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Energy-efficiency versus Delay Tradeoff in Wireless
Networks Virtualization

Qiong Shi, Liqiang Zhao, Member, IEEE, Yaoyuan Zhang, Gan Zheng, Senior Member, IEEE,
F. Richard Yu, Senior Member, IEEE, and Hsiao-Hwa Chen Fellow, IEEE

Abstract—This paper studies the issues on wireless networks
virtualization in terms of two important performance metrics, i.e.,
energy efficiency (EE) and delay. Different from existing works
on physical layer, we aim to achieve a good tradeoff between EE
and delay in wireless networks virtualization using cross-layer
stochastic optimization approach. In particular, we formulate a
cross-layer problem using fractional programming and Lyapunov
optimization method. The EE and delay tradeoff solution is given
explicitly by deriving their analytical bounds that are verified by
simulation results.

Index Terms—Wireless network virtualization; Energy efficien-
cy; Delay

I. INTRODUCTION

To support rapidly growing high-speed data traffic with
satisfactory user experience and to reduce the cost and global
carbon dioxide emission, EE has become one of the major
design goals in 5G systems [1]. Delay is another critical
performance indicator and is related directly to system relia-
bility. [2]. The EE-delay tradeoff was observed by simulations
in orthogonal frequency division multiple access (OFDMA)
systems and multiple-input-multiple-output (MIMO) systems
[3]. A QoS model for wireless networks virtualization (WNV)
was developed in [5]. The optimal resource allocation was
studied for WNV in [6]. To the best of our knowledge, the EE
and EE-delay tradeoff in WNV have not been well investigated
in the literature, which is the focus of this work.

In this paper, first we will formulate an EE-delay tradeoff
problem in WNV, in which data arrive randomly at base
stations (BSs) in a physical substrate network and are queued
for transmission. We model our problem as a stochastic
optimization to maximize EE while guarantee finite virtual
user queue length. In traditional wireless networks, data arrive
and are dealt with independently, and the performance has
been studied in various network models with a finite queue
length [14]–[16]. In our model, virtual BSs cooperate to
provide service to the users through the WVN. Actual queues
are therefore transformed into several virtual user queues
according to user customized requirements. Our virtual user
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queue representation is a result of network virtualization,
which has not been studied in the literature, and existing
methods cannot be applied to solve this problem directly.

II. SYSTEM MODEL

Let us consider a one-hop wireless communication network
consisting of K users and M cells (each cell has one physical
BS). N virtual cells (or N virtual BSs) can be formed through
abstracting, slicing, isolating, and sharing wireless network
infrastructure as well as radio spectrum resources belonging
to the M cells, similar to the scenarios as shown in Fig. 4 of
[1].

Assume that the system is time slotted and slot t is normal-
ized to an integer unit described as a time interval [t, t + 1),
where t ∈ {0, 1, 2, . . . }. Data arrive randomly in every slot
at each BS and queue for being served. After virtualization,
actual queuing process in BSs can be transformed into N
virtual queues, whose data are sent logically by a WNV.
Furthermore, these queues can be coalesced into K virtual
user queues to serve K users respectively, as depicted in
Fig. 1. Let vectors A(t) = {A1(t), A2(t), . . . , AK(t)} and
Q(t) = {Q1(t), Q2(t), . . . , QK(t)} denote the processes of
random data arrivals and the current queue lengths in K virtual
user queues at slot t, respectively, where A(t) is independent
and identically distributed (i.i.d.) over time and its arrival rate
is λ.

The channel conditions between virtual BS n and user k
are described by Sn,k(t), which is i.i.d. over time. Sn,k(t)
remains unchanged in a slot, and may change from slot to
slot. Similarly, Pn,k(t) represents transmit power from virtual
BS n to user k. Furthermore, if a continuous rate is adopted
and ϱ2 is the noise power, the transmit power of a virtual
BS n and achievable rate of user k from the WNV1 can be
expressed as

Pn(t) =

K∑
k=1

Pn,k(t) + P cn, (1)

Rk
[
P (t), S(t)

]
=

N∑
n=1

log2

[
1 +

Pn,k(t)Sn,k(t)

ϱ2

]
, (2)

respectively, where S(t) and P (t) are metrics of channel
conditions and power allocation, respectively, which can be
expressed as P (t) = (Pn,k(t)) and S(t) = (Sn,k(t)). P cn
denotes the power consumption of the circuits.

1Since the virtual BSs slices are generated from virtualization and isolated
from each other, we do not consider the interference among them.
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Fig. 1. The actual queueing process and virtual queue representations.

