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SUMMARY

The analysis of acoustic emissions for machine health monitoring has made rapid
advances in the last five years due to a revival of interest in the application of Artificial
Neural Networks (ANNs). Complex signal analysis, which has often thwarted
conventional statistical methods and expert systems, is now more possible with the
introduction of 'neural' based computing methods.

Acoustic emissions from welding processes are well documented. In particular, it has
been established that a manual welder is capable of making intrinsic decisions concerning
electrode position based on process noise.

The analysis of time / amplitude signals and Fast Fourier Transforms (I-I-1s), within
salient frequency bandwidths of the weld acoustic, has yielded erratic, unpredictable and
noise polluted data. Extracting a meaningful interpretation from this data is
computationally intensive when utilising standard statistical methods and leads to data
explosions, especially when an 'on-line' corrective control signal is required.

An Artificial Neural Network is 'trained' on examples from acquired data and performs a
robust signal recognition task rather than relying on a programmed set of data samples as
in the case of an expert system. This technique enables the network to generalise and, as
a consequence, allows the input data to be erratic, erroneous and even incomplete.

This research defines the development of a hybrid system, utilising high speed date
capture and 141-1' computation for the signal pre-processing and a 'self organising'
network paradigm to establish weld stability and real time corrective control of the
process parameters.

The paper describes a successful application of a Neural Network hybrid system to
determine weld stability in submerged arc welding (S.A.W) through the interpretation of
airborne acoustics.

INTRODUCTION

The Neural Applications Group, within the Department of Design at Brunel University,
UK, Directs its' research at the application of Artificial Neural Networks to 'real'
industrial problems. The major focus is towards the welding industry, developing process
control and NDT techniques. One area in particular has been the application of ANNs to
a fully integrated control system for Submerged Arc Welding.
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ANNs were principally developed as an attempt to replicate the topology and operation
of biological neural systems. Advances have yielded models which 'train' or 'learn' output
responses from given data. The consequences of this technique is an emulated biological
system capable of dealing with erratic or even incomplete input data.

Observations of skilled manual welders has shown a subconscious tendency to change
the angle of the electrode and length of arc by listening to adverse fluctuations in the
process noise. This has resulted in much research into the analysis of airborne acoustic
emissions (AEs) of welding processes.

Attempts have been made to interpret AEs utilising statistical and rule based techniques
(1). The inflexibility of these techniques in dealing with noise polluted data, together with
speed limitations, provided little success. Acoustic emissions from SAW requires the
classification of large quantities of erratic data samples for any meaningful interpretation
to be made (2). Many references can be found to the successful application of ANNs in
signal processing (3) and condition monitoring (4,5,6).

In SAW, Logical Neural Networks (7) have been successfully employed to window and
interpret noisy ultrasonic echoes from the weld head for seam tracking and weld
penetration measurement in real time (8).

Although AEs from welding processes are potentially information rich, to limit the
feasibility study into the ANN approach to signal classification, this research has focused
on the detection of instabilities caused by non optimum voltage settings. Further studies
are to be made into the identification of wayward variables during the welding process.

EXPERIMENTATION

The parameter setting for an optimum weld were chosen by weld profile dimensions
obtained from bead on plate post weld cross sectional inspection. Mild Steel plate, 25min
thick, was used with a root penetration of 15mm. The travel speed, current (determined
by the rate of feed of the sacrificial electrode) and voltage were then considered
optimum.

A transducer element consisting of three omni-directional electret condenser
microphones (ECMs) were mounted 300mm from the welding head. Each ECM
exhibited suitable gains and frequency responses for infra, audible and ultra sound ranges
up to 40 kHz. Suitably pre-amplified, signals obtained were subjected to 8 active
bandpass and appropriate anti-aliasing filters before being analysed by standard DSP
methods.

Previous investigation, utilising a TMS320C30 system board hosting Hypersignal
Workstation software revealed salient frequencies during welding of between 15Hz and
10kHz (2). Frequency 'signatures' of ambient conditions and ancillary equipment such as
the mains transformer, fume extractor, kinetic control system and wire feed motor etc.,
were identified from a 1024 point F1-'1 analysis as shown in Fig 1.

The initial analysis provided the sampling frequency and resolution necessary to isolate
salient bandwidths suitable for input to an ANN model. The TMS320C30 was set up to
perform a 128 point Radix 2 FFT (yielding 64 real data points), sampling frequency of
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20kHz with a 16 bit resolution.

