the TT

olume fraction reached the critical value (see Fig. 6 (b)). For ten-

ion case 2 ©, prismatic slip dominated during the whole loading

istory; as a result, the corresponding stress-strain curve is simi-

ar to that of cases C and D in plane compression. Again, for the

wo cases under unidirectional tension, the evolution of crystal
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Table 3 

Key slip and twin constitutive equations and related parameters (length in μm, stress in MPa and unavail- 

able parameters with ‘–’). 

Constitutive equations Model parameters 

Slip 

˙ γ α = ˙ γ0 | τα/ τα
c | n sgn ( τα ) (11) ˙ γ0 = 0 . 001 , n = 20 

τα
0 = s α0 exp ( −T / T α ) (19) Basal Prism Pyr < a > Pyr < c + a > 

s α0 0.5 120 120 160 

T α ∞ 180 180 200 

τα
HP (T ) = μ(T ) H αI 

√ 

b α/ d α (20) b α 3.21e-4 3.21e-4 6.12e-4 1.09e-4 

H α0 0.15 0.3 0.3 0.5 

H α1 0.3 0.5 0.5 0.75 

H α2 0.4 0.8 0.8 1.2 

ln ( 
τα

f,α

s α
f 

) = − kT 

ξαμα ( b α ) 
3 ln ( 

˙ ε 0 
˙ ε ) (28a) ξα – 0.13 0.13 0.018 

˙ s α
basal 

= h basal ̇ γ
α (29) h basal = 20 

˙ s α
f 

= h α0 sec h 2 ( 
h α

0 
γ

s αs −s α
0 
) ̇ γ α (30) h α0 – 50 0 0 50 0 0 7500 

s αs – 290 290 570 

Twin 
˙ f β = 

˙ f 0 | 〈 τβ 〉 / τβ
c | m (13) TT CT 

˙ f 0 0.001 0.0 0 01 

m 20 20 

τβ
0 

= s 
β
0 

exp ( −T / T β ) (31) s 
β
0 

3.5 200 

T β ∞ 200 

τβ
HP 

= H β/ 
√ 

d g or H β/ 
√ 

d m f p (32) H β 30 90 

˙ s 
β
TT 

= h 
β
0 

sec h 2 ( 
h 
β
0 
γTT 

s 
β
s −s 

β
0 

) ̇ γ β (37) h 
β
0 

= 100 , s 
β
s = 20 

˙ τβ
f,C T↔ C T 

= H C T↔ C T ( 
N CT ∑ 

β ′ =1 

f β
′ 
) η ˙ γ β (38) η = 0 . 05 

ln ( H C T↔ C T 
H 0 

C T↔ C T 
) = 

kT 

ξCT μCT ( b CT ) 
3 ln ( 

˙ ε 
˙ ε 0 
) (39) H 0 C T↔ C T = 90 0 0 , ξCT = 4 . 0 

Twin-Slip 

τα
f,β

= q T T → ατβ
f,TT 

, β ∈ T T (25) q T T → α = 1 . 0 

τα
f,CT 

= H CT→ sl ( 
N CT ∑ 

β=1 

f 
β
CT 

/ γ tw 
CT ) 

0 . 5 (26) 

ln ( H CT→ sl 

H 0 
CT→ sl 

) = 

kT 

ξCT μCT ( b CT ) 
3 ln ( 

˙ ε 
˙ ε 0 
) (28b) H 0 

CT→ sl 
= 50 

Fig. 9. Temperature effect on Hall-Petch relationship of polycrystalline Mg. 
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microstructure was investigated with pole figures as shown in Fig.

6 (c). It is clear that a 90 ° rotation of c-axis was observed for ten-

sion case 1 ©, while there is no evidence of TT-induced reorienta-

tion in tension case 2 ©. For tension case 1 ©, as prismatic slip also

dominated plastic deformation after reorientation, its stress-strain

curve in the second stage is similar to that of tension case 2 ©. 
.2. Effect of temperature on stress-strain response 

As mentioned above, the dependence of basal slip and TT on

emperature was not significant according to experimental data

 Chapuis and Driver, 2011; Wonsiewicz, 1966 ). Consequently, in

his subsection, only temperature-sensitive slip and CT that are dis-

ussed. 

