1 **ABSTRACT:**

2	Background: Greater Trochanteric Pain Syndrome (GTPS) is a common cause of
3	lateral hip pain, most commonly affecting female patients aged 40-60, and which can
4	have a significant impact on patients' quality of life. Extra-corporeal shockwave
5	therapy (ESWT) alongside a structured rehabilitation programme has been shown in
6	previous research studies to have a significant improvement in patient's levels of pain,
7	although it is unclear if this then leads to improved level of global functioning or
8	activity. This case series examines the change in a range of patient reported outcome
9	measures (PROMs) following shockwave therapy as well as the frequency of self-
10	reported side-effects.
11	
12	Methods: Patients undergoing extra-corporeal shockwave therapy for Greater
12 13	Methods: Patients undergoing extra-corporeal shockwave therapy for Greater Trochanteric Pain Syndrome were identified from case logs from a single NHS clinic.
12 13 14	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baseline
12 13 14 15	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baselineand at subsequent follow-up appointments. These include measures of pain, and
12 13 14 15 16	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baselineand at subsequent follow-up appointments. These include measures of pain, andmeasures of local hip functioning (Oxford Hip Score - OHS, Non-Arthritic Hip Score)
12 13 14 15 16 17	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baselineand at subsequent follow-up appointments. These include measures of pain, andmeasures of local hip functioning (Oxford Hip Score - OHS, Non-Arthritic Hip Score)- NAHS), global functioning (EQ-5D-5L), sleep quality (Pittsburgh Sleep Quality)
12 13 14 15 16 17 18	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baselineand at subsequent follow-up appointments. These include measures of pain, andmeasures of local hip functioning (Oxford Hip Score - OHS, Non-Arthritic Hip Score- NAHS), global functioning (EQ-5D-5L), sleep quality (Pittsburgh Sleep QualityIndex - PSQI), anxiety and depressive symptoms (Hospital Anxiety & Depression)
12 13 14 15 16 17 18 19	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baselineand at subsequent follow-up appointments. These include measures of pain, andmeasures of local hip functioning (Oxford Hip Score - OHS, Non-Arthritic Hip Score· NAHS), global functioning (EQ-5D-5L), sleep quality (Pittsburgh Sleep QualityIndex - PSQI), anxiety and depressive symptoms (Hospital Anxiety & DepressionScale - HADS), and activity levels (International Physical Activity Questionnaire -
12 13 14 15 16 17 18 19 20	Methods: Patients undergoing extra-corporeal shockwave therapy for GreaterTrochanteric Pain Syndrome were identified from case logs from a single NHS clinic.Patients completed a range of validated patient-rated outcome measures at baselineand at subsequent follow-up appointments. These include measures of pain, andmeasures of local hip functioning (Oxford Hip Score - OHS, Non-Arthritic Hip Score)NAHS), global functioning (EQ-5D-5L), sleep quality (Pittsburgh Sleep Quality)Index - PSQI), anxiety and depressive symptoms (Hospital Anxiety & Depression)Scale - HADS), and activity levels (International Physical Activity Questionnaire -IPAQ.)

Results: 45 patients who completed ESWT for greater trochanteric pain syndrome
were identified; with a median follow-up duration of 189 days. Side-effect incidence
was low, with <10% reporting bruising, and no patients withdrew due to side-effects.

25	"Average" and "worst" self-reported pain values improved significantly from baseline
26	at all time-periods studied; $6.3/10$ and $8.2/10$ to $3.8/10$ and $5.4/10$ at three-months
27	respectively, correlating to an improvement of about a third. At three months 63% of
28	patients were either satisfied or very satisfied, and 70% would recommend the
29	procedure, these figures increased at six-months. Sleep quality, measures of local hip
30	functioning, and depressive symptoms all improved consistently across different time-
31	points, however activity levels and global health markers showed less evidence of
32	improvement.
33	
34	Conclusions: Extra-Corporeal Shockwave Therapy is known to be effective in
35	patients with Greater Trochanteric Pain alongside a structured rehabilitation
36	programme, and this case series is in keeping with the available evidence. This series
37	demonstrates benefits across different areas of functioning. However, in this series
38	physical activity levels did not increase even though pain decreases. As staying active
39	has numerous health benefits further targeted intervention to address this alongside
40	the reduction of pain may be required for optimal health outcomes.

42

43 Background

44	Greater Trochanteric Pain Syndrome (GTPS) is a common cause of lateral hip pain,
45	with a incidence of 1.8/1000 patients per year in primary care,[1] and accounts for
46	20% of referrals to some orthopaedic spinal centres.[2] GTPS is commoner in women
47	than men, and most commonly affects women in their 4 th and 5 th decade.[3, 4] Greater
48	trochanteric pain is known to be commoner in patients with pre-existing low back
49	pain, osteoarthritis of the knee (of either leg), and iliotibial band (ITB) pain, but
50	conflicting evidence exists as to whether it is commoner in overweight or obese
51	patients.[4, 5]

52

53 Greater trochanteric pain syndrome (GTPS) has held a range of alternative names 54 over the last few decades, indicating the on-going confusion as to the pathological 55 processes involved. These alternative terminologies have focussed on different 56 anatomical structures (trochanteric bursitis, or gluteus medius tendinosis), or are 57 region based (lateral hip pain, greater trochanteric pain.) Different structures have 58 been postulated to be involved, with attention moving away from the bursae 59 themselves, which had been the original focus, and more towards the tendons of the 60 abductors and external rotators, especially gluteus medius. [4, 6, 7] This varied 61 nomenclature can cause confusion to patients and clinicians alike, and for the 62 purposes of this article the phrase "greater trochanteric pain" will be used, although 63 the criticisms and limitations of this terminology are accepted. 64

