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Highlights

• Using Monte Carlo simulation we compare conditional DEA, latent class SFA

and StoNEZD

• In 200 scenarios, we focus on estimators ability to account for environmental

factors

• Latent class SFA outperforms cDEA and StoNEZD in most scenarios

• Noise-to-signal ratio is most important determinant of estimation accuracy
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Abstract

We compare three recently developed frontier estimators, namely the conditional

DEA (Daraio and Simar, 2005, 2007b), the latent class SFA (Orea and Kumbhakar,

2004; Greene, 2005), and the StoNEZD approach (Johnson and Kuosmanen, 2011)

by means of Monte Carlo simulation. We focus on their ability to identify production

frontiers and efficiency rankings in the presence of environmental factors. Our simu-

lations match features of real life datasets and cover a wide range of scenarios with

variations in sample size, distribution of noise and inefficiency, as well as in distribu-

tions, intensity, and number of environmental variables. Our results provide insight

in the finite sample properties of the estimators, while also identifying estimator-

specific characteristics. Overall, the latent class approach is found to perform best,

although in many cases StoNEZD shows a similar performance. Performance of

cDEA is most often inferior.

Keywords: OR in Energy, Monte Carlo Simulation, Environmental Factors,
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1. Introduction

1.1. Incorporating operational conditions in recent frontier approaches

Based on the seminal works of Koopmans (1951), Debreu (1951), and Farrell

(1957), a wide range of frontier approaches for measuring the efficiency of firms and

other decision making units (DMUs) evolved. Even in the very early stages of para-

metric frontier production models, Aigner et al. (1977, p. 25) mention “external

events such as luck, climate, topography, and machine performance” as causes for

deviations from the production frontier that are beyond the control of the DMUs and

are considered different from productive inefficiency. Thus, frontier estimation needs

to incorporate operational conditions when they affect the production possibilities;

otherwise, efficiency estimates are meaningless. Consequently, numerous ways to ac-

count for operational conditions in frontier estimation are proposed. Among many

others, influential parametric models include those by Kumbhakar and Hjalmarsson

(1993), Battese and Coelli (1995), and Greene (2005). Non- and semi-parametric ap-

proaches include Cazals et al. (2002), Simar and Wilson (2007b), Bǎdin et al. (2012),

Kumbhakar and Sun (2012), and Simar et al. (2016).

In this paper, we focus on three well established, yet newer, estimators and as-

sess their ability to account for external factors2 in a production setting by means

of Monte Carlo Simulation (MCS). We compare the non-parametric conditional

data envelopment analysis (cDEA, Daraio and Simar, 2005, 2007b), the paramet-

ric latent class stochastic frontier analysis (LC-SFA, Orea and Kumbhakar, 2004;

Greene, 2005), and the stochastic semi-nonparametric envelopment of z variables

data (StoNEZD, Johnson and Kuosmanen, 2011). We evaluate their performance in

estimating the frontier and efficiency accurately. Respective conclusions are feasible

because in controlled MCS environments all parameters and true values are known.

Therefore, our analysis provides new insights into the finite sample properties of

cDEA, LC-SFA, and StoNEZD. For this purpose, we measure their performance

2Throughout the paper, we use the terms operational conditions, environmental variables, and
external factors interchangeably.
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across a wide spectrum of scenarios with varying sample sizes and distributions

of noise and inefficiency. We further consider different types of external factors

(including the case with multiple environmental variables) and different intensities

with which the operational conditions affect the frontier. Our analysis immedi-

ately confronts the estimators’ performances against one another in the presence of

heterogeneous operational conditions, which is of particular interest for most real-

life applications of frontier analysis, such as benchmarking in electricity regulation.

To address this, our data generating process (DGP) attempts to match features of

real-life datasets, e.g., high correlations among inputs, non-normal distributions of

environmental factors, and samples including a few large firms.

Although each of the three estimators is specifically designed to control for oper-

ational conditions, they differ considerably in the way they incorporate external

factors. cDEA, for example, incorporates the environment by constructing for each

unit a set of units of with a similar environment leading to a unit-specific effect of

the environmental factors; LC-SFA accounts for a group-wise effect of the environ-

ment by grouping the units according to their environment, and StoNEZD assigns

an average effect of the environment for all observations. As a result, the estimator

also differ considerably in their statistical characteristics.

To the best of our knowledge, we are the first to provide a comparative MCS study

covering non-parametric, parametric, and semi-parametric approaches while focus-

ing on the estimators’ ability to account for environmental factors. Closely related

to our analysis is the work by Andor and Hesse (2014), who compare the stochastic

non-smooth envelopment of data (StoNED), data envelopment analysis (DEA), and

stochastic frontier analysis (SFA), i.e., the counterparts of the estimators we compare

but without controlling for operational conditions. Our analysis complements their

findings and, due to the methodological proximity, results of Andor and Hesse might

give indications for the performance of cDEA, LC-SFA, and StoNEZD. The authors

find SFA to perform best overall. However, StoNED performs well in noisy settings

compared to DEA and SFA, but has a general tendency to underestimate the true

frontier and is more sensitive to an increasing number of explanatory variables.

Further studies related to our analysis include Krüger (2012), who compares DEA,

Free Disposable Hull (FDH), and SFA approaches with the more recently developed
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order-m and order-α estimators. Results indicate no advantage in using the more

complex order-m and order-α approaches for well-behaved production settings and

low levels of noise. Similar to our study, three other simulation studies focus on

environmental factors in frontier estimation. Yu (1998) compares several SFA and

DEA approaches, and finds a general advantage of SFA if the model is correctly

specified. DEA approaches, such as two-stage Tobit DEA and the approach by

Banker and Morey (1986), are found to perform reasonably well if the effect of the

environmental variables is low, but performance deteriorates drastically otherwise.

Cordero et al. (2009) compare different ways to account for environmental factors in

DEA. The study finds that the four-stage model introduced by Fried et al. (2002)

dominates other approaches. Finally, Cordero et al. (2016) compare conditional DEA

and conditional FDH (cFDH) with DEA approaches. They find that cDEA performs

best with respect to identifying efficient units, while other estimators can compete

in terms of rank correlations.

The remainder of this paper is structured as follows. After a brief overview of reg-

ulatory benchmarking in Section 1.2, Section 2 outlines and compares the different

frontier estimators. Section 3 explains the simulation design, the different scenarios

considered in the simulation, and the implementation of the simulation. Section 4

presents the results, and Section 5 concludes.

1.2. Regulatory benchmarking in electricity distribution

To mitigate information asymmetries between regulated firms and regulators (see

Laffont and Tirole, 1993), European regulators tend to combine price or revenue cap

schemes with benchmarking techniques, especially in the regulation of electricity dis-

tribution networks (for overviews see Agrell et al., 2013b; Haney and Pollitt, 2009).

Regulators approximate the unknown technologies of the firms by means of frontier

estimation and use estimated inefficiency to set the firms’ production or cost targets,

which are ultimately translated into the respective regulatory outcome.

Given that the production process, costs, and observed data are likely to be in-

fluenced by external factors, the maximal (minimal) output (input) a firm is able

to achieve, will vary due to the presence of external factors. Failing to control for
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the operational environment in this context is likely to transfer to the firms’ ineffi-

ciency estimates and penalizes or favors firms and customers (see, e.g., Agrell and

Brea-Soĺıs, 2017). It remains, therefore, a challenge for regulatory authorities to im-

plement appropriate benchmarking techniques.

Certainly, European regulators, who frequently implement DEA, SFA and variations

of those, are well aware of the necessity of taking operational conditions into account.

However, they also show interest in adapting their practice to methodological devel-

opments. In Finland, for example, StoNEZD replaced previously employed DEA

and SFA approaches for reasonable pricing of electricity distribution network opera-

tors in the third regulatory period 2012-2015 (EMA, 2013). Further, the Norwegian

regulatory model continuously advances, especially with respect to incorporating

operational environments (Bjørndal et al., 2010). Monte Carlo studies, like ours,

provide insights into how severe the deviations from the true frontier due to envi-

ronmental factors are for a variety of scenarios and, therefore, contribute to improve

actually implemented regulatory benchmarking procedures.