Three welding runs were the initiated over a 1 metre length. Ten recordings were taken
from each and monitored to gauge signal consistency. The wire feed rate (current) and
travel speed were held constant while the voltage, primarily at optimum level, was
changed to a low unstable level followed by a high unstable level as recorded in Table 1.

Further transient noise was removed from the 1-1-1 analysis by a statistical method,
taking the r.m.s over 25 acquired 141-.- 1 frames. The 64 real data points of each resulting
FFT was treated as a 64 component vector and used as input to the ANN classifying
model.

TABLE 1. Voltage, Current and Travel Speed Settings

V I S

WELD 1 (optimum) 41.1 V 820 A 6.5mm/S

WELD 2 (low voltage unstable) 29.7 V 820 A 6.5mm/S

WELD 3 (high voltage unstable) 61.2 V 820 A 6.5mm/S

NEURAL NETWORK APPLICATION

Studies of biological neural systems have revealed that differing neuronal topologies as
well as individual neurons perform different functions (9). The various characteristics of
recognition and abilities in learning are replicated by ANN architectures and learning
algorithms. The learning categories are generally of two types, Supervised or
Unsupervised. Both these methods are utilised by two ANN paradigms which have
emerged to become the most widely adopted methods in applications.

Back Propagation Networks (BPN)

BPNs provide a method of supervised learning . In essence the input data is given with a
desired output, and the learning technique is one of re-inforcement also known as
Hebbian learning (10). The architecture is generally a 3 layer network consisting of an
input layer, a middle or 'hidden' layer and an output layer. Each layer is fully
interconnected to the proceeding layer. The number of neurons in the input and output
layers depends on the input pattern organisation and the intended output classification.
The number of neurons in the hidden layer is still the subject of much debate, but the
optimum number is dependent upon the complexity of the classification problem.

For this experimentation the input layer consists of 64 neurons, one for each component
of the input vector, and an output layer of 3 neurons for the classification of each weld
run voltage level. The number of hidden layer neurons was initially set at 12, as shown in
Fig 2.
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In the training stages, the input vector components are transferred through the connected
neuronal transfer functions via the synaptic weights (Fig. 3). The resulting values given
at the output layer are compared with the desired output. A function of the error is used
to adjust the value of the synaptic weights thereby making a subsequently similar input
generate an output closer to the desired value.

The success of the BPN model is dependent upon the distribution or the degree of
correlation of the input data. Although ANNs have the inherent ability to deal with highly
correlated data, the BPN model uses a gradient descent method (11) in its learning
algorithm to establish an optimum boundary between similar data patterns. If the
separation is complex, it can often lead the network to converge on a local rather than a
global minimum resulting in a failure to train or an unreliable output response.

Self Organising Feature Map (SOM)

The SOM model utilises an unsupervised or competitive learning technique. This method
replicates 'learning by experience' rather than by taught responses. The SOM consists of
two layers, an input layer consisting of a number of neurons, suitable for the input data,
fully interconnected to an output matrix or 'slab' of neurons. The number of neurons in
the output slab depends on the required resolution of the desired output classification.
(Fig. 4).

During the training phase, the input vector is compared with the randomly initiated
synaptic values of each output neuron. The output neuron possessing the least error in
vector or Euclidean space is considered the winner and its synapses are updated
proportionally to the error as dictated by the learning algorithm. Furthermore, each
winning neuron has neighbours within the output slab. These neighbouring neurons are
also updated in such a way as to encourage or inhibit its chances of winning when a
subsequently similar vector is compared. This training continues until an acceptable state
of equilibrium is reached.

In this way similar vector patterns are clustered within a multi-dimensional vector space
or hyperspace. Depending upon the density function and the correlation of the input
data, natural separations can occur. The degree of separation is measured in terms of
error distances within hyperspace. Consequently this method requires a comprehensive
understanding of the nature of the input data and necessitates the re-analysis of the
clustered vector patterns.

In general, the problems associated with pattern recognition by means of ANNs is greatly
relieved by careful signal pre-processing. Training data should be of a standard which
highlights salient features. This not only reduces training times but increases the chances
of achieving a fully optimised network (12).

Depending upon the number of training data sets and the size of the network, training
can be a time consuming phase. The benefits are yielded from the network's inherent
ability to generalise on previously unseen data patterns together with fast response times.
The main limitation of this technique is memory allocation for computed vector analysis.