65	Regardless of the terms used, this condition describes an area of reproducible pain
66	over the area of the greater trochanter, which can spread to the buttock, or upper
67	lateral thigh with occasional spread further down the leg, and which can mimic other
68	conditions including nerve root impingement, spinal problems or hip joint
69	pathologies.[2, 4] Examination typically reveals maximal tenderness in the
70	posterolateral area of the greater trochanter, however the majority of clinical tests
71	have been found to have limited sensitivity for greater trochanteric pain and are
72	poorly able to differentiate this from other causes of lateral hip pain.[8] Identifying
73	those patients with lateral hip pain who do not have particular problems putting on
74	shoes & socks (which may help to differentiate between GTPS and osteoarthritis of
75	the hip), or those whose lateral hip pain is reproduced by the FABERs test, are
76	thought to be the most reliable clinical questions and assessments to discriminate
77	GTPS from other hip pain sources.[8]
78	
79	Imaging studies have confirmed tendinopathy of the gluteal muscles to be a common
80	finding in patients with buttock, lateral hip and groin pain, with 88% patients with
81	trochanteric symptoms having MRI evidence of gluteus tendinopathy compared to
82	50% of those with hip pain but without specific trochanteric symptoms; this
83	difference was found to be significant.[6, 9] The absence of any peritrochanteric
84	abnormalities on MRI makes greater trochanteric pain syndrome unlikely, however
85	these changes occur in a high proportion of patients without trochanteric pain.

86 Caution is therefore required in interpreting imaging results in this patient cohort and

87 may be more useful in ruling out other conditions such as osteoarthritis of the hip, or

tears of the gluteal tendons.[9]

89

90	Whilst many cases of greater trochanteric pain will settle with simple conservative
91	management options, a study based in primary care has shown that after one year 36%
92	of patients will still suffer with trochanteric pain, and at 5 years this remains 29%
93	indicating the chronic nature of this condition.[1] Patients who received a
94	corticosteroid injection had a 2.7-fold chance of recovery compared to those who did
95	not.[1] However one randomised controlled trial that sought to examine the benefits
96	of corticosteroid injection over usual care found a significant benefit favouring
97	injections at 3 months, but by 12months there was no benefit.[10] In addition to being
98	significantly more expensive, there appears to be no added clinical benefit in guided
99	versus unguided corticosteroid injections, with both often being effective in the short
100	and medium term, and 41%-47% patients still benefitting at three months.[11] Other
101	conservative treatment options that have been shown to be effective include
102	physiotherapy, non-steroidal anti-inflammatory drugs, and weight loss.[4] Surgery has
103	been tried in recalcitrant cases and there have been a range of different techniques
104	reported with surgery focussing on the bursa, the tendinopathy, or the ITB
105	components of greater trochanteric pain syndrome, which highlights on-going
106	uncertainties as to the underlying pathologies in this condition.[12-14]
107	
108	Extra-Corporeal Shockwave Therapy (ESWT) can also be used to treat patients with
109	trochanteric pain. This is the use of high-energy, inaudible, sound waves generated
110	externally to the body and which are transmitted through the skin, and are often felt as
111	vibrations. Whilst treatment doses vary, and there is case-control study showing

112 benefits of a single-dose of ESWT in patients with GTPS,[15] ESWT is most

113	typically performed over three sessions at weekly intervals in order to promote a
114	healing response alongside a structured rehabilitation programme. [3] This has a
115	growing evidence base in the treatment of a number of different tendinopathy
116	conditions, of which Greater Trochanteric Pain Syndrome may be one. Currently,
117	there is limited evidence of benefit from the use of Extra-corporeal Shockwave
118	Therapy (ESWT) specifically in patients with trochanteric pain, with the 2011 NICE
119	guidance (IPG 376) highlighting that overall the evidence was inconclusive.[16]
120	There is some case-series evidence which suggests benefit of ESWT [15], and one
121	randomised control trial found that ESWT was better than physiotherapy or
122	corticosteroid injection at four-months, at fifteen-months there were similar results
123	from ESWT and physiotherapy, and that both were more effective than corticosteroid
124	injections alone.[3] A subsequent systematic review looking at evidence in arrange of
125	lower-limb tendon conditions has suggested that ESWT may be useful in managing
126	patients with greater trochanteric pain syndrome as an alternative to other
127	conservative treatments such as corticosteroid injection.[17] Table 1 displays the
128	published studies involving ESWT for Greater Trochanteric Pain Syndrome, which
129	remain limited in number.