Apart from regulation, using information on external environments is a relevant issue

in applications on energy companies (see, e.g., Anaya and Pollitt, 2017; Llorca et al.,

2014). Emphasizing the broader relevance of our results for a variety of countries

and industries, a large body of literature applies production frontier estimators to

various other industries and network infrastructures worldwide (for overviews see,

e.g., Estache et al., 2006; Coelli et al., 2003) as well as to banking (Aggelopoulos and

Georgopoulos, 2017), health (Ancarani et al., 2009), and education services (Haeler-

mans and De Witte, 2012; De Witte and Geys, 2013).

2. Methodology

We consider a production model with n (i = 1, ..., n) DMUs, i.e., firms. Each

firm employs M inputs xi1, ..., xiM with the firm’s input vector xi to produce scalar

output yi. All firms have access to the same production technology with the pro-

duction function f(x) that gives maximum output for a given input level. A firm’s

actual output can deviate from the maximum due to random noise vi, non-negative

inefficiency ui, and due to the impact δ = (δ1, ..., δL) of L environmental factors

zi = (zi1, ..., ziL)′. The multiplicative model is written as yi = f(xi)exp(εi) with
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εi = δzi + vi − ui, and can be interpreted in two ways (Johnson and Kuosmanen,

2011): δzi influences the location of the frontier and the attainable output for each

i, or it influences i’s distance to the production function.

2.1. Conditional DEA

Initially proposed by Cazals et al. (2002) and further developed by Daraio and

Simar (2005, 2007a,b), cDEA is one extension of the standard DEA to incorporate

environmental factors in performance evaluations. The approach aims to compare

only units that operate under similar operational environments, i.e., the selection

of the reference group for a particular observation is conditional on z. cDEA does

not rely on the separability condition between the output space and the space of

z-variables (Simar and Wilson, 2007a). Hence, z can influence the shape of the pro-

duction set, and thus, the frontier.

cDEA estimates efficiency scores based on an attainable production set that is con-

ditioned on a set of z-variables, denoted as Ψ̂z
DEA. The statistical properties of this

estimator are derived in Kneip et al. (2008), and consistency is established in Jeong

et al. (2010). Estimating Ψ̂z
DEA implies the estimation of a nonstandard conditional

distribution function, where the production process is conditional to a particular

level of z (Daraio and Simar, 2007b; Bădin et al., 2010). Since the latter requires

the application of a smoothing technique, we conduct kernel estimation. The kernel

K is defined as

Kh =
|zi − zk|

h
, (1)

where zi is the vector of z-variables of the unit of interest i, zk is the vector of all

other observations, and h is the vector of selected bandwidths. The kernel function in

eq. (1) provides firm-specific kernel probabilities that are used to define firm-specific

reference sets. The firms closely located to firm i in terms of z thereby receive higher

kernel probabilities, whereas small (or even zero) kernel probabilities are assigned to

firms facing very different operating environments than firm i.

The cDEA efficiency measure θ̂DEA(x, y|z) for a single observation assuming variable

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

returns to scale is defined as (Daraio and Simar, 2007b)

θ̂DEA(x, y|z) = max {θ > 0 | θy ≤∑n
i|z−h≤zi≤z+h λiyi,

x ≥∑n
i|z−h≤zi≤z+h λixi,

∑n
i|z−h≤zi≤z+h λi = 1, i = 1, ..., n}.

(2)

For each observation, the bandwidths determine the range of z in which other ob-

servations are considered to be similar. Hence, only observations within this range

are selected into the respective reference group, and are considered as potential ref-

erences for the unit of interest. For implementation, the reference set of firm i is

restricted to those firms with positive kernel probabilities. The frontier reference

point of firm i is obtained by ŷi = θ̂i,DEA(xi, yi|zi)yi.

2.2. Latent class SFA

The LC-SFA estimator, proposed by Greene (2002), Caudill (2003) and Orea and

Kumbhakar (2004), belongs to the class of stochastic and parametric approaches. It

accounts for heterogeneity among firms by endogenously sorting them into a pre-

specified number of groups. For each group, a separate frontier is estimated, and

each firm gets a probability to belong to each group. The group-specific frontiers are

allowed to differ in their parameters, thus, in their shapes. Therefore, contrary to

standard SFA with environmental factors, LC-SFA accounts for a technology shift

induced by the environmental factor and technological heterogeneity.

LC-SFA estimates the group-specific parameters for n observations with J (j =

1, ..., J) groups of the form log yi = f(xi, βj)− ui|j + vi|j = f(xi, βj) + εi|j. This can

be estimated via maximum Likelihood (ML), and requires further assumptions: an

a priori specified functional form for f(x), e.g., Cobb-Douglas or Translog. Distri-

butional assumptions are necessary for the noise and inefficiency components, which

typically enter the likelihood function as normal noise v ∼ N(0, σv) and half-normal

inefficiency u ∼ N+(0, σu). Given these assumptions, a log-density for firm i for

each group j can be imposed with the standard parameterization σ2
j = σ2

uj + σ2
vj,
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λj = σ2
uj/σ

2
vj and εij = εi(βj) = log y − log f(xi, βj) such that

logLFij = −1

2
log

π

2
− 1

2
log σ2

j + log Φ


−λjεij√

σ2
j


− ε2ij

σ2
j

. (3)

The contribution of firm i to the final likelihood function is the likelihood for each

class j, LFij, weighted with the probability to belong to j, Pij, such that

LFi =
J∑

j=1

LFijPij. (4)

The probability to belong to a certain group uses a multinomial logit with standard

assumptions on probabilities (0 ≤ Pij ≤ 1;
∑J

j=1 Pij = 1). At this point, zi enters the

likelihood function and determines the probabilities of each firm to belong to each

of the J groups, such that

Pij(ζj) =
exp(ζjzi)∑J
j=1 exp(ζjzi)

, (5)

with ζ as logit parameters to estimate and ζJ = 0. Given this parameterization, the

final log-likelihood function to be maximized is obtained as

LF =
n∑

i=1

{
J∑

j=1

LFijPij(ζj)

}
(6)

Note that each observation enters the likelihood function J times and can influence

the shape of all group frontiers, depending on the weight Pij(ζj). As a result, an

observation has a reference point on each group frontier. To obtain one final reference

point, one can either use the group frontier with the highest probability, or calculate

a weighted reference point using the conditional posterior class probabilities P (j|i)
(Orea and Kumbhakar, 2004). Following Greene (2002), P (j|i) can be calculated

as P (j|i) =
LFijPij(ζj)∑J
j=1 LFijPij(ζj)

. We use the weighting approach to incorporate more

information about the underlying data structure. Thus, a frontier reference point
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is calculated as probability weighted reference points from the J frontiers such that

log ŷi =
∑J

j=1 P (j|i) log f̂(xi, βj).

2.3. StoNEZD

StoNEZD, proposed by Johnson and Kuosmanen (2011), is a semi-nonparametric

approach that extends the standard StoNED estimator (Kuosmanen and Korte-

lainen, 2012). It incorporates an average effect of the operational environment com-

mon to all firms, and the production frontier is estimated in two stages: The first

stage estimates an average production function g(x) with concave non-parametric

least squares (CNLS, Hildreth, 1954) accounting for z. In the second stage, g(x) is

shifted upwards to obtain a frontier estimate. This shift is based on the expected

value of inefficiency derived from the residuals from the first stage based on para-

metric assumptions.

Johnson and Kuosmanen (2011) show that a multiplicative model yi = f(xi)exp(κi)

can be estimated with such a two-stage approach. For the first stage, a quadratic

programming problem (QP) estimates the shape of g(x) without any assumptions

on a functional form but establishes concavity and monotonicity of the production

function. Further, the QP directly takes into account that the firm’s deviation from

this average is influenced by the existence of z. No distributional assumptions for u

and v are necessary in this stage, but u, v and z are assumed to be uncorrelated.

