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Optimized Schwarz Methods for the Stokes-Darcy coupling
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This paper studies Optimized Schwarz methods for the Stokes-Darcy problem. Robin transmission condi-
tions are introduced and the coupled problem is reduced to a suitable interface system that can be solved
using Krylov methods. Practical strategies to compute optimal Robin coefficients are proposed which
take into account both the physical parameters of the problem and the mesh size. Numerical results show
the effectiveness of our approach.

Keywords: Stokes-Darcy coupling; Domain decomposition methods; Optimized Schwarz methods; Robin
interface conditions.

1. Introduction

The Stokes-Darcy problem has received a growing attention by the mathematical community over the
last decade from the seminal works by Discacciati et al. (2002) and Layton et al. (2003). The interest
for this problem is not only due to its many possible applications, but also to its mathematical nature.
Indeed, it is a good example of multi-physics problem where two different boundary value problems
are coupled into a global heterogeneous one. To compute the approximate solution of this problem one
could solve it in a monolithic way using either a direct or a suitably preconditioned iterative method.
However, its multi-physics nature makes it suitable to splitting methods typical of domain decomposi-
tion techniques. These methods allow to recover the solution of the global problem by iteratively solving
each subproblem separately and they thus permit to reuse software specifically developed to deal with
either incompressible or porous media flows. The difficulty of this approach is to guarantee effective
convergence and robustness of the iterations.

Classical Dirichlet-Neumann type methods (see Quarteroni & Valli (1999)) for the Stokes-Darcy
problem were studied in Discacciati et al. (2002) and Discacciati (2004) showing that they may ex-
hibit slow convergence for small values of the viscosity of the fluid and the permeability of the porous
medium. A Robin-Robin method was then proposed as a possible alternative in Discacciati (2004) and
Discacciati et al. (2007). Analogous substructuring methods based on Robin interface conditions were
subsequently studied in Cao et al. (2010b,a); Chen et al. (2011) and, more recently, in Caiazzo et al.
(2014) where a comparison of these different methods has been carried out. All these works show that
the Robin-Robin method is more robust than the Dirichlet-Neumann one, but it is still unclear how to
choose the Robin coefficients in an optimal way taking into account both the main physical parameters
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of the problem and the mesh size. Indeed, apparently contradictory results can be found in the literature
regarding the relative magnitude of such coefficients and their dependence on the physical and compu-
tational quantities that characterize the problem and its discretization. In this work, we focus on the
effective solution of the heterogeneous Stokes-Darcy problem by means of a Robin-type interface cou-
pling between the subdomains and we optimize the convergence properties of the coupling algorithm in
the framework of Optimized Schwarz Methods.

Differently from the classical Schwarz Algorithm (see, e.g. Smith et al. (1996); Quarteroni & Valli
(1999); Toselli & Widlund (2005)), based on Dirichlet transmission conditions (rather slow and very
much dependent on the size of the overlap), Optimized Schwarz Algorithms are based on more effective
transmission conditions and show significant improvement in terms both of robustness and of compu-
tational cost (see Dolean et al. (2009); Dolean & Nataf (2007); Gander (2006); Gander et al. (2002)).
In addition, whilst in general the classical Schwarz method is not convergent in the absence of over-
lap, Optimized Schwarz Algorithms do not suffer from such drawback, and ensure convergence also
for decompositions into non-overlapping subdomains. Optimized Schwarz Methods are thus a natu-
ral framework to deal with spatial decompositions of the computational domain that are driven by a
multi-physics problem as the one at hand. Originally, P.L. Lions proposed Robin conditions to obtain
convergence without overlap (Lions (1990)), while in a short note on non-linear problems Hagstrom
et al. (1988) suggested nonlocal operators for best performance. In Charton et al. (1991), these optimal,
non-local transmission conditions were developed for advection-diffusion problems, with local approx-
imations for small viscosity, and low order frequency approximations were proposed in Nataf & Rogier
(1995) and Deng (1997). Optimized transmission conditions for the best performance in a given class of
local transmission conditions were introduced for advection diffusion problems in Japhet et al. (2001),
for the Helmholtz equation in Gander et al. (2002), for Laplace’s equation in Engquist & Zhao (1998)
and for Maxwell’s equation in Alonso-Rodriguez & Gerardo-Giorda (2006). For complete results and
attainable performance for symmetric, positive definite problems, see Gander (2006). The Optimized
Schwarz methods were also extended to systems of partial differential equations, such as the compress-
ible Euler equations (Dolean & Nataf (2007)) and the full Maxwell system (see Dolean et al. (2009)).
Recently, Optimized Schwarz strategies have been proposed for the coupling of heterogeneous models,
such as in Fluid-Structure Interaction problem (Gerardo-Giorda et al. (2010)) and in the coupling of
Bidomain and Monodomain models in electrocardiology (Gerardo-Giorda et al. (2011)).

The paper is organized as follow. After introducing the Stokes-Darcy problem in Section 2, in Sec-
tion 3 a Robin-Robin iterative method is studied. Its convergence properties are enlightened by means
of Fourier analysis in the framework of Optimized Schwarz Methods, and optimal Robin parameters for
the interface conditions are devised. In Section 4 the algebraic interpretation of the method is provided
and numerical tests illustrate the convergence properties of the method and its robustness with respect
both to mesh size and to the problem coefficients.

2. Problem setting and discretization

We consider a computational domain formed by two subregions: one occupied by a fluid, the other
formed by a porous medium. More precisely, let Ω ⊂ RD (D = 2,3) be a bounded domain, partitioned
into two non-intersecting subdomains Ω f and Ωp separated by an interface Γ , i.e., Ω = Ω f ∪Ω p,
Ω f ∩Ωp = /0 and Ω f ∩Ω p = Γ . We suppose the boundaries ∂Ω f and ∂Ωp to be Lipschitz continuous.
From the physical point of view, Γ is a surface separating the domain Ω f filled by a fluid from the
domain Ωp formed by a porous medium. We assume that Ω f has a fixed surface, i.e., we neglect the
case of free-surface flows. In Fig. 1 we show a schematic representation of the computational domain.
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In the following, np and n f denote the unit outward normal vectors to ∂Ωp and ∂Ω f , respectively, and
we have n f = −np on Γ . We suppose n f and np to be regular enough and we indicate n = n f for
simplicity of notation.

FIG. 1. Schematic representation of a 2D section of the computational domain.

The fluid in Ω f is incompressible with constant viscosity and density and it can be described by the
dimensionless steady Stokes equations: find the fluid velocity u f and pressure p f such that

−∇∇∇ · (2µ f ∇
su f − p f III) = f f and ∇ ·u f = 0 in Ω f , (2.1)

where III and ∇su f =
1
2 (∇u f +(∇u f )

T ) are the identity and the strain rate tensor; µ f = (ReEu)−1 > 0
with Re and Eu being the Reynolds’ and the Euler’s number; f f is a given external force. (∇ and ∇·
denote the dimensionless gradient and divergence operator with respect to the space coordinates.)