Author	Туре	Notes	number	Age	f/u	Result	Ref
/ Year							
Mani-	Systema	2 studies – 1	•		•	Probably	[17]
Babu	tic	RCT, 1 case-				effective	
2014	Review	control study					
NICE	Review					Inconclusive	[16]

2011							
Rompe	RCT	RCT: Home	229 pts	Mean	15	At 1-month	[3]
2009		exercise		46-50	month	CS > ESWT	
		programme			S	At 4 months	
		(HEP) v				ESWT >	
		corticosteroid				HEP / CS	
		injection (CS) v				At 15 months	
		ESWT (3				HEP / ESWT	
		sessions				> CS	
		performed at					
		weekly					
		intervals)					
Furia	Case-	Case control	66 pts	•	12	Better	[15]
2009	control	series: single-			month	outcomes in	
		dose ESWT v			S	ESWT group	
		"additional					
		forms of non-					
		operative					
		treatment"					
Table	e 1: Previo	us published studi	es investiga	nting effec	tiveness o	of ESWT for	
			GTPS				
The side	-effect prof	file from ESWT is f	avourable,	with few s	erious side	e-effects	

reported in most papers across a range of conditions treated.[18] In a placebo-

135	controlled study of more than 270 patients, reported side-effects included transitory
136	reddening of the skin (21%) which was harmless and did not lead to treatment
137	cessation, pain (4.8%), and small haematomas (3%), in addition there was a
138	possibility of ESWT triggering migraine or possible fainting.[19] The risk of
139	haematoma was reported following the use of a non-MSK specific machine, and
140	newer more MSK-specific ESWT devices, appear to have a safer side-effect
141	profile.[19] Other reports of side-effects from the NICE guidance for lateral hip /
142	trochanteric pain (IPG 376) report than in 2% of patients there was increased pain of
143	more than 1 day following ESWT treatment, and skin irritation in 33% of patients at 1
144	month.[16]
145	
146	This case series seeks to assess the frequency of side-effects seen and to quantify any

- 147 changes in pain or other function measures following ESWT in an NHS clinic, and
- 148 acts as an initial pilot study for further research in this area.

150

151 Methods

152	Patients with chronic Greater Trochanteric Pain Syndrome (GTPS) treated with Extra-
153	Corporeal Shockwave Therapy (ESWT) have been treated by the authors within a
154	single NHS Sports Medicine department in a secondary care hospital in the UK. In
155	line with other hospital procedures, written consent forms are used to record consent
156	before the first session of ESWT. Patients have sessions of ESWT performed by the

same practitioner, once per week for three weeks. In keeping with routine use, the

energy dose is controlled by the operator to a "maximal comfortably-tolerated"

159 energy dose which was individual for different patients, and varied between sessions.

160 Patients are given standardised post-procedural advice and are advised to avoid

161 NSAIDs for the day of, and a few days after, each session of ESWT.

162

163 Before undergoing shockwave therapy, patients are taught to perform a structured 164 home exercise programme including flexibility of the lower limb, lumbar mobilisation 165 and range of movement, strengthening of the muscles around the hip including the 166 gluteal muscles associated with GTPS, as well as core stability and proprioception 167 exercises.[3, 20] These exercises are prompted at each of the subsequent clinic visits 168 to promote adherence and facilitate progression. Patients are advised that these 169 exercises can be uncomfortable, particularly to begin with, and are taught how to 170 progress these. To support the use of the home exercise programme, patients are given 171 written sheets discussing these exercises and reminding them of technique and how 172 often these need to be performed for benefit.

• Data collection

175	Patients complete a structured questionnaire about their symptoms before treatment
176	and at each subsequent follow-up visit. These outcome measures include questions
177	about pain, as well as a range of validated Patient-Rated Outcome Measures (PROMs)
178	which include questionnaires about sleep quality (Pittsburgh Sleep Quality Index -
179	PSQI), global function (EQ-5D-5L), specific hip function (Oxford Hip Score – OHS,
180	and the Non-Arthritic Hip Score – NAHS), as well as measures of anxiety and
181	depression symptoms (Hospital Anxiety and Depression Scale – HADS). Lastly
182	questionnaires are used to quantify levels of physical activity. These include the short-
183	form (7-day recall) version of the International Physical Activity Questionnaire -
184	IPAQ, and also two "vital signs" physical activity questions ("On how many days in
185	the last week have you been at least physically active?" and "on how many minutes
186	were you active for?" – multiplying these two figures together to give the number of
187	active minutes in a week.)
188	

- 189 These measures are all used to examine outcomes following the ESWT procedure.
- 190 Table 2 displays information for each of the PROMs in use.
- 191

Outcome measure	Assessing	Scale	Notes
Oxford Hip Score	Measure of hip-	Range 0-48	Higher score
(OHS)	specific		indicates better
	functioning		self-rated hip
			functioning
Non-Arthritic Hip	Measure of hip-	Total NAHS	Higher score

Score (NAHS)	specific	score, range 0-80	indicates better
	functioning		self-rated hip
			functioning
EQ-5D-5L	Global health status	Health score	Higher score
		displayed, range	indicates better
		0-100%	self-rated global
			health
Hospital Anxiety &	Measure of anxiety	Anxiety &	Lower score
Depression Scale	and depression	Depression sub-	indicates fewer
(HADS)	symptoms	scales, each range	symptoms
		0-21	
International	Assessment of	Scores of minutes	Increased levels of
Physical Activity	physical activity	of activity per	physical activity, or
Questionnaire	undertaken in the	week spent	lower levels of
(IPAQ) – 7-day	previous 7 days	walking, in	sedentary
recall version		moderate activity,	behaviour, are
		and in vigorous	associated with
		activity, and in	significant health
		hours of sitting on	benefits.
		a weekday	
Pittsburgh Sleep	Sleep quality	Global PSQI score	Lower score
Quality Index		range 0-21	indicates better
(PSQI)			sleep quality