Meanwhile, we can have the time-average expectation of
Rk as

Rk(P, S) = lim
t→∞

1

t

t−1∑
τ=0

E
{
Rk

[
P (τ), S(τ)

]}
, (3)

where P and S are defined as P = {P (0), P (1), . . . } and
S = {S(0), S(1), . . . }, respectively. Based on (2) and (2), the
power consumption and transmit rate of the WNV are given
by

Pwvn(t) = Pwvn
[
P (t)

]
=

∑N
n=1 Pn(t), (4)

Rwvn(t) = Rwvn
[
P (t), S(t)

]
=

∑K
k=1Rk

[
P (t), S(t)

]
.(5)

Similar to (3), the time averages of Pwvn and Rwvn can be
defined as

Pwvn(P ) = limt→∞
1
t

∑t−1
τ=0E

[
Pwvn(τ)

]
, (6)

Rwvn(P, S) = limt→∞
1
t

∑t−1
τ=0E

{
Rwvn

[
P (τ), S(τ)

]}
,(7)

respectively, and E[·] denotes the expectation. Then, we can
define the long-term EE as

UEE =
Rwvn(P, S)

Pwvn(P )
. (8)

Next, we derive the delay metric. Based on Fig. ??, we can
model the queuing process as

Qk(t+ 1) = max
[
Qk(t)−Rk(t), 0

]
+Ak(t), ∀k. (9)

Note that users can be served according to their customized
requirements through virtualization networks, such as delay-
tolerant and delay-sensitive services, which lead to different
QoS requirements among users. Therefore, we define a pa-
rameter Dk(t), called equivalent queue length, to measure the
queue lengths in a network, which is defined as

Dk(t) =
Qk(t)

γk
, (10)

where γk is the equivalent queue factor that is set according
to users’ diverse QoS requirements.

In this paper, we focus on the problem of EE-delay tradeoff
in a steady-state network. A network is steady if all discrete
time processes Qk(t) are mean rate stable, that is, satisfying
the following condition [7]

lim
t→∞

E
{
|Qk(t)|

}
t

= 0. (11)

III. PROBLEM FORMULATION AND SOLUTION

In this section, we investigate the EE-delay tradeoff in WVN
by solving the EE maximization problem with the constraints
on user rate requests Ravk and delay limit β. Mathematically,
the problem can be formulated as

max
P

UEE =
Rwvn(P, S)

Pwvn(P )
,

s.t. C1 : Rk ≥ Ravk , ∀k,
C2 : Dk(t) ≤ β, ∀k, t,
C3 : Pn,k(t) ≥ 0, ∀n, t,

C4 : Pwvn(t) ≤
M∑
m=1

Pmaxm , ∀m, t.

(12)

It can be seen that C1 is to satisfy the average rate Ravk
requested by each user. C2 guarantees the stability of queues
and ensures that the equivalent queue length is below a
threshold β, which can be set according to user requirements.
Moreover, C2 also gives the delay constraint by Little’s
Theorem. C3 gives a non-negative power constraint, and C4
limits the maximum power of the WNV when the maximum
transmit power of physical BS m is Pmaxm .

Due to the nonlinear fraction in the objective function, we
cannot solve the problem (12) directly. For simplicity, let
XEE = 1

UEE
. It is easy to see that maxP UEE is equivalent to

minP XEE . Moreover, define a feasible set of (12) as ψ, and
let P opt be the optimal power allocation. Then, the optimal
solution to achieve both UoptEE and Xopt

EE becomes

Xopt
EE =

1

UoptEE

=
Pwvn(P

opt)

Rwvn(P opt, S)
= min
P∈Θ

Pwvn(P )

Rwvn(P, S)
. (13)

According to the generalized fractional programming theory
[8], the optimal UoptEE can be achieved if and only if

min
P∈ψ

Pwvn(P )−Xopt
EERwvn(P, S),

= Pwvn(P
opt)−Xopt

EERwvn(P
opt, S) = 0.