The motion of the fluid through the porous medium can be described by the dimensionless elliptic
problem: find the pressure pp such that

−∇ · (ηηη p∇pp) =−∇ ·gp in Ωp (2.2)

where ηηη p = (ReEuDa)KKK, KKK being the diagonal dimensionless intrinsic permeability tensor and Da the
Darcy number (Bear & Bachmat (1991)), while gp is a given external force that accounts for gravity.
The fluid velocity in Ωp can be obtained using Darcy’s law (see, e.g., Bear (1979)): up =−ηηη p∇pp+gp.

Suitable continuity conditions must be imposed across the interface Γ to describe filtration phenom-
ena. As a consequence of the incompressibility of the fluid we prescribe the continuity of the normal
velocity across Γ :

u f ·n =−(ηηη p∇pp) ·n+gp ·n on Γ . (2.3)

Moreover, we impose the following condition relating the normal stresses across Γ (see, e.g., Discacciati
(2004); Girault & Rivière (2009); Layton et al. (2003)):

−n · (2µ f ∇
su f − p f III) ·n = pp on Γ . (2.4)

Finally, we introduce the so-called Beavers-Joseph-Saffman condition (see, e.g, Beavers & Joseph
(1967); Saffman (1971); Jäger & Mikelić (1996); Discacciati et al. (2002); Layton et al. (2003)):

−((2µ f ∇
su f − p f III) ·n)τ = ξ f (u f )τ on Γ (2.5)

where ξ f = αBJ(ReEu
√

Da
√

τττ ·KKK · τττ)−1 and αBJ is a dimensionless constant which depends only on
the geometric structure of the porous medium. We indicate by (v)τ the tangential component of any
vector v: (v)τ = v− (v ·n)n on Γ .
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As concerns the boundary conditions, several choices can be made (see, e.g., Discacciati & Quar-
teroni (2009)). For simplicity, we consider here homogeneous boundary data and, with reference to Fig.
1 for the notation, for the Darcy problem we impose pp = 0 on Γ D

p and ηηη p∇pp ·np = gp ·np on Γ N
p ,

while for the Stokes problem we set u f = 0 on ∂Ω f \Γ .

3. Optimized Robin-Robin method

3.1 Formulation of the Robin-Robin method

Let α f and αp be two positive parameters: α f ,αp > 0. By combining (2.3) and (2.4) linearly with
coefficients (−α f ,1) and (αp,1) we obtain two Robin interface conditions on Γ :

−n ·
(
2µ f ∇

su f − p f III
)
·n−α f u f ·n = pp +α f

(
(ηηη p ∇pp) ·n−gp ·n

)
, (3.1)

and
pp−αp

(
(ηηη p ∇pp) ·n−gp ·n

)
=−n ·

(
2µ f ∇

su f − p f III
)
·n+αpu f ·n. (3.2)

A Robin-Robin type algorithm amounts to set up a fixed point problem that solves iteratively the
fluid problem with boundary condition (3.1) and the porous medium problem with boundary condition
(3.2). More precisely, the algorithm reads as follows. Given the Darcy pressure p0

p in Ωp, for m > 1
until convergence find the fluid velocity um

f , the fluid pressure pm
f in Ω f and the pressure pm

p in Ωp such
that the following problems are satisfied:

1. Stokes problem:

−∇∇∇ · (2µ f ∇sum
f − pm

f III) = f f and ∇ ·um
f = 0 in Ω f

um
f = 0 on ∂Ω f \Γ

−(n · (2µ f ∇sum
f − pm

f III))τ = ξ f (um
f )τ on Γ

−n · (2µ f ∇sum
f − pm

f III) ·n−α f um
f ·n = pm−1

p +α f ((ηηη p ∇pm−1
p ) ·n−gp ·n) on Γ ,

(3.3)

2. Darcy problem:

−∇ · (ηηη p ∇pm
p ) =−∇ ·gp in Ωp

pm
p = 0 on Γ D

p
−(ηηη p∇pm

p ) ·np +gp ·np = 0 on Γ N
p

pm
p −αp ((ηηη p ∇pm

p ) ·n−gp ·n) =−n · (2µ f ∇sum
f − pm

f III) ·n+αpum
f ·n on Γ .

(3.4)

We aim now to optimize the Robin-Robin algorithm (3.3)-(3.4) in the framework of Optimized
Schwarz Methods. Such methods, based upon interface continuity requirements on traces and fluxes
of Robin type, are a generalization of the non-overlapping algorithm proposed for elliptic problems in
Lions (1990), that ensures convergence also without relaxation. Since Optimized Schwarz Methods do
not require overlap to converge, they have become quite popular in the last decade, and are a natural
framework to deal with a spatial decomposition of the domain driven by a multi-physics problem (see
Gerardo-Giorda et al. (2010)). Although in general Optimized Schwarz methods based on one-sided
interface conditions (α f = αp) have been extensively used along the years (see, e.g., Lions (1990);
Gander (2006); Japhet et al. (2001); Collino et al. (1997)), the use of two-sided interface condition
(α f 6= αp) has recently become increasingly popular due to better convergence properties of the associ-
ated algorithms, see Alonso-Rodriguez & Gerardo-Giorda (2006); Dolean et al. (2009); Dubois (2007);
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Gander et al. (2007); Gerardo-Giorda & Perego (2013). Since such parameters are in general obtained
by suitable approximations of the symbols in the Fourier space of the Steklov-Poincaré operator (or
Dirichlet-to-Neumann mapping) associated to the problem within the subdomain (Gander (2006)), the
two-sided interface conditions are a natural choice in the presence of multi-physics problems where
different problems have to be solved in different regions of the computational domain (Gerardo-Giorda
et al. (2010, 2011)). In the rest of the section we study, by means of Fourier analysis, the convergence
properties of the Robin-Robin algorithm (3.3)-(3.4) in a simplified settings, and its optimization in the
two-sided interface conditions framework.

3.2 A simplified problem

We introduce suitable simplifying hypotheses and subproblems. The fluid domain is the half plane Ω f =
{(x,y) ∈ R2 : x < 0}, the porous medium is the complementary half plane Ωp = {(x,y) ∈ R2 : x > 0},
while the interface is given by Γ = {(x,y) ∈ R2 : x = 0}. Thus, n = (1,0), and τ = (0,1). We assume
µ f to be constant, ηηη p = diag(η1,η2) to be constant and anisotropic (i.e., η1 6= η2), and we denote
u f (x,y) = [u1(x,y),u2(x,y)]T and gp = (g1,g2). In this simplified setting, the Robin-Robin algorithm
reads: given u0

f , p0
f , and p0

p, solve for m > 0 until convergence

1. the fluid problem

−µ f

(
(∂xx +∂yy)um

1
(∂xx +∂yy)um

2

)
+

(
∂x pm

f
∂y pm

f

)
= f f in (−∞,0)×R

∂xum
1 +∂yum

2 = 0 in (−∞,0)×R
−µ f (∂xu2 +∂yu1) = ξ f um

2 on {0}×R
(−2µ f ∂xum

1 + pm
f )−α f um

1 = pm−1
p −α f (−η1 ∂x pm−1

p +g1) on {0}×R

(3.5)

(In the momentum equation we have used (2.1) to obtain −∇∇∇ · (2∇su f ) =−∆u f .)