To estimate g(x), Johnson and Kuosmanen (2011) propose a minimization of the

squared residual accounting for z using the following constrained QP:

min
α,β,δ,φ

n∑

i=1

(log yi − log φ̂i − δzi)2 (7)

s.t. φ̂i = αi + xiβi ∀i = 1, ..., n,

αi + xiβi ≤ αh + xiβh ∀h, i = 1, ..., n,

βi ≥ 0 ∀i = 1, ..., n.

This QP estimates firm-specific coefficients αi and βi that can be interpreted as the

marginal products of the inputs. They create linear hyperplanes φ̂, which are tangent

to the average production function and deliver the fitted values on ĝ(x). Microeco-
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nomic requirements on production functions are imposed as constraints in eq. (7):

The first constraint establishes a linear form of the hyperplanes. The second con-

straint imposes concavity using Afriats inequalities (Afriat, 1967). These concavity

constraints relate the piece-wise linear hyperplanes for all observations against each

other leading to n2 separate constraints. The third constraint ensures monotonicity of

the estimated average production function. Further, the QP estimates the impact of

the environmental factor, δ, which is identical for all firms. A residual for each obser-

vation containing noise and inefficiency is given by η̂i = log yi− log φ̂i− δ̂zi = κ̂i− δ̂zi.
In the second stage, to shift the average production function ĝ(x) to the frontier, the

residuals η̂i of the QP are used to estimate the expected value of inefficiency µ.

Further distributional assumptions for noise and inefficiency are necessary. Follow-

ing Kuosmanen and Kortelainen (2012), we assume a half-normal distribution for

the inefficiency term, u ∼ N+(0, σu), and a normal distribution for the noise term,

v ∼ N(0, σv). Following Aigner et al. (1977), Kuosmanen and Kortelainen (2012)

suggest using a method of moments (MM) estimator to derive the expected value

of inefficiency.3 This approach uses the property of the third central moment of

a normal-half-normal residual to be a function of only one parameter, σu. Using

the empirical third moment of the residuals, M̂3, an estimate σ̂u can be recovered

by calculating σ̂u = 3

√
M̂3√
2
π
[1− 4

π
]
. Subsequently, the expected value of inefficiency

is calculated as µ̂ = σ̂u
√

2/π. Now, the frontier is derived as f̂(x) = ĝ(x)exp(µ̂).

Firm-specific frontier reference points can be estimated from the shifted average pro-

duction function accounting for the impact of z, such that ŷi = ĝ(xi)exp(δ̂zi)exp(µ̂)

for each observation.

2.4. Comparison of the estimators

The three estimators differ in their characteristics considerably. First, their a

priori assumptions on the production process differ since cDEA is a non-parametric,

StoNEZD a semi-parametric, and LC-SFA a parametric estimator. While cDEA

3Kuosmanen and Kortelainen (2012) also propose a pseudo-likelihood (PSL) approach following
Fan et al. (1996) to estimate µ. We use the MM estimator due to its computational ease.
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and StoNEZD need only few assumptions on the technology set, e.g., monotonicity,

convexity of the production set and certain scaling assumptions, LC-SFA demands

a functional form to be specified in advance (e.g., Cobb-Douglas or Translog). As

a result, cDEA and StoNEZD are more flexible in the frontier estimation; however,

LC-SFA can also estimate non-convex production sets. This difference in the nature

of the estimators is also reflected in their asymptotic properties, and in particular in

their rates of convergence: LC-SFA converges with the standard parametric rate of

convergence, n−1/2. cDEA converges with n−2/(m+q+1) with m and q being the num-

ber of inputs and outputs, respectively. Further, the conditional version is slower

by factor n−4/4+r with r being the number of z-variables (Kneip et al., 1998; Jeong

et al., 2010). For StoNEZD, Johnson and Kuosmanen (2011) show that δ converges

with the standard parametric rate, n−1/2, while convergence rate of the CNLS es-

timation is unknown (Kuosmanen et al., 2015). However, following Stone (1980,

1982), Johnson and Kuosmanen (2011) suggest an upper limit n−2d/(2d+m) with d

being the degree of differentiability and m the number of inputs. Thus, both, cDEA

and StoNEZD suffer from the “curse of dimensionality” with increasing data demand

for additional dimensions on the input and output side.

Second, the estimators differ in the treatment of noise and inefficiency. cDEA is

purely deterministic and the existence of noise is not considered, i.e., σ2
v = 0. Thus,

the estimator is prone to outliers, which can lead to an overestimation of the fron-

tier. On the contrary, LC-SFA and StoNEZD allow a differentiated treatment based

on distributional assumptions with σ2
v ≥ 0, which makes them less prone to noise.

However, frontier and efficiency estimates depend on the distributional assumption

for noise and inefficiency.

Third, the estimators vary considerably regarding the incorporation of environmental

factors. cDEA constructs observation-specific reference sets depending on the real-

ization of z and the estimated bandwidths. Thus, the estimated effect of z on the

frontier is observation-specific. LC-SFA uses all observations in the frontier estima-

tion, and the reference sets are weighted with the probabilities of group membership.

As a result, with LC-SFA the effect of z-variables on the frontier is also weighted

and varies from one firm to another. StoNEZD uses the whole sample as a reference

set resulting in an effect of z on the frontier that is common to all observations.
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Fourth, StoNEZD is a two-stage approach, cDEA is a one-stage approach estimated

in two stages, and LC-SFA is a one-stage approach. Under cDEA, inefficiency and

potential noise may influence the estimated bandwidths, which ultimately influence

the reference sets. Similarly, the δ coefficient in the first stage of the StoNEZD might

capture effects from the so-far neglected inefficiency term. These problems should

not be present in the LC-SFA estimation, since LC-SFA considers environmental

factors, noise, and inefficiency in one estimation.

And fifth, the approaches differ with respect to the identification of reference units.

cDEA clearly identifies the reference set with similar units, and the units that span

the frontier. StoNEZD identifies at least the observations that share a facet of the

frontier. Such identification is not possible with LC-SFA. Further, the weighting

approach in the LC-SFA can project all firms on different levels between multiple

group frontiers.4

3. Simulation design and implementation

3.1. The data generating process

Using MCS, we can assess the performance of the estimators because the true

position of the frontier and its characteristics are known. By varying the parameters

of the DGP, the reaction of the estimator to these changes can be evaluated. Our

DGP attempt to incorporate features of real-life datasets, as they could be also

encountered by practitioners, such as regulatory authorities.5

To construct our datasets, we calculate a one-dimensional output yi for each of the

n observations. yi is a function of the input vector xi, which collects the M inputs

(xi1, ..., xiM) that are transformed into outputs using a production function f(x). L

environmental factors zi = (zi1, ..., ziL)′ influenced the maximum output f(xi) with

impact δ = (δ1, ..., δL) that is common to all firms. The observed output of a firm

4The same applies for the counterparts of the estimators that do not control for the environment,
DEA, SFA, and StoNED, respectively.

5To calibrate the parameters of the DGP, we use features of regulatory datasets. E.g., the
sample composition, the number of and correlation among inputs, and the specification of environ-
mental factors are inspired by analysis of regulatory data from Finland (Kuosmanen, 2012), Norway
(Bjørndal et al., 2010), and Germany (Agrell et al., 2013a).
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observed may deviate from this maximum due to noise vi and inefficiency ui. The

output yi is calculated as

yi = f(xi)exp(δzi)exp(vi − ui) (8)

Our defined sample sizes reflect that real datasets often contain heterogeneous firm

sizes with few considerably larger firms. We assume that a sample contains nsmall

small and nlarge large firms with nsmall = {25, 50, 100, 150, 250}. nlarge are additional

4% of the small firms, i.e., nlarge = 0.04nsmall. Thus, the total number of observations

in the sample is n = {26, 52, 104, 156, 260}.
We assume noise to follow a normal and inefficiency a half-normal distribution, i.e.,

v ∼ N(0, σ2
v) and u ∼ |N(0, σ2

u)|. We set σv = {0.01, 0.1} and σu = {0.1, 0.3}, re-

sulting in four potential noise/inefficiency set-ups with noise-to-signal ratios between

0.03̄ and 1, and expected values of inefficiency, µ, of about 8% and 20% (see Table 1).