(14)

The original problem (12) is then transformed to the fol-
lowing equivalent problem:

min Pwvn(P )−Xopt
EERwvn(P, S),

s.t. C1− C4.
(15)

The existence of time average expectations and C2 in prob-
lem (15) determines that Dinkelbachs algorithm developed in
[8] can not be used. Thus, In order to develop an effective
algorithm based on classical drift-plus-penalty algorithm, we
introduce XEE(t), where XEE(0) = 0 and t ∈ {1, 2, . . . },
depending on the past power allocation, or

XEE(t) =

∑t−1
τ=0 Pwvn[P (τ)]∑t−1

τ=0Rwvn[P (τ), S(τ)]
. (16)

The optimal solution of the original problem (12) can be
obtained by replacing Xopt

EE by XEE(t) in (15) and minimizing
the following problem sequentially in each time slot, or

min Pwvn(P )−XEE(t)Rwvn(P, S),

s.t. C1− C4.
(17)
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Next, we show how to simplify C1 and C2. Based on the
general Lyapunov theory [7], C1 in (12) can be transformed
into a queue stable problem by introducing virtual rate queues
Gk(t) (∀k, t), where Gk(0) = 0 and

Gk(t+ 1) = max
[
Gk(t) +Ravk −Rk(t), 0

]
. (18)

Combining (9) and (10), we can see that constraint C2 can
be written equivalently as the following constraint C̃2:

Qk(t+ 1) =

{
max

[
Qk(t)−Rk(t), 0

]
, if Dk(t) > β,

max
[
Qk(t)−Rk(t), 0

]
+Ak(t), e.w. (19)

Accordingly, (17) can be further recast equivalently to

min Pwvn(P )−XEE(t)Rwvn(P, S), (20)
s.t. C̃2, C3, C4,

C1 : Gk(t) is mean rate stable, ∀k.

To tackle C1 and C2, let Θ(t) = [Q(t), G(t)] be a combined
vector to represent queuing states of all queues, where Q(t)
is a vector of virtual user queues in the network and G(t) is
virtual rate queues. Then, the Lyapunov function L[Θ(t)]2 and
conditional Lyapunov drift △[Θ(t)] can be defined as

L(Θ(t)) = 1
2

∑K
k=1Qk(t)

2 + 1
2

∑K
k=1Gk(t)

2, (21)
△[Θ(t)] = E

{
L
[
Θ(t+ 1)

]
− L

[
Θ(t)

]
| Θ(t)

}
. (22)

According to Lyapunov optimization theory [7], the solution
of the above problem (20) can be obtained by minimizing the
upper bound of the drift-plus-penalty expression F (t) slot by
slot as follows

F (t) = △
[
Θ(t)

]
− V E

[
Pwvn(t)−XEE(t)Rwvn(t)

]
, (23)

where V ≥ 0 is used for controlling the tradeoff between the
EE and delay, which will be explained later.

The bound of F (t) can be determined in (24) using Lya-
punov optimization theory [10], or

F (t) ≤ B +
K∑
k=1

ξ
[
Dk(t)− β

]
Qk(t)E

[
Ak(t)|Θ(t)

]
−

K∑
k=1

Qk(t)E
[
Rk(t)|Θ(t)

]
+

K∑
k=1

Gk(t)E
[
Ravk

−Rk(t)|Θ(t)
]
+ V E

[
Pwvn(t)−XEE(t)Rwvn(t)|Θ(t)

]
,

(24)

where B>0 is a constant and satisfies the following condition:

B ≥ 1

2

K∑
k=1

E
{
ξ[Dk(t)− β]Ak(t)

2 +Rk(t)
2|Θ(t)

}
+

1

2

K∑
k=1

{[
Ravk −Rk(t)

]2|Θ(t)
}
,

(25)

where ξ is a function of Dk(t)−β and satisfies the following
condition: Dk(t) − β ≤ 0, ξ[Dk(t) − β] = 1; otherwise,
ξ[Dk(t)−β] = 0, which satisfies C̃2 in (19). Thus, the optimal

2Note that other Lyapunov functions could also be used as in [9], and they
may lead to a different performance, but this is out of the scope of this paper.

power allocation in slot t can be found by minimizing the
right-hand-side of (24), i.e., solving the problem (26) below:

min
K∑
k=1

{
Gk(t)

[
Ravk −Rk(t)

]
−Qk(t)

[
Rk(t)

]
+ ξ

[
Dk(t)− β

]
Qk(t)Ak(t)

}
+ V

[ N∑
n=1

Pn(t)−XEE(t)

K∑
k=1

Rk(t)
]
,

s.t. C3 : Pn,k(t) ≥ 0, ∀n, t,

C4 : Pwvn(t) ≤
M∑
m=1

Pmaxm , ∀m, t.

(26)

It is easy to see that (26) is a convex problem and its
optimal solution follows a standard water-filling structure
[10]. Thus, the complexity of solving it is O(W 2) [11],
where W = max(N,K). The overall algorithm to solve
(12) is summarized in Algorithm 1 and the complexity is
O(TW 2). The overall algorithm to solve (12) is summarized
in Algorithm 1 and the complexity is O(TW 2).