4



J. R. McCardle 1997

Network Implementation

The ANN models used for this research were software emulated. Commercially available
software, in the form of the NT5000 from Neural Technologies was used for the BPN
and custom compiled software for the SOM model. Although the networks are operated
on a von Neumann derived computer architecture in which data is actually processed
serially, the speed of operation of a trained system enables viable real time application
(11). This is due to the simulated parallel processing of the input vectors.

RESULTS

Typical 1-,F1 frames introduced to the network models are shown in Figures 5, 6 and 7.
Five hundred rms frames, sampled from a weld length of approximately 0.1 meters or 15
seconds, from each weld run was used as training data. Although pre-processed the FFTs
are still erratic and certain characteristics are apparently similar in all three weld runs.
This was evident from the results of the attempts to train the BPN model.

The primary training session of the BPN model yielded negative convergence after 15
minutes. The high correlation of the input data proved too complex for the initial system
architecture to reach a satisfactory conclusion.

The architecture was subsequently amended by increasing the hidden layer neurons up to
24. Further training eventually provided a convergence after 25 minutes. The gradient
descent method was assisted by the frequent injection of noise known as weight joggling.
This technique is designed to assist the prevention of local rather than global minima
detection.

Testing the network entailed the input of previously unseen data vectors in an attempt to
correctly classify the three levels of weld stability. The success rate was gauged on a
percentage correct basis. Results proved inconclusive with all three test sets yielding
between 42% and 51% correct classification.

Further investigation is in progress for the application of optimisation techniques for
BPNs.

The self organisation of the SOM model negates the need for a global convergence. The
input data vectors are automatically clustered within the 64 dimensional hyperspace. The
clusters are of similar input patterns and subsequent test vectors are associated to or
within the trained cluster by means of a calculated error distance.

The network was initially trained on the signals obtained from the optimum weld run and
data from the unstable welds used as test vectors. The high dimensionality of the data
compounds the graphical representation of the clusters which necessitates the re-analysis
of the patterns and calculated error distances. Analysis of the resulting errors showed
that the high voltage unstable weld was regarded as a sub-set of the optimum weld
cluster, whilst the low voltage unstable data was clearly segregated as shown in Fig. 8.

The second training run was initiated with the high voltage weld data and the subsequent
errors from the optimum and low voltage test patterns assessed. Almost full separation
was achieved with a minor union evident between the optimum and high voltage data
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clusters as shown in Fig. 9.

The training times for the SOM amounted to approximately 15 minutes on a 486 /
66MHz PC machine. Response times to individual input vector classification was
approximately 0.02 microseconds with total cluster comparison in 3.5 milliseconds.

The pattern separation is achieved with data representing the extremes of voltage level
instability. If an appropriate corrective control signal is to be generated, a vector signal
needs to be quantified from the individual or clustered test pattern errors. The
classification of AEs with respect to intermediate discrete voltage settings requires a
calibration technique capable of providing such a signal. As the voltage is adjusted from
unstable to stable the generated data clusters will converge reducing the computed
errors, however, data separation also reduces and cluster boundaries become unclear.
Consequently, the detection of the onset of weld instability becomes more complex.

Solutions to this problem are currently under investigation.. Fuzzy logic and control (13)
and further ANN models which exhibit predictive capabilities, such as Probablistic
Networks and Spation Temporal Networks (14), are invisaged as providing possible
remedies. Thes systems yield outputs relating to successively occurring data patterns and
consequently emphasise cluster density functions.

CONCLUSIONS 

The airborne acoustic emissions from submerged arc welding yields highly correlated
erratic data which requires specific pre-processing to emphasise salient features.

Conventional DSP methods including 1- . P1 and averaging techniques are capable of
revealing features, in real time, which are compatible with certain Artificial Neural
Network models.

A Back Propagation Network proved inconclusive when attempting to classify data
patterns derived from acoustic emissions associated with the voltage stability of
submerged arc welding.

A Self Organising Feature Map successfully separated and classified low, high and
optimum voltage settings from the acoustic emissions of submerged arc welding.

Complex and erratic signal interpretation often requires both conventional statistical and
neural network techniques.