The effect of temperature on stress-strain curves, correspond-

ng to slip-dominant plastic deformation, was predicted using

he T-SCP model ( Fig. 7 ). The experimental data of Wonsiewicz

1966) was employed to calibrate the related model parameters.

ig. 7 (a) show the stress-strain response at different temperatures

or case A under plane comrpession, which is primarily determined

y pyramidal 〈 c + a 〉 slip. With an increase in temperature, initial

ield stress, hardening rate and saturated flow stress decreased in

oading case A. A similar effect of the temperature increase was

lso observed for loading case C, which was dominated by pris-

atic slip. As indicated in Fig. 4 , the stress-strain repsonse dom-

nated by pyramidal 〈 a 〉 slip (the second stage of loading case

) was nearly the same as that by prismatic slip (loading cases

 and D). Therefore, the model parameters of pyramidal 〈 a 〉 slip

ere assumed to be same as those of prismatic slip in this pa-

er. A similar strategy was also adopted in the work of Zhang

nd Joshi (2012) and Gan et al. (2016) . As shown in Fig. 4 , the

redicted stress-strain curves are consistent with the experimen-

al data, which indicates the present T-SCP model is capable of

apturing the effect of temperature on slip-dominant defomation

echanism. 
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Fig. 10. Number of phases for polycrystalline Mg after unidirectional tension at Room temperature (a) and T = 523 K (b). 

Fig. 11. Relative activation of slip and deformation twinning in unidirectional tension of polycrystalline Mg: (a) room temperature; (b) T = 523 K. 
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The experimental data of Chapuis and Driver (2011) was em-

loyed to calibrate the model parameters related to the tempera-

ure dependence of CT. As there was no systematic experimental

ata in the form of stress-strain curves, calibration of the model

arameters was based on the resistance to CT at different temper-

tures reported by Chapuis and Driver (2011) , which was not illus-

rated in this paper. 

Finally, the model parameters in the T-SCP theory were cal-

brated for a Mg crystal according to the experimental data

t room and higher temperatures. As basal slip and TT were

onsidered to be temperature independent, there were no

emperature-dependent parameters involved for basal slip and TT.

he parameters related to the temperature dependence of elastic

onstants are listed Table 2 , and the key constitutive equations and

odel parameters related to slip and twin modes in the T-SCP the-

ry are summarized in Table 3 . 

. Simulation of polycrystalline Mg and discussions 

In this section, the model parameters calibrated with the exper-

mental data for the single-crystal cases were employed to predict

he effective mechanical properties and evolution of microstructure

or polycrystalline Mg at meso-scale. An emphasis was placed on

he effect of temperature on stress-strain response, the Hall–Petch

elationship, relative activity of slip and twin modes, and texture

volution. 

.1. Effect of temperature on overall mechanical properties 

The stress-strain curves of polycrystalline Mg at different tem-

eratures were predicted by combining the T-SCP theory with the

VE FE model. The simulation results, corresponding to the grain

ize of 47 μm, are presented in Fig. 8 . Similar to the phenomena
bserved for single-crystal Mg, both the yield stress and the hard-

ning rate decreased with the increase of temperature for polycrys-

alline Mg at meso-scale. For example, significant work-hardening

as observed with increasing strain at room temperature, while

his can be neglected at 523 K. Here, the experimental data re-

orted by Ono et al. (2004) was used for comparisons as shown

n Fig. 8 . It is obvious that the present T-SCP model captures the

ependence of stress-strain response on temperature for polycrys-

alline Mg adequately. 