HHHHHHHσu

σv
0.01 0.1 µ

0.1 0.1 1 8.0%

0.3 0.03̄ 0.3̄ 20.1%

Table 1: Noise-to-signal ratios and expected inefficiency

Each DMU employs M = 4 inputs, which are correlated uniform variables. We define

the range of the inputs to vary between [0, 10] for small firms, and [20, 30] for large

firms. Correlations among the inputs are given by the following matrix indicating

moderate to high correlation between 0.55 and 0.85.

ρX =




1 0.55 0.65 0.75

1 0.7 0.8

1 0.85

1


 (9)
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For the production function f(x), we assume a Translog specification, such that

f(x) = po

M∏

m=1

x(pm)
m

M∏

m=1

x(1/2)
∑M
l=1 pml log xl

m . (10)

Decreasing returns to scale are imposed with pm = 0.15, p11 = −0.10, p22 = −0.15,

p33 = 0.10, p44 = 0.15, and with symmetric cross-terms p12 = 0.0, p13 = 0.01,

p14 = 0.05, and p23 = p24 = p34 = −0.1.6

We define L = 3 environmental factors, z1, z2, z3. z1 is drawn from N(1, 0.152) and

symmetrically distributed with mean one while values below zero are basically ruled

out. z2 is drawn from TExp(5.5, 1), an exponential distribution with rate 5.5, trun-

cated at 1, and with a mean of 0.178. Thus, only realizations in (0, 1] are possible

and small values of z2 are more likely than values close to one. z3 is drawn from

Γ(2, 1), a Gamma distribution with mean two. Again, values below zero cannot be

observed, but the distribution is not truncated at the upper end. The distributions

of the variables resemble operational conditions observed in real reuglatory data: Us-

ing a Kolmogorov-Smirnov (KS) test indicates that the percentage of underground

cabling used in regulation of Finnish electricity distribution system operators (see

Kuosmanen, 2012) stems, like z2, from a truncated exponential distribution. Like-

wise, the KS test shows that the snow fall variable in the Norwegian DSO regulation

follows a Gamma distribution.

3.2. Scenarios considered

Table 2 lists our ten scenarios. First, we construct three baseline scenarios BL1

to BL3 which include one environmental factor each, z1 to z3. For these baseline

scenarios, the impact of the environmental variables on the frontier is small to mod-

erate, with an average frontier shift of about 5% (cp. Table 2).

Second, in three high impact scenarios (HI1, ..., HI3) we triple the impact of the

environmental variables leading to an average frontier shift between 14.7% and 15%.

6We thank an anonymous referee for the suggestion. As will be outlined in Section 3.3, we will
further ensure monotonicity and concavity of the estimated production function in the implemen-
tation of the DGP.
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zl ρz δl 1-exp(δlz̄l)

BL1 z1 0 -0.05 4.9%
BL2 z2 0 -0.3 5%
BL3 z3 0 -0.025 5%

HI1 z1 0 -0.15 14.7%
HI2 z2 0 -0.9 15%
HI3 z3 0 -0.075 15%

MZ1 z1, z2 0 -0.05, -0.3 9.8%
MZ2 z1, z2 0 -0.1, -0.6 19.6%
MZ3 z1, z2 0.5 -0.05, -0.3 9.8%
MZ4 z1, z2 0.5 -0.1, -0.6 19.6%

Table 2: Scenarios

Thus, in HI scenarios with low inefficiency (σu = 0.01), the average deviation of the

firms from the frontier is driven more by the environment than by inefficiency.

Third, we construct four scenarios with multiple z-variables (MZ1, ...,MZ4), for

which two environmental factors impact the frontier. For these scenarios, the av-

erage frontier shift varies between 9.8 and 19.6%. We use z1 and z2 to influence

the firms’ production potentials. In scenarios MZ1 and MZ2, the environmental

variables are uncorrelated, whereas in MZ3 and MZ4, we set ρz1,z2 = 0.5.

3.3. Implementation

To cover a large spectrum of potential datasets, we estimate each of the 10 sce-

narios for each sample size and for each noise-to-signal ratio in Table 1, resulting in

10·5·4=200 cases to simulate. We use 200 replications (R = 200) with fixed seeds,

resulting in a total of 40,000 estimations for each estimator. This offers certain gen-

erality and a solvable number of cases to analyze.

For each of the 200 cases, we generate one set of inputs, environmental factors, and

inefficiencies. We generate R random draws of noise and then calculate the observed

output. Thus, variation among the R draws stems only from variation in noise. All

estimations run with the correctly specified model, i.e., all inputs are considered. To

ensure comparability of the datasets, we discard sets and redraw if (I) at least one
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correlation deviates from the input correlation matrix by ±0.05, (II) the resulting

setting is not quasi-concave or monotonically increasing for more than 90% of the

observations, (III) the composite error term (v − u) has wrong (positive) skewness.

For the StoNEZD estimator, the expected value of inefficiency is estimated using

a method of moments estimator. Following Kuosmanen and Kortelainen (2012), if

wrong skewness occurs in the estimation of the expected inefficiency, i.e., M̂3 > 0, we

set M̂3 = −0.0001. For the LC-SFA estimator, we use a Cobb-Douglas specification

for all sample sizes.7 To choose the optimal number of groups, LC-SFA is estimated

for J = {2, 3, 4} and the estimation with the optimal Bayesian Information Crite-

rion (BIC) is chosen and reported. Further, to reduce the risk of local optima in

the ML procedure, optimization is carried out five times for each J with random

starting values, and the solution with the best BIC is reported. For cDEA, we use

an Epanechnikov kernel following Daraio and Simar (2005, 2007b). Bandwidths are

computed using least squares cross validation proposed by Hall et al. (2004) and Li

and Racine (2007, 2008).8, 9

Although our simulation aims at implementing a fair comparison of the estima-

tors, some components may create estimator-specific (dis)advantages. Generally,

the used production function for simulation (eq. 8) resembles the underlying model

of the StoNEZD estimator, but does not contradict assumptions of the other ap-

proaches. The check for concavity and monotonicity of the production function

enables StoNEZD and cDEA to compete with LC-SFA, which would be able to esti-

mate non-concave settings. The specification of a normal noise and half-normal inef-

ficiency matches the model assumptions for LC-SFA and StoNEZD, and a different

specification might challenge these estimators additionally. This includes that we do

not include fully efficient firms, which can disadvantage cDEA. However, although

we model noise in every simulation, the small noise component in scenarios with

7This allows us to also estimate small samples, because the number of parameters to estimate
increases with J , and, e.g., a LC-SFA with three groups and four inputs has 48 parameters in a
Translog specification, but only 15 if a Cobb-Douglas model is estimated.

8The estimated efficiency scores depend on the kernel smoothing; other kernels and bandwidth
selection procedures are available, see, e.g., Cazals et al. (2002); Daraio and Simar (2005, 2007b).

9We implement StoNEZD using GAMS, and LC-SFA and cDEA using R with the packages np,
minqa, lpSolveAPI, and micEcon. Simulations run on a 32 CPU 2.8 MHz AMD with 512 GB RAM.
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σv = 0.01 offers the deterministic cDEA settings close to its assumptions. Finally,

for LC-SFA, the strong correlation of inputs might lead to problems of multicollinear-

ity, while StoNEZD and cDEA may suffer from the curse of dimensionality due the

fairly high number of inputs.