192 **Table 2: Patient-rated Outcome Measures (PROMs) used**

193	
194	
195	Typically, patients are followed up three-months following ESWT, with a proportion
196	also seen at six-weeks where appointment availability allowed. Patients are then
197	routinely followed up after the three-month point if clinically required.
198	
199	The ESWT procedure is registered with the hospitals New Intervention Procedure
200	Group (NIPAG) and data is recorded here in the format of a service evaluation project
201	and audit; therefore formal NHS ethics permissions were not required.
202	
203	Statistical analysis
204	Data was recorded at baseline, and on an on-going basis at clinic follow-up and
205	collated into an Excel spreadsheet (MS Excel from MS Office 2011, version 14.5.7)
206	and analysed in SPSS (IBM SPSS Statistics, version 22). From this dataset the
207	majority of the outcome measures are scale data. Comparisons were made between
208	the baseline data and data from the six-week, the three-month, and where data was
209	present the six-month follow-up appointments. As the sample sizes were small, the
210	Shapiro-Wilk test was used to assess normality and as the majority of the data was
211	found to be not normally distributed the majority of the analysis was performed with
212	non-parametric tests, typically the Wilcoxon Signed-Rank Test to look at pre/post
213	differences.
214	
215	
216	

217 **Results**

218	A total of 46 patients who underwent Extra-Corporeal Shockwave Therapy (ESWT)
219	for symptoms of trochanteric pain syndrome were identified from procedural logs. All
220	patients were treated with a Chattanooga Intelect RPW rESWT machine using the
221	manufacturer's standard settings for GTPS (20.0Hz, 2000 shocks per session, 3
222	treatment sessions at weekly intervals.) The energy intensity was controlled by the
223	performing practitioner based on patient comfort. (The mean(SD) figures were
224	ESWT1 = 2.37(0.27) bar, $ESWT2 = 2.94(0.41)$ bar, and $ESWT3 = 3.44(0.52)$ bar)
225	
226	In addition to the ESWT treatment, all patients were given a structured home exercise
227	programme to complete with written supporting material discussing progressing this
228	as a part of their treatment.
229	
230	45 patients completed all three treatment sessions of ESWT. A single patient
231	withdrew from ESWT after their second session of treatment as she has been involved
232	in a road traffic collision (unconnected with her trochanteric pain or the ESWT
233	treatment) and was unable to attend the final treatment session due to her other
234	injuries. The data for this patient was therefore removed from analysis.
235	
236	At least one set of follow-up results were available for all of the 45 patients that
237	completed ESWT. Normally patients are invited for follow-up at six-weeks, and
238	three-months following ESWT, and depending on symptoms also some are seen at
239	six-months. Not all patients attended for a six-week appointment post-ESWT due to

241	patients (62%) at the six-week time point, and 44/45 (98%) at the three-month time-
242	point, which is set as the primary outcome period.
243	
244	Depending on the level on on-going symptoms at three-months, some patients also
245	had a six-month follow-up appointment booked, whereas others were left with an
246	open appointment for them to contact the department if there were problems or
247	questions. In total there were 27/45 responses from patients at six-months (60%),
248	however these figures may be skewed by the presence of on-going symptoms at three-
249	months and may represent those with either poorer or slower outcomes.
250	
251	• Patients
252	36 of the 45 patients (80%) who completed all three ESWT treatments for
253	trochanteric pain were female, and the majority of both male and female patients were
254	either overweight or obese. There was an average(SD) age of 60.9 (15.4) years, with
255	the youngest patient being 20 and the oldest being 86 years old. There was a mean
256	duration of symptoms of 43 months before trying ESWT, however this was skewed
257	by two patients having symptoms for ten years prior to ESWT, with the median
258	duration of symptoms being 30 months.
259	
260	Table 3 displays the demographic information for the patients in this series. Figures
261	displayed are mean(SD)
262	

n=	Age	Height	Weight	BMI	%BMI	%BMI	Symptom
		(m)	(kg)	(kg/m^2)	25-30	30+	duration

								(months)
Male	9	58.8	1.76	82.8	26.9	56%	11%	43.3
		(16.4)	(0.09)	(15.4)	(4.7)			(28.9)
Female	36	60.3	1.60	75.9	29.6	31%	44%	43.2
		(15.4)	(0.07)	(12.7)	(4.8)			(30.5)
All	45	60.0	1.64	77.4	29.0	36%	38%	43.2
		(15.4)	(0.10)	(13.4)	(4.8)			(29.8)

263

Table 3: patient demographics

264

265	Before ESWT was conducted, all patients had been given a home exercise
266	programme; 91% had received formal physiotherapy input, the remainder had been
267	given exercises and exercise sheets from other consulting healthcare professionals.
268	There was a wide-range of treatment given prior to ESWT, with an average of 3.0
269	corticosteroid injections given by other healthcare professionals to patients prior to
270	referral for ESWT (range 0-8), with patients reporting an average of 3.6 weeks of
271	benefit from their most recent injection (range 0-20 weeks). One patient had
272	previously undergone surgery for their trochanteric symptoms one year prior to being
273	referred for ESWT. All patients had either received an MRI or an ultrasound scan to
274	examine the condition of the relevant muscles / tendons prior to ESWT as a part of
275	the consideration of treatment process.
276	

• Side-effects from ESWT

The incidence of side-effects following ESWT is previously discussed and this was investigated within this case series. Overall incidence of side-effects in this series is low with 7% and 9% of patients reporting bruising at the $2^{nd} / 3^{rd}$ ESWT treatments respectively, all of which had settled by the six-week and three-month follow-up periods. No patient withdrew due to side-effects. Table 4 displays the incidence of side-effects from the NICE audit criteria for this case series.