2. the porous-medium problem

−(∂x(η1∂x)+∂y(η2∂y)) pm
p =−(∂xg1 +∂yg2) in (0,∞)×R

pm
p +αp (−η1 ∂x pm

p +g1) = (−2µ f ∂xum
1 + pm

f )+αp um
1 on {0}×R.

(3.6)

3.3 Convergence analysis

We will base our convergence analysis on a Fourier transform in the direction tangential to the interface
(corresponding to the y variable in the case at hand), which is defined, for w(x,y) ∈ L2(R2), as

F : w(x,y) 7→ ŵ(x,k) =
∫
R

e−ikyw(x,y)dy,

where k is the frequency variable. We will then be able to quantify the error, in the frequency space,
between the normal component of the velocity at the m-th iteration, ûm

1 (x,k), and the exact value û1(x,k).
As a consequence, we can introduce, on the interface Γ , a reduction factor at iteration m, for each
frequency k, as

ρ
m(k) :=

|ûm
1 (0,k)− û1(0,k)|

|ûm−2
1 (0,k)− û1(0,k)|

.
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The Robin-Robin algorithm converges if, at each iteration m, we have ρm(k) < 1 for all the relevant
frequencies of the problem, namely for kmin6 k6 kmax, where kmin > 0 is the smallest frequency relevant
to the problem and kmax is the largest frequency supported by the numerical grid, which is of the order
π/h, being h the mesh size (see Gander et al. (2002); Gander (2006)). The ultimate goal is then to
minimize, at each iteration step, the reduction factor ρm(k) over all the Fourier modes. Note that the
asymptotic requirements for the Fourier transformability of the solutions entail their boundedness at
infinity.

Since the problems are linear, we can study the convergence directly on the error equation, namely
the convergence to the zero solution when the forcing terms vanish, i.e. f f = 0 and gp = 0. First, we
characterize the reduction factor of the algorithm.

PROPOSITION 3.1 Let ηp =
√

η1η2. Given u0
f , p0

f , p0
p, the reduction factor of the algorithm (3.5)–(3.6)

does not depend on the iteration and it is given by

ρ(α f ,αp,k) = |g(α f ,αp,k)| where g(α f ,αp,k) =
(

2µ f |k|−αp

2µ f |k|+α f

)
·
(

1−α f ηp |k|
1+αp ηp |k|

)
. (3.7)

Proof. Taking the divergence of (3.5)1 and using (3.5)2, the fluid problem can be rewritten in the
unknown pressure

−∆ pm+1
f = 0 in Ω f .

Applying the Fourier transform in the y direction, the equation for the pressure above becomes, for all
k, an ordinary differential equation

−∂xx p̂m+1
f + k2 p̂m+1

f = 0 in (−∞,0),

whose solution is given by p̂m+1
f (x,k) = Pm+1(k)e|k|x +Qm+1(k)e−|k|x. The boundedness assumption

on the solution entails Qm+1(k) = 0, thus

p̂m+1
f (x,k) = Pm+1(k)e|k|x, (3.8)

and the value of Pm+1(k) is determined uniquely by the interface condition (3.5)4

−2µ f ∂xûm+1
1 + p̂m+1

f −α f ûm+1
1 = p̂m

p +α f η1 ∂x p̂m
p . (3.9)

Similarly, the equation for the Darcy pressure reads, for all k,

−η1 ∂xx p̂m+1
p +η2 k2 p̂m+1

p = 0 in (0,+∞),

whose solution, due to the boundedness assumption, is given by

p̂p(x,k) = Φ
m+1(k)e

−
√

η2
η1
|k|x

, (3.10)

where the value of Φm+1(k) is determined uniquely by the interface condition (3.6)2

p̂m+1
p −αp η1 ∂x p̂m+1

p =−2µ f ∂xûm+1
1 + p̂m+1

f +αp ûm+1
1 . (3.11)

In order to write the fluid component of the Robin interface conditions (3.5)4 and (3.6)2 in terms of
the sole pressure, we need to express the interface velocity û1 as a function of p̂ f .
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From (3.5), the first equation of the fluid problem in the x direction, after applying the Fourier transform
in the y direction, reads

∂xxûm+1
1 − k2ûm+1

1 =
k
µ

Pm+1(k)e|k|x (3.12)

having noticed that ∂x p̂m+1
f = |k|Pm+1(k)e|k|x. Due to the boundedness assumption, the homogeneous

solution of this equation is ûm+1
1,hom(x,k) = Am+1(k)e|k|x for suitable Am+1(k). As the right-hand side of

(3.12) is a solution to the homogeneous equation, the solution to the complete equation is given by

ûm+1
1 (x,k) =

(
Am+1(k)+

x
2µ f

Pm+1(k)
)

e|k|x. (3.13)

Inserting (3.8), (3.10) and (3.13) into (3.9) and (3.11), and using the fact that ∂x p̂m+1
p =−|k|

√
η2
η1

Φm+1(k)e−|k|x,
we get

−
(
α f +2µ f |k|

)
Am+1(k) =

(
1−α f ηp |k|

)
Φ

m(k) in x = 0

(1+αp ηp |k|) Φ
m(k) =

(
αp−2µ f |k|

)
Am−1(k) in x = 0.

As a consequence, we have |Am+1(k)|= ρ(α f ,αp,k)|Am−1(k)|, and in general
|A2m(k)|= ρm(α f ,αp,k)|A0(k)|, where ρ(α f ,αp,k) is given by (3.7). �

We want now to characterize optimal parameters α f ,αp > 0 that ensure the convergence of the
algorithm for all relevant frequencies. In particular, such parameters must ensure that ρ(α f ,αp,k) < 1
for all k ∈ [kmin,kmax]. (Notice that the special choice αp = α f always guarantees the convergence of the
algorithm.)

3.4 Optimization of the Robin parameters αp and α f

We focus here on the choice of the parameters αp and α f and their optimization. We are interested in a
range of frequencies 0 < kmin 6 |k| 6 kmax. Considering the symmetry of g(α f ,αp,k) as a function of
k, in the following we restrict ourselves to the case k > 0 without loss of generality. Ideally, the optimal
parameters force the reduction factor ρ(αp,α f ,k) to be identically zero for all k, so that convergence is
attained in a number of iterations equal to the number of subdomains (two, in the case at hand).
The optimal parameters can be easily devised from (3.7)

α
exact
p (k) = 2µ f k α

exact
f (k) =

1
ηp k

, (3.14)

but they are unfortunately not viable. In fact, they both depend on the frequency k, and their back
transforms in the physical space are either introducing an imaginary coefficient which multiplies a first
order tangential derivative (αexact

p (k)) or result in a nonlocal operator (αexact
f (k)).