4. Results

4.1. Performance measures

We evaluate the performance of cDEA, StoNEZD and LC-SFA with respect to

the frontier estimate and the rankings of the efficiency scores. Following the litera-

ture, we consider the bias and the mean squared error (MSE) as criteria for frontier

estimation accuracy (e.g., Andor and Hesse, 2014; Kuosmanen et al., 2013). The

bias delivers the average total deviation from the true frontier as a percentage. A

positive (negative) sign indicates overestimation (underestimation) of the frontier,

i.e., DMUs’ output targets and inefficiencies are too high (low). The MSE is the

average squared deviation from the frontier and is greater than or equal to zero. It

penalizes larger deviations more strongly, and a higher value indicates a stronger

deviation from the true frontier. For bias and MSE values close to zero are desirable.

We calculate a firm’s optimal output given its environmental conditions, f z(xi), us-

ing the true value on the frontier f(xi) corrected by the effect of the environmental

variable, i.e., f z(xi) = f(xi)exp(
∑

l δlzli). Based on the estimated frontier refer-

ence point f̂ z(xi) for n observations and R simulation replications, the performance

measures are defined as:

BIAS =
1

nR

R∑

r=1

n∑

i=1

f̂ z(xi)− f z(xi)
f z(xi)

(11)

MSE =
1

nR

R∑

r=1

n∑

i=1

(
f̂ z(xi)− f z(xi)

f z(xi)

)2

(12)

To evaluate performance in terms of efficiency estimation, we calculate efficiency

scores as the ratio of a DMU’s observed and estimated optimal output, i.e., ˆTEi =
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yi/f̂(xi|zi).10 The true inefficiency is given by TEi = exp(−ui). To analyze rank

correlation coefficients, we use Kendall’s τ , for which a value τ = 1 (τ = −1)

indicates an identical ranking (a perfect inversion) of true and estimated efficiency

scores, while a value of 0 indicates no association of the two measures. Defining nc

as the number of concordant pairs and nd as discordant pairs, τ is calculated as

τ =
nc − nd

n(n− 1)/2
. (13)

4.2. Precision of frontier estimates

4.2.1. Baseline scenarios

First, we analyze the precision of the frontier estimates for the BL scenarios in

which the defined environmental variables only moderately influence the frontier.

Figures 1 to 3 show BIAS and MSE for the BL scenarios on the y-axes of the upper

and lower row of panels, respectively.11. Noise and inefficiency parameters are indi-

cated on top of each column and sample sizes are on the x-axes. Thus, the panel

in the upper left corner of Figure 1 (BIAS panel 1) depicts the BIAS for the low-

noise-low-inefficiency setting (σv=0.01, σu=0.1) when z1 has a moderate effect on the

frontier. Accordingly, the panel in the bottom right corner of Figure 1 (MSE panel 4)

shows the MSE for the high-noise-high-inefficiency setting (σv=0.1, σu=0.3). cDEA,

LC-SFA and StoNEZD results are represented by filled rectangles, circles, and filled

triangles, respectively.

In BL1 the environmental variable z1 is drawn from a normal distribution. For

cDEA, results indicate a positive BIAS between 0.1 and 0.4 in almost all cases (com-

pare panels in top row of Figure 1). This indicates a general overestimation of the

frontier and unreasonably high output requirements for firms to be considered as

efficient. This upward bias is less pronounced in scenarios with high inefficiency

(σu = 0.3, compare BIAS panel 1 with panel 2, and panel 3 with panel 4), but partly

increases with additional noise (compare BIAS panel 2 with panel 4). Likewise, the

10Alternatively, for StoNEZD and LC-SFA stochastic efficiency estimators could be used (e.g.,
Jondrow et al., 1982), which are, however, inconsistent. As Kuosmanen (2012) points out, a con-
sistently estimated frontier could be more suitable than an inconsistent point estimate of efficiency.

11Numerical results are provided in the supplementary material.
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MSE for cDEA shows deviations of up to 0.35, indicating considerable error in the

estimation. As for the bias, the lowest MSE values are found for cases with low noise

and high inefficiency, although extreme MSEs occur sporadically, e.g., MSE panel 4

with n=156. Regarding sample sizes, results are not conclusive, but indicate a good

performance with small samples that deteriorates in larger samples, especially with

high noise-to-signal ratios (i.e., σv/σu = 0.1/0.1 and σv/σu = 0.1/0.3).

For the LC-SFA, the results show small biases (between -0.05 and +0.1) and MSE

values (below 0.035) for all noise-to-signal ratios. However, while in low inefficiency

cases (σu = 0.1) an upward bias can be observed, a slight underestimation is found for

cases with high inefficiency (compare BIAS panels 1 and 3 with 2 and 4). Nonethe-

less, this has little effect in terms of MSE. Further, both BIAS and MSE indicate a

good performance irrespective of the considered sample size.

The BIAS and MSE results obtained for StoNEZD indicate a moderate performance

in low inefficiency cases with biases fluctuating around zero (mostly between -0.05

and +0.13) and low MSE values (up to 0.06). However, in high inefficiency cases, a

considerable underestimation of the frontier occurs indicated by the negative BIAS

and resulting in relatively large MSEs (compare MSE panels columns 2 and 4). This

bias of about 0.2 corresponds to the expected value of inefficiency in these settings

(20%). For all considered cases, StoNEZD performs well with small samples, but no

systematic reduction of bias and MSE occurs with increasing sample size.

Summarizing the BL1 results, cDEA exhibits the largest differences between true

and estimated frontiers among the three estimators and undercompensates for envi-

ronmental conditions in most cases. The LC-SFA estimator is found to estimate the

true frontier most precisely in nearly all simulations, but with tendencies to over-

estimate (underestimate) the frontier in low (high) inefficiency settings. StoNEZD

shows a moderate performance but overcompensates in cases with high inefficiency.

Figures 2 and 3 show the results of BL2 and BL3, the baseline scenarios with trun-

cated exponentially and Gamma distributed environmental factors. The patterns

vary only slightly between the three baseline scenarios and the distribution of the

z-variables seems to be of minor importance if the environmental factors’ impact

is low. All estimators show a fairly good performance with the smallest sample

(n = 26), but no systematic reduction of bias and MSE occurs with increasing sam-
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Figure 1: BL1 - Bias (top) and MSE (bottom)

ple size for any of the three. cDEA overestimates the frontier in nearly all cases with

performance decreases with additional noise and increasing sample size. LC-SFA

performs well in all cases in terms of MSE, but indicates an upward bias in low in-

efficiency cases. This upward bias is slightly more pronounced for the non-Gaussian

z-variables in BL2 and BL3. On the contrary, performance of StoNEZD improves

in these two scenarios, and the estimator outperforms the competitors in cases with

low inefficiency. Further, an underestimation of the frontier in simulations with high

inefficiency persists, but, compared to BL1, the absolute StoNEZD bias decreases

(compare Figures 1 to 3, columns 2 and 4). This suggests that the estimator can

better account for the non-Gaussian distributions of z-variables in BL2 and BL3.

4.2.2. High impact scenarios

In the next step, we triple the impact of the operational conditions on the firms’

output potential by tripling the δ-coefficient. As a result, in cases with low ineffi-

ciency (σu = 0.1), the average effect of the environment is stronger than the average

output loss due to inefficiency, i.e, |δz̄| > µ and exp(δz̄) < exp(−µ). Figures 4 to 6

show the results for these high impact scenarios HI1 to HI3.12

12Detailed numerical results are provided in the supplementary material.
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Figure 2: BL2 - Bias (top) and MSE (bottom)
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Figure 3: BL3 - Bias (top) and MSE (bottom)
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HI1 results show generally similar patterns as the BL scenarios. For cDEA, results

indicate in nearly all cases a considerable upward bias (compare Figure 4, upper

row), i.e., an overestimation of the DMU’s output potential. Bias and MSE increase

with increasing noise levels (compare panel columns 1 with 3, and 2 with 4), while

accuracy increases for higher levels of inefficiency (compare panel columns 1 with 2,

and 3 with 4). As a result, cDEA, like in the BL scenarios, can compete with the

other approaches, but only in cases with very low noise-to-signal ratios. For LC-

SFA, results indicate again an overall good performance and the lowest MSE values

among the three estimators in most settings. However, while the bias is most of-

ten negative for high inefficiency cases, an average 7% overestimation of the frontier

occurs in the low inefficiency cases (compare BIAS panels 1 and 3). For StoNEZD,

results indicate for the low inefficiency cases very small negative biases with an un-

derestimation of the frontier (∼ 1% to 3%). The corresponding low MSE values are

competitive to LC-SFA results (compare panel columns 1 and 3). However, similar

to the BL scenarios, StoNEZD underestimates the frontier in high inefficiency cases.