	At 2nd Treatment	At 3rd Treatment	At six- weeks	At three- months	At six- months
	(<i>n</i> =45)	(<i>n</i> =45)	(<i>n</i> =28)	(<i>n</i> =43)	(<i>n</i> =27)
Is there any evidence					
of local skin	004	004	00/	00/	00/
reddening over the	070	070	070	070	070
treatment site?					
Is there any local					
bruising or	70/	00/	00/	00/	00/
haematoma over the	/ %	9%	0%	0%	0%
treatment site?					
Is there any evidence					
of other local skin /	0%	0%	0%	0%	0%
soft tissue damage?					
Is there any local	0%	0%	0%	0%	0%

numbness of the

treated area?

285

286

287

288

289

290

291

292

293

294

295

Is there evidence of					
rupture of the	0.04	00/	0.04	00/	0.04
structure being	0%	0%	0%	0%	0%
treated?					
Does the patient					
report any increased					
stiffness or worsened	0%	2%	0%	0%	0%
mobility following					
ESWT?					
Table 4: Incidence	e of side-effe	ects followin	g ESWT ti	reatment	
• Pain scores					
proportion of patients repo	orting thems	elves as pain	free (VAS	= 0) or vii	tually
n-free (VAS of 0 or 1) at size	x-weeks was	s 7% and 119	% respectiv	ely, at thre	e-months
figures were 9% and 18%	respectively,	, and at six-n	nonths was	19% and 3	3%
pectively.					
erall there was an average r	eduction in j	pain as asses	sed by a 0-	10 Visual A	Analogue
le (VAS) from 6.3 at basel	ine, to 4.1 at	six-weeks, 3	3.8 at three-	months, ar	nd 3.5 at

297	six-months post-ESWT. These changes in pain from baseline were found to be
298	significant at all time-points at six or more weeks. This improvement correlates to an
299	average reduction of pain of about a third at all follow-up time points recorded.
300	
301	Table 5 displays the self-reported values for "average" pain, self-reported "worst"
302	pain and "stiffness" at baseline and follow-up appointments - all figures are
303	mean(SD) and use a 0-10 visual analogue scale (VAS), with the significance of any

- 304 changes seen being calculated from baseline values.
- 305

306

	At	Before	Before	At 6	At 3	At 6
	baseline	2 nd	3 rd	weeks	months	months
		ESWT	ESWT			
"Average	6.3 (1.7)	6.4 (1.8)	6.0 (2.0)	4.1	3.8	3.5
Pain"				(2.6) *	(2.7) *	(2.8) *
(0-10)						
"Worst Pain"	8.2 (1.2)	X	Х	6.3	5.4	5.0
(0-10)				(2.5) *	(2.9) *	(3.1) *
"Average	5.3 (2.8)	х	Х	3.7	3.3	2.7
Stiffness"				(3.1) *	(2.6) *	(3.0) *
(0-10)						

307

 Table 5: displaying baseline and follow-up pain and stiffness scores (all marked

308

on a 0-10 Visual Analogue Scale)

310 These values are displayed in the Figure 1

311

Figure 1 – Displaying trend for self-reported "worst pain", "average pain" and
"average stiffness" (0-10 scales)

314

The changes in "average pain", "worst pain" and "stiffness" were all significantly 315 316 improved from baseline at all of the follow-up appointments. Although a trend of 317 continued improvement appears to be shown in this series, for the "average pain" and 318 "average stiffness" the differences between the figures at six-weeks and subsequent 319 follow-ups did not reach statistical significance. For the "worst pain" there was a 320 statistically significant improvement in pain at 6-months compared to 6-weeks, but 321 not 3-months. These suggest that the majority of the benefits seen occur in the first 6-322 weeks after ESWT, although benefits appear to continue beyond this point. 323 324 325 • Sleep disturbance 326 Sleep disturbance is a commonly reported symptom from patients with trochanteric 327 pain syndrome, with pain sleeping on either the affected or the opposite side 328 commonly reported. Sleep quality was assessed by means of the Pittsburgh Sleep 329 Quality Index (PSQI), a patient self-reported questionnaire, at baseline and 330 subsequent follow-up appointments. This questionnaire rates a number of domains of 331 sleep quality and gives individual subs-scales as well as a global score which is 332 displayed here for simplicity, with a lower score indicating better sleep quality 333 overall.

334

The following table displays the average (SD) global PSQI results obtained at 335 336 baseline and at follow-up. Baseline 6-weeks 3-months 6-months 9.7 (4.2) * 9.1 (3.7) * 9.0 (4.0) * PSQI (global) 10.9 (3.7) Table 6: displaying the global PSQI scores at baseline and at follow-up 337 338 339 The changes of global PSQI score from baseline to six-weeks, baseline to three-340 months and baseline to six-months, each of between 1.2 and 1.9 points, were all found 341 to be significant (p < 0.05). However, the changes from six-weeks to either three or six-months, and three-months to six-months, were not found to be significantly 342 343 different. 344 345 • Local and global measures of function 346 A range of other patient-rated outcome measures (PROMS) were used to assess 347 outcome including several hip-region PROMS including the Non-Arthritic Hip Score (NAHS) and the Oxford Hip Score (OHS). In addition, as a marker of overall level of 348 health status the EQ-5D-5L was used, and markers of both anxiety and depression 349 350 were obtained through the use of the Hospital Anxiety and Depression Scale (HADS). 351 352 Table 7 displays the mean(SD) scores for the different PROMs in use.