3.4.1 Low-order Taylor approximation. The first possible approach resides in using approximations
based on low-order Taylor expansions of the optimal values (3.14), a choice that proved very effec-
tive when applied to the coupling of heterogeneous problems (see, e.g. Gerardo-Giorda et al. (2011)).
Expanding the exact values, one around k = kmin and the other around k = kmax, namely

α
1
p = α

exact
p (kmin) = 2µ f kmin α

1
f = α

exact
f (kmax) =

1
ηp kmax

(3.15)
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or
α

2
p = α

exact
p (kmax) = 2µ f kmax α

2
f = α

exact
f (kmin) =

1
ηp kmin

,

guarantees exact convergence of the algorithm for the minimal and maximal frequency. Notice that if
the minimal frequency is kmin = 0, only the first combination is viable, and corresponds to a Neumann-
Robin iterative algorithm. Moreover, whenever kmin > 0, a little algebraic manipulation shows that
ρ(α1

f ,α
1
p,k) = ρ(α2

f ,α
2
p,k), for all k ∈ [kmin,kmax].

Although the minimal and maximal frequencies are treated exactly, a Taylor expansion offers no
control on the effective convergence rate of the algorithm, which is given by the maximum over all
the relevant frequencies. As a function of k > 0, g(α f ,αp,k) is continuous, it has two positive roots
k1 = (α f ηp)

−1 and k2 = αp/(2µ f ), and a local maximum in

k∗ =
αp−α f

2µ f +α f αpηp
+

√(
αp−α f

2µ f +α f αpηp

)2

+
1

2µ f ηp
.

Rolle’s theorem allows us to conclude that k∗ lies between the zeros k1, k2 and that g(α f ,αp,k∗) > 0.
Finally, it can be easily shown that 0 < g(α f ,αp,k∗)< 1, independently of the values of α f and αp. In
the case of the Taylor expansion, the zeros are in kmin and kmax, and the convergence of the Optimized
Schwarz Method is then guaranteed. Moreover, a little algebra shows that the maximum is attained at

k∗ =
kminkmax− 1

2µ f ηp

kmin + kmax
+

√√√√(kminkmax− 1
2µ f ηp

kmin + kmax

)2

+
1

2µ f ηp
. (3.16)

and the effective convergence rate is then given by ρe f f = ρ(k∗).
Notice that using a first-order Taylor expansion would just recover αexact

p (k) and, at the same time,
provide an approximation for αexact

f (k) ∼ 2
ηp kmax

− 1
ηp k2

max
k which suffers from the same drawback as

αexact
p (k) of introducing an imaginary coefficient in the physical space. The presence of such first-order

term in the Taylor expansion of αexact
f (k) makes therefore the use of higher-order expansions pointless.

3.4.2 The classical min-max approach. The classical approach in Optimized Schwarz literature con-
sists in optimizing the parameters αp and α f by minimizing the convergence rate over all the relevant
frequencies of the problem: this amounts to solve the min-max problem

min
α f ,αp∈R+

max
k∈[kmin,kmax]

ρ(α f ,αp,k). (3.17)

The standard strategy in the literature is to either search for the optimized parameter on the diagonal
α f = αp (known as one-sided Robin conditions, that use the same coefficient for both sides of the inter-
face), or minimize the effective convergence rate for (α f ,αp) free to move in the positive quadrant of R2

(two-sided Robin conditions, that use different coefficients on the two sides of the interface). Usually,
the first approach is simpler but provides less effective results than the latter, which, in return, can be in
general pretty complicated to solve. By exploiting the problem characteristics, we can position ourselves
halfway between the two approaches, and reduce problem (3.17) to a one parameter minimization along
a curve in the positive quadrant. In the specific, from (3.14), we observe that the product of the optimal
values αexact

f (k) and αexact
p (k) is constant and equals 2µ/ηp. We exploit such peculiarity of the problem
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(not occurring when the Optimized Schwarz Methods are used on homogeneous decomposition, see e.g.
Gander (2006)), and restrict our search for optimized parameters along the curve

α f αp =
2µ f

ηp
. (3.18)

Notice that such curve is the subset of the (α f ,αp) upper-quadrant where the roots k1 and k2, of the
convergence rate ρ coincide. The following result holds for the optimal values αexact

f (k) and αexact
p (k).

LEMMA 3.1 For any given k ∈ (0,+∞),

∇ρ(αexact
f (k),αexact

p (k),k) = 0 .

Moreover, the point (αexact
f (k),αexact

p (k)) is an absolute minimum.

Proof. The expression of the convergence rate ρ(α f ,αp,k) depends on the sign of the numerator in
(3.7). We omit the dependence on k, we recall from (3.14) that αexact

f (k) = 1
ηp k and αexact

p (k) = 2µ f k,
and we identify 4 regions in the (α f ,αp) upper-right quadrant:

1. for α f <
1

ηp k
and αp < 2µ f k, ρ(α f ,αp) =

(
2µ f k−αp

2µ f k+α f

)
·
(

1−α f ηp k
1+αp ηp k

)
=: ρ1(α f ,αp) ;

2. for α f <
1

ηp k
and αp > 2µ f k, ρ(α f ,αp) =

(
αp−2µ f k
2µ f k+α f

)
·
(

1−α f ηp k
1+αp ηp k

)
=−ρ1(α f ,αp) ;

3. for α f >
1

ηp k
and αp > 2µ f k, ρ(α f ,αp) =

(
αp−2µ f k
2µ f k+α f

)
·
(

α f ηp k−1
1+αp ηp k

)
= ρ1(α f ,αp) ;

4. for α f >
1

ηp k
and αp < 2µ f k, ρ(α f ,αp) =

(
2µ f k−αp

2µ f k+α f

)
·
(

α f ηp k−1
1+αp ηp k

)
=−ρ1(α f ,αp) .

The gradient of ρ1(α f ,αp) is given by

∇ρ1(α f ,αp) =


−

1+2µ f ηp k2

1+αp ηp k
·

2µ f k−αp

(2µ f k+α f )2

−
1+2µ f ηp k2

(1+αp ηp k)2 ·
1−α f ηp k

(2µ f k+α f )2

 .

Thus, for a generic k, ∇ρ1(α f ,αp) = 0 in α f =
1

ηp k and αp = 2µ f k, while its sign behaves like

sign(∇ρ1(α f ,αp)) = sign

[
αp−2µ f k

α f ηp k−1

]
.

Owing to the definition of ρ(α f ,αp) in the 4 regions of the (α f ,αp) upper-right quadrant, we have

1. for α f <
1

ηp k
, αp < 2µ f k, ∂α f ρ(α f ,α f )< 0, and ∂αp ρ(α f ,αp)< 0;

2. for α f <
1

ηp k
, αp > 2µ f k, ∂α f ρ(α f ,αP)< 0, and ∂αp ρ(α f ,αp)> 0;
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3. for α f >
1

ηp k
, αp > 2µ f k, ∂α f ρ(αF ,αP)> 0, and ∂αp ρ(α f ,αp)> 0;

4. for α f >
1

ηp k
, αp < 2µ f k, ∂α f ρ(α f ,αp)> 0, and ∂αp ρ(α f ,αp)< 0 .

Thus, the point (α f ,αp) =
(

1
ηp k , 2µ f k

)
is a minimum for ρ(α f ,α f ). In addition, since ρ(α f ,α f )> 0

and ρ

(
1

ηp k , 2µ f k
)
= 0, the minimum is absolute. �

Lemma 3.1 guarantees that, for any given k, the minimum of the convergence rate with respect to
(α f ,αp) lies on the hyperbola (3.18). The following proposition provides the solution of the optimiza-
tion procedure along it.