Furthermore, the yield stress of polycrystalline Mg was obtained

y using the off-set method of 0.2% strain based on the predicted

tress-strain curves, which is partially shown in Fig. 8 . Next, the

ffect of varying the average grain size d from ∼10 μm to ∼100 μm

as studied. This allowed us to investigate the relationship be-

ween the yield stress and the average grain size (i.e. Hall-Petch

elationship), and, in particular, the effect of tem perature on the

all-Petch relationship. As shown in Fig. 9 , the variations of yield

tress with the average grain size were demonstrated for various

emperatures. Five different grain sizes, i.e. 35 μm, 47 μm, 70 μm,

0 0 μm and 20 0 μm, were considered in FE simulations, and the

orresponding results are illustrated by empty markers in Fig. 9 .

 best-fit curve at each temperature shows the linear relation be-

ween the yield stress and the inverse square-root of the grain size.

ith an increase in temperature the slope of the correlation is

bserved to reduce. Consequently, the Hall-Petch relationship be-

omes less significant with the growing temperature. As before, the

elated experimental data ( Ono et al., 2004 ) were used for compar-

son with the simulation results, showing a good agreement be-

ween the prediction and experimental data at each temperature. 

.2. Effect of temperature on evolution of twining and texture 

In addition to the overall mechanical properties, it was also in-

eresting to study the effect of temperature on the underlying de-
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Fig. 12. Texture evolution of polycrystalline Mg under unidirectional tension: (a) room temperature; (b) T = 523 K. 
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C  
ormation mechanisms of polycrystalline Mg, which determine tex-

ure evolution. 

First, the FE model was employed to investigate the activation

f child phases during unidirectional tension for polycrystalline

g. Fig. 10 show the number of activated phases at room tem-

erature and T = 523 K under imposed macroscopic tensile strain of

0%. In Fig. 10 , no child phases being activated is depicted by num-

er of phases equal to 1, which implies that only the parent phase

as active. Consequently, the number of phases indicated by 7 im-

lies six activated child phases. As shown in Fig. 10 , the number

f activated child phases varies spatially inside different grains as

he results of different initial orientations. However, the activation

f child phases significantly depends on temperature: child phases

ere clearly observed in most grains at room temperature but ex-

sted only in a few grains at 523 K. Consequently, it was concluded

hat activation of child phases became less significant as tempera-

ure increased. 

Based on the FE simulation, the relative activity of each slip and

win system was calculated during the entire loading history in or-

er to better understand the contribution of slip and deformation

winning to macroscopic-plastic deformation. For the slip and twin

odes, the relative activity in an activated phase was defined as:

 

α = 

∑ 

α′ ∈ α ˙ γ α′ 
∑ N sl 

α′ =1 
˙ γ α′ + ∑ N tw 

β′ =1 
˙ γ β′ ( slip mode ) 

 

β = 

∑ 

β′ ∈ β ˙ γ β′ 
∑ N sl 

α′ =1 
˙ γ α′ + ∑ N tw 

β′ =1 
˙ γ β′ ( twin mode ) 

, (40) 

here r α and r β represent the relative activity of a slip mode and

win mode, respectively. To obtain the relative activity of a slip or

win mode in the studied sample of polycrystalline Mg, a volume

raction averages of r α or r β were calculated over all phases of all

rains in the RVE FE model presented in Section 3 . 