Non-Arthritic Hip Score (NAHS) - total	39.8 (12.7)	45.3 (17.2) *	50.3 (18.6) *	53.6 (19.8) *
Oxford Hip Score	22.4(0.0)	20.2 (10.5) *	21.0 (10.7) *	22 / (11 1) *
(OHS)	23.4 (9.0)	29.3 (10.3)	51.9 (10.7)	55.4 (11.1) ⁺
EQ-5D-5L - %health	67% (15%)	72% (13%) *	73% (19%)	77% (15%) *
Hospital Anxiety &				
Depression Scale				
(HADS) – Anxiety	7.4 (4.3)	6.7 (4.1)	6.0 (4.0)	5.1 (3.3) *
sub-scale				
Hospital Anxiety &				
Depression Scale	55(30)	41(27)*	44(36)*	37(27)*
(HADS) – Depression		(2.7)	(5.6)	2
sub-scale				

353

354 **Table 7: displaying PROM data at baseline and follow-up appointments**

355

362

Many of the differences in scores from either baseline to six-weeks, baseline to threemonths, or baseline to six-months showed a significant change (p<0.05) as indicated above. The depression sub-scale of the Hospital Anxiety and Depression Scale (HADS) was significantly improved following ESWT all time points, whereas the anxiety sub-scale was only significantly different at the six-month follow-up time point. The overall health% as recorded by the EQ-5D was only improved significantly

at six-weeks and six-months, but not at three-months, however the hip-specific

363 patient-rated measures (Oxford Hip Score and the Non-Arthritis Hip Score) were both 364 significantly improved at all time periods studied. 365 366 • Activity levels 367 Patients with trochanteric pain syndrome often report that pain is a barrier to their physical activity, therefore it may be assumed that if pain is reducing then physical 368 369 activity may increase. The measure this, the rates of physical activity were recorded 370 by using both the short form (7-day recall) International Physical Activity Questionnaire (IPAQ) and also the "Vital signs" questions discussed previously. The 371 372 results are as displayed in table 8.

Activity measure	Baseline	6-weeks	3-months	6-months	
IPAQ					
- vigorous-level activity in	108 (379)	108 (360)	98 (342)	83 (196) *	
minutes / week					
IPAQ					
- moderate-level activity in	242 (666)	185 (461)	233 (630)	136 (243)	
minutes / week					
IPAQ	2(2(57))	40.4 (600)	462 (650)	107 ((21) *	
- walking in minutes/ week	362 (576)	404 (690)	463 (652)	497 (621) *	
IPAQ					
– number of hours spent sitting	4.3 (3.4)	4.8 (3.0)	4.7 (3.1)	5.0 (3.0)	
on a week day					

	"Vital signs"		
	- minutes of at least moderate 119 (360) 68 (124) 95 (177) 80 (154)		
	level of activity / week		
	Table 8: displaying activity values at baseline and at follow-up		
	The only measures of physical activity that changed significantly from baseline was		
)	decrease in the number of minutes of vigorous activity, and an increase in the number		
	of minutes of walking (both as assessed by the short-form IPAQ) measured at six-		
	months post-ESWT compared to baseline the clinical implications of which are		
	unclear.		
	• Further intervention rates		
	From the data set available, there was a median follow-up duration of 189 days for		
	this cohort, with a maximum of 315 days. 18% of patients required consideration of		
	further intervention as a result of persisting symptoms following ESWT, most		
	typically review for surgical intervention or further corticosteroid injection, with 829		
)	of this case series not requiring further intervention during the time period studied.		
	Overall satisfaction		
	Overall levels of satisfaction with treatment was assessed on a 5-part Likert scale,		
	with 63% of patients being either "satisfied" or "very satisfied" at 3-months, and at 6		
	months this figure had increased to 75% In addition patients were asked if they woul		
	recommend the ESWT treatment to a friend or family member with the same		
	symptoms on a four-part Likert scale. At 3-months 70% of patients would either		

- definitely or probably recommend the ESWT procedure, and at 6-months this figure
- 395 was 80% At all time points, 7% or less would not recommend the procedure. Tables 9
- and 10 display the results from these two questions.
- 397

	6-weeks	3-months	6-months
	(n=18)	(n=40)	(n=24)
Very satisfied	39%	45%	50%
Satisfied	39%	18%	25%
Neutral	11%	28%	17%
Dissatisfied	6%	5%	4%
Very dissatisfied	6%	5%	4%

398

Table 9: "On the basis of your results currently, how satisfied are you

399

with the results that you have had so far?"

400

401

	6-weeks	3-months	6-months
	(n=20)	(n=43)	(n=25)
Yes, definitely	55%	49%	64%
Yes, probably	20%	21%	16%
Maybe	20%	23%	16%
No	5%	7%	4%

402

 Table 10: "On the basis of your results so far, would you recommend

403 this procedure to a friend or family member with the same symptoms?"