These biases are again similar to the magnitude of the expected inefficiency (20%),

and result in MSE values two to three times higher than the low inefficiency cases.

Similar to the other estimators, StoNEZD shows no increase in performance with in-

creasing sample sizes. In total, we find cDEA to generally overestimate the frontier,

while LC-SFA outperforms the competitors in terms of MSE in nearly all settings.

However, StoNEZD is found to perform best in terms of bias in simulations with

low inefficiency, while a considerable underestimation of the frontier occurs in high

inefficiency settings.

Comparing HI1 with HI2 and HI3 allows us to evaluate the impact of the z-variable

distribution. Although the results of HI2 and HI3 show in general very similar pat-

terns as the results for HI1, several points are worth emphasizing. In low inefficiency

cases, the average bias for cDEA and LC-SFA increase to 31% and 11%, respectively.

Further, for the LC-SFA, biases increase also in high inefficiency cases. As a result,

in HI2 and HI3, LC-SFA overestimates the frontier in nearly all noise-to-signal ra-

tios, although MSE values remain on a low level. StoNEZD, on the contrary, can

furthermore improve its performance in these settings and outperforms the other esti-

mators (compare MSE panels 1 and 3 in the Figures 4 to 6). Additionally, StoNEZD’
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downward biases reduce in cases with high inefficiency and the estimator achieves

MSEs of similar magnitude as LC-SFA also in these settings (compare MSE panels 2

and 4 in the Figures 5 and 6). Given the small average bias of LC-SFA compared to

StoNEZD in these cases, the similarity of the MSE values of both estimators suggests

that LC-SFA estimates the frontier with considerable variation. Therefore, similar

to the BL scenarios, StoNEZD seems to perform even better with the non-normally

distributed z-variables, while performance of cDEA and LC-SFA deteriorates.

Comparing the HI to the corresponding BL scenarios (i.e., BL1/HI1, BL2/HI2,

and BL3/HI3) shows the effect of the environmental intensity on estimators’ preci-

sion. For cDEA, results show a mixed picture and indicate, on average, a positive

but strongly varying impact on BIAS and MSE especially for the truncated expo-

nential z2 in BL2 and HI2. On the contrary, on average, no effects on BIAS and

MSE from additional z-variable impact is found when comparing BL1 with HI1

and BL3 with HI3, although single deviations are of considerable magnitude. For

LC-SFA, we observe a similar picture. While the additional impact of the z-variable

in HI1 leads to very similar BIAS and MSE, performance deteriorates considerably

in the scenarios with the non-Gaussian z2 and z3. These effects are more strongly

pronounced in settings where the environmental impact exceeds the impact of inef-

ficiency (HI2 and HI3 cases with σu = 0.1). This, again, suggests that LC-SFA is

challenged by the distributions of z2 and z3. For StoNEZD, the comparison of BL

and HI scenarios shows very stable results in all scenarios and settings. Especially

for the low inefficiency scenarios, we find nearly constant MSE values for StoNEZD,

which indicates that the estimator very well incorporates the additional z-variable

impact.

In total, the results of the HI scenarios confirm the estimators patterns of frontier

under- and overestimation found in the BL scenarios. Further, the results indicate

that cDEA and LC-SFA are challenged by non-normal distributions of the environ-

mental impact. In contrast, StoNEZD well accounts for these effects and competes

with LC-SFA in terms of MSE in all cases.
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Figure 4: HI1 - Bias (top) and MSE (bottom)
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Figure 5: HI2 - Bias (top) and MSE (bottom)
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Figure 6: HI3 - Bias (top) and MSE (bottom)

4.2.3. Multiple-z scenarios

Next, we increase the number of z-variables that influence output potentials to

two, which are drawn from a normal and a truncated exponential distribution. Fig-

ures 7 to 10 show the results for the four multiple-z scenarios MZ1 to MZ4.13

The results of the MZ scenarios show for all estimators similar patterns as the BL

and HI scenarios. For MZ1, cDEA performs well in cases with high inefficiency,

while performance deteriorates with increasing noise and increasing noise-to-signal

ratios. Again, an upward bias is always present and is not mitigated in larger sam-

ples. LC-SFA achieves low biases in cases with high inefficiency, but an upward bias

occurs in low inefficiency settings. LC-SFA MSE, however, is lowest of nearly all

noise-to-signal ratios in MZ1. StoNEZD underestimates the frontier in high ineffi-

ciency settings, but no systematic bias occurs if low inefficiency is present. Often

LC-SFA and StoNEZD perform similarly in terms of MSE, while cDEA estimates

deviate from the true frontier considerably, especially with high noise-to-signal ra-

tios.

Comparing MZ1 with MZ2 allows us to analyze again the influence of the inten-

13Detailed numerical results are shown in supplementary material.
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sity of z-variables. All three estimators cope well with the additional signal and

show similar trends as in MZ1. Moreover, for cDEA results indicate generally lower

MSEs and lower upward biases in MZ2, which further decreases with additional

inefficiency. For LC-SFA, the additional impact of the environment leads to a slight

increase of the bias (with nearly constant MSE), confirming the results of the HI

scenarios. Also for StoNEZD results from the HI scenarios are confirmed, and biases

and MSEs are nearly identical in both MZ1 and MZ2.

Next, to analyze the impact of correlation among the z-variables on estimators per-

formance, we compare MZ1 with MZ3, and MZ2 with MZ4. For cDEA, results

are heterogeneous among the settings: in cases with high inefficiency, biases and

MSE most often decrease for the correlated z-variables. On the contrary, in low in-

efficiency cases, we observe an increase of both performance measures. For LC-SFA

and StoNEZD, results indicate generally similar performance in terms of MSE and

bias independent of the z-variable correlation.

Finally, we compare the MZ1 with the BL and MZ2 with the HI scenarios, as

they are, to a certain extent, similar. For cDEA, both MZ scenarios shows generally

lower median bias and MSE values if inefficiency is low, while results for the high in-

efficiency scenarios are not conclusive. This, however, suggests that in DEA a second

z-variable may allow to better disentangling the environmental effects. For LC-SFA,

biases and MSEs increase in the MZ scenarios, which suggests that the additionally

included non-normal z-variable has a detrimental effect on estimation accuracy of

LC-SFA. These effects are more pronounced with the higher environmental impact

in MZ2 and HI2. For StoNEZD, results indicate a negative impact of the addi-

tional z-variable on the median bias. However, overall results are fairly stable and

no considerable changes in the MSE is found in the MZ cases.

4.3. Precision of efficiency estimates

The estimators considered in this paper are often also applied to estimate firm-

specific efficiency scores. Therefore, we analyze the coherence of true (TEi) and

estimated inefficiency ( ˆTEi) in terms of rank correlations using Kendall’s τ as de-

fined in eq. (13). Figure 11 to 13 show the rank correlation coefficients for the BL,

HI, and MZ scenarios. In these figures, a row shows the rank correlation coeffi-
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Figure 7: MZ1 - Bias (top) and MSE (bottom)
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Figure 8: MZ2 - Bias (top) and MSE (bottom)
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Figure 9: MZ3 - Bias (top) and MSE (bottom)
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Figure 10: MZ4 - Bias (top) and MSE (bottom)
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cients (y-axis) for the scenario indicated on the left, with the parameters for noise

and inefficiency indicated on top, and the simulated sample sizes (x-axis).