Research continues into neural network optimisation, corrective control signal
generation and the development of a fully integrated welding control system.
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Output layer or 'Slab'

Filet: weldluau
	

FFI Length: 256
Overlap:	 58

Fs: 48.86 kHz, Win: Hann
	

Franesize: 256

Filel: weldhvau
	

FFI Length: 256
Overlap:	 58

Fs: 48.86 kHz, Win: Hamm
	

Fran/size: 256

Figure 5.
128 Point 1-1- 1, low voltage signal

2 /disievtr/:021/ 	Tine spanned: 0.808-97.69 nS

IL 888
	

1.882kilz /Diu	 .818811Hz
FREQUENCY

Omk

1 

• • 0
3 04 05 • 64

Figure 4.
Self Organising Feature Map architecture

5915	 4476-3v.orkil
	

Tine spanned: 8.808-97.69 n$

o oTh
tp00
p000
oo00

• • Input Layer

Figure 6.
128 Point FE!', high voltage signal

8



C,6,1.,13: 4,4•E
Fuel: defweldu

Fs: 40,06 kHz, Win: Hann

FFT Length: 256
Overlap: 58
Franesize: 256

Yn

Optimum Voltage
	 Low Voltage

High Voltage

Yn
Low Voltage

Optimum Voltage

High Voltage

J. R. McCardle 1997

4083	 eikavT,:pzi/
	

Tine spanned: 0.008-47.69 n$

Figure 7.
128 Point FFT, optimum voltage signal

Xn

Figure 8.
Data cluster representation with high voltage

a subset of optimum voltage

Xn

Figure 9.
Retraining with high voltage data causes

further separation with a minor union

9



J. R. McCardle 1997

REFERENCES 

(1) Chawla, K.S, Norrish, J. "Real Time Quality Monitoring Using Analysis of the Arc
Sound", Paper 17, TWI, Cambridge, UK, 1992.,

(2) Taylor-Burge et al' The Real Time Analysis of Acoustic Weld Emission Using
Neural Networks", P.60, Proceedings of JOM-6, Helsingor, Denmark, 1993.

(3) Hecht-Nielson, R. "Neurocomputing", Addison-Wesley Publishing Company, 1991.

(4) Vu, V. et al, "Time Encoded Matrices as Input Data to Artificial Neural Networks
for Condition Monitoring Applications", COMADEM '91, Southampton, UK, 1991.

(5) O'Brien, J.C, et al, "Can Neural Nets Work in Condition Monitoring ?",
COMADEM'92, Senlis, France, 1992.

(6) Kallio, K., et al, "Classification of Lung Sounds by Self Organising Feature Maps",
1st ICANN, Espoo, Finland, 1991.

(7) Aleksander, I., "Connectionism or Weightless Neurocomputing ?", 1st ICANN,
Espoo, Finland, 1991.

(8) Stroud, R.R, et al, "Neural Networks in Automated Weld Control", TWI, Gateshead,
UK, 1991.

(9) Ruch, T.C. "Neurophysiology", W.B. Saunders & Co., 1965.

(10) Dayhoff, J., "Neural Network Architectures: An Introduction", Van Nostrand
Reinhold, 1990.

(11) Eberhart, R.C. & Dobbins, R.W, "Neural Network PC Tools, A practicle Guide",
Academic Press Inc, 1990.

(12) Harris, T.J, "Neural Networks and their Application to Diagnostics and Control",
COMADEM'92, Senlis, France, 1992.

(13) Nadler, M., & Smith, E.P, "Pattern Recognition Engineering", John Wiley & Sons
Inc, 1992.

(14) Grossberg, S. "Embedding Fields: Underlying Philosophy, Mathematics,and
Applications to Psychology, Physiology and Anatomy", Journal of Cybernetics, Volume
1, pp28-50, 1971.