405 **Discussion**

406	This case series demonstrates that the majority of patients report improvement in their
407	symptoms. At three-months nearly two-thirds of patients are satisfied with the results
408	of their treatment and 70% would recommend the treatment to a friend or family
409	member with the same symptoms. The data from this case series, and the previous
410	published work on this topic suggest that Extra-Corporeal Shockwave Therapy can be
411	an effective treatment for a number of patients with recalcitrant Greater Trochanteric
412	Pain Syndrome, which has not settled with other simple conservative measures, and
413	one which is worth considering in care pathways, access permitting. Patients in this
414	case series had a range of symptom duration and different treatments tried prior to
415	referral for ESWT. There was no difference found in reported success or
416	improvement in pain levels for those with symptoms of 18 months or less, compared
417	to those with symptoms greater than 18 months suggestive that ESWT is worth
418	considering in appropriate patients even with long-standing symptoms.
419	
420	Causality of benefit cannot be proven from this case series design of study alone, but
421	these findings of improvement are in keeping with other published literature. The
422	figures at three-months are the primary end-point with the highest proportion of
423	respondents and patients are typically seen at six-months only if they have on-going
424	or slow resolving symptoms or other concerns. It is possible therefore that even with
425	the figures appearing to have improved at six-months from the three-month period,
426	although this did not necessarily reach statistical significance, these may
427	underestimate health benefits due to selection bias, with patients that are doing well

428 not returning at six-months. The magnitude of benefits may be greater than seen here,

429 and this is worth consideration in further research.

430

431 The side-effect profile reported in this case series shows that the incidence of side-

432 effects from ESWT treatment for Greater Trochanteric Pain Syndrome is relatively

433 low, with no patients in this series failing to complete treatment due to side-effects,

434 and less than 10% reported bruising. This is a lower figure that quoted in other

435 sources, and this may represent the use of a modern and specific ESWT machine.

436

437 This case series has demonstrated an overall average improvement of at least a third 438 in symptoms of pain and stiffness as reported by the patients, as well as improvements 439 in a wide range of other measures of function. The use of simple pain-scores is a very 440 crude outcome measure, and this series has used a range of validated patient-rated outcome measures (PROMs) including specific measures of hip function, and also 441 442 global measures of function. This holistic view of patient function goes far beyond the 443 use of simple pain-rating tools and should be considered in further work to identify the most relevant outcome measures. Some measures of both local and general 444 445 functioning have significantly improved, although not all reported benefits. Mood 446 disturbance with both anxiety and depression features as assed by the Hospital 447 Anxiety and Depression Scale (HADS) showed significant improvements at a number 448 of time-periods. Sleep disturbance is an often-reported symptom of Greater 449 Trochanteric Pain Syndrome, and this case series has demonstrated an improvement 450 in sleep quality, as assessed by the PSQI questionnaire at all time-points following 451 treatment. It is accepted that there may be confounding that exists between the various

452	outcome measures studied, further work may be required to examine these complex
453	interactions in more detail. However, these outcome measures identify specific
454	individual factors that are commonly reported by patients as problems, and it is
455	encouraging to see improvements across a range of different domains.
456	
457	Physical activity has many benefits to health, and musculoskeletal pain is an often
458	reported barrier to physical activity. Whilst the subjects in this case series had a
459	significant improvement in their pain levels and corresponding level of functioning,
460	they did not report a consistent improvement in activity levels. If anything the amount
461	of vigorous activity may have decreased at the six-month period, although the amount
462	of walking appears to have increased. It is possible that the reduction in pain seen at
463	the same time, may be influenced by this change in activity level. Despite the
464	reduction in pain, and positive messages being given during the rehabilitation
465	programme about the benefits of activity, further interventions are likely to be
466	required to increase levels of activity in order to achieve optimal health benefits in the
467	longer term.
468	
469	Many of the benefits in the parameters studied improved from baseline to the six-
470	week period in particular, and whilst some improved beyond this, for several these

471 further changes did not reach statistical significance. This is suggestive that the most

- 472 benefits are gained in the early period following treatment, and it is not clear from this
- 473 case series when these benefits plateau, meaning that longer-term follow-up may be
- 474 helpful in identifying final outcome points. A larger series may be able to investigate

this aspect in more detail, as this series was likely to be affected by a 60% review rateat six-months.

- 477
- 478 In summary this case series has demonstrated a significant improvement in both pain
- and a wide-range of different outcome measures in the period following extra-
- 480 corporeal shockwave therapy and a structured rehabilitation programme. These
- 481 include a wide range of measures of patent functioning indicating improvement in a
- 482 range of the symptoms that commonly affect patients with Greater Trochanteric Pain
- 483 Syndrome. Further work looking at specific benefits of the shockwave itself
- 484 compared to rehabilitation alone would be useful to quantify this aspect of therapy,
- 485 and potentially longer-term follow-up may be helpful to see where benefits plateau,
- 486 which may avoid further interventions being done at a too early time-point, and allow
- 487 better quality information to be given to patients about longer-term outcomes.
- 488
- 489
- 490
- 491 Abbreviations used
- 492 ESWT Extra-Corporeal Shockwave Therapy
- 493 GTPS Greater Trochanteric Pain Syndrome
- 494
- **495** Ethics approvals

496 This series is registered at the host NHS Trust as clinical audit. Formal NHS ethics

497 approvals are not required as this constitutes usual treatment. No patient identifiable

498 information is included.

	The role of Extra-Corporeal Shockwave Therapy (ESWT) plus rehabilitation for patients with chronic Greater Trochanteric Pain Syndrome (GTPS), a case series assessing effects on pain, sleep quality, activity and functioning
499	
500	
501	
502	Consent to publication
503	Not applicable - No patient identifiable information is included.
504	
505	
506	
507	Availability of data
508	The raw data contained in this publication is not being made publically available at
509	this time. This represents on-going clinical audit, data from this is are shared with the
510	host trust audit team as per local policy.
511	
512	Competing interest
513	The authors have no potential conflicts of interest to declare
514	
515	• Funding
516	No funding sources to declare. Clinical audit performed within employed role at host
517	hospital trust.
518	
519	Author contributions
520	Both authors were involved in the clinical aspects of the cases in this manuscript. The
521	corresponding author took the lead in data analysis and evaluation. The manuscript
522	was prepared and checked by both authors.