PROPOSITION 3.2 The solution of the min-max problem

min
α f αp=

2µ f
ηp

max
k∈[kmin,kmax]

ρ(α f ,αp,k) (3.19)

is given by the pair

α
∗
f =

1−2µ f ηp kminkmax

ηp(kmin + kmax)
+

√(
1−2µ f ηp kminkmax

ηp(kmin + kmax)

)2

+
2µ f

ηp

α
∗
p =−

1−2µ f ηp kminkmax

ηp(kmin + kmax)
+

√(
1−2µ f ηp kminkmax

ηp(kmin + kmax)

)2

+
2µ f

ηp

(3.20)

Moreover, ρ(α∗f ,α
∗
p,k)< 1 for all k ∈ [kmin,kmax].

Proof. From Lemma 3.1 we know that, regardless where the maximum with respect to k is, the
minimum with respect to (α f ,αp) is along the hyperbola (3.18). A simple algebra shows that the
convergence rate of the Optimized Schwarz Method along (3.18) reads

ρ(α f ,k) =
2µ f

ηp

(
ηpα f k−1
2µ f k+α f

)2

. (3.21)

The function in (3.21) is always positive and has a minimum in k = 1
ηpα f

, where it vanishes. Since it is
continuous, its maximum is attained in one end of the interval [kmin,kmax]:

max
k∈[kmin,kmax]

ρ(α f ,k) = max
{

ρ(α f ,kmin) , ρ(α f ,kmax)
}
. (3.22)

Moreover, being

∂α f ρ =
4µ f

ηp

2µ f ηpk2 +1
(2µ f k+α f )3 (ηpα f k−1) ,

it is immediate to observe that for all k ∈ [kmin,kmax], ρ(α f ,k) is decreasing for α f <
1

ηpk
and increasing
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for α f >
1

ηpk
. In particular, we have:

ρ(0,kmin)> ρ(0,kmax), ρ

(
1

ηpkmax
,kmin

)
> ρ

(
1

ηpkmax
,kmax

)
= 0

lim
α f→∞

ρ(α f ,kmin)

ρ(α f ,kmax)
< 1, ρ

(
1

ηpkmin
,kmax

)
> ρ

(
1

ηpkmin
,kmin

)
= 0,

and we can observe that

max
{

ρ(α f ,kmin) , ρ(α f ,kmax)
}
=

{
ρ(α f ,kmin) for α f < α∗f

ρ(α f ,kmax) for α f > α∗f

where α∗f > 0 is the value at which the convergence rate exhibits equioscillation between the minimal
and maximal frequency, i.e.,

ρ(α∗f ,kmin) = ρ(α∗f ,kmax) . (3.23)

Simple algebraic manipulations show that finding the optimal value of α f that satisfies (3.23) is equiva-
lent to solving the following algebraic equation

α
2
f +2α f

2µ f ηkminkmax−1
η(kmin + kmax)

−
2µ f

η
= 0 , (3.24)

whose positive solution α∗f is given in (3.20). The expression for α∗p in (3.20) is obtained by replacing
α∗f into (3.18). To guarantee that ρ(α∗f ,k)< 1 for all k ∈ [kmin,kmax], since both (3.22) and (3.23) hold,
we just have to prove that either ρ(α∗f ,kmin) < 1 or ρ(α∗f ,kmax) < 1. First, notice that ρ(α∗f ,k) < 1 if
and only if (√

2µ f

ηp

1−ηpα∗f k

2µ f k+α∗f
−1

)(√
2µ f

ηp

1−ηpα∗f k

2µ f k+α∗f
+1

)
< 0 .

This inequality can be equivalently rewritten as

2µ f (η
2
p(α

∗
f )

2k2 +1)−ηp(4µ
2
f k2 +(α∗f )

2 +8µ f α
∗
f k)< 0 .

Using the expression of (α∗f )
2 from (3.24) and after a few simplifications, we obtain

−(1−2µ f ηpkminkmax)(1−2µ f ηpk2)−4µ f ηpk(kmin + kmax)< 0 .

It is straightforward to see that if we set, e.g., k = kmin we find

−1−4µ
2
f ηpk3

minkmax−2µ f ηpkmin(kmin + kmax)< 0

which is obviously true. �

REMARK 3.1 (i) The ratio α∗f /α∗p only depends on the physical coefficients µ f , ηp, and on the mesh
size h. In fact, from equations (3.20), we observe that

α
∗
f −α

∗
p = 2

1−2µ f ηp kminkmax

ηp(kmin + kmax)
,
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whose sign is ruled by the sign of the numerator. In particular, in the case kmin = π/L (L being the length
of the interface Γ ) and kmax = π/h, we have

α
∗
f < α

∗
p if h <

2µ f ηp π2

L
and α

∗
f > α

∗
p if h >

2µ f ηp π2

L
. (3.25)

(ii) In the limit h→ 0, the convergence rate becomes ρ(α0
f ,α

0
p,k), where

α
0
f =−

2µ f π

L
+

√(
2µ f π

L

)2

+
2µ f

ηp
, α

0
p =

2µ f π

L
+

√(
2µ f π

L

)2

+
2µ f

ηp
, (3.26)

entailing α0
f < α0

p . This is not surprising: in fact, when h→ 0, kmax → ∞ and limk→∞ ρ(α f ,αp,k) =
α f /αp. Thus, the larger the maximal frequency supported by the numerical grid, the larger αp with
respect to α f to guarantee that the reduction factor is below 1.

3.4.3 Minimization of the mean convergence rate. Both the Taylor expansion and the equioscillation
approach ensure that the Optimized Schwarz algorithm is convergent in its iterative form. However,
when the Optimized Schwarz Method is used as a preconditioner for a Krylov method to solve the inter-
face problem, these two choices do not necessarily guarantee the fastest convergence. A common feature
of the Taylor expansion and the equioscillation approach is that the amount of frequencies showing a not
so small convergence rate is not negligible (see Figure 2). In this section we present an alternative ap-
proach: by relaxing the constraint on the effective convergence rate, we look for parameters that ensure
a better convergence for a larger number of frequencies in the error.
We still look for α f and αp along the curve (3.18) and we restrict ourselves to the set

A f = {α f > 0 : ρ(α f ,k)6 1 ∀k ∈ [kmin,kmax]} . (3.27)

Notice that the convergence of the Robin-Robin method in its iterative form would be ensured only in
the case the inequality in the definition of A f is strict. However, from the previous section we know
that there can be at most one frequency whose corresponding convergence rate equals 1, either in kmin
or in kmax. When the Optimized Schwarz Method is used as a preconditioner for a Krylov method, the
latter can handle isolated problems in the spectrum. This last approach is actually the most popular in
the literature (see, e.g., Gander et al. (2002); Dolean et al. (2009); Gerardo-Giorda & Perego (2013)).

LEMMA 3.2 The set A f is one of the following intervals.