10


	DX195937_1_0001.tif
	DX195937_1_0003.tif
	DX195937_1_0005.tif
	DX195937_1_0007.tif
	DX195937_1_0009.tif
	DX195937_1_0011.tif
	DX195937_1_0013.tif
	DX195937_1_0015.tif
	DX195937_1_0017.tif
	DX195937_1_0019.tif
	DX195937_1_0021.tif
	DX195937_1_0023.tif
	DX195937_1_0025.tif
	DX195937_1_0027.tif
	DX195937_1_0029.tif
	DX195937_1_0031.tif
	DX195937_1_0033.tif
	DX195937_1_0035.tif
	DX195937_1_0037.tif
	DX195937_1_0039.tif
	DX195937_1_0041.tif
	DX195937_1_0043.tif
	DX195937_1_0045.tif
	DX195937_1_0047.tif
	DX195937_1_0049.tif
	DX195937_1_0051.tif
	DX195937_1_0053.tif
	DX195937_1_0055.tif
	DX195937_1_0057.tif
	DX195937_1_0059.tif
	DX195937_1_0061.tif
	DX195937_1_0063.tif
	DX195937_1_0065.tif
	DX195937_1_0067.tif
	DX195937_1_0069.tif
	DX195937_1_0071.tif
	DX195937_1_0073.tif
	DX195937_1_0075.tif
	DX195937_1_0077.tif
	DX195937_1_0079.tif
	DX195937_1_0081.tif
	DX195937_1_0083.tif
	DX195937_1_0085.tif
	DX195937_1_0087.tif
	DX195937_1_0089.tif
	DX195937_1_0091.tif
	DX195937_1_0093.tif
	DX195937_1_0095.tif
	DX195937_1_0097.tif
	DX195937_1_0099.tif
	DX195937_1_0101.tif
	DX195937_1_0103.tif
	DX195937_1_0105.tif
	DX195937_1_0107.tif
	DX195937_1_0109.tif
	DX195937_1_0111.tif
	DX195937_1_0113.tif
	DX195937_1_0115.tif
	DX195937_1_0117.tif
	DX195937_1_0119.tif
	DX195937_1_0121.tif
	DX195937_1_0123.tif
	DX195937_1_0125.tif
	DX195937_1_0127.tif
	DX195937_1_0129.tif
	DX195937_1_0131.tif
	DX195937_1_0133.tif
	DX195937_1_0135.tif
	DX195937_1_0137.tif
	DX195937_1_0139.tif
	DX195937_1_0141.tif
	DX195937_1_0143.tif
	DX195937_1_0145.tif
	DX195937_1_0147.tif
	DX195937_1_0149.tif
	DX195937_1_0151.tif
	DX195937_1_0153.tif
	DX195937_1_0155.tif
	DX195937_1_0157.tif
	DX195937_1_0159.tif
	DX195937_1_0161.tif
	DX195937_1_0163.tif
	DX195937_1_0165.tif
	DX195937_1_0167.tif
	DX195937_1_0169.tif
	DX195937_1_0171.tif
	DX195937_1_0173.tif
	DX195937_1_0175.tif
	DX195937_1_0177.tif
	DX195937_1_0179.tif
	DX195937_1_0181.tif
	DX195937_1_0183.tif
	DX195937_1_0185.tif
	DX195937_1_0187.tif
	DX195937_1_0189.tif
	DX195937_1_0191.tif
	DX195937_1_0193.tif
	DX195937_1_0195.tif
	DX195937_1_0197.tif
	DX195937_1_0199.tif
	DX195937_1_0201.tif
	DX195937_1_0203.tif
	DX195937_1_0205.tif
	DX195937_1_0207.tif
	DX195937_1_0209.tif
	DX195937_1_0211.tif
	DX195937_1_0213.tif
	DX195937_1_0215.tif
	DX195937_1_0217.tif
	DX195937_1_0219.tif
	DX195937_1_0221.tif
	DX195937_1_0223.tif
	DX195937_1_0225.tif
	DX195937_1_0227.tif
	DX195937_1_0229.tif
	DX195937_1_0231.tif
	DX195937_1_0233.tif
	DX195937_1_0235.tif
	DX195937_1_0237.tif
	DX195937_1_0239.tif
	DX195937_1_0241.tif
	DX195937_1_0243.tif
	DX195937_1_0245.tif
	DX195937_1_0247.tif
	DX195937_1_0249.tif
	DX195937_1_0251.tif
	DX195937_1_0253.tif
	DX195937_1_0255.tif
	DX195937_1_0257.tif
	DX195937_1_0259.tif
	DX195937_1_0261.tif
	DX195937_1_0263.tif
	DX195937_1_0265.tif
	DX195937_1_0267.tif
	DX195937_1_0269.tif
	DX195937_1_0271.tif
	DX195937_1_0273.tif