523		
524	٠	Acknowledgements
525	No fur	ther acknowledgements are made
526		
527		
528		
529	REFE	RENCES
530	1.	Lievense, A., et al., Prognosis of trochanteric pain in primary care. British
531		Journal of General Practice, 2005. 55 (512): p. 199-204.
532	2.	Tortolani, P.J., J.J. Carbone, and L.G. Quartararo, <i>Greater trochanteric pain</i>
533		syndrome in patients referred to orthopedic spine specialists. The Spine
534		Journal, 2002. 2 (4): p. 251-254.
535	3.	Rompe, J.D., et al., <i>Home Training, Local Corticosteroid Injection, or Radial</i>
536		Shock Wave Therapy for Greater Trochanter Pain Syndrome. The American
537		Journal of Sports Medicine, 2009. 37 (10): p. 1981-1990.
538	4.	Williams, B.S. and S.P. Cohen, Greater Trochanteric Pain Syndrome: A
539		Review of Anatomy, Diagnosis and Treatment. Anesthesia & Analgesia,
540		2009. 108 (5): p. 1662-1670.
541	5.	Segal, N.A., et al., <i>Greater Trochanteric Pain Syndrome: Epidemiology and</i>
542		Associated Factors. Archives of Physical Medicine and Rehabilitation,
543		2007. 88 (8): p. 988-992.
544	6.	Kingzett-Taylor, A., et al., <i>Tendinosis and tears of gluteus medius and</i>
545		minimus muscles as a cause of hip pain: MR imaging findings. American
546	_	Journal of Roentgenology, 1999. 173 (4): p. 1123-1126.
547	7.	Silva, F., et al., Trochanteric Bursitis: Refuting the Myth of Inflammation.
548	0	JCR: Journal of Clinical Rheumatology, 2008. 14 (2): p. 82-86
549	8.	Fearon, A.M., et al., <i>Greater trochanteric pain syndrome: defining the</i>
550		<i>clinical syndrome.</i> British Journal of Sports Medicine, 2013. 47 (10): p.
551	0	649-653.
552	9.	Blankenbaker, D.G., et al., <i>Correlation of MRI findings with clinical findings</i>
553		of trochanteric pain syndrome. Skeletal Radiology, 2007. 37 : p. 903-909.
554	10.	Brinks, A., et al., Corticosteroid Injections for Greater Trochanteric Pain
555		Syndrome: A Randomized Controlled Trial in Primary Care. The Annals of
556		Family Medicine, 2011. 9(3): p. 226-234.
557	11.	Conen, S.P., et al., <i>Comparison of fluoroscopically guided and blind</i>
558		corticosteroid injections for greater trochanteric pain syndrome:
559		<i>multicentre randomised controlled trial.</i> British Medical Journal, 2009.
560		338 : p. b1088.

561	12.	Fox, J.L., The role of arthroscopic bursectomy in the treatment of
562		trochanteric bursitis. Arthroscopy: The Journal of Arthroscopic & Related
563		Surgery, 2002. 18 (7): p. 1-4.
564	13.	Craig, R.A., et al., Iliotibial band Z-lengthening for refractory trochanteric
565		bursitis (greater trochanteric pain syndrome). ANZ Journal of Surgery,
566		2007. 77 (11): p. 996-998.
567	14.	Voos, J.E., et al., Arthroscopic Anatomy and Surgical Techniques for
568		Peritrochanteric Space Disorders in the Hip. Arthroscopy: The Journal of
569		Arthroscopic & Related Surgery, 2007. 23 (11): p. 1246.e1-1246.e5.
570	15.	Furia, J.P., J.D. Rompe, and N. Maffulli, Low-Energy Extracorporeal Shock
571		Wave Therapy as a Treatment for Greater Trochanteric Pain Syndrome.
572		The American Journal of Sports Medicine, 2009. 37 (9): p. 1806-1813.
573	16.	NICE, Extracorporeal shockwave therapy for refractory greater
574		trochanteric pain syndrome. (Interventional procedure guidance 376).
575		2011, National Institute for Health and Clinical Excellence.
576	17.	Mani-Babu, S., et al., The Effectiveness of Extracorporeal Shock Wave
577		Therapy in Lower Limb Tendinopathy: A Systematic Review. The American
578		Journal of Sports Medicine, 2015. 43 (3): p. 752-761.
579	18.	Wang, C.J., Extracorporeal shockwave therapy in musculoskeletal disorders.
580		J Orthop Surg Res, 2012. 7 : p. 11.
581	19.	Haake, M., et al., Side-effects of extracorporeal shock wave therapy (ESWT)
582		in the treatment of tennis elbow. Archives of Orthopaedic and Trauma
583		Surgery, 2002. 122 (4): p. 222-228.
584	20.	Mulligan, E.P., E.F. Middleton, and M. Brunette, <i>Evaluation and</i>
585		management of greater trochanter pain syndrome. Physical Therapy in
586		Sport, 2015. 16 : p. 205-214.
587		

Click here to download Non-colour figure [NB: free online colour available - see Notes for Contributors] Fig 1 - displaying change in pain scores.png

