
 

 

Structural Optimisation using Analytical Equations 

Andrew WATSON1 and Ichiro ARIO2 

 
Abstract:  Optimisation of structures requires the minimisation of an objective function 

subject to a set of constraints.  Typically the objective function is mass for mass sensitive 

structures or cost for heavy engineering projects.  However environmental sensitivity can be 

incorporated without any difficulty. For example in an energy scarce environment energy 

inputs can be considered as the objective function which can take into account all energy inputs 

such as material manufacture and structural element forming.  Mass and energy are in fact 

more important considerations than cost.  The barrier to this has been shaped by the political 

world where cost considerations are considered to be of paramount importance. 
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Introduction 
 

Optimization requires the minimization of an 

objective function subject to a set of constraints.  In 

structural engineering the objective function typically 

uses mass minimization as the objective function for 

example in aeronautical and automotive vehicles.  A 

globally optimized structure will typically result in a 

structure with the lowest mass that also satisfies all 

the constraints.  The constraint set may involve a 

large set of variables.  In this paper we will examine 

mass as the prime variable for minimization.  

Alternatively embodied energy or and cost can be 

minimized.  The structures considered have  of a 

small set of basic structures that have stiffness, 

buckling and stress constraints.   

 

Designers need to consider the longevity of a 

materials resource base and need to have an 

appreciation of the exponential expiry time of a 

materials resource base.  Whole lifecycle awareness 

of a structure also prevents poor decision making in 

structural design.  Low cost structures for example 

may have high maintenance costs so whole life cycles 

costs will in fact be higher than an initially high cost 

structure with low maintenance costs.  An often 

overlooked part of the structural design process is 

embodied energy, that is the energy used in the 

manufacture of the structure.  In an energy scare 

environment energy minimisation will become an 

increasingly more important objective function.  

Energy is closely linked to the environment so 

environmental sensitivity can be incorporated using 

materials with low energy embodiment values.   

 

Detailed structural design can be complex and this 

paper seeks only to encourage a more resilient 

manner in the design of structures. 

 

Beam Design subject to Stiffness Constraints 
 

The analysis of a simply supported beam subject to a 

central point load i.e. three point bending is achieved 

using Eq. (1).  This equation gives the central 

deflection, ,  of the beam when subject to a central 

point load, P.  The beam has length L and is made of 

an isotropic material with a Youngs modulus E.  The 

constant cross section has a second moment of area, 
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Initially we will assume that the cross section of the 

beam is square and assume the height (and breadth) 

of the beam is h. The density of the material can be 

assumed to be  
 

There is a linear relationship between load and 

displacement in Eq.(1) but it also shows that for a 

given beam there is a constant value of stiffness that 

is the value of P/.  An aircraft wing can be 

considered as a cantilever beam.  A simplified 

analysis of the wing will show that a minimum 

second moment of area is required to ensure that the 

wing tip does not touch the ground.  So a stiffness 

requirement with a known load and deflection can be 

calculated for our initial beam.  This is stated in 

Eq.(2) assuming the square cross section. 
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The mass of the beam is given by 

LhM 2         (3) 

where h2 is the cross sectional area.  Rearranging 

Eq.(3) gives an expression for mass, M, in terms of 

the density and length. Which can be substituted into 

Eq.(2) to give  
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Finally we can then establish that the mass M of the 

beam is given as: 
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Eq.(5) states that the mass of the beam is function of 

the defined stiffness P/, length L and the material 

properties of the beam namely density and Youngs 

modulus. If the assumption is made that the beam is 

constant has a required stiffness and fixed length then 

the lowest mass beam is achieved by searching for a 

material that has the lowest mass index given by the 

third bracketed term in Eq.(5).  This equation is the 

analytical solution to the minimum mass design for a 

square cross section beam that is simply supported 

and subjected to a central point load. 

 

Column Design subject to Buckling 

Constraints 
The critical buckling load, PCR, of a simply supported 

column can be calculated from Eq.(6).  The beam 

has length L and is made of an isotropic material with 

a Youngs modulus E.  The constant cross section has 

a second moment of area, I. 
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Initially we again will assume that the cross section 

of the beam is square and assume the width of the 

column b. The density of the material can be assumed 

to be It is assumed that the column is transmitting 

an axial load of a fixed value defined as R.  We will 

assume that the column is on the point of buckling so 

the load will equal the critical load defined in Eq.(6) 

and the aim is to achieve the minimum mass for the 

column.   