	DX195937_1_0275.tif
	DX195937_1_0277.tif
	DX195937_1_0279.tif
	DX195937_1_0281.tif
	DX195937_1_0283.tif
	DX195937_1_0285.tif
	DX195937_1_0287.tif
	DX195937_1_0289.tif
	DX195937_1_0291.tif
	DX195937_1_0293.tif
	DX195937_1_0295.tif
	DX195937_1_0297.tif
	DX195937_1_0299.tif
	DX195937_1_0301.tif
	DX195937_1_0303.tif
	DX195937_1_0305.tif
	DX195937_1_0307.tif
	DX195937_1_0309.tif
	DX195937_1_0311.tif
	DX195937_1_0313.tif
	DX195937_1_0315.tif
	DX195937_1_0317.tif
	DX195937_1_0319.tif
	DX195937_1_0321.tif
	DX195937_1_0323.tif
	DX195937_1_0325.tif
	DX195937_1_0327.tif
	DX195937_1_0329.tif
	DX195937_1_0331.tif
	DX195937_1_0333.tif
	DX195937_1_0335.tif
	DX195937_1_0337.tif
	DX195937_1_0339.tif
	DX195937_1_0341.tif
	DX195937_1_0343.tif
	DX195937_1_0345.tif
	DX195937_1_0347.tif
	DX195937_1_0349.tif
	DX195937_1_0351.tif
	DX195937_1_0353.tif
	DX195937_1_0355.tif
	DX195937_1_0357.tif
	DX195937_1_0359.tif
	DX195937_1_0361.tif
	DX195937_1_0363.tif
	DX195937_1_0365.tif
	DX195937_1_0367.tif
	DX195937_1_0369.tif
	DX195937_1_0371.tif
	DX195937_1_0373.tif
	DX195937_1_0375.tif
	DX195937_1_0377.tif
	DX195937_1_0379.tif
	DX195937_1_0381.tif
	DX195937_1_0383.tif
	DX195937_1_0385.tif
	DX195937_1_0387.tif
	DX195937_1_0389.tif
	DX195937_1_0391.tif
	DX195937_1_0393.tif
	DX195937_1_0395.tif
	DX195937_1_0397.tif
	DX195937_1_0399.tif
	DX195937_1_0401.tif
	DX195937_1_0403.tif
	DX195937_1_0405.tif
	DX195937_1_0407.tif
	DX195937_1_0409.tif
	DX195937_1_0411.tif
	DX195937_1_0413.tif
	DX195937_1_0415.tif
	DX195937_1_0417.tif
	DX195937_1_0419.tif
	DX195937_1_0421.tif
	DX195937_1_0423.tif
	DX195937_1_0425.tif
	DX195937_1_0427.tif
	DX195937_1_0429.tif
	DX195937_1_0431.tif
	DX195937_1_0433.tif
	DX195937_1_0435.tif
	DX195937_1_0437.tif
	DX195937_1_0439.tif
	DX195937_1_0441.tif
	DX195937_1_0443.tif
	DX195937_1_0445.tif
	DX195937_1_0447.tif
	DX195937_1_0449.tif
	DX195937_1_0451.tif
	DX195937_1_0453.tif
	DX195937_1_0455.tif
	DX195937_1_0457.tif
	DX195937_1_0459.tif
	DX195937_1_0461.tif
	DX195937_1_0463.tif
	DX195937_1_0465.tif
	DX195937_1_0467.tif
	DX195937_1_0469.tif
	DX195937_1_0471.tif
	DX195937_1_0473.tif
	DX195937_1_0475.tif
	DX195937_1_0477.tif
	DX195937_1_0479.tif
	DX195937_1_0481.tif
	DX195937_1_0483.tif
	DX195937_1_0485.tif
	DX195937_1_0487.tif
	DX195937_1_0489.tif
	DX195937_1_0491.tif
	DX195937_1_0493.tif
	DX195937_1_0495.tif
	DX195937_1_0497.tif
	DX195937_1_0499.tif
	DX195937_1_0501.tif
	DX195937_1_0503.tif
	DX195937_1_0505.tif
	DX195937_1_0507.tif
	DX195937_1_0509.tif
	DX195937_1_0511.tif
	DX195937_1_0513.tif
	DX195937_1_0515.tif
	DX195937_1_0517.tif
	DX195937_1_0519.tif
	DX195937_1_0521.tif
	DX195937_1_0523.tif
	DX195937_1_0525.tif
	DX195937_1_0527.tif
	DX195937_1_0529.tif
	DX195937_1_0531.tif
	DX195937_1_0533.tif
	DX195937_1_0535.tif
	DX195937_1_0537.tif
	DX195937_1_0539.tif
	DX195937_1_0541.tif
	DX195937_1_0543.tif
	DX195937_1_0545.tif