For the baseline scenarios BL1, BL2, and BL3, rank correlation coefficients range

most often between 0.1 and 0.5. Taking the median of all rank correlations per BL

scenario reveals that, on average, estimated and true efficiency rank scores are equally

correlated (τmedian = 0.3). Further, for a given noise-to-signal ratio similar patterns

of rank correlation coefficients are present across all the three scenarios (compare

Figure 11 by column). Both findings suggest that z-variable distribution is of minor

importance for rank correlations if z-variable impact is low. While rank correlations

are found to be independent of the sample size, coherence of true efficiency and es-

timated efficiency varies strongly with the noise and inefficiency parameters. For

simulations with high inefficiency (σu = 0.3, Figure 11 columns 2 and 4), rank corre-

lations are of moderate (0.3 ≤ τ ≤ 0.5) to high (τ ≥ 0.7) magnitude. In simulations

with low inefficiency, τ decreases. In low-noise-low-inefficiency simulations, rank cor-

relations reach moderate levels in several occasions, while rank correlations are the

lowest (τ ≤ 0.2) if the noise-to-signal ratio is equal to one (i.e., σu = σv = 0.1). Re-

garding the single estimators, we find LC-SFA to outperform the competitors most

often in the BL scenarios with noise-to-signal ratio below one, while no clear ranking

is available if σu = σv = 0.1. However, although cDEA and StoNEZD rank be-

hind, differences between the estimators are most often rather small. Additionally,

although cDEA delivers few negative rank correlation coefficients, the gap to LC-

SFA and StoNEZD in terms of rank correlations is less pronounced than in terms of

frontier estimation.

In the HI scenarios (see Figure 12), median rank correlation is 0.26, thus slightly

lower than in the BL cases. This suggests that the additional impact of the z-

variable has a negative impact on the accuracy of efficiency rankings, but with only

small magnitude. As in the BL scenarios, rank correlations vary in most cases be-

tween 0.1 and 0.5, but few extreme cases with negative rank correlations are found.

However, although these extreme cases appear only with the smallest sample sizes,

results do not indicate a clear relationship between sample size and rank correlations.

Similar to the BL scenarios, rank correlations depend strongly on the noise and in-

efficiency parameters, and are highest in cases with high inefficiency (0.2 ≤ τ ≤ 0.7).
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Again, we find a considerable drop for the low inefficiency cases, and rank correla-

tions are the lowest (mostly 0 ≤ τ ≤ 0.2) if the noise-to-signal ratio is equal to one

(σu = σv = 0.1). Results indicate rather small differences between the gaps for the

HI scenarios, although these differences vary the z-variable distribution. Overall,

cDEA achieves the lowest average rank correlations, but gaps to StoNEZD and LC-

SFA are rather small, especially when keeping in mind the rather large gaps in terms

of bias and MSE in these settings. LC-SFA copes best with the Gaussian z1 in HI1,

where it outperforms the competitors in nearly all cases, but rank correlations in the

HI2 and HI3 scenarios are lower than in the BL scenarios. This again confirms

that LC-SFA is challenged by the non-normal z-variable distributions. StoNEZD,

on the contrary, performs well with the skewed distributions of z, while performance

in HI1 deteriorates relative to BL1, confirming also the results concerning frontier

estimation accuracy.

In the MZ scenarios, we find a median rank correlation coefficient of 0.24, thus again

slightly lower than the baseline and the high impact scenarios (compare Figure 13).

For the different MZ scenarios, rank correlations are generally in a similar range

between 0.1 and 0.4. As before, few negative rank correlations occur in settings

with 26 and 52 observations, but again no clear relationship of sample size and rank

correlation coefficients exists. As for BL and HI, MZ scenarios’ rank correlations

are highest in high efficiency cases, and the lowest for the σu = σv = 0.1 case. A

comparison of MZ1 with MZ2 and MZ3 with MZ4 - with MZ2 and MZ4 as

the cases in which the environmental impact exceeds the impact of noise and in-

efficiency - suggests that a strong signal from the environment in low inefficiency

cases has detrimental effects on the rank correlations, while this effect is not found

if inefficiency is high (compare, e.g., MZ1 with MZ2 in Figure 13, columns 1 and

3 with 2 and 4). Further, comparing the scenarios with uncorrelated and correlated

z-variables, i.e., MZ1 with MZ3, and MZ2 with MZ4, indicates that correlation

of environmental factors has no clear effect on estimators performance in terms of

efficiency scores. For the single estimators, no clear patterns are available, although

LC-SFA and StoNEZD most often outperform cDEA.
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Figure 11: BL - Efficiency score rank correlations

4.4. Summary and discussion

Overall, we find that frontier and efficiency estimation accuracy strongly depends

on the noise-to-signal ratio. Additionally, all estimators approximate the frontier ac-

curately with small to medium sample sizes, but accuracy does not improve with

increasing sample sizes. In summary, our results show that LC-SFA outperforms

the competitors due its low MSE in nearly all scenarios. However, StoNEZD can

compete and outperform LC-SFA in several settings, while results for cDEA indicate

a clear gap in terms of frontier estimation accuracy. The results, however, reveal

diverse and estimator-specific strengths and weaknesses, which are in line with the

literature.

More specifically, cDEA generally overestimates the frontier and cannot compete

with neither LC-SFA nor StoNEZD. Combining our findings with Andor and Hesse

(2014) yields the conclusion that the nonparametric alternative is outperformed by its

semi- and fully parametric competitors in noisy settings irrespective of the presence

of operational conditions. It is, however, worth emphasizing that cDEA performs

32



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

H
I1

●

●

●
●

●

σv=0.01,σu=0.1

Index

a

0

0.2

0.4
●

●

●
● ●

●

●
●

●
●

σv=0.01,σu=0.3

Index

a

●
●

●
●

●

●
●

●
●

●

σv=0.1,σu=0.1

Index

a

●

● ●

●
●

●

●

●

● ●

σv=0.1,σu=0.3

Index

a ●

● ●

●

●
H

I2

●

●
●

● ●

Index

a

0

0.2

0.4

●
●

●
● ●

●

●
●

●
●

Index

a
●

●

●
●

● ●

●
●

●

●

Index
a

● ● ● ● ●

●

●

● ● ●

Index

a

● ●

●
●

●

H
I3 ● ●

●
●

●

Index

a

0

0.2

0.4

26 52 10
4

15
6

26
0

●
● ● ● ●

●

●

●

●

●

Index

a

26 52 10
4

15
6

26
0

●
● ● ●

●

● ● ●

●

●

Index

a

26 52 10
4

15
6

26
0

●

● ●

●
●

●

●

●
● ●

Index
a

26 52 10
4

15
6

26
0

●

●

●
●

●

Sample size

●cDEA LC−SFA StoNEZD

Figure 12: HI - Efficiency score rank correlations

comparably well in a substantial number of cases with very small samples, while

performance deteriorates for larger sample sizes. Although the latter conflicts with

Cordero et al. (2016), this divergence seems reasonable given that the authors model

environmental factors to affect the inefficiency distribution, but not the frontier as

in our case. The good performance of cDEA for small sample sizes is good news

particularly for regulatory benchmarking which in most cases is subject to a limited

number of observations due to the market structure of network-based industries.

cDEA performs better if the signal from inefficiency is stronger than that from noise

and the performance of cDEA is rather stable across different noise levels in scenarios

with high inefficiency. In contrast, in scenarios with low inefficiency levels, cDEA

estimates the frontier less accurately if noise is increased. Therefore, we partially

confirm Andor and Hesse’s findings and conclude that less noise is always beneficial

for cDEA. Further, the intensity with which the environmental variable impacts pro-

duction possibilities is relevant to a moderate extent: the smaller the impact, the

more accurately cDEA approximates the frontier. This finding points in the same
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Figure 13: MZ - Efficiency score rank correlations
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direction as Yu (1998), who finds that non-parametric estimators are an alternative

to parametric approaches particularly in such scenarios. Neither the distribution nor

the number of the environmental variables significantly affect how accurately cDEA

estimates the frontier. This is an interesting result for real-life applications, where

operational conditions are captured in various dimensions. Especially in regulatory

applications where nonparametric estimators might be preferred, it is recommend-

able to focus on reducing noise in the data rather than, for example, limiting the

number of external factors for the sake of a low dimensionality. With respect to rank

correlation, cDEA’s performance is, with few exceptions, inferior to both LC-SFA

and StoNEZD. We find smaller rank correlations of true and estimated efficiency

scores than Cordero et al. (2016), which is likely due to the different simulation

designs. Further, rank correlations vary especially in high impact and multiple-z

scenarios, and, in line with Badunenko et al. (2012), we find low rank correlations

especially if the noise-signal ratio equals one.