Evaluation of the relative activity of different slip and twin

odes in polycrystalline Mg at room temperature and T = 523 K

ith strain is shown in Fig. 11 . Here, zero indicates that the par-

icular slip or twin mode was not activated, while the value of one

epresents that the specific slip or twin mode is the sole contribu-

or to plastic deformation of the component. At room temperature,

t was found that the plastic deformation of polycrystalline Mg was

redominately accommodated by basal slip due to its low slip re-

istance, with other slip and twin modes contributing considerably

ess. Especially, the contribution from pyramidal 〈 c + a 〉 could be

eglected. The prismatic and pyramidal 〈 a 〉 had nearly equal con-

ribution, which may be due to the same model parameters being

sed for the two slip systems in this paper. Compared with the

lip modes, the twin modes had less contributions to plastic de-

ormation of polycrystalline Mg; however, the relative activity of

T was significant, comparable with those of prismatic and pyra-

idal slips. As a result, a large number of child phases are ob-

erved in Fig. 10 (a). During the loading history, the relative activ-

ty of basal slip and TT decreased with tensile strain while other

odes exhibited an increasing tendency. The relative activity of TT

as much higher than that of CT, though the curves began con-

erging at higher strains. This indicates that the activation of child

hases was mainly governed by TT, which explains the high num-

er of activated child phases in Fig 10 (a). The relative activity of

lip and twin modes at 523 K is shown in Fig. 11 (b). Here, basal slip

layed the secondary role in the plastic deformation, while pyra-

idal 〈 a 〉 slip became the dominant one, which is consistent with

he experimental results of Ono et al. (2004) . That is because basal

lip is temperature-independent but slip resistance of the pyrami-

al 〈 a 〉 mode decreased significantly with increasing temperature

see Fig. 7 ). Pyramidal 〈 c + a 〉 slip also contributes substantially at

igh temperature when compared to room temperature due to a

imilar reason. It is interesting to note that there was no significant
hange of the relative activity of prismatic slip with the tempera-

ure increase. Since TT is temperature independent, it was difficult

o activate at higher temperatures, leading to fewer child phases

bserved in Fig. 10 (b). This conclusion is in qualitative agreement

ith that drawn from the experimental results of Figueiredo et al.

2016) . 

To better understand the effect of temperature on the mi-

rostructural evolution in polycrystalline Mg, pole figure were used

o represent texture evolution at different tem peratures in unidi-

ectional tension. The related results are shown in Fig. 12 (a) and

b) for room temperature and T = 523 K, respectively. The initial ori-

ntations of grains in the simulations were fully random. As a great

umber of child phases were induced with accumulation of the TT

olume fraction at room temperature (see Fig. 10 (a) and Fig. 11 (a)),

 significant difference was observed between deformed and initial

extures as shown in Fig. 12 (a). More grains were found to orient

erpendicular to the loading direction (i.e. X axis) in the deformed

exture. This may be explained with observations from the unidi-

ectional tension studies of single-crystal Mg (results discussed in

ig. 6 ), which indicate that tension along the c-axis resulted in 90 ̊

otation of Mg crystal. Consequently, in polycrystalline Mg, grains

ith c-axis oriented nearly parallel to the loading direction ex-

erienced a similar reorientation during unidirectional tension as

ell. However, the TT-induced reorientation became less signifi-

ant with the increase of temperature as TT activation was re-

tricted at higher temperature. As a result, the deformed texture

as relatively close to initial texture at T = 523 K as shown in Fig.

2 (b). 

. Concluding remarks 

A temperature-dependent crystal plasticity (T-SCP) model was

roposed and implemented to investigate the dependence of me-

hanical response and texture of Mg on temperature. Different

emperature-dependent deformation modes, i.e. crystalline slip and

winning were incorporated into the constitutive model. With the

evelopment of this T-SCP model, a bottom-up modelling approach

as proposed to study deformation mechanisms in Mg from sin-

le crystals to a polycrystalline aggregate at meso-scale. Herein,

he relevant model parameters were calibrated by comparing the

imulation results against experimental data for single-crystal Mg;

he calibrated parameters were subsequently used to predict the

ffects of tem perature on both mechanical response and texture

volution of polycrystalline Mg by employing a suitable RVE model.

The study indicates that different deformation modes exhibit

 distinct dependence on temperature. A physically relevant un-

erstanding of polycrystalline deformation can be gleaned from

he bottom-up modelling approach. It was found that in polycrys-

alline Mg at meso-scale, non-basal slip plays a significant role

n its plastic deformation, with less twin/child phases at higher

emperatures, which is an experimentally verifiable fact. Inter-

stingly, the modelling approach was capable to capture accu-

ately the temperature-dependent Hall-Petch effect. According to

he present studies, ductility of Mg indeed improves at higher tem-

erature due to an increase in plasticity from non-basal slip. Us-

ng this approach, a representative study on the material forma-

ility may be conducted as a function of initial component texture.

he proposed T-SCP model is capable of fundamental investigations

n temperature-dependent behaviour and intelligent material de-

ign for Mg alloys and other HCP metals by employing a similar

ottom-up approach as outlined in this paper. 
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