1. If
√

2µ f ηpkmin−1 > 0,

A f =

(
0,

√
2µ f

ηp
min

(√
2µ f ηpkmin +1√
2µ f ηpkmin−1

,

√
2µ f ηpkmax +1√
2µ f ηpkmax−1

)]
(3.28)

2. If
√

2µ f ηpkmax−1 < 0,

A f =

[√
2µ f

ηp
max

(
−
√

2µ f ηpkmin−1√
2µ f ηpkmin +1

,−
√

2µ f ηpkmax−1√
2µ f ηpkmax +1

)
,+∞

)
(3.29)
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3. If
√

2µ f ηpkmin−1 < 0 and
√

2µ f ηpkmax−1 > 0,

A f =

(
0,

√
2µ f

ηp

√
2µ f ηpkmax +1√
2µ f ηpkmax−1

]
∩

[
−

√
2µ f

ηp

√
2µ f ηpkmin−1√
2µ f ηpkmin +1

,+∞

)
(3.30)

4. If
√

2µ f ηpkmin−1 = 0,

A f =

(
0,

√
2µ f

ηp

√
2µ f ηpkmax +1√
2µ f ηpkmax−1

]
(3.31)

5. If
√

2µ f ηpkmax−1 = 0,

A f =

[
−

√
2µ f

ηp

√
2µ f ηpkmin−1√
2µ f ηpkmin +1

,+∞

)
. (3.32)

Proof. The condition ρ(α f ,k)6 1 can be equivalently reformulated as(
α f
√

ηp
(√

2µ f ηpk+1
)
+
√

2µ f
(√

2µ f ηpk−1
))(

α f
√

ηp
(√

2µ f ηpk−1
)
−
√

2µ f
(√

2µ f ηpk+1
))
6 0 .

The term
√

2µ f ηpk+1 is always positive, while
√

2µ f ηpk−1 may change its sign, so we must discuss
different cases. Owing to (3.22) we are ensured that ρ(α f ,k) 6 1 for all k ∈ [kmin,kmax] provided the
inequality holds in both kmin and kmax, thus we consider only both k = kmin and k = kmax.
(i) If

√
2µ f ηpkmin−1 > 0, then also

√
2µ f ηpkmax−1 > 0, so that A f is the set (3.28).

(ii) If
√

2µ f ηpkmax−1 < 0, also
√

2µ f ηpkmin−1 < 0, and A f is the set (3.29).
(iii) If

√
2µ f ηpkmin−1 < 0, then either

√
2µ f ηpkmax−1 < 0, in which case we obtain again (3.29), or√

2µ f ηpkmax−1 > 0 and A f is the set (3.30).
(iv) If

√
2µ f ηpkmax−1 > 0, either

√
2µ f ηpkmin−1 > 0, in which case we obtain (3.28), or√

2µ f ηpkmin−1 < 0 and we get (3.30).
(v) If

√
2µ f ηpkmin − 1 = 0, kmax > kmin = 1/

√
2µ f ηp so that

√
2µ f ηpkmax − 1 > 0. Thus, A f is

characterized as (3.31).
(vi) Finally, if

√
2µ f ηpkmax−1 = 0, kmin < kmax =

1√
2µ f ηp

so that
√

2µ f ηpkmin−1 < 0. Thus, A f is

the set (3.32). �
In order to improve the overall convergence for a Krylov method, we minimize, on the set A f , the

expected value of ρ(α f ,k) in the interval [kmin,kmax]:

E(α f ) := E[ρ(α f ,k)] =
1

kmax− kmin

∫ kmax

kmin

ρ(α f ,k)dk . (3.33)

Owing to (3.21), the expected value of ρ(α f ,k) in [kmin,kmax] can be explicitly computed with the help
of a little calculus, and we have

E(α f ) =
1

2µ f

(
α

2
f ηp +

(α f ηp +2µ f )
2

ηp(2µ f kmax +α f )(2µ f kmin +α f )
−

α f (α
2
f ηp +2µ f )

µ f (kmax− kmin)
log
(

2µ f kmax +α f

2µ f kmin +α f

))
.
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The function E(α f ) is continuous, positive (being the integral of a non-negative function), E(0) =
1/(2µ f ηpkminkmax), limα f→+∞ E(α f ) = +∞ and ∂α f E(0) < 0. Thus, E(α f ) has at least one (local)
minimum α

opt
f <+∞ in A f that may coincide with one of the extrema of A f if the latter is a bounded

set. In table 1 we report the optimization interval A f and the resulting optimized parameter α
opt
f for

different values of the problem coefficients µ f and ηp. In addition, in Fig. 2 we plot the convergence
rates, as a function of k, for the zero-order Taylor expansion (T), the solution (3.20) of the min-max
problem via equioscillation (E), and α

opt
f (M), for two set of coefficients µ f and ηp.

Table 1. Optimization interval A f and optimized parameter α
opt
f for different values of the coefficients µ f and ηp and h = 2−5.

The column (m,M) reports the signs of (2µ f ηp kmin−1) and (2µ f ηp kmax−1), respectively, where kmin = π and kmax = π/h.

µ f ηp (m,M) A f α
opt
f

1 1 (+,+) (0, 1.4342] 0.0357
1 1e-2 (-,+) [5.4414, 16.2821] 5.4414
1 1e-4 (-,+) [129.3895, 812.1057] 217.3489
1e-1 1 (+,+) (0, 0.4676] 0.0364
1e-2 1 (-,+) [0.0544, 0.1628] 0.0544
1e-1 1e-2 (-,+) [3.3703, 7.0307] 3.3703
1e-1 1e-3 (-,+) [12.9390, 81.2106] 21.7349
1e-1 1e-4 (-,-) [43.4821,+∞) 195.9084

FIG. 2. Convergence rates, as a function of k, for the parameters obtained through zero-order Taylor expansion (T, dotted line), the
solution of the min-max problem via equioscillation (E, dashed line), and α

opt
f (M, solid line). Left: µ f = 1, ηp = 1e-2, h = 2−5.

Right: µ f = 1e-1, ηp = 1, h = 2−5.

4. Numerical results

In this section we present some numerical tests to assess the performance of the Optimized Schwarz
method. In particular, we focus on the effectiveness and robustness of the method with respect both to
the mesh size h and to the physical parameters µ f and ηp.
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4.1 Finite element discretization and algebraic form

We consider a finite element discretization based on Taylor-Hood elements for the Stokes problem (see,
e.g., Boffi et al. (2013)) and on quadratic Lagrangian elements for the scalar elliptic form of the Darcy
equation. Let the indices I f , Ip and Γ denote the internal degrees of freedom in Ω f , Ωp and on the
interface. Let λλλ p and λλλ f be the vectors of components

∫
Γ

λpψi and
∫

Γ
λ f ψi, where λp and λ f are the

interface variables λp = pp +α f (ηηη p∇pp ·n− gp ·n) and λ f = −n · (2µ f ∇su f − p f III) ·n+αpu f ·n on
Γ , and ψi is a suitable finite element basis function on Γ . Letting MΓ Γ be a mass matrix on Γ , we can
write the algebraic form of the algorithm (3.3)-(3.4) as follows: given λλλ

0
p, for m> 1 until convergence

1. solve the Stokes problem(A
µ f
f )I f I f (A

µ f
f )I f Γ (G f )I f

(A
µ f
f )Γ I f (A

µ f
f )Γ Γ +α f MΓ Γ (G f )Γ

(G f )
T
I f

(G f )
T
Γ

0


um

s,I f

um
s,Γ

pm
f

=

fs,I f

fs,Γ
0

−
 0

λλλ
m−1
p
0

 (4.1)

where us,Γ is the vector of the degrees of freedom of the normal velocity on Γ ;