 

Proceeding as for the first example we can define the 

load R as  
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The mass of the column is given by 

LbM 2         (8) 

Finally we can then establish that the mass M of the 

beam is given as: 
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For the buckling of an isotropic fixed length column 

transmitting a defined axial load the lowest mass can 

be achieved by searching for a material that has the 

lowest mass index given by the third bracketed term 

in Eq.(9). 

 

Solid circular shaft subject to torsional 

stiffness constraints 
The torsion behavior of the circular shaft can be 

achieved using Eq.(10).  We will assume we want to 

achieve the lowest mass of a shaft with a circular 

cross section.  There is a linear relationship between 

torque, T, and angular displacement, . The elastic 

shear modulus is G and shaft has a length L. The 

torsion constant is J and the radius is R. 
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A torsional stiffness requirement can be defined i.e. 

for a given torque there will be a defined angular 

displacement.  Rearranging Eq.(10) and knowing 

that the cross section is circular we obtain. 
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The mass of the shaft is given by 

LRM 2        (12) 

Hence we can obtain mass in by substituting in for 

the radius R from Eq.(12) into Eq.(11) to obtain the 

following: 
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Materials Selection 
For the beam in three point bending to achieve the 

lowest mass from the materials given in Table 1 then 

the material that should be selected should be CFRP.  

Note because it was assumed that the material is 

isotropic it would be necessary to ensure that the 

lay-up of the composite beam was quasi-isotropic.  

The heaviest beam would be that composed of Steel.  

The range of materials in Table 1 is very limited but 

interesting does show that wood, which is a naturally 

occurring material, performs very well.  The 

complete list of materials in the order ash shown is 

Steel, Aluminium, Titanium, Glass Fibre Reinforced 

Plastic, Wood and Carbon Fibre Reinforced Plastic.    

 

Table 1:  Mass index for range of materials. 

Material Density 

,  

kgm-3 

Young’s 

Modulus, 

E, Nm-2 

Mass 

index 

(x106) 

Steel 7800 200x109 304 

Al 2700 69x109 106 

Ti 4500 120x109 169 

GFRP 2000 40x109 100 

Wood 600 12x109 30 

CFRP 1500 200x109 11.3 

 

For the column buckling problem the Table 1 can be 

used again to establish the material producing the 

lowest because the mass index for this problem is 

identical to the beam bending problem.  For the 

torsion problem the elastic modulus is the shear 

modulus not the Youngs modulus.  However the 



 

mass index has the same form as the first two 

problems and so Table 1 can be used again to 

establish the lowest mass index to produce the lowest 

mass shaft. 

 

Cost and Energy Index 
As an alternative to mass it may be that cost or 

energy is the objective function.  If cost is the 

objective function.  For lowest mass it was 

established that CFRP was the ideal choice however 

Table 2 shows that this would be the highest cost 

structure.  In fact wood turns out to be the cheapest 

material.  In addition to cost energy can be 

considered.  The energy index is a direct correlation 

to mass and is based on producing the material from 

its source.  It does not take into account the energy 

required to form the structure. 

 

Table 2:  Mass, Cost and Energy indices. 

Material Mass 

index 

(x106) 

Cost 

Index 

Energy 

index 

Steel 304 55 44 

Al 106 128 64 

Ti 169 1150 287 

GFRP 100 310 155 

Wood 30 11.9 0.68 

CFRP 11.3 2200 55 

 

Table 2 shows that wood has the lowest energy index.  

As a designer wood is in fact the best choice if mass, 

cost and energy are the primary considerations. 

 

Conclusions 
Optimization requires the minimization of an 

objective function subject to a set of constraints.  In 

structural engineering the objective function typically 

uses mass minimization as the objective function for 

example in aeronautical and automotive vehicles.  

Although wood is shown to be a material that 

performs well the size of the structural element was 

not shown.  The structural design process presented 

was very simplified but puts a process that should 

enable designers to articulate individual problems in 

a more analytical manner enabling improved choices 

to be made. 

 

Sustainability is an increasingly more important 

consideration and so energy is becoming an 

increasingly significant consideration.  Energy use 

is closely linked to the environment so environmental 

sensitivity can be incorporated using materials with 

low energy embodiment values.   

 

Detailed structural design can be complex and this 

paper seeks only to encourage a more resilient 

manner in the design of structures. 

 

The structural problems presented in this paper are 

based on those presented by Ashby and Jones, (2005). 
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