	DX195937_1_0547.tif
	DX195937_1_0549.tif
	DX195937_1_0551.tif
	DX195937_1_0553.tif
	DX195937_1_0555.tif
	DX195937_1_0557.tif
	DX195937_1_0559.tif
	DX195937_1_0561.tif
	DX195937_1_0563.tif
	DX195937_1_0565.tif
	DX195937_1_0567.tif
	DX195937_1_0569.tif
	DX195937_1_0571.tif
	DX195937_1_0573.tif
	DX195937_1_0575.tif
	DX195937_1_0577.tif
	DX195937_1_0579.tif
	DX195937_1_0581.tif
	DX195937_1_0583.tif
	DX195937_1_0585.tif
	DX195937_1_0587.tif
	DX195937_1_0589.tif
	DX195937_1_0591.tif
	DX195937_1_0593.tif
	DX195937_1_0595.tif
	DX195937_1_0597.tif
	DX195937_1_0599.tif
	DX195937_1_0601.tif
	DX195937_1_0603.tif
	DX195937_1_0605.tif
	DX195937_1_0607.tif
	DX195937_1_0609.tif
	DX195937_1_0611.tif
	DX195937_1_0613.tif
	DX195937_1_0615.tif
	DX195937_1_0617.tif
	DX195937_1_0619.tif
	DX195937_1_0621.tif
	DX195937_1_0623.tif
	DX195937_1_0625.tif
	DX195937_1_0627.tif
	DX195937_1_0629.tif
	DX195937_1_0631.tif
	DX195937_1_0633.tif
	DX195937_1_0635.tif
	DX195937_1_0637.tif
	DX195937_1_0639.tif
	DX195937_1_0641.tif
	DX195937_1_0643.tif
	DX195937_1_0645.tif
	DX195937_1_0647.tif
	DX195937_1_0649.tif
	DX195937_1_0651.tif
	DX195937_1_0653.tif
	DX195937_1_0655.tif
	DX195937_1_0657.tif
	DX195937_1_0659.tif
	DX195937_1_0661.tif
	DX195937_1_0663.tif
	DX195937_1_0665.tif
	DX195937_1_0667.tif
	DX195937_1_0669.tif
	DX195937_1_0671.tif
	DX195937_1_0673.tif
	DX195937_1_0675.tif
	DX195937_1_0677.tif
	DX195937_1_0679.tif
	DX195937_1_0681.tif
	DX195937_1_0683.tif
	DX195937_1_0685.tif
	DX195937_1_0687.tif
	DX195937_1_0689.tif
	DX195937_1_0691.tif
	DX195937_1_0693.tif
	DX195937_1_0695.tif
	DX195937_1_0697.tif
	DX195937_1_0699.tif
	DX195937_1_0701.tif
	DX195937_1_0703.tif
	DX195937_1_0705.tif
	DX195937_1_0707.tif
	DX195937_1_0709.tif
	DX195937_1_0711.tif
	DX195937_1_0713.tif
	DX195937_1_0715.tif
	DX195937_1_0717.tif
	DX195937_1_0719.tif
	DX195937_1_0721.tif
	DX195937_1_0723.tif
	DX195937_1_0725.tif
	DX195937_1_0727.tif
	DX195937_1_0729.tif
	DX195937_1_0731.tif
	DX195937_1_0733.tif
	DX195937_1_0735.tif
	DX195937_1_0737.tif
	DX195937_1_0739.tif
	DX195937_1_0741.tif
	DX195937_1_0743.tif
	DX195937_1_0745.tif
	DX195937_1_0747.tif
	DX195937_1_0749.tif
	DX195937_1_0751.tif
	DX195937_1_0753.tif
	DX195937_1_0755.tif
	DX195937_1_0757.tif
	DX195937_1_0759.tif
	DX195937_1_0761.tif
	DX195937_1_0763.tif
	DX195937_1_0765.tif
	DX195937_1_0767.tif
	DX195937_1_0769.tif
	DX195937_1_0771.tif
	DX195937_1_0773.tif
	DX195937_1_0775.tif
	DX195937_1_0777.tif
	DX195937_1_0779.tif
	DX195937_1_0781.tif
	DX195937_1_0783.tif
	DX195937_1_0785.tif
	DX195937_1_0787.tif
	DX195937_1_0789.tif
	DX195937_1_0791.tif
	DX195937_1_0793.tif
	DX195937_1_0795.tif
	DX195937_1_0797.tif
	DX195937_1_0799.tif
	DX195937_1_0801.tif
	DX195937_1_0803.tif
	DX195937_1_0805.tif
	DX195937_1_0807.tif
	DX195937_1_0809.tif
	DX195937_1_0811.tif
	DX195937_1_0813.tif
	DX195937_1_0815.tif
	DX195937_1_0817.tif
	DX195937_1_0819.tif