2. compute
λλλ

m
f = λλλ

m−1
p +(α f +αp)MΓ Γ um

s,Γ (4.2)

3. solve the Darcy problem(
(Aηp

p )IpIp (Aηp
p )IpΓ

(Aηp
p )Γ Ip (Aηp

p )Γ Γ +α−1
p MΓ Γ

)(
pm

p,Ip

pm
p,Γ

)
=

(
gp,Ip

gp,Γ

)
+α

−1
p

(
0

λλλ
m
f

)
(4.3)

where pp,Γ is the vector of the degrees of freedom of the pressure on Γ ;

4. compute

λλλ
m
p =

(
1+

α f

αp

)
MΓ Γ pm

p,Γ −
α f

αp
λλλ

m
f . (4.4)

Let R f ,Γ be the algebraic restriction operator that to the Stokes velocity and pressure in Ω f associates
the Stokes normal velocity on the interface Γ . Moreover, let Rp,Γ be the algebraic restriction operator
that to the Darcy pressure in Ωp associates the Darcy pressure on the interface Γ . Then, we can introduce
the discrete Robin-to-Dirichlet operators

S f = R f ,Γ

(A
µ f
f )I f I f (A

µ f
f )I f Γ (G f )I f

(A
µ f
f )Γ I f (A

µ f
f )Γ Γ +α f MΓ Γ (G f )Γ

(G f )
T
I f

(G f )
T
Γ

0


−1

RT
f ,Γ

Sp = α−1
p Rp,Γ

(
(Aηp

p )IpIp (Aηp
p )IpΓ

(Aηp
p )Γ Ip (Aηp

p )Γ Γ +α−1
p MΓ Γ

)−1

RT
p,Γ .

Simple algebraic computations allow to reinterpret (4.1)-(4.4) as a Gauss-Seidel iteration to solve the
interface linear system

ARR

(
λλλ f
λλλ p

)
=

(
−(α f +αp)MΓ Γ fΓ(

1+ α f
αp

)
MΓ Γ gΓ

)
(4.5)
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where

ARR =

(
−I I− (α f +αp)MΓ Γ S f

α f
αp

I−
(

1+ α f
αp

)
MΓ Γ Sp I

)
(4.6)

and fΓ and gΓ are vectors depending on the data of the problem. ARR is non-symmetric and indefinite.
In fact, if NΓ is the number of rows of λλλ f (or, equivalently, λλλ p) and (x, y) is an arbitrary non-null vector
in R2NΓ , then, denoting by (·, ·)2 and ‖ · ‖2 the Euclidean scalar product and norm, we obtain(

xT , yT )ARR

(
x
y

)
= ‖y‖2

2−‖x‖2
2 +

(
1+

α f

αp

)(
(x,y)2−αpxT MΓ Γ S f y−yT MΓ Γ Spx

)
,

whose sign may be either positive or negative.

4.2 Test 1

We assess the effectiveness of the Optimized Schwarz method on a model problem with known analytic
solution. The computational domains are Ω f = (0,1)× (1,2) and Ωp = (0,1)× (0,1) separated by
the interface Γ = (0,1)×{1}. The computational grids are uniform, structured, made of triangles and
characterized by mesh size h = 2−(s+2) with s = 1, . . . ,6. We set ηp constant (assuming η1 = η2),
αBJ = 1, kmin = π and kmax = π/h. The boundary conditions and the forcing terms are such that the
exact solution is u f = (

√
µ f ηp, αBJx), p f = 2µ f (x+ y− 1)+ (3ηp)

−1, pp = (−αBJx(y− 1)+ y3/3−
y2 + y)/ηp + 2µ f x. We solve the interface system (4.5) using GMRES (Saad & Schultz (1986)) with
tolerance 1e-9 on the relative residual starting the iterations from (λλλ f , λλλ p)

T = 0.
In Figs. 3–4 we plot the values of α f and αp computed using the three approaches studied in

Sects. 3.4.1–3.4.3 and the corresponding number of GMRES iterations for different values of µ f , ηp
and h. The method based on low-order Taylor approximation is not very effective, since the number of
iterations grows significantly in some cases, especially for small values of the physical parameters. The
coefficients computed both with equioscillation and with the mean minimization criterion seem to guar-
antee robustness with respect to h, i.e., the iteration counts appear to stabilize as the mesh size becomes
reasonable in terms of accuracy of the solution, and this behaviour remains evident as h→ 0. However,
there is still dependence on the value of the physical parameters. Finally, notice that the parameters
obtained by equioscillation obey the inequalities (3.25), i.e., α f is larger than αp if the mesh size h is
large enough compared to the physical parameters of the problem, while α f becomes smaller than αp
if h is taken small enough. Although an analytic expression is not available for α f and αp in the case
of mean minimization, we can infer from the graphs that they behave in an analogous way as concerns
their mutual magnitude.

In table 2 we show the effective convergence rate ρmax = maxk∈[kmin,kmax] ρ(α f ,αp,k), the mean
convergence rate E(α f ,αp) = (kmax− kmin)

−1 ∫ kmax
kmin

ρ(α f ,αp,k)dk and the iteration count for different
values of µ f and ηp, h = 2−5 and the three choices of the optimal parameters: low-order Taylor expan-
sion (T) (3.15), equioscillation (E) (3.20), and mean minimization (M). We can observe that minimizing
the effective convergence rate is not necessary a winning strategy. In general, minimizing the mean con-
vergence rate is providing better results when an iterative method is used to solve the interface problem,
even in the case when the effective convergence rate equals 1.

Finally, in Fig. 5 we consider four possible combinations of µ f and ηp and h = 2−5 and we show
the number of iterations for a range of values α f and αp. In all cases, the optimal coefficients devised
by minimizing the convergence rate either fall in the regions of minimum number of iterations or are in
the closest ones to it.
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Table 2. Effective convergence rate ρmax, mean convergence rate E(α f ,αp) and iteration count for different values of µ f and ηp,
h = 2−5 and the three choices of α f , αp: low-order Taylor expansion (T), equioscillation (E), and mean minimization (M).