Algorithm 1 Dynamic power allocation algorithm to solve
(12).

1: Initialization: Qk(0)=0, Gk(0)=0, and XEE(0)=0, ∀m.
2: Repeat:
3: Update equivalent queue length Dk(t) according to (10).
4: Update power allocate P (t) = [Pn,k(t)] as the optimal solution

to problem (26).
5: t = t+ 1.
6: Update actual queue length Qk(t) according to (19).
7: Update virtual queue length Gk(t) according to (18).
8: Update XEE(t) according to (16).
9: Stop when t = T , where T is the total number of time slots.

It is worth mentioning that the proposed algorithm does
not necessarily converge to a global solution of the original
problem, but only narrows down the gap between the upper
bound solution and the optimal solution of the original prob-
lem. However, instead of solving the original problem, our
main purpose is to analyze the performance of network and
derive the theoretical bounds for both EE and delay.

IV. ENERGY EFFICIENCY AND DELAY TRADEOFF

In this section, we will give the analysis on the tradeoff
between the EE and delay. Assume that the problem (20) is
feasible and E{L[Θ(0)]} is bounded. If λ and λ + ε for a
positive ε do not exceed network capacity of the WNV, we
have the following properties for (26).

Theorem 1: The EE in (12) is bounded by

UoptEE

1 +
BUopt

EE/Rmin

V

≤ UEE ≤ UoptEE , (27)

where Rmin is a finite constant to bound Rwvn.
Proof: As shown in [7], [12], P ∗

wvn(t), R
∗
wvn(t), and

R∗
k(t) are the values acquired by an arbitrary power allocation
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policy P ∗(t) in slot t, and they satisfy the following conditions
for any δ > 0, or

E
[
P ∗
wvn(t)|Θ(t)

]
= E

[
P ∗
wvn(t)

]
(28)

≤ E
[
R∗
wvn(t)

]
(Xopt

EE + δ),

E
[
R∗
wvn(t)|Θ(t)

]
= E

[
R∗
wvn(t)

]
, (29)

E
[
R∗
k(t)|Θ(t)

]
= E

[
R∗
k(t)

]
≥ λk + ε, (30)

E
[
Ravk −R∗

k(t)|Θ(t)] = E
[
Ravk −R∗

k(t)
]
≤ δ. (31)

Substituting (29)-(31) into the right-hand side of (24) and
letting δ → 0, we have the following inequality:

△
[
Θ(t)

]
+ V E

[
Pwvn(t)−XEE(t)Rwvn(t)|Θt

]
≤ B +

K∑
k=1

{
ξ
[
Dk(t)− β

]
− 1

}
Qk(t)λk − ε

K∑
k=1

Qk(t)

+ V Xopt
EE(t)E

[
R∗
wvn(t)

]
− V XEE(t)E

[
R∗
wvn(t)

]
,

(32)

where δ and ε are two constants. Taking expectation while
using telescoping sum over t ∈ {0, 1, . . . , H − 1} for (32),
where H is the number of the time slots, and considering the
fact that Qk(t) ≥ 0, we have

E
{
L
[
Θ(H)

]}
− E

{
L
[
Θ(0)

]}
+ V

{H−1∑
t=0

E
[
Pwvn(t)

]
−
H−1∑
t=0

E
[
XEE(t)Pwvn(t)

]}
≤ HB +HVXopt

EEE
[
R∗
wvn(t)

]
− V E

(
R∗
wvn

)H−1∑
t=0

E
[
XEE(t)

]
.

(33)

Dividing both sides of (33) by VH and making a rearrang-
ment, we get

E
{
L
[
Θ(0)

]}
V H

+
1

H

H−1∑
t=0

E
[
Pwvn(t)

]
− 1

H

H−1∑
t=0

E
[
XEE(t)

×Rwvn(t)
]
≤ B

V
− E

[
R∗
wvn(t)

] 1
H

H−1∑
t=0

E
[
XEE(t)

]
+Xopt

EEE
[
R∗
wvn(t)

]
.

(34)

Let H → ∞. The bounds become

Rmin ≤ E
{
Rwvn

[
P (t), S(t)

]}
≤ Rmax, (35)

where Rmax is a finite constant. Then, we have

XEE ≤ Xopt
EE +

B

V E
[
R∗
wvn(t)

] ≤ Xopt
EE +

B

V Rmin
. (36)

Due to the fact that we have UoptEE = 1
Xopt

EE

, the bounds of
EE in (27) are proved.