	DX195937_1_0821.tif
	DX195937_1_0823.tif
	DX195937_1_0825.tif
	DX195937_1_0827.tif
	DX195937_1_0829.tif
	DX195937_1_0831.tif
	DX195937_1_0833.tif
	DX195937_1_0835.tif
	DX195937_1_0837.tif
	DX195937_1_0839.tif
	DX195937_1_0841.tif
	DX195937_1_0843.tif
	DX195937_1_0845.tif
	DX195937_1_0847.tif
	DX195937_1_0849.tif
	DX195937_1_0851.tif
	DX195937_1_0853.tif
	DX195937_1_0855.tif
	DX195937_1_0857.tif
	DX195937_1_0859.tif
	DX195937_1_0861.tif
	DX195937_1_0863.tif
	DX195937_1_0865.tif
	DX195937_1_0867.tif
	DX195937_1_0869.tif
	DX195937_1_0871.tif
	DX195937_1_0873.tif
	DX195937_1_0875.tif
	DX195937_1_0877.tif
	DX195937_1_0879.tif
	DX195937_1_0881.tif
	DX195937_1_0883.tif
	DX195937_1_0885.tif
	DX195937_1_0887.tif
	DX195937_1_0889.tif
	DX195937_1_0891.tif
	DX195937_1_0893.tif
	DX195937_1_0895.tif
	DX195937_1_0897.tif
	DX195937_1_0899.tif
	DX195937_1_0901.tif
	DX195937_1_0903.tif
	DX195937_1_0905.tif
	DX195937_1_0907.tif
	DX195937_1_0909.tif
	DX195937_1_0911.tif
	DX195937_1_0913.tif
	DX195937_1_0915.tif
	DX195937_1_0917.tif
	DX195937_1_0919.tif
	DX195937_1_0921.tif
	DX195937_1_0923.tif
	DX195937_1_0925.tif
	DX195937_1_0927.tif
	DX195937_1_0929.tif
	DX195937_1_0931.tif
	DX195937_1_0933.tif
	DX195937_1_0935.tif
	DX195937_1_0937.tif
	DX195937_1_0939.tif
	DX195937_1_0941.tif
	DX195937_1_0943.tif
	DX195937_1_0945.tif
	DX195937_1_0947.tif
	DX195937_1_0949.tif
	DX195937_1_0951.tif
	DX195937_1_0953.tif
	DX195937_1_0955.tif
	DX195937_1_0957.tif
	DX195937_1_0959.tif
	DX195937_1_0961.tif
	DX195937_1_0963.tif
	DX195937_1_0965.tif
	DX195937_1_0967.tif
	DX195937_1_0969.tif
	DX195937_1_0971.tif
	DX195937_1_0973.tif
	DX195937_1_0975.tif
	DX195937_1_0977.tif
	DX195937_1_0979.tif
	DX195937_1_0981.tif
	DX195937_1_0983.tif
	DX195937_1_0985.tif
	DX195937_1_0987.tif
	DX195937_1_0989.tif
	DX195937_1_0991.tif
	DX195937_1_0993.tif
	DX195937_1_0995.tif
	DX195937_1_0997.tif
	DX195937_1_0999.tif
	DX195937_1_1001.tif
	DX195937_1_1003.tif
	DX195937_1_1005.tif
	DX195937_1_1007.tif
	DX195937_1_1009.tif
	DX195937_1_1011.tif
	DX195937_1_1013.tif
	DX195937_1_1015.tif
	DX195937_1_1017.tif
	DX195937_1_1019.tif
	DX195937_1_1021.tif
	DX195937_1_1023.tif
	DX195937_1_1025.tif
	DX195937_1_1027.tif
	DX195937_1_1029.tif
	DX195937_1_1031.tif
	DX195937_1_1033.tif
	DX195937_1_1035.tif
	DX195937_1_1037.tif
	DX195937_1_1039.tif
	DX195937_1_1041.tif
	DX195937_1_1043.tif
	DX195937_1_1045.tif
	DX195937_1_1047.tif
	DX195937_1_1049.tif
	DX195937_1_1051.tif
	DX195937_1_1053.tif
	DX195937_1_1055.tif
	DX195937_1_1057.tif
	DX195937_1_1059.tif
	DX195937_1_1061.tif
	DX195937_1_1063.tif
	DX195937_1_1065.tif
	DX195937_1_1067.tif
	DX195937_1_1069.tif
	DX195937_1_1071.tif
	DX195937_1_1073.tif
	DX195937_1_1075.tif
	DX195937_1_1077.tif
	DX195937_1_1079.tif
	DX195937_1_1081.tif
	DX195937_1_1083.tif
	DX195937_1_1085.tif
	DX195937_1_1087.tif
	DX195937_1_1089.tif
	DX195937_1_1091.tif
	DX195937_1_1093.tif