µ f ηp α f αp ρmax E(α f ,αp) Iter
0.0099 6.2832 0.0116 0.0026 8 (T)

1 1 0.1622 12.3285 0.0116 0.0089 8 (E)
0.0357 56.0435 0.0395 0.0009 8 (M)
0.9947 6.2832 0.3613 0.1363 22 (T)

1 1e-2 9.9150 20.1714 0.3613 0.2320 18 (E)
5.4414 36.7552 1.0000 0.0729 14 (M)

99.4718 6.2832 0.2414 0.1581 46 (T)
1 1e-4 258.1914 77.4619 0.2414 0.0853 30 (E)

217.3489 92.0180 0.3472 0.0775 26 (M)
0.0099 0.6283 0.0945 0.0239 12 (T)

1e-1 1 0.1484 1.3477 0.0945 0.0706 12 (E)
0.0364 5.4896 0.3549 0.0089 10 (M)
0.0099 0.0628 0.3613 0.1363 22 (T)

1e-2 1 0.0992 0.2017 0.3613 0.2320 18 (E)
0.0544 0.3676 1.0000 0.0729 14 (M)
0.9947 0.6283 0.4806 0.2740 38 (T)

1e-1 1e-2 4.8415 4.1309 0.4806 0.2249 24 (E)
3.3703 5.9342 1.0000 0.1313 20 (M)
9.9472 0.6283 0.2414 0.1581 46 (T)

1e-1 1e-3 25.8191 7.7462 0.2414 0.0853 30 (E)
21.7349 9.2018 0.3472 0.0775 26 (M)
99.4718 0.6283 0.0429 0.0286 32 (T)

1e-1 1e-4 201.6164 9.9198 0.0429 0.0143 32 (E)
195.9084 10.2089 0.0456 0.0143 32 (M)

4.3 Test 2

We simulate a 2D cross-flow membrane filtration problem similarly to Hanspal et al. (2009). The fluid
domain is Ω f =(0,0.015)×(0.0025,0.0075) m, the porous medium domain is Ωp =(0.0035,0.0105)×
(0,0.0025) m and the interface is Γ = (0.0035,0.0105)× 0.0025 m. The boundary conditions are
set as follows: on Γ in

f = {0}× (0.0025,0.0075) we impose the parabolic inflow velocity profile u f =

(−16000y2+160y−0.3,0) m/s; on Γ out
f = {0.015}×(0.00625,0.0075), (2µ∇su f − p f III)·n= 0 kg/(m·s);

on ∂Ω f \ (Γ in
f ∪Γ out

f ∪Γ ), u f = 0 m/s; on Γ b
p = (0.0035,0.0105)×{0}, pp = 0 kg/(m·s); on ∂Ωp \

(Γ b
p ∪Γ ), up ·n = 0 m/s. Since gravitational effects are neglected, both f f and gp are null. The fluid

has density 1000 kg/m3 and dynamic viscosity 0.001 kg/(m·s). The permeability is either KKK1 = 1e-6
diag(1,1) m2 or KKK2 = 1e-12 diag(1,1) m2. Finally, αBJ = 1. Using X f = 0.005 m and U f = 0.1 m/s
for adimensionalization, we obtain µ f = 0.002, ηp = 20 for KKK1 and ηp = 2e-5 for KKK2. Table 3 reports
the coefficients α f and αp together with the number of GMRES iterations required to converge to the
tolerance 1e-9 on the relative residual for the two different values of the permeability. We can see that
the mean minimization approach guarantees convergence in a number of iterations almost independent
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Table 3. Parameters α f , αp and GMRES iterations for the cases of low-order Taylor expansion, equioscillation
and mean minimization. Meshes with h = 2−(2+s). dofs is the number of interface unknowns. Top: µ f = 0.002,
ηp = 20. Bottom: µ f = 0.002, ηp = 2e-5.

s dofs α f αp iter α f αp iter α f αp iter
(low-order Taylor) (equioscillation) (mean minimization)

1 50 1.99e-03 8.98e-03 21 9.11e-03 2.19e-02 18 5.18e-03 3.86e-02 13
2 98 9.95e-04 8.98e-03 21 8.43e-03 2.37e-02 17 3.34e-03 5.99e-02 13
3 194 4.97e-04 8.98e-03 21 8.10e-03 2.47e-02 17 3.16e-03 6.33e-02 13
4 386 2.49e-04 8.98e-03 21 7.94e-03 2.52e-02 17 3.16e-03 6.33e-02 13

s dofs α f αp iter α f αp iter α f αp iter
(low-order Taylor) (equioscillation) (mean minimization)

1 50 1.99e+03 8.98e-03 10 3.65e+03 5.48e-01 10 1.99e+03 1.01e-01 10
2 98 9.95e+02 8.98e-03 10 1.90e+03 1.05e-01 10 9.95e+02 2.01e-01 10
3 194 4.97e+02 8.98e-03 12 9.73e+02 2.06e-01 12 4.97e+02 4.02e-01 12
4 386 2.49e+02 8.98e-03 14 4.92e+02 4.06e-01 14 2.49e+02 8.04e-01 14

of the computational grid and it better performs than both the low-order Taylor and the equioscillation
methods at least is ηp is quite large. The computed solutions are shown in Figs. 6 and 7.

5. Conclusions

In this paper an Optimized Schwarz method for the Stokes-Darcy problem was studied. Different strate-
gies have been provided to practically compute optimal parameters for the Robin interface conditions to
guarantee the convergence of the method. The methods we propose take into account both the physical
parameters typical of this coupled problem (i.e., the fluid viscosity and the permeability of the porous
medium) and the size h of the computational grid used for simulations. Previous results (Discacciati
et al. (2007)) showed that for a fixed computational mesh and fluid viscosity and permeability tending
to zero, convergence of the Robin-Robin method was guaranteed if α f > αp. However, Chen et al.
(2011) proved that geometric convergence could be obtained in some cases for an appropriate choice
of α f < αp. The analysis carried out in this paper helps to clarify the issue of the relative size of the
parameters by clearly highlighting that their values may significantly change depending not only on the
physical parameters of the problem but also on the computational grid used for the finite element ap-
proximation. In particular, (3.25) shows that, if the product of the physical parameters is small enough
compared to h, then α f > αp guarantees an optimal convergence of the Robin-Robin algorithm, while
for fine enough meshes, αp may be taken larger than α f . Finally, in this paper the Robin-Robin method
is reinterpreted as an iterative method to solve a suitable interface linear system (4.5) for which Krylov
space methods can be used to enhance convergence.
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GANDER, M., MAGOULÈS, F. & NATAF, F. (2002) Optimized Schwarz methods without overlap for
the Helmholtz equation. SIAM J. Sci. Comput., 21, 38–60.

GANDER, M. (2006) Optimized Schwarz methods. SIAM J. Numer. Anal., 44, 699–731.
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FIG. 3. Left: parameters α f (circles) and αp (diamonds) versus h for different values of µ f and ηp. Right: corresponding number
of iterations versus h. Red lines: low-order Taylor expansion; blue: equioscillation; magenta: mean minimization.
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FIG. 4. Left: parameters α f (circles) and αp (diamonds) versus h for different values of µ f and ηp. Right: corresponding number
of iterations versus h. Red lines: low-order Taylor expansion; blue: equioscillation; magenta: mean minimization.



24 of 25 REFERENCES

FIG. 5. Number of iterations for h = 2−5 and different values of α f and αp. The dotted line represents the curve α f αp = 2µ f /ηp
(3.18). The red circle corresponds to (α f ,αp) computed using the low-order Taylor expansion (3.15), the blue circle to the case
of equioscillation (3.20) and the magenta circle to the mean minimization.
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FIG. 6. Stokes velocity for KKK1 = 1e-6 diag(1,1) m2 (left) and KKK2 = 1e-12 diag(1,1) m2 (right).

FIG. 7. Darcy pressure for KKK1 = 1e-6 diag(1,1) m2 (left) and KKK2 = 1e-12 diag(1,1) m2 (right).