LC-SFA performs generally well in terms of frontier estimation accuracy and out-

performs StoNEZD and cDEA in most cases. Thus, in line with results by Andor

and Hesse (2014), the parametric approach performs often better than the non- and

semi-parametric counterparts. Overall, the results indicate that the methodology

offers characteristics suitable for application in a regulatory context. However, sev-

eral factors impede estimation accuracy. Our results show a bias of LC-SFA driven

by the inefficiency component, with an overestimation of the frontier occurring if

the data contains only little inefficiency. On the contrary, an underestimation takes

place in high inefficiency settings, similar to the results for standard SFA provided

by Kuosmanen et al. (2013). With respect to the noise component, we find, similarly

to the DEA results, deteriorating estimation performance, but overall losses are of

small magnitude.

With respect to the environmental factor, estimation performance depends on z-

variable distribution. LC-SFA performs best with normally distributed z-variables,

while estimation performance decreases for the skewed distributions considered. The

latter effect becomes sizable if the impact of the environmental variable is stronger

than the inefficiency component, and is present as well if Gaussian and non-Gaussian

variables are simultaneously considered. Practitioners should therefore treat non-
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normal z-variables with care. However, as argued by Llorca et al. (2014), the LC-SFA

is well able to control for heterogeneity if the environment is not explicitly modeled,

i.e., if z-variables are omitted. Results in terms of rank correlations confirm these

findings. LC-SFA performs overall best, especially if the simulated inefficiency in the

model is high, and if the considered environmental factor has a normal distribution or

overall low impact. However, as for the other estimators, and in line with Badunenko

et al. (2012), rank correlations are low if the noise-signal ratio equals one.

For StoNEZD, results are mixed. Overall, the estimator performs well in terms of

MSE of the frontier estimate, but the bias strongly depends on the simulated noise-to-

signal ratio. Nonetheless, StoNEZD generally outperforms cDEA and can compete

with LC-SFA in many cases, which is in line with Andor and Hesse (2014) for the

equivalent models without environmental factors. Unlike Kuosmanen et al. (2013),

we do not find consistency of StoNEZD, i.e., estimation accuracy does not improve

for larger sample sizes. StoNEZD performs very well in settings with low inefficiency,

and the frontier is most often estimated with small bias and MSE. In settings with

high inefficiency, however, the estimator underestimates the frontier with a bias of

similar magnitude as the expected inefficiency. On the contrary, StoNEZD results

are stable with respect to the simulated noise. Andor and Hesse (2014) derive similar

results for the StoNED, and argue that the resulting overestimation of efficiency can

be useful from the perspective of practitioners, e.g., in a regulatory context. The

results show that StoNEZD does not lead to unreasonable improvement potentials

for the regulated firms if they are inefficient, while improvement potentials are very

accurately estimated if they are efficient. StoNEZD performs better in simulations

with non-Gaussian distributions of environmental variables than with the normal

z-variable, independent of the intensity and the number of z-variables. This points

toward an advantage for StoNEZD if many environmental factors with various distri-

butions are applied, as it is often the case in applied work. Interestingly, our results

therefore endorse the Finnish regulator which uses StoNEZD for such a setting in

the electricity distribution sector (see Kuosmanen, 2012).

Regarding efficiency score rank correlations, StoNEZD performs overall well and of-

ten competes with LC-SFA. Our findings thereby contradict Andor and Hesse (2014),

who find the lowest rank correlations for the semi-parametric approach. As for the
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other two estimators, efficiency rank correlations are generally higher if considerable

inefficiency is simulated. Again, the estimator shows its strength with non-normal

environmental factors, independent of the number and the intensity of environmental

factors.

5. Conclusion

Based on Monte Carlo simulations for a wide range of scenarios, this paper com-

pares the non-parametric conditional DEA, the parametric latent class SFA, and

the semi-parametric StoNEZD with a focus on their ability to account for environ-

mental factors when estimating production functions and efficiencies. Our results

provide insights in the finite sample properties of the three estimators, and we iden-

tify estimator-specific strengths and weaknesses. Overall, our results suggest that

the latent class approach performs best, although StoNEZD can compete in many

cases. On the contrary, cDEA often fails to correctly account for the environment,

leading to imprecise frontier estimates.

However, there are two caveats. First, like all simulation studies, our data generat-

ing process covers only a subset of potential parameter settings and model specifica-

tions. And second, our findings are based on correctly specified models. Therefore,

additional research is necessary to further understand the estimators’ finite sample

properties. We suggest that future studies may consider more complex settings with

additional environmental variables, correlations between inputs and environment,

technological heterogeneity induced by environmental factors, model misspecifica-

tion, and omitted variables.
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Kuosmanen, T., Saastamoinen, A., Sipiläinen, T., 2013. What is the best practice

for benchmark regulation of electricity distribution? Comparison of DEA, SFA

and StoNED methods. Energy Policy 61, 740 – 750.

Laffont, J.-J., Tirole, J., 1993. A theory of incentives in procurement and regulation.

MIT press.

Li, Q., Racine, J. S., 2007. Nonparametric econometrics: Theory and practice.

Princeton University Press, Princeton.

Li, Q., Racine, J. S., 2008. Nonparametric estimation of conditional CDF and quan-

tile functions with mixed categorical and continuous data. Journal of Business and

Economic Statistics 26 (4), 423–434.

Llorca, M., Orea, L., Pollitt, M. G., 2014. Using the latent class approach to cluster

firms in benchmarking: An application to the US electricity transmission industry.

Operations Research Perspectives 1 (1), 6 – 17.

Orea, L., Kumbhakar, S. C., 2004. Efficiency measurement using a latent class

stochastic frontier model. Empirical Economics 29 (1), 169–183.

Simar, L., Vanhems, A., Van Keilegom, I., 2016. Unobserved hetergeneity and en-

dogeneity in nonparametric frontier estimation. Journal of Econometrics (190),

360–373.

Simar, L., Wilson, P. W., 2007a. Estimation and inference in two-stage, semi-

parametric models of production processes. Journal of Econometrics 136 (1), 31–

64.

43



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Simar, L., Wilson, P. W., 2007b. Statistical inference in nonparametric frontier

models: Recent developments and perspectives. In: Fried, H., Lovell, C. A. K.,

Schmidt, S. (Eds.), The Measurement of Productive Efficiency. Oxford University

Press, Oxford.

Stone, C. J., 11 1980. Optimal rates of convergence for nonparametric estimators.

The Annals of Statistics 8 (6), 1348–1360.

Stone, C. J., 12 1982. Optimal global rates of convergence for nonparametric regres-

sion. The Annals of Statistics 10 (4), 1040–1053.

Yu, C., 1998. The effects of exogenous variables in efficiency measurement - a monte

carlo study. European Journal of Operational Research 105 (3), 569 – 580.

44