Next, let us study the bounds on the average queue length
and the results are summarized in the following theorem.

Theorem 2: The average queue length is bounded by

Q = lim
H→∞

1

H

H−1∑
t=0

{ K∑
k=1

E
[
Qk(t)

]}
≤ min

[B + V (Rmax/U
opt
EE + Pmax)

ε
,
K∑
k=1

γkβ
]
,

(37)

where Pmax is a finite constant to bound Pwvn.

Proof: When Dk(t) ≤ β, divide both sides of the
inequality (32) by εH , and take H → ∞. (32) can be further
written as

Q = lim
H→∞

1

H

H−1∑
t=0

{ K∑
k=1

E
[
Qk(t)

]}
≤
B + V Xopt

EEE
[
R∗
wvn(t)

]
ε

+
V

ε
lim
H→∞

1

H

H−1∑
t=0

E
[
XEE(t)Rwvn(t)

]
,

(38)

where Pwvn is assumed to be bounded by constants Pmin and
Pmax as

Pmin ≤ E
{
Pwvn

[
P (t), S(t)

]}
≤ Pmax, (39)

limH→∞
1
H

∑H−1
t=0 E

[
XEE(t)Rwvn(t)

]
≤ Pmax, (40)

E
[
R∗
wvn(t)

]
≤ Rmax. (41)
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Furthermore, we can easily get the following result when
Dk(t) ≥ β, or

Q =
K∑
k=1

γkβ. (42)

Combining both (41) and (42) completes the proof.

Remarks on EE-delay tradeoff: The bounds in (27) show
that UEE increases with V and approaches to UoptEE as V →
∞. (37) indicates that the time average queue backlog bound
increases linearly with V within the limit of β, which can
also reveal the relationship between delay and V by Little’s
Theorem [13]. Furthermore, from these two theorems we can
see that a higher EE can be achieved at the cost of a longer
delay, and there is clearly a tradeoff between the EE and delay.

V. SIMULATION RESULTS AND DISCUSSIONS

Let us consider a scenario with six virtual BSs and six
terminals accessing BSs randomly with different parameters.
We set PC = [PC1 , P

C
2 , P

C
3 , P

C
4 , P

C
5 , P

C
6 ]=[0.2, 0.3, 0.2,

0.4, 0.3, 0.2] Watt for virtual BS’s 1∼ 6 and Rav =
[Rav1 , Rav2 , Rav3 , Rav4 , Rav5 , Rav6 ]=[2,3,1,4,2,1] bits/slot/Hz for
terminals 1∼6. Moreover, we set Pmax=20 W as the maximum
total power that all virtual BSs can reach. In addition, it is
assumed that the wireless channel gain S(t) obeys a uniform
distribution from 5 to 14 with an expression of S(t)/ϱ2 ∼
U(5, 14). We use 10,000 slots to approximate t→ ∞.

Fig. 2 illustrates the impact of data arrival rate λ on average
delay with the setting of β = 50 and V varying from 10 to
90. When λ is less than seven, the average delay increases
exponentially with respect to λ. When λ ≥ 7, the average
delay tends to be ssturated because the network queueing
length goes beyond the limit of equivalent queue length,
and new arriving data will be refused to enter the system.
Therefore, queue lengths will converge; so will the delay. In
addition, it is easy to see that the increase of V has a negative
impact on the average delay.

Fig. 3 shows the EE of the system versus the control
parameter V with different settings of λ. The first two curves
exhibit almost the same trend because of the same total
network average data arrival rate λ = 12, and their EE’s

are higher than the others, which reveals that the EE of a
WVN is not affected by the differences in user requirements,
and related only to the total traffic amount of network, that
is, the WVN can achieve a traffic balance between different
virtual BSs due to its global dynamical resource allocation.
Furthermore, λ has a negative impact on UEE .

Fig. 4 shows the average delay of the system versus EE
with different settings of λ. The increase of EE will lead to a
moderate increase of the average delay when the data arrival
rate is low; while a substantial delay is observed with a high
data arrival rate. Moreover, the increase of λ exerts a negative
effect on the average delay as well as EE.

VI. CONCLUSION

In this paper, we investigated an EE-delay tradeoff problem
in wireless networks virtualization. We formulated the problem
as a stochastic optimization problem to maximize its EE with
an average delay constraint. We solved this problem using
Lyapunov optimization and fractional programming methods,
and derived the theoretical bounds for both EE and delay.
Specifically, we demonstrated that a performance tradeoff can
be achieved through adjusting the corresponding parameters
properly.